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Abstract— Learning by demonstration is a useful technique 

to augment a robot’s behavioral inventory, and teleoperation 
allows lay users to demonstrate novel behaviors intuitively to 
the robot. In this paper, we compare two modes of 
teleoperation of an industrial robot, the demonstration by 
means of a data glove and by means of a control object (peg).  
Experiments with 16 lay users, performing assembly task on 
the Cranfield benchmark objects, show that the control peg 
leads to more success, more efficient demonstration and fewer 
errors.   
 
 Keywords: Teleoperation, Control Device, Object 
Manipulation, Robot control, Learning by Demonstration. 

I. INTRODUCTION 

Learning by demonstration is a useful technique to 
augment a robot’s behavioral inventory, especially for small 
or medium size production lines, where the production 
process needs to be adopted or modified more often. In these 
cases, learning by demonstration constitutes an alternative to 
programming performed by a skilled technician. Learning by 
demonstration, by means of which a robot is taught novel 
behaviors possibly by lay users [9], provides the robot with 
trajectories and actions that it can then re-apply automatically 
to new objects and situations. Learning by Demonstration 
was introduced as a natural and intuitive way of 
programming robots [2][6][8]. Pardowitz et al. [12] describes 
learning by demonstration as one way of implementing a 
user-friendly programing interface for robots with the aim 
“to solve the problems of skill and task transfer from human 
to robot, as a special way of knowledge transfer between 
man and machine”. 

Demonstrations from which the robot can learn can be 
carried out using different methods; a common method is a 
kinesthetic guidance by means of which the robot is moved 
manually through the relevant positions, which are recorded 
and stored for future use. This method can be problematic, 
for instance, if the objects manipulated are large, far apart, or 
dangerous to handle. Another common method for learning 
by demonstration is the use of a control panel by means of 
which individual joints of the robot can be manipulated. This 
method can be very slow and tiresome. Finally, a third 
method is to teleoperate the robot.  

 

 
During robot teleoperation, the user of the robotic system 

manipulates the teleoperation device and hereby manipulates 
the robotic system. Teleoperation describes the 
“demonstration technique in which the teacher operates the 
robot learner platform and the robot’s sensors record the 
execution” [1]. Teleoperation allows complex movements 
and very intuitive handling and is thus also suited for lay 
users.  

The most common control mode for teleoperation is the 
use of a data glove by means of which the robot can be 
steered [7]. In the current study, we employ such a data glove 
for teleoperation, yet we compare its usability to another 
external teleoperation device.  

We suggest that this novel method is more intuitive and 
avoids the pitfalls created by misleading associations arising 
in the context of the data glove. We therefore investigate 
teleoperation with the glove and the external manipulation 
device. We suggest, namely an object from the Cranfield set 
[14], which creates more accurate associations in lay users 
and thus leads to more efficient teleoperation. 

II. SYSTEM 

The experiments have been performed on the MARVIN 
platform. This platform consists of two Universal Robots 
(UR5), of which only one is used in this work (see Fig. 1) 
mounted with a Schunk SDH 3-finger dexterous gripper (see 
Fig. 1 bottom right). The control software is based on the 
RobWork framework [15], which is a collection of C++ 
libraries for simulation and control of robot systems, 
including kinematic modeling, path planning and collision 
checking. Communication with hardware is enabled by using 
the Robot Operating System (ROS) [16]. 

 The teleoperation system is based on the trakSTAR1 
electromagnetic motion tracking system, see Fig. 2, which 
consists of three parts: a transmitter, a number of sensors and 
a controller unit. The controller unit calculates the position 
and orientation (the 6D pose) of each sensor with respect to 
the transmitter position. The transmitter is installed in such a 
way that it covers the workspace of the robot in the 
MARVIN platform. A so-called ‘Dead man switch’ is 
connected to the system, which enables teleoperation when 
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pressed. An overview of the software structure and hardware 
interfacing is shown in Fig. 4. 

 Two modes of teleoperation are implemented: the ‘data 
glove mode’ (see Fig. 3E) and ‘the control peg mode’ (see 
Fig. 3D). In both cases, a trakSTAR sensor (mounted either 
in the glove or in the object) tracks the 6D pose relative to 
the transmitter and this pose is then transformed into the 
robot on a 1:1 movement scale. The user holds the ‘Dead 
man Switch’ in his or her left hand while his right hand is 
either wearing the glove (see Fig. 3C) or holding the object 
(see Fig. 3A). When doing teleoperation, s/he pushes (and 
holds) the ‘Dead man Switch’ (see Fig. 3B) while producing 
with his or her right hand the desired robot movement. 

 
Fig. 1.  Universal robot (UR5) and Schunk SDH hand on the MARVIN 
platform. 
  
