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ABSTRACT 

General and exact expressions for the expansibility factor, inclu­

ding arbitrary real-gas corrections, are derived. Further analyses 

are provided by the introduction of the equation of state on virial 

form, in which the second and third virial coefficients are calculated 

from a prototype cubic equation of state. 

Important cancellations between real-gas effects, which put equati­

ons of state to a severe test at high pressure, are revealed. 

The exact result raises doubts about the general applicability of 

the current ISO standard in a high accuracy approach for orifice mea­

surements of gases with arbitrary composition, at high as well as at 

low pressure. 
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1. INTRODUCWI'ION 

The international standard 1 for natural gas flow measurements by 

orifices, nozzles and venturi tubes is based on a polytropic equation 

of state for the isentropic gas flow. This description is exact for 

an ideal gas. For custody transfer at pressures typically exceeding 

100 bar, the polytropic approach is not justified even at supercriti­

cal temperatures, if high measurement accuracy is an objective. 

Essentially two methods for the inclusion of real-gas effects have 

been presented in the literature. The first one 2 underlies the poly­

tropic approach, assuming that real-gas effects can be taken into 

account by defining an isentr0pic exponent x. Obviously, such an 

exponent is pressure-dependent, complicating calculations by creating 

the necessity for using different exponents in different ranges of 

pressure. Also, it is not obvious that the theory of flow through 

contractions can be consistently modified by ad hoc changes of the is-

entropic exponent. The recommended practice 1 is to replace K by the 

ratio ~ between specific heats if x is not known. This may have con­

tributed to the widespread misconception of identifying x with ~· The 

second approach 3 introduced for sonic nozzles, is based on a full 

treatment of the thermodynamics of the isentropic flow problem, 

rigorous to the extent that the compressibility (i.e., the equation of 

state) is well known. This excellent method, employing iterative sol­

ution of the entropy and enthalpy equations, has a drawback in a lack 

of clarity and overview for the practical user. since the results are 

given by tables and graphs rather than simple formulas. 

This paper first develops general expressions for the expansibility 

factor. The principle of corresponding states is then used to obtain 

composition-independent predictions for the isentropic equation of 

state, by calculating virial coefficients from a prototype cubic equa­

tion of state, chosen for simplicity as much as for accuracy. Explicit 

expressions for the expansibility factor, as well as predictions of a 

general kind, are then obtained by low order corrections to ideality. 

This paper has thus a didactic purpose, in addition to pointing out 

the direction for further research. 
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2. TIIE EXPANSIBILI1Y FACTOR 

Consider an adiabatic real gas flow without energy loss through an 

orifice, nozzle or venturi tube, with velocity u depending on the flow 

cross-section A. Assume that equilibrium thermodynamics applies, and 
4 

that changes in thermodynamical states are reversible Conserva-

tion of energy is then given as usual by the Bernoulli equation 5 

= (1) 

where H(p) is the isentropic enthalpy per mass unit, H being an inde­o 
finite constant contribution: 

H(p) - H 
0 = 

p dp 
I­
o Q 

(2) 

The density g and the pressure p is related through an isentropic 

equation of state, to be considered in detail later. Subscript will 
1 

refer to a point upstream of the flow obstacle, while subscript 
2 

refers to the center of the orifice or nozzle. The standard derivati-

on of the expression for mass flow rate m based on eq. (1) gives then 

m = A2 C £ ffi (3) 

where 

l:J.p = p - p 
1 2 

(4) 

is the differential pressure, ~ is the ratio of the least hardware 

limitation of flow radius to pipe radius upstream, and C is the dis­

charge coefficient which will not be discussed in any detail in the 

present paper. The expansibility factor £ includes real-gas effects 

in a completely general way, when written on the form 
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= (5} 

For a flow arrangement where 6p is a considerable fraction of the up­

stream pressure, one now proceeds by calculating H(p) explicitly by an 

equation of state. In particular, it can be calculated to an 

arbitrary order in the virial expansion to be introduced in subsequent 

sections. However, for arbitrary forms of the equation of state this 

does not necessarily lead to simple analytical expressions. 

