
COMET: On-die and In-controller
Collaborative Memory ECC Technique

for Safer and Stronger Correction of DRAM Errors
Irina Alam and Puneet Gupta

Electrical and Computer Engineering
University of California, Los Angeles

USA
irina1@ucla.edu

Abstract—DRAM manufacturers have started adopting on-
die error correcting coding (ECC) to deal with increasing error
rates. The typical single error correcting (SEC) ECC on the
memory die is coupled with a single-error correcting, double-
error detecting (SECDED) ECC in the memory controller.
Unfortunately, the on-die SEC can miscorrect double-bit errors
(which would have been safely detected but uncorrected errors
in conventional in-controller SECDED) resulting in triple bit
errors more than 45% of the time. These are then miscorrected
in the memory controller >55% of the time resulting in silent
data corruption. We introduce COllaborative Memory ECC
Technique (COMET), a novel method to efficiently design either
the on-die or the in-controller ECC code, that, for the first time,
will eliminate silent data corruption when a double-bit error
happens within the DRAM. Further, we propose a collaboration
mechanism between the on-die and in-controller ECC decoders
that corrects most of the double-bit errors without adding any
additional redundancy bits to either of the two codes. Overall,
COMET can eliminate all double-bit error induced silent
data corruptions and correct almost all (99.9997%) double-bit
errors with negligible area, power, and performance impact.

Index Terms—DRAM, Error Correction Codes, ECC,
On-die ECC, Reliability, Bit-steering

I. INTRODUCTION

With increasing rate of scaling induced errors in
DRAM [4], [14], [22], [23], [26], [28], [34], [35], the tradi-
tional method of row/column sparing used by DRAM vendors
to tolerate manufacturing faults [17] has started to incur large
overheads. To improve yields and provide protection against
single-bit failures in the DRAM array at advanced technology
nodes, memory manufacturers have started incorporating on-
die error correction coding (on-die ECC) [4], [31], [34]. The
ECC encoding/decoding happens within the DRAM chip. The
parity bits are stored in redundant storage on-chip and are not
sent out of the chip; only the actual data, post correction, is
sent out of the DRAM, making on-die ECC transparent to the
outside world. Though DRAM manufacturers do not usually
reveal their on-die ECC design and implementation, prior
works [28], [31]–[34] and industry whitepapers [4] indicate
the most commonly used scheme is (136,128) Single Error
Correcting (SEC) Hamming code [16]. This code corrects
any single-bit error that occurs in 128 bits of data with the
help of 8 bits of additional parity. On-die ECC is typically
paired with rank-level single error correction, double error

Figure 1: Example showing the difference when a DBE occurs
in DRAMs with and without on-die SEC. Both systems have
in-controller SECDED. Assumption: data and parity bits that
get decoded in the controller in one cycle are sent from the
same DRAM chip across multiple beats.

detection (SECDED) code in the memory controller. Several
server and desktop class processors implement in-controller
SECDED ECC [2], [3], [12]. The main focus of in-controller
ECC is to correct errors that are visible outside the memory
chip, mostly due to failures in pins, sockets, buses, etc.

The on-die SEC code covers for all the single-bit errors
(SBE) [4], [8] within the DRAM chip. However, with
incessant memory density scaling, the rate of double-bit
errors (DBE) within the memory array is growing [23], [28],
[34]; so DBEs are no longer a rarity. However, a double
error correcting (DEC) code would incur large overheads
and negate some of the density scaling benefits. As a result,
it is not practical for DRAM manufacturers to have on-die
DEC mechanism. In today’s high reliability systems, the
rank-level in-controller ECC is expected to detect DBEs and
the system then restarts or rolls back to a checkpoint [11].
With an on-die SEC engine alongside in-controller SECDED
engine, the data pipeline now includes two error correcting
engines. This unfortunately increases the chances of silent
data corruption (SDC) when a DBE occurs in a memory
array. Let us explain this using an example.

As shown in Figure 1, without on-die SEC, the data goes
through a single round of decoding inside the memory con-
troller where the SECDED decoder flags the DBE. Now, with

1

on-die SEC, the data first goes through the SEC decoder that
only ensures protection against SBEs. For DBEs, this SEC
decoder has a >45% (on average based on 10 random SEC
constructions) chance of miscorrection resulting in a triple-bit
error. The resulting data with the triple-bit error, when sent
through the in-controller SECDED decoder, has a ∼55% (on
average, based on 10 random SECDED constructions) chance
of being falsely considered as a SBE. The SECDED decoder
would then miscorrect and silently corrupt the data. For a raw
bit error rate of 10−4 that is often seen in recent works and
industrial studies [8], [23], [28], [29], [34], we can expect
SDC once every ∼ 300,000 SECDED decoding cycles in a
system with a single DRAM chip that has on-die (136,128)
SEC and in-controller (72, 64) SECDED. Thus, on-die ECC
actually worsens memory reliability when DBEs occur in the
memory array. So, we first ask the question: Can we eliminate
DBE-induced SDCs by careful construction of either of the
two codes? In this work, we, for the first time, provide
a framework to efficiently design either the on-die SEC
code or the in-controller SECDED code in order to elimi-
nate silent data corruption with no additional parity bits.

Our next observation is, for every 128-bits of data, with
the two ECC schemes combined, we now have 8 more
bits of parity (from on-die ECC) as compared to having
only in-controller ECC. When do these extra 8-bits really
help? They help only in the rare case when a single-bit fault
outside the memory array (e.g. link/pin failure) coincides
with an SBE in the chip. In this case, the in-controller
ECC sees only the single-bit flip introduced by the external
fault and is able to correct it. Other than that, the on-die
SEC is not improving protection on top of what the in-
controller code was already doing. So, we also asked the
question: With extra 8-bits of redundancy, can we enhance
memory reliability? We further enhance the on-die SEC
construction and propose a collaborative mechanism to
now correct majority of the double-bit errors that occur
inside the memory array.

This work, Collaborative Memory ECC Technique
(COMET), makes the following key contributions:

• We provide a detailed on-die SEC code construction
technique (SEC-COMET) that completely eliminates
DBE-induced SDCs at no additional parity storage
overhead. The design technique exploits the overall
memory system architecture and steers the miscorrected
bit when a DBE occurs in such a way that the in-controller
SECDED, irrespective of its implementation, never
encounters all three bits of errors in the same decoding
cycle, thereby guaranteeing no SDC. For SEC-COMET
to be effective against SDCs, no special in-controller
SECDED construction is required. The two codes (on-die
and in-controller) can be constructed independently.

• If the DRAM manufacturer does not guarantee on-die SEC-
COMET, we show how the in-controller SECDED can then
be specially designed to take care of SDCs. We provide a
detailed construction of the SECDED code for a given on-
die SEC implementation and memory system architecture.

• We develop a collaborative DBE correction technique.
The SEC code needs to be designed with an additional
constraint and the memory controller needs to send a
special command with additional information once a
detectable-but-uncorrectable error (DUE) is flagged. This
collaborative technique can correct almost all (99.9997%)
DBEs while ensuring no miscorrections.

• SEC-COMET implementations require no additional
parity bits, have less than 5% decoder area and latency
overheads and less than 10% decoder power overhead as
compared to the most efficient SEC construction.

II. BACKGROUND

This section provides an overview of DRAM operation,
coding theory background and comparison of ECC codes
seen in today’s DRAM-based memory subsystems.

A. DRAM Operation
Dynamic Random Access Memory (DRAM) chip cell

stores a single bit of data in a capacitor [9], [10]. These
cells are organized in two dimensional arrays called banks.
A read/write command accesses a small subset of columns
in a row and includes multiple steps. First the entire row
is read into a row buffer using the ACTIVATE command.
Then a READ/WRITE command is sent with the column
address to initiate the data transfer. An xN DRAM chip uses
N data pins (DQs) in parallel during data transfer [25], [39].
Typically, more than one DRAM chip is accessed in parallel
to improve bandwidth and they together form a rank. A
single memory access takes multiple cycles – during each
cycle a beat of data (N bits from every chip in a rank) is
transferred. The number of beats transferred in each access
constitutes the memory burst length. The number of cycles
per access and the width of a data beat accessed in each cycle
depends on the memory device and the data access protocol.
If a rank consists of 8 x8 DRAMs and the burst length is
8 beats, it translates to 64-bits of data transfer per beat and
a total of 64B transfer per READ/WRITE command.

