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ON FIBERED COMMENSURABILITY

DANNY CALEGARI, HONGBIN SUN AND SHICHENG WANG

This paper initiates a systematic study of the relation of commensurability
of surface automorphisms, or equivalently, fibered commensurability of 3-
manifolds fibering over S!. We show that every hyperbolic fibered com-
mensurability class contains a unique minimal element. The situation for
toroidal manifolds is more complicated, and we illustrate a range of phe-
nomena that can occur in this context.

1. Introduction

The main purpose of this paper is to study the equivalence relation of commen-
surability of surface automorphisms. Informally, two surface automorphisms are
commensurable if they lift to automorphisms of a finite covering surface that have
nontrivial common powers. Equivalently, a surface automorphism determines a
foliation of a 3-manifold by closed surfaces, and two automorphisms are com-
mensurable if their corresponding 3-manifolds admit common finite covers for
which the pulled-back foliations are isotopic. Thus commensurability of surface
automorphisms is a special case of the study of commensurability of 3-manifolds
equipped with a certain kind of geometric structure; again informally, we call this
commensurability relation fibered commensurability.

The relation of commensurability of 3-manifolds is well-studied; see, for ex-
ample, [Thurston 1979, Chapter 6; Borel 1981; Macbeath 1983; Neumann 1997;
Behrstock and Neumann 2010]. When studying commensurability in a given con-
text, the most important distinction to make is between those commensurability
classes that admit finitely many minimal elements, and those that admit infinitely
many. For example, amongst hyperbolic 3-manifolds, this is precisely the distinc-
tion between nonarithmetic and arithmetic commensurability classes; see [Mar-
gulis 1991; Borel 1981], for instance. This distinction has a cleaner statement if
one is prepared to work in the category of orbifolds: each commensurability class
of nonarithmetic hyperbolic 3-manifolds contains a unique minimal element.

Fibered commensurability is more rigid than ordinary commensurability. How-
ever, a given 3-manifold can fiber in infinitely many different ways. For Seifert
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manifolds, there is exactly one fibered commensurability class of surface bundles
of all closed (resp. with torus boundary) Seifert fibered manifolds whose fiber has
negative Euler characteristic, and this class contains infinitely many minimal ele-
ments. On the other hand, in the hyperbolic world we obtain:

Theorem 3.1 (Hyperbolic Theorem). Every commensurability class of hyperbolic
fibered pairs contains a unique (orbifold) minimal element.

An immediate corollary is that for a fibered hyperbolic 3-manifold M, each
fibered commensurability class contains at most finitely many fibrations of M;
hence M has either one fibered commensurability class, or infinitely many fibered
commensurability classes.

The reducible case is more complicated:

Examples 5.3 and 5.5 (Toroidal cases). There are examples of graph manifolds
with infinitely many fibered commensurability classes, and a single graph manifold
can fiber in infinitely many ways in a single commensurability class.

As these results suggest, obstructions to commensurability of surface automor-
phisms arise from their behavior on pseudo-Anosov orbits, and near their reducing
systems. We describe such obstructions in detail.

In Section 2, we give basic definitions and illustrate their meaning, in the special
case of commensurability of spherical and toral automorphisms. We recall the
Nielsen—Thurston classification of surface automorphisms, and discuss a “normal
form” for automorphisms. This standard material may be skipped by the expert.

In Section 3, we study fibered commensurability of hyperbolic manifolds, and
prove Theorem 3.1. We also list some commensurability invariants of pseudo-
Anosov automorphisms (Lemma 3.10 and Proposition 3.15), and describe exam-
ples that illustrate their use.

Finally, Section 4 and Section 5 are devoted to the case of reducible auto-
morphisms, especially of graph manifolds. In Section 4 we define certain nu-
merical commensurability invariants for reducible maps (Theorem 4.3, as well as
Proposition 4.11), and give many examples. In Section 5 we give examples of
graph manifolds with infinitely many incommensurable fibrations, including one
with boundary (Example 5.3) that also admits infinitely many commensurable (but
nonisomorphic) fibrations, and a closed one (Example 5.5) that admits incommen-
surable fibrations of the same genus.

2. Fibered commensurability

Basic definitions. Let F be a compact surface. An automorphism ¢ of F is an
isotopy class of self-homeomorphisms of F'. We use the notation (F, ¢) where ¢
is an automorphism of F.
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Remark 2.1. When F has boundary, it is more usual to study isotopy classes
of self-homeomorphisms fixed pointwise on the boundary. However, since we
are interested in automorphisms which might permute boundary components, we
adhere to this nonstandard convention.

One surface automorphism can “cover” another in two distinct ways: either
topologically (in the sense that one surface covers the other) or dynamically (in the
sense that one automorphism is a power of another). We consider covering in both
senses in the sequel. More formally, we make the following definition.

Definition 2.2. A pair ([7 , q~5) covers (F, ¢) if there is a finite cover 7 : F — F and
representative homeomorphisms f and f of ¢ and ¢ respectively so that 7 o f =
fomasmaps F — F.

Remark 2.3. The relation of covering is transitive: if (F1, ¢1) covers (F3, ¢), and
(F>, @) covers (Fs, ¢3), then (F1, ¢1) covers (F3, ¢3). This follows by appealing
to a “normal form” for representative homeomorphisms which is compatible with
finite covers. This normal form is well-known, and summarized in Theorem 2.14
and Proposition 2.15 below.

An automorphism ¢ of F determines an outer automorphism ¢, of 7| (F) pre-
serving peripheral subgroups, and by the well-known theorem of Dehn and Nielsen
[Nielsen 1927], this correspondence is a bijection. A cover F determines a con-
jugacy class of subgroups G of 71 (F), and an automorphism ¢ of F' lifts to an
automorphism ¢ of F ifand only if G and ¢,(G) are conjugate in 71 (F'). However,
a particular lift ¢ depends on a choice of conjugating element. Thus a finite cover
of surfaces F — F might determine zero, one, or many covers of automorphisms
(F, (Z)) — (F, ¢) (even if (]3 is primitive).

Example 2.4. If F — Fis any finite cover, then (F,id) is covered by (f? , V)
where 1 is any element of the deck group of the cover.

Definition 2.5. Two automorphisms (Fy, ¢1) and (F», ¢) are commensurable if
there is a surface F, automorphisms d~>1 and ¢~>2 of F, and nonzero integers k; and
ky, so that (F, ¢;) covers (F;, ¢;) fori =1, 2, and if d~>f1 = ~12€2 as automorphisms
of F. Moreover say (F1, ¢1) and (F,, ¢) are topologically commensurable if
|ki1| = |kz| = 1, and dynamically commensurable if F=F =F.

Commensurability of automorphisms is readily seen to be an equivalence rela-
tion, and is the main object of study in this paper.

Statements about surfaces and automorphisms can usefully be translated into
statements about 3-manifolds with certain types of foliations. These objects —
“fibered pairs”, to be defined below — admit natural generalizations to objects
called orbifold fibered pairs, that are awkward to discuss in the language of surfaces
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and automorphisms. Certain theorems in this paper are more elegantly stated and
proved in this category. A basic reference for the theory of orbifolds is [Thurston
1979, Chapter 13].

Definition 2.6. A fibered pair is a pair (M, %) where M is a compact 3-manifold
with boundary a union of tori and Klein bottles, and & is a foliation by compact
surfaces. More generally, an orbifold fibered pair is a pair (O, §) where O is a
compact 3-orbifold, and 4 is a foliation of O by compact 2-orbifolds.

