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A B S T R A C T   

Biological communities on the abyssal plain are largely dependent on detritus from the surface ocean as their 
main source of energy. Seasonal fluctuations in the deposition of that detritus cause temporal variations in the 
quantity and quality of food available to these communities, altering their structure and the activity of the taxa 
present. However, direct observations of energy acquisition in relation to detritus availability across megafaunal 
taxa in abyssal communities are few. We used time-lapse photography and coincident measurement of organic 
matter flux from water column sediment traps to examine the impact of seasonal detrital inputs on resource 
acquisition by the deposit feeding megafauna assemblages at two sites: Station M (Northeast Pacific, 4000 m 
water depth) and the Porcupine Abyssal Plain Sustained Observatory (PAP-SO, Northeast Atlantic 4850 m water 
depth). At Station M, studied over 18-months, the seasonal particle flux was followed by a salp deposition event. 
At that site, diversity in types of deposit feeding was related to seabed cover by detritus. At PAP-SO, studied over 
30 months, the seasonal particle flux consisted of two peaks annually. While the two study sites were similar in 
mean flux (~8.0 mgC m� 2 d� 1), the seasonality in the flux was greater at PAP-SO. The mean overall tracking at 
PAP-SO was five times that of Station M (1.9 and 0.4 cm2 h� 1, respectively); both are likely underestimated 
because tracking by some common taxa at both sites could not be quantified. At both sites, responses of deposit- 
feeding megafauna to the input of detritus were not consistent across the taxa studied. The numerically-dominant 
megafauna (e.g. echinoids, large holothurians and asteroids) did not alter their deposit feeding in relation to the 
seasonality in detrital supply. Taxa for which deposit feeding occurrence or rate were correlated to seasonality in 
particle flux were relatively uncommon (e.g. enteropneusta), known to cache food (e.g. echiurans), or to be 
highly selective for fresh detritus (e.g. the holothurian Oneirophanta mutabilis). Thus, the degree of seasonality in 
deposit feeding appeared to be taxon-specific and related to natural history characteristics such as feeding and 
foraging modes.   

1. Introduction 

Communities on the abyssal plain are largely dependent on detritus 
from the surface ocean as their main source of energy. These particles 
form the base of the food web, where it is partitioned between all size 
classes of organisms (e.g. Durden et al., 2017; van Oevelen et al., 2012). 
Seasonal fluctuations in the deposition of detritus to the deep-sea floor 
(Billett et al., 1983; Rice et al., 1986) cause temporal variation in both 
the quantity and quality of food available to benthic communities 
(Kiriakoulakis et al., 2001; Lampitt et al., 2001). Inter- and intra-annual 

variations in this food supply alter the structure of sediment commu
nities (e.g. Drazen et al., 1998; Pfannkuche, 1993; Ruhl et al., 2008), 
both epibenthic and infaunal communities, and the partitioning of this 
resource amongst the community (Dunlop et al., 2016). Mobile 
deposit-feeding megafauna play a major role in the cycling of carbon 
through abyssal benthic communities (Durden et al., 2017), and the 
inter-annual abundance and composition of this group is altered with 
variations in this carbon input (Billett et al., 2001, 2010; Kuhnz et al., 
2014; Ruhl and Smith, 2004; Smith et al., 2014). 

Seasonal variation in food supply has also been linked to seasonality 
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in the biological functions of individual megafauna, such as growth rates 
in some deep-sea echinoderms and fish (Gage, 1987; Tyler, 1988), and 
reproduction and recruitment in some echinoderms (Benitez-Villalobos 
and Diaz-Martinez, 2010; Booth et al., 2008; FitzGeorge-Balfour et al., 
2010; Tyler, 1986; Tyler et al., 1982; Wigham et al., 2003). Such bio
logical functions require energetic reserves above the basic energetic 
needs for survival, suggesting temporal variations in energy use. 
Increased deposit-feeding in parallel with detrital deposition, followed 
by increased reproduction has been observed for the echinoid Echinoc
repis rostrata (Vardaro et al., 2009); this pattern suggests the coupling of 
energy availability, acquisition and use. Decoupling of acquisition and 
use is achieved via energy reserves or ‘storage’, as modelled in the dy
namic energy budget (Sousa et al., 2010). Different lifestyles result in 
different energy reserves, so the coupling of variations in energy avail
ability, acquisition and use are not uniform across taxa; however, direct 
observations of energy acquisition in relation to availability across taxa 
in abyssal communities are few. 

Studies attempting to assess whether deep-sea deposit feeding varies 
in response to the detrital input have been limited in temporal resolu
tion, overall study duration (e.g. Smith et al., 1993b), in the availability 
of concurrent detrital flux data (e.g. Bett et al., 2001), or have focused on 
particular taxa (e.g. echiurans, Bett and Rice, 1993; enteropneusts, 
Smith et al., 2005). These studies have estimated deposit-feeding ac
tivity using time-lapse photography by assessing lebensspuren (‘life 
traces’) visible on the soft sediment as an indicator of feeding. By this 
method, the movement in some deep-sea holothurians was observed to 
be altered by the presence of detrital aggregates on the seabed (Kauf
mann and Smith, 1997). Lebensspuren have also been used to determine 
that the deposit-feeding activity of an echinoid (Vardaro et al., 2009) 
and the total deposit-feeding community (Bett et al., 2001) vary with 
food input on intra-annual timescales. 

We use time-lapse photography and coincident measurement of 
organic matter supply to examine the impact of seasonal inputs of 
detritus on its acquisition by the deposit feeding megafauna across 
taxonomic groups in a single assemblage. We compare two long-term 
abyssal sites with different megafaunal communities, Station M in the 
northeastern Pacific and the Porcupine Abyssal Plain Sustained Obser
vatory (PAP-SO) in the Northeast Atlantic. First, we establish the sea
sonality in organic matter supply at each site. Then we examine the 
potential relationships between this seasonality in food availability and 
the occurrence and rates of deposit-feeding by mobile megafauna via 
quantification of lebensspuren. From these data, we consider how this 
temporal variation in food supply may influence megafaunal community 
function, and more generally carbon cycling in the abyss. 