 To sum up, two teleoperation devices are compared in 
this study: the data glove, where the motion sensor is 
integrated in the glove at about the back of the hand, and an 
object similar to those manipulated by the robot arm into 
which the sensors have been integrated (the control peg).  

 
Fig. 2.  trakSTAR system with transmitter (A), sensors (B) and control unit 
(C). 

III. EMPIRICAL EVALUATION OF THE SYSTEM 

 In these experiments, we compare the traditional 
approach to learning by demonstration via teleoperation, 
using the data glove, with the external device described 
above, the control peg. 

A. Methods 
Since the user has the role of a teacher or a demonstrator, 
s/he needs to know how to transfer her/his knowledge to the 
robot. ”What is good for the demonstrator may not 
necessarily be good for the imitator” [4]. The user needs to 
have an understanding of the robot, its abilities and 
limitations. The quality of the robot’s performance is in fact 
highly influenced by the user [1].  

Furthermore, much research done on robot learning by 
demonstration focuses on the robotic system, which 
however has been identified to be the main problem in the 
usability of products and interfaces [13]. Since, the central 
characteristic of learning by demonstration is that the user 
does not need to be an expert in robotics, it is essential to 
take her/him into account. Therefore, we apply a user-
centered approach to learning by demonstration. 
 

 
Fig. 3.  A: Control peg. B: Dead man switch. C: Data glove. D: Control peg 
in use (middle). E: data glove in use (lower). 
 

 
Fig. 4.  Software structure and hardware interfacing. The lowest layer 
represents the hardware (blue) used in this project. The hardware is 
connected through ROS modules to the control software programmed in 
RobWork. This allows for a distributed system where multiple pc’s can be 
used to share the computational load.   

B. Tasks 
The tasks that the participants had to perform comprise 

peg-in-hole tasks, which consists of moving objects from one 
place to another and placing them in a particular hole. Peg-
in-hole is a well-known assembly process, which consists of 
different sub-tasks:  
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1. Moving the gripper towards a peg 

2. Aligning the gripper with the peg and grasping it 

3. Moving the gripper holding the peg towards the 
faceplate 

4. Aligning the peg with the hole and placing it 

The objects used for this peg-in-hole tasks are parts of the 
Cranfield Benchmark [14], an assembly set frequently used 
in robotic research. It consists of nine differently shaped 
objects and requires basic assembly actions. For this study, 
four pieces of the original benchmark were used, including 
the faceplate and three different objects that were to be 
placed in the faceplate (see Fig. 5). 

 
Fig. 5.  5 Objects of the Cranfield benchmark.  

C. Participants 
A within-subject approach was used, that is, one set of 

participants was used to test both control modes, the control 
peg and the data glove. 16 participants were recruited 
through announcements on social networks and the 
information boards in the university as well as by word-of-
mouth. The only requirement was that participants had no 
prior experience with the MARVIN platform. All 16 
participants were either students or employees of the 
University of Southern Denmark. One was female while 15 
were male. They were between 19 and 36 years old, with an 
average age of 25.3.  

D. Procedure 
A laboratory set-up was used due to the fact that the 

MARVIN platform is installed in a robotic lab in the 
Engineering Faculty of the University of Southern Denmark 
in Odense.  

This laboratory set-up allows a high level of control and 
stable variables. A room next to the robotic laboratory was 
used to welcome the participants before the tests, to have 
them fill out the consent form and questionnaire, and to show 
them the instruction video, see attached video. While 
watching the video the participants were left alone in order 
for them to focus on the instructions given.  

After this, the participants (P) entered the actual 
laboratory where they were introduced to the three 
researchers (R) and to the robot supervisor. Afterwards they 
were briefly introduced to the task by one of the researchers 
and told which control mode they were supposed to begin 
with, the data glove or the control peg. Two camcorders were 
used to videotape the trials in case one of the cameras failed 
to record. The cameras were both directed at the participant 

and the robot, one from across the room, and one from a 
diagonal angle, see Fig. 6.  

The order in which participants used the data glove and 
the control peg was randomly assigned and conditions 
counter–balanced.  

E. Think Aloud Technique 
The combination of methods used in this study resembles 

the reconciled theory and practice of thinking aloud [5]. The 
idea behind this technique, called “speech communication”, 
was to obviate problems with the traditional think-aloud 
method. Boren et al. [5] describes the communication 
process as a dialogue between the participants and the 
experimenter, not as a monologue by the participant. The 
dialog allows the researcher to request further information 
about specific aspects of the system or product by directing 
the participants’ attention towards it. Another benefit of 
giving the experimenters a more active role is that they can 
interfere whenever technical problems or breakdowns occur 
[5].  

