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Abstract — A diverse assemblage of scleractinian species was recorded during
a rapid assessment of the shallow water coral taxa of Mermaid, Scott and
Seringapatam Reefs. All taxa were predominately widespread Indo-Pacific
species that present clear affinities with coral assemblages of Ashmore Reef
and the Indonesian provinces to the north. A total of 269 scleractinian species
from 57 genera in 14 families were recorded, comprised of 211 species at
Mermaid Reef, 224 species at South Scott Reef, 201 species at North Scott, and
159 species at Seringapatam. The study yielded 22 new distribution records for
Mermaid Reef, 18 new distribution records for Scott-Seringapatam, one new
record for Western Australia (Fungia moluccensis), and one new record for the
Rowley-Scott region (Montipora digitata, previously recorded from Ashmore
Reef). Multivariate analyses indicated there were distinct communities within

and among reefs associated with the reef front, lagoon, and intertidal reef flat

habitats.
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INTRODUCTION

A considerable body of research has examined
the ecology and distribution of the zooxanthellate
scleractinia in coastal Western Australia. However,
relatively few studies have investigated the coral
biodiversity of the emergent shelf-edge atolls
located in the oceanic region off the northwest
continental mainland. Early taxonomic expeditions
by the Western Australian Museum (WA Museum)
documented the coral fauna of the Rowley Shoals,
Scott Reef, and Seringapatam (Veron, 1986),
and Ashmore Reef and Cartier Island (Veron,
1993; Veron and Marsh, 1988), while more recent
taxonomic studies by Griffiths (1997) re-examined
the corals of Ashmore Reef. Long-term monitoring
of the region’s coral resources by the Australian
Institute of Marine Science (AIMS) including
(Heyward et al., 1995, 1997, Heyward et al., 1999;
Smith et al., 2004) and several predominately
taxonomic-based surveys by Done et al., (1994)
and Wolstenholme and Smith (unpublished data),
has resulted in a relatively deep understanding of
the region’s coral fauna and the accumulation of a
considerable taxonomic inventory for the region.

The Rowley Shoals, Scott Reef and Seringapatam
Reefs are influenced by a common suite of
environmental variables, including large tidal
regimes, warm sea surface temperatures,
exposed aspects, and clear oceanic water inputs.

However, differing geomorphological and physical
characteristics between and within the major reef
systems have resulted in heterogeneous physical
habitats across exposed reef fronts, protected
lagoons, and intertidal reef flats. These reef
systems have also been impacted by several major
disturbance events: in 1998, sustained elevated sea
surface temperatures resulted in mass bleaching
(Heyward et al.,, 1999; Smith et al.,, in review), and
in 2004, category five Cyclone Fay resulted in
widespread destruction of coral communities
(Gilmour and Smith, 2006).

This study presents a preliminary rapid
assessment of scleractinian species richness and
abundance at Mermaid Reef (Rowley Shoals),
South Scott, North Scott, and Seringapatam
Reefs. The primary aims of this survey were
to assess regional coral biodiversity, provide a
quantitative assessment of abundance, execute
a repeatable search effort that may afford future
comparison between further surveys, and examine
the taxonomic and biogeographical relationships of
the complex mosaic of coral communities that exist
in the region.

METHODS

Surveys were conducted at a series of stations that
were selected using satellite imagery and historical
records to maximize habitat diversity and to
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Figure 1

MDS ordination of 41 stations from Mermaid, South Scott, North Scott and Seringapatam, based on untrans-

formed presence/absence and Bray-Curtis similarities. Station richness is superimposed over each station
and the major habitat types are indicated: lagoon (LG), reef front (RF), intertidal reef flat (IT).

incorporate previous WA Museum and AIMS study
sites. A total of 45 stations were surveyed by scuba,
snorkelling and reef walking. A list of stations and
habitat descriptions is presented in the Station and
Transect Data section of this volume.

Surveys at each station were conducted along two
15 m x 1 m transects laid over the dominant habitat
(typically parallel to the reef contour or reef crest)
at approximately 5 m and 12 m depth, corrected
to mean sea level. Transect depths were chosen
to maximize species diversity and abundance by
capturing the shallow reef slope between 3-6 m
depth and the deeper reef slope at 10-14 m, as
reported by Heyward for Scott Reef, (pers. comm.)
and DeVantier et al., in other locations (2006).
Exceptions to the standard two transect method
were stations 10, 13, 27, 40 (no transects were used,
but surveyed for biodiversity), stations 29, 35, 42, 44
(one transect only used, plus 30 minutes additional
search time), and stations 10, 13 (repeat survey at
same location). Stations 10, 13, 27, 40 were excluded
from all analyses due to non-standard search effort.
Stations were scored against a series of habitat
descriptors (refer Table 4), and a two-tiered survey
approach was utilized at each station to assess
biodiversity and abundance respectively.

Tier One: The presence of all species encountered
along each transect was recorded during a visual
survey. Additional search time to a maximum of
10 minutes per station was used to supplement

sightings along the transects. Additional searches
were conducted haphazardly, adjacent to, and
between, transects. Opportunistic sightings, made
outside the transect area or during additional
search time, were recorded separately as extra
sightings.

Station richness (defined as the total number
of discrete species recorded at each station) was
calculated by aggregating the number of species
sighted along the transects, with those recorded
during extra time or opportunistically off the
transect.

Tier Two: Quantitative estimates of abundance
at functional group levels were generated by video
transect analysis, with estimates of percentage
cover assigned to each group. Refer to, The subtidal
habitats of Mermaid Reef (Rowley Shoals), Scott and
Seringapatam Reefs, Western Australia. (this volume)
for further discussion of these methods and
analyses of these data.

Coral taxa on visual surveys were identified in
situ to species level, or where identification could
not be resolved, a voucher specimen was collected
for further taxonomic analysis at WA Museum.
Voucher specimens were bleached in calcium
hypochlorite, then washed in seawater before being
dried and packed for shipping.