A considerable simplification occurs in the limit where 6p is small 

compared to the upstream pressure p . 
1 

We expand H(p) in a Maclaurin 

series in 6p around p
1

, using first the integral definition of H(p) in 

eq . (2). Using also 

g 
2 

og 
(2-)2 1 -

1 
= <op >s 6p 

gl Ql 1 ( 6) 
02 

1 
0'21 2 1 gl 2 

+ [- <<op > s > + - (-2-)S) (6p) + .. . 
2 Ql e1 1 op 

we arrive by a straightforward calculation at the result 

(3 + 
~4 1 oe 

1 -
1 

£ = 4) (op >s 6p 
If 1 - [3 e1 1 

+ [ ( - 11 5 ~4 
+ 1 ~8 

9b + If 
- ~4 2 - ~4 )2 1 (1 

1 (7) 

Note that each order in 6p in eq . (7) incorporates real-gas effects 

in an exact way , independent of the form of the equation .of state. Eq . 

(7) and the developments based on it may be the most important results 

of this paper from a practical point of view. Later in the paper we 

will also consider briefly the general situation where 6p is large 

enough that general expressions like eq. (5) apply, by treating inte­

grated versions of the isentropic equation of state. 
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For the product of compressibility and differential pressure there 

are the alternative expressions 4 

1 3Q 
Q <ap)s Ap = 

and (using eq.(A-1)) 

1 3Q 
g <ap>s Ap = 

with 

= 

~ 
Q c 2 

(1 - e z 

c p,v 

az Ap 
<ap)T) )'P 

= c (p, T) p,v 

z = pv 
RT 

(8) 

(9) 

(10) 

Eq. (8), where c is the velocity of sound, relates the compressibility 

to experimentally measurable quantities. Eq. (9) relates real-gas ef­

fects explicitly and exactly to Z factor expressions by equations of 

state, in a way valid both for orifices, nozzles and venturi tubes: 

£ = ( 11) 

6 The prescribed regulation for orifice measurement of fiscal cus-

tody transfer of gas specifies Ap < 0.5 bar. At pressures of order 

100 bar and above in orifice measurements, there is then no reason to 

study more than the lowest order correction in Ap/p . 
1 

Our result can now be compared to the standard expression for £ for 
. f. 1 or1 ice measurements , the expansion parameter of which including x 

(defined by the isentropic equation of state on a polytropic form) in­

stead of '{: 

(12) 

-x 
PQ = constant x = x{p ,T) (13) 
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One objective of this paper will be to demonstrate that x is a 

function of both p and T, and 1 that the standard treatment includes 

real-gas effects in a way which is unclear at best. 

For now we consider briefly the ideal-gas limit, where 4 

* 
IDEAL c 

- * p 
c (T) x = ~o = .,.. c = 

c 
p,v p,v (14) 

v 

Eq. (11) with Z = 1 and ~ = ~o should reproduce eq. (12); however, it 

does not. We will comment on this in the discussion section. 

To be able to proceed with the development leading to eqs. (7) and 

(11), in the next section we will first introduce virial expansion 

predictions for the isentropic equation of state . 
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3. '1lIE ISENTROPIC EQUATION OF STATE BY A VIRIAL EXPANSION 

The isentropic equation of state is obtained by simultaneous inte­

gration of eqs. (A-1) and (A-2). Note that Tin eq. (A-1) varies with 

pressure as given by eq. (A-2). Formally, the result has be expressed 

in eq. (13). This equation of state receives real-gas contributions 

from the specific heats as well as from the isothermal derivative in 

eq. (A-1). It is immediately clear that 

x "' y (15) 

except for the case of an ideal gas. 

[Note that we specifically exclude the near-critical region from 

the range of validity of this approach, and not only because of con-

vergence problems: The equation of state in this region is given by 

power laws due to universality, which are not reproduced by 'classi­

cal' equations of state to which the virial coefficients are often 

fitted. Universality predictions for the operation of differential 

pressure meters will be addressed elsewhere 7 .] 