In this study, questions were asked in response to both 
verbal and non-verbal cues from the subjects. Whenever the 
participants gave a non-verbal cue like laughing, frowning, 
sighing, they were asked what exactly caused this reaction. 
Non-verbal cues are interesting to pay attention to since they 
often happen unconsciously and thus, reflect what the 
participants really feel or think [13]. During the task-solving 
process, the participants were not given any clues on how to 
do something.  

Whenever the participants asked a question concerning 
the robotic system and its control, they were reminded of the 
instruction video and asked to find a solution themselves. 
Giving clues can prevent the participants from struggling and 
solving the situation themselves, which, on the other hand, 
can reveal unexpected issues or opportunities [13].  

 
Fig. 6.  Experimental personal: R1, R2, R3 are researchers and P is the 
participant.  

To sum up, the empirical methods used in this study are a 
combination of the think-aloud technique, open interviews 
during and after the actual experiments, as well as a 
questionnaire before the experiment. The combination of 
empirical methods provides information about both user 
performance and user experience. This information is 
essential for the design process of an intuitive and user-
friendly interface. 

F. Measures 
Task success was measured with respect to success, 

efficiency and the number of errors. Concerning success, the 
number of subtasks fulfilled in a time frame of 20 minutes 
was taken in account.  Since the task consisted of placing 
three objects, two pegs and one separator (see Fig. 5), four 



  

categories of success can be distinguished: A participant did 
either not fulfill the task at all, placed one object correctly, 
placed two objects correctly, or fulfilled the task by placing 
all three objects correctly. Since the separator can only be 
placed when both the square peg and the round peg had been 
placed correctly before, fulfilling one third or two thirds of 
the task always means that participants have placed the 
square and/or the round peg. 

Efficiency is the “quickness with which the user’s goal 
can be accomplished accurately and completely and is 
usually a measure of time” [13]. Thus, the efficiency is 
measured by looking at the time the participants need to 
fulfill the task completely. Finally, we investigate the number 
of errors occurring in the two control modes. 

IV. RESULTS  

A. Quantitative Data 
The sixteen participants completed the whole set of 

subtasks using the control peg, but only nine of the sixteen 
participants completed all subtasks using the data glove. The 
average completion rate is 77.08% for the glove where 9 
participants completed all 3 tasks, 4 completed 2 out of the 3 
tasks, 2 completed 1 out of 3 tasks and 1 completed none of 
the tasks within the 20 min.  

The average completion rate is 100% for the peg; that is, 
all participants succeeded in placing all three items from the 
Cranfield set [14] correctly within the given 20 minutes 
timeframe. The difference is significant (t= -3.738, p < 
.0005), see Fig. 7. 

 
Fig. 7.  Completion rate of data glove (condition 1) and control peg 
(condition 2). 

 Regarding efficiency, the mean completion time for the 
individual subtasks is 188.24 seconds (sd = 121.45) for the 
data glove and 144.52 seconds (sd = 84.15) for the control 
peg. These results also show that the standard deviation for 
the data glove is very high, indicating that users differ 
considerably in demonstration efficiency when using the data 
glove. The difference approaches significance: t= 1.950, p= 
.0535, see Fig. 8. 

Furthermore, there is a higher training effect for the glove 
than for the control peg, such that it takes the user longer to 
insert the first peg into the hole than the second. In order to 
illustrate the order effect, Fig. 9 shows the time used for each 
task for those who started with the data glove (condition 1) in 
comparison with those who started with the control peg 
(condition 2). Thus in condition 1, tasks 1, 2 and 3, as well as 
in Condition 2, tasks 4, 5 and 6 were carried out with the data 

glove, while in Condition 1, tasks 4, 5 and 6 and in Condition 
2, tasks 1, 2 and 3 were carried out using the control peg. 

 
Fig. 8.   Plot of completion time for the individual subtasks (condition 1 = 
data glove, condition 2 = control peg).  

The training effect is more pronounced if users start with 
the data glove than when they start with the control peg. 
Especially interesting is that it takes participants the longest 
to get the peg into the hole if they have operated the control 
peg first and switch to the glove then (see Fig. 9). Thus, the 
fourth peg in condition 1, i.e. the first peg moved with the 
control peg after teleoperating with the glove, takes the 
longest (330.3 seconds on average).  

In contrast, participants using the control peg only have 
problems with the more complex separator, yet the operating 
times are still much below those needed when using the data 
glove. The interaction between time, order and condition is 
highly significant (F(11, 73)= 4.330, p < .0001). 

