
Journal of Software for

Algebra and Geometry

Seminormalization package for Macaulay2

KARL SCHWEDE AND BERNARD SERBINOWSKI

vol 10 2020





JSAG 10 (2020), 1–7 The Journal of Software for
https://doi.org/10.2140/jsag.2020.10.1 Algebra and Geometry

Seminormalization package for Macaulay2

KARL SCHWEDE AND BERNARD SERBINOWSKI

ABSTRACT: This note describes a package for computing seminormalization of rings within Macaulay2.

1. INTRODUCTION. Given a reduced excellent Noetherian ring R, between R and its normalization RN,
there is the seminormalization RSN. In this paper we discuss an implementation of a seminormalization
algorithm within Macaulay2. The ring R is called seminormal if every finite birational extension R ⊆ S
that induces a bijection on primes and induces isomorphisms, on the residue fields, is in fact an isomor-
phism; see for instance [Traverso 1970; Greco and Traverso 1980; Leahy and Vitulli 1981]. In particular,
a cusp is not seminormal, since its normalization map is a bijection on points and induces isomorphisms
of residue fields.

Let us delve a little deeper into non-normal rings, in a way that will help explain the algorithm. Sup-
pose that R is as above with normalization RN. The conductor c⊆ R ⊆ RN is defined to be AnnR(RN/R).
It is an ideal in both R and RN which defines the locus where R is not normal. In this situation, R is
always the pullback of the following diagram:

RN/c R/c? _oo

RN

OOOO

Roo

OO

(1)

Or in other words,
R ∼= {(x, y+ c) ∈ RN

× R/c | x + c= y+ c}.

Since the pullback of this diagram dualizes to the pushout when taking Spec, we can interpret Spec R as
a quotient of Spec RN where certain points are identified (or have their residue fields shrunk) and certain
tangent spaces are glued or otherwise annihilated (the latter owing to the scheme structure of RN/c). For
additional discussion, see for instance [Schwede 2017]. In view of this construction, a ring is seminormal
if its non-normality is due only to gluing of points. In other words, a seminormal ring is one where there
is no undue identification of tangent spaces.

This idea leads us to our algorithm for seminormalizing, which is the topic of the next section.

Schwede was supported in part by NSF CAREER Grant DMS #1252860/1501102 and NSF grant #1801849. Serbinowski was
supported in part by NSF CAREER Grant DMS #1252860/1501102.
MSC2010: primary 13F45; secondary 13B22, 14M05.
Keywords: seminormalization, normalization, Macaulay2.
Seminormalization version 0.21

1

https://doi.org/10.2140/jsag.2020.10-1
http://msp.org/jsag
http://https://doi.org/10.2140/jsag.2020.10.1
http://msp.org/jsag


2 Schwede and Serbinowski :::: Seminormalization package for Macaulay2

2. STRUCTURE OF THE ALGORITHM. The idea of the algorithm is to perform the pullback from (1).
However, instead of just forming R/c and RN/c, we want to remove unnecessary tangent space identifi-
cation. A simple option would be to form the pullback S of the diagram

RN/
√
cRN R/

√
cR? _oo

RN

OOOO

Soo

OO
(2)

but this is not the seminormalization of R since R/
√
cR could itself have undue gluing of tangent spaces.

An easy way to get around this is to seminormalize R/
√
cR (which has lower dimension than R, and

so a recursive algorithm can apply), but the seminormalization (R/
√
cR)SN does not necessarily map to

RN/
√
cRN (since that is not necessarily seminormal). We could also seminormalize RN/

√
cRN, but this

led to implementation difficulties and so we instead form the intersection

D = (R/
√
cR)SN

∩ (RN/
√

cRN),

where the intersection takes place in the total ring of fractions of RN/
√
cRN. Then we pullback the

diagram

RN/
√
cRN D? _oo

RN

OOOO

C

OO

oo

Theorem 2.1. The ring C in the above diagram is the seminormalization of R.

