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Abstract
Ecological and morphological data on Ungaliophis panamensis is extremely limited as this species is 
rarely encountered. These knowledge gaps have been advanced in this study where data was analysed 
from a small sample of snakes collected in two tropical forested environments in Costa Rica and Pana-
ma. Standardised major axis testing and a Bayesian latent variable ordination revealed that the species 
is sexually dimorphic, closely associated with tree trunks in natural forested areas, and occasionally 
discovered in rural buildings. Although further investigation into its natural history is warranted, this 
study shows that even with just a few individuals it is possible to elucidate ecological information that 
is relevant to the conservation of snake species.
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Introduction

The natural history of tropical snakes is often little understood. This is due in part 
to their cryptic behaviour and remarkable camouflage, which results in infrequent 
detection and is a frequent issue for snake biologists (Durso and Seigel 2015; Shel-
ton et al. 2018). The genus Ungaliophis consists of two species that are restricted to 
tropical Mesoamerica; they are considered highly cryptic and very little data exists 
regarding their natural history (Bogert 1968; Savage 2002; Köhler 2008). The north-
ern species, U. continentalis, is found from southern Mexico to northern Nicaragua, 
whereas the southern species, U. panamensis, occurs from southern Nicaragua to 
northwestern Colombia (Villa and Wilson 1990). The genus was first described in 
1880 by Müller who designated an individual from Guatemala as Ungaliophis con-
tinentalis (Savage 2002). It was not until 1933 that Schmidt described the species 
U. panamensis. Furthermore, U. panamensis was not confirmed from Costa Rica 
until 1974 (Corn 1974).

Since then, very little has been reported about the ecology and natural his-
tory of either species. The little data that exists regarding the natural history 
of either species of Ungaliophis strongly suggests that they are arboreal species 
found from lowland rainforests to high elevation cloud forests (Köhler 2008). 
Corn (1974) found several individuals of U. panamensis in banana plants and 
bromeliads. As such, many authorities believe that Ungaliophis naturally occurs 
in dense epiphytic growth in the tree canopy. Both species of Ungaliophis are 
small snakes capable of reaching between 470 mm and 482 mm in total length 
(Köhler 2008). Historically, the diet of wild Ungaliophis was unknown; however, 
several recent publications regarding the diet of U. panamensis in Costa Rica 
have included observations of bats (Solórzano and Carillo 2017), birds (Dwyer 
2017), and geckos (Espinoza and Barrio-Amorós 2018) being taken by the spe-
cies. Ungaliophis continentalis have been recorded to give birth to between 5 to 6 
neonates per clutch in captivity (Ross and Marzec 1990; Burger and Ford 2007). 
While there is no information regarding reproduction of U.  panamensis, it is 
likely to be similar to its sister species.

Identifying the habitat preferences of a given species is critical to understand-
ing the extent of functional habitat available to that species in the wider landscape 
(Ocampo-Peñuela et al. 2020). Effective conservation strategies can be built once the 
available habitat for a species, or assemblage, has been quantified and understood 
(Riva and Nielsen 2020). Herein, we describe the microhabitat preferences and 
morphometry of 13 individuals of U. panamensis, ten of which were encountered in 
Barra del Colorado Wildlife Refuge in northeastern Costa Rica, and three from the 
Coclé and Panamá Oeste provinces of Panama. We hypothesise that U. panamensis 
has an association with natural forest habitats and that its morphology does not 
influence its habitat preference.
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Methodology

Study area

Individuals of U. panamensis were recorded across multiple locations within the 
Barra del Colorado Wildlife Refuge (BCWR) in the NE region of Costa Rica (Fig. 1), 
and from Coclé and Panamá Oeste provinces, Panama (Fig. 2). The BCWR region 
is dominated by lowland tropical wet forest (Holdridge 1967) and Manicaria (Are-
caceae) swamp forests (Myers 1990; Lewis et al. 2010). The regional habitat in both 
Coclé and Panamá Oeste, Panama, is mid-elevation mature secondary cloud forest 
and primary premontane cloud forest (Ray et al. 2012; Ray 2015).