B. Linear Hamming Error Correcting Codes
Error correcting code (ECC) detects and/or corrects by

adding redundant parity bits to the original data. A (n,k)
Hamming code protects a k-bit dataword (original data) by en-
coding the data through linear transformation to form a n-bit
codeword. The number of parity bits is equal to n−k. Increas-
ing the number of parity bits increases the minimum Ham-
ming distance between two legal n-bit codewords. A code of
minimum distance dmin is guaranteed to correct t=b 1

2 (dmin−
1)c erroneous symbols. The encoding is done by multiplying
the dataword (~m) with the generator matrix G: ~mG=~c and the
resulting codeword ~c is written to memory. When the system
reads the memory address of interest, the ECC decoder hard-
ware obtains the received codeword ~x=~c+~e. Here, ~e is an
error-vector of length n that represents where memory faults,
if any, have resulted in changed bits/symbols in the codeword.
The decoder multiplies the received codeword ~x with parity
check matrix H to calculate the error syndrome: ~s = H~xT.
The following conclusions can be drawn from the syndrome:

2

• s = 0: No error.
• s 6= 0: Error detected; syndrome is matched with columns

of the parity check matrix H to determine the exact
bit-location of the error. If the syndrome matching is
unsuccessful, the decoder declares it as a DUE.
The syndrome is generated without any knowledge about

the exact number of errors in the received codeword. If
the number of errors exceeds the correction capability of
the code and the syndrome matching is successful it would
mean one of the following scenarios have occurred:
• s = 0: The decoder declares the codeword error-free and

all bits of errors go undetected.
• s 6= 0 and points to a bit: This bit can be one of the

erroneous bits or a non-erroneous bit. In either case, the
decoder will flag a CE and miscorrect that bit.

This leads to SDC where the decoder wrongly declares data
with errors as correct. In this work, we attempt to reduce
such SDC events when double-bit errors occur.
C. SEC vs. SECDED

Single-Error Correcting (SEC) codes (dmin=3) correct all
possible SBEs. The columns in the parity-check matrix H of
a linear SEC code are distinct and the minimum number of
columns to form a linearly dependent set is 3. This ensures
that every legal codeword is at-least 3 bit flips away from
each other. Single-Error Correcting, Double-Error Detecting
(SECDED) codes (dmin =4) [18] can correct all SBEs and
detect all possible DBEs. The minimum number of columns
to form a linearly dependent set in the parity-check matrix
H of a linear SECDED code is 4. Every legal codeword is
at least four bit flips away from each other. Both these codes
can correct SBEs. In case of DBEs, SEC code either declares
a DUE or miscorrects by flipping a third bit. SECDED, on
the other hand, always declares a DUE when a DBE occurs.

III. MOTIVATION

Single bit errors are still the majority of the failures
in today’s DRAMs. Hence, DRAM manufacturers have
started adopting on-die ECC for better reliability. Based
on our system level reliability analysis (details provided
in Section VI-B) we see that on-die SEC ECC helps to
reduce system failures by more than 35%. However, it
is ineffective for multi-bit errors and instead introduces
unexpected miscorrection.
A. Miscorrections by On-Die ECC

Let us consider an example of a DRAM device with
the most commonly used (136,128) SEC Hamming code.
This SEC code can correct any SBE. However, in case of
a multi-bit error, there are two possible outcomes: (1) The
errors go undetected and is equivalent to not having an
on-die ECC mechanism. (2) The multi-bit error aliases to a
single-bit error. This happens when the sum of the columns
in the H-matrix of the decoder corresponding to the error
positions is equal to another column in the matrix.

The second case is the problematic one. In order to better
understand this case, consider the following example SEC
Hexample parity-check matrix with 128 message bits and
r=8 parity bits:

Hexample=

d1 d2 d3 d4 d5...d127 d128 p1 p2 p3 p4 p5 p6 p7 p8



c1 1 0 0 1 1 1 0 0 0 0 0 0 0
c2 1 1 0 0 0 0 1 0 0 0 0 0 0
c3 0 0 1 0 0 0 0 1 0 0 0 0 0
c4 0 0 0 0 1 0 0 0 1 0 0 0 0
c5 0 0 0 0 0 0 0 0 0 1 0 0 0
c6 0 0 1 0 0 0 0 0 0 0 1 0 0
c7 0 1 1 1 1 0 0 0 0 0 0 1 0
c8 0 0 1 0 0 0 0 0 0 0 0 0 1

,

where di represents the ith data bit, p j is the jth redundant
parity bit and ck is the kth parity-check equation. Now, if a
double-bit error occurs in bits 1 and 2, the resulting codeword
c′ is equivalent to adding error patterns e1 and e2 to the
original codeword c. ei is a 136-bit vector with bit i = 1 and
all other bits = 0. By the definition of a linear block code,
H.c=0 for all legal codewords c. Therefore, error patterns
e1 and e2 isolate columns 1 and 2 of the SEC H matrix (i.e.,
Hexample∗,1 and Hexample∗,2) and as shown in Equation 1, the
resulting syndrome is the sum of the two columns.

s=Hexample.c′=Hexample.(c+e1+e2)

=Hexample.













1 0
0 1
0 0

c + 0 + 0
0 0
0 0
0 0
0 0

=0+Hexample∗,1+Hexample∗,2 =





1
0
0
0
0
0
1
0

=Hexample∗,4
(1)

Now, the sum of columns 1 and 2 of the Hexample matrix
is equal to column 4. Therefore, the generated syndrome s
matches column 4. As a result, the decoder would consider it
as a single bit error in bit position 4 and flip it as part of its
correction mechanism. Thus, an originally double-bit error
has now become a triple-bit error. On an average (across
10 random SEC Hamming code constructions), the chances
of a DBE miscorrecting to a triple bit error is >45%. With
increasing DRAM error rates, recent studies [8], [23], [29],
[34] have shown that the probability of a DBE occurring
within the 128-bit dataword can be as high as ∼ 8×10−5,
which translates to a DBE every 12500 SEC decoding cycles.
Thus, the chances of a double-bit error converting to a triple-
bit error are also high and will only increase in the future.

B. SDC post in-controller SECDED decoding
Now let us look at the problems that arise because of this

miscorrection. SECDED code inside the memory controller
is not designed to detect more than double-bit errors. As a
result, when the (136,128) SEC on-die ECC miscorrects and
converts a DBE to a triple-bit error, there is a high probability
(greater than 50% on an average over multiple SECDED
codes) for the SECDED decoder to consider it as an SBE
and further miscorrect. This will happen when the generated
syndrome or the sum of three columns in the SECDED parity
check matrix corresponding to the erroneous bits is equal
to a fourth column. The probability of SDC depends on the
exact SECDED code and the memory data transfer protocol.
A widely used on-die ECC is (136, 128) SEC [4], [31] and
in-controller ECC is (72, 64) SECDED [24]. For the rest
of the paper, we will use these two codes for explaining our
proposed code construction mechanisms and DBE correction
technique. However, our proposed constraints can be easily

3

Figure 2: Probability of SDC every 64-bits of SCEDED
dataword read from memory when a double-bit error occurs
in a system with (136,128) on-die SEC and (72,64) in-controller
SECDED coding schemes for different bit error rates and
data access protocols.

extended to other SEC and SECDED code constructions
with different dataword and codeword lengths.