Proof. We first notice that there is a diagram

(RN/
√
cRN)SN (R/

√
cR)SN? _oo

RN

OO

RSN

β

OO

oo

coming from the functoriality of seminormalization. Since the image of RSN maps into (RN/
√
cRN),

we see that β(RSN) ⊆ D. Hence by the universal property of pullback, there is a map RSN
→ C . On

the other hand, it follows from [Ferrand 2003] (cf. [Schwede 2005]), that the map RSN
→ C induces a

bijection on points of Spec and induces an isomorphism of residue fields. Indeed, recall that the pullback
of a diagram {A→ A/I ← B} replaces the closed subscheme V (I )⊆ Spec A with Spec B, residue fields
and all. Since C ↪→ RN, we have that RSN

→ C is also birational and so RSN
→ C is an isomorphism

since RSN is seminormal by definition. This completes the proof. �

3. IMPLEMENTATION OF THE ALGORITHM. We describe the main algorithm first and then describe
the strategy of some of the component functions individually.



Schwede and Serbinowski :::: Seminormalization package for Macaulay2 3

3.1. The main seminormalization algorithm. As the algorithm is recursive, the first thing we do is
check whether we are finished. If the Krull dimension of the ring is 0 or if the ring is normal we return
the ring unchanged as it has already been seminormalized (note we assume that the ring the function is
given is reduced). This ensures that the process will end since at each step of the induction, the dimension
will drop.

Assuming the ring is not already seminormal, then we create a map from the input ring to its normal-
ization:

φ : R→ RN.

Note, we do not use the core normalization function integralClosure as that does not work correctly
on nondomains (even if the ring is reduced). Instead we call a function betterNormalizationMap
(which eventually calls integralClosure on various quotient rings of R); see Section 3.2.

We then compute the conductor of this map, which we continue to call c. We then take the radical of
this ideal in both R and RN and now we can form the diagram

RN/
√
cRN R/

√
cR? _oo

RN

φ

OOOO

At this point, we make our recursive call and seminormalize R/
√
cR (constructing a map γ : R/

√
cR→

R/
√
cR

SN
in the process). Finally, we need to construct the ring we called D above,

D = (R/
√
cR)SN

∩ RN/
√

cRN.

This is a bit tricky, and is the subject of Section 3.3 below. In the meantime, once we have constructed
D (and the map ψ : D→ RN/

√
cRN), we can pullback the diagram

RN/
√
cRN D? _

ψ
oo

RN

φ

OOOO

C

OO

oo

to obtain C , which we have already verified is the seminormalization in Theorem 2.1. Note we perform
this pullback by using the package [Pullback], which requires the map φ above to be surjective.

3.2. Normalization of reduced rings. As mentioned above, a function betterNormalizationMap,
which computes the normalization of reduced rings is included in this package. The strategy is as follows.

Step 1: Compute the minimal primes {qi } of R.

Step 2: Compute the normalizations of the R/qi . Note the function betterNormalizationMap has
an option Strategy which is passed to the integralClosure calls at this step.

Step 3: Construct the product of the normalized rings RN
=

∏
i (R/qi )

N.



4 Schwede and Serbinowski :::: Seminormalization package for Macaulay2

Step 4: Construct the map from R to RN.

Step 3, constructing the product of normalized rings, is achieved by calling a function ringProduct
which computes a product of a list of rings defined over the same base ring (i.e., defined over QQ). This
returns the product of rings as well as the list of orthogonal idempotents defining each ring. It also
returns a list of lists showing what variables from our original rings become in the product. We hope
that this functionality of taking products of rings may be useful in other contexts besides computing
normalizations.

Step 4 is the most involved. We first construct various maps (R/qi )
N
→ RN. Notice, this is not a

real ring map which we want to study; we are using it to keep track of where variables of the rings
(R/qi )

N go. We then compose with R→ (R/qi )
N to obtain various different maps R→ RN. Finally, we

sum these maps (multiplying by our orthogonal idempotents as appropriate) to obtain our normalization
map R→ RN.

3.3. Intersecting the seminormalization and another ring extension. At a key point in our algorithm,
we have two extensions of A = R/

√
cR, first the seminormalization ASN

= (R/
√
cR)SN and second,

the finite extension to B = RN/
√
cRN . We need to form an intersection of these two extensions. We

do this by using the function intersectSeminormalizationAndExtension which computes exactly
this intersection (and a ring map from our base ring to the intersection).