By eqs. (10), (14), and (A-4) through (A-8), the lowest order real­

gas corrections to the specific heat ratio are given by 

= 

= 

* * 1 + (c -c )/c 

Yo * 
1 + (c -c }/(c -R} 

p p p 

v v p 

_1_{1 

RT
2 

(16) 
2 2 

T~T + T2 ~)(B - B 2) p2 + ••• ] 
u oT2 3 2 

o
2

B oB B o
2

B oB 
1 [ { T--2 + 2_2 } ( p _ ~ p2 ) + 1 (T 3 2 3 ) 2 ] } 

+ ~ 3T2 oT RT 2RT (}T2 + oT p + ••• 

p 

Similarly, the lowest order corrections in the right-hand-side partial 

derivatives in eqs. (A-1) and (A-2) are found to be 
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~ 
B 3B 2 

- 28 
Q {1 -

2 2 3 2 
+ ••• } (17) (3p)T = RT P + p p 

(RT) 2 

1 382 
0 1 

av R 
T--3T 

(83 - B2 2) 
2 

+ ••• } (18) (oT)p = {1 + - - p + p p R oT {RT) 2 

Eqs. (A-1) and (A-2) can now be integrated, if we know the tempera­

ture dependence of B
2 

and B
3

• The equations are coupled in the sense 

that the temperature's dependence on pressure at constant entropy on 

the right-hand side of eq. {A-1) is given by eq. {A-2). Note that if 

we seek only the first order correction to ideality in the isentropic 

equation of state by incorporating only B
2 

in eq. (1), it will suffice 

to use the ideal-gas version of eq. (A-2) in the integration: Lowest­

order corrections in eq. (A-2), if inserted into eq. (A-1), lead to 

contributions of order {B
2

)
2

, which are of the same order in pressure 

as the neglected B
3 

contributions. 

We do not address here the question of radii of convergence for the 

expansions. However, we assume that low order terms of the pressure-

explicit expansion can be used at supercritical temperatures even 

above the critical pressure to obtain order-of-magnitude estimates of 

real-gas effects, and in any case to disclose the general form of the 

corrections. Table 1 shows a numerical example for a model natural 

gas using a (not completely realistic} cubic equation of state, for 

which there is fairly fast convergence (possibly of an asymptotic 

kind) even at 150 bar. 

The calculation of real-gas effects in the isentropic ·equation of 

state requires an accurate knowledge of the general equation of state, 

since first and second temperature derivatives of B are required. By 
2 

induction, even superbly comprehensive 3 treatments of the thermodyna-

mics of the flow problem will have a superficial accuracy only, if an 

inaccurate equation of state serves as a starting point. 
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4. LOW ORDER ISENTROPIC RELATIONS FROM A CUBIC EQUATION OF STATE 

Cubic equations of state 8 were originally introduced in petroleum 

technology to facilitate two-phase equilibrium calculations. They are 

usually two-parameter expressions, which implies that their phenomeno­

logical accuracy corresponds to relating the second and third virial 

coefficients to critical parameters by the principle of corresponding 
8 states. The various cubic equations in use are distinguished by 

different values of the critical Z factor, Z . Cubic equations are c 
often used also at supercritical temperatures even above the critical 

pressure (as will be done here), although even the best ones lose 

their high accuracy when the pressure exceeds the critical value 9 • 

For explicit predictions by the approach of the previous section, 

we use the van der Waals equation: 

i.e., 

p 

a 

B 
2 

= 

= 

= 

A (T) 
2 

RT a 
v-b - 2 v 

g RT v 
1r c c 

b - !:_ 
RT 

= 
1 a 
RT (b - RT) 

b 

B 

(19) 

1 z 3 = -v = 1r 3 c c (20,21,22) 

= b2 
3 

(23,24) 