Corals were identified using Veron (2000; 2002)
and Veron and Stafford-Smith (2002), with the
exception of the genus Acropora which follows
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Figure4  MDS ordination of 16 reef front stations at Mermaid, South Scott, North Scott and Seringapatam, based on
untransformed presence/absence data and Bray-Curtis similarities.
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Figure 5

MDS ordination of 14 Mermaid stations, including reef front, lagoon, and intertidal reef flat habitats, based

on untransformed presence/absence and Bray-Curtis similarities.
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Left: Surveyed stations in Mermaid Reef lagoon displayed only minor cyclone damage; Right: The hard
corals, Seriatopora (branching) and Turbinaria (encrusting) in the lagoon at Scott Reef. (Photos: Clay Bryce)

Wallace (1999) excluding A. exquisita, and the
Fungiidae which follows Hoeksema (1989). Veron
and Pichon (1975; 1980; 1982), Veron, Pichon and
Wijsman-Best (1977), Veron and Wallace (1984)
were also used to aid identification. The non-
scleractinian species Heliopora coerulea, Tubipora
musica and genus Millepora were also recorded
during this survey.

Multivariate analyses of the two-way crossed
survey design with replicates were performed
using the software application PRIMER v6. A
detailed discussion of these methods is provided in
Clarke and Gorley (2006) and Clarke and Warwick
(2001).

Deep and shallow transect data were aggregated
in all analyses, as patterns of zonation with depth
were relatively obscure within the higher-level
patterns of habitat and reef system community
similarity.

RESULTS

A total of 269 scleractinian species from 57 genera
in 14 families were recorded during the present
survey, comprised of 211 species at Mermaid, 224
species at South Scott, 201 species at North Scott,
and 159 species at Seringapatam (Table 1).

The study yielded new distribution records
for 22 species at Mermaid Reef and 18 species at
Scott/Seringapatam. All new distribution records

were small range extensions between individual
reef systems in the Rowley-Scott complex, with
the exception of Fungia moluccensis, a new record
for Western Australia, and Montipora digitata,
previously recorded from Ashmore Reef.

Station richness

Station richness recorded at all reef systems
ranged from seven to 116 species per station (Table
1). Overall richness averaged 68 species per station,
with mean values of 70 at Mermaid, 76 at South
Scott, 60 at North Scott, and 55 at Seringapatam
(Table 2). Intertidal stations were consistently
depauperate (mean station richness = 23), while reef
front and lagoon stations had relatively high station
richness (mean richness = 77) (Figure 1). South Scott
had four of the five highest station richness values
recorded during the survey.

Nine of the 41 stations surveyed had high station
richness (>80 species per site), 23 stations had
medium station richness (>50 species), 6 stations
had low richness (20-50 species), and three stations
had very low richness (<20 species). Many of the
species recorded were relatively rare, with 21
species recorded only once during the survey. A
large proportion of species were uncommon, with
169 species recorded at less than 10 stations. 22
species were abundant and were recorded at more
than 25 stations.
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Left: Mermaid Reef. Fungia mushroom corals surround the coral Pectinia lactuca (Pallas, 1766); Right: Goniopora sp., with
tentacles extended, was common on all reefs. (Photos: Clay Bryce)

Community classification

Multivariate classification and non-metric multi-
dimensional scaling (MDS) analyses showed strong
clustering of stations based on similarities among
and within reef systems and habitat types (Figure
2,3).

Among reefs, strong clustering of stations
occurred with habitat type. That is, habitat type
was associated more strongly with community
similarity than reef system location (Figure 3).
Reef front stations were closely related between
all reef systems, with Mermaid, South Scott,
North Scott and Seringapatam reef front sites
all strongly similar. Lagoon communities also
clustered strongly, albeit it less than reef front
stations, while intertidal reef flat stations clustered
very weakly. Reef front and lagoon communities
were more similar to each other than to intertidal
communities.

Reef front stations at Mermaid were most closely
related to reef front stations at North Scott. Reef
front stations at South Scott were most closely
related to reef stations at North Scott. Reef front
stations at North Scott were intermediate between
Mermaid and South Scott. Reef front stations
at Seringapatam showed mixed affinities with

Mermaid, South Scott, and North Scott.

Lagoon stations at Mermaid were most closely
related to a mix of lagoon stations at South
Scott, North Scott and Seringapatam. Some
Mermaid lagoon stations tended towards reef
front communities. Lagoon stations at South Scott
presented mixed affinities with lagoon stations at
Mermaid, and were closely related to all reef front
stations. Lagoon stations at North Scott were most
closely related to lagoon stations at Mermaid and
South Scott. Lagoon stations at Seringapatam were
closely related to lagoon stations at North Scott and
Mermaid.

Intertidal reef flat communities were strongly
dissimilar to both reef front and lagoon
communities, with the exception of the Mermaid
reef flat station, which was closely related to all
reef front stations and South Scott in particular.
Intertidal stations at South Scott, North Scott and
Seringapatam were related only loosely.

Within each of the major habitat-associated
communities, distinct reef system sub-communities
were present. Each habitat community was
typically comprised of several smaller clusters
of stations belonging to each of the different reef
systems. For example, within the major reef front
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MDS ordination of 32 stations at Mermaid, South Scott, North Scott and Seringapatam, based on untrans-
formed percent cover estimated from video transects, and Bray-Curtis similarities. Intertidal reef flat stations

were not surveyed by video.
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Figure 8

MDS ordinations of 41 stations at the species, genus, family, and functional group levels, based on untrans-

formed presence/absence data and percent cover, with Bray-Curtis similarities. Intertidal reef flat stations
were not surveyed by video and are therefore excluded from the functional group level MDS.

cluster, Mermaid communities were distinct from
the South Scott and North Scott communities,
which were in turn similar to each other, while
Seringapatam showed mixed affinities with
Mermaid, South Scott and North Scott (Figure
4). These patterns of intra-habitat reef system
segregation were repeated in the lagoon-associated
communities across the four major reef systems.
Intertidal reef flat segregation relationships were
unclear.

Patterns of similarity were also apparent within
individual reef systems, with distinct habitat-
associated communities occurring within each
reef. Within the Mermaid reef system, lagoon sites
were clearly distinct from reef sites (Figure 5). The
intertidal station was also distinct from the reef
front sites. These patterns of intra-reefal habitat
segregation were repeated in lagoon- associated
communities across the four major reef systems.

Pair-wise analysis of similarity tests for
differences between all habitat types were
statistically significant (p<1%), with R scores
ranging from 0.716 to 0.935. Pair-wise tests for
differences between all reef systems were also
statistically significant (p<1%), with the exception of
the North Scott-Seringapatam pair. R scores ranged

from 0.344 to 0.657. Complete analysis of similarities
(ANOSIM) test values are given in Table 3.