2. Method 

2.1. Study sites 

The megabenthic assemblages of both Station M (34�500N 123�060W, 
3950–4000 m water depth) and PAP-SO (48�500N 16�300W, 4850 m 
water depth) and have been studied for more than 25 years (Hartman 
et al., 2012; Smith et al., 2013; Smith et al., this issue). At Station M, 
there is a seasonal signal in particulate organic carbon (POC) flux that 
was augmented by the deposition of salp carcasses to the abyssal sea
floor in 2012 (Smith et al., 2014). At PAP-SO, a strong seasonal variation 
in POC flux has been observed (Lampitt et al., 2010), along with sea
sonal change in the composition of deposited detritus (Kiriakoulakis 
et al., 2001). 

2.2. Measuring detrital inputs and seasonality 

Detrital input at the both sites was quantified by two methods: (i) 
sediment traps, and (ii) visually assessed seabed cover in images. At 
Station M, settling particles were collected with a McLane Parflux 
sediment trap (Honjo and Doherty, 1988) set at 600 m above bottom 

(mab), with collecting cups typically open for 10 days. Organic carbon 
was calculated as measured total carbon less measured inorganic carbon 
content of freeze-dried samples. Time gaps in the 600 mab data time 
series were infilled with data from a sediment trap set at 50 mab, based 
on a linear regression of data between traps over the entire time series. 
Details of the Station M POC flux data collection are provided in Smith 
et al. (2018) and Smith et al. (2013). Water column particle flux to the 
seabed at PAP-SO was captured using Mc Lane Parflux sediment traps set 
at 100 mab and 1850 mab (Lampitt et al., 2010), with collection cups 
typically open for periods of 14 days. Sample POC was analyzed using 
the methods described in Salter (2007); in brief, samples were freeze 
dried, acidified and pelletized before being analyzed using an HCN–S 
elemental analyzer. 

The fraction of seabed covered by detritus was measured by esti
mating the area of detrital aggregates in oblique time-lapse images 
(Fig. A.1). Detrital aggregates and salp carcasses were quantified in 
portions of seabed photographs at Station M (Table 1; see below for 
image annotation method; Sherman and Smith, 2009). At both sites, 
aggregates were measured in a quantified area of one photo per day. 
Seabed percentage cover was calculated for each image assessed (see 
below), and mean values determined to match sediment trap time pe
riods (Station M 10-day; PAP-SO 14-day). 

Typical seasonality in detrital flux to the seafloor was established by 
creating a composite year from all available sediment trap data at each 
site: 1989–2017 at Station M (data from Smith et al., 2018) and 
1989–2014 at PAP-SO. This was based on the 600 mab data from at 
Station M and 1850 mab water depth at PAP-SO, binned at 10-day in
tervals at Station M and 14-day intervals at PAP-SO. Similarly, season
ality in near-seabed particle flux during the period of seabed 
photography was examined in 600 mab at Station M and 100 mab data 
at PAP-SO. Seasonality in the detrital flux was tested with ANOVA, while 
Spearman’s rank correlations between the composited detrital flux data 
from different depths at each site, and with seabed cover in photographs, 
were calculated. 

2.3. Quantifying megabenthic community at Station M from Rover photos 

The seabed coverage of lebensspuren at Station M was assessed using 
images from a camera mounted on a seabed-transiting vehicle, the 
Benthic Rover (Sherman and Smith, 2009) (Table 1). The Benthic Rover 
was designed to minimize disturbance to the seafloor: it applies minimal 
down force to the seabed (weight in water 68 kg, including ballast), 
moves extremely slowly (~10 m d� 1), and produces no continuous light. 
The camera captured oblique photographs of the seabed as the vehicle 
advanced along transects of the seabed. The field of view was selected to 
ensure no overlap between successive images, and large areas obscured 
by shadows were subtracted. Images obscured by suspended sediment 
were removed from the analysis. Images were randomized prior to 
annotation to reduce annotator bias (Durden et al., 2016). 

Lebensspuren (Fig. 1) were classified by their morphology, and 
similarities with previously identified traces (Bell et al., 2013; Bett et al., 
1995; Dundas and Przeslawski, 2009; Ewing and Davis, 1967; Heezen 
and Hollister, 1971; Hollister et al., 1975; Kitchell et al., 1978; Ohta, 
1984; Przeslawski et al., 2012; Young et al., 1985). These lebensspuren 
were identified and their areas measured using Monterey Bay Aquarium 
Research Institute’s Video Annotation and Reference System (VARS; 
Schlining and Stout, 2006). Image measurements (pixels) were con
verted to seabed dimension following trigonometric perspective 
correction (Wakefield and Genin, 1987) using VARS and the camera 
orientation data (Table 1). 

Presence of each lebensspuren type was noted, and total areas of 
each type per image converted to a percentage of the viewed area (% 
seabed coverage). Data from individual images were aggregated to 
provide sufficient seabed area for spatial analysis, over 10-day intervals 
to coincide with sediment trap collection periods: the mean aggregated 
field of view per 10-day period was 46.4 m2 [95% confidence limits of 
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Fig. 1. Select mobile epibenthic-feeding 
megafauna and lebensspuren (traces) 
occurring at PAP-SO (*) and Station M (z), 
for which tracking rates were estimated: 
Echinoids and ‘w-shaped’ tracks A Echinoc
repis sp. z, B Cystechinus sp. z, C Cystocrepis 
sp. z; Holothurians D Abyssocucumis 
abyssorumz, E Elpidiidae spp.*, F Oneir
ophanta mutabilis leaving ‘sparse tube feet 
impressions’, G Paelopatides sp. z, H Psy
chropotes longicauda*z leaving ‘dense tube 
feet impressions’, I Pseudostichopus mollisz, J 
Molpadiodemas villosus* leaving ‘smooth 
wide depression’, K Synallactidae gen. et sp. 
indet. z; L Echiuran* and large ‘spoke 
burrow’; M Enteropneust Tergivelum baldwi
nae z with spiral fecal cast over grazed area; 
Asteroids N Dytaster gilbertiz and P buried 
Dytaster grandis grandis* each creating an 
‘Asteroid feeding impression’.   