= 
T T 

1 ( 1 27 c) c 1 
1r - 8 T T Pc 

(25) 

T T 3 
= 

a a 
(2b - RT) 

(RT) 3 
= 

27 
256 (l 

27 c) {...£.) 1 
Tb T T 2 

(26) 
Pc 

Behind this particular choice lies the unholy motive of simplicity: 

Contrary to most other cubic equations, the van der Waals equation 

leads to rational numbers as coefficients, and its a parameter does 

not depend on temperature. An eventual loss of accuracy compared to 
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the results by more refined cubic equations is not thought to be deci­

sive for the lowest order predictions or the present paper, especially 

when also the gain in clarity is considered. 

In Table 1, estimates or A and A are given for a set or parameter 
2 3 

values 10 for a model natural gas at a supercritical temperature. If 

higher orders converged as fast, the A
2 

and A
3 

terms would give Z with 

less than 5 % deviation even at 150 bar. Provided, of course, that 

the expansion can be trusted under these extreme conditions. 

* For the van der Waals equation, c - c - 0 by eqs. (19) and v v 
(A-5). In this particular case one can then compute the remaining 

real-gas corrections in eq. (16) by eq. (A-3), to any order in the 

virial expansion (which is the reason why eq. (A-3) has been.reprodu­

ced in this paper). 

By eqs. (16), (17), (18), and (20) through (24), one finds for eqs. 

(A-1) and (A-2), with two orders.included in the pressure-explicit 

form of the virial expansion: 

oQ 1 Q p + C (T) 2 } <ap>s = - - {1 + C (T) p + ... 
Y0 -P 2 3 

.(27) 

oT ~ !. {1 + D (T} p + D (T} } <ap>s = p2 + ... 
c p - 2 3 

(28)· 

p 

4 10 Integrated along an isentropic path, and neglect~ngthe slow tem-
* * perature variation of c and c : 
p v 

T 
0 
T= 

In eq. (30}, 

E (T) p + .•• } 
2 

* p R/c 
(~} P {1 + O(p/p )} 
p c 

= constant-

p and T 
0 0 

are ideal-gas reference values. 

:<29) 

(30) 

For our 

purposes it suffices to present the ideal-gas version of the p-T rela­

tionship, since only the first order correction has been used in eq. 

(29). The coefficients are 
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C (T) = 
2 

C (T) 
3 

In eq. {35), 

= 

= 

= 

= 

a R b 
(1 - 2,-) - RT 

(RT) 2 c p 

T <N (1 - 2~) Tc -
c p 

- 3 A (T)C (T) -
2 

[b
2 

+ ~ a c2 '(T)] 
2 2 (RT)2 cp 

a (1 - 2~) 
{RT) 

2 c 

a 

(RT)
2 

p 

1 b 
R RT 

1 - tr 
c p 

~T + 2~ D2 (T) 
cp 

__ __..._R.,...........-- } 

1 - 2-,;r 
c p 

12 

(31) 

(32) 

(33) 

{34) 

(35) 

the dependence on T is understood to be transformed into 
* a dependence on p by insertion from eq. 

tinguishing eq. (35) from eq. {31) show 

(30). The R/c factors dis-
P 

that the temperature variation 

enters the real-gas corrections to the isentropic equation of state in 

a non-trivial way. 

Table 2 shows typical values of the coefficients, calculated with 

the same set of parameters as in Table 1. A fortuitous cancellation 

takes place in eq. (31) between real-gas contributions from y and the 

other real-gas contributions; with the y contributions neglected one 

would get for C
2 

the value of A
2 

{Table 1) with the opposite sign. 

Note that this cancellation is a parameter-dependent quirk of Nature 

for the model natural gas used, which depends also on the choice of 

equation of state. However, the general form of eq. {31) shows that 

there will be some degree of cancellation also for other cubic equati­

ons of state, which stresses the importance of making a wise choice. 