Field methods

Data collected for this study involved a pool of surveys that were performed from 
multiple longer term studies spanning 1997–2012 (Ray 2009; Lewis et al. 2011; 
Lewis et al. 2013; Zipkin et al. 2020). Most individuals were detected using visual 
encounter surveys in forested environments (Heyer et al. 1994; Lovich et al. 2012). 
However, some were observed by chance encounter in ceiling rafters of buildings 
and others reported to us by local people. Surveys at both sites were conducted from 
November 2005 to September 2008, between 20:00 and 02:00 in a variety of habitats: 
canal edge areas, deep forest and riparian gallery forest. Surveys averaged three sur-
veyors and were conducted four nights a week for up to six hours per survey.

Biometric data comprised sex determined by careful probing and examination 
of the anal spurs, snout-vent length (SVL, mm), tail length (TL, mm) and mass (g). 
Microhabitat data comprised observations where the snake was located. If the in-
dividual was in Forest, specific substrate classes were recorded (Tree, Palm, Shrub), 
along with relevant structural features (Trunk, Leaf, Branch, Twig). Although infre-
quent, when snakes were found in rural environments, often buildings, they were 
assigned their own identity (Buildings).

Data analysis

Encounter rates of U. panamensis at both sites were calculated by dividing the num-
ber of individuals by the number of surveys and multiplying by 100, a technique 
adapted from Kiszka et al. (2007). For the purposes of exploring patterns of associa-
tion between the morphology of U. panamensis and its microhabitat preferences we 
considered individuals to be the sampling unit.

The morphometric relations of U. panamensis were analysed using Standard-
ised Major Axis (SMA) estimation created by the function SMA within the package 
smatr within the program R (Warton et al. 2012a; R Core Team 2020). An advantage 
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Figure 1. Location of sampled area, Barra del Colorado Wildlife Refuge, Limón, Costa Rica.

Figure 2. Location of sampled area, El Cope in Parque Nacional G. D. Omar Torríjos Herrera, in the 
Coclé and Panamá Oeste provinces of Panama.

of using SMA to test for common slope allometric relations is its inclusion of fitting 
factor groups for y against x (Warton and Weber 2002). We also utilised Huber’s M 
estimation in place of a least squares method using the robust function in smatr in 
order to make the fit more inclusive for marginal outliers (Taskinen and Warton 
2011). Likelihood ratio tests evaluated the slope fit.

We chose to use a multivariate Bayesian, instead of univariate or distance based, 
approach for ecological analysis. This was because transforming data to meet as-
sumptions for univariate and distance based approaches is problematic for smaller 
data sets (Warton et al. 2012b; Warton 2017). Microhabitat data were therefore ana-
lysed using a Bayesian unconstrained ordination based on a latent variable model 
(LVM) (Hui et al. 2015) using the package Boral (Hui 2016). Bayesian LVM’s are 
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useful at explaining multivariate composition while accounting for residual correla-
tion. They are superior to non-metric multidimensional scaling (NMDS) because 
they make provision for possible mean-variance relationships in data without con-
founding location with dispersion (Warton et al. 2012b; Hui et al. 2015). Boral fits 
three types of model; 1) Covariates with no latent variables (fitting independent re-
sponse GLMs where columns of y are assumed independent; 2) With no covariates 
(a pure LVM that constructs unconstrained ordination); and 3) Combined covari-
ates with latent variables (fitting correlated response GLMs, with latent variables). 
We explored U. panamensis microhabitat preference using modelling option 2. The 
model comprised the following;

Option 2 (pure LVM),

log(µij) = α + Ɵ0j + zi1 × Ɵj1 + zi2 × Ɵj2 = α + Ɵ0j + ȥi
T Ɵj,

where µij is considered the mean response at microhabitat level i for an individual 
snake j, Ɵ0j is the individual-specific intercept, ȥi = (ȥil, ȥi2)

T is a vector of two latent 
variables, and Ɵj = (Ɵj1, Ɵj2)

T are the corresponding individual-specific coefficients. 
This modelling approach enabled biplots to visualise the data in a similar way to a 
two-dimensional NMDS. From the model we extracted posterior median values of 
latent variables and used these as coordinates on ordination axes to plot microhabi-
tat association (Hui et al. 2015).