Table 1 
Camera deployment information (T¼time-lapse camera; R¼Rover-mounted camera); dates listed as dd/mm/yyyy.  

Reference number Porcupine Abyssal Plain Station M 

JC062-119 T JC071-043 T ME-108-72 T Pulse 58 T Pulse 59 T Pulse 60 T Pulse 58 R Pulse 59 R 

Deployment start 21/08/2011 
12:05 

06/05/2012 
13:49 

17/07/2014 
15:39 

24/05/2011 
19:29 

20/11/2011 
20:13 

13/06/2012 
12:59 

23/05/ 
2011 

22/11/ 
2011 

Deployment end 03/04/2012 
04:41 

19/04/2013 
12:30 

28/06/2015 
08:18 

18/11/2011 
04:26 

11/06/2012 
12:25 

15/11/2012 
11:00 

17/06/ 
2011 

10/06/ 
2012 

Image interval (h) 8 8 8 1 1 1 NA NA 
Usable images 768 1044 1038 4249 4897 3720 84 816 
Camera height (m) 0.80 0.80 0.80 2.22 2.22 2.22 1.12 1.12 
Vertical field of view (�) 26.6 26.6 26.6 35 35 35 33.6 33.6 
Horizontal field of view (�) 35 35 35 49 49 49 42 42 
Camera tilt below horizontal (�) 30 30 30 32 32 32 39 39 
Field of view assessed (m2) for fauna/ 

lebensspuren 
0.7262 0.7140 1.1484 9.53 9.53 9.53 2.71 2.71 

Field of view assessed (m2) for detritus 0.7262 0.3287 0.6794 9.779 9.779 9.779 NA NA  
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39.1, 50.1]. 

2.4. Quantifying megabenthic deposit-feeding rates 

Deposit-feeding (tracking) rates of megafauna (Fig. 1) were assessed 
from time-lapse oblique images from both sites (Table 1): the tripod 
camera (Canon EOS 5D) at Station M (Kaufmann and Smith, 1997; 
Sherman and Smith, 2009), and Bathysnap camera (Imenco SDS 1210) 
at PAP-SO (Bett, 2003). To improve comparability in the data from the 
two camera systems, only a portion of the total seabed area in view was 

analyzed (Fig. A.1). Lebensspuren were classified and measured as 
described in section 2.3. Creation (tracking) rates were calculated from 
estimated area and elapsed time, traces begun and completed between 
successive images were assigned a time of half the image interval. 

In the case of surficial deposit feeders that did not leave a trace (e.g. 
Abyssocucumis abyssorum and Oneirophanta mutabilis at Station M, Elpi
diidae spp. at PAP-SO), a linear rate of motion was calculated (cm h� 1), 
from which the areal trace creation rate (cm2 h� 1) was estimated using 
the anterior body width as an assumed track width. Only specimens that 
appeared in the field of view for a minimum of three successive images 

Fig. 2. Seasonality at Station M (a, b, c) and at PAP-SO (d, e, f): Mean POC flux (mg m� 2 d� 1) measured in the sediment trap (a) at Station M 600 m above bottom 
(mab) between 1989-2017 at 10-day intervals and (d) at PAP-SO 1850 mab water depth between 1989-2014 at 14-day intervals, with 95% confidence intervals in 
dashed lines; Mean particle flux (b) at Station M in the 600 mab and (e) at PAP-SO 100 mab sediment trap in the interval corresponding to seabed photographs; Mean 
percentage seabed cover of detrital aggregates and salps estimated from time-lapse photograph measurements (c) at Station M and (f) at PAP-SO. 
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were used for tracking rate estimation. 
The entire tracked area was calculated in the case of trace-making 

holothurians that produced continuous tracks. However, asteroids, 
echiurans, and enteropneusts are contingent (intermittent) trace-makers 
(Wheatcroft et al., 1989). Asteroids typically transit the seabed rapidly 
between feeding locations, for these taxa only the feeding trace area was 
calculated. Similarly, enteropneusts and some echinoids produced 
visible tracks while transiting the seabed slowly (and feeding), then 
relocated quickly to another feeding site without leaving a trace (Jones 
et al., 2013); only the traces were estimated. 

2.5. Statistical treatment 

To investigate the potential relationships between sediment trap 
estimates of particle flux and seabed cover by detritus, lebensspuren 
cover, and tracking rates, all data were aggregated as means for time 
periods matching the sediment trap records. Fractional seabed coverage 
was arcsine-transformed prior to statistical analysis. The presence/ 
absence of lebensspuren (from Benthic Rover images) and tracking 
(from oblique time-lapse images) in relation to the particle flux and 
seabed coverage by detritus was tested using ANOVA, with the former 
lagged by up to three and four time increments, to similar time periods 
(i.e. 0–40 days at Station M, 0–42 days at PAP-SO). The change in leb
ensspuren composition over time at Station M was assessed using 
nonmetric multidimensional scaling (nMDS) using “Bray-Curtis” 
dissimilarity between 10-day aggregated seabed cover by lebensspuren 
in Benthic Rover images. Spearman’s rank correlations were calculated 
to explore any time lag between observed particle flux (lagged simi
larly), seabed detrital coverage, and lebensspuren coverage (in Benthic 
Rover images) and creation rates (from time-lapse images). Statistically 
significant results are reported at α ¼ 0.05, and p-values corrected using 
the method of Benjamini and Hochberg (1995) to control the false 
positive rate associated with large numbers of correlations calculated. 
Only trace types with four or more instances of creation were used for 
correlation with food supply variables. 

3. Results 

3.1. Seasonality of detrital inputs 

3.1.1. Station M 
Mean POC flux at 600 mab in the composite year (1989–2017) 

peaked in April and June (Fig. 2a), and seasonality was significant 
(ANOVA F[36,2] ¼ 5.6, p < 0.05). The composite of mean POC flux over 
the period photographed (Fig. 2b) was correlated to 600 mab composite 
from 1989-2017 (rS [28] ¼ 0.74, p < 0.001). 

