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Abstract

We study how paradoxicality properties a�ect the way groups partially act

on topological spaces and C∗-algebras. We also investigate the real rank zero

and AF properties for certain classes of group C∗-algebras.

Speci�cally, in article A, we characterize supramenable groups in terms of

existence of invariant probability measures for partial actions on compact Haus-

dor� spaces and existence of tracial states on partial crossed products. These

characterizations show that, in general, one cannot decompose a partial crossed

product of a C∗-algebra by a semidirect product of groups as two iterated partial

crossed products. We give conditions which ensure that such decomposition is

possible.

In Article B, we show that an action of a group on a set X is locally �nite

if and only if X is not equidecomposable with a proper subset of itself. As a

consequence, a group is locally �nite if and only if its uniform Roe algebra is

�nite.

In Article C, we analyze the C∗-algebra generated by the Koopman repre-

sentation of a topological full group, showing, in particular, that it is not AF and

has real rank zero. We also prove that if G is a �nitely generated, elementary

amenable group, and C∗(G) has real rank zero, then G is �nite.



Resumé

Vi studerer hvordan paradoksikalitet påvirker måden, som grupper partielt

virker på topologiske rum og C∗-algebraer. Vi undersøger også de reel rang nul

og AF egenskaber for visse klasser af gruppe C∗-algebraer.

I Artiklen A karakteriserer vi supramenable grupper i termer af eksitens af

invariante sandsynlighedsmål for partielle virkninger på kompakte Hausdor� rum

og eksitens af sportilstande på partielle krydsprodukter. Disse karakteriseringer

viser at generelt kan man ikke nedbryde et partielt krydsprodukt af en C∗-algebra

ved et semidirekte produkt af grupper, som to gentaget partielle krydsprodukter.

Vi giver betingelser som sikre at en sådan nedbrydning er mulig.

I Artiklen B viser vi at en virkning af en gruppe på en mængde X er lokalt

endelig hvis og kun hvis X ikke er ækvidekomposibel med en ægte delmængde

af sig selv. Som en konsekvens er en gruppe lokalt endelig hvis og kun hvis dens

uniform Roe algebra er endelig.

I Artiklen C analysere vi C∗-algebraen genereret af den Koopman repræsen-

tation af en topologisk fuld gruppe. Specielt viser vi at den ikke er AF og har reel

rang nul. Vi viser også at, hvis G er en endeligt frembragt, elementært amenabel

gruppe, og C∗(G) har reel rang nul, så er G endelig.
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Introduction

A group is amenable if and only if whenever it acts on a compact Hausdorff space, the space

admits an invariant probability measure.

In [KMR13], Kellerhals, Monod and Rørdam characterized supramenability of a group

in terms of existence of invariant measures for co-compact actions on locally compact Haus-

dorff space. Furthermore, they used non-supramenability of a group for constructing stable

Kirchberg algebras out of actions on the locally compact, non-compact Cantor set.

In [Hop07], Hopenwasser exhibited a partial action of a metabelian group on the Cantor

set, such that the associated partial crossed product is isomorphic to the Cuntz algebra O2.

In particular, such partial action does not admit an invariant probability measure.

In [Sca16b], we showed that a group is supramenable if and only if whenever it partially

acts on a compact Hausdorff space, then the space admits an invariant probability measure.

Moreover, we proved the non-commutative version of this result in terms of invariant tra-

cial states. These characterizations implied that, in general, one cannot decompose a partial

crossed product of a C∗-algebra by a semidirect product of groups as two iterated partial

crossed products. We gave conditions which ensure that such decomposition is possible.

In [KMR13], it was observed that, if a group is locally finite, then its uniform Roe algebra

is finite, and asked whether the converse holds. In [Sca16a], we showed that a group is locally

finite if and only if it is not equidecomposable to a proper subset, if and only if its uniform

Roe algebra is finite.

Motivated by this result, we started to work on the problem of characterizing local finite-

ness of a group in terms of its group C∗-algebra. Clearly, if a countable group G is locally

finite, then C∗(G) is AF. Conversely, in [Kan93, Theorem 2], Kaniuth proved that if G is a

nilpotent group and C∗(G) has real rank zero, then G is locally finite.

In [Sca17], we showed that if G is a finitely generated, elementary amenable group, and

C∗(G) has real rank zero, then G is finite. A class of groups that is not covered by this result

is that of commutators of topological full groups. Given scuch a group, we showed that its

group C∗-algebra is not AF by analyzing its canonical Koopman representation.
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Background

In this chapter, we collect some definitions and facts that are relevant for the thesis. More

basic aspects about C∗-algebras can be consulted in [Mur90].

Crossed product

We refer the reader to [Exe15] (which treats the more general setting of partial actions and

Fell bundles) for the material in this section.

Let θ be an action of a group G on a C∗-algebra A. Denote by AoalgG the vector space

of finitely supported functions from G into A.

For every g ∈ G and ag ∈ A, let agδg ∈ Aoalg G be defined by

agδg(h) :=




ag if h = g

0 if g 6= h
, h ∈ G.

Notice that {agδg : g ∈ G, ag ∈ A} spans AoalgG. Hence, we can define a product and

an involution on Aoalg G by

(agδg)(bhδh) := agθg(bh)δgh

(agδg)
∗ := θg−1(a∗g)δg−1

for g, h ∈ G and ag, bh ∈ A. These operations turn Aoalg G into a ∗-algebra.

Consider the linear map ψ : Aoalg G→ A such that

ψ(aδg) =




a if g = e

0 if g 6= e
, g ∈ G, a ∈ Ig. (1)

There is a C∗-norm ‖ ·‖red onAoalgG (that is, a norm satisfying the C∗-identity) which

makes ψ contractive and such that the extension of ψ to the completion of AoalgG endowed

with ‖ · ‖red is faithful (for C∗-algebras B and C, a linear map ϕ : B → C is said to be

11
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faithful if, for every b ∈ B, ϕ(b∗b) = 0 implies that b = 0). Furthermore, ‖ · ‖red is the

unique C∗-norm on Aoalg G with these properties.

The completion of Aoalg G endowed with ‖ · ‖red is called the reduced crossed product,

and denoted by A ored G (or A or G). See also [BO08] for the more usual construction of

the reduced crossed product.

Define another C∗-norm on Aoalg G by

‖x‖max := sup{p(x) : p is a C∗-seminorm on Aoalg G}.

The full crossed product, denoted byAoG, is the completion ofAoalgG endowed with

‖ · ‖max.

There is a surjective ∗-homomorphism π from AoG to Aored G defined in an obvious

way. If G is amenable, then π is an isomorphism.

IfG = Z, there is a tool, the so called Pimsner-Voiculescu exact sequence, for computing

the K-groups of Ao Z (see, for example, [Cun81] for more details and a proof):

K0(A)
id−K0(θ−1) // K0(A) // K0(Ao Z)

��
K1(Ao Z)

OO

K1(A)oo K1(A).
id−K1(θ−1)

oo

If a group G acts on a locally compact Hausdorff X topologically freely (that is, for any

g ∈ G \ {e}, the interior of {x ∈ X : gx = x} is empty) and minimally (for any x ∈ X , it

holds that Gx is dense), then the associated reduced crossed product C0(X) or G is simple.

Supramenable groups

Let G be a group. A non-empty subset A of G is said to be paradoxical if there exist disjoint

subsets B and C of A, finite partitions {Bi}ni=1 and {Cj}mj=1 of B and C and elements

s1, ..., sn, t1, ..., tm ∈ G such that A = tni=1siBi = tmj=1tjCj (disjoint union).

A group is supramenable if none of its subsets is paradoxical. The class of supramenable

groups is closed under taking direct limits, and, if a group is virtually supramenable, then

it is supramenable. See [Wag85, Chapter 12] for proofs of these and other permamence

properties.

If a group has subexponential growth, then it is supramenable. It is unknown whether the

converse holds, or if the direct product of two supramenable groups is supramenable.

Let G be a supramenable group. Clearly, the direct product of G with a locally finite

group is supramenable. To our best knowledge, it is not known whether G×Z is necessarily



Contents 13

supramenable. IfG×Z is not supramenable, then, by [KMR13, Proposition 3.4] and [Sca16a,

Proposition 2.5], for every non-locally finite groupH it holds thatG×H is not supramenable.

In [Mon17], a fixed-point property for groups is introduced, and shown to imply supra-

menability and be implied by subexponential growth. Furthermore, this property is shown to

be closed with respect to taking direct product with any group of subexponential growth.

In [KMR13], it was shown that a group is supramenable if and only if whenever it acts

co-compactly on a locally compact HausdorffX , thenX admits a non-zero, invariant, regular

measure. In [MR15], it was shown that the hypothesis of co-compactness is indispensable.

Let A be a C∗-algebra. Recall that a non-zero projection p ∈ A is said to be properly

infinite if it has two orthogonal subprojections which are Murray-von Neumann equivalent

to p.

Also in [KMR13], it was proven that a groupG is supramenable if and only if `∞(G)ored

G (the uniform Roe algebra) contains no properly infinite projection. We end this section by

proving a slight strengthening of this result. It will not be necessary for the remaining of the

thesis, so the reader is welcome to skip it.

Proposition. A group G is supramenable if and only if whenever it acts on a locally

compact Hausdor� space X, then C0(X)oredG contains no properly in�nite projection.

Proof. Assume �rst that G is supramenable and that there is a properly in�nite pro-

jection p ∈ C0(X) ored G.

Let ψ : C0(X)ored G→ C0(X) and ψG : `∞(G)ored G→ `∞(G) be the canonical

conditional expectations. Since they are faithful, there is x ∈ X such that ψ(p)(x) 6= 0.

Let ϕx : C0(X) → `∞(G) be given by ϕx(f)(g) := f(gx), for f ∈ C0(X) and

g ∈ G. Then ϕx is a G-equivariant ∗-homomorphism. In particular, it can be naturally

extended to a ∗-homomorphism Φx : C0(X) ored G→ `∞(G) ored G.

Notice that ϕx ◦ ψ = ψG ◦ Φx. Hence, Φx maps p to a non-zero element, which

clearly will be a properly in�nite projection.