For Boral models, estimation is performed using Bayesian Markov Chain Mon-
te Carlo (MCMC) methods via software JAGS (Plummer 2003). Our model com-
prised two latent variables, used a negative binomial family, ran 40000 iterations 
with 10000 discarded for burn-in, and was thinned by 30. Priors were set using 
Boral’s modest automated uniform normal distribution detected and set through 
JAGS (priors = ~ dnorm (0,0.1)). Convergence was assessed using MCMC trace 
plots retrieved from package Coda and inspection of Geweke convergence diag-
nostic (Geweke 1992), a test which is similar to the Gelman statistic potential scale 
reduction factor (PSRF) (Gelman et al. 2013), but applicable given Boral operates 
with only a single MCMC chain (Hui 2016). Model assumptions of mean-variance 
and log-linearity were examined using Dunn-Smyth residuals vs. fit plots and nor-
mal quantile plots (Dunn and Smyth 1996).

Correlation and residual correlation were checked by plotting a residual covari-
ance matrix of latent variable regression coefficients using function get.residual.cor 
in Boral and package Corrplot. A strong residual covariance/correlation between 
factor variables can be interpreted as evidence of autocorrelation in a model; how-
ever, acceptable levels have been recognised as indicative of an interaction/asso-
ciation (Pollock et al. 2014). The residual precision matrix in Boral can be used to 
directly identify association between factors (in our case microhabitats and indi-
vidual snakes) (Ovaskainen et al. 2016). Two factors exhibiting a zero result in such 
plots may remain correlated, indicating they do not directly interact, but also can 
remain correlated through other factors. Residual precision matrix results should 
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not exhibit elements equal to exactly 1 or -1 (suggesting strong autocorrelation). 
Nevertheless, relatively large values between these limits of precision imply a useful 
indication of a correlated relationship between two factors.

All analyses were carried out in the program R version 4.0.0. (R Core Team 
2020) which we attached to JAGS version 4.3.0 for performing Bayesian routines.

Results

Our dataset comprised microhabitat and morphological data for a small number of 
individuals (N = 13) (Table 1). In BCWR 258 surveys over an 8-year period yielded 
10 individuals (an encounter rate of: 3.88) (Fig. 3). In Coclé and Panamá Oeste 
1107 surveys over a 15-year period yielded 3 individuals (an encounter rate of: 0.27) 
(Fig. 4). This highlights just how poorly detected the U. panamensis is in the wild. 
Eight were found during surveys, three by random encounter, and two were brought 
to us by locals. A small specimen encountered, from Costa Rica (possibly juvenile) 
was removed from the analysis to avoid bias in the models. This snake measured 
162 mm SVL, 29 mm TL, and weighed 2.5 g, and was encountered on a palm frond 
at a height of 76 cm. Inspection of morphometric data via boxplots showed a dif-
ference in the means of SVL and TL between males and females. However, boxplot 
distribution overlapped, indicating that such mean difference may not be necessar-
ily statistically significant. Adult male snakes were longer in both SVL and TL, but 
adult females had the greatest mass despite mean differences in mass being equal 
(Fig.  5, Table 1). SMA showed that variables grouped by sex were uncorrelated; 
Females (R2 = 0.67, P < 0.05), Males (R2 = 0.73, P < 0.05). SMA slopes were unequal 
(LRT 0.48, P = 0.48) indicating a sexual difference in body size. The SVL/Mass [log 
scale] plot revealed females were subtly larger than males due to having greater 
mass (Fig. 6). Slope fit was checked via residuals and q-plots and deemed acceptable 
given the small data size (Fig. 6).

The LVM in Boral successfully computed with useful convergence (see: Suppl. 
material 1: Convergence trace plots). The Option 2 model (correlated response) re-
sulted in a fairly low DIC (122.6) and a sufficient residual trace correlation test result 
(104.79). All Geweke Z-score p-values for both models were >0.05 (results of <0.05 
is approximately equivalent to a PSRF of 1.96 which would exceed MCMC Geweke 
upper values and indicate poor convergence). Residual plots of model fit showed 
good distribution of linear predictors indicating minimal over-dispersion (Fig. 7).