(For our particular choice, c
3 

contributions are seen to be more im­

portant than the C contr·ibutions from about 100 bar on . ) 
2 
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Anyway. the importance of taking also the isentropic temperature 

variation properly into account is clearly demonstrated by Table 2: 

In eqs. (32) through (35) there is no such strong cancellation. 

A comparison of eq. (13) to the combination of eqs. (29) and (35) 

serves to demonstrate that x is a function also of pressure, with a 

considerable variation as the pressure grows from the ideal-gas state 

to the values of concern to us in this paper. 

Eventually in this section. we calculate the isentropic enthalpy 

per mass unit from eqs. (2). (29) and (30) by once more neglecting the 

temperature variation of the ideal-gas specific heats: 

H(p) - H
0 

= 

= 

1 - 2~ 

2y - 1 -
0 

c 
p a 

(36) 

1 b 
~~~~~--R-RT 

2y 0 - 1 - y 0 -"T 
c 

(37) 

p 

The dependence of T on p at any point along the isentropic path is 

once more assumed to be given by eq. (30). A numerical estimate of 

' F (T) (Table 2) shows considerable cancellations, as in C (T). (Notice 
2 * 2 

that R/c can be expressed by y • to simplify some coefficients. We 
p * 0 

have kept the form R/c to trace the origin of the various terms.) 
p 

A more comprehensive approach in the case where H(p) - H
0 

is not 

adequately given by the lowest order in 6p/p • would be to include the 
* * 1 temperature variation 10 of c and c via the pressure in the integra-
P v 

tions to obtain eqs. (29) and (36}. This would probably necessitate 

numerical integration . Still, it would be a point to bear in mind in 

an analysis of the large-6p case. since this temperature variation 

would influence the amount of cancellation in eqs. (35) and (37). 

In the present paper we will leave the development of the general 

case at this st·age. For the remainder of this presentation we will 

once again consider the limit of small 6p/p values. 
1 
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5. £ BY A VIRIAL EXPANSION OF A CUBIC F.QUATION AT SMALL dp 

In preceding sections we have found a general expression for the 

expansibility factor for small 6p/p
1

• as well as an approximation by 

two virial coefficients for the pressure derivative of the isentropic 

equation of state. By the results found for the magnitude of A and 
2 

A
3 

(Table 1). we will now apply the combined approach for supercriti­

cal temperatures at the pressures of interest, above the critical 

pressure. We insert eq. 

differential pressure: 

£ = 1 (3 + 
~4 -

If 1 - ~ 

2 
+ O( (tip/p

1
) ) 

4) 

(27) into eq. (7) in the limit of small 

(1 + C (T ) + C3(T1) 
2 ... ) ~ pl pl + 

2 l 'ioP1 

(38) 

This expression does not lend itself easily to a direct comparison 

with the fit (12), in which xis supposed to include all real-gas 

effects in an unclear way. Our expression (38), on the other hand, 

separates out real-gas effects in a tidy way. and keeps the clearly 

defined and parametrized 10 ideal-gas value 'lo as part of the expansi­

on parameter. 

Eqs. (31) and (38) show that for a given temperature, a given dif­

ferential pressure. and a given critical pressure, the C
2

(T) term 

leads to a constant contribution to£, independent of the total pres­

sure. The magnitude of this contribution is strongly dependent on the 

equation of state, due to the cancellations in C
2

(T). The correspond­

ing contribution to £ from the c
3

(T) term is proportional to the 

absolute pressure p
1

, for given values of all other parameters and 

variables. 

By Table 2, the C (T) and the C (T) terms contribute with opposite 
2 3 

signs, for the equation of state and the parameter values considered 

in this paper. The C (T) contribution is even larger than that from 
3 

C (T) in absolute magnitude, for p larger than about 100 bar. This 
2 1 

is due to the cancellations in C (T), and does not reflect any conver-
2 

gence problems in the virial expansion. 
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6. DISCUSSION 