In the period covered by time-lapse photography, the POC flux 
recorded in the sediment trap peaked in June to August 2011, as 
described by Smith et al. (2014), and the dominant flux in 2012 occurred 
between March and late May, with a peak in April, and another begin
ning in mid-August. The detritus observed in the seabed images 
appeared as a dense, green, flocculent layer, similar to the description of 
“type 1” provided by Lauerman and Kaufmann (1998); it was visible 
from late June to July 2011, and late August to October 2012. The latter 
deposition event was larger than any previously observed deposition 
event (Smith et al., 2014). Salp carcasses first appeared on the seafloor 
in February 2012, with peaks in April and July, but were no longer 
visible by September; in areas where salp carcasses were present, any 
underlying detritus was not visible. In the 55 10-day intervals over the 
period of seabed photography, seabed cover (by detritus and salps) was 
not significantly correlated with sediment trap POC flux (Fig. 4; 
Table A.2). 

3.1.2. PAP-SO 
Mean POC flux at 1850 mab in the composite year (1989–2014) 

peaked in mid-July/August with a secondary peak in March/April 

(Fig. 2d). The composite mean detritus flux (mL m� 2 d� 1) at 100 mab 
over the photographed period (Fig. 2e) was correlated to the POC flux 
(mg m� 2 d� 1) in the 1850 mab composite (rS [25] ¼ 0.97, p < 0.0001). 
In the composite year (Fig. 2e and f), seabed cover by detritus was 
seasonal (F[25,2] ¼ 22.9, p < 0.0001), and best correlated to volume 
flux at 100 mab at a lag of 42 days (rS [23] ¼ 0.98, p < 0.0001). 

The primary detritus flux was observed in seabed images and in the 
sediment trap record from July to December (Figs. 2 and 5). Detritus 
appeared as a dense, green, flocculent layer in the seabed images. In the 
66 14-day intervals over the period of seabed photography, the volume 
flux measured by the 100 mab sediment trap was significantly correlated 
with the fraction of seabed covered by detritus, with the highest corre
lation occurring at a lag of 28 days (rS [64] ¼ 0.83, p < 0.0001; 
Table A.4). 

3.2. Spatial coverage and composition of traces at Station M 

The fraction of seabed tracked was measured in 25 10-day periods, 
including the March–May flux period in 2012 (Fig. 3). Tracking occurred 
in all periods, to a maximum total tracking of 6% in any one period 
(Fig. 3b). The diversity (as number of types of traces) in a 10-day period 
ranged from 2 to 8, and was negatively correlated to seabed cover lagged 
40 d (rS [25] ¼ � 0.6, p < 0.0). Echinoid tracking (the w-shaped track) 
appeared in every 10-day period (0.6–3.6% seabed tracked), as did the 
v-shaped track (0.02–1.4%). Sparse tube feet impressions appeared in 
the fewest 10-day periods (10). The presence of enteropneust tracking 
was significantly related to POC flux (F[24,2] ¼ 8.8, p < 0.05; 
Table A.1), and also to seabed cover lagged by 30 (F[24,2] ¼ 10.4, 
p < 0.05) and 40 days (F[24,2] ¼ 8.2, p < 0.05); the presence of spoke 
burrows was significantly related to POC flux lagged 20 days (F 
[23,2] ¼ 8.6, p < 0.05). Abyssocucumis abyssorum tracking was not 
visible in the Rover photos. Variation in trace composition in 10-day 
periods, summarized as nMDS component 1, was significantly corre
lated to POC flux (rS [25] ¼ 0.40, p < 0.05; Fig. 3d). 

3.3. Megafaunal activity 

3.3.1. Station M 
Tracking rates were estimated from 96 observations of eight trace 

types (Table 2; Fig. 4); 43% of the tracking instances observed was by 
echinoids and 22% by the holothurian Abyssocucumis. A total of 4.99 m2 

of seabed was tracked by megafauna during the period of observation 
(63 10-day periods), equivalent to 52% seabed tracking annually. 
Echinoids, producing the w-shaped track, tracked the seabed nearly 
continuously (Fig. 4h), while other organisms tracked the seabed 
intermittently. Mean tracking (cm2 h� 1) at Station M was 28% faster 
than at PAP-SO. The fastest mean tracking (187.1 cm2 h� 1) was the 
production of the v-shaped track (unknown producer), while the slowest 
(3.1 cm2 h� 1) was the enteropneust. 

Seabed tracking by all quantified megafauna was not correlated to 
lagged POC flux or lagged detritus and salp cover. The only type of 
tracking correlated to the POC flux was by Oneirophanta mutabilis, which 
was correlated when POC flux was lagged by 40 days (Table A.2; Fig. 4f); 
note that it was only observed in 2011. 

3.3.2. PAP-SO 
Tracking rates were estimated from 106 instances of seven types of 

tracking (Table 2). A total seabed area of 3.33 m2 was tracked over by 
megafauna during the period of observation, equivalent to 340% seabed 
tracking annually. The most numerous instances of tracking were the 
sparse tube feet impressions (45%), followed by Elpidiidae spp. (22%); 
only one instance of asteroid feeding was observed. The fastest seabed 
tracking (59.8 cm2 h� 1) were the sparse tube feet impressions, at ~75% 
of the rate of the same tracking at Station M. Dense tube feet impressions 
and the smooth wide depression track were produced at less than half 
the speed at Station M (40 and 44%, respectively). 
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The presence of smooth wide depression track was significantly 
related to the detrital flux (F[65,2] ¼ 7.9, p < 0.05; Table A.3), with the 
strongest relationship when detritus was lagged 42 d (F[62,2] ¼ 18.8, 
p < 0.001). However, the smooth wide depression and dense tube feet 
tracks were only observed in photographs in 2012-2013. The presence of 
spoke burrows was best related to detrital flux lagged 42 d (F 
[62,2] ¼ 7.6, p < 0.0001), and to seabed cover in photos, with the 
strongest relationship when seabed cover lagged 42 days (F 
[59,2] ¼ 30.4, p < 0.0001). 