The primary latent variable ordination plot for the model showed preference by 
U. panamensis for natural microhabitat features and clustered latent variables proxi-
mate to corresponding snake microhabitats (Fig. 8). Whilst buildings were utilised 
by five U. panamensis individuals as refuge and foraging sites, they were distally 
associated in the ordination with those snakes detected in natural microhabitats. 
It is important to note that the buildings these five individuals were found in were 
situated in very remote areas, surrounded by natural habitat and not within higher 
density urban areas. The plot also showed discrimination of Tree, Trunk and Leaf 
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Table 1. Morphological and ecological data for 13 individuals of Ungaliophis panamensis from Costa 
Rica and Panama.
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#UPCR01 Costa Rica Limón 1/3/2004 Nocturnal ♂ 394 52 16.6 1 0 0 1 0 0 0 0 0 0 0
#UPCR02 Costa Rica Limón 8/23/2009 Nocturnal ♀ 300 33 15.9 1 0 0 1 0 0 0 0 0 0 0
#UPCR03 Costa Rica Limón 12/20/2009 Nocturnal ♀ 320 30 19.3 0 1 1 0 1 0 0 0 1 0 0
#UPCR04 Costa Rica Limón 1/19/2010 Nocturnal ♂ 285 54 11.5 0 1 0 1 0 0 0 0 0 0 0
#UPCR05 Costa Rica Limón 7/9/2010 Nocturnal ♂ 355 51 18.3 0 1 0 1 0 0 0 0 0 0 0
#UPCR06 Costa Rica Limón 8/11/2010 Nocturnal ♀ 323 42 16.1 0 1 0 1 0 0 0 0 0 0 0
#UPCR07 Costa Rica Limón 2/10/2011 Nocturnal ♀ 319 36 14.5 1 0 1 0 1 0 0 0 1 0 0
#UPCR08 Costa Rica Limón 2/14/2011 Nocturnal ♂ 473 49 22.5 1 0 1 0 1 1 0 0 1 0 0
#UPCR09 Costa Rica Limón 3/9/2011 Nocturnal ♂ 396 49 14.5 1 0 1 0 0 0 1 0 0 1 0
#UPCR10* Costa Rica Limón 3/9/2011 Nocturnal ♂ 16.2 2.9 2.5 1 0 1 0 0 1 0 0 0 1 0
#UPPA01 Panama Cocle 11/1/2005 Nocturnal ♀ 419 62 23.1 1 0 1 0 0 0 1 0 0 0 0
#UPPA02 Panama Panama Oeste 6/24/2006 Nocturnal ♂ 415 64 19.2 0 1 1 0 0 0 0 0 0 0 0
#UPPA03 Panama Cocle 9/21/2008 Nocturnal ♀ 447 72 21 1 0 1 0 0 1 0 0 0 0 1

*Excluded from analysis.

Figure 3. Photographs depicting two individuals of Ungaliophis panamensis from Barra del Colorado 
Wildlife Refuge in Limón, northeastern Costa Rica: individuals UPCR07 (A) and UPCR08 (B). Pho-
tographs taken by Alex Figueroa.

Figure 4. Photographs depicting two individuals of Ungaliophis panamensis from El Cope in Parque 
Nacional G. D. Omar Torríjos Herrera, in the Coclé and Panamá Oeste provinces of Panama: individu-
als UPPA01 (A) and UPPA02 (B). Photographs taken by Julie M. Ray.



Todd R. Lewis et al.324

Female Male

30
0

35
0

40
0

45
0

Sex

SV
L 

Le
ng

th
 (m

m
)

Female Male

12
14

16
18

20
22

Sex
M

as
s 

(g
)

Female Male

30
40

50
60

70

Sex

Ta
il 

Le
ng

th
 (m

m
)

Figure 5. Boxplots of the morphometrics of female (n=5) and male (n=7) Ungaliophis panamensis.
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Figure 6. Standardised Major Axis testing routine: SVL/Mass. Female U. panamensis (red), male (blue).
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Figure 7. Dunn-Smyth residual fits of Bayesian ordination LVM (Option 2 – unconstrained ordination).
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Figure 9. U. panamensis microhabitat residual correlations (from Option 2 model – unconstrained 
ordination). Only significant correlations are plotted (based on 95% credible intervals excluding zero). 
Correlations are represented by colours (red and blue for negative and positive correlations respec-
tively), while the strength of correlations is represented by the size of the circles.
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variables, and Branch, Twig and Palm variables to the right-hand side of the ordina-
tion amplifying their relations as a group away from Buildings. Forest and Shrub 
were categorically assigned in the model and, although not tightly associated with 
the clustered microhabitats, are spatially situated away from variable Building, thus 
adhering them to the right-hand side of the plot. This indicates their grouping with 
natural microhabitats.