DBEs are becoming more probable with increasing bit error
rate in the recent DRAM generations. Multiple recent experi-
mental/industrial studies [8], [23], [29], [34] have considered
DRAM raw bit error rate (BER) as high as 10−4. For different
memory system architectures and data access protocols, we
evaluate the probability of SDC when a DBE occurs for BERs
ranging from 10−4 to 10−8. The result is shown in Figure 2.
For this evaluation we consider the average miscorrection
rate across ten different (136,128) on-die SEC and (72,64)
in-controller SECDED implementations. We evaluate for
different access protocols; x64 means all 64-bits of SECDED
dataword come from the same DRAM chip while x4 means
there are 16 DRAM chips and each DRAM chips sends 4-
bits per beat of memory transaction. For a BER of 10−4, the
probability of silent data corruption in the case of x16 data
access protocol is non-negligible and can happen once every
3 million 64-bit accesses. As the data width per chip reduces,
the SDC probability decreases. This is because the probability
of a DBE, along with the miscorrected bit, aligning perfectly
within the same beat boundary reduces with decrease in beat
width. Without on-die SEC, the SDC probability, however, is
0 since all double-bit errors within the DRAM array, irrespec-
tive of location, would not get miscorrected and would be
flagged as DUE by the in-controller SECDED decoder. Thus,
while the SEC code does not help with detecting or correcting
the double-bit errors in any scenario, it causes miscorrection
and turns upto 25% of these DBE events into SDC.

IV. DESIGNING ECC TO ELIMINATE SDC
In today’s DDR or LPDDR based systems, during every

read operation, the data that is read into the memory controller
is typically striped across multiple DRAM dies. Each xN
DRAM die sends N-bits data in parallel during each beat of
memory transfer to construct the 72-bit controller codeword.
But inside each DRAM chip, the SEC decoding is performed
on a much larger 128-bit dataword. Only a part of this 128-
bit data is accessed by the memory controller per read (see
Figure 3). This mean that the dataword of on-die ECC gets
striped across multiple in-controller SECDED codewords.
This has significant implications on SDC probability. The
DBE probability in a 128-bit word and the SEC-induced

miscorrection rate remain constant across the DRAM dies
having the exact same SEC implementation. However, the
probability of the double-bit error and the miscorrected bit
coinciding within the same in-controller 64-bit dataword
decreases with the decrease in the amount of data from each
on-die dataword that constitutes the in-controller codeword
(as shown in Figure 2). If all 64-bits come from the same
DRAM chip and, therefore, from the same 128-bit SEC
dataword, the SDC probability is > 150x higher than the
case where 16 x4 DRAM chips send 4-bits each in parallel.

In this work, we provide two possible solutions that
exploit this data access pattern to completely avoid SDCs
when DBE occurs. (1) An on-die SEC construction technique
which ensures that the miscorrected bit is steered to a
different beat. It does not require knowledge of the exact
in-controller code and is compatible with any SECDED
implementation in the controller. (2) Our alternate solution
outlines an in-controller SECDED construction technique
that ensures that none of the on-die aliasing triplets result in
SDC. However, unlike the first technique, this in-controller
SECDED construction needs to know the on-die SEC code.

A. On-die SEC-COMET ECC

In this work we exploit the data transfer protocol in
DRAMs to take care of SDCs. As shown in Figure 3, if all
the three erroneous bits in the 136-bit codeword do not get
transferred and decoded in the memory controller in the same
beat, the SECDED decoder will not encounter a triple-bit
error and SDC can be avoided. Thus, the on-die SEC has to be
constructed such that the miscorrection from any DBE within
a single beat gets steered to a bit position that belongs to a dif-
ferent transfer beat. This will ensure that the three erroneous
bits never coincide in the same 72-bit SECDED codeword.

In order to achieve this property in a (136, 128) SEC code,
within every beat transfer boundary, the sum of any two
columns in the parity check H matrix should not be equal
to a third column in the same set.

Step-by-step code construction and mathematical
guarantee: With 8-bits of parity per 128-bits of dataword,
the COMET-SEC additional constraint can be satisfied when
designing the SEC code for any data transfer protocol as
long as the beat transfer boundary (N) consists of 64-bits (64
columns) or less. When constructing the 8×136 parity check
matrix H, we can choose the 136 8-bit columns from 128
odd-weight and 127 even-weight non-zero options. The DBE-
induced miscorrection happens when the sum of two columns
is equal to a third column in the H matrix. Either all these
three columns would have even weights or two of them would
have odd weights and the third would have even weight. Thus,
the two aliasing sets possible are: (1) (odd, odd, even), (2)
(even, even, even). If we could construct the H matrix with
all odd weight columns then no pair of columns would sum
up to a third column and there would be no DBE-induced
miscorrection. However, we do not have enough odd-weight
columns for the entire matrix. Hence, when constructing the
H matrix for our proposed SEC-COMET code for an xN
DRAM architecture, we use a two-step approach.

4

Figure 3: Example showing how steering the miscorrected bit to a different beat transfer boundary during SEC decoding
prevents the SECDED decoder from encountering the problematic triple-bit error within the same 72-bit codeword.

Figure 4: Example showing SDC occurring due to
miscorrection introduced by on-die ECC. We have considered
the SEC construction provided in Section III-A where the sum
of columns 1 and 2 in the Hexample matrix is equal to column 4.

• Out of the 128 odd weight columns, we use the single
weighted columns for the last 8 identity sub-matrix
columns. We use the remaining 120 odd-weight options for
the first min(128−N,120) columns. None of these columns
would have the problem of aliasing since they are all odd.

• For the remaining X =max(N,8) locations, we use only
even weight columns. We randomly choose a bit position
(say bit 0) and set it to ‘1’ for all X columns. If bit 0 for
all X columns is ‘1’, then the sum of any pair of columns
cannot equal a third column in this set as bit 0 of the sum
would always be ‘0’.

The total number of such even weight columns possible
=
(7

1

)
+
(7

3

)
+
(7

5

)
+
(7

7

)
= 64. Therefore, N can be as

wide as 64 (largest possible factor of 128). Thus, on-die
SEC-COMET code can be constructed for x4 to x64
DRAMs that can guarantee no silent data corruption. Note
that this SEC-COMET construction requires no knowledge
of the in-controller SECDED code.
B. In-controller SECDED-COMET ECC

Now we ask the question: In case the DRAM device does
not implement our proposed on-die SEC-COMET ECC pro-
vided in Section IV-A, can we still tackle the problem of SDCs
from the memory controller side? In this section we provide a
technique to redesign the in-controller SECDED code, albeit

with the knowledge of the SEC code used in the memory
device. A recent work [34] has proposed an efficient way of
reverse engineering the exact on-die SEC implementation.

Once we know the SEC code, we will know all the bit
positions pairs (H column pairs) that lead to a miscorrection
(sum of columns equal to third column) within the same
beat transfer boundary. These are the triplets that eventually
can lead to SDC. We first list all such bit positions triplets.
In Hexample provided in Section III-A, one such bit position
triplet is: positions 1, 2 and 4. This is because sum of columns
1 and 2 equal to column 4 and all three bit positions lie
within the same beat transfer boundary. For every triplet, we
then calculate all possible corresponding bit positions in the
SECDED dataword. For example, in an x8 DRAM architec-
ture, bits 1, 2, and 4 in the SEC dataword can correspond to
any of the following bit positions (in their respective order)
in the SECDED dataword (spanning 8 DRAM chips):
• Bits 1, 2 and 4 - Chip 1
• Bits 9, 10 and 12 - Chip 2
•
• Bits 57, 58 and 60 - Chip 8
This is because the 64-bit SECDED dataword that is
decoded in the memory controller in each beat spans across
8 DRAM chips. Hence, bit 1 of the SEC dataword from chip
1 would be bit 1 of the SECDED dataword, but bit 1 of the
SEC dataword from chip 2 would be bit 9 of the SECDED
dataword. The same is true for the rest of the DRAM chips.
We need to consider positions corresponding to all DRAM
chips since they all would use the same on-die SEC code.

Now let us consider the example shown in Figure 4. A
DBE affects bits 1, 2 in chip 2 and bit 4 gets miscorrected by
the SEC decoder. Post data transfer, this translates to triple-bit
error in bit positions 9, 10 and 12 in the SECDED codeword.
This becomes an SDC since the sum of these columns in the
SECDED H matrix is equal to another column (column 63
in the example). The decoder flips bit 63, declares the error
correction as a success, and sends the corrupted data over to
the processor. In order to prevent this SDC from happening
in a system with this particular on-die SEC code, the
SECDED parity check matrix has to be designed such that

5

the sum of all the sets of columns corresponding to the bit
positions listed above do not match with any of the columns
in the rest of the H matrix. To construct such an H matrix,
we first assign any three 8-bit non-zero values to columns
1, 2 and 4. We then store the sum of these three columns in
a don’t-use list. For the next set of three columns (9, 10 and
12), we again choose three random non-zero values that do
not equal the value stored in the don’t-use list. We then sum
these three columns and append the sum to the don’t-use
list. We continue the process for the rest of the columns.