Since G was supramenable, this cotradicts [KMR13, Proposition 5.3]. Therefore,

C0(X) ored G contains no properly in�nite projection.

Now assume G that is not supramenable, and take A ⊂ G paradoxical. Then

1A ∈ `∞(G) ored G is a properly in�nite projection, as proved in [RS12].





Abstract of the articles with

perspectives for further research

Article A ([Sca16b])

We show that a group is supramenable if and only if whenever it partially acts on a compact

Hausdorff space, the space admits an invariant probability measure.

We also show that a group is supramenable if and only if whenever it partially acts on a

unital C∗-algebra which has a tracial state, the associated partial crossed product also has a

tracial state.

Furthermore, we show that if G is a countable, amenable, non-supramenable group, then

there exists a free, minimal partial action of G on the Cantor set such that the associated

partial crossed product is a Kirchberg algebra.

In [Li16], Li showed that if G is an exact group which contains a non-abelian free semi-

group (in particular, it is non-supramenable), and E is a countable graph, then there is a

partial action of G on the boundary-path space of E , such that the partial crossed product is

isomorphic to the graph C∗-algebra of E .

Given a (global) action of a semidirect product G o H on a C∗-algebra A, one can

decompose the crossed product Ao (GoH) as two iterated crossed products by G and H:

Ao (GoH) ∼= (AoG) oH. (2)

The class of supramenable groups is not closed under taking semidirect products. There-

fore, our results show that, in general, one cannot have a decomposition such as in (2) for

partial actions.

We give conditions under which (2) holds for partial actions. These conditions involve

assuming that A is stable or requiring that the domains of the partial isomorphisms satisfy a

certain condition.

15



16 Contents

Article B ([Sca16a])

Given a group G acting on a set X , we show that the action is locally finite if and only no

subset of X is equidecomposable to a proper subset of itself, if and only if `∞(X) ored G

is a finite C∗-algebra. Consequently, a group is locally finite if and only if its uniform Roe

algebra if finite.

After this paper was made available on arXiv, we became aware of [Wei11], in which

Wei showed that, if a group is infinite and finitely generated, then its uniform Roe algebra is

infinite.

In [LW17], Li and Willett investigate further properties of uniform Roe algebras, like

stable rank one and real rank zero. They leave open, for example, the question of whether

`∞(Z) o Z has real rank zero.

Article C ([Sca17])

We show that if G is a finitely generated, elementary amenable group, and C∗(G) has real

rank zero, then G is finite.

Let (X,T, µ) be a Cantor minimal system and π the Koopman representation associated

to the action of the topological full group [[T ]] on (X,µ).

We prove that C∗([[T ]]′) is not AF. This is done by showing that C∗π([[T ]]) = C∗π([[T ]]′),

and that the kernel of the character τ onC∗π([[T ]]) coming from weak containment of the triv-

ial representation is a hereditary C∗-subalgebra of C(X) oZ (Theorem 3.7). Consequently,

ker τ is stably isomorphic to C(X) o Z, and C∗π([[T ]]′) is not AF and has real rank zero.

The notion of a topological full group has been extended by Matui to essentially principal,

étale groupoids (see [Mat16] for a survey).

We would like to see Theorem 3.7 from Article C generalized to this more general con-

text. Specifically, let G be an essentially principal, minimal, étale groupoid, with unit space

homeomorphic to the Cantor set. Let H be a subgroup of the topological full group of G.

Furthermore, assume that the canonical unitary representation π of H in C∗(G) weakly con-

tains the trivial representation (this is the case, for example, for a certain representation of

Thompson’s group F in O2, as proved in [HO17]). Under which conditions is the kernel of

the associated character on C∗π(H) a hereditary C∗-subalgebra of C∗(G)?



Bibliography

[BO08] Nathanial P. Brown and Narutaka Ozawa, C∗-algebras and �nite-dimensional approxima-

tions, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Provi-

dence, RI, 2008.

[Cun81] Joachim Cuntz, K-theory for certain C∗-algebras. II, J. Operator Theory 5 (1981), no. 1,

101�108.

[Exe15] Ruy Exel, Partial dynamical systems, Fell bundles and applications, arXiv preprint

arXiv:1511.04565 (2015).

[HO17] U�e Haagerup and Kristian Knudsen Olesen, Non-inner amenability of the Thompson

groups T and V , J. Funct. Anal. 272 (2017), no. 11, 4838�4852.

[Hop07] Alan Hopenwasser, Partial crossed product presentations for On and Mk(On) using

amenable groups, Houston J. Math. 33 (2007), no. 3, 861�876.

[Kan93] Eberhard Kaniuth, Group C∗-algebras of real rank zero or one, Proc. Amer. Math. Soc.

119 (1993), no. 4, 1347�1354.

[KMR13] Julian Kellerhals, Nicolas Monod, and Mikael Rørdam, Non-supramenable groups acting

on locally compact spaces, Doc. Math. 18 (2013), 1597�1626.

[Li16] Xin Li, Partial transformation groupoids attached to graphs and semigroups, International

Mathematics Research Notices (2016), rnw166.

[LW17] Kang Li and Rufus Willett, Low dimensional properties of uniform Roe algebras, arXiv

preprint arXiv:1705.01290 (2017).

[Mat16] Hiroki Matui, Topological full groups of étale groupoids, Operator algebras and applications,

2016, pp. 197�224.

[Mon17] Nicolas Monod, Fixed points in convex cones, arXiv preprint arXiv:1701.05537 (2017).

[MR15] Hiroki Matui and Mikael Rørdam, Universal properties of group actions on locally compact

spaces, J. Funct. Anal. 268 (2015), no. 12, 3601�3648.

[Mur90] Gerard J. Murphy, C∗-algebras and operator theory, Academic Press, Inc., Boston, MA,

1990.

[RS12] Mikael Rørdam and Adam Sierakowski, Purely in�nite C∗-algebras arising from crossed

products, Ergodic Theory Dynam. Systems 32 (2012), no. 1, 273�293.

[Sca16a] Eduardo Scarparo, Characterizations of locally �nite actions of groups on sets, arXiv

preprint arXiv:1606.08262, to appear in Glasgow Mathematical Journal (2016).

17



18 Contents

[Sca16b] Eduardo P. Scarparo, Supramenable groups and partial actions, Ergodic Theory and Dy-

namical Systems (2016), 1�15.

[Sca17] Eduardo Scarparo, On the C∗-algebra generated by the Koopman representation of a topo-

logical full group, arXiv preprint arXiv:1705.07665 (2017).

[Wag85] Stan Wagon, The Banach-Tarski paradox, Encyclopedia of Mathematics and its Appli-

cations, vol. 24, Cambridge University Press, Cambridge, 1985. With a foreword by Jan

Mycielski.

[Wei11] ShuYun Wei, On the quasidiagonality of Roe algebras, Sci. China Math. 54 (2011), no. 5,

1011�1018.



Part II

Articles

19





Ergod. Th. & Dynam. Sys. (First published online 2016), page 1 of 15∗

doi:10.1017/etds.2015.117 c© Cambridge University Press, 2016
∗Provisional—final page numbers to be inserted when paper edition is published

Supramenable groups and partial actions

EDUARDO P. SCARPARO

Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5,
DK-2100 Copenhagen, Denmark

(e-mail: duduscarparo@gmail.com)

(Received 18 May 2015 and accepted in revised form 21 September 2015)

Abstract. We characterize supramenable groups in terms of the existence of invariant
probability measures for partial actions on compact Hausdorff spaces and the existence
of tracial states on partial crossed products. These characterizations show that, in general,
one cannot decompose a partial crossed product of a C∗-algebra by a semidirect product
of groups into two iterated partial crossed products. However, we give conditions which
ensure that such decomposition is possible.

1. Introduction
Partial actions of groups on C∗-algebras were introduced by Exel [2] and McClanahan [8]
as a means of computing invariants and describing the structure of C∗-algebras. Since then
they have been studied in other categories as well: notably, sets, topological spaces and
algebras (see [3] for details).

A group G is called amenable if it carries an invariant, finitely additive measure µ
such that µ(G)= 1. Following Rosenblatt [12], a group G is called supramenable if, for
every non-empty A ⊂ G, there is an invariant, finitely additive measure µ on G such that
µ(A)= 1.

The class of supramenable groups is closed under taking subgroups, quotients and
direct limits. Abelian groups and, more generally, groups of subexponential growth are
supramenable (see [13, Ch. 12] for a proof of these facts). It is not known if the direct
product of supramenable groups is supramenable and if every supramenable group has
subexponential growth.

It is a well-known fact that a group is amenable if and only if, whenever it acts on a
compact Hausdorff space, the space admits an invariant probability measure. There is also
a non-commutative version of this result which says that a group is amenable if and only
if, whenever it acts on a unital C∗-algebra which has a tracial state, the associated crossed
product also has a tracial state.
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2 E. P. Scarparo

However, these results do not hold for partial actions; Hopenwasser showed in [6]
that the Cuntz algebras can be realized as partial crossed products associated with partial
actions of certain amenable groups on the Cantor set.

In [7], Kellerhals et al showed that a group is supramenable if and only if, whenever
it acts cocompactly on a locally compact Hausdorff space, the space admits an invariant,
non-zero and regular measure.

The main purpose of this paper is to show that the role of amenable groups is played by
supramenable groups in the context of partial actions.

In §2, we prove that a group is supramenable if and only if, whenever it partially
acts on a compact Hausdorff space, the space admits an invariant probability measure
(Proposition 2.7).

In §3, we prove the non-commutative version of Proposition 2.7. Namely, we show that
a group is supramenable if and only if, whenever it partially acts on a unital C∗-algebra
which has a tracial state, the associated partial crossed product also has a tracial state
(Theorem 3.6).

In [4], Giordano and Sierakowski gave conditions which ensure that a partial crossed
product is purely infinite. Our results, on the other hand, show that one cannot get a purely
infinite C∗-algebra out of a partial action of a supramenable group on a unital C∗-algebra
which has a tracial state.