Benthic Cover

Analyses of video transect data also showed
strong clustering of communities at the functional
group level associated with the lagoon and reef
front habitats (Figure 6). Within the lagoonal
cluster, smaller sub-clusters were associated
with the Mermaid and North Scott reef systems.
Mermaid and North Scott were similar to each
other, while South Scott and Seringapatam were
loosely grouped, with no clear affinities to other
reef systems. Within the reef front cluster, no clear
patterns were associated with any single reef
system. Rather, the four reef systems showed mixed
affinities with each other while remaining distinct
from the lagoon communities. Intertidal reef flat
transects were not surveyed by video, therefore no
analyses could be performed for this habitat.

Hard coral cover was highest at Mermaid (29%),
followed by South Scott (21%), North Scott (17%),
and Seringapatam (16%). Hard coral cover was
highest in the reef front habitats (25%) followed by
the lagoon habitats (22%).
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Habitats

Habitat descriptor scores for each station are
given in Table 4. The major species that typify the
lagoon, reef front, and reef flat habitats are given in
Table 5, as are the major species that discriminate
between each habitat group. The major functional
groups that typify the lagoon, reef front, and reef
flat habitats are given in Table 6, as are the major
functional groups that discriminate between each
habitat group.

Lagoon stations were characterised by protected
sandy floor or mixed reef and rubble habitats,
interspersed with isolated outcrops and bommies,
simple, regular structural features, low wave
energy, low to medium water clarity, and flat or low
slopes, to 10-20m deep. Key groups of taxa were the
branching Acroporas, and massive non-Acroporas.

Reef front stations were characterised by exposed
coral and coralline algae covered limestone
platforms, complex, irregular structural features,
medium to high wave energy, medium to high
water clarity, and steep slopes to a terrace at 12-18m
before an abrupt drop-off to very deep water. Key
groups of taxa were the non-branching Acroporas
and encrusting or massive non-Acroporas.

Intertidal reef flat stations were characterised
by exposed combinations of reef crest zones,
submerged elements of mixed reef, rubble,
pavement and patch reefs, simple, regular
structural features, medium to high wave energy,
and extensive exposed reef flats at low tide. Key
groups of taxa were the massive non-Acroporas,
particularly Porites species.

Species-area curves

The cumulative species richness curve for the
aggregated regional pool of the four major reef
systems was close to reaching an asymptote,
with few new discrete species encountered with
additional station sampling in the region (Figure
7). However, examination of species-area curves for
each separate reef system showed that individual

Above: An Acropora forest in the lagoon of Mermaid Reef.
(Photo: Clay Bryce)
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Above: The brooding coral, Stylophora pistallata Espar,
1797 (Photo: Clay Bryce)

reef species accumulations had not yet approached
an asymptote, with new species continuing to be
encountered with additional sampling. Estimates
of the total number of species likely to be recorded
in the Rowley-Scott region range from 273 to 296,
based on a combination of Bootstrap, Jackknife,
Chao, and Michaelis-Menton extrapolation models
(Figure 7).

Aggregated taxonomic levels

MDS on aggregated taxonomic data at the levels
of species, genus, family, and functional group
showed similar community assemblages across
multiple taxonomic levels, with the same overall
patterns of community assemblages by site type
and reef system (Figure 8). The species level data
provide a detailed representation of community
relatedness, with smaller sub-communities
apparent at the species level, while genus and
family level data display relatively similar, if less
detailed, representations of relatedness. Functional
group data provided a less clear picture of
community relatedness.

Transect Ratio

The ratio of transect sightings to total sightings
ranged very widely from 0% to 94%. Reef front
and lagoon stations presented high ratios (79% and
74% respectively), while intertidal reef flat stations
presented very low ratios (mean 32%), often with all
records made off the transect (Table 2).

DISCUSSION

The total number of species recorded during this
survey combined with historical survey records
brings total species richness for the oceanic Rowley-
Scott atolls to 291 species. Local biodiversity is
therefore considerably less than the approximate
600 species found in the ‘Coral Triangle’ area of
highest diversity centered around the Philippines,
Indonesia, and Papua New Guinea (Donnelly et
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Above: Corals from the family Acroporidae are dominant at Mermaid Reef. (Photo: Clay Bryce)

al., 2003; Erdmann and Pet-Soede, 2003; Green and
Mous, 2004; Mous et al., 2005). Mermaid, Scott,
and Seringapatam are therefore best described
as a subset of Ashmore Reef (256 species), with
neighbouring oceanic reef systems predominately
sharing a complement of similar overlapping
species.

South Scott had the highest mean station richness
and included many of the highest station richness
values recorded during the survey. South Scott
also had the second highest percent cover of hard
coral. Conservation values at South Scott, based on
hard coral diversity and abundance, are therefore
considerable. Seringapatam presented low levels
of biodiversity, however this is most likely related
to the very low levels of sampling employed (5
stations).

Aggregated distribution data for the northern
reef group of Scott and Seringapatam, and southern
Mermaid Reef support a net attenuation of species
diversity across the latitudinal gradient from
Indonesia towards Western Australia, consistent
with the broad-scale latitudinal variability in
scleractinian community assemblages documented
by Veron (2000) and DeVantier et al., (2006), and
the larger global distribution themes presented by
Mora and Robertson (2005). Cross-shelf gradients
are strong in the northwest region, with the coral
assemblages of the oceanic atolls being markedly
different to those recorded from reefs in the inshore
Kimberley region.

Multivariate analyses describe distinct
communities associated with each of the reef front,
lagoon, and reef flat habitats, as well as with the
individual Mermaid, South Scott, North Scott,
and Seringapatam reef systems. Communities
were strongly dissimilar between habitats, and
less distinct between reefs. Delineation of smaller
community assemblages within the larger overall
patterns of habitat and reef associated communities
requires further analysis.

Coral communities in the region are clearly the
product of response to a dynamic disturbance
regime, that is compounded at varying spatial and
temporal scales and intensities. Recent research
in Western Australia suggests that disturbance
regimes strongly influence site-scale species
abundance and community assemblage structure,
with severe disturbances resulting in the local
reduction of coral abundance and shifts to alternate
suites of coral assemblages (Smith et al., in press;
Smith et al., in review; Smith et al., 2004).

