MULTIPLHY

Multimegawatt high-temperature electrolyser to generate green hydrogen for production of highquality biofuels

MULTIPLHY

Julie MOUGIN CEA

https://multiplhy-project.eu

julie.mougin@cea.fr

Project Overview

• Call year: 2019

• Call topic: FCH-02-2-2019: Multi megawatt high-temperature electrolyser for valorisation as energy vector in energy intensive industry

Project dates: 01/01/2020-31/12/2024

% stage of implementation 01/11/2021: 36%

Total project budget: 9 751 722.50 €

FCH JU max. contribution: 6 993 725.39 €

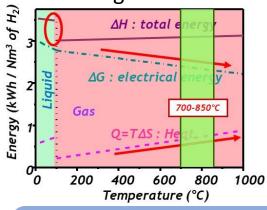
• Other financial contribution: 2 757 997.11 € (industrial partners)

Partners: CEA (F), NESTE (FI, NL), SUNFIRE (D), PAUL WURTH (L), ENGIE (F)

Project Summary Main objectives

Global positioning vs international SoA

World largest HTE unit (by factor >3)

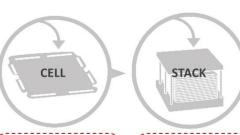

Goal:

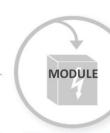
- manufacturing, installation and integration of the world's first high-temperature electrolyser (HTE) system in multi-megawatt-scale, TRL8
- at a renewable products refinery located in Rotterdam / The Netherlands

1st HTE application for this market area

Benefits of HTE:

High efficient technology




$$H_2O (g) \rightarrow H_2 (g) + \frac{1}{2} O_2 (g)$$

 $\Delta H = \Delta G + T\Delta S \sim \text{constant}$ **overall energy** ΔH has to be provided **either as electric energy** or **as heat**

Low T: energy = 85% electricity / 15% heat
High T: energy = 70% electricity, 30% heat
#PRD2021

- Technology with no expensive noble catalysts
- Modular technology

• 2 electrodes (anode and

- 2 electrodes (anode and cathode)
- One electrolyte
- Need of electricity (and heat)

Stacking of several electrolysis cells to increase the power Integration of stacks into a module

Can/will include several stacks into a module

Integration of modules into an electrolysis system/plant including all Balance of Plant components = electrolyser Can/will include several modules into the electrolysis system/plant

#CleanHydrogen

Project Summary Main objectives

Global positioning vs international SoA

CAPEX and OPEX inagreement with MAWP targets

World largest HTE unit (by factor >3)

Key figures:

- electrical rated nominal power of ~ 2.6 MW_{el.AC} (HTE and Hydrogen Processing Unit (HPU))
- Hydrogen production rate of $\geq 60 \text{ kg}_{H2}/\text{h}$ ($\geq 670 \text{ Nm}^3/\text{h}$)
- Operation period of 16,000 h Longest demo phase
- leading to substantial GHG emission reductions

Technical objectives:

Best values in-field

- Electrolyzer electrical efficiency of up to 85% el.LHV
- Electricity consumption @ nominal capacity: 39 kWh/kg_{H2}
- Availability: ≥ 98 %
- Production loss rate: $\leq 1.2\% / 1000 \text{ h}$