Recall that a Kirchberg algebra is a simple, nuclear, separable and purely infinite C∗-
algebra. Non-amenability of a group was used by Rørdam and Sierakowski in [10] for
constructing unital Kirchberg algebras out of actions on the Cantor set. Analogously, non-
supramenability of a group was used by Kellerhals et al in [7] for constructing stable
Kirchberg algebras out of actions on the locally compact, non-compact Cantor set.

Using a result of [7], we show that if G is a countable, amenable, non-supramenable
group, then there exists a free, minimal, purely infinite and non-global partial action of G
on the Cantor set K (Proposition 2.10). It is a consequence of results from [3, 4], that the
partial crossed product associated with any such partial action of G on K is a Kirchberg
algebra.

Given a (global) action of a semidirect product G o H on a C∗-algebra A, one can
decompose the crossed product A o (G o H) into two iterated crossed products by G
and H : that is

A o (G o H)∼= (A o G)o H. (1)

The class of supramenable groups is not closed under taking semidirect products. For
example, the lamplighter group Z/2Z o Z contains a free monoid on two generators, and
hence cannot be supramenable. Therefore, our results show that, in general, one cannot
have a decomposition such as in (1) for partial actions.

In §4, we give conditions under which (1) holds for partial actions. These conditions
involve assuming that A is stable or requiring that the domains of the partial isomorphisms
satisfy a certain condition.

2. Supramenability and partial actions on compact Hausdorff spaces
Throughout this article, we denote the identity element of a group by e and all groups are
assumed to be discrete.
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Supramenable groups and partial actions 3

We begin by recalling the definition of partial actions on topological spaces. See [3] for
details and historical notes.

Definition 2.1. A partial action θ of a group G on a topological space X is a pair
({Dg}g∈G , {θg}g∈G) where {Dg}g∈G is a family of open subsets of X and each θg is a
homeomorphism from Dg−1 onto Dg such that:
(i) θe = IdX ; and
(ii) for every g, h ∈ G and x ∈ Dg−1 , if θg(x) ∈ Dh−1 , then x ∈ D(hg)−1 and θhg(x)=

θh ◦ θg(x).
A consequence of the above definition is that, for every g, h ∈ G,

θg(Dg−1 ∩ Dh)= Dg ∩ Dgh . (2)

If Dg = X for every g ∈ G, then the partial action is just a usual action of a group on a
topological space. In this case, we might say that the partial action is global.

In the definition of a partial action, it is possible that some of the open subsets Dg are
empty. For example, any group G partially acts trivially on a topological space X by letting
Dg := ∅ for every g 6= e and θe := IdX .

Example 2.2. Let θ be an action of a group G on a topological space X . Given an open
subset D of X , let Dg := D ∩ θg(D) for every g ∈ G. Then

({Dg}g∈G , {θg|Dg−1 }g∈G)

is a partial action of G on D, called the restriction of θ to D.

Definition 2.3. Let ({Dg}g∈G , {θg}g∈G) be a partial action of a group G on a topological
space X . We say a measure ν on X is invariant if, for all E ∈ B(X) and g ∈ G,

ν(θg(E ∩ Dg−1))= ν(E ∩ Dg−1).

Next, we recall the definitions of supramenable groups and paradoxical subsets of a
group. See [13] for historical notes.

Definition 2.4. A group G is supramenable if, for every non-empty subset A of G, there
is an invariant, finitely additive measure µ : P(G)→ [0,+∞] such that µ(A)= 1.

Definition 2.5. Let G be a group. We say a non-empty subset A of G is paradoxical if
there exist disjoint subsets B and C of A, finite partitions {Bi }

n
i=1 and {C j }

m
j=1 of B and C

and elements s1, . . . , sn, t1, . . . , tm ∈ G such that A =
⊔n

i=1 si Bi =
⊔m

j=1 t j C j (disjoint
union).

By Tarski’s theorem, a non-empty subset A of a group G is not paradoxical if and
only if there exists an invariant, finitely additive measure µ : P(G)→ [0,+∞] such that
µ(A)= 1. Therefore, a group is supramenable if and only if it contains no paradoxical
subsets.

In order to prove Proposition 2.7, we will need the following lemma, the proof of which
can be found in [7, Proposition 2.1].
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4 E. P. Scarparo

LEMMA 2.6. Let G be a group and let µ be a finitely additive measure on G. Let Vµ be
the subspace of `∞(G) consisting of all f ∈ `∞(G) such that µ(supp( f )) <∞. It follows
that there is a unique positive linear functional Iµ : Vµ→ C such that Iµ(1E )= µ(E) for
all E ⊂ G with µ(E) <∞. If µ is G-invariant, then so is Iµ.

PROPOSITION 2.7. A group is supramenable if and only if, whenever it partially acts on a
compact Hausdorff space, the space admits an invariant probability measure.

Proof. First, assume that G is a non-supramenable group. Then it has a paradoxical subset
A. Let j : G→ βG be the embedding of G into its Stone–Čech compactification. Consider
the partial action obtained by restricting the canonical action of G on βG to j (A). By
using [7, Lemma 2.4], one concludes that this partial action does not admit an invariant
probability measure.

Conversely, let ({Dg}g∈G , {θg}g∈G) be a partial action of a supramenable group G on a
compact Hausdorff space X . Fix x0 ∈ X . Given f ∈ C(X), let f̂ ∈ `∞(G) be defined by

f̂ (g) :=

{
0 if x0 /∈ Dg−1 ,

f (θg(x0)) if x0 ∈ Dg−1 .

By using (2), one can easily check that, for every g ∈ G and f ∈ C0(Dg−1) (seen as an
ideal of C(X)), it holds that

g · f̂ = ̂f ◦ θg−1 . (3)

Notice that, formally speaking, f ◦ θg−1 is only defined on Dg . We see it as being
defined on X by extending it as zero outside of Dg .

Let A := {g ∈ G : x0 ∈ Dg−1}. Since G is supramenable, there exists an invariant,
finitely additive measure µ on G such that µ(A)= 1.

In the notation of Lemma 2.6, let

ϕ : C(X)→ C

f 7→ Iµ( f̂ ).

Notice that ϕ is well defined because, for every f ∈ C(X), we have that supp( f̂ )⊂ A.
Since 1̂C(X) = 1A, we obtain that ϕ(1C(X))= 1. Therefore, ϕ is a state, since it is clearly

positive. By (3) and the G-invariance of Iµ, we conclude that, for every g ∈ G and f ∈
C0(Dg−1), it holds that

ϕ( f ◦ θg−1)= ϕ( f ). (4)

Let ν be the regular probability measure on X associated with ϕ through the Riesz
representation theorem. By (4) and the inner regularity of ν, we conclude that ν is invariant
on open subsets. By outer regularity, it follows that ν is invariant for all Borel measurable
sets. �

Next, we recall the definition and some facts about partial actions on C∗-algebras and
partial crossed products. See [3] for the details.

Definition 2.8. A partial action θ of a group G on a C∗-algebra A is a pair
({Ig}g∈G , {θg}g∈G) where {Ig}g∈G is a family of closed two-sided ideals of A and each
θg is a ∗-isomorphisms from Ig−1 onto Ig such that:

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/etds.2015.117
Downloaded from https:/www.cambridge.org/core. Copenhagen University Library, on 23 May 2017 at 13:44:57, subject to the Cambridge Core terms of use,

24



Supramenable groups and partial actions 5

(i) θe = IdA; and
(ii) for every g, h ∈ G and x ∈ Ig−1 , if θg(x) ∈ Ih−1 , then x ∈ I(hg)−1 and θhg(x)= θh ◦

θg(x).
The quadruple (A, G, {Ig}g∈G , {θg}g∈G) is called a partial dynamical system.

Given a partial dynamical system

(A, G, {Ig}g∈G , {θg}g∈G),

denote by Cc(G, A) the vector space of finitely supported functions from G into A. Let

A oθ,alg G := { f ∈ Cc(G, A) : f (g) ∈ Ig for every g ∈ G}.

For every g ∈ G and ag ∈ Ig , let agδg ∈ A oθ,alg G be defined by

agδg(h) :=

{
ag if h = g,

0 if g 6= h,
h ∈ G.

Notice that {agδg : g ∈ G, ag ∈ Ig} spans A oθ,alg G. Hence we can define a product
and an involution on A oθ,alg G by

(agδg)(bhδh) := θg(θg−1(ag)bh)δgh

(agδg)
∗
:= θg−1(a∗g)δg−1

for g, h ∈ G, ag ∈ Ig and bh ∈ Ih . These operations turn A oθ,alg G into a ∗-algebra.
Define a seminorm on A oθ,alg G by

‖x‖max := sup{p(x) : p is a C∗-seminorm on A oθ,alg G}.

The partial crossed product associated with the partial action θ , denoted by A oθ G
or A o G, is the enveloping C∗-algebra of the ∗-algebra A oθ,alg G endowed with the
seminorm ‖ · ‖max.

There is an embedding

i : A→ A oθ G

a 7→ aδe

and a conditional expectation ψ : A oθ G→ A such that

ψ(aδg)=

{
a if g = e,

0 if g 6= e,
g ∈ G, a ∈ Ig. (5)

Notice that the construction of the partial crossed product is a generalization of the usual
crossed product associated with an action of a group on a C∗-algebra.

Given a partial action θ = ({Dg}g∈G , {θg}g∈G) of a group G on a locally compact
Hausdorff space X , one can associate with it a partial action on C0(X), with domains
C0(Dg) (seen as ideals of C0(X)) and ∗-isomorphisms given by composition with the
homeomorphisms θg .
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6 E. P. Scarparo

Definition 2.9. Let θ = ({Dg}g∈G , {θg}g∈G) be a partial action of a group G on a
Hausdorff space X . We say θ is free if, for every g ∈ G and x ∈ Dg−1 ,

θg(x)= x H⇒ g = e.

The partial action is said to be minimal if, given a closed set F ⊂ X such that for every
g ∈ G, θg(F ∩ Dg−1)⊂ F , we necessarily have that F = ∅ or F = X .

That is, the partial action is minimal if X has no non-trivial invariant closed subsets.
If X is totally disconnected, then the partial action is said to be purely infinite if, for

every compact-open subset K of X , there exist pairwise disjoint compact-open subsets
K1, . . . , Kn+m and elements t1, . . . , tn+m ∈ G such that K j ⊂ K ∩ Dt−1

j
for all j and

K =
n⋃

j=1

θt j (K j )=

n+m⋃
j=n+1

θt j (K j ).