At interior points (resp. boundary points) an orbifold fibered pair (O, %) looks
locally like the quotient of an open ball in R® (resp. a relatively open ball in
a vertical half-space) foliated by horizontal planes by a finite group of smooth
foliation-preserving homeomorphisms.

A surface automorphism (F, ¢) determines a fibered pair whose underlying
manifold is an F bundle over S' with monodromy ¢, and whose foliation is the
foliation by surface fibers (which are all homeomorphic to F). If we want to
emphasize its dynamical origin, we use the notation [F, ¢] in the sequel to denote
the fibered pair associated to the automorphism (F, ¢).

If the underlying orbifold O is good (i.e., it admits a finite manifold cover) then
(0, ¥) is finitely covered by a pair (M, &) where M is a manifold, and every leaf
of & is a compact surface. After passing to a further 2-fold cover if necessary, we
can assume ¥ is co-orientable, in which case M fibers over S! in such a way that
the leaves of & are the fibers.

Definition 2.7. A fibered pair (M, %) covers (M, F) if there is a finite covering
of manifolds 7 : M — M such that 7=~ (%) is isotopic to F. Two fibered pairs
(M1, &1) and (M, &,) are commensurable if there is a third fibered pair (A7I , @)
that covers both.

If (M;, &F;) fori =1, 2 are fibered pairs with co-orientable foliations, then they
are commensurable in the sense of Definition 2.7 if and only if the associated
surface automorphisms are commensurable. Thus, the category of fibered pairs
enlarges the category of surface automorphisms in such a way that the definition
of commensurability of a surface automorphism is the same, whichever category
we use.

To stress that the definition of commensurability of fibered pairs depends on
both the underlying 3-manifold and the foliation, we call this equivalence relation
fibered commensurability.

The relation of covering is transitive, but it is not yet a partial order because of
the existence of automorphisms of finite order. We must take such examples into
account in order to define minimal elements with respect to commensurability.
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Definition 2.8. We say that two fibered pairs (M, &) and (N, ) are covering
equivalent if each covers the other. Call a covering equivalence class minimal
if no representative covers any element of another covering equivalence class.

The relation of covering descends to a transitive relation on covering equivalence
classes, and defines a partial order on such classes. Minimal classes are minimal
with respect to this partial order.

Remark 2.9. Each covering equivalence class of fibered pairs [ F, ¢] contains ex-
actly one fibered pair unless ¢ is periodic. In the periodic case, (F, ¢) and (G, )
are in the same covering equivalent class if and only if ¥ = G and both ¢ and
generate the same finite cyclic group. With this understood, in the sequel we are
relaxed in our terminology, and use the word “minimal element” when we really
mean “minimal class”.

Simple cases. For simplicity, we usually restrict attention to the case that F (and
therefore M) is closed. However, because of the nature of the theory of surface
automorphisms, to really understand this case we are forced to consider surfaces
(and 3-manifolds) with boundary, associated to the restrictions of automorphisms
to invariant subsurfaces.

Evidently, the sign of x (F) is a commensurability invariant of (F, ¢). In the
case of fibered pairs (of good orbifolds), all leaves have the same sign, so we can
speak unambiguously about fibered pairs with spherical, Euclidean, or hyperbolic
leaves. We first discuss the situation when x (F) > 0.

Example 2.10 (spherical automorphisms). There is only one commensurability
class, consisting of the bundles S? x S! and S?>X S!, each foliated by spheres, and
RP3 # RP3, which can be thought of as an S? bundle over a mirror orbifold. The
elements S?x S! and RP? # RP? are minimal.

Example 2.11 (toral automorphisms). The mapping class group of a torus is iso-
morphic to GL(2, Z), and every automorphism has a linear representative. An
automorphism can be periodic, reducible, or Anosov. From elementary linear al-
gebra, automorphisms in different classes are not commensurable. We discuss each
case in turn.

(1) Periodic case: there is only one commensurability class; moreover there are
exactly two minimal elements, corresponding to the periodic automorphisms
of order 4 and 6 on a square and hexagonal torus respectively.

(2) Reducible case: as automorphisms, each map (7', ¢) is represented by a matrix
which can be conjugated into the form

1n
o~=(o1)
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where n # 0. So there is only one commensurability class and two minimal
elements, corresponding to the conjugacy classes of matrices

11 ~-1 1
#(or) o (Co )

(3) Anosov case: the resulting Sol manifolds are commensurable if and only if
they are fibered commensurable, which occurs if and only if the logarithms
of the dilatations of the automorphisms are commensurable as real numbers.
Hence there are infinitely many fibered commensurability classes.

Standard form for surface automorphisms. In the remainder of the paper there-
fore we concentrate on the case of surfaces F' with x (F) < 0. Furthermore, unless
we explicitly say to the contrary, all surfaces F' are assumed to be compact and
connected.

A commensurability between automorphisms restricts to a commensurability
between the underlying surfaces. A complete set of commensurability invariants of
compact surfaces are the sign of Euler characteristic, and the property of possessing
(or not possessing) a nonempty boundary.

Lemma 2.12. Let F; and F> be compact surfaces with x < 0. If both or neither
have nonempty boundary, they are commensurable. Otherwise they are incommen-
surable.

The proof is elementary; see [Massey 1974], for example. Since every compact
surface orbifold with x < 0 is good, the lemma extends to orbifolds.

Notation 2.13. Suppose I" (resp. F’) is a union of circles (resp. a compact sub-
surface) in F. Let F\ T (resp. F \ F’) denote the compact surface obtained by
splitting F along " (resp. removing intF’, the interior of F”).

Recall the Nielsen—Thurston classification of surface automorphisms.

Theorem 2.14 [Thurston 1988; Fathi et al. 1979]. Let ¢ be an automorphism of
a compact surface F. Then the isotopy class of ¢ has a representative (which by
abuse of notation we continue to denote by ¢) so that either

(1) ¢ has finite order, and [F, ¢] is a Seifert manifold with H*> x R geometry; or

(2) ¢ is pseudo-Anosov—i.e., F admits a pair of transversely measured singular
foliations §s and §, with measures g, |4y, and there is a real number X > 1
called the dilatation so that ¢ takes each foliation to itself, stretching i, by
A and compressing s by 1/, —and the interior of | F, ¢] admits a complete
hyperbolic structure of finite volume; or

(3) ¢ is reducible —i.e., there is a minimal nonempty embedded 1-manifold I in
F with a ¢-invariant tubular neighborhood N (I') such that on each ¢-orbit
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of F\ N(TI') the restriction of ¢ is either finite order or pseudo-Anosov, and
LF, ¢] is a 3-manifold with a JSJ decomposition (whose tori correspond to the
¢ orbits of ") into Seifert fibered and hyperbolic pieces.

In the sequel, we will need more precise control over the normal form of ¢ near
the boundary of a subsurface on which ¢ is pseudo-Anosov. We say a representative
pseudo-Anosov map ¢ on F with boundary is in standard form if it satisfies the
following two conditions:

(1) Near each boundary circle, two p-pronged measured transverse foliations
&°, 1¥) and (§*, u*) have the form illustrated here (for the case p=3).

(2) On each ¢-orbit on 0 F, the restriction of ¢ is periodic.