The process has to be repeated for all bit triplets in
the SEC dataword that lead to three-bit errors in the final
SECDED codeword. Once all bit triplets are covered,
the remaining SECDED H-matrix columns are randomly
assigned 8-bit values that do not match anything stored in
the don’t-use list. For a given SEC code and system memory
architecture, for every bit/column triplet in the SECDED
H matrix that can cause SDC, the sum of the columns has
to be such that it equals no other column in the H matrix.

Using this technique, given the exact SEC implementation
and the system architecture, it is possible to construct the
SECDED code that would guarantee prevention of SDCs
when double-bit errors happen.

V. COMET DOUBLE-BIT ERROR CORRECTION

As mentioned previously, on-die ECC adds 6.25% parity
storage overhead without improving error correction capabil-
ity. Previous studies have shown that there is almost no differ-
ence in reliability between DIMMs with 8 chips that have only
on-die ECC and DIMMs with 9 chips that support both on-die
ECC and rank-level in-controller SECDED ECC [28]. Thus,
the two disjoint ECC schemes together do not reduce the
overall system failure probability. Instead we have shown that,
if one of them is not carefully designed, it causes additional
SDCs. So we next try to answer the question: Can we achieve
better reliability from the two codes while keeping the two
code types the same and their constructions independent?

In this section, we show how DBE correction can be
achieved with no extra parity overhead using the redundancy
built within the two codes. We add one more constraint to the
on-die SEC code construction and devise a controller-device
collaborative correction mechanism to get nearly perfect
double-bit error correction. It is important to note that even
though the collaborative technique requires controller-device
communication using a special command, the two ECC
codes can be designed completely independently and does
not require any special in-controller SECDED construction.
A. Constructing on-die SEC code to enable Double-bit

Error Correction (SEC-COMET-DBC)
In order to enable detection and correction of DBEs using

syndrome matching we need to ensure that the sum of any
pair of columns in the parity check matrix H generates a
unique syndrome. However, with just 8-bit redundancy for
a 128-bit dataword, this can be achieved only for a small
subset of columns. We add a constraint to SEC-COMET
code construction from Section IV-A to construct the
SEC-COMET-DBC code: for every set of x consecutive

columns, the sum of every pair of columns within that set
should be unique. For a (136, 128) SEC code, the maximum
value of x (that is also a factor of 128) for which this can
be possible is 16. I.e., a valid SEC-COMET-DBC code can
be constructed for x4, x8, x16 DRAM chips but not for x32.
This is because, for every pair of columns to generate a
unique syndrome in a set of 32 columns,

(32
2

)
=496 unique

syndromes are required. This is not possible with 8-bits.
For such a SEC code, when a double-bit error occurs in bit

positions that belong to the same x-bit chunk, the generated
syndrome and the chunk position can be used to figure out
the exact DBE locations. The syndrome is generated by the
SEC decoder, but for the correction mechanism to work, the
errors also have to be localized to the exact x-bit chunk which
the SEC decoder is unable to do. For this localization we will
exploit the memory data access architecture and utilize infor-
mation from the in-controller SECDED decoder. For example,
in a standard x8 DDR based ECC DIMM, the beat transfer
width per chip is 8 and therefore, we use x=8 in the (136,
128) SEC-COMET-DBC code. Now when a DBE happens
within the same 8-bit chunk in one of the DRAM chips, the
beat in which the decoder flags a DUE will help to point to the
8-bit chunk position where the DBE has occurred. Next, we
discuss how this information can be sent to the DRAM chips
and the the DBE correction flow. For better understanding
we explain the mechanism using a x8 DDR architecture.
B. Collaborative DBE Correction
1) Detecting the DBE beat

Let us look at all the possible ways a double-bit error can
happen in a 136-bit codeword in a particular DRAM chip
and the possible outcomes after the on-die and in-controller
decoding.
• Case 1: The two error bit positions are in two different

8-bit chunks and the miscorrected bit (if any) belongs to
a third chunk. As a result the erroneous bits get decoded
in the memory controller in separate beats. In each of
these beats, the SECDED decoder flags a CE and corrects
the error. Eventually all the erroneous bits get corrected
and no DUE gets flagged.

• Case 2: The two error bit positions are in two different
8-bit chunks and the miscorrected bit falls in the same
chunk with one of the error bits. Now one 8-bit chunk
that has two errors and one has single-bit error. The
in-controller SECDED decoder will flag a CE when it
decodes the chunk with SBE but will flag a DUE when
the 8-bit chunk with two error bits is decoded.

• Case 3: The two error bit positions are in the same 8-bit
chunk. The SEC-COMET constraint (provided in Sec-
tion IV-A) will ensure that the miscorrected bit lands in a
different 8-bit chunk. Thus, after SEC decoding the 128-bit
dataword either has one 8-bit chunk with two errors (in the
case of no miscorrection) or has an additional 8-bit chunk
with a single-bit error. The SECDED decoder will flag a
DUE when the 8-bit chunk with two error bits is decoded.
Let us consider the example shown in Figure 3 (Case 3).

A DBE occurs in DRAM chip 1 in bits 1 and 2. Because of

6

our improved SEC construction (shown on the right), it is
ensured that the SEC decoder would steer the miscorrection
to a different 8-bit chunk (in this example the miscorrected bit
is 9). Therefore, during the first beat of memory transaction,
the SECDED decoder flags a DUE, while in the second beat
it flags a CE and corrects bit 9. The memory controller uses
a special error correction command to send the original read
command address and the beat number in which the DUE was
flagged to the DRAMs. The SECDED decoder cannot localize
the DBE to a particular chunk in the codeword. Therefore, the
double-bit error could have occurred in any of the 9 DRAM
chips. Every DRAM chip receives the information that there
might be a DBE in the first 8-bits of its 128-bit SEC dataword.

2) Correction within each DRAM chip

Once the memory controller sends the special double-bit
error correction command with the beat number, each DRAM
chip checks the original SEC syndrome. We assume that
the special DBE correction command immediately follows
the original READ command. Therefore, the DRAM chips
only need to store the last generated 8-bit syndrome and the
32-bit/64-bit data that was last read. Storing the original data
has negligible overhead but prevents an extra ACTIVATE
during correction and possible change in error signature in
case of closed page policy. If the syndrome was zero, the
DRAM knows that the DBE did not occur in its codeword.
In our example (Figure 3), all DRAMs except chip 1 would
have generated a zero syndrome. If the syndrome is non-zero,
the correction mechanism within the chip tries to match the
syndrome with one of the H matrix columns in the 8-column
set that corresponds to the received beat number. In this case,
DRAM chip 1 tries to match the syndrome against columns 1-
8 (beat 1) in the H matrix. We know that the miscorrected bit
position is 9. Therefore, the generated syndrome would match
with column 9. Since, this column falls outside the target set,
the matching is unsuccessful. The decoder moves on to the
next step where it matches the generated syndrome with the
sum of every pair of columns from the target set. Because
of our improved SEC construction, every pair of columns
should sum up to a unique value. The pair of columns whose
sum equals the generated syndrome (in this example it will
be columns 1 and 2) represent the erroneous bit positions.
The decoder would flip those two bits and send the corrected
data over the DRAM bus to the memory controller. The rest
of the DRAM chips would not take any action since they
had zero syndrome and send the original 8-bit data.