This definition of purely infinite partial actions generalizes the one in [7, Definition
4.4]. Also, if the partial action is purely infinite, then every compact-open subset of X is
(G, τX )-paradoxical, in the sense of [4, Definition 4.3].

PROPOSITION 2.10. Let G be an amenable, non-supramenable, countable group. Then
G admits a free, minimal, purely infinite and non-global partial action on the Cantor set
K . The partial crossed product associated with any such partial action of G on K is a
Kirchberg algebra.

Proof. Let G be as in the statement. By [7, Theorem 1.2], there is a free, minimal, purely
infinite global action θ of G on the non-compact, locally compact Cantor space K ∗. The
restriction of θ to a compact-open subset K (which is automatically homeomorphic to the
Cantor set) is clearly free and purely infinite. It is not global because it clearly does not
admit an invariant probability measure and G is amenable. Let us show that it is minimal.

Suppose that there exists a non-empty closed set F ( K such that, for every g ∈ G,

θg(F ∩ θg−1(K ))⊂ F. (6)

By minimality of θ , the orbit of every point is dense. Hence, given x ∈ F , there is g ∈ G
such that θg(x) belongs to the non-empty open set K \ F , but, since x ∈ F ∩ θg−1(K ), this
contradicts (6).

The fact that the associated partial crossed product is simple follows from [3, Corollary
29.8]. The fact that it is nuclear is due to [3, Proposition 25.10]. It is purely infinite because
of [4, Theorem 4.4]. �

3. Tracial states on partial crossed products
In this section, we prove the main result of this article (Theorem 3.6). We start by proving
some lemmas about traces in C∗-algebras.

LEMMA 3.1. Let A be a C∗-algebra, I an ideal of A and τ a positive linear functional
on I . Then there is a unique positive linear functional τ ′ on A such that τ ′ extends τ and
‖τ‖ = ‖τ ′‖. Moreover, if τ is a trace, then τ ′ is also a trace.
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Supramenable groups and partial actions 7

Proof. The existence and uniqueness of τ ′ is the content of [9, Theorem 3.3.9]. Assume
that τ is a trace and we will show that τ ′ is also a trace.

By taking the unitization, we can assume A is unital.
Let (uλ)λ∈3 be an approximate unit for I . Notice that

τ ′(1)= ‖τ ′‖ = ‖τ‖ = lim
λ
τ(uλ).

Now suppose that (xλ)λ∈3 is a bounded net in A such that limλ τ
′(xλ) exists. Let us

show that limλ τ
′(xλ)= limλ τ(xλuλ). Indeed,

|τ ′(xλ)− τ(xλuλ)| = |τ ′(xλ(1− uλ))|
(∗)
≤ τ ′(xλx∗λ)

1/2τ ′((1− uλ)2)1/2

(∗∗)
≤ ‖τ ′‖1/2‖xλ‖τ ′(1− uλ)1/2→ 0.

The inequality in (∗) is due to the Cauchy–Schwarz inequality and the one in (∗∗) is due to
the fact that, for every λ ∈3, it holds that (1− uλ)2 ≤ 1− uλ.

Let a, b ∈ A and let us show that τ ′(ab)= τ ′(ba).

τ ′(ab)= lim
λ
τ(abuλ)= lim

λ
τ(u1/2

λ abu1/2
λ )= lim

λ
τ(buλa)

= lim
λ
τ(buλauλ)= lim

λ
τ(auλbuλ)= τ ′(ba). �

Definition 3.2. Let A be a C∗-algebra, G a group and (A, G, {Ig}g∈G , {θg}g∈G) a partial
dynamical system. We say a linear functional τ on A is G-invariant if, for every g ∈ G
and a ∈ Ig ,

τ(a)= τ(θg−1(a)).

LEMMA 3.3. Let A be a C∗-algebra, G a group and (A, G, {Ig}g∈G , {θg}g∈G) a partial
dynamical system. Let ψ be the canonical conditional expectation from A o G onto A as
in (5). If ϕ is a tracial state on A, then ϕ ◦ ψ is a tracial state on A oθ G if and only if ϕ
is a G-invariant.

Proof. Assume ϕ is G-invariant. Let us show that ϕ ◦ ψ is a tracial state. By the fact that
ψ is positive and by (5), it follows that ϕ ◦ ψ is a state.

By linearity and continuity, in order to conclude that ϕ ◦ ψ is tracial, we only need to
prove that, given agδg, bhδh ∈ A oθ G,

ϕ ◦ ψ((agδg)(bhδh))= ϕ ◦ ψ((bhδh)(agδg)).

This is true, since

ϕ ◦ ψ(agδgbhδh)= ϕ ◦ ψ(θg(θg−1(ag)bh)δgh)=

{
0 if h 6= g−1,

ϕ(agθg(bg−1)) if h = g−1.

By using the fact that ϕ is a G-invariant tracial state, one concludes that ϕ ◦
ψ(agδgbhδh)= ϕ ◦ ψ(bhδhagδg). Hence, ϕ ◦ ψ is a tracial state.

Conversely, assume that ϕ ◦ ψ is a tracial state and let us show that ϕ is G-invariant.
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8 E. P. Scarparo

Given g ∈ G, a ∈ Ig and (uλ)λ∈3 an approximate unit for Ig−1 ,

ϕ(a)= ϕ ◦ ψ(aδe)= lim
λ
ϕ ◦ ψ(aδguλδg−1)= lim

λ
ϕ ◦ ψ(uλδg−1aδg)

= ϕ ◦ ψ(θg−1(a)δe)= ϕ(θg−1(a)).

Hence, ϕ is G-invariant. �

Just as in the case of global actions, the following proposition holds for partial actions.

PROPOSITION 3.4. Let θ be a partial action of a group G on a compact Hausdorff space
X. Then X admits an invariant probability measure if and only if C(X)oθ G has a tracial
state.

Proof. Suppose X has an invariant probability measure µ. Consider the state on C(X)
given by integration with respect to µ. By invariance of µ, it follows that the state is also
G-invariant. By Lemma 3.3, we conclude that C(X)oθ G has a tracial state.

Now assume that C(X)oθ G has a tracial state τ . Let i : C(X)→ C(X)oθ G be
the canonical embedding and let ψ : C(X)oθ G→ C(X) be the canonical conditional
expectation. We claim that τ ◦ i is G-invariant. By Lemma 3.3, we only need to check that
τ ◦ i ◦ ψ is a tracial state. Clearly, it is a state.

Given agδg, bhδh ∈ C(X)o G, we have that ψ(agδgbhδh)= ψ(bhδhagδg)= 0 if
h 6= g−1. If h = g−1, then τ ◦ i ◦ ψ(agδgbhδh)= τ(agδgbhδh)= τ(bhδhagδg)= τ ◦ i ◦
ψ(bhδhagδg).

By linearity, we conclude that τ ◦ i ◦ ψ is a tracial state. Therefore, τ ◦ i is a G-invariant
state. Let µ be the regular probability measure on X associated with τ ◦ i . Since this state
is G-invariant, we conclude, just as in the proof of Proposition 2.7, that µ is invariant. �

In the following, we denote by T (A) the set of tracial states of a C∗-algebra A.

LEMMA 3.5. Let A be a unital C∗-algebra such that T (A) 6= ∅. Then every extreme point
τ of T (A) satisfies the fact that, for every ideal I of A, ‖τ |I ‖ is either zero or one.

Proof. Let τ be an extreme point of T (A). Given an ideal I E A, suppose that t := ‖τ |I ‖ ∈
(0, 1). By Lemma 3.1, there exists an extension τI of τ |I to all of A such that ‖τI ‖ = t .

Let us show that τI ≤ τ . Let (uλ)λ∈3 an approximate unit for I . Given a ∈ A+, we
know, by [9, Theorem 3.3.9], that τI (a)= limλ τ(uλauλ). Since τ is a tracial state, for any
λ ∈3,

τ(uλauλ)= τ(a1/2uλuλa1/2)≤ ‖(uλ)2‖τ(a)≤ τ(a).

Therefore, τI (a)≤ τ(a). Since a was arbitrary, it follows that τI ≤ τ .
By evaluating on 1A, we get that ‖τ − τI ‖ = 1− t . Hence,

τ = t
(
τI

‖τI ‖

)
+ (1− t)

(
τ − τI

‖τ − τI ‖

)
.

Since τ is an extreme point, τ = τI /‖τI ‖. But τ |I = τI |I 6= 0. Thus we get a
contradiction. �
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Supramenable groups and partial actions 9

The reader will notice that the idea of the proof of the next result is the same as that of
Proposition 2.7.

THEOREM 3.6. A group is supramenable if and only if, whenever it partially acts on a
unital C∗-algebra which has a tracial state, the associated partial crossed product also
has a tracial state.

Proof. Let G be a supramenable group, A a unital C∗-algebra which has a tracial state and
let (A, G, {Ig}g∈G , {θg}g∈G) be a partial dynamical system.

By Lemma 3.5, A has a tracial state τ such that, for every ideal I of A, ‖τ |I ‖ is either
zero or one.

For each g ∈ G, let τg be the extension of τ ◦ θg−1 to A, as in Lemma 3.1. For each
a ∈ A, let â ∈ `∞(G) be defined by â(g) := τg(a), g ∈ G. Since each τg is a trace, we
have that, for any a, b ∈ A, âb = b̂a.

Notice that for each g ∈ G, 1̂A(g)= ‖τg‖ = ‖τ |Ig−1 ‖.
Since G is supramenable, there is an invariant, finitely additive measure µ on G such

that 1= µ({g ∈ G : ‖τ |Ig−1 ‖ = 1}).
In the notation of Lemma 2.6, define

ϕ : A→ C,
a 7→ Iµ(â).

Notice that ϕ is a tracial state on A.
Let ψ be the canonical conditional expectation from A o G onto A as in (5). Define

ρ := ϕ ◦ ψ . By Lemma 3.3, in order to show that ρ is a tracial state, it is sufficient to show
that ϕ is G-invariant.