Proposition 2.15 [Jiang and Guo 1993]. Each reducible map ¢ as in case (3) of
Theorem 2.14 can be isotoped into a standard form,; i.e.:

(1) The restriction of ¢ to each pseudo-Anosov orbit of F\ N(I') is in standard
form as above.

(2) The restriction of ¢ to each periodic orbit of F\ N(I') is periodic.

This completely fixes the behavior of ¢ on the complement of the regions N (I").
In the sequel we assume that each reducible map ¢ has been isotoped to its standard
form in Proposition 2.15. Then for any such ¢, there is some positive integer / so
that ¢’ is the identity on o(F \ N(I'(¢))) and ¢ on N(I') are Dehn twists along
each y € I'(¢) relative to d(F \ N(I"(¢))).

Definition 2.16. Let ¢ be a reducible map. Say ¢ is D-type if it is generated by
Dehn twists along components of I'(¢); say ¢ is D-type along I'(¢) if ¢ restricts
to the identity along dN (I'(¢)).
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Remark 2.17. Note that every ¢ has a power ¢/ which is D-type along I'(¢).
Moreover, ¢ is a root of D-type, i.e., some power ¢ is D-type, if and only if ¢
is periodic on each ¢-orbit of F \ N(I'). Alternatively, every ¢ is either a root of
D-type or has pseudo-Anosov ¢-orbits.

Finally we make the following notational convention. We denote surfaces in
general by F, F;, G and so on, and use X, , to denote the surface of genus g with
n boundary components. We sometimes abbreviate ¥, o to X.

Seifert fibered case. Finite order automorphisms are very easy to understand. Sup-
pose (F1, ¢1) and (F3, ¢) have finite order, so that the manifolds [F}, ¢;] and
[F>, ¢o] are Seifert manifolds with a product geometry. Each [F;, ¢;] is finitely
covered by a product F; x S'. From Lemma 2.12 we can deduce:

Proposition 2.18. There is exactly one fibered commensurability class of surface
bundles of all closed (resp. with torus boundary) Seifert fibered manifolds whose
fiber has negative Euler characteristic. This class contains infinitely many minimal
elements.

Proof. All that needs to be proved is that the class contains infinitely many minimal
elements. A key observation is that if qNS is primitive in MCG(ﬁ ) and has a fixed
point near which it acts as a rotation through order p, the same is true of any
¢ € MCG(F) that it covers. This observation lets us construct infinitely many
minimal elements, as follows.

For each genus g > 1, let ¢¢ be a maximum-order orientation-preserving periodic
map on X,. Then (see [Steiger 1935]) ¢, has order 4g+2 (indeed there is a unique
Z/(4g + 2)Z subgroup of MCG(X) up to conjugacy) and has exactly one fixed
point, one periodic orbit of length 2 and one periodic orbit of length 2g+1. Clearly
(Xg, @) is primitive, and (Z,, ¢,) and (Xg, ¥) cover each other if and only if
Y= ¢g for g coprime with 4g + 2. Now suppose (Zg, ¢,) covers (X, ) with
[ # g. Of course, we must have [ < g. On the other hand by the observation above,
¥ must have a fixed point near which it acts as a rotation through order 4g + 2,
which implies that v is a periodic map on %; of order at least 4g + 2, which is
impossible. This completes the proof. U

3. Pseudo-Anosov automorphisms

Minimal elements. The most important fact we prove about commensurability
of pseudo-Anosov automorphisms — equivalently, of fibered commensurability of
hyperbolic fibered pairs—is the existence of finitely many minimal elements in
each commensurability class. In fact, working in the orbifold category, the state-
ment is as clean as it could be:
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Theorem 3.1. Every commensurability class of hyperbolic fibered pairs contains
a unique (orbifold) minimal element.

Remark 3.2. If M is not arithmetic, then the commensurability class of M (in
the usual sense) contains a unique minimal element which is some orbifold O.
However, if M is arithmetic, no such unique minimal element exists, and the com-
mensurator of 7y (M) is dense in PSL(2, C); see [Borel 1981; Margulis 1991].

Remark 3.3. Compare with Proposition 2.18 to see that the hypothesis of “hyper-
bolic” is essential here (in fact, the hyperbolic world is essentially the only context
in which there are unique minimal elements in a commensurability class).

Proof of Theorem 3.1. Let (M, %) be a fibered pair, and after passing to a 2-fold
cover if necessary, assume that M fibers over S! with fibers the leaves of %. Thus
M has the structure of an F-bundle over S! with monodromy ¢, for some compact
surface F', and some pseudo-Anosov homeomorphism ¢ : F — F. The suspension
of the product structure gives a pseudo-Anosov flow X transverse to %, with finitely
many closed singular orbits corresponding to the singular points of ¢. The interior
of the manifold M admits a unique complete singular Sol metric for which the
leaves of & are Euclidean surfaces with cone singularities on the singular orbits of
X; see [Thurston 1997] or [Fathi et al. 1979] for details.

Pulling back the singular Sol metric on M gives the interior of the universal
cover (M, %) the structure of a complete simply connected singular Sol manifold,
for which the leaves of  are singular Euclidean planes, and on which 7 (M) acts
as a discrete finite covolume group of isometries. Let A denote the full group of
isometries of M with its singular Sol metric.

Claim: A is itself a lattice, and it preserves the foliation F.

We show how the theorem follows from this Claim. Since 71 (M) C A we have
the foliation-preserving covering p : (M, &) = (M, %) /(M) — (M, F) /A. Since
(M, %) is a hyperbolic surface bundle of finite volume, we conclude that (1\71 , 93) /A
is an orbifold fiber pair (O, 9). Notice that any covering map of fibered pairs
(M , @) — (M, %) is isotopic to an isometric covering of the interiors in the singular
Sol metrics. Then it is easy to see that for any pair (M’, ) commensurable with
(M, F) the group 771 (M’) embeds into A in such a way that (M’, F') covers (O, ).

Now we prove the Claim. First, it is evident that A preserves the stratifica-
tion of M into “ordinary” points (those with a neighborhood isometric to an open
set in Sol) and singular points (those on the lifts of the singular flowlines of X).
Moreover, any isometry between open subsets of Sol must preserve the foliation
by Euclidean planes, as can be seen by appealing to the well-known structure of
the point stabilizers in Isom(Sol); see [Thurston 1997, Chapter 3], for instance.
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Since A is equal to the group of isometries of the nonsingular part of M, it
follows that A is a Lie group, by the well-known theorem of Myers and Steenrod
[1939]. Hence if A is not discrete, it must contain a continuous family of nontrivial
isometries. Such isometries can only act on the singular flowlines as translations.
Let £(¢) and £'(¢) be two such flowlines, parametrized by length in such a way that
£(t) and ¢/(¢) are contained in the same singular Euclidean leaf of M , for each
t. Assume furthermore that for |z| sufficiently small, the points £(¢) and ¢'(¢) can
be joined by a unique (nonsingular) Euclidean geodesic in the singular Euclidean
leaf containing them. Then for small ¢, the length of this Euclidean geodesic as
a function of ¢ has the form /e*x2 + e¢=2'y? for fixed x and y; in particular,
the length of this Euclidean geodesic is not locally constant, and therefore (since
elements of A preserve the foliation by singular Euclidean planes) a continuous
family of isometries must fix ¢ and ¢’ pointwise. But this implies that M admits
no continuous family of nontrivial isometries, and A is discrete. Since it contains
w1 (M), it is therefore a lattice, as claimed. U

Remark 3.4. If F is closed, M with its singular Sol metric and with its hyperbolic
metric are quasi-isometric. Consequently if £, ¢’ are two flowlines, the distance
function d( -, -) is proper on £ x £’ and therefore one obtains another proof that A
contains no nontrivial continuous family.