The strong variability in scleractinian biodiversity
recorded during this survey should be interpreted
in the context of the complex suite of physical,
biological, and anthropogenic forces that govern
coral reef community structure. Isolation of the
northwest oceanic atoll reefs, interdependencies
with adjacent ecosystems, shelf-edge location
and geomorphology, micro-habitat heterogeneity,
larval transport and recruitment, gene flow, species
interactions, and changing disturbance regimes,
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Above: Scott Reef. Close up detail of the free living Fungia mushroom coral. (Photo: Clay Bryce)

are all likely to have shaped the faunal assemblages
encountered in the region.

Thus, the nature of the strong association
observed between habitat and community
structure cannot be attributed to any single key
driver. Rather, further investigation is required to
determine the relative contributions of each of the
above factors to the overall patterns of biodiversity
and abundance recorded in the region. Recent
studies by AIMS (Smith et al., 2004) suggest that
recruitment and gene flow processes in the region
may be largely driven at local, within-reef scales,
rather than on a regional scale in which the atolls
were suggested as stepping stones through a larger
bio-geographic province. It is likely that other
complex patterns of relatedness, biodiversity, and
community structure will be revealed with further
research.

The strong effect of search effort on species
richness capture during a survey is well known
(Clarke and Warwick, 2001) and search effort
is therefore a critical variable between studies.
Most previous studies have tended to utilize a
haphazard timed swim over a non-defined area to
capture coral species richness at a station. These
techniques may represent unequal search effort,
and interpretation of results between these studies
may therefore be limited.

Analyses in the present survey also suggest
that the efficacy of different search methods may
be strongly affected by patterns of local-scale

variability and microhabitat heterogeneity. Station
richness during the survey was influenced strongly
by the presence or absence of microhabitats within
the sampled area, and the power associated with
low transect replication was often insufficient to
accurately capture community structure. Intertidal
reef flat communities, which were typically
characterised by low diversity and abundance,
had very high proportions of species recorded
off the transect. In contrast, the use of transects
at reef front and lagoon stations, with a short
period of additional search time, were relatively
effective in capturing the major components
of station biodiversity. These problems of scale
and patchiness, and the adequacy of transect
replication, are therefore critical to the successful
design and development of future sampling
regimes and monitoring programs. Further
research is needed to determine appropriate
sampling scales and levels of replication for the
large and complex reef systems encountered in the
northwest oceanic atolls. Future analysis of transect
species-area curve data collected during this survey
will be useful in this context.

Species-area curve analyses at the level
of individual reef systems did not reach an
accumulation asymptote, suggesting a restricted
estimate of the within-reef species pools. This is
supported by the large number of new distribution
records for the Rowley Shoals and Scott Reef. On a
larger scale, the combination of the Mermaid, South
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Scott, North Scott, and Seringapatam richness data
came close to reaching an asymptote, suggesting
that total richness recorded during this survey
may be close to total richness for the oceanic
atolls. Further sampling, including examination
of stations at Clerke and Imperieuse Reefs in the
Rowley Shoals, would likely result in the upward
revision of total biodiversity towards that predicted
by the species-curve extrapolation models.

Non-metric MDS analyses on transect data
aggregated to the higher taxonomic levels of
genus and family presented strong similarities
to that of data analysed at species level. Higher-
level taxonomic analyses may therefore represent
a useful tool to detect key patterns of change in
local community assemblages (Olsgard et al., 1998;
Somerfield and Clarke, 1995). The power of such
analyses remains to be determined, and while
video transect analysis at the functional group
level showed mixed results, Edinger and Risk
(2000) reported successful prediction of coral reef
conservation values based on morphological rather
than taxonomic classification.

Further examination of voucher specimens
collected during this survey is required and
may result in additional records for the region.
Ongoing review of the historical survey data is
also required, as the major taxonomic revisions
associated with the release of Veron (2000; 2002)
resulted in the re-classification of several species
recorded during historical surveys. Finally, recent
methods in molecular phylogenetics suggest that
the conventional taxonomic relationships used in
this study may also undergo considerable revision
in the future (Fukami et al., 2004).
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Appendix
Table 1 Species recorded at Mermaid, South Scott, North Scott and Seringapatam Reefs, 2006. New records at Rowley
Shoals are noted with ®. New records at Scott Reef are noted with 5. Species previously recorded in the region
and not found during the present survey are noted with ".
Mermaid

Species Authority 01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16
Acroporidae

Acropora abrolhosensis Veron, 1985 1 1111 1 1
Acropora abrotanoides (Lamarck, 1816) 1

Acropora aculeus (Dana, 1846) 1 1
Acropora acuminata (Verrill, 1864)

Acropora anthocercis (Brook, 1893) 1 1 1
Acropora aspera (Dana, 1846) 1
Acropora austera (Dana, 1846) 1

Acropora carduus® (Dana, 1846) 1 11111 1
Acropora caroliniana® Nemenzo, 1976 1 1
Acropora cerealis (Dana, 1846) 1 1 1 1 1|1
Acropora clathrata (Brook, 1891) 1 1|1

Acropora cytherea (Dana, 1846) 1

Acropora digitifera (Dana, 1846) 1 1 1 1
Acropora divaricata (Dana, 1846)

Acropora donei Veron and Wallace, 1984 1

Acropora echinata (Dana, 1846) 1 (1

Acropora elseyi (Brook, 1892) 1 1
Acropora exquisita Nemenzo, 1971 1 1)1 1

Acropora florida (Dana, 1846) 1 1111 1|1 1
Acropora gemmifera (Brook, 1892) 11|11 1 1
Acropora glauca (Brook, 1893) 1

Acropora grandis (Brook, 1892) 1)1 1 1
Acropora granulosa® (Milne Edwards and Haime, 1860) 1 1 1

Acropora horrida (Dana, 1846) 1 1

Acropora humilis (Dana, 1846) 1 (11 1 (11 1 {111 101
Acropora hyacinthus (Dana, 1846) 1 1 101 1 1111
Acropora indonesia Wallace, 1997

Acropora intermedia (Brook, 1891) 1 1 (11|11 1|1 1
Acropora kimbeensis® Wallace, 1999

Acropora kirstyae® Veron and Wallace, 1984

Acropora latistella (Brook, 1891) 1 1
Acropora listeri (Brook, 1893) 111 1

Acropora loisetteae® Wallace, 1994 1 1 1
Acropora longicyathus (Milne Edwards and Haime, 1860) | 1