The low order results have revealed cancellation effects, which de­

limits the approach ' s accuracy, but which will be present in disguise 

also in superficially more sophisticated procedures. The low order 

approach, including the blessing of a composition-independent forma­

lism, is a convenient way to analyze these effects . In a forthcoming 

paper 11 we will study the equation-specific effects, via predictions 

by other equations of state for the virial coefficients. 

For a subsonic nozzle or a venturi tube, the ISO standard's expres­

sion for the expansibility coefficient £ is reproduced by the ideal­

gas limit of eq. (36) inserted into eq. (5). This holds for any value 

of the ratio 6p/p
1

• Then, the present standard's formalism cannot 

include real-gas effects, except in an approximate and non-rigorous 

way via the variation of x with pressure. In particular, as was shown 

by numerical values in Table 2, there are cancellations between real­

gas effects in eq. (27), which shows the advice 1 to use y if xis not 

known, to be untenable. 

However, the standard's expression for £ for orifice plates at 

small 6p/p
1 

is not reproduced by our exact results even in the ideal­

gas limit. What may cause this discrepancy? 

Obviously, real-gas effects may be expected at high pressure also 

in the discharge coefficient C, in the orifice and classical nozzle 

(as different from the venturi nozzle) cases: The jet cross-section 

downstream of the mechanical contraction will bounce up again from its 

minimum value at the vena contracta, which should depend also on non-

ideal effects in the compressibility. If we assume that the 

discrepancy is not simply due to a bad fit, we may thus offer this ex-

planation: The fit (12) may include real-gas effects and more gene-

ral compressibility effects also from the discharge coefficient C, and 

possibly also the effects of a permanent pressure fall due to dissipa­

tive losses . Concerning contributions of order (~p/y p ) 2
, eq. {7} 

0 1 

shows that in the ideal-gas limit they would contribute to the ~-inde-

pendent part of the discrepancy between eqs . (12} and (38} with the 

opposite sign of wha t is observed . 
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We would argue that real-gas effects as well as general compressi­

bility effects in £ and C should be analyzed separately during the 

quest for an understanding of the effects. Concerning dissipative 

losses, it would seem logically most consistent to include any such 

effects in the discharge coefficient. And for a classical nozzle, one 

might expect to have the same type of non-ideal effects . (thermodyna­

mical as well as hydrodynamical) as for an orifice. Why, then, does 
1 the ISO standard adopt different formalisms for £ for orifices and 

classical nozzles in the limit of small ~p/p1 ? 

It follows that improvements of differential pressure metering 

accuracy for natural gas at high pressure will involve, as a basis, 

a complete theoretical and phenomenological reanalysis of the various 

meters. For a consistent treatment of real-gas effects. the polytropic 

approach should be abandoned, and the formalism of the present paper 

involving ideal-gas values like y
0 

as well as corrections derivable 

from (or correlatable by) equations of state should be introduced. 

As far as possible, a composition-independent formalism should be 

used. Any real-gas effects in the discharge coefficients should be 

treated separately from those in the expansibility factors . 

A completely new experimental program will be needed for the final 

correlation of the basic results to metering practice. These experi­

ments should be designed so as to distinguish real-gas effects in C 

from those in£ . Furthermore , they should distinguish clearly effects 

of dissipative losses from the other types of non-ideal effects . 
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7. CONCLUSION 

The prediction of the real-gas expansibility factor at high pressu­