Given x, y ∈ G, let us prove that

‖τx |Iy‖ = ‖τx |Iy∩Ix ‖.

Let (u y
λ) and (ux

λ) be approximate units for Iy and Ix , respectively. Then

‖τx |Iy‖ = lim
λ1
τx (u

y
λ1
)= lim

λ1
lim
λ2
τx (u

y
λ1

ux
λ2
).

Since, for each λ1, λ2, we have that u y
λ1

ux
λ2
∈ Ix ∩ Iy , it follows that ‖τx |Iy‖ ≤

‖τx |Iy∩Ix ‖. The opposite inequality is evident.
For each g, t ∈ G, one can easily check that (τt ◦ θg−1)|Ig∩Igt = τgt |Ig∩Igt . Therefore,

‖τt ◦ θg−1‖ = ‖τt |Ig−1 ‖ = ‖τt |Ig−1∩It ‖ = ‖τt ◦ θg−1 ◦ θg|Ig−1∩It ‖

= ‖τt ◦ θg−1 |Ig∩Igt ‖ = ‖τgt |Ig∩Igt ‖ = ‖τgt |Ig‖.

It follows, by Lemma 3.1, that τt ◦ θg−1 = τgt |Ig . Hence, given a ∈ Ig ,

g−1
· â(t)= â(gt)= θ̂g−1(a)(t).

Therefore,

g−1
· â = θ̂g−1(a).
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10 E. P. Scarparo

Thus, for every g ∈ G and a ∈ Ig ,

ϕ(a)= Iµ(â)
(∗)
= Iµ(g−1â)= Iµ(θ̂g−1(a))= ϕ(θg−1(a)).

The equality (∗) is due to the fact that µ is invariant. Hence, ϕ is G-invariant and ρ is a
tracial state on A o G.

The converse follows from Propositions 3.4 and 2.7. �

4. Decomposition of partial crossed products
In this section, we investigate conditions under which one can decompose a partial crossed
product into two iterated partial crossed products by simpler groups.

Let A be a C∗-algebra, G a group and let (A, G, {Ig}g∈G , {θg}g∈G) be a partial
dynamical system. Given a G-invariant ideal I of A (i.e. θg(I ∩ Ig−1)⊂ I for
every g ∈ G), one can consider the restricted partial dynamical system (I, G, {I ∩
Ig}g∈G , {θg|I∩Ig−1 }g∈G). It is a consequence of [3, Theorem 22.9] that the map

i : I o G→ A o G,

aδg 7→ aδg

is an embedding onto an ideal of A o G. In the statement of the following lemma, we use
this identification.

LEMMA 4.1. Let (A, G, {Ig}g∈G , {θg}g∈G) be a partial dynamical system and let I and
J be G-invariant ideals of A. Then (I o G) ∩ (J o G)= (I ∩ J )o G.

Proof. Take x ∈ (I o G) ∩ (J o G). Let (uλ)λ∈3 be an approximate unit for J . Then
x = limλ x(uλδe). Since x ∈ I o G, it follows that x can be approximated by finite sums∑

agδg such that each ag ∈ I . Due to G-invariance of I and J , if ag ∈ I , then agδguλδe ∈

(I ∩ J )o G. Hence, for every λ ∈3, x(uλδe) ∈ (I ∩ J )o G. From this, we conclude that
x ∈ (I ∩ J )o G.

The opposite inclusion is evident. �

PROPOSITION 4.2. Let A be a C∗-algebra, G oα H a semidirect product of groups and

(A, G oα H, {I(g,h)}(g,h)∈GoαH , {θ(g,h)}(g,h)∈GoαH )

a partial dynamical system such that, for every g ∈ G and h ∈ H,

I(g,h) ⊂ I(g,e) ∩ I(e,h). (7)

Consider the partial dynamical system

(A, G, {I(g,e)}g∈G , {θ(g,e)}g∈G)

obtained by restricting the partial action θ to the subgroup G × {e}. There is a partial
action of H on A o G and a ∗-isomorphism

ϕ : A o (G oα H)→ (A o G)o H,

a(g,h)δ(g,h) 7→ (a(g,h)δg)δh .
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Supramenable groups and partial actions 11

Proof. Notice that condition (7) and [3, Proposition 2.6] imply that, for each h ∈ H , I(e,h)
is a G-invariant ideal for the partial dynamical system

(A, G, {I(g,e)}g∈G , {θ(g,e)}g∈G).

Also, for each g ∈ G and h ∈ H , it is true that θ(e,h)(I(e,h−1) ∩ I(g,e))⊂ I(αh(g),e). For
every h ∈ H , define

βh : I(e,h−1) o G→ I(e,h) o G,

agδg 7→ θ(e,h)(ag)δαh(g).

Let us check that βh is a well-defined ∗-homomorphism. Given g, l ∈ G, ag ∈ I(e,h−1) ∩

I(g,e) and al ∈ I(e,h−1) ∩ I(l,e),

βh((agδg)(alδl))= βh(θ(g,e)(θ(g−1,e)(ag)al)δgl)

= θ(e,h)(θ(g,e)(θ(g−1,e)(ag)al))δαh(gl)

= θ(αh(g),e)(θ(e,h)(θ(g−1,e)(ag)al))δαh(gl)

= θ(αh(g),e)(θ(αh(g−1),e)(θ(e,h)(ag))θ(e,h)(al))δαh(gl)

= (θ(e,h)(ag)δαh(g))(θ(e,h)(al)δαh(l))

= βh(agδg)βh(alδl).

We leave it to the reader to check that, for every g ∈ G and ag ∈ I(e,h−1) ∩ I(g,e), it
holds that βh((agδg)

∗)= βh(agδg)
∗. Therefore, βh is a well-defined ∗-homomorphism.

Also βh−1 = (βh)
−1 for every h ∈ H .

We claim that
(A o G, H, {I(e,h) o G}h∈H , {βh}h∈H )

is a partial dynamical system.
Obviously, condition (i) of Definition 2.8 holds, so we just need to check that (ii) also

holds.
Given h1, h2 ∈ H and x ∈ I

(e,h−1
1 )

o G, suppose that βh1(x) ∈ I
(e,h−1

2 )
o G. Let us

show that x ∈ I(e,(h2h1)−1) o G.
Since the image of βh1 is I(e,h1) o G,

βh1(x) ∈ (I(e,h−1
2 )

o G) ∩ (I(e,h1) o G)= (I
(e,h−1

2 )
∩ I(e,h1))o G.

Since θ
(e,h−1

1 )
(I
(e,h−1

2 )
∩ I(e,h1))⊂ I(e,(h2h1)−1), we conclude, by using the definition of

βh−1
1

, that
βh−1

1
((I

(e,h−1
2 )
∩ I(e,h1))o G)⊂ I(e,(h2h1)−1) o G.

Hence, x ∈ I(e,(h2h1)−1) o G.
Now let us show that

βh2h1(x)= βh2 ◦ βh1(x). (8)
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12 E. P. Scarparo

Since x ∈ (I(e,(h2h1)−1) ∩ I
(e,h−1

1 )
)o G, by using approximation arguments, we can assume

that x = aδg for some g ∈ G and a ∈ I(e,(h2h1)−1) ∩ I
(e,h−1

1 )
. Since θ(e,h2h1)(a)= θ(e,h2) ◦

θ(e,h1)(a), we conclude that (8) holds.
Hence, we have proven that

(A o G, H, {I(e,h) o G}h∈H , {βh}h∈H )

is a partial dynamical system.
Define

ϕ : A o (G oα H)→ (A o G)o H,

a(g,h)δ(g,h) 7→ (a(g,h)δg)δh .

For every h ∈ H , define

ψh : I(e,h) o G→ A o (G o H),

agδg 7→ agδ(g,e).

It is a straightforward computation to check that ϕ and, for every h ∈ H , ψh are well-
defined ∗-homomorphisms.

For every h ∈ H , let (uh
λ)λ∈3h be an approximate unit for I(e,h). Given g ∈ G, h ∈ H

and a ∈ I(e,h) ∩ I(g,e), notice that

lim
λ
(aδ(g,e))(uh

λδ(e,h))= lim
λ
θ(g,e)(θ(g−1,e)(a)u

h
λ)δ(g,h) = aδ(g,h), (9)

since θ(g−1,e)(a) ∈ I(g−1,h) ⊂ I(e,h).
Define

ψ : (A o G)o H → A o (G o H),

fhδh 7→ lim
λ
(ψh( fh)(uh

λδ(e,h))).

In order to see that the above limit is well defined, notice that, due to (9), convergence
is ensured for fh = agδg . Then, one observes that (ψh( f )(uh

λδ(e,h))) is a Cauchy net for
any f ∈ I(e,h) o G.

For the proof that ψ is a well-defined ∗-homomorphism, it is worthwhile remarking
that, for every h ∈ H , ψ |(I(e,h)oG)δh is a contractive linear map.

Notice that, given g ∈ G, h ∈ H and a ∈ I(e,h) ∩ I(g,e), it holds that ψ((aδg))δh)=

aδ(g,h). Hence, ψ and ϕ are inverses of each other. �

The purpose of the next proposition is to show that condition (7) is stronger than it
seems at first sight. We give a direct proof of it, even though it can also be obtained as a
corollary of the proof of the preceding proposition.

PROPOSITION 4.3. Let A be a C∗-algebra, G oα H a semidirect product of groups and

(A, G oα H, {I(g,h)}(g,h)∈GoαH , {θ(g,h)}(g,h)∈GoαH )

a partial dynamical system such that, for every g ∈ G and h ∈ H, (7) is satisfied. Then, for
every g ∈ G and h ∈ H,

I(g,h) = I(g,e) ∩ I(e,h).
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Supramenable groups and partial actions 13

Proof. Given g ∈ G and h ∈ H ,

I(g,e) ∩ I(e,h) = θ(g,e) ◦ θ(g−1,e)(I(g,e) ∩ I(e,h))

= θ(g,e)(I(g−1,e) ∩ I(g−1,h))

⊂ θ(g,e)(I(g−1,e) ∩ I(e,h))

= I(g,e) ∩ I(g,h)
= I(g,h). �

Next, we give an example to which Proposition 4.2 can be applied.