Low degradation values measured at stack/system level for long periods

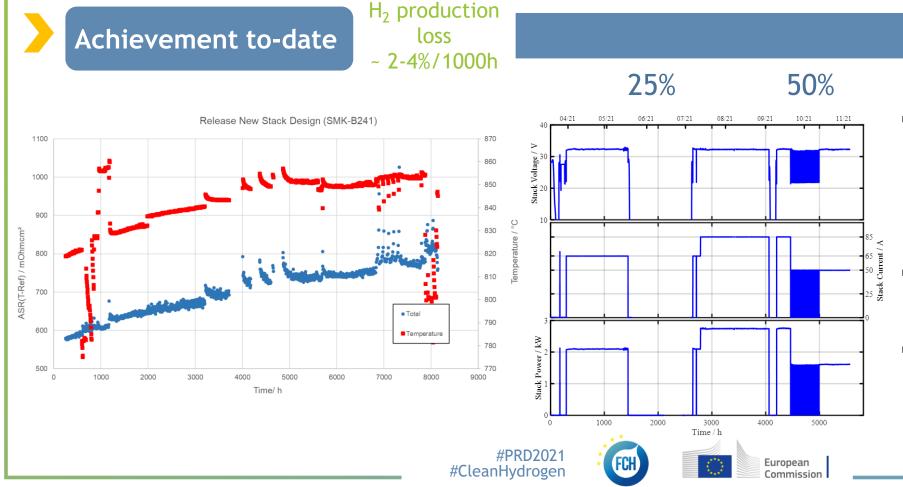
Economic objectives:

- Capital Cost: ≤ 2,400 € / (kgH2/d)
- Operations & Maintenance cost ≤ 120 €/(kgH2/d)/year
- Techno-Economic analysis of HTE utilisation in refineries
- Pave the way for further upscaling step to a 100 MW scale

Societal objectives:

- Increased awareness of HTE as viable solution within EII
- Procurement strategy for RE
- Certification of the green H2 according to CertifHy

1st H₂ certificates for HTE technology



Project Progress/Actions -

Stack performance and durability

H₂ production loss < 1.2% / 1000 h

75%

- Testing defined protocol (public): Initial performance map, durability steps > 2000h, 500 h of on-off load cycles, thermal cycles, final performance map
- 2 stacks tested: Sunfire 30-ESC cells (3.3 kW at 820°C), CEA 25-CSC cells (2.6 kW at 700°C)
- Longest test at full stack scale both technologies, at current densities in the range 0.5 to 0.85 A/cm² and at high steam conversion (70-80%)

Project Progress/Actions -

Module development and validation

Gen1 133 kW -36 stacks module

25% **50**%

75%

Gen2 230 kW -60 stacks module

HTE system engineering and optimization

- Testing of Gen. 2.1.0 'Prototype' Module carried out
- Evaluation of manufacturing durations and release of design for MultiPLHY Project

100 - 1300 40 - 1200 \(\frac{1}{20} \) \(\frac{1

Status and results

- Successful design freeze of hot- and coldbox
- 65.7 Nm³/h H₂ production achieved
- Very homogenous temperatures and voltages in stacks
- Manufacturing of MULTIPLHY units in progress

Project Progress/Actions -

Site and demonstration preparation

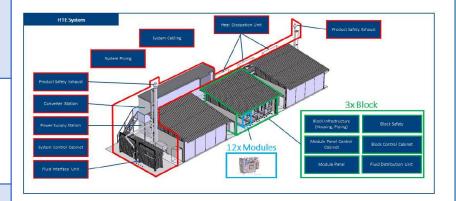
N/A

Site and demo ready 25% **75**%

50%

Engineering and site preparation on-going for start-up in H2/2022

- Design, manufacturing and commissioning of auxiliary unit on track (dryer, compressor, buffer tank)
- Service and maintenance concept under definition
- Sourcing of renewable electricity is being planned
- Work on Garanties of Origin (GO) for H₂ in relation with CERTIFHY and local Dutch policy
 - analysis of the draft RED2 implementation's impact in The Netherlands GO
- Draft methodology for GHG avoidance under discussion within CertifHy WG 2 (on production)