Remark 3.5. A fibration of M over a circle is uniquely determined by an element
of H'(M; Z), which is represented by a unique harmonic 1-form « in the hyper-
bolic metric on M. A cover (M , @) — (M, &) pulls back the harmonic 1-form on
M to the corresponding harmonic 1-form on M (up to scale), so one can give a
slightly different proof of Theorem 3.1 by using the pullback of this 1-form to H?
and arguing that its set of (projective) symmetries is discrete. Compare with the
proof of Theorem 0.1 in [Agol 2006].

The following two corollaries are immediate:

Corollary 3.6. For any positive constant C, the set of hyperbolic fibered pairs in a
commensurability class whose underlying 3-manifold has volume bounded above
by C contains only finitely many elements.

Proof. Such a pair corresponds to a finite index subgroup of the orbifold fundamen-
tal group of (O, %) (with notation as in Theorem 3.1) where the index is bounded
by C/vol(0O). Since 71 (0O) is finitely generated, the number of such subgroups is
bounded. (|

Corollary 3.7. Suppose M is hyperbolic and fibers over S', and rank(H;(M)) > 1.
Then M fibers over S' in ways representing infinitely many fibered commensura-
bility classes.
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Example 3.8. Suppose (F, ¢) is pseudo-Anosov. Let ¢ be an essential simple
closed curve on F, and let 7. be a Dehn twist along c¢. Then the automorphisms
(F, rcl o ¢) are hyperbolic for all large /, while the volumes of [F, ‘L’Cl o ¢] are all
bounded by the volume of the cusped manifold [ F, ¢]\ (c x {0}). By Corollary 3.6,
there are infinitely many commensurability classes among the (F, rc{ o @) for large
[. Of course, it is easy to see directly in this case that the underlying manifolds
fall into infinitely many commensurability classes (in the usual sense); see [Ander-
son 2002], for instance. We give more substantial examples of incommensurable
pseudo-Anosov automorphisms in the next subsection and after.

Remark 3.9. One trivial way to produce a hyperbolic 3-manifold M with many
nonisotopic but commensurable fibrations is just to choose a 3-manifold with a
large isometry group. We do not know explicit examples of two commensurable
fibrations of a single hyperbolic 3-manifold with different genus.

Commensurability invariants. The following is an incomplete list of elementary
commensurability invariants for pseudo-Anosov automorphisms:

(1) whether the underlying surface is closed or bounded;
(2) the commensurability class of the underlying 3-manifold of [F, ¢].
(3) the commensurability class of log(K) where K is the dilatation;

(4) the set of orders of the singular points of the invariant foliations;

For later use we say a few words about (3) and (4). First we make some def-
initions. For a pseudo-Anosov automorphism (F, ¢) with a pair of transversely
measured singular foliations § ,, we use A(¢) > 1 to denote the dilatation of ¢,
and §,(¢) to denote the number of singularities of degree n, then define A(¢) to
be the (infinite) vector whose coordinates are the &, (¢).

The first observation to make is that for pseudo-Anosov automorphisms, A ()
is only affected by dynamical coverings, and A(x) is only affected by topological
coverings.

Lemma 3.10. Suppose (Fy, ¢1), (F2, ¢2) are two commensurable pseudo-Anosov
maps. Then for some s, s’ € Q,

(1) log A(¢1) = s log A(¢2), and moreover log A(p1) = log A(¢,) if they are topo-
logically commensurable; and
2) A(¢1) =5'A(¢2), and moreover A(¢1) = A(¢y) if they are dynamically com-

mensurable.

Proof. These facts follow immediately from the definitions (recall Definition 2.5;
also, (1) follows from the proof of Proposition 4.11). U
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Example 3.11 (bounded—unbounded). Remark 4.3 of [Hironaka 2009] gives an
example of a pair of automorphisms ¢ 3) defined on a genus 2 surface with four
boundary components, and ¢ 3 4y defined on a closed genus 3 surface with the same
dilatation. The commensurability classes of these examples are also distinguished
by the orders of the singular points.

Example 3.12. Explicit examples of incommensurable fibrations of the same hy-
perbolic 3-manifold are straightforward to construct and distinguish by means of
Lemma 3.10. For example, in page 4 of [Hironaka 2009], fibrations of the com-
plement of the link 6% in Rolfsen’s tables [1976] are listed, and their singularity
sets do not satisfy the commensurability condition in bullet (2) of Lemma 3.10.

Example 3.13. Incommensurable examples may be obtained by branched covers.
Start with an Anosov automorphism ¢ of a torus 7" with dilatation K, and let P
be a finite subset of T permuted by ¢. Let F' be obtained as a branched cover of
T, branched over P. Then some power of ¢ lifts to an automorphism of F with
dilatation a power of K. Different choices of branch orders give rise to incommen-
surable automorphisms of closed surfaces with the same dilatations, but usually
incommensurable singular sets.

One may define a more subtle invariant of commensurability as follows. Let
¢ be a pseudo-Anosov automorphism of F, with measured foliations §; , and
projectively invariant transverse measures (i, ,, and singular set S (note that S is
finite). For any pair of points p and g (possibly p = ¢) in the singular set, and
any homotopy class of paths y from p to ¢ in the complement F \ S we define a
number £(y) to be the infimum, over all paths 3’ from p to g which are homotopic
to y in F'\ S rel. endpoints, of the product

Ly = iryl,f s (V) i ()

This number depends on the choice of measures i, i, in their projective class,
but is well-defined if we normalize the product of measures so that f pdusdp, =
—x(F).

Definition 3.14. Define the spectrum of (F, ¢) to be the set of numbers £(y) as y
varies over nontrivial homotopy classes of paths in F \ S as above.

Proposition 3.15. With the normalization of the product of measures as above, the
spectrum is a commensurability invariant. Furthermore, it is strictly positive, and
discrete as a subset of R (and is therefore bounded away from zero).

Proof. By multiplicativity of Euler characteristic, the normalization of the product
of measures is compatible under finite covers. Each homotopy class of arcs joining
singular points on F lifts to an arc joining singular points in any cover F, so the
spectrum as defined is a commensurability invariant.
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It remains to show that the spectrum is discrete. By the properties of a pseudo-
Anosov, we have £(y) = £(¢' (y)) for any homotopy class y and any integer i. To
show that the spectrum is discrete, it suffices to show that there are only finitely
many ¢-orbits of homotopy classes y with £(y) < C.

Suppose K > 1 is the dilatation of ¢, and y/ is any path between singular points
on F. By the definition of §, ,, we have us(¢(y)) = Kus(y) and pn, (¢ (y)) =
K", (). So under the automorphism ¢, the difference of their logs changes by
2log K. It follows that whatever the difference of logs is initially, after a suitable
power of ¢ the absolute value of the difference can be taken to be at most log(K).
In other words, there is some integer i so that

llog(1s (¢ (¥))) — log(pu (@' (¥ )] < log(K).