To do this, first we find a reduced ring O containing both of these extensions whose minimal primes are
in bijection with the minimal primes of the ring we called B. This is done via the function findOverring
which essentially tensors the two extension rings together and then drops any unnecessary minimal
primes. Note we do not have to worry about how the seminormalization embeds into this overring by
uniqueness properties of elements of the seminormalization [Swan 1980]. Once we have the overring O ,
we form the exact sequence (making liberal use of the pushFwd function in the [PushForward] package)

ASN
⊕ B

(a,b) 7→a−b
−−−−−−−→ O→ 0

and computing the kernel K. At this point, K is the desired intersection ring, but Macaulay2 only
understands it as a module. However, we can take the module generators of K, map them into B, and
consider the ring they generate. This is our desired ring.

3.4. Variable naming conventions. One issue we ran into when calling a recursive function that pro-
duces new rings is that there can be numerous collisions of variable names which makes debugging very
difficult. Because of this, internally, there is a complicated scheme for naming variables.

However, none of this is visible in the outputted ring, as by default all the variables of the output
ring will have been renamed as YyN where N varies. If you do not want to use Yy, you may instead
supply your own variable name via the Variable ⇒ X option when calling seminormalize. Here
X must be a valid symbol. It is important to note that you cannot use a symbol that overlaps with an
existing variable as this will cause errors. The output does include a map from the original ring to the
seminormalization.



Schwede and Serbinowski :::: Seminormalization package for Macaulay2 5

4. EXAMPLES. The function seminormalize returns a list of three things. First it returns the ring RSN,
then it returns the ring map R→ RSN and finally it returns the ring map RSN

→ RN.
We begin by seminormalizing the cusp; in this case the seminormalization is the normalization.

i1 : loadPackage "Seminormalization"

o1 = Seminormalization

o1 : Package

i2 : R = QQ[x,y]/ideal(y^2-x^3);

i3 : seminormalizedList = (seminormalize(R));

i4 : seminormalizedList#0

QQ[Yy , Yy , Yy ]
0 1 2

o4 = ---------------------------------------
2 2

(Yy - Yy , Yy Yy - Yy , Yy - Yy Yy )
2 1 1 2 0 1 0 2

o4 : QuotientRing

i5 : prune seminormalizedList#0

o5 = QQ[Yy ]field
2

o5 : PolynomialRing

i6 : seminormalizedList#1

QQ[Yy , Yy , Yy ]
0 1 2

o6 = map(---------------------------------------,R,{Yy , Yy })
2 2 1 0

(Yy - Yy , Yy Yy - Yy , Yy - Yy Yy )
2 1 1 2 0 1 0 2

QQ[Yy , Yy , Yy ]
0 1 2

o6 : RingMap --------------------------------------- <--- R
2 2

(Yy - Yy , Yy Yy - Yy , Yy - Yy Yy )
2 1 1 2 0 1 0 2

i7 : isSeminormal(R)

o7 = false

Next, we seminormalize the union of four lines through the origin in A2. This should produce some-
thing isomorphic to the union of the 4 coordinate axes in A4, which it does.

i2 : R = QQ[x,y]/ideal(x*y*(x^2-y^2));

i3 : seminormalizedList = seminormalize(R);

i4 : seminormalizedList#0

QQ[Yy , Yy , Yy , Yy ]
0 1 2 3

o4 = ------------------------------------------------
(Yy Yy , Yy Yy , Yy Yy , Yy Yy , Yy Yy , Yy Yy )

2 3 1 3 0 3 1 2 0 2 0 1

o4 : QuotientRing



6 Schwede and Serbinowski :::: Seminormalization package for Macaulay2

The following example of Greco and Traverso [1980] is a seminormal ring whose prime spectrum has
an irreducible component that is not seminormal.

i2 : B = ZZ/11[x,y,u,v,e,f];

i3 : I = intersect(ideal(u,v,e-1,f),ideal(x,y,e,f-1));

i4 : A = B/I;

i5 : E = ZZ/11[z1, z2, z3, z4, z5];

i6 : h = map(A, E, {x^3+u, x^2+v, y, u^2-v^3, x*y});

i7 : J = ker h;

i8 : D = E/J;

i9 : isSeminormal(D) --this should be seminormal

o9 = true

i10 : JJ = preimage(h, ideal(sub(f,A)));

i11 : D2 = E/(trim(JJ + J));

i12 : isSeminormal(D2) --this should not be seminormal

o12 = false

Finally, we verify the seminormality of a seminormal ring that is not weakly normal.

i2 : R = ZZ/2[t, x, y]/ideal(x^2 - t*y^2);

i3 : isSeminormal(R)

o3 = true

5. FUTURE WORK. There are a number of ways that this package could be improved in the future. We
list some of them here in the hope that they will inspire others, and remind us, to work on them.