While the example depicts Case 3, let’s look at what hap-
pens in Case 2. In this scenario, the original double-bit errors
are in two separate beat transfer chunks. But the miscorrected
bit lands in the same 8-bit chunk as one of the two errors.
Let’s say this is the second 8-bit chunk. Thus, the SECDED
controller flags DUE in the second beat and sends this infor-
mation to the DRAM chips. When the erroneous chip matches
the generated syndrome against columns 9 to 16 in the H
matrix, it sees that the syndrome matches with the column cor-
responding to the miscorrected bit position. In this case, the
DRAM chip would only flip that particular bit and send over

the data to the DRAM controller. It will not be able to localize
and correct the second error position within that 8-bit chunk.
Considering the rest of the DRAM chips had zero syndrome,
they send their unmodified data over in the same beat. Since
the erroneous chip could only correct one bit, the overall data
still has one-bit of error that SECDED will be able to correct.

3) Final Correction within the memory controller

The final correction step in the DRAM controller involves
multiple rounds of SECDED decoding of the corrected
data. This is to provision for the rare cases where DBE
in one chip coincides with SBEs in other chips within
the same 8-bit chunk. In that case, multiple DRAM chips
would see non-zero syndromes that match with one of the
columns in the target set. All these DRAMs would send data
uncorrected corrupted data that would need to be filtered
out on the memory controller side.

Once the controller receives the new 72-bit codeword from
the DRAMs, it compares it with the one it had received during
the original read. In the ideal case where only a single DRAM
chip has DBE and no other chip has made any corrections,
the two codewords would differ by one/two bits within a
particular 8-bit boundary corresponding to the erroneous chip.
However, in the rare case where multiple DRAM chips send
modified data, the controller, post comparison, would find bit
flips in more than one 8-bit chunk. The four possible multiple-
erroneous-chip scenarios are shown in Figure 5 where one
chip has a DBE and the other chip has a SBE. To prevent
miscorrection and silent data corruption, the controller accepts
changes corresponding to each chip (i.e., each 8-bit chunk)
one at a time and sends the new data through the decoder.
Let’s say chips 1 and 8 send new data. The controller will first
accept the change from chip 1, keep the old data from chip
8 and send the entire 64-bit data through the decoder. Then
it will revert chip 1’s change, accept the new data from chip
8 and send this new 64-bit data through the decoder. If one
of these two cases result in zero syndrome (scenarios b and
d), the controller declares the corresponding data as correct
and moves ahead. If both cases return a non-zero syndrome
but in one case the decoder detects and corrects a SBE and
in the other case the decoder detects a DUE (scenario c), the
controller declares the data corresponding to the first case
as correct and moved ahead. If both cases result in non-zero
syndrome with the decoder detecting an SBE (scenario a),
the controller panics and declares the error uncorrectable.
This rare scenario arises when DBE Case 2 (explained in
Section V-B1) occurs in one chip and an SBE in another chip.

The likelihood of this uncorrectable case is ∼1 in 300,000
DBEs. I.e., COMET achieves 99.9997% double-bit error
correction. The step-by-step correction mechanism of DBEs
by COMET is shown in Figure 6. A similar correction
outcome is expected if there is link error instead of single-bit
error in the data signals of the other chips. The probability
of double-bit error striking two different DRAM chips
within the same beat transfer boundary is less than 2×10−10

with BER of 10−4. Therefore, we only consider upto single
bit error in the other DRAM chips.

7

Figure 5: The different scenarios possible when one chip has double-bit error and another chip has single bit error that aligns
in a way leading to multiple DRAM chips modifying data during DBE correction

Figure 6: Step-by-step COMET double-bit error correction
mechanism.

C. Implementation of COMET command

The DBE correction mechanism in COMET requires
the controller to send a special correction command to the
DRAMs to initiate the on-die correction. This command will
need to send the exact beat number during which the DUE
was flagged along with the rest of the column address. In
DDR4/LPDDR4 standards, there are typically one or more
spare command sequences that are reserved for future use
(RFU). One such RFU command sequence can be used to
support this special command.

In Table I we have listed a command sequence for DDR4
and LPDDR4 protocols that can be used for COMET
DBE correction. In DDR4 it will be a single cycle single
command sent on the rising edge of the clock while in
LPDDR4 it will be a multi-cycle multi-command sent on
successive rising clock edges like their standard read/write
operations. In DDR4, address bits A[2:0] determine how
the beats would be ordered when sending the data from a
particular column address [19], [27] during a read operation.

For example, A[2:0] = “010” would send beat number 2 first
followed by beats 3, 0, 1, 6, 7, 4, 5, while A[2:0] = “101”
would send beat 5 first followed by beats 6, 7, 4, 1, 2, 3, 0.
The same address bits can be used in our special command
to denote the target beat in which DUE had occurred and
the DRAM device would correct and send data accordingly.
Similarly, in LPDDR4 protocol [13], [20], C[4:0] of the
10-bit column address (C0 to C9) is used to determine the
beat ordering during read operation and can be re-purposed
in our special command to send the target beat number. Also,
both protocols support burst chop, which allows the DRAM
devices to send reduced number of beats during the memory
transaction. Since we need only a single beat post correction
from the DRAMs, the special command can enable burst
chop. In DDR4, BC n is set to LOW for a burst size of 4
beats instead of the standard 8 beats. In LPDDR4, the CA5
pin in the first cycle can be set to LOW for the shortest burst
length. For DRAM devices that do not guarantee the COMET-
SEC-DBC construction, the special command to correct
double-bit errors can be turned off in the memory controller.

VI. RESULTS

A. Reliability Evaluation
We evaluate the impact of double-bit errors and silent

data corruption caused by these errors on system-level
reliability through a comprehensive error injection study.
While, in most cases, SDCs corrupt the final result or
lead to unexpected crashes and hangs during the run of
an application, some SDCs might get masked and would
eventually have no impact on the final output. Since COMET

8

Table I: COMET DBE Correction Command Sequence in DDR4 and LPDDR4 protocols
DDR4

Signals Clock Edge Prev. CKE
/Pres. CKE CS n ACT n RAS n/A16 CAS n/A15 WE n/A14 A[13, 11]

COMET special
R1

H L H L H H Valid Signal

Signals BG[1:0] BA[1:0] C[2:0] A12/BC n A10/AP A[2:0] A[9:3]

COMET special BG BA Valid Signal L L Target Beat number Column Address

LPDDR4

Signals Clock Edge CS CA0 CA1 CA2 CA3 CA4 CA5

COMET special-1 R1 H L H L H L BL (L)

R2 L BA0 BA1 BA2 C0 (Target Beat) C9 C1 (Target Beat)

COMET special-2 R1 H L H L H H C8

R2 L C2 (Target Beat) C3 (Target Beat) C4 (Target Beat) C5 C6 C7

ensures that none of the double-bit errors result in SDC,
our objective is to understand the severity of on-die ECC
induced SDCs in the event of a double-bit error without
COMET in order to evaluate the usefulness of COMET.

We selected a random implementation of a (136, 128) SEC
on-die code that obeys the basic constraints of a Hamming
code and only ensures single-bit error correction. For the
in-controller ECC, we selected a conventional (72, 64) Hsiao
SECDED code [18] that is known to be widely used. Since ap-
proximation tolerant applications are expected to mask SDCs
and be least impacted by them, we used benchmarks from
the AxBench suite [44] for this study. Any standard approx-
imation intolerant application is expected to strictly benefit
more from COMET. We built AxBench against GNU/Linux
for the open-source 64-bit RISC-V (RV64G) instruction set
v2.0 [43] using the official tools [30]. Each benchmark is
executed on top of the RISC-V proxy kernel [41] using the
Spike simulator [42] that we modified to inject errors. We
use our modified version of Spike to run each benchmark to
completion 5000 times. During each run, a load operation
is randomly chosen and a double-bit error is injected in a
128-bit word. The 128-bit SEC code decodes the erroneous
codeword first, followed by the (72, 64) SECDED decoder.
The chosen SEC and SECDED decoder combination has an
overall 20.65% probability (average calculated across 100,000
random 136-bit codewords) of not flagging a DUE and
resulting in a DBE-induced SDC because of miscorrections.
We observe the effects on program behavior for the cases
where DUE is not flagged and, therefore, corrupted data is
sent over to the processor. The results are shown in Figure 7.