If A and B are positive numbers, a bound on AB and one on |log(A) —log(B)|
let us bound both A and B. It follows that if £(y’) < C then for some i, the homotopy
class ¢’ (y) is represented by an arc § = ¢ (/) for which both p,(8) and 1, (B)
are bounded, by a constant depending only on C and K. By the discreteness of
S, there are only finitely many such relative homotopy classes ¢’ (y), and each of
them has a positive £ length. So £(y) takes only finitely many values in [0, C] (all
of them positive). O

Remark 3.16. If X is a Riemann surface, any quadratic holomorphic differential
o on X defines a pair of singular measured foliations, and we can define a spectrum
as above for a pair (X, o). Multiplying o by a constant also multiplies the spectrum
by a constant, so we can normalize to quadratic differentials with |, s le| =1. The
set of such pairs (X2, o) can be identified with the unit cotangent bundle in moduli
space. The spectrum (defined as above) is constant on orbits of the Teichmiiller
flow (see, e.g., [Masur and Tabachnikov 2002] for a definition), and is discrete (by
Proposition 3.15) for points on closed orbits of the flow. For general quadratic
differentials the spectrum can have accumulation points, or its closure can contain
a perfect set, or it can even be dense.

This invariant gives rise to a new way to distinguish commensurability classes
of automorphisms.

Example 3.17 (different spectrum). As above, let ¢ be an Anosov automorphism
of a torus T (with a flat metric on the torus of total area 1). The set of periodic
points is dense, so we can choose two periodic points O, P. The stable and unstable
foliations of ¢ give coordinates on 7', at least in a neighborhood of O, so that
0=(0,0)and P = (x,y).

In a suitable cover of 7" branched over O and P we obtain an automorphism with
dilatation a power of K for which the smallest term in the spectrum is at most |xy|
times a constant depending only on the combinatorics of the cover. By choosing
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the periodic point P so that |xy| is sufficiently small, we can ensure that the first
term in the spectrum is as close to 0 as we desire, while at the same time fixing the
orders of the singular points. By Proposition 3.15, this construction gives rise to
infinitely many commensurability classes with commensurable log dilatation and
the same combinatorial invariants.

Remark 3.18. Example 3.13 also produces examples of infinitely many (incom-
mensurable) pseudo-Anosov maps with different singular orders but the same spec-
trum. It is not clear if there exists a pair of pseudo-Anosov maps with incommen-
surable log dilatations but the same spectrum.

4. Reducible automorphisms

Commensurability invariants of reducible automorphisms. We have assumed that
each reducible map is in its standard form as described in Proposition 2.15. We
also use the notation from that proposition without comment.

Let A be an oriented annulus A. The mapping class group of A rel. boundary
is isomorphic to Z, generated by a positive Dehn twist T along the core circle. We
denote the n-th power of such a Dehn twist by 7,. Here is an illustration of the
casesn =1 and n = —2.

.

_) ki:j
e
i *

Remark 4.1. In this and later figures, the orientation of the surface is indicated by
a “cup” shaped arrow, and the numbered circles on the surface indicate the power
of a positive Dehn twist (with respect to the given orientation).

For a reducible map ¢, choose / so that ¢! is the identity on d(F \ N(I'(¢))).
For each component N (y) of N(I'(¢)), where y € I'(¢), N(y) has the induced
orientation and ¢'|dN (y) is the identity. Then the restriction of ¢! to N(y) is the
n-th power of a Dehn twist for some integer n. Now define

1@y, 1@, =19/ a@) =#yel (@) I, y)=k}, ke
Further, define

S(@)={S | S acomponent of F\ N(I'(¢))}
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and
Q(S) ={y | y acomponent of 35\ dF}.

For every S € S(¢), define

asi($) =#{y € QS) | 1, y) =k}; A(¢>,S)=( 3 “S”;f‘p), 3 M).

ke keQ_ —k

The following two numerical invariants are easy to compute:

AD=1 3 a6.9= ( PR “"_(f)),

SeS(¢) keQ4 keQ_

_Xl(S)A(¢, 9| sesw).

We say that two sets of ordered pairs of rational numbers {(p;, ¢g;)} and {( p;- , q})}

are equal up to a flip, denoted {(p;, i)} ~ {(p’;, g})}, if either they are equal, or
{(pi. a0} ={(¢}, P))}. Immediately we have:

ne) = |

Lemma 4.2. Reversing the orientation of F preserves A(¢, S), and therefore also
A(¢) and T1(¢), up to a flip.
We can derive commensurability invariants from A(-) and IT(-) as follows:

Theorem 4.3. Suppose (Fy, ¢1), (Fa, ¢o) are two reducible maps. If they are com-
mensurable, then for some s € Q.

A(p1) ~sA(¢2) and TI(¢1) ~ sT1(¢).

We postpone the proof of Theorem 4.3 until page 302.

Remark 4.4. The invariant IT(-) is typically better than A(-) at distinguishing
commensurability classes (though not always; see Example 4.13). We say that a
D-type map is definite if it is a product of Dehn twists in the components of I"(¢)
of the same sign. Note that the property of having a power which is definite (along
['(¢)) is a commensurability invariant. The invariant A( - ) can distinguish between
definite and indefinite maps, but can never distinguish different commensurability
classes of definite maps, whereas IT(-) can.

Remark 4.5. Both A(¢) and I[1(¢) can be encoded as a polynomial (with fractional
exponents), as follows. For any pair of nonnegative rational numbers (p, q), define
A, S)
—x(S)
Now define a polynomial pair

P(@)(x,y) = (P1(®)(x,y), P2($)(x,y)) = Z (P, DMP) (p.gyx" .

(p.q)eQ?

2_ses@)(p.g) X (S)
x (F) '

S@)(p.a) =S € S(¢) =@} M =
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One can recover A(-) and IT(-) from this polynomial by the formulae

A@)= Y (P @MB)p.g = P@B)(, 1),

(p.q)e@?
(@) ={(p,a) | L(@)(p.q) # O}
One can show along lines similar to the proof of Theorem 4.3 (in the next sub-

section) that if two reducible maps (F1, ¢1), (F2, ¢») are commensurable, then for
some s € 4, we have

—x(F)

P(p)(x, y) ~sP(¢2)(x’, y*).

Proof of Theorem 4.3. We need some lemmas, which can be verified immediately
from the definitions.

Lemma 4.6. If ¢ is a reducible map, we have, then for any positive integer k,

@D 165 =K@, ), asa@)=asyi@, AGS)=1A@,S).

Lemma 4.7. Suppose two automorphisms ¢1 and ¢ on F are isotopic, and two
circles yy and vy, on F are isotopic. If ¢; is D-type along y;, i = 1,2, then
(1, y1) =1(¢2, y2).

Lemma 4.8. I1(¢) and A(¢) are isotopy invariants.

Proof of Lemma 4.8. This follows from the definitions, from Lemma 4.7 and from
the fact that the reducible system I" is unique up to isotopy; see Theorem 1 in [Wu
1987], for example. U

Now turning to the proof of Theorem 4.3 proper, suppose (F1, ¢1) and (F2, ¢2)
are commensurable. Then there is a surface F, automorphisms ¢; and ¢, of F,
and nonzero integers k; and k», so that (ﬁ , qNSi) covers (F;, ¢;) fori = 1,2, and
qNSi“ = q~5]2<2 as automorphisms of F. Denote the covering F — F; by p;, i =1, 2.
By Lemma 4.2, we may assume that the orientations of F , F1 and F> have been
chosen so that both p;, p, are orientation-preserving.