Example 4.4. Let G and H be groups and j : G × H → β(G × H) be the embedding
of G × H into its Stone–Čech compactification. Given A ⊂ G and B ⊂ H non-empty
subsets, consider the partial action ({Dg}g∈G , {θg}g∈G) of G × H on j (A × B) obtained
by restricting to j (A × B) the canonical action of G × H on β(G × H), as in
Example 2.2. By definition of the restriction, given (g, h) ∈ G × H ,

D(g,h) = j ((A ∩ g A)× (B ∩ h B))= j (A × (B ∩ h B)) ∩ j ((A ∩ g A)× B)

= D(g,e) ∩ D(e,h).

From this, it follows easily that the induced partial action on C( j (A × B)) satisfies (7).

Notice that, if G and H are supramenable groups, we can combine the previous example
with Proposition 4.2 and Theorem 3.6 to show that A × B ⊂ G × H is non-paradoxical
for every A ⊂ G and B ⊂ H non-empty subsets. We remark, however, that this fact also
follows easily from the results of [11].

As mentioned in the introduction, the class of supramenable groups is not closed under
taking semidirect products. For example, let (xn)n∈Z ∈

⊕
Z Z/2Z be such that x0 = 1

and xn = 0 for n 6= 0. Also, let e ∈
⊕

Z Z/2Z be the neutral element. Now consider the
lamplighter group Z/2Z o Z= (

⊕
Z Z/2Z)o Z. It is well known and easy to check that

((xn)n∈Z, 1), (e, 1) ∈ G generate a free monoid SF2. Since SF2 ⊂ Z/2Z o Z is obviously
paradoxical, it follows that Z/2Z o Z is not supramenable.

Let G o H be a non-supramenable group which is the semidirect product of
supramenable groups. By Theorem 3.6, there is a partial action of G o H on a unital
C∗-algebra with a tracial state such that the associated partial crossed product does not
admit a tracial state. By applying Theorem 3.6 twice, we conclude that a decomposition
such as in Proposition 4.2 cannot hold in this case.

Next, we are going to provide another condition which allows a decomposition as in (1).
For the proof, we will use the concepts of Fell bundle, graded C∗-algebra, cross sectional
C∗-algebra of a Fell bundle and reduced partial crossed product. We refer the reader to [3]
for the appropriate definitions.

Given a partial action θ of a group G on a C∗-algebra A and H a subgroup of G, one
can consider the partial action of H on A obtained by restricting θ to H . We shall denote
this restricted partial action also by θ .
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14 E. P. Scarparo

LEMMA 4.5. Let (A, G, {Ig}g∈G , {θg}g∈G) be a partial dynamical system and H a
subgroup of G. Then A oθ H embeds naturally into A oθ G and there exists a conditional
expectation ψH : A oθ G→ A oθ H such that, for every g ∈ G and a ∈ Ig ,

ψH (aδg)=

{
aδg if g ∈ H,

0 if g /∈ H.
(10)

Proof. The fact that A oθ H embeds naturally into A oθ G was proven in [1, Corollary
6.3].

Let us now prove the existence of ψH . By [1, Proposition 6.1], the reduced partial
crossed product A oθ,r H embeds naturally into A oθ,r G and there exists a conditional
expectation ϕH : A oθ,r G→ A oθ,r H satisfying the same condition as in (10).

Let C∗r (G) and C∗r (H) denote the reduced group C∗-algebras of G and H , respectively,
and EH : C∗r (G)→ C∗r (H) the conditional expectation satisfying the same condition as in
(10).

Let

iG : A oθ G→ (A oθ,r G)
⊗
max

C∗r (G)

and

iH : A oθ H → (A oθ,r H)
⊗
max

C∗r (H)

be the injective ∗-homomorphisms given by [3, Proposition 18.9] such that iG(agδg)=

agδg ⊗ δg and iH (ahδh)= ahδh ⊗ δh for every g ∈ G, ag ∈ Ig , h ∈ H and ah ∈ Ih .
Then ψH := (iH )

−1
◦ (ϕH ⊗ EH ) ◦ iG is the desired conditional expectation. �

THEOREM 4.6. Let A be a separable and stable C∗-algebra, G a countable group, N a
normal subgroup of G and (A, G, {Ig}g∈G , {θg}g∈G) a partial dynamical system. Then
there is a partial action β of G/N on A oθ̃ N such that

A oθ G ∼= (A oθ N )oβ
G
N
.

Proof. For each gN ∈ G/N , define

BgN := span{bhδh : h ∈ gN , bh ∈ Ih}.

We want to show that (A oθ G, {BgN }gN∈G/N ) is a G/N -graded C∗-algebra.
Clearly, for every g, g′ ∈ G, we have that BgN Bg′N ⊂ Bgg′N and (BgN )

∗
= Bg−1 N .

Notice that, by Lemma 4.5, BeN ∼= A oθ N and there exists a conditional expectation
ψN : A oθ G→ BeN with the same property as in (10).

By [3, Theorem 19.1], it follows that

(A oθ G, {BgN }gN∈G/N )

is a G/N -graded C∗-algebra. Let B be the Fell bundle associated with this grading. There
is a surjective ∗-homomorphism from the cross sectional C∗-algebra C∗(B) into A oθ G
which is the identity on each BgN .
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Supramenable groups and partial actions 15

On the other hand, C∗(B) can also be seen as a G-graded C∗-algebra, and the Fell
bundle over G associated with this grading is isomorphic to the Fell bundle of A oθ G.
From these considerations, we conclude that A oθ G is isomorphic to C∗(B).

Because of [5, Proposition 4.4], it holds that Be N is stable.
Due to [3, Theorem 27.11], it follows that there is a partial action β of G/N on A oθ N

such that
(A oθ N )oβ

G
N
∼= C∗(B)∼= A oθ G. �
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CHARACTERIZATIONS OF LOCALLY FINITE ACTIONS OF

GROUPS ON SETS

EDUARDO SCARPARO

Abstract. We show that an action of a group on a set X is locally finite if
and only if X is not equidecomposable with a proper subset of itself. As a
consequence, a group is locally finite if and only if its uniform Roe algebra is
finite.

1. Introduction

Given a group acting on a set X , a property that has been well-studied is the
existence of an invariant mean on X , that is, amenability of the action (see [1] for
historical remarks). By Tarski’s Theorem ([6, Corollary 9.2]), this is equivalent to
X not being equidecomposable with two disjoint subsets of itself.

In this note, we address the following question: given an action of a group G
on a set X , when is X not equidecomposable with a proper subset of itself? We
show that this holds if and only if the action is locally finite (Definition 2.2), if and
only if ℓ∞(X)⋊r G is a finite C∗-algebra (Theorem 2.3). It follows from this that
a group is locally finite if and only if its uniform Roe algebra (ℓ∞(G)⋊rG) is finite
(Proposition 2.5). In [3], it was shown that ℓ∞(G)⋊rG is finite if G is locally finite
and asked if the converse holds.

It was already known that amenability of a group G is equivalent to ℓ∞(G) ⋊r

G not being properly infinite, and supramenability is equivalent to ℓ∞(G) ⋊r G
not containing any properly infinite projections ([3, Proposition 5.3]). Therefore,
Proposition 2.5 completes the dictionary between equidecomposition properties of
groups and the type of projections in the uniform Roe algebra.

2. Characterizations of locally finite actions of groups on sets

We start by recalling some definitions:

Definition 2.1. Let be G be a group acting on a set X . Two subsets A and B of
X are said to be equidecomposable if there are finite partitions {Ai}ni=i and {Bi}ni=i
of A and B, respectively, and elements s1, . . . , sn ∈ G such that Bi = siAi for
1 ≤ i ≤ n. When we say that two subsets of G are equidecomposable, it is with
respect to the left action of G on itself.

The next definition has already been introduced in [5] for actions on semilattices.

Definition 2.2. An action of a group G on a set X is said to be locally finite if,
for every finitely generated subgroup H of G and every x ∈ X , the H-orbit of x is
finite.

This work was supported by CNPq, National Council for Scientific and Technological Devel-
opment - Brazil.
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2 EDUARDO SCARPARO

The left action of a group on itself is locally finite if and only if the group is
locally finite.

The following result shows that the notion of locally finite action is a natural
strengthening of the notion of amenable action on a set.

Theorem 2.3. Let G be a group acting on a set X. The following conditions are
equivalent:

(1) The action is locally finite;
(2) ℓ∞(X)⋊r G is finite;
(3) X is not equidecomposable with a proper subset of itself;
(4) No subset of X is equidecomposable with a proper subset of itself.

Proof. (1) ⇒ (2). Since the inductive limit of finite unital C∗-algebras with unital
conneting maps is finite, it suffices to show that ℓ∞(X) ⋊r H is finite for every
finitely generated subgroup H of G. Let H be such a subgroup and X = ⊔i∈IXi

be the partition of X into its H-orbits.
For every i ∈ I, the restriction map ℓ∞(X) → ℓ∞(Xi) is H-equivariant. There-

fore, there is a homomorphism ψ : ℓ∞(X)⋊rH → ∏
(ℓ∞(Xi)⋊rH). We claim that

ψ is injective.
Let ϕ : ℓ∞(X)⋊rH → ℓ∞(X) and, for every i ∈ I, ϕi : ℓ

∞(Xi)⋊rH → ℓ∞(Xi) be
the canonical conditional expectations. Also let ϕI :

∏
(ℓ∞(Xi)⋊rH) → ∏

ℓ∞(Xi)
be the product of the maps ϕi, and T : ℓ∞(X) → ∏

ℓ∞(Xi) be the isomorphism
which arises from the product of the restriction maps. The following diagram
commutes:

ℓ∞(X)⋊r H
ψ //

ϕ

��

∏
(ℓ∞(Xi)⋊r H)

ϕI

��
ℓ∞(X)

T
// ∏ ℓ∞(Xi).

Since ϕ is faithful, we conclude that ψ is injective. Since the product of finite unital
C∗-algebras is finite, it suffices to show that ℓ∞(Xi) ⋊r H is finite for every i ∈ I
in order to conclude that ℓ∞(X)⋊r H is finite.