Acropora loripes (Brook, 1892) 1 1 1 1 1|1
Acropora lutkeni Crossland, 1952 1

Acropora microclados (Ehrenberg, 1834) 1 1 1 1
Acropora microphthalma (Verrill, 1859) 1 1 (1|11 1 1
Acropora millepora (Ehrenberg, 1834) 1 (11 1 1 1 (1|1
Acropora monticulosa (Brueggemann, 1879) 1 (111 1 (111
Acropora muricata (Linnaeus, 1758) 1 (1 1 1 1 1
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17|18|19|20|21|22|23|24|25|26|27|28|29|30 31|32|33|34|35|36|37|38|39|40 41|42|43|44|45
1 1 1|1 1 1 (1 1|1 1
1 1 1 1
1
1
1 1 1 1 1 1 1 1
1 1
1
1 1 1 1 1 1 1 1
1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1
1 1 1 1
1 1
1 1 1 1 (1 1 111
1 (1|11 1 1 1 1 1 111 1
1 1
1 1|1 1 1 1
1 1
1 (1|11 1 (1 (1(1]|1 1 1|1 1 1 1 111 111
1 (1|11 1 1 (1 1 (1 1 1
1 1 1
1 1 1 1 (11 1 1|1 1|1 1 1
1 1 1 1 1 1
1 1 1|1 1 1
1 1 1
1
1 1 1 (1 1 1 1 1
1 1 (1 1|1 1|1 1 1|1 1
1 (1|11 1 1 (1|1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1
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Species Authority 0102|03|04|05|06|07|08|09]|10|11 |12 |13 |14 |15 |16
Acropora nana (Studer, 1878) 1 1

Acropora nasuta (Dana, 1846) 1 1 1 1 1 1 1 1 1 1 1 1
Acropora paniculata Verrill, 1902

Acropora pichoni Wallace, 1999

Acropora polystoma (Brook, 1891) 1 111 1 1
Acropora pulchra (Brook, 1891) 1(1]1 1
Acropora robusta (Dana, 1846) 1|1 1|1
Acropora samoensis (Brook, 1892) 1 1 1
Acropora secale (Studer, 1878)

Acropora selago (Studer, 1878) 111

Acropora spicifera (Dana, 1846) 1{1]1|1]1]1 1(1]1 1|1
Acropora striata® (Verrill, 1866)

Acropora subglabra (Brook, 1891) 1 (1 1
Acropora subulata (Dana, 1846)

Acropora tenuis (Dana, 1846) 1|1 1 {111 1 (1|11 1|1
Acropora valenciennesi (Milne Edwards and Haime, 1860)

Acropora valida (Dana, 1846) 1 1 1 1|1
Acropora vaughani Wells, 1954 1

Acropora yongei Veron and Wallace, 1984 1
Anacropora puertogalerae” | Nemenzo, 1964

Astreopora cucullata® Lamberts, 1980 1 11

Astreopora expansa Brueggemann, 1877 101 1 1
Astreopora gracilis Bernard, 1896

Astreopora incrustans® Bernard, 1896 1 1 1

Astreopora listeri® Bernard, 1896 1

Astreopora myriophthalma | (Lamarck, 1816) 1 1(1]1]|1 1 1 (1
Astreopora ocellata Bernard, 1896

Isopora brueggemanni (Brook, 1891) 1 1 (1|1 |1f1]1 11 1011
Isopora palifera (Lamarck, 1816) 1 (1)1 11 1011
Montipora aequituberculata | Bernard, 1897 1 1 1
Montipora angulata (Lamarck, 1816)

Montipora caliculata (Dana, 1846)

Montipora crassituberculata® | Bernard, 1897 1

Montipora danae (Milne Edwards and Haime, 1851) 1 1
Montipora digitata® (Dana, 1846)

Montipora efflorescens Bernard, 1897 1 11

Montipora floweri Wells, 1954 1

Montipora foliosa (Pallas, 1766) 1 1

Montipora foveolata (Dana, 1846) 111 1 1

Montipora grisea Bernard, 1897 1 1 1 1 (1
Montipora hispida (Dana, 1846) 1
Montipora hoffmeisteri Wells, 1954 1 1

Montipora incrassata® (Dana, 1846) 111 1 1 1
Montipora informis Bernard, 1897 1

Montipora millepora® Crossland, 1952 1

Montipora mollis Bernard, 1897 1 (1

Montipora monasteriata (Forskal, 1775) 101 1 1

Montipora nodosa (Dana, 1846) 1
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Mermaid

Species Authority 01 {0203 |04|05|06|07|08|09([10]|11 12|13 |14 |15] 16
Montipora peltiformis® Bernard, 1897 1
Montipora spumosa® (Lamarck, 1816)

Montipora tuberculosa® (Lamarck, 1816) 11111 1 1 1
Montipora turgescens Bernard, 1897 1

Montipora turtlensis” Veron and Wallace, 1984

Montipora undata Bernard, 1897 1 1 1

Montipora venosa® (Ehrenberg, 1834) 111 1

Montipora verrucosa (Lamarck, 1816)

Agariciidae

Coeloseris mayeri Vaughan, 1918 1 1011 1 11
Gardineroseris planulata (Dana, 1846) 1 111 1 1
Leptoseris explanata Yabe and Sugiyama, 1941

Leptoseris foliosa Dinesen, 1980

Leptoseris hawaiiensis Vaughan, 1907 1 1 1 1

Leptoseris incrustans (Quelch, 1886) 1 1 1 1 1
Leptoseris mycetoseroides Wells, 1954 111 111 1 11
Leptoseris papyracea (Dana, 1846)

Leptoseris scabra Vaughan, 1907

Leptoseris yabei (Pillai and Scheer, 1976)

Pachyseris rugosa (Lamarck, 1801) 1 1 1 1 11
Pachyseris speciosa (Dana, 1846) 1 1 1(1]1 1
Pavona cactus (Forskal, 1775)

Pavona clavus® (Dana, 1846)

Pavona decussata (Dana, 1846) 1 1111 1

Pavona duerdeni Vaughan, 1907 1 111 1 11
Pavona explanulata (Lamarck, 1816) 1 1 1 1(1]1 1 1 (1
Pavona maldivensis (Gardiner, 1905) 1|1 1 1|1
Pavona varians Verrill, 1864 1|1 (11|11 1|1|1|1]|1 1111
Pavona venosa (Ehrenberg, 1834) 1 1
Astrocoeniidae

Stylocoeniella armata (Ehrenberg, 1834) 101 1 1
Stylocoeniella guentheri Bassett-Smith, 1890 1 1 1
Dendrophylliidae