Assume that k; = k> = 1 for the moment. By Lemma 4.8, we may assume that
$1 = ¢ as maps in usual sense (rather than in their isotopy class).

Consider the commutative diagram

~k

T (N (0)) —25 apr (N (T (1))

"l [

INT@G) —Ls  aNT ()
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where k is chosen 5o that ¢ [on ) = id]an(r(gy)- It follows that the restriction
of d>1 to dp, (N (C'(¢1))) is a deck transformation of the covering p;|. Since p|
is a finite covering, by replacmg k by a power if necessary, we can assume that
¢1 agrees with id on dp; YN (¢1))) and consequently maps every component
of p; (N(F(¢]))) to itself. For such a k, eachkgbl , ¢, ; i = 1,2 are D-type along
their respective reducible systems, where F(¢, )= (F (9i)).

For each S| € S(¢) and each component S of Py (S 1), there exists a component
Sy € S(¢2), such that Sisa component of p, (Sz). Assume p;| : S — S; are [;-
sheeted coverings, fori =1, 2.

Pick a component y € €2(S;). Suppose that {5, ..., 8} = (p1 |S‘)_1(y) and that
p1:6; — y is a d;-sheeted covering. Then ZL] d, =1.

Under an m-fold covering of annuli, a Dehn twist on the covering annulus
projectg to the m-th power of a Dehn twist on the image annulus. Consequently
d,-I(qg] ,0i) = I(¢k, y), and by (4-1) we have

- k kI(¢1,y)
(4-2) I(¢1,8i) = 7
i
and moreover the I(qglk, ;) all have the same sign as the I (¢, y), i =1,...,¢

(because p; preserves orientation and k > 0). Suppose I(¢;, y) # 0. Then by
(4-2),

t t

1 d,' l]
43 S =
@ 2 T X g~ kG

Now we sum over circles § € Q (S) with positive / (qgl, 8):

~ k ~
Z ag,(¢1) Z #8 € QSPII (9, 8) =1}

)
>0 >0

-y =Y Y

5eQ(8) I(¢1 ,(S) y,eQ(fl) se(p11S) 1) I(¢1 »8)

1((,51’5)>0 I(¢1.yi
_ l_l Z 1 N l_l as, 1(¢1)
yeawsy [@Lvi) kil
I(¢1,yi)>0

where the penultimate equality follows from (4-3).
By a similar computation, we have

~ k

Z az (1) I asi(d1)
l ok I

1<0 1<0
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and therefore

(4-4) A(éik,S)z%A(qs,-,Si), i=1,2.
By (4-1) we have

(4-5) A1, 8) =kA@". §) = A, S)).

Since I; = x (5)/x (S:), by (4-4) and (4-5), we get

A@1.S) _A@1LS) _ A2 $)
—x(S1) —x(8) —x($)
From the definition of IT(-) we have I1(¢,) C [1(¢;). By symmetry we have

[T(¢) =TI1(¢p1). Summing over all I" in the argument above in place of 2(S1), we
get similarly

(4-6)

A(d1)  Aldn)

x(F1)  x(F)’
From (4-1) we have T1(¢*) = I1(¢)/k and A(¢*) = A(¢)/k and the proof is
complete. (]

From the proof above immediately we have:
Corollary 4.9. If (F1, ¢1) and (F3, ¢2) are topologically commensurable, then

A¢) A
X(F)  x(F)

Remark 4.10. We remind the reader that our invariants are defined for all reducible
maps (and not just D-type examples and their roots). When reducible maps are
not the roots of the D-type maps, then they have pseudo-Anosov orbits, and we
can combine the invariants defined in Sections 3 and 4. For example, see the
proposition below and Example 4.18.

and Tl(¢1) ~ I1(¢2).

Proposition 4.11. Suppose (Fi, ¢1), (F2, ¢2) are two commensurable reducible
maps. Then for some s € Q,

log M(@1) = slogA(¢2) and Ti(g1) ~ s~ 'TI(¢o).

Here we think of A(¢) for a reducible map ¢ as a (possibly empty) set of dilata-
tions of the set of restrictions of ¢ to its pseudo-Anosov orbits.

Proof. From the definition of commensurability, there are positive integers k; and
k, such that (F, ¢>If‘) and (F», ¢12{2) are topologically commensurable, both covered
by (F, ¢). Evidently we have )L(qbf‘) =A(P) = )\(qblzq), and therefore ki log A(¢1) =
log .(¢") = log A(¢5>) = ka log A(¢p2) and then

k
log A(¢1) = k—flog M)
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On the other hand, by Corollary 4.9 and (4-1), we have

[T(¢1) [T(¢1)
C=T(pf) ~ T($5) = ——
ki k
and therefore
k
M(gn) ~ T1($).
2
The proposition is proved by setting s = kp /k. ([

Examples of reducible automorphisms. In this section we give several examples,
which illuminate the meaning of the invariants defined above. A D-type map on an
oriented F can be indicated pictorially by assigning integers to disjoint essential
simple closed curves on a surface; we use this convention in what follows.

Example 4.12. Dehn twists in separating and nonseparating curves (on the same
surface) are commensurable. In the figure below, let ¢ be a D-type automorphism
on a surface F of genus 3 generated by full Dehn twists on circles ¢ and ¢ as
indicated in the figure.

L

S N
=)
F/t F/t

Then 43 is invariant under both m-rotations along 7; and 7,. Hence d; induces ¢;
on F/t;, where ¢; is the Dehn twist along the circle ¢;. Since ¢ is separating
while ¢, not, ¢ and ¢, are not conjugate. But from the construction they are
commensurable.
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Example 4.13. This example show that [1(¢) is not always finer than A(¢). Four
automorphisms are depicted here:

By computing A(¢) and I1(¢), it can be seen that no pair of them are commensu-
rable. Notice that on one hand A(¢1) = A(¢») = (1, 1) and {(1, 0), (3, 1), (0, D} =
(¢1) # () = {(1,0), (3. 1), (0, 1)}, and on the other hand (2, 1) = A(¢3) #

A(¢s) = (1, ) and TI(¢3) = () = {(1,0), (5. $)}.

Example 4.14 (minimal elements). Let ¢, be a orientation-preserving periodic
map on X, of order 4g+2 which rotates by 7 /(2g+1) around its unique fixed point
X4 (see the proof of Proposition 2.18). Remove a ¢¢-invariant disc at x, from X, to
get X 1. Connect X | and X3 | along their boundaries via an annulus A to form a
closed surface s and define ¢ on F5 by ¢|3¥2 1 =¢2|22,1 and ¢|X31 = ¢3_1 (23,1,
and then extend to A by a continuous family of rotations through angles from %
to 7. The difference in speeds on the boundary components is 23—75r,
that ¢3° is a Dehn twist D.. By the uniqueness of the reducible system and the
argument similar in the proof of Proposition 2.18, one can verify (X5, ¢) is a
minimal element. One can construct infinitely many minimal elements in such a
way.

and it follows

Remark 4.15. One can verify that 35 is the largest order of a root of a Dehn
twists on Xs. It is amazing that the maximal order of roots of Dehn twist along
nonseparating curves, which is 11 on X5 (and in general is 2g + 1 in X;), was
determined only very recently by several papers; see [Margalit and Schleimer 2009;
McCullough and Rajeevsarathy 2009; Monden 2009].