Overall, without COMET, on an average, ∼80% of the
double-bit errors are flagged as DUE while less than 2%
of the times the resulting SDC gets successfully masked by
the application. ∼12%, on an average, result in erroneous
output with a non-negligible impact on output quality and
for the rest of the cases, the program either hangs or crashes.
SEC-COMET or SECDED-COMET code constructions
completely eliminate SDCs converting the unwanted output
errors or crashes in the 18% of cases to more acceptable
DUEs. SEC-COMET-DBC corrects nearly all of these
double-bit errors, i.e., 98% point improvement in DBE
reliability (no improvement in the 2% cases where the
application masks the SDC caused by DBE).

Figure 7: The impact of on-die ECC induced SDC (when
running without SEC-COMET/SECDED-COMET) in the
event of double-bit error on the program behavior when
running applications from the AxBench suite.

B. Effectiveness of COMET Double-bit Error Correction
We evaluate the reliability of a system with 128GB DRAM

with three different error correction schemes: no on-die ECC,
standard SEC ECC and SEC-COMET-DBC scheme. We used
fault simulator MEMRES [40] with real world field data from
[37] and [40]. We took into account scaling induced bit
error rate of 10−4 for this study. Our system has 2 channels,
each containing dual ranked DIMM of 64GB capacity with
18 x8 DRAMs. In all three systems we have considered
in-controller SECDED protection. We perform Monte Carlo
simulations for a 5 year period and consider both undetected
as well as detected-but-uncorrectable errors as system failures.
For details on each failure mode, we refer the reader to [40].
Overall, we see that adding on-die SEC coding significantly
helps in improving device failure by 35% over the system
without any on-die coding. The main failure mode that on-die
ECC takes care of is single bit permanent fault intersecting
with a single-bit transient fault(SBT) in the array or the bus.
The SBT in the array is taken care of by the occasional
scrubbing that is enabled in the DRAMs. With scrubbing en-
abled, the DRAM dies, when idle, occasionally activate rows,
check for errors in the row using the on-die SEC mechanism,
correct (if possible) and write the data back. The intersection
with bus faults is taken care by the on-die and in-controller
ECCs. With COMET-SEC-DBC, we can achieve a 8.2%
reduction in system faults over standard SEC, which translates
to more than 150 lesser failures per year. This improvement
in memory resiliency comes from double-bit correction which
helps to reduce single-row failures and single-word failures.

9

Table II: Synthesis Results for Different x8 SEC Decoder
Implementations in Commercial 28nm Library

SEC-random SEC-best case SEC-COMET-DBC
(x8)

SEC-COMET-DBC
(x16)

Gate Count 168 165 170 170

Area (µm2) 331.452 318.168 328.374 332.91
Latency (ps) 512 508 517 520
Power (W) 2.12E-05 1.93E-05 2.09E-05 2.12E-05

C. Impact on Encoder/Decoder Area, Energy and Latency
COMET code constructions do not require additional

redundancy bits. But the encoder and decoder circuitry
overheads varies based on the exact code implementation. The
added constraints in COMET do not allow simplifications
that could be done in other SEC codes to reduce
encoder/decoder overheads. In order to evaluate our
proposed SEC code overheads, we synthesized few different
SEC implementations along with our construction using
a commercial 28nm library. 1 We considered the SEC
code with the minimum possible sum of the weight of the
columns in the parity check matrix H as the most efficient
implementation in terms of gate count. We also compared
against a random SEC implementation which satisfies the
basic Hamming code constraints required for single error
correction. Based on the results in Table II, we see that
the difference in area (<5%), latency (<2.5%) and power
(<9.7%) among the different SEC decoders is minimal and
negligible. Furthermore, on-die ECC consumes a very small
fraction of the overall DRAM active power (∼5-7% [4]).

D. Performance Impact of COMET schemes
SEC-COMET/SECDED-COMET has no performance

impact. SEC-COMET-DBC incurs additional latency only
when a double-bit error occurs. In a system using x8
DDRx protocol based DRAMs with an elevated bit error
rate of 10−4 and on-die (136, 128)SEC-COMET-DBC
mechanism, a double-bit error in a 572-bit memory line
that causes the (72,64)SECDED decoder to flag a DUE can
happen once every ∼17,000 read operations. This is the
probability of DBE occurring within a 136-bit SEC dataword
where both error bits are either in the same 8-bit chunk
belonging to the 64-bit half that is read from the chip or the
mis-corrected bit coincides with one of the two erroneous
bits. Only in this rare case, SEC-COMET-DBC uses
additional cycles to correct the DBE. For all other read/write
operations, SEC-COMET-DBC’s encoding/decoding latency
is comparable to any other on-die SEC code.

To evaluate SEC-COMET-DBC’s DBE correction
mechanism’s impact on performance, we used cycle based
simulation of 18 SPEC CPU 2017 benchmarks [1], 8 Parsec
benchmarks [6] and 4 applications from the GAP suite [5]
on the Gem5 simulator [7]. These are the applications that
we could successfully compile and run using Gem5. We used
a 2GHz single-core processor with a private 32KB I-cache,
64KB D-cache, shared 512KB L2 cache and shared 2MB L3
cache. For once every 17000 read operations, we doubled the
read latency and added worst-case 9 memory cycle penalty

1Though DRAM technology is different compared to logic technology,
the comparison between different implementations should still hold.

for the DBE correction. We evaluated the DDR4-2400-x8
memory configuration with a 64b data channel for 2-billion
instructions. The overall performance impact was less than
0.8% compared to an oracular case with no memory errors.
This is because one additional memory read every 17k reads
is still rare and has negligible impact on queuing delay and
overall execution time. Of course, the impact on overall
performance reduces with reduction in BER (<0.1% for
BER of 10−8). Note that, in absence of SEC-COMET-DBC,
these DBEs would require frequent checkpoint-recovery,
the performance cost of which is extraordinarily high (30
minutes to restore a checkpoint [38]).

VII. DISCUSSION AND RELATED WORK

A. Independent design of on-die and in-controller codes
All three COMET schemes proposed allow within-DRAM

SBE correction that is invisible to the rest of the system.
Two of the schemes (SEC-COMET and SEC-COMET-DBC)
allow independent code constructions by DRAM and CPU
vendors. SEC-COMET and SEC-COMET-DBC require the
DRAM vendors to add constraint(s) while constructing the
on-die SEC. But the CPU vendors can design any SECDED
code independently without requiring any knowledge of
the on-die SEC implementation. We proposed in-controller
SECDED-COMET for the case where SEC-COMET
construction is not guaranteed by the DRAM vendor.
SECDED-COMET guarantees protection from DBE-induced
SDCs only for those DRAMs that have the on-die SEC
implementation used for SECDED-COMET construction.

B. Why Not Use Stronger On-die Codes?
SECDED code [18] has the ability to detect double-bit

errors, not correct them. Having on-die SECDED would
prevent DBE-induced miscorrections. However, as DRAM
vendors prefer check bits in multiples of 8 [32], the on-die
ECC would be (72, 64)SECDED. This would double the
parity storage overhead from 6.25% in (136, 128) SEC to
12.5%. Even after doubling the parity overhead, the code
will only be capable of avoiding miscorrections due to DBE,
it will not be able to correct the DBE. Our proposed COMET
schemes have the same parity overhead (6.25%) as today’s
on-die SEC code while eliminating all DBE-induced SDCs
and correcting almost all (99.9997%) DBEs. Thus, there is
absolutely no advantage for using 2x higher parity overhead
SECDED over COMET-SEC and hence, is not practical
for DRAM manufacturers to prefer SECDED over SEC-
COMET/SEC-COMET-DBC. On the other hand, double error
correcting requires twice the number of parity bits per 128-bit
of dataword while also significantly increasing the latency,
area and power overhead of the encoder/decoder circuitry. As
a result it would negate some of the density scaling benefits.