Turbinaria frondens (Dana, 1846)

Turbinaria mesenterina® (Lamarck, 1816)

Turbinaria peltata® (Esper, 1794)

Turbinaria reniformis Bernard, 1896

Turbinaria stellulata (Lamarck, 1816) 1 1|1 1]1]1 1
Euphyllidae

Euphyllia ancora Veron and Pichon, 1980 1
Euphyllia cristata® Chevalier, 1971

Euphyllia glabrescens (Chamisso and Eysenhardt, 1821)

Physogyra lichtensteini (Milne Edwards and Haime,1851) 111 1 1 111111 111
Plerogyra sinuosa (Dana, 1846) 1 1 1
Faviidae

Caulastrea furcata Dana, 1846

Caulastrea tumida® Matthai, 1928

Cyphastrea agassizi® (Vaughan, 1907) 1 101 1
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Species Authority 0102|03|04|05|06|07|08|09]|10|11 |12 |13 |14 |15 |16
Cyphastrea chalcidicum (Forskal, 1775) 101 1 1
Cyphastrea microphthalma | (Lamarck, 1816) 1{1]1|1]1]1 1{1]1f1]1 1|1
Cyphastrea serailia (Forskal, 1775) 1 1(1]1 1 1 (1
Diploastrea heliopora (Lamarck, 1816) 1 1 1 11
Echinopora ashmorensis Veron, 1990 1|1

Echinopora gemmacea® Lamarck, 1816

Echinopora hirsutissima® Milne Edwards and Haime, 1849

Echinopora horrida Dana, 1846 1 1 11111
Echinopora lamellosa (Esper, 1795) 111 1{1|1|1f1]1 11 1 (1)1
Echinopora mammiformis (Nemenzo, 1959)

Favia danae Verrill, 1872

Favia favus (Forskal, 1775) 1|1 1 101 1

Favia helianthoides Wells, 1954 1|1 1

Favia laxa (Klunzinger, 1879)

Favia lizardensis Veron and Pichon, 1977 1 1 1|1

Favia matthaii Vaughan, 1918 1|11 1]1 11111 1 1
Favia maxima Veron and Pichon, 1977 1 1|1
Favia pallida (Dana, 1846) 11|11 |1]1]1 1|1 1111
Favia rotumana (Gardiner, 1899) 1 (11

Favia rotundata (Veron and Pichon, 1977)

Favia speciosa Dana, 1846 1 1 1 1 1 1 1 1 1 1

Favia stelligera (Dana, 1846) 1 {1111 1011 1011
Favia truncatus® Veron, 2000 1|1 1 1

Favites abdita (Ellis and Solander, 1786) 1 {1 (1|11 1|1 1 1 1
Favites chinensis (Verrill, 1866)

Favites complanata® (Ehrenberg, 1834) 1 1 (1|1 |1]1 11 1

Favites flexuosa (Dana, 1846)

Favites halicora (Ehrenberg, 1834) 1111 1

Favites pentagona (Esper, 1794) 1 (1|11 1 1 11
Favites russelli (Wells, 1954) 1 1|1 1 1|1 1 (1|1
Favites stylifera® (Yabe and Sugiyama, 1937) 111

Goniastrea aspera Verrill, 1905 111 101 1
Goniastrea australensis® (Milne Edwards and Haime, 1857)

Goniastrea edwardsi Chevalier, 1971 111 |1|1]1 1|1 1|1
Goniastrea favulus (Dana, 1846)

Goniastrea palauensis (Yabe and Sugiyama, 1936)

Goniastrea pectinata (Ehrenberg, 1834) 1{1|1|1]1]1]|1 1 (1)1 1 (1
Goniastrea retiformis (Lamarck, 1816) 1111 1|1 1|11 f(1]1]|1 1111
Leptastrea aequalis Veron, 2000

Leptastrea inaequalis Klunzinger, 1879 1

Leptastrea pruinosa Crossland, 1952 111 1 1 11 111
Leptastrea purpurea (Dana, 1846) 1{1]1|1]1]1 1 (1
Leptastrea transversa Klunzinger, 1879 1 (1|11 1 1 1 1
Leptoria phrygia (Ellis and Solander, 1786) 1 111 11 1 (1
Montastrea annuligera® (Milne Edwards and Haime, 1849) 1 1 1

Montastrea curta (Dana, 1846) 1|11 (1]1]1 1 1|1
Montastrea magnistellata Chevalier, 1971 1 1(1]1|1 1{1]1f1]1
Montastrea valenciennesi (Milne Edwards and Haime, 1848) 1
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Species Authority 01 {0203 |04|05|06|07|08|09([10]|11 12|13 |14 |15] 16
Oulophyllia bennettae (Veron and Pichon, 1977) 1 1

Oulophyllia crispa (Lamarck, 1816) 1 (1|11 1

Oulophyllia levis” (Nemenzo, 1959)

Platygyra daedalea (Ellis and Solander, 1786)

Platygyra lamellina (Ehrenberg, 1834)

Platygyra pini Chevalier, 1975 1{1]1f1]1 11 1 (1|11
Platygyra ryukyuensis Yabe and Sugiyama, 1936 1 (1)1 1 1

Platygyra sinensis (Milne Edwards and Haime, 1849) 1

Platygyra verweyi Wijsman-Best, 1976 1 1 (1 1 1 1
Plesiastrea versipora (Lamarck, 1816) 1

Fungiidae

Ctenactis crassa (Dana, 1846) 1 1 1
Ctenactis echinata (Pallas, 1766) 1 1 1|1 1|1 1
Cycloseris costulata (Ortmann, 1889) 1

Cycloseris vaughani (Boschma, 1923)

Cantharellus noumeae” Hoeksema and Best, 1984

Fungia concinnaR Verrill, 1864 1|1 101 1 1 1
Fungia fungites (Linnaeus, 1758) 1 1 (1)1 1 1
Fungia granulosa Klunzinger, 1879 1 1

Fungia horrida Dana, 1846 1 1 (1|11 11 1 1
Fungia moluccensis® Horst, 1919

Fungia paumotensis Stutchbury, 1833 1 1

Fungia repanda® Dana, 1846 1

Fungia scutaria Lamarck, 1801 1 1 1
Fungia scruposa® Klunzinger, 1879 1

Heliofungia actiniformis (Quoy and Gaimard, 1833)