Example 4.16. This example will be used in Section 5. X, can be presented
as the union of X , and n copies of X ; in a in symmetric way so that there is an
action 1, x of order n which acts freely on the triple (Ek,,H, X1, U'f i, 1).

Let D, be the positive Dehn twist along one component ¢ of 0%, and let ¢, «
be the composition of D, o 7, 4. Then one can verify that Dy, x = ¢, ; is D-type,
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and is given by the product of a positive Dehn twist along each component of
0X1,,. For fixed k, the automorphisms (Xn+1,0, Dn k) and (Zgm+1, D k) have
a common cover (Xgmu+1, Dmn k). Therefore for fixed k, (Zxn+1, $n k) are in the
same commensurability class for all 7.

On the other hand one can verify by inspection that I[T1(D,, ) = {(1,0), (1/(2k—
1),0)}. So (Zkn+1, Dux) and (Zgm+1, Dm ) are not commensurable for k # k'
by Theorem 4.3.

Example 4.17. Each D-type map (F, ¢) is commensurable with a D-type map
(F', ¥) so that the Dehn twist on each y € T'(v) is a single positive or negative
Dehn twist. We can argue as below:

For simplicity, assume F is closed, S(¢) = {S;,i =1, ..., k}, and set

dy=11(¢, y)l.

By replacing ¢ by a power if necessary, we may assume that d,, is an integer > 1 for
each y € I'(¢). Then for each i there is a covering g; : S; — S; such that ¢;| : 7 — y
is of degree d,, for each component y € 9§ and each component y in g;” '(»). One
quick way to see this is to attach an orbifold disk D, of index d, to each y € 95;.
The result is 2-dimensional orbifold which is good, since x(S;) < 0 and each
d, > 1. This orbifold has a manifold cover (see [Thurston 1979, Chapter 13]), and
the restriction to S; gives the required covering g; : S; — S;.

If P is a planar surface of negative Euler characteristic, then for every n > 2
coprime with the number of components of d P, there is a cover P — Pof degree
n, which restricts to a cover of degree n on each boundary component of P, and
such that P is nonplanar. Moreover, every nonplanar surface with negative Euler
characteristic has a covering of any given degree which is a covering of degree 1
on each boundary component. So after replacing ¢ by ¢", we can find covers

éﬁ&'—)gi

and a covering of degree n ]_[k# deg(gy) so that the restriction on each component
of 83} is a covering of degree exactly n. The coverings p; =g;0§; : S‘i — S; match
compatibly to produce a covering p : F = US; — F such that pl:y— yisof
degree nd,, for each y € I'(¢) and each component y in p~ (). Define a D-type
map qS on F with I(q~5, y)=1if I(¢,y) >0, and I(q~5, y) = —1 otherwise, then ¢~)
covers ¢ (see the paragraph before (4-2) in the proof of Theorem 4.3.)

Now we give an application of Proposition 4.11 to reducible maps which are
not roots of D-type maps.

Example 4.18. Let F be a closed oriented surface of genus 2, and ¢ a nonsep-
arating circle in F. Let ¢ be any pseudo Anosov map on F \ ¢ with dilatation
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A(¢) = K and twist angle 27 near ¢, r € (, and let 7. be a positive Dehn twist
along c. Then:

(1) T8 0 ¢ and 2 o ¢ are commensurable if and only if k; = k.
(2) To¢" and T o ¢*2 are commensurable if and only if k| = k.

The proofs of (1) and (2) are similar; we only give a proof of (1). Note that

H(tko¢):< ,0) and A(thod) =A@ =K > 1,

(k—r)
where r and K depend only on ¢. If % o0 ¢ and 7% o ¢ are commensurable,
by Proposition 4.11 and the fact we are considering the automorphism in the same
oriented surface F, we should have log K =slog K and 1/(k; —r) = s‘l/(kz —-r)
for some s € Q4. The first equality implies that s = 1, and the second implies
ki = ky.

5. Commensurable and incommensurable bundles in graph manifolds

In this section we give two more complicated examples. The first (Example 5.3)
is an example of a graph manifold that is the total space of infinitely many incom-
mensurable fibrations, and at the same time fibers in infinitely many ways in the
same commensurability class. The second (Example 5.5) is an example of a graph
manifold that is the total space of infinitely many incommensurable fibrations,
including two incommensurable fibrations with the same genus. Both examples
depend on a construction that we turn to now.

Primary construction. Let F be a compact oriented surface with the induced ori-
entation on dF. Let a be an essential oriented arc on F connecting two different
components of dF. Let ag and a; be the two components of the quadrilateral
dN(a) \ 0F such that the direction on ag induced from the orientation on d N (a)
is parallel to that on a:

Then in F x [0, 1], the surface F x {%} intersects the quadrilateral a; x [0, 1] in
the arca;; =a; x {"1;} for each integer n > 2, where j =0,1andi =0, 1,...,n.
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Let Ay, ..., A, be n pairwise disjoint quadrilaterals that are properly embedded in
N(a) x [0, 1] so that A; is a stair connecting ag; and a; ;+1, as shows in the figure
on the left: ~
C/
— a x 1 ~C
o (2>
" — ai,i+1
A; ¢ ‘
Fxi C/
— a0,
7

Let F; = (F x r’l;)\(N(a) x [0, 1]) and build a surface R(a,n) =J;_, F;UU_; A
in F x [0, 1]; see right diagram above. A similar surface R(«, n) in F x [0, 1] can
be constructed if we replace a by a disjoint union of essential arcs « on F.

We call the quotient of R(a,n) in F x S U= [F,id] the n-floor staircase along
a in F x S, or just n-floor along « for short, and denote it as F (e, n). Note that
the surface F(, n) is transverse to the S! fibers. If o is empty, then F (@, n) is
just 7 disjoint copies of F in F x S'.

Let S' have the orientation induced from [0, 1]. Then both F x S! and 9 F x S!
are oriented. For each component ¢ € 3 F, the torus ¢ x S! has product coordinates
(c, t). The proof of the following lemma is a routine verification:

Lemma 5.1. Let p : F x S' — F be the projection. Suppose that « N\ ¢ < 1 for
each component c € dF. Then:

(1) p: F(a,n) — F is a cyclic covering of degree n. Moreover F(a,n) is a
surface of genus 1 — k +nk — 1 4+ g) with n(#F — 2k) + 2k boundary
components, where k = #a.

(2) p~(c) is either connected or has n components for each component ¢ of 3F
and p~'(c) is connected if and only if « N ¢ # @. Moreover suppose a is an
arc in « with tail in ¢’ and head in ¢, then & = p~'(¢') has slope (n, —1) and
¢" = p~1(c") has slope (n, 1).
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(3) Let T be the 27 /n-rotation of F x S' along the oriented S' factor, and let
¢ and ¢" be as in (2). Then t, the restriction T on F(a, n) is a generator
of the deck group of the covering in (1), which rotates ¢’ and ¢" through
27 /n in negative and positive directions respectively; see right diagram on
the previous page.

(4) Fx S'=[F,idl=[F(a,n), ], and
Pan - F(a,n) x st = [F(a,n), "] — F x S'=[F,id]
is a cyclic covering of degree n.