Total seabed tracking was not correlated to lagged detritus flux or 
lagged detritus cover at 14-day intervals, except for spoke burrow 

creation by echiurans, which was significantly correlated to detrital flux 
lagged 14 days and more (Fig. 4, Table A.4), and to seabed cover by 
detritus at all lag periods tested. 

4. Discussion 

Our observations of the potential responses of deposit-feeding 
megafauna to the input of detritus were not consistent across the taxa 
studied. At Station M, differing responses in terms of timing of feeding 
and feeding rates both likely contributed to the observed differences in 
the diversity of traces related to seabed cover. Some deposit feeders did 

Fig. 3. Composition of traces over 10-day time periods at Station M from Rover data: (a) Mean POC flux at 600 mab; (b) Percent seabed cover by all lebensspuren; (c) 
Cumulative composition of seabed cover by different types of lebensspuren (from bottom: dotted ¼ sparse tube feet, long dash ¼ spoke burrows, longer 
dash ¼ smooth wide depression, solid ¼ dense tube feet, spaced dash ¼ v-shaped track, dot-dash ¼w-shaped track); (iii) nonmetric multidimensional scaling 
Component 1 of Bray-Curtis dissimilarity between 10-day periods. 
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Fig. 4. Temporal variation in food supply and megafaunal tracking rates at Station M. Ten-day mean values of observations in seabed photographs between May 
2011 and November 2012: detrital inputs, measured as (a) POC in sediment traps and (b) seabed coverage (%) by detritus and salps, and tracking rates (cm2 h� 1) by 
(c) all fauna and track types, (d) asteroid feeding impressions (e) Abyssocucumis abyssorum, (f) Oneirophanta mutabilis, (g) smooth wide depression, (h) w-shaped track, 
(i) v-shaped track, and (j) spoke burrows (cm2). 
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Fig. 5. Temporal variation in food supply and megafaunal tracking rates at PAP-SO. Fourteen-day mean values of observations in seabed photographs between 
August 2011 and June 2015 at PAP-SO: detrital inputs, measured as (a) detrital flux in sediment traps (mL m� 2 d� 1) and (b) seabed coverage (%) by detritus, and 
tracking rates (cm2 h� 1) by (c) all types, (d) Elpidiidae spp., (e) dense tube feet impressions, (f) sparse tube feet impressions, (g) smooth wide depression, (h) spoke 
burrows. Dashed x-axis interval represents period not sampled. 
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appear to exhibit seasonal variation in their feeding, either by feeding 
seasonally, or with increased rates associated with the arrival of detritus 
to the seabed. Fauna exhibiting this behavior were, generally, relatively 
uncommon deposit feeders, such as enteropneusts at Station M and 
echiurans at PAP-SO, and may be specialist feeders on fresh organic 
matter, as feeding behavior of enteropneusts and echiurans has been 
related to the deposition and renewal of organic matter at the sediment 
surface (Carey and Mayer, 1990; Smith et al., 1993a). The seasonality in 
their feeding, as either tracking (cm2 h� 1) or simple presence of traces, 
was not mirrored in the whole-community feeding rates (cm2 h� 1), 
because community rates were dominated by the relatively constant 
feeding of the numerically-dominant deposit feeders. These dominant 
deposit feeders included echinoids and Abyssocucumis abyssorum at 
Station M, and the holothurians Psychropotes longicauda and Oneir
ophanta mutabilis at PAP-SO. 

Our results suggest that seasonality in deep-sea invertebrate deposit 
feeding may be related to life history traits, specifically feeding and 
foraging modes. For example, echiurans are thought to cache food 
(Hughes et al., 1994; Jumars et al., 1990), a behavior that enables them 
to actively gather food primarily when suitable fresh detritus is available 
(Shields and Hughes, 2009). Alternation of feeding modes to include 
detritivory may be common in the deep-sea benthos (e.g. Jeffreys et al., 
2011), including the hemisessile predator Iosactis vagabunda (Durden 
et al., 2015b), the most common megafaunal taxon at PAP-SO. In the 
case of deposit-ingesting asteroids, such as Dytaster sp., they may also 

predate on macro-infauna (Howell et al., 2003). This diversification of 
diet, while difficult to quantify, reduces their direct dependence on 
detrital input, thus decoupling their feeding from its seasonal input. 

Mobile epibenthic megafauna, such as holothurians, forage large 
surface areas (Billett, 1991; Lauerman and Kaufmann, 1998; Roberts 
et al., 2000). This strategy may assist these deposit feeders to exploit the 
resource available at the time most effectively. Both the total particle 
flux and the composition of that organic matter, such as the fatty acid 
and low molecular weight alcohol content, are known to vary seasonally 
(Kiriakoulakis et al., 2001). This resource can be partitioned through 
selective feeding based on particle quality, which may allow continuous 
feeding by the deposit-feeding holothurians (Wigham et al., 2003). 
Seasonal changes in the gut contents of Oneirophanta mutabilis revealed 
that it fed selectively on fresh material, but that it continued to feed 
when fresh detritus was scarce (FitzGeorge-Balfour et al., 2010), oper
ating as a ‘conveyor belt feeder’ (Moore and Roberts, 1994). This 
selectivity may account for the seasonality observed in the apparent 
feeding rate of Oneirophanta mutabilis at Station M; however, Witbaard 
et al. (2001) suggested that O. mutabilis does not appear to actively 
search for fresh detritus. The seasonality observed in feeding by 
O. mutabilis may instead be related to its consumption of bacteria in the 
sediment (as evidenced by fatty acids in gut contents; Drazen et al., 
2008), the population of which may respond rapidly to the introduction 
of fresh detritus (see below). The larger holothurians that are assumed to 
feed on a thicker/deeper layer of surficial sediment, such as Molpadio
demas sp. (Roberts et al., 1996), appear to be less selective feeders 
(FitzGeorge-Balfour et al., 2010), with their gut contents suggesting 
decoupling from seasonality in food supply as assessed by stable isotope 
analysis (Iken et al., 2001). Prokaryotes/bacteria in the sediment are 
important to the diet of bulk sediment feeders (Amaro et al., 2012), so 
selectivity in these organisms may not be in preference of fresh detritus. 
Selectivity (or lack thereof) for fresh detritus may be related to the 
contrasting foraging modes in mobile megafauna. Foraging motions 
facilitating a high degree of such selectivity by exploiting food patches, 
such as the ‘run and mill’ or ‘loop’ patterns of motion observed in 
A. abyssorum (Kaufmann and Smith, 1997), versus continuous move
ment likely related to non-selective bulk ingestion, such as the ‘run’ 
observed in Echinocrepis sp. and O. mutabilis (Kaufmann and Smith, 
1997; Vardaro et al., 2009), and Molpadiodemas sp. (Billett, 1991). 
Although the deposit feeding rate may not vary with time for the latter 
type of foragers, the carbon consumed over time may vary as the carbon 
content of the deposited detritus and surface sediment changes season
ally (Kiriakoulakis et al., 2001). This variation in the quality of organic 
matter consumed could be quantified via seasonal sampling of surficial 
sediments and detrital aggregates, with any biogeochemical signal in the 
response of the megafauna (Jeffreys et al., 2009; Wigham et al., 2003) 
discerned through specimen collection at similar timescales. 