Herpolitha limax (Houttuyn, 1772) 1 1011 1

Lithophyllon mokai Hoeksema, 1989

Lithophyllon undulatum Rehberg, 1892

Podabacia crustacea (Pallas, 1766) 1 1 1
Polyphyllia talpina (Lamarck, 1801) 1 1(1]1

Sandalolitha robusta Quelch, 1886 1 1 1
Merulinidae

Hydnophora exesa (Pallas, 1766) 1 1|1 1 1
Hydnophora microconos® (Lamarck, 1816)

Hydnophora pilosa Veron, 1985 1
Hydnophora rigida (Dana, 1846) 1 1 1

Merulina ampliata (Ellis and Solander, 1786) 111 1|1 1 1 1

Merulina scabricula Dana, 1846 1|1 1|1 1 1|1 1111
Scapophyllia cylindrica Milne Edwards and Haime, 1848 1 11 1 1 1
Mussidae

Acanthastrea brevis Milne Edwards and Haime, 1849

Acanthastrea echinata (Dana, 1846) 1
Australomussa rowleyensis | Veron, 1985 1
Lobophyllia hataii Yabe and Sugiyama, 1936 1 1 1
Lobophyllia hemprichii (Ehrenberg, 1834) 1|1 111111 1111 1111
Symphyllia agaricia Milne Edwards and Haime, 1849 1 1|1

Symphyllia radians® Milne Edwards and Haime, 1849 1 1 1
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Species Authority 01 {0203 |04|05|06|07|08|09([10]|11 12|13 |14 |15] 16
Symphyllia recta (Dana, 1846) 1 1
Symphyllia valenciennesii Milne Edwards and Haime, 1849

Oculinidae

Galaxea astreata (Lamarck, 1816) 111111 1|1 1 1 1
Galaxea fascicularis (Linnaeus, 1767) 1(1 |11 {1111 |1]1|1]1 111
Galaxea horrescens (Dana, 1846)

Galaxea longisepta Fenner and Veron, 2000

Pectiniidae

Echinophyllia aspera® (Ellis and Solander, 1788) 1 1
Echinophyllia echinata (Saville-Kent, 1871)

Echinophyllia echinoporoides”| Veron and Pichon, 1980

Echinophyllia orpheensis Veron and Pichon, 1980 1

Mycedium elephantotus (Pallas, 1766) 1

Mycedium mancaoi Nemenzo, 1979

Mycedium robokaki Moll and Best, 1984

Oxypora glabra Nemenzo, 1959 1

Oxypora lacera (Verrill, 1864) 1 1
Pectinia alcicornis (Saville-Kent, 1871) 1 1111 111111

Pectinia lactuca (Pallas, 1766) 1 1 1 1
Pectinia paeonia (Dana, 1846) 1 1

Pectinia teres Nemenzo and Montecillo, 1981 1

Pocilloporidae

Pocillopora damicornis (Linnaeus, 1758) 1 (1|1 1 1 1

Pocillopora danae Verrill, 1864

Pocillopora eydouxi Milne Edwards and Haime, 1860 1 1

Pocillopora meandrina® Dana, 1846 11111 1
Pocillopora verrucosa (Ellis and Solander, 1786) 111 (1]1][1 1|1 1|1
Pocillopora woodjonesi Vaughan, 1918

Seriatopora hystrix Dana, 1846 1 (1)1 1 1 (1)1 1 1 (1)1
Stylophora mordax® (Dana, 1846) 1111

Stylophora pistillata Esper, 1797 1|11 (1]1][1 111 1|1 f{1]11]1
Poritidae

Alveopora allingi Hoffmeister, 1925

Alveopora catalaiP Wells, 1968

Alveopora fenestrata (Lamarck, 1816) 1 1

Alveopora spongiosa Dana, 1846

Alveopora tizardi® Bassett-Smith, 1890

Alveopora verrilliana® Dana, 1872

Goniopora burgosi® Nemenzo, 1955 101 111 1|1 1 1
Goniopora columna® Dana, 1846

Goniopora djiboutiensis Vaughan, 1907 1

Goniopora lobata Milne Edwards and Haime, 1860

Goniopora minor Crossland, 1952 1

Goniopora palmensis® Veron and Pichon, 1982 1

Goniopora pendulus Veron, 1985 1|1 1
Goniopora stutchburyi’ Wells, 1955

Goniopora tenuidens (Quelch, 1886) 1|1

Porites annae® Crossland, 1952 1|1
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Species Authority 01 {0203 |04|05|06|07|08|09([10]|11 12|13 |14 |15] 16
Porites cylindrica Dana, 1846 1(1]1|1 1 (1|11 1
Porites lichen Dana, 1846

Porites lobata Dana, 1846 1 1 1 1|1 1 1
Porites lutea Milne Edwards and Haime, 1851 1 1 1

Porites monticulosa® Dana, 1846 1 1|1 11111
Porites murrayensis Vaughan, 1918 1

Porites nigrescens Dana, 1846 1 1 1 1 1 1 1
Porites rus (Forskal, 1775) 1 1 11111
Porites solida (Forskal, 1775) 1

Porites vaughani Crossland, 1952 1 1|1 111 1 1|1
Siderastreidae

Coscinaraea columna® (Dana, 1846) 1 1|1
Coscinaraea exesa® (Dana, 1846)

Coscinaraea wellsi Veron and Pichon, 1980

Psammocora contigua (Esper, 1797)

Psammocora digitata Milne Edwards and Haime, 1851 1 1 1 111 1 1
Psammocora explanulata Horst, 1922

Psammocora haimeana Milne Edwards and Haime, 1851 1 1|1 1 1
Psammocora nierstraszi Horst, 1921

Psammocora obtusangula (Lamarck, 1816)

Psammocora profundacella® | Gardiner, 1898 1{1]1f1]1 1(1]1 1011
Psammocora supetficialis Gardiner, 1898 1

Non-Scleractinian

Heliopora coerulea (Pallas, 1766) 1 1 1 1
Tubipora musica Linnaeus, 1758 1

Millepora spp. Linnaeus, 1758 1111 1 1 1111 1

Station Richness

|79|69|53|68|72|56|71|48|56|

(=)
o

66|72|39|68|79|66
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Table 2 Station richness and transect ratios for 41 stations at Mermaid, South Scott, North Scott, and Seringapatam
Reefs.