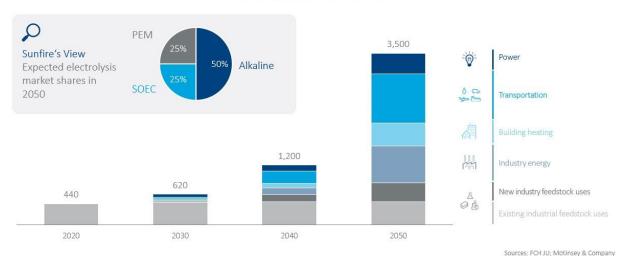
Risks, Challenges and Lessons Learned

			Measures taken	
	Risks	Delay due to longer than planned manufacturing duration + extended delivery times of components and material (COVID effect)	Contingency plan in place: manufacture, ship, install, commission and start 6 modules (50% capacity) at NESTE H2/2022. Installation and commission of the last 6 other modules beginning of 2023.	
		Implementation of a new technology in new scale leads to technology risk which needs to be mitigated	Detailed risk management in place, accurate planning of installation and commissioning phase to ensure smooth start-up.	
	Challenges	Procurement of a 3rd party stack for benchmark Contact with several potential suppliers, which unfortunately failed	Test of Sunfire new stack design in replacement	

Exploitation Plan/Expected Impact

Exploitation

Projects partners on the whole value chain: each having its own stone


Impact

Preliminary market analysis performed Sales forecast performed for each individual components

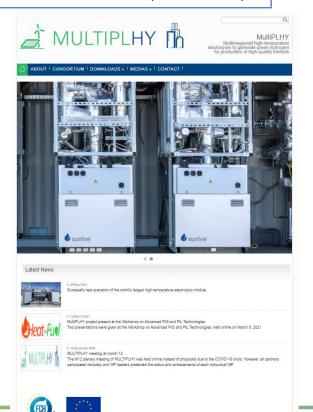
MARKET OVERVIEW

Hydrogen demand will increase across all industries

Global hydrogen demand [GW]¹⁾

1) Assuming > 8,000 full load hours and 50 kWh/kg

European Hydrogen Week


Dissemination/communication

Activities

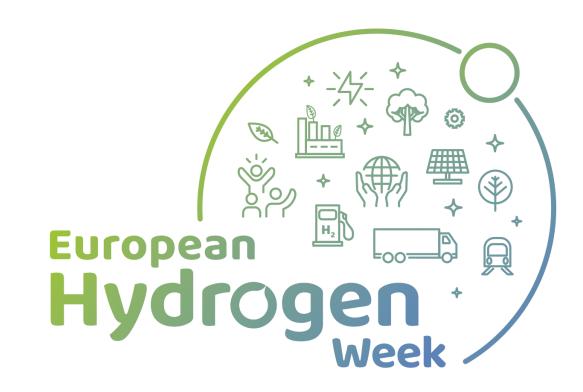
Website: https://multiplhy-

project.eu

of visitors: 8232 (8 Nov 2021)

Presentations at workshops/conferences

#PRD2021 #CleanHydrogen



Check of actions realised as compared to plans

Target groups	Indicators for measuring the effectiveness of the approach	targe t valu e	Planne d before M30	Achieved M1-M12	Feedbacks expected
	Customer request for other project deployments	50	20	> 20	-Discussions on industrial and commercial fairs
Customers Industrial companies from different sectors; Local authorities	Interest of industrial customers on Technology Exploitation via pand/or licence agreements	15	5	>5	(mainly Hannover Fair) -Request for specific features in order to address specific needs of various sectors - Improved understanding on business cases, installation requirements and operation schemes
	Publications at international conferences (M24 onwards)	6	1	2 (EFCF2020)	-Disseminate the latest results towards H ₂ & FC actors -Designing new collaborative proposals for demonstrationsMoUs ¹ concluded between research & industrial partners.
Research community H ₂ & FC researchers &	Publications in international journals (M24 onwards)	6	1	0	
industries	Participation with presentation of results at international events with industry	6	2	7 (presentation of objectives rather)	
Industry associations, Chemicals, Refining, Energy Intensive Industry related Think tanks	Presentation of results at association events	3	1		-Attract attention and generate interests from industry associations and get their support in the political decision-making process
General public Public and Private	Non-scientific publications (articles, press releases); Participation in national events promoting	10	3	2, one article, one press release; many other posts, see section 6.4 for details	-Attract attention and generate interests for an optimal exploitation of the project's results for further exploitation and deployment of the technology

1 Momoranda of Understanding