Given i ∈ I, let τi be the tracial state on ℓ∞(Xi) which arises from the uniform
probability measure on the finite set Xi. Since τi is H-invariant and faithful, it
follows that the map τi ◦ϕi : ℓ∞(Xi)⋊rH → C is a faithful tracial state. Therefore,
ℓ∞(Xi)⋊r H is finite.

(2) ⇒ (3). This follows from the fact that, if A and B are equidecomposable
subsets of X , then the projections 1A and 1B are equivalent in ℓ∞(X)⋊r G.

(3) ⇒ (4). If A ⊂ X is equidecomposable with B ( A, then X = A ⊔ Ac is
equidecomposable with B ⊔ Ac ( X .

(4) ⇒ (1). Suppose that there is H < G generated by a finite and symmetric set
S and x ∈ X such that Hx is infinite. Then there exists a sequence (sn)n∈N ⊂ S
such that

∀n,m ∈ N : n 6= m⇒ sn · · · s1x 6= sm · · · s1x.
The sequence (sn · · · s1x)n∈N can be seen as an infinite simple path in the graph

whose vertex set is Hx and whose edges come from S.
We claim that γ := {sn · · · s1x : n ∈ N} is equidecomposable with γ \ {s1x}.
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CHARACTERIZATIONS OF LOCALLY FINITE ACTIONS OF GROUPS ON SETS 3

Given s ∈ S, let As := {sn · · · s1x : sn+1 = s}. It is easy to check that {As}s∈S
partitions γ and {sAs}s∈S partitions γ \ {s1x}. Hence, γ is equidecomposable with
its proper subset γ \ {s1x}.

�
We now proceed to give a characterization of locally finite groups which can be

seen as an analogy to parts of [3, Theorem 1.1].
The next definition is from [4].

Definition 2.4. Let H and G be groups. A map f : H → G is said to be a uniform
embedding if, for every finite set S ⊂ H , there is a finite set T ⊂ G such that:

∀x, y ∈ H : xy−1 ∈ S =⇒ f(x)f(y)−1 ∈ T

and, for every finite set T ⊂ G, there is S ⊂ H finite such that

∀x, y ∈ H : f(x)f(y)−1 ∈ T =⇒ xy−1 ∈ S.

The implication (1) ⇒ (2) in the next result had already been observed in [3,
Remark 5.4], and (5) ⇒ (1) is an immediate consequence of [8, Lemma 1].

Proposition 2.5. Let G be a group. The following conditions are equivalent:

(1) G is locally finite;
(2) The uniform Roe algebra ℓ∞(G)⋊r G is finite;
(3) G is not equidecomposable with a proper subset of itself;
(4) No subset A ⊂ G is equidecomposable with a proper subset of itself;
(5) There is no injective uniform embedding from Z into G.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) (and (4) ⇒ (1)) are a consequence
of Theorem 2.3.

(4) ⇒ (5). This follows from the fact that N ⊂ Z is equidecomposable with a
proper subset of itself and [3, Lemma 3.2].

(5) ⇒ (1). This is a consequence of [8, Lemma 1]. �
Remark 2.6. After this note was made available on arXiv, we became aware of [7],
where it is shown that if a group is infinite and finitely generated, then its uniform
Roe algebra is infinite.

Any locally finite group acts on itself in a transitive, faithful and locally finite
way. If a finitely generated group admits a faithful, transitive, locally finite action
on a set, then the group is finite. This is in stark contrast to the fact that there are
finitely generated, non-amenable groups which admit faithful, transitive, amenable
actions on sets (see [1] for various examples).

A finitely generated group admits a faithful, locally finite action if and only if it
is residually finite.

Proposition 2.7. If a group admits a faithful, locally finite action, then it embeds
into a group which admits a faithful, locally finite and transitive action.

Proof. Let G be a group which acts on a set X in a faithful and locally finite way.
Take a set Y ⊂ X of representatives of all G-orbits, and let SY be the group of

finitely supported permutations of Y . Consider the natural action of SY on X and
the associated action of H := G ∗ SY on X . This action is transitive and locally
finite. By taking the quotient of H by the kernel of this action, we get a faithful,
transitive, locally finite action on X by a group which contains G.
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4 EDUARDO SCARPARO

�
In analogy to what is known for amenable actions ([2, Lemma 3.2]), the following

holds for locally finite actions:

Proposition 2.8. Let G be a group acting on a set X in a locally finite way. If,
for every x ∈ X, the stabilizer subgroup Gx is locally finite, then G is locally finite.

Proof. Take H < G finitely generated and x ∈ X . Since the action is locally finite,
it follows that Hx is finite. Hence, there is H0 a subgroup of finite index in H such
that H0 < Gx. In particular, H0 is locally finite. Therefore, H is also locally finite.
Since H is finitely generated, we conclude that it is finite. �
Remark 2.9. One can define in a natural way an action of a group on a set X to
be supramenable if no subset of X is equidecomposable with two disjoint proper
subsets of itself. It is not true that if the action of a group G is supramenable, and
all the stabilizer subgroups are supramenable, then G is supramenable.

Indeed, it is well-known that the class of supramenable groups is not closed by
taking extensions (the lamplighter group Z2 ≀ Z is such an example). Let then G
be a non-supramenable group which contains a supramenable normal subgroup N
such that G

N is also supramenable.

Consider the left action of G on G
N . Since G

N is supramenable, it follows easily
that this action is supramenable. The stabilizer subgroups of the action are all
equal to N , hence are supramenable.

Acknowledgement. The author thanks Claire Anantharaman-Delaroche for call-
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ON THE C∗-ALGEBRA GENERATED BY THE KOOPMAN

REPRESENTATION OF A TOPOLOGICAL FULL GROUP

EDUARDO SCARPARO

Abstract. Let (X,T, µ) be a Cantor minimal sytem and [[T ]] the associated

topological full group. We analyze C∗π([[T ]]), where π is the Koopman repre-
sentation attached to the action of [[T ]] on (X,µ).

Specifically, we show that C∗π([[T ]]) = C∗π([[T ]]′) and that the kernel of
the character τ on C∗π([[T ]]) coming from weak containment of the trivial

representation is a hereditary C∗-subalgebra of C(X)oZ. Consequently, ker τ

is stably isomorphic to C(X) o Z, and C∗π([[T ]]′) is not AF.
We also prove that if G is a finitely generated, elementary amenable group

and C∗(G) has real rank zero, then G is finite.

1. Introduction

In this work, we study the real rank zero and AF properties for certain classes of
group C∗-algebras. The motivations are the classical equivalence between amenabil-
ity of a group and nuclearity of its C∗-algebra, and the equivalence between local
finiteness of a group and finiteness of its uniform Roe algebra worked out in [18],
[10] and [17].

For a compact metric space X, both C(X) being AF and having real rank zero
are equivalent to total disconnectedness of X.

If a group G is countable and locally finite, then C∗(G) is clearly AF. Conversely,
in [9, Theorem 2], Kaniuth proved that if G is a nilpotent group and C∗(G) has
real rank zero, then G is locally finite.

In section 2, we show that if G is a finitely generated, elementary amenable
group, and C∗(G) has real rank zero, then G is finite. Our proof relies on the fact
(Lemma 2.2) that infinite, finitely generated, elementary amenable groups virtually
map onto Z.

Let (X,T, µ) be a Cantor minimal system and π the Koopman representation
associated to the action of the topological full group [[T ]] on (X,µ).

Notice that C∗([[T ]]) does not have real rank zero, since [[T ]] maps onto Z (by
[16, Theorem 1.1(i)], or [5, Proposition 5.5]). On the other hand, by results of
Matui, the commutator subgroup [[T ]]′ is simple ([12]) and non-locally finite (this
follows from much sharper results from [13]). Hence, commutators of topological
full groups form a class which is not covered by Theorem 2.4.

Futhermore, it was proven by Juschenko and Monod ([7]) that [[T ]] is amenable.
In Section 3, we prove that C∗([[T ]]′) is not AF. This is done by showing that
C∗π([[T ]]) = C∗π([[T ]]′), and that the kernel of the character τ on C∗π([[T ]]) coming
from weak containment of the trivial representation is a hereditary C∗-subalgebra

This work was supported by CNPq, National Council for Scientific and Technological Devel-

opment - Brazil.
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of C(X)oZ. Consequently, ker τ is stably isomorphic to C(X)oZ, and C∗π([[T ]]′)
is not AF and has real rank zero.

In Section 4, we discuss examples coming from odometers.

2. Elementary amenable groups and real rank zero

Recall that the class of elementary amenable groups is the smallest class of groups
containing all abelian and all finite groups, and closed under taking subgroups,
quotients, extensions and inductive limits.

Let B denote the class of groups consisting of finite groups and Z. The next
lemma is immediate from the proof of [14, Corollary 2.1]. For the conveninence of
the reader, we give a proof of it by recalling Osin’s argument and notation.

Lemma 2.1. The class of elementary amenable groups is the smallest class of
groups containing B and closed under taking direct limits with injective connecting
maps and extensions by groups from B.

Proof. Let E(B) be the smallest class of groups containing B and closed under
taking subgroups, quotients, extensions and inductive limits. Clearly, E(B) is equal
to the class of elementary amenable groups.

Let E0(B) be the class consisting only of the trivial group. Supposing that α > 0
is an ordinal and we have already defined the classes Eβ(B) for all ordinals β < α,
put

Eα(B) =
⋃

β<α

Eβ(B)

if α is a limit ordinal. If α is a successor ordinal, define Eα(B) to be the class
of groups that can be obtained from groups of the class Eα−1(B) by taking direct
limits or by taking an extension of a given group by a group from B.

By [14, Lemma 3.1], each Eα is closed under taking quotients. Hence, in the
definition of Eα for α a successor ordinal, we could have considered only direct
limits with injective connecting maps.

Therefore, it follows from [14, Theorem 2.1] that E(B) is the smallest class of
groups containing B and closed under taking direct limits with injective connecting
maps and extensions by groups from B. �
Lemma 2.2. If G is an infinite, finitely generated, elementary amenable group,
then there is a subgroup of finite index of G which admits a homomorphism onto
Z.