Station Richness Mermaid South Scott North Scott | Seringapatam All Reefs
Mean 69.500 76.462 60.000 54.600 67.805
Standard Error 2.633 7611 12.407 12.663 4.059
Standard Deviation 9.851 27443 37.222 28.316 25993
Range 34 91 95 77 112
Minimum 52 27 6 13 6
Maximum 86 118 101 90 118
Count 14 13 9 5 41
Station Richness Reef Front Lagoon Reef Flat All Habitats
Mean 77188 76.833 23.143 67.805
Standard Error 3.028 4.505 6.501 4.059
Standard Deviation 12.112 19.113 17199 25993
Range 53 66 51 112
Minimum 48 52 6 6
Maximum 101 118 57 118
Count 16 18 7 41
Transect Ratio Reef Front Lagoon Reef Flat All Habitats
Mean 78.799 74.354 32.333 67.001
Standard Error 3.384 3.706 3.480 4.656
Standard Deviation 12.200 11.119 8.524 24.638
Range 47994 29.517 23.000 93.827
Minimum 45.833 57.692 21.000 0.000
Maximum 93.827 87.209 44.000 93.827
Count 13 9 6 28
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Table 3 Analysis of similarities (ANOSIM), two-way crossed, on species presence/absence data.

Tests for differences between reef system groups

(across all Habitat type groups)

Global Test

Sample statistic (Global R): 0.483

Significance level of sample statistic: 0.1%

Number of permutations: 999 (Random sample from a large number)

Number of permuted statistics greater than or equal to Global R: 0

133

Pairwise Tests R Significance Possible Actual Number >=
Groups Statistic Level % Permutations | Permutations Observed
Mermaid, South Scott 0.545 0.1 1783782 999 0
Mermaid, North Scott 0.495 0.1 36960 999 0
Mermaid, Seringapatam 0.657 0.3 945 945 3
South Scott, North Scott 0.344 0.7 47040 999 6
South Scott, Seringapatam 0.59 0.7 1764 999 6
North Scott, Seringapatam 0.181 15.8 400 400 63
Tests for differences between habitat type groups

(across all Reef system groups)

Global Test

Sample statistic (Global R): 0.739

Significance level of sample statistic: 0.1%

Number of permutations: 999 (Random sample from a large number)

Number of permuted statistics greater than or equal to Global R: 0

Pairwise Tests R Significance Possible Actual Number >=
Groups Statistic Level % Permutations | Permutations Observed
Lagoon, Reef Front 0.716 0.1 17837820 999 0
Lagoon, Reef Flat 0.865 0.1 5670 999 0
Reef Front, Reef Flat 0935 0.1 5040 999 0
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142 D. McKinney

Table 6 Similarity Percentages of functional groups (SIMPER).
Major functional groups typifying and discriminating between lagoon and reef front habitats, listed in de-
creasing order. Two-way analysis examining habitat type groups (across all reef system groups).

Typifying: Group Lagoon
Average similarity: 62.50

Av.Abund Av.Sim Sim/SD Contrib% Cum.%
Rubble 043 32.78 2.13 52.46 52.46
Branching Acropora 0.12 11.42 1.53 18.28 70.73
Sand 0.11 8.12 1.59 12.99 83.73
Rock 0.2 747 0.66 11.95 95.68
Tabulate Acropora 0.02 1.04 0.79 1.67 97.34
Massive Non-Acropora 0.04 0.71 044 113 98.48
Soft Coral 0.01 0.34 0.29 0.55 99.03
Digitate Acropora 0.02 0.31 0.54 0.5 99.53
Macroalgae 0 0.12 04 0.2 99.73
Mushroom coral 0.01 0.09 0.29 0.14 99.86
Sub-massive Non-Acropora 0.01 0.05 0.45 0.08 99.95
Foliaceous Non-Acropora 0 0.02 0.22 0.03 99.97
Encrusting Non-Acropora 0 0.02 0.16 0.03 100
Typifying: Group Reef Front
Average similarity: 68.66

Av.Abund Av.Sim Sim/SD Contrib% Cum.%
Rock 0.61 50.79 3.53 73.97 7397
Encrusting Non-Acropora 0.1 6.63 1.35 9.65 83.62
Massive Non-Acropora 0.06 3.7 147 5.39 89.02
Digitate Acropora 0.03 1.63 1.74 2.37 91.39
Soft Coral 0.04 15 0.6 2.18 93.57
Sand 0.03 1.21 0.7 177 95.34
Tabulate Acropora 0.03 097 0.59 141 96.74
Rubble 0.07 096 0.35 1.39 98.13
Sub-massive Non-Acropora 0.02 091 1 1.32 99.45
Branching Acropora 0.01 0.13 045 0.2 99.65
Macroalgae 0.01 0.12 0.33 0.17 99.82
Foliaceous Non-Acropora 0.01 0.09 0.24 0.13 99.95
Sponge 0 0.03 0.25 0.05 100
Gorgonian Coral 0 0 0 0 100
Mushroom coral 0 0 0 0 100

Descriminating: Groups Lagoon & Reef Front
Average dissimilarity = 67.35

Group Lagoon Group Reef Front
Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

Rock 0.2 0.61 21.27 1.82 31.58 31.58
Rubble 043 0.07 1793 1.84 26.62 58.2
Branching Acropora 0.12 0.01 6.3 1.18 9.36 67.56
Encrusting Non-Acropora 0 0.1 6.29 118 9.33 76.9

Sand 0.11 0.03 5.46 1.38 8.11 85

Massive Non-Acropora 0.04 0.06 2.51 148 3.72 88.73
Digitate Acropora 0.02 0.03 197 0.84 293 91.66
Soft Coral 0.01 0.04 1.76 0.74 2.61 94.26
Tabulate Acropora 0.02 0.03 148 0.69 2.19 96.46
Sub-massive Non-Acropora 0.01 0.02 0.93 1.31 1.38 97.84
Foliaceous Non-Acropora 0 0.01 0.54 0.71 0.8 98.63
Macroalgae 0 0.01 043 0.65 0.64 99.28
Mushroom coral 0.01 0 0.26 0.61 0.38 99.66
Sponge 0 0 0.15 0.74 0.22 99.88

Gorgonian Coral 0 0 0.08 0.19 0.12 100




Marine Fauna - Corals 143

R T e
Above: South Scott Reef lagoon, back slope. (Photo: Clay Bryce)



Above: Odontodactylus scyllarus (Linnaeus, 1758). The harlequin mantis shrimp. Photo: Glenn Moore)
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