The residual correlation plot showed most variables with a weak-minimal resid-
ual correlation (Fig. 9). Therefore, we accepted model correlation had not compro-
mised the model and interpreted correlated signals as underlying relationships. Tree 
and Trunk were the strongest positively correlated variables. Building and Forest were 
strongly negatively correlated which also aligns with the contrast reflected in Fig. 8.

Sex, SVL, Mass, and TL were plotted against the latent variables for both models 
but exhibited no discernable relation to microhabitats with individuals distributed 
liberally between variables and associated to a spread of sex and size among the plots.

Discussion

This study provides a unique insight into the ecology of a little known and under-
studied snake and confirms general assumptions that have been reported in the 
literature (Corn 1974; Villa and Wilson 1990; Savage 2002). We have shown that like 
other boid species, U. panamensis exhibits sexual dimorphism, and that females are, 
in general, shorter than males. Our data confirm the hypothesis that U. panamensis 
has a significant preference for natural forest habitats, although it will use rurally 
located buildings in proximity to natural forest cover as refuges, or possible hunting 
grounds, a finding that is consistent with recent observations (Dwyer 2017; Solórza-
no and Carillo 2017). In the current study, given the forest habitat in the immediate 
area surrounding rural buildings where we encountered U. panamensis, it is likely 
these individuals may not have normally chosen to utilise anthropogenic structures.

The strong positive correlation between Tree and Trunk is an ecologically use-
ful descriptor as this species is strongly associated with being found on tree trunks 
when detected in forested environments. The high correlation between Tree and 
Trunk variables identifies a hidden relationship between these two variables in the 
data that is not initially clear within the primary ordination plot. When buildings 
were present, they signalled a negative correlation with most natural microhabitat 
variables confirming that natural microhabitat components feature as the habitat 
components of choice by U. panamensis. These correlations between habitat vari-
ables in relation to the presence of U. panamensis are also observed for other arbo-
real boid species in the region such as Corallus annulatus (Lewis et al. 2011). Whilst 
such correlated habitat variables might not be unexpected, they have, prior to the 
work herein, not been adequately described for U. panamensis.

Eco-morphology and microhabitats are interesting concepts to describe a rep-
tile’s habitat preferences (Bickel and Losos 2002; Pyron and Burbrink 2009; Lewis et 
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al. 2013). These preferences could be used to guide conservation management when 
considering options for land management (Berriozabal-Islas et al. 2017; Todd et al. 
2017). Our data was collected from only 13 individuals, over regular surveys during 
a ten-year period, which attests to the species’ cryptic behavior, remarkable cam-
ouflage, and low detection rate. Prior to techniques such as latent variable model-
ling, deciphering interrelated associations between habitats for a species from small 
data sets often amounted to anecdotal information and univariate associations. This 
kind of information often rendered a species’ preferred microhabitat structure in-
adequately addressed and at the mercy of descriptive natural history notation and 
surveyor opinion.

It is well documented that detection rates in snakes hamper efforts to better 
understand their ecology and conservation needs; in some cases decades are needed 
merely to understand the extent of the snake assemblage at a given location (Doan 
and Arizábal 2002; Duellman 2005). This difficulty in detection historically has led 
to a paucity in ecological data for many snake species, particularly in the tropics, 
due to the low numbers of encounters (MacKenzie et al. 2003; Bailey et al. 2004; 
Durso et al. 2011; Stroud and Thompson 2019). For example, Corallus annulatus, 
Calliophis bibroni, and Trimeresurus medoensis are three tropical snake species so 
infrequently detected that their detection is of conservation and distributional in-
terest whenever they are discovered (Lewis et al. 2011; Griffin et al. 2012; Arock-
ianathan et al. 2014). We believe this study shows that even with just a few indi-
viduals it is now possible to elucidate ecological information that is relevant to the 
conservation of snake species for which that information is currently lacking. Our 
analysis provides evidence that although the species can be found in rural environ-
ments such as buildings situated close to forested environments, it ultimately is a 
forest dwelling species that is detected well on tree trunks and among lower foliage 
on trees. With such low detection rates, we expect future research and observations 
of U. panamensis to further the knowledge of the ecology of the genus substantially. 
This novel approach to small datasets also provides the opportunity to better inform 
conservation and habitat management decisions in locations inhabited by rarely 
detected species.
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