Variations in community-wide consumption of detritus are also 
likely to be linked to the densities of deposit feeders. Multi-annual 
variations in megafaunal community structure have been observed at 
Station M (Kuhnz et al., 2014). Similarly, intra-annual variations in 
detritus flux (Bett et al., 2001; Lampitt et al., 2001) and megabenthic 
community structure (Billett et al., 2010) have been documented at the 
PAP-SO, with an increase in the tracking of the seabed by the mobile 
megafauna related to increases in their densities (Bett et al., 2001). 
Major variations recorded related to substantial variations in the den
sity, biomass, body size structure and proportions of the fauna in 
different feeding groups, with direct implications for community 
ingestion rates. For example, at PAP-SO Bett et al. (2001) reported that 
the time taken to track 100% of the seabed varied from 6 weeks to 2.5 
years during the course of a 10-year period, primarily driven by a change 
in the density of the Amperima rosea (a component of Elpidiidae spp.) 
population. During the period of our observations, the density of Elpi
diidae spp. at PAP-SO appeared to be in an intermediate state between 
its ‘boom-bust’ density extremes (see Billett et al., 2010). The increase in 
the density of the holothurian Peniagone sp. A at Station M observed 14 

Table 2 
Observations of seafloor tracking rates (cm2 h� 1) of deposit-feeding mega
benthos (mean and 95% confidence limits) in time-lapse photographs at Station 
M and PAP-SO.  

Indication of 
megafaunal 
activity 

Station M PAP-SO 

No. Mean 
[95% 
CI] 

Range No. Mean 
[95% 
CI] 

Range 

Asteroid 
feeding 
depression 

11 71.6 
[20.4, 
122.8] 

0.5–211.5 1 1.5 - 

Abyssocucumis 
track 

21 39.8 
[22.5, 
57.1] 

8.9–160.8 - - - 

Elpidiidae spp. - - - 24 13.2 
[6.7, 
19.5] 

1.5–49.6 

Benthothuria/ 
Benthodytes 
track 

- - - 4 47.0 
[1.4, 
92.6] 

14.6–115.0 

Dense tube feet 
impressions 

2 110.24 47.3–173.2 8 44.2 
[16.8, 
71.6] 

5.2–136.2 

Sparse tube feet 
impressions 

9 80.8 
[47.4, 
114.3] 

23.7–162.7 48 59.8 
[48.3, 
71.3] 

14.3–167.7 

Smooth wide 
depression 
track 

6 40.0 
[15.1, 
64.8] 

7.4–86.8 4 17.5 
[5.2, 
29.9] 

6.7–34.1 

W-shaped track 41 26.4 
[15.4, 
37.4] 

1.9–217.0 - - - 

V-shaped track 4 187.1 
[78.0, 
296.2] 

68.6–331.0 - - - 

Enteropneust 
track 

2 3.1 2.8–3.4 - - - 

Spoke burrow - - - 17 11.0 
[0.9, 
21.2] 

0.1–75.5 

Total 96 48.4 
[36.2, 
60.7] 

0.5–331.0 106 37.6 
[30.1, 
45.1] 

0.1–167.7  
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weeks after the salp deposition (Smith et al., 2014) occurred near the 
end of our study period. Unfortunately, tracking by Peniagone sp. A could 
not be quantified reliably in this study because of its high density and 
lack of trace-making. 

The combination of inter- and intra-annual factors that impact car
bon cycling at the two study sites are discussed by Smith et al. (2009) in 
the context of climate variations and surface ocean processes. In terms of 
inputs to the abyssal benthos, a larger and later peak in the annual 
detrital input occurs at PAP-SO than at Station M, as evidenced by the 
composite particle fluxes at 3000 m and 3400 m water depth (1850 mab 
and 600 mab), respectively (Fig. 2a, d; 19.5 mg m� 2 d� 1 in August versus 
14.3 mg m-2 d-1 in June). These differences were also apparent at the 
seafloor in terms of seabed cover during the period photographed, 
despite the exceptional input at Station M in 2012. The apparent lag 
between the appearance of detritus in the near-seabed sediment trap at 
PAP-SO and its appearance in seabed photos (42 days), may be 
complicated by the resuspension after its initial deposition on the sea
floor. Similar factors likely influence the lag time between the sediment 
trap signal and the appearance of detritus on the seabed at Station M, 
and may be further confounded by the salp deposition clogging the 
sediment trap (Smith et al., 2014). 