C. Why Not Use Stronger In-controller ECC?
Using a double-error correcting, triple error detecting

(DECTED) scheme in the memory controller will require
additional storage and data lines to transfer the extra parity
bits. For every 64-bits of dataword, DECTED requires 7
extra parity bits as compared to SECDED. In some high

10

Table III: Comparison of different COMET schemes with past works
On-die ECC check bits

per 128b dataword
In-controller ECC check bits

per 64b dataword
Two codes designed

independently
Memory protocol

unchanged
Free of SDC

caused by DBE
DBE correction

per 64-bit of data
SBE correction in DRAM
transparent to the system

On-die SEC + in-controller SECDED 8 8 Yes Yes No No Yes
SEC-COMET 8 8 Yes Yes Yes No Yes

SECDED-COMET 8 8 No Yes Yes No Yes
SEC-COMET-DBC 8 8 Yes Special command Yes Yes (99.9997%) Yes

XED [28] 16 8 Yes Yes Yes Yes No
DUO VRT [15] - 4 - Extra bursts per access Yes One per 512b access No

DUO SDDC [15] - 12 - Extra bursts per access Yes Yes No
Minimal Aliasing SEC [32] 8 - - Yes No (Reduced) No Yes

performance, high-reliability expensive systems today, single
symbol correcting, double symbol detecting (SSCDSD, also
known as Chipkill) coding is used to tolerate upto single chip
failures. However, the standard 4-bit symbol Chipkill code
used today can support only x4 DRAM chips [28]. In order
to use x8 DRAM, one data access will have to be split into
two, which will have a significant impact on performance.
Entire chip failures are very rare and, therefore, Chipkill
is considered an overkill in most systems today [28].
D. Comparison with Past Works

Several past works have proposed stronger memory re-
liability but most of them either do not improve on-die
ECC or incur overheads and require changes to the standard
protocol. Table III compares the COMET schemes with
some of the related works. XED [28] proposes using error
detection within each DRAM die and then exposing the
detection result to the in-controller code for correction. But
they assume that on-die codes implemented in today’s DRAM
have guaranteed double-error detection capability while in
most known cases [4], the on-die code only guarantees single-
error correction. Using the same code for multi-bit error
detection will not be effective as the code would miscorrect.
Besides, it does not support silent SBE correction within
DRAMs which is desired by DRAM vendors. Similarly,
DUO [15] also gets rid of on-die SBE correction and uses
those additional bits for stronger in-controller protection.
Thus, DRAM vendors cannot use DUO to improve yield.
Besides, it requires non-negligible changes to the existing
memory protocols. A recent work [32] highlights the aliasing
problem in SEC codes and provides a construction technique
that would result in minimal aliasing. However, their code
would still result in SDCs (average ∼5 percentage points
reduction in SDC probability when compared against 20
random SEC codes) when paired with in-controller SECDED
unlike COMET that completely gets rid of SDCs by carefully
steering the miscorrected bit. PAIR [21] uses on-die SECDED
that requires N on-die ECC decoding cycles for xN DRAM.
It ensures that each DQ bit comes from a separate codeword.
This incurs a significant latency overhead and is not feasible
for larger data width (x16/x32). Besides, it requires an
additional signal to transfer the multi-bit error detection infor-
mation. Other proposed reliability techniques like Bamboo-
ECC [24] uses large ECC symbols and codewords to provide
stronger protection while incurring performance overhead.
ArchShield [29] provides protection against single-bit scaling
induced errors but requires storing of fault maps within the
DRAMs that would need to be updated in-field that requires
running full array testing using a Built-In Self Test (BIST)
engine. CiDRA [36] proposes using on-die ECC to provide

protection against multi-bit failures. However, it requires
large SRAM overheads that makes its usage prohibitive.

E. Accommodating Wider Data Widths
As mentioned previously in Sections IV-A and V-A,

with 8-bits of parity for 128-bits of dataword, SEC-COMET
(SEC-COMET-DBC) construction works upto per-chip beat
width of 64 (16) bits. For wider interfaces, COMET cannot
avoid SDCs or correct DBEs. To enable COMET, the 64-bit
SECDED dataword has to be formed using multiple 128-bit
SEC datawords. Therefore, within the DRAM chip, every
16-bits of the 64-bit data transferred needs to be a part of
a different 128-bit SEC dataword. Thus, a single write or
read command would require multiple rounds of on-die
SEC encoding and decoding. Typically, during a read/write
operation, an entire DRAM row gets activated into the
row buffer. The size of a DRAM row is usually few kBs
and therefore, contains multiple SEC datawords. Hence, to
enable COMET for wider per chip beat widths, the multiple
on-chip encoding and decoding can be done in parallel and
would not require multiple activations of DRAM rows.

VIII. CONCLUSION

Aggressive technology scaling in modern DRAMs is
leading to a rapid increase in single-cell DRAM error rates.
As a result, DRAM manufacturers have started adopting on-
die ECC mechanism in order to achieve reasonable yields.
The commonly used on-die SEC ECC scheme interacts with
in memory controller SECDED ECC, to unfortunately cause
silent data corruption in >25% of double-bit-error cases. To
prevent silent data corruption from happening, we introduce
COllaborative Memory ECC Technique (COMET), a mech-
anism to efficiently design the on-die SEC ECC or the in-
controller SECDED ECC that steers the miscorrection to guar-
antee that no silent data corruption happens when a DBE oc-
curs inside the DRAM. Further, we develop the SEC-COMET-
DBC on-die ECC code and a collaborative correction mech-
anism between the on-die and in-controller ECC decoders
that allow us to correct the majority of the DBEs within the
DRAM array without adding any additional redundancy bits
to either of the two codes. Overall, COMET can eliminate all
double-bit error induced SDCs and correct 99.9997% of all
DBEs with negligible area, power and performance impact.

ACKNOWLEDGMENT

The authors thank the DSN’22 program committee and
the anonymous reviewers for their detailed and constructive
feedback. The authors thank Professor Onur Mutlu for being
the shepherd of the paper and taking out time to review and
provide valuable feedback.

11

REFERENCES

[1] “SPEC releases major new CPU benchmark suite.” [Online].
Available: https://www.spec.org/cpu2017/press/release.html

[2] “Zen+ - Microarchitectures - AMD.” [Online]. Available:
https://en.wikichip.org/wiki/amd/microarchitectures/zen%2B

[3] “Zen 3 - Microarchitectures - AMD.” [Online]. Available:
https://en.wikichip.org/wiki/amd/microarchitectures/zen 3

[4] “ECC Brings Reliability and Power Efficiency to Mobile Devices,”
Micron technology, Inc., Tech. Rep., 2017.

[5] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark
suite,” CoRR, vol. abs/1508.03619, 2015. [Online]. Available:
http://arxiv.org/abs/1508.03619

[6] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7, Aug.
2011. [Online]. Available: https://doi.org/10.1145/2024716.2024718

[8] S. Cha, O. Seongil, H. Shin, S. Hwang, K. Park, S. J. Jang, J. S.
Choi, G. Y. Jin, Y. H. Son, H. Cho, J. H. Ahn, and N. S. Kim,
“Defect analysis and cost-effective resilience architecture for future
dram devices,” in 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2017, pp. 61–72.

[9] K. K. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson,
Y. Kim, and O. Mutlu, “Improving dram performance by parallelizing
refreshes with accesses,” in 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA), 2014, pp.
356–367.

[10] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee,
T. Li, G. Pekhimenko, S. Khan, and O. Mutlu, “Understanding
latency variation in modern dram chips: Experimental characterization,
analysis, and optimization,” in Proceedings of the 2016 ACM
SIGMETRICS International Conference on Measurement and
Modeling of Computer Science, ser. SIGMETRICS ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 323–336.
[Online]. Available: https://doi.org/10.1145/2896377.2901453

[11] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon,
L. Kaplan, and M. Erez, “Containment domains: A scalable, efficient,
and flexible resilience scheme for exascale systems,” in SC ’12:
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2012, pp. 1–11.

[12] I. Corporation, “8th and 9th Generation Intel Core Processor
Families and Intel Xeon E Processor Families.” [Online]. Available:
https://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/8th-gen-core-family-datasheet-vol-1.pdf

[13] S. Electronics, “Mobile DRAM Stack Specification.”
[14] S.-L. Gong, J. Kim, and M. Erez, “Dram scaling error evaluation

model using various retention time,” in 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
Workshops (DSN-W), 2017, pp. 177–183.