(i) Implement this algorithm over more general coefficient rings.

(ii) Implement weak normalization, if possible.

(iii) Implement functorial seminormalization (in other words, given a map between two rings, there
should always be a unique map between their seminormalizations).

(iv) Improve the speed of the computation where possible.

ACKNOWLEDGEMENTS. The authors thank Neil Epstein and Claudiu Raicu for stimulating discussions
and in particular Claudiu Raicu for writing and then improving the [PushForward] package in ways that
helped the development of this package. We also thank the referees for numerous valuable comments
and suggestions, both on the paper and on the package.

SUPPLEMENT. The online supplement contains version 0.21 of Seminormalization.

REFERENCES.
[Ferrand 2003] D. Ferrand, “Conducteur, descente et pincement”, Bull. Soc. Math. France 131:4 (2003), 553–585. MR

[Greco and Traverso 1980] S. Greco and C. Traverso, “On seminormal schemes”, Compositio Math. 40:3 (1980), 325–365.
MR Zbl

http://msp.org/jsag/2020/10-1/jsag-v10-n1-x01-Seminormalization.m2
http://dx.doi.org/10.24033/bsmf.2455
http://msp.org/idx/mr/2044495
http://www.numdam.org/item?id=CM_1980__40_3_325_0
http://msp.org/idx/mr/571055
http://msp.org/idx/zbl/0412.14024


Schwede and Serbinowski :::: Seminormalization package for Macaulay2 7

[Leahy and Vitulli 1981] J. V. Leahy and M. A. Vitulli, “Seminormal rings and weakly normal varieties”, Nagoya Math. J. 82
(1981), 27–56. MR Zbl

[Pullback] D. Ellingson and K. Schwede, “Pullback: pullback of rings”, Macaulay2 package, version 1.03, available at https://
github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/Pullback.m2.

[PushForward] C. Raicu, “PushForward: push forwards of finite ring maps”, Macaulay2 package, version 0.1, available at
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.

[Schwede 2005] K. Schwede, “Gluing schemes and a scheme without closed points”, pp. 157–172 in Recent progress in
arithmetic and algebraic geometry, edited by F. Bacchus and T. Walsh, Contemp. Math. 386, Amer. Math. Soc., Providence,
RI, 2005. MR Zbl

[Schwede 2017] K. Schwede, Reply to “Is there a geometric intuition underlying the notion of normal varieties?”, MathOver-
flow, 2017, available at http://mathoverflow.net/q/109486.

[Swan 1980] R. G. Swan, “On seminormality”, J. Algebra 67:1 (1980), 210–229. MR Zbl

[Traverso 1970] C. Traverso, “Seminormality and Picard group”, Ann. Scuola Norm. Sup. Pisa (3) 24:4 (1970), 585–595. MR
Zbl

RECEIVED: 16 Oct 2018 REVISED: 14 Oct 2019 ACCEPTED: 5 Dec 2019

KARL SCHWEDE:

schwede@math.utah.edu
Department of Mathematics, The University of Utah, Salt Lake City, UT, United States

BERNARD SERBINOWSKI:

bserbinowski@gmail.com
Department of Computer Science, Vanderbilt, Nashville, TN, United States

msp

http://dx.doi.org/10.1017/S0027763000019279
http://msp.org/idx/mr/618807
http://msp.org/idx/zbl/0528.14001
https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/Pullback.m2
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
http://dx.doi.org/10.1090/conm/386/07222
http://msp.org/idx/mr/2182775
http://msp.org/idx/zbl/1216.14003
http://mathoverflow.net/q/109486
http://dx.doi.org/10.1016/0021-8693(80)90318-X
http://msp.org/idx/mr/595029
http://msp.org/idx/zbl/0473.13001
http://www.numdam.org/item?id=ASNSP_1970_3_24_4_585_0
http://msp.org/idx/mr/0277542
http://msp.org/idx/zbl/0205.50501
mailto:schwede@math.utah.edu
mailto:bserbinowski@gmail.com
http://msp.org



	1. Introduction
	2. Structure of the algorithm
	3. Implementation of the algorithm
	3.1. The main seminormalization algorithm
	3.2. Normalization of reduced rings
	3.3. Intersecting the seminormalization and another ring extension
	3.4. Variable naming conventions

	4. Examples
	5. Future work