While the two study sites were similar in mean flux (8.0 mgC 
m� 2d� 1 at Station M and 8.3 mgC m� 2 d� 1 at PAP-SO in the composite 
year), the seasonality in the flux was greater at PAP-SO. At PAP-SO, 
detritus appeared at depth more rapidly, as evidenced by the shorter 
Flux Stability Index (minimum time for 50% of the annual flux to be 
achieved; 140 days at Station M and 112 days at PAP-SO; Lampitt and 
Antia, 1997). The contrast between sites in the uptake of deposited 
detrital material was substantial: mean tracking per period at PAP-SO 
was five times that of Station M (1.9 cm2 h� 1and 0.4 cm2 h-1, respec
tively). This slow uptake at Station M, and the offset between sites, may 
be largely because the typically high numerical density deposit-feeding 
holothurians Peniagone sp. A, Peniagone vitrea, Peniagone sp. 1, Scoto
planes globosa and Elpidia minutissima at Station M (totalling 33–48% of 
megafaunal individuals in 2011-2012; Kuhnz et al., 2014; Kuhnz et al., 
this issue) were not included because they are non-tracemakers. The 
time for these holothurians to track the seabed, assuming a tracking rate 
equivalent to that of Elpidiidae spp. at PAP-SO, may have reached 4.6 
weeks during periods of low density (1.0 ind m� 2 in November 2011) to 
1.4 weeks in periods of high density (3.2 ind m� 2 in November 2012). 
These estimates suggest that the true time to track the seabed was less at 
Station M than at PAP-SO, in accord with the order of magnitude higher 
density of holothurian deposit feeders at Station M above that of PAP-SO 
in 2011/2012 (Durden et al., 2015a; Kuhnz et al., 2014). The higher 
rates of deposit-feeding at Station M, particularly between organisms 
that exist at both sites (e.g. Oneirophanta mutabilis), are likely a result of 
the larger body sizes of those organisms at Station M (Durden et al., 
2019). The high numerical density population of Iosactis vagabunda at 
PAP-SO was excluded because its detritivory could not be quantified. 

Differences in deposit feeding between the two sites may also be 
related to the varying quality of the detritus deposited at each site, and 
differing community composition altering the partitioning of this 
resource. Occurrences of feeding by taxa with similar feeding modes 
were similar between the sites, such as the superficial deposit feeders 
Abyssocucumis abyssorum and Elpidiidae spp., and the subsurface bulk 
ingestion makers of the smooth wide depression. However, a greater 
abundance of deep subsurface sediment feeders (e.g. echinoids, 

asteroids) were observed at Station M. The notable paucity of observa
tions of Oneirophanta mutabilis (sparse tube feet impressions) at Station 
M in comparison to PAP-SO may be related to the increase in densities of 
Peniagone spp., Scotoplanes globosa and Elpidia minutissima that occurred 
in 2011-2012, but whose deposit feeding was not quantified here. These 
holothurians may feed similarly, based on mouth/tentacle morphology, 
and may compete for a similar portion of the detrital resource. 

The similar lag times between detrital flux measured in the sediment 
traps and its appearance on the seabed, and the deposit feeding by those 
taxa exhibiting some seasonality suggests an immediate response by 
those deposit feeding megafauna, in agreement with findings from up
take experiments on holothurians (Lauerman et al., 1997). This imme
diate response may be important in terms of competition with other size 
classes of the benthos for the same resource. The rapid ingestion of 
sedimented detritus, suggesting a near-immediate response, by macro
fauna has been observed, as has a near-immediate change in the sedi
ment community oxygen consumption (Jeffreys et al., 2013; Laguionie 
Marchais et al., this issue; Smith et al., 2014). A size-based model of 
ingestion succession, where larger fauna rework fresh detritus before 
small classes (e.g. meiofauna and microbes) has been suggested (Witte 
et al., 2003). Size-related implications for taxon-specific seasonality 
have not been explored here; however, individual megafaunal deposit 
feeding rates at these sites is consistent with a mass- and 
temperature-specific constant feeding rate that is broadly constant 
(Durden et al., 2019). The deposit feeding (ingestion) rates estimated in 
this study may be useful in refining the concepts of resource partitioning 
between feeding types and size classes in abyssal plain environments (e. 
g. Dunlop et al., 2016; Durden et al., 2017; Kelly-Gerreyn et al., 2014), in 
combination with refinements to estimates of suspension feeding based 
on recent behavioral observations (Kahn et al., this issue). Further, they 
may be valuable in assessing the potential impacts of variation in the 
flux of carbon to the seafloor, such as may occur through episodic 
deposition events (Billett et al., 2006; Smith et al., 2018) and more 
generally via climate change (Jones et al., 2014; Yool et al., 2017). 
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Appendix A  

Table A.1 
ANOVAs of presence of megafaunal activity in Rover images with POC flux (mg m� 2 d� 1) in sediment traps at 600 m above bottom and seabed cover (%) by detritus 
and salps in time-lapse images in 10-day intervals at Station M, F values given, significant relationships noted in bold, corrected p values are denoted as follows: 
*p < 0.05.   

ANOVAs with POC flux ANOVAs with seabed cover in photos (%) 

No lag 
(n ¼ 23) 

10d 
(n ¼ 23) 

20d 
(n ¼ 22) 

30d 
(n ¼ 21) 

40d 
(n ¼ 20) 

No lag 
(n ¼ 23) 

10d 
(n ¼ 23) 

20d 
(n ¼ 22) 

30d 
(n ¼ 21) 

40d 
(n ¼ 20) 

Asteroid feeding 
depression 

0.8 0.6 0.3 1.1 1.2 1.6 1.4 0.8 2.1 3.9 

Abyssocucumis track 
(tripod) 

1.2 6.1 4.4 4.6 1.6 3.2 5.7 5.1 2.6 1.1 

Dense tube feet 
impressions 

0.5 0.2 1.1 1.1 0.1 4.2 0.7 0.2 0.7 4.5 

Sparse tube feet 
impressions 

4.1 5.8 3.7 5.5 4.7 5.1 4.6 3.4 2.5 4.6 

Smooth wide depression 
track 

0.5 1.4 0.5 1.1 1.2 0.1 0.5 0.6 1.8 0.2 

W-shaped track 1.0 0.2 0.0 1.0 0.6 0.5 0.5 0.4 0.3 0.3 
V-shaped track 1.0 0.2 0.0 1.0 0.6 0.5 0.5 0.4 0.3 0.3 
Enteropneust track 8.8* 3.5 1.9 2.2 1.6 3.2 3.8 2.7 10.4* 8.2* 
Spoke burrows 0.9 6.7 8.6* 3.0 1.4 2.4 2.0 6.9 2.6 5.2    

Table A.2 
Spearman’s rank correlations of megafaunal activity (cm2 h� 1; except as noted) from time-lapse images with POC flux (mg m� 2 d� 1) in sediment traps at 600 m above 
bottom and seabed cover (%) by detritus and salps in 10-day intervals at Station M, rS values given, significant relationships noted in bold, corrected p values are 
denoted as follows: *p < 0.05.   