[15] S.-L. Gong, J. Kim, S. Lym, M. Sullivan, H. David, and M. Erez, “Duo:
Exposing on-chip redundancy to rank-level ecc for high reliability,” in
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2018, pp. 683–695.

[16] R. W. Hamming, “Error detecting and error correcting codes,” The
Bell System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[17] M. Horiguchi and K. Itoh, Nanoscale Memory Repair. New York:
Springer SBM, 2011.

[18] M. Y. Hsiao, “A Class of Optimal Minimum Odd-Weight-Column
SEC-DED Codes,” IBM Journal of Research and Development,
vol. 14, no. 4, pp. 395–401, 1970.

[19] JEDEC, “DDR4 SDRAM Specication,” 2012.
[20] JEDEC, “Low Power Double Data Rate 4 (LPDDR4) SDRAM

Specication,” 2014.
[21] S. Jeong, S. Kang, and J.-S. Yang, “Pair: Pin-aligned in-dram ecc

architecture using expandability of reed-solomon code,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[22] M. Jung, C. Weis, N. Wehn, M. Sadri, and L. Benini, “Optimized
active and power-down mode refresh control in 3d-drams,” in 2014
22nd International Conference on Very Large Scale Integration
(VLSI-SoC), 2014, pp. 1–6.

[23] U. Kang, H. soo Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S.-J.
Jang, and J. Choi, “Co-architecting controllers and dram to enhance
dram process scaling,” in The Memory Forum, 2014.

[24] J. Kim, M. Sullivan, and M. Erez, “Bamboo ecc: Strong, safe, and
flexible codes for reliable computer memory,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 101–112.

[25] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for
exploiting subarray-level parallelism (salp) in dram,” in 2012 39th
Annual International Symposium on Computer Architecture (ISCA),
2012, pp. 368–379.

[26] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An
experimental study of data retention behavior in modern dram
devices: Implications for retention time profiling mechanisms,”
in Proceedings of the 40th Annual International Symposium on
Computer Architecture, ser. ISCA ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 60–71. [Online].
Available: https://doi.org/10.1145/2485922.2485928

[27] I. Micron Technology, “8Gb: x4, x8, x16 DDR4 SDRAM.”
[28] P. J. Nair, V. Sridharan, and M. K. Qureshi, “Xed: Exposing on-die

error detection information for strong memory reliability,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), 2016, pp. 341–353.

[29] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “Archshield: Architectural
framework for assisting dram scaling by tolerating high error rates,”
in Proceedings of the 40th Annual International Symposium on
Computer Architecture, ser. ISCA ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 72–83. [Online].
Available: https://doi.org/10.1145/2485922.2485929

[30] Q. Nguyen, “RISC-V Tools (GNU Toolchain, ISA
Simulator, Tests) – git commit 816a252.” [Online]. Available:
https://github.com/riscv/riscv-tools

[31] T.-Y. Oh, H. Chung, Y.-C. Cho, J.-W. Ryu, K. Lee, C. Lee, J.-I. Lee,
H.-J. Kim, M. S. Jang, G.-H. Han, K. Kim, D. Moon, S. Bae, J.-Y. Park,
K.-S. Ha, J. Lee, S.-Y. Doo, J.-B. Shin, C.-H. Shin, K. Oh, D. Hwang,
T. Jang, C. Park, K. Park, J.-B. Lee, and J. S. Choi, “25.1 a 3.2gb/s/pin
8gb 1.0v lpddr4 sdram with integrated ecc engine for sub-1v dram core
operation,” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2014, pp. 430–431.

[32] S.-I. Pae, V. Kozhikkottu, D. Somasekar, W. Wu, S. G.
Ramasubramanian, M. Dadual, H. Cho, and K.-W. Kwon, “Minimal
aliasing single-error-correction codes for dram reliability improvement,”
IEEE Access, vol. 9, pp. 29 862–29 869, 2021.

[33] M. Patel, J. S. Kim, H. Hassan, and O. Mutlu, “Understanding and mod-
eling on-die error correction in modern dram: An experimental study
using real devices,” in 2019 49th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), 2019, pp. 13–25.

[34] M. Patel, J. S. Kim, T. Shahroodi, H. Hassan, and O. Mutlu, “Bit-exact
ecc recovery (beer): Determining dram on-die ecc functions by
exploiting dram data retention characteristics,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2020, pp. 282–297.

[35] Sanghyuk Kwon, Young Hoon Son, and Jung Ho Ahn, “Understanding
ddr4 in pursuit of in-dram ecc,” in 2014 International SoC Design
Conference (ISOCC), 2014, pp. 276–277.

[36] Y. H. Son, S. Lee, O. Seongil, S. Kwon, N. S. Kim, and J. H.
Ahn, “Cidra: A cache-inspired dram resilience architecture,” in 2015
IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), 2015, pp. 502–513.

[37] V. Sridharan and D. Liberty, “A study of dram failures in the field,” in
SC ’12: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, 2012, pp. 1–11.

[38] D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy Checkpointing:
Exploiting Temporal Locality in Failures to Mitigate Checkpointing
Overheads on Extreme-Scale Systems,” in Proceedings of the
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2014.

[39] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi, “Rethinking dram design and organization
for energy-constrained multi-cores,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10.
New York, NY, USA: Association for Computing Machinery, 2010, p.
175–186. [Online]. Available: https://doi.org/10.1145/1815961.1815983

[40] S. Wang, H. Hu, H. Zheng, and P. Gupta, “Memres: A fast memory
system reliability simulator,” IEEE Transactions on Reliability, vol. 65,
no. 4, pp. 1783–1797, 2016.

[41] A. Waterman, “RISC-V Proxy Kernel – git commit 85ae17a.”
[Online]. Available: https://github.com/riscv/riscv-pk/commit/85ae17a

12

https://www.spec.org/cpu2017/press/release.html
https://en.wikichip.org/wiki/amd/microarchitectures/zen%2B
https://en.wikichip.org/wiki/amd/microarchitectures/zen_3
http://arxiv.org/abs/1508.03619
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2896377.2901453
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/8th-gen-core-family-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/8th-gen-core-family-datasheet-vol-1.pdf
https://doi.org/10.1145/2485922.2485928
https://doi.org/10.1145/2485922.2485929
https://github.com/riscv/riscv-tools
https://doi.org/10.1145/1815961.1815983
https://github.com/riscv/riscv-pk/commit/85ae17a

[42] A. Waterman and Y. Lee, “Spike, a RISC-V ISA Simulator – git commit
3bfc00e.” [Online]. Available: https://github.com/riscv/riscv-isa-sim

[43] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic, “The RISC-V
Instruction Set Manual Volume I: User-Level ISA Version 2.0,” 2014.
[Online]. Available: https://riscv.org

[44] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran,
“AxBench: A Multiplatform Benchmark Suite for Approximate
Computing,” IEEE Design & Test, vol. 34, no. 2, pp. 60–68, 2017.

13

https://github.com/riscv/riscv-isa-sim
https://riscv.org

	Introduction
	Background
	DRAM Operation
	Linear Hamming Error Correcting Codes
	SEC vs. SECDED

	Motivation
	Miscorrections by On-Die ECC
	SDC post in-controller SECDED decoding

	Designing ECC to Eliminate SDC
	On-die SEC-COMET ECC
	In-controller SECDED-COMET ECC

	COMET Double-bit Error Correction
	Constructing on-die SEC code to enable Double-bit Error Correction (SEC-COMET-DBC)
	Collaborative DBE Correction
	Detecting the DBE beat
	Correction within each DRAM chip
	Final Correction within the memory controller

	Implementation of COMET command

	Results
	Reliability Evaluation
	Effectiveness of COMET Double-bit Error Correction
	Impact on Encoder/Decoder Area, Energy and Latency
	blackPerformance Impact of COMET schemes

	Discussion and Related Work
	Independent design of on-die and in-controller codes
	Why Not Use Stronger On-die Codes?
	Why Not Use Stronger In-controller ECC?
	Comparison with Past Works
	Accommodating Wider Data Widths

	Conclusion
	References