 
Fig. 9.  Time used for each task for those who started with the data glove 
(condition 1) in comparison with those who started with the control peg 
(condition 2). Thus Condition 1, tasks 1, 2 and 3, as well as Condition 2, 
tasks 4, 5 and 6 were carried out with the data glove, while Condition 1, 
tasks 4, 5 and 6 and Condition 2, tasks 1, 2 and 3 were carried out using the 
control peg. 

Finally, the frequency of different kinds of errors in the 
two control modes was investigated. Fig. 10 illustrates the 
overall number of errors that occurred during the user study 
for all 16 participants. In the data glove mode, almost twice 
as many errors occurred than in the mode in which 
participants used the control peg. Applying too much 
pressure was the main problem of the data glove, while the 



  

main problem of the control Peg mode were technical issues 
which were not caused by the user.  

These results indicate that the control peg is more 
effective when it comes to the error rate than the data glove 
is.  

 
Fig. 10.  Error types in the two control modes. 

 

B. Qualitative Data 

We furthermore carried out a qualitative analysis of 
participants’ statements during robot operation, which we 
recorded, transcribed and color-coded regarding positive 
(blue), negative (orange) and neutral statements (black) (see 
Table I). 

TABLE I 
THE STATEMENTS ABOUT THE CONTROL MODES 

Statements	  about	  glove	   Statements	  about	  peg	  
“I	  can’t	  seem	  to	  control	  it”;	  “I	  
need	  to	  get	  a	  hang	  of	  it”	  

“It’s	  easier	  than	  the	  glove”;	  
“Small	  movements	  are	  a	  lot	  
easier”	  

“I	  feel	  a	  little	  handicapped”;	  
“I	  don’t	  feel	  in	  control	  at	  all”	  

“I	  feel	  like	  the	  robot	  does	  
exactly	  what	  I	  want	  it	  to	  do”	  

“It	  doesn’t	  do	  what	  I	  want	  it	  
to	  do”;	  “I	  thought	  it	  would	  be	  
easier,	  but	  it	  is	  really	  hard	  to	  
control”	  

“It’s	  quite	  easy”;	  “I	  don’t	  know	  
what	  I’m	  doing”	  

“This	  is	  more	  natural,	  but	  
peg	  is	  easier”;	  “It’s	  illogical”;	  
“Grasping	  is	  sweet”	  

“I	  move	  it	  like	  it’s	  my	  own	  arm”	  

“It	  feels	  like	  an	  extension	  of	  
my	  own	  arm,	  quite	  easy”	  

“It’s	  quite	  easy”;	  “I’m	  not	  in	  
doubt	  I’m	  in	  control”	  

“It’s	  pretty	  hard	  to	  control”;	  
“It’s	  like	  an	  Xbox	  controller”;	  
“I	  still	  haven’t	  figured	  it	  out”	  

“It	  really	  does	  what	  I	  want	  it	  to	  
do”	  

	   	  
 
The statements about the two control modes show that 

people generally do not have a good sense of control when 
teleoperating with the data glove, and that the apparent 
analogy with their own arm is in fact misleading.  

V. DISCUSSION 

The results show that teleoperation by means of the 
control peg is more efficient in terms of speed, success rate 
and number of errors than teleoperation by means of the data 
glove in this scenario.  

Furthermore, while the demonstration by means of the 
data glove exhibits considerable sensitivity to training, the 
control peg allows more intuitive access from the start, at 
least for objects similar to the control object. That is, people 
needed longer for the separator than for the round and square 
pegs when using the control peg for demonstration. The 
separator also constituted a problem for users of the data 
glove, such that it took them slightly longer to insert it due to 
higher complexity of the problem yet the difference was not 
as pronounced for the users of the data glove.  

However, the success rates are considerably higher for 
the demonstration using the control peg as well as the 
average demonstration times. Thus, the control peg seems to 
allow more efficient teleoperation than the traditional data 
glove for the tasks at hand.  

The qualitative data provide an explanation why this may 
be the case: While the data glove suggests intuitive handling, 
it is misleading because of the seeming analogy between the 
human’s and the robot’s arm.  

This may of course be different if the robot instructed is a 
humanoid [7], such that there is a higher correspondence 
between human and robot morphology and degrees of 
freedom [11]. However, in industrial scenarios, the control 
peg may be more suitable. 

VI. CONCLUSION AND FUTURE WORK 

 The external teleoperation device proposed is superior to 
the traditional data glove in many ways, even though the 
glove seems to be very intuitive to handle. However, our 
data show that the glove provides users with a wrong sense 
of security, and that they are more efficient with the control 
peg. 
 These results give strong evidence for the potential of 
using an external device which provides intuitive feedback 
during the teleoperation process to the user. In our current 
research, we are developing such device which will facilitate 
learning by demonstration for robot assembly. 
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