Correlations with POC flux Correlations with seabed cover in photos (%) 

No lag 
(n ¼ 51) 

10d 
(n ¼ 52) 

20d 
(n ¼ 53) 

30d 
(n ¼ 54) 

40d 
(n ¼ 55) 

No lag 
(n ¼ 30) 

10d 
(n ¼ 30) 

20d 
(n ¼ 30) 

30d 
(n ¼ 30) 

40d 
(n ¼ 30) 

Detritus and salp cover � 0.03 0.01 0.06 0.06 0.05      
Asteroid feeding 

depression 
� 0.14 � 0.13 � 0.15 � 0.17 � 0.20 0.002 � 0.04 � 0.11 � 0.11 � 0.10 

Abyssocucumis track 0.13 0.20 0.16 0.18 0.21 0.24 0.22 0.17 0.12 0.16 
Sparse tube feet 

impressions 
0.19 0.23 0.30 0.32 0.37* � 0.23 � 0.22 � 0.17 � 0.10 � 0.15 

Smooth wide depression 
track 

0.04 0.22 0.31 0.21 0.21 � 0.07 � 0.01 � 0.02 � 0.12 � 0.20 

W-shaped track 0.27 0.15 0.08 � 0.02 0.07 0.08 0.07 0.02 � 0.03 � 0.02 
V-shaped track � 0.21 � 0.29 � 0.10 � 0.11 � 0.20 � 0.02 0 � 0.01 � 0.004 � 0.02 
Spoke burrows (seabed 

cover) 
(n ¼ 25 for all tests) 

� 0.04 � 0.44 � 0.51 � 0.36 � 0.23 � 0.27 � 0.33 � 0.45 � 0.40 � 0.41 

All tracking 0.25 0.21 0.26 0.21 0.24 � 0.06 � 0.06 � 0.12 � 0.19 � 0.19   
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Table A.4 
Spearman’s rank correlations of megafaunal activity (cm2 h� 1; except as noted) from time-lapse images with detrital volume flux (mL m� 2 d� 1) in sediment traps 100 m 
above the bottom and seabed cover (%) in 14-day intervals at PAP-SO, rS values given, significant relationships noted in bold, corrected p values are denoted as follows: 
*p < 0.05; **p < 0.01; ***p < 0.001; **** p < 0.0001   

Correlations with detritus (mL m� 2 d� 1) Correlations with seabed cover in photos (%) 

No lag 
(n ¼ 66) 

14d 
(n ¼ 65) 

28d 
(n ¼ 64) 

42d 
(n ¼ 63) 

No lag 
(n ¼ 66) 

14d 
(n ¼ 64) 

28d 
(n ¼ 62) 

42d 
(n ¼ 60) 

Detritus cover 0.75**** 0.82**** 0.83**** 0.81****     
Dense tube feet impressions (Psychropotes 

longicauda) 
� 0.07 � 0.15 � 0.10 � 0.08 � 0.19 � 0.06 � 0.03 � 0.05 

Sparse tube feet impressions (Oneirophanta 
mutabilis) 

� 0.12 � 0.12 � 0.12 � 0.15 � 0.24 � 0.23 � 0.23 � 0.20 

Smooth wide depression track (Molpadiodemas 
sp.) 

0.19 0.20 0.22 0.25 0.20 0.27 0.27 0.18 

Benthothuria/Benthodytes track 0.003 0.02 0.06 � 0.02 0.02 � 0.02 � 0.03 � 0.02 
Spoke burrows 0.18 0.33* 0.41** 0.51**** 0.47*** 0.51**** 0.55**** 0.59**** 
Elpidiidae spp. tracking 0.06 0.01 0.01 0.11 � 0.03 0.07 0.10 0.02 

All tracking 0.05 0.02 0.02 � 0.002 � 0.02 � 0.02 0.00 0.06   

Table A.3 
ANOVAs of presence of megafaunal activity in time-lapse images with detrital volume flux (mL m-2 d-1) in sediment traps 100 m above the bottom and seabed cover (%) 
in 14-day intervals at PAP-SO, F values given, significant relationships noted in bold, corrected p values are denoted as follows: *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001   

ANOVAs with detritus (mL m� 2 d� 1) ANOVAs with seabed cover in photos (%) 

No lag 
(n ¼ 64) 

14d 
(n ¼ 63) 

28d 
(n ¼ 62) 

42d 
(n ¼ 61) 

No lag 
(n ¼ 64) 

14d 
(n ¼ 63) 

28d 
(n ¼ 62) 

42d 
(n ¼ 61) 

Asteroid feeding impressions 0.7 1.0 0.8 0.0 0.0 0.9 1.5 0.3 
Dense tube feet impressions (Psychropotes 

longicauda) 
0.8 1.3 0.6 0.3 1.7 0.5 0.1 0.1 

Sparse tube feet impressions (Oneirophanta 
mutabilis) 

3.1 1.7 1.9 3.2 4.8 4.2 2.5 2.1 

Smooth wide depression track (Molpadiodemas 
sp.) 

7.9* 7.2* 7.9* 18.8*** 5.4 4.7 3.0 1.4 

Benthothuria/Benthodytes track 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.3 
Spoke burrows 0.2 1.8 3.9 7.6** 10.8** 15.4** 21.7**** 30.4**** 
Elpiididae spp. tracking 0.7 1.0 0.8 0.0 0.0 0.9 1.5 0.3   
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Fig. A.1. Fields of view used for quantification of detritus / salps and fauna / lebensspuren in time lapse photographs captured with Bathysnap at PAP-SO and with 
the camera tripod at Station M (diagram to scale). 
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