Remark 5.2. We can perform a similar construction for a nonseparating circle y in
F, in which case the description of the boundary is much simpler: each component
of 0 F gives rise to precisely n copies of d F (y, n).

Example 5.3. We describe a graph manifold that

(1) admits fibrations representing infinitely many fibered commensurability clas-
ses, and

(2) admits infinitely many fibrations representing the same fibered commensura-
bility class.

First take M = [F1, ¢1], where the oriented surface F| and the monodromy ¢
are as shown here:

Note that M has two boundary components and ¢ is D-type and definite.
Another view of M is this:

S x S! Sy x 8!
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Here every component is of the form S; x S! (depicted in the figure as an S; x I') for
i =1, 2, 3, and two pairs of boundary tori are identified by maps f and g expressed
in terms of coordinates by the maps

f1,0)=(=1,0), f0,1)=(L1);
g(1,0)=(=1,0), g(0,1)=(=L1).

Recall that this notation means that each (1, 0) denotes the homotopy class of some
component of some d.;, and each (0, 1) denotes an S I .

Now we construct another surface fibration of the same underlying manifold
M = [F,, ¢,] as follows. Pick oriented arcs «; € S;, i =2, 3 as follows:

S1(¢,2) S>(a2,2) S3(as, 3)

Then construct
S1=S81(2,2), S$5=25(x,2), 8;==53(a3,3)

inS; xS,i=1,23.

By Lemma 5.1(1), it is easy to see that S| is two copies of Sy, that S} is a surface
of genus 2 with 4 boundary components, and that S} is a surface of genus 3 with
2 boundary components. By Lemma 5.1(2), we see that ¢, is of slope (2, 1) in
) X S! and ¢ is of slope (=3, 1) in c§ x st

Since g sends (2, 1) to (=3, 1), the maps f and g match S}, S} and S} together
to produce a new surface F, in M. Let t; be the generator of the (cyclic) deck group
for the covering p; : Slf — §; given by Lemma 5.1(3). Then 7y, 15, 73 have periods
2, 2, 3 respectively. Now the new surface bundle structures [S;, t;] in S; X S ! given
by Lemma 5.1(4), i = 1, 2, 3, match to produce a new surface bundle structure of
M, which we denote by [F>, ¢»].

The monodromy map ¢, is a virtual D-type automorphism whose restriction
on each S is 7;. Hence ¢, permutes the two copies of S in F,. Moreover un-
der this permutation, each copy also undergoes a half-twist relative to §}. By
Lemma 5.1(3), 1, rotates ¢, by  and 3 rotate ¢} by —%n respective along the
directions shown in the first figure on page 310. So the relative twist at ) N S} is
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T—5= %JT. Now ¢g is a D-type automorphism, as shown here:

A direct computation gives

M($1) = {(1,0), (3,0). (3.0} and TI(¢) ={(2,0), (3.0), (1,0)}

Consequently there is no s € Q so that [1(¢;) ~ sI1(¢,). By Theorem 4.3, (Fi, ¢1)
and (F;, ¢;) are not commensurable.

If we perform a similar construction starting from S,(&, n), S>(a2, n), and
Si(az,n+1)in S; x SY,i=1,2,3, we will get a surface bundle structure [F,, ¢, ]
on M, where ¢, is a virtual D-type automorphism and ¢, @t isa D-type automor-
phism, and I1(¢,) = {(n, 0), (2"3+1 ,0), (3, 0)}. So for any positive integers i # j,
the automorphisms (F;, ¢;), (F;, ¢;) are not commensurable. We have verified
that M fibers in infinitely many incommensurable ways.

On the other hand if we start from S| (y, n), S>(<, n) and S3(, n), where y is
a nonseparating circle in S;, then by Remark 5.2 and the argument above, we can
produce a fibration of M with monodromy (X2,41,2x, $2.n), Where we adapt the
notations in Example 4.16, and use X, 3 = S, U S5 in place of X5 ;. As observed in
Example 4.16, the automorphisms (X2;,+1,2,, ¢2.,) are commensurable for all #.
So M admits infinitely many distinct but commensurable fibrations, as claimed.

Remark 5.4. One can modify the construction in Example 5.3 to a more general
setting where the arc connecting two boundary components of F passes through the
cores of more than one Dehn twist. For simplicity, consider a D-type map which
is either a single positive or negative Dehn twist on each y € I'(¢) (compare with
Example 4.17). Then one always gets infinitely many fibered commensurability
classes unless the x (S;) satisfy a certain linear equation so that the invariants in
Section 4 fail to distinguish them, where S;’s are pieces of F \ I'(¢) meeting the
arc.
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Example 5.5. We now give an example of a closed graph manifold which fibers in
infinitely many incommensurable ways, including two incommensurable fibrations
with fibers of the same genus.

Let M = [F, ¢] be the graph manifold with ¢ as indicated here:

Our discussion of the bottom figure on page 310 applies mutatis mutandis in
this case, leading to the following diagram, with gluings given by

[ (1L0)=(=10), fi(0,1)=(2,1); L(1L,0)=(=1,0), f(0,1)=(=2,1);
81(1,0)=(=1,0), 10, hH=(=11; 1,00=(=1,0), £(0,)=1,1).

O b )\ @4
O _ 82 f':: S
< L :

O )\ @4
< :

Sp x St SzXSl S3XS1

First we construct infinitely many commensurability classes of fibrations of M.
Pick oriented arcs o; € S;, i =1, 2, 3 as follows:

u ‘I
O&l 02—
oy L/‘
! 2

Si(a1,4) S>(a2,2) S3(a3, 3)
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Construct S| = Sy (a1, 4), S5 = S2(a2,2), S5 = S3(@3,3) in §; x sli=1,2,3,
respectively. Then f; and g;, i = 1, 2 paste the boundary of S/ together to produce
another bundle structure on M; i.e., we have M = [Xyg, ¢»], where ¢%2 is a D-
type automorphism on the surface of genus 20. We can check that (X, ¢212) has
invariant

M) ={(3. ). C.2). (1, D}

and is as follows:

genus 12

We can perform a similar construction starting from Sy (¢, n + 2), S2(o2, 1)
and S3(az,n+ 1) in S; x §', i = 1,2, 3, and obtain a surface bundle structure
[Zonis, dnl on M, where ¢+ is a D-type automorphism of a surface of
genus 6n + 8 and

() = {(35, 15), (A, 3ty (2, 1)),

So for any positive integers i # j, (X¢i+8, ¢i), (X6j+8, ¢;) are incommensurable.
Now we construct another surface bundle structure [ X9, 1] on M, which is not
commensurable with (X, ¢»), where ¢, is the automorphism above.
Pick oriented arcs o; € S;, i =1, 2, 3 as follows:

Sl(¢, 3) Sz(az, 3) 53(0(3,4)

and construct S} = §1(J, 3), S5 = Sr (a2, 3), S5 = S3(3, 4) in §; sl,i=1,2,3,
respectively. Then f; and g;, i = 1, 2 glue the boundary of S/ together to provide
M another structure of surface bundle: M = [X;, Y], where 1//12 is a D-type
automorphism on Xy of genus 20. We can check that (24, ¥ '%) has invariants
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M) ={4. 5, &, ), 3, D)} and is as follows:

By Theorem 4.3 we deduce that (F3, ¥) and (F>, ¢,) are not commensurable,
as claimed.
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