

Seaweeds: sustaining habitats & harvest

Wendy Nelson NIWA- Greta Point

Lessonia forests – Chathams

Far north - fringing reef

Rimurapa – Durvillaea -Kaikoura

Macrocystis forests - Cape

Campbell

Cook Strait tidepools

Lottin Point

Seaweeds: sustaining habitats &

harvest

- Ecological importance of seaweeds
 - Food chains
 - Habitat
 - Settlement cues
- Threats
- Case studies

Food chains

• eaten – herbivores

 dissolved, particles – filter feeders

• surfaces - bacteria

drift & storm cast seaweed → coastal food chains

Habitat – structure, surfaces

- habitat 3D space
- forest structure modifies environment
 - light, water motion, nutrients

coralline algae -

- many different growth forms
- jointed, crusts, free-living

Settlement cues

Coralline algae:

- provide habitat, refuge and grazing areas for numerous fish and invertebrates
- found from the Antarctic to the tropics
- intertidal to 270m
- Release chemicals that trigger settlement

Act as settlement inducers for marine invertebrates - paua

- paua larvae settle on coralline algae
- •larvae propel themselves, 'tasting' the surface
- •recognise a unique chemical on the surface of the corallines

Seaweeds: sustaining habitats & harvest

- Ecological importance of seaweeds
- Threats
 - Water quality -
 - sediment/water clarity
 - pollution freshwater, chemicals, enrichment/sewage/fertilisers
 - Invasive species
 - Overharvest
 - seaweeds, herbivores, predators....
 - Coastal zone developments (marinas, housing...) reclamation, shoreline erosion
- Case studies

Water quality

- Sediment
- Freshwater
- Pollutants chemicals, enrichment sewage/fertilisers

•

⇒growth→reproduction

Invasive species

- Undaria
- Other species of seaweeds
- Other invasives

Undaria pinnatifida - WAKAME

1-3m high low intertidal subtidal (20+m)

Napier

Timaru

Moeraki

Colpomenia bullosa

- Leigh Marine Reserve (first record 1980); Auckland; north of Gisborne; Mahia; Napier; Wellington, northern South Island.
- strongly seasonal species with a macroscopic lifehistory phase that disappears over summer, autumn and early winter.

Grateloupia turuturu

 recently found in Wellington – known serious problem in USA, France, Mediterranean....

Impacts of harvest

seaweeds herbivores predators

Seaweeds: sustaining habitats & harvest

- Ecological importance of seaweeds
- Threats
- Case studies
 - Life histories
 - Karengo
 - Rimurapa
 - Gracilaria
 - General comments

Case studies- Karengo

Karengo = *Porphyra*

- taonga species
- from mid 1980s commercial wild harvest around Kaikoura
- experimental work on harvest impact

- Seasonal growth data
- Impact of harvest on recovery and yield:
 - methods: complete removal or cutting
 - number of harvests: 1, 2 or 3
 - time of first/second harvest: (July-Sept)

Complex life histories and reproduction - karengo

Blade phase

- spermatangia
- phyllospores
 - zygotospores
 - neutral spores
 - agamospores
- archeospores
- endosporangia
 - endospores
 - propagules

Nelson, Brodie & Guiry 1999 Jour. Appl. Phycol. 11: 407-411.

Conchocelis phase

- conchospore
- neutral conchospore
- archeospore
- protothallus

Rimurapa - Poha titi

Harvest Trial – rimurapa (winter fertile – April-August)

Harvest completed	Density of recolonising kelp	Date recorded
May	1450	Oct
June	1332	Oct
Oct	9	Dec
Feb	5	June
April	7000	Sept
June	414	Dec
Sept	3	Dec
Sept	0	May

Fertile

Recruits appear

	m	j	j	а	S	0	n	d	j	f	m	а
Ecklonia radiata												
Landsburgia quercifolia		•										
Carpophyllum maschalocarpum												
Carpophyllum angustifolium												
Sargassum sinclairii												

Gracilaria seasonal biomass & growth

Services provided by seaweeds:

- Productivity sunlight energy fixing C → food source
- Settlement cues
- Habitat/refuge/3D space, surfaces for other species to grow on...
- Shape the environment e.g. modify wave energy – dampening effect; create shaded and sheltered areas,....

Information that assists management of resources:

Species focus:

- Type of life history
- Seasonal variation reproduction, growth, recruitment
- Year-to-year variability growth
- Harvest time, method, intensity

System focus:

- Competition e.g. settlement space, light
- Interactions seaweeds, herbivores, predators

Current and Future issues....

Maintaining healthy seaweed communities vital to maintaining coastal ecosystems – enables continued use and enjoyment of coasts, marine life and sustainable access to kaimoana.