re provides a decisive test of the reliability of equations of state, 

since cancellations in low order virial coefficients are involved. 

Further analyses can be instructively simplified by the low order 

approach's composition-independent formalism. 

In particular, the polytropic approach with the replacement of the 

isentropic exponent by the specific heat ratio, is a fundamentally 

inconsistent part of an approach to high accuracy at high pressure. 

The exact result for the expansibility factor is in basic disagree­

ment with an ISO standard expression for orifice measurements, in the 

combined limit of small real gas contributions and small relative 

differential pressure. An analysis of possible real-gas effects and 

compressibility effects in general in the discharge coefficient, 

should enter future analyses of this discrepancy. 

New calibration experiments, designed to distinguish between real 

gas compressibility effects in the expansibility factor and in the 

discharge coefficient, as well as dissipative effects, will be needed 

in the final correlation of this new and systematic approach to actual 

metering practice at high pressure . 
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APPENDIX: STANDARD THERMODYNAMICAL RFSULTS 

We denote molar values for intensive variables by small letters. 

The three basic thermodynamical relations to be used are 4 8 

3Q 
c 

v 
<ap>s = c p 

oT T 
<ap>s = c 

p 

c p - c v = 

The deviation of 

given by 1 

* c - c = p p 

* c - c = v v 

OQ 
(op}T 

av 
(3T}p QV = M 

2 
T (op) 
· oT v 
~ <av>T 

c and c p v from the ideal-gas values 

p 2 

- J T (3 v} dp 
0 3T2 p 

v 2 

J T (3 p) dv 
oT2 v 

(A-1) 

{A-2} 

(A-3) 

is 

(A-4} 

(A-5) 

The paper uses virial coefficients from the volume-explicit as well as 

the pressure-explicit version of the virial equation of state: 

B B pv 
1 

2 -1.. + B. B. (T} 
RT 

= + -+ = v 2 1 1 v 
(A-6) 

= 1 + A p + 
2 A3p 

2 
+ ... 

A = B /RT 
2 2 

(A-7) 

A = (B -B 
2

)/{RT}
2 

3 3 2 
(A-8) 



NOMENCLATURE 

a 

A 2. A 
3. 

b 

B 2. B 
3 

c 
* c p' c 
p 

c v' c v 

,9 c 
c2. c3 

D 2 • D 
3 

E 
2 

F 
2 

H, H 
0 

IDEAL 

ISO 

m 

M 

0 

p, Pc 

• Po 

pl, p2 
R 

s 

T, To' T c 
u1, u2 

v 

z, z c 
(3 

b. 

E 

y, )'o 

x 

Q, Ql. Q2 

Coefficient in the van der Waals· equation of state 

Virial coefficients, pressure-explicit representation 

(A
2 

also used for contraction area) 

Coefficient in the van der Waals· equation of state 

Virial coefficients 

Velocity of sound 

19 

Molar specific heat at constant pressure, * for ideal gas 

Molar specific heat at constant volume, * for ideal gas 

Discharge coefficient 

Coefficients in (3g/3p) . s 
Coefficients in (3T/3p) s 
Coefficient in isentropic equation of state 

Coefficient in isentropic enthalpy per mass unit 

Isentropic enthalpy per mass unit, 

0 denoting indefinite additive contribution 

(As superscript) ideal gas value 

(As superscript} ISO standard value 

Mass flow rate · 

Molar mass 

Order 

Pressure (also int. variable), c for critical value 

Reference pressure 

Pressure, indices denoting locations 

Molar gas constant 

Molar entropy 

Temperature, 0 and c for reference and critical values 

Flow velocity, indices denoting locations 

Molar volume 

Gas deviation factor, c for value at critical point 

Diameter ratio 

Difference operator 

Expansibility factor 

Specific heat ratio, 0 for ideal gas value 

Isentropic (polytropic) exponent 

Density, indices denoting locations 
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TABLES 

97 mole% Cl, 3 mole% C2 

T = 194.1 K Pc = 46.1 bar c 

At T = 273.15 K 

* c 
p 

= 4.16 
°"o = 1.316 R 

- 1/(371 bar) 2 A = A = - 1/(532 bar) 
2 3 

Table 1: Numerical example for given composition and temperature. 

assuming a van der Waals gas 

c 1/(2120 bar) c - 1/(463 2 = = bar) 
2 3 

D = 1/(417 bar) D = 1/(441 bar) 2 

2 3 

E 
2 = 1/(480 bar) 

F 
2 = 1/ ( 1070 bar) 

Table 2: Coefficients in expressions leading to isentropic equation 

of state and isentropic enthalpy. parameters as in Table 1 