Proof. Let A be the class of all finite groups, all non-finitely generated groups, and
all groups containing a finite index subgroup which maps onto Z.

We claim that A contains the class of elementary amenable groups. Obviously,
A contains all finite groups, it contains Z, and it is closed under taking inductive
limits with injective connecting maps, and extensions by Z.

Let us check that A is also closed under taking extensions by finite groups. Let
H ∈ A, F be a finite group, and G a group which fits into the short exact sequence

1→ H → G→ F → 1.

If G is infinite and finitely generated, then also H is infinite and finitely gener-
ated. Hence, H contains a finite index subgroup H ′ which maps onto Z. Since F
is finite, also H ′ has finite index in G. Therefore, G ∈ A.

By Lemma 2.1, it follows that A contains the elementary amenable groups. �

43



KOOPMAN REPRESENTATION OF A TOPOLOGICAL FULL GROUP 3

A C∗-algebra A is said to have real rank zero if every hereditary C∗-subalgebra
of A has an approximate unit of projections (not necessarily increasing). We refer
the reader to, for example, [3, Section V.7] for this and other equivalent definitions
of real rank zero.

Lemma 2.3. If A is an infinite-dimensional, real rank zero C∗-algebra, then it
contains a sequence of non-zero, orthogonal projections.

Proof. By [8, Exercise 4.6.13], and since A is infinite-dimensional, there is a se-
quence (an)n∈N ⊂ A of non-zero, positive elements such that ajak = 0 when j 6= k.
For each n ∈ N, take a non-zero projection pn in the hereditary (hence real rank
zero) C∗-subalgebra anAan. By construction, pjpk = 0 when j 6= k. �
Theorem 2.4. If G is a finitely generated, elementary amenable group and C∗(G)
has real rank zero, then G is finite.

Proof. Suppose G is infinite. By Lemma 2.2, there is a subgroup H of G with
finite index n, and Φ: H → Z a surjective homomorphism. Let ϕ : C∗(H)→ C∗(Z)
be the ∗-homomorphism induced by Φ, and ϕn : Mn(C∗(H)) → Mn(C∗(Z)) the
inflation of ϕ.

There is an injective ∗-homomorphism ψ : C∗(G) → Mn(C∗(H)) such that the
image of ϕn ◦ψ is infinite-dimensional. For the convenience of the reader, we sketch
the construction of ψ, which is standard.

Let x1, . . . , xn ∈ G be such that x1 = e and G = tni=1xiH. Consider the
following unitary defined on canonical basis vectors:

U :

n⊕

i=1

`2(H)→ `2(G)

δi,h 7→ δxih.

Let S : B(`2(G))→Mn(B(`2(H)) be the isomorphism induced by U .
By using the left regular representations λG and λH , we see C∗(G) as contained

in B(`2(G)) and analogously for C∗(H).
It is easy to check that S(λG(g)) ∈ Mn(C∗(H)) for every g ∈ G. Hence,

S(C∗(G)) ⊂ Mn(C∗(H)). Furthermore, for h ∈ H, we have that S(λG(h))1,1 =
λH(h). Let ψ := S|C∗(G). Then ϕn(ψ(C∗(G))) is infinite-dimensional.

Hence, by Lemma 2.3, Mn(C∗(Z)) 'Mn(C(T)) contains a sequence of non-zero,
orthogonal projections. Since T is connected, we get a contradiction. Hence, G is
finite. �
Remark 2.5. Recall that a C∗-algebra A is said to have property (SP) if every non-
zero hereditary C∗-subalgebra of A contains a non-zero projection. Furthermore,
A is said to have residual property (SP) if every quotient of A has property (SP)
(see [15, Section 7] for more details about these properties).

In the proof of Theorem 2.4, the only aspects of real rank zero that were used
are that it implies property (SP) and that having real rank zero is closed under
taking quotients. In particular, Theorem 2.4 remains true if one replaces “real rank
zero” by “residual property (SP)”.

3. Koopman representation of a topological full group

Given a unitary representation π of a group G, we denote by C∗π(G) the C∗-
algebra generated by the image of π.
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We will denote the Cantor set by X.
Let α be an action of a group G on X by homeomorphisms. The topological

full group associated to α, denoted by [[α]], is the group of all homeomorphisms
γ on X for which there exists a finite partition of X into clopen sets {Ai}ni=1 and
g1, . . . , gn ∈ G such that γ|Ai = αgi |Ai for 1 ≤ i ≤ n. That is, [[α]] consists of the
homeomorphisms on X which are locally given by the action α.

Fix T a minimal homeomorphim on X. We denote by [[T ]] the topological full
group associated to the Z-action induced by T .

Let µ be a T -invariant probability measure on X. Note that µ is also invari-
ant under the action of [[T ]] on X. Let π : [[T ]] → B(L2(X,µ)) be given by
π(g)(f) := f ◦g−1, for g ∈ [[T ]] and f ∈ L2(X,µ). This π is the so called Koopman
representation associated to the action of [[T ]] on (X,µ).

We will use the faithful representation of C(X) oZ in B(L2(X,µ)), with C(X)
acting by multiplication operators, and, for n∈ Z, δn := π(Tn), so that C(X)oZ :=
span{fδn : f ∈ C(X), n ∈ Z}.

Given g ∈ [[T ]] and {Ai}ni=1 a partition of X into clopen sets such that g|Ai =
Tni |Ai for 1 ≤ i ≤ n, notice that π(g) =

∑
1Tni (Ai)δni . In particular, C∗π([[T ]]) ⊂

C(X) o Z.

Definition 3.1. Given n ∈ N, we say that a subset A ⊂ X is n-disjoint if

A, T (A), . . . , Tn−1(A)

are pairwise disjoint.

Suppose A ⊂ X is a clopen and n-disjoint set. Consider the symmetric group
Sn acting on {0, . . . , n− 1}. For σ ∈ Sn, let σA ∈ [[T ]] be given by

σA(x) =

{
Tσ(i)−i(x), if 0 ≤ i < n and x ∈ T i(A)

x, if x /∈ tn−1i=0 T
i(A),

x ∈ X.(1)

Lemma 3.2. Let n ≥ 4 and A ⊂ X be a clopen and n-disjoint set. For every
σ ∈ Sn, it holds that π(σA) ∈ C∗π([[T ]]′).

Proof. Notice first that {1T i(A)δi−j}0≤i,j<n forms a system of matrix units in
C(X)oZ of type Mn(C) (we see Mn(C) as matrices indexed by the set {0, . . . , n−
1}).

Let B := (tn−1i=0 T
i(A))c and ϕ : C⊕Mn(C)→ C(X)oZ be the ∗-homomorphism

given by ϕ(α, eij) := α1B + 1T i(A)δi−j , for α ∈ C and 0 ≤ i, j ≤ n− 1.
Let ρ : Sn → C⊕Mn(C) be the direct sum of the trivial representation and the

permutation representation. Then, for σ ∈ Sn, it holds that ϕ(ρ(σ)) = π(σA).
Furthermore, since n ≥ 4, we have that C∗ρ((Sn)′) = C∗ρ(Sn).
Therefore, σA ∈ C∗π([[T ]]′) for any σ ∈ Sn.

�

Given A ⊂ X clopen, consider the continuous function

tA : A→ N

x 7→ min{k ∈ N : T k(x) ∈ A}.
This is the so called function of first return to A.

Notice that, for j ∈ Z, it holds that

(2) tT j(A) ◦ T j |A = tA.
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Let TA ∈ [[T ]] be defined by

TA(x) =

{
T tA(x)(x), if x ∈ A
x, otherwise.

, x ∈ X.(3)

If B ⊂ X is a clopen set disjoint from A, then TA and TB commute.
In order to prove Lemma 3.4, we will have to analyze the spectrum of C∗-algebras

generated by certain commuting unitaries, and the next lemma will be useful for
it.

We consider the circle T as a pointed space with basepoint 1.

Lemma 3.3. The universal C∗-algebra generated by commuting unitaries z1, . . . , zn
subject to the relations {(zi − 1)(zj − 1) = 0 : 1 ≤ i 6= j ≤ n} is C(

∨n
k=1 T), with

zk being given by

zk :

n∨

i=1

T→ C

(x, i) 7→
{
x, if i = k

1, if i 6= k.

Proof. Consider the embedding F :
∨n
i=1 T → Tn which takes x in the i-th copy

of T and sends it into (F (x)i)1≤i≤n ∈ Tn such that F (x)i := x and F (x)j := 1 if
j 6= i. Also let F ′ : C(Tn)→ C(

∨n
i=1 T) be given by F ′(f) := f ◦F , for f ∈ C(Tn).

For 1 ≤ i ≤ n, let wi ∈ C(Tn) be given by wi(y) := yi, for y ∈ Tn. Then
F ′(wi) = zi.

Assume n > 1. Let A := C∗({(wi−1)k(wj−1)l : i 6= j and k, l ∈ N}). We claim
that kerF ′ = A. Clearly, A ⊂ kerF ′.

Let Y := Tn \ Im(F ). Notice that kerF ′ = {f ∈ C(Tn) : f |Im(F ) = 0} ' C0(Y ).
By the Stone-Weierstrass Theorem, in order to show that A = C0(Y ), it is sufficient
to show that, for every y ∈ Y , there is f ∈ A such that f(y) 6= 0, and that A
separates the points of Y . The proof of the former condition is trivial, so we only
show that A separates the points of Y .

Take (x1, . . . , xn), (y1, . . . yn) ∈ Y distinct points. There is i such that xi 6= yi.
Without loss of generality, assume xi 6= 1. Take j 6= i such that xj 6= 1. Then, by
choosing k ∈ N appropriately, we get (xi − 1)k(xj − 1) 6= (yi − 1)k(yj − 1).

Since C(Tn) is the universal C∗-algebra generated by n commuting unitaries and
C(

∨n
i=1 T) is generated by {z1, . . . , zn}, the result follows.

�

Lemma 3.4. Let A ⊂ X be a clopen and 3-disjoint set. Then π(TA) ∈ C∗([[T ]]′).

Proof. Given σ ∈ S3, x ∈ A and 0 ≤ i, j < 3, we have that σATT i(A)σ
−1
A (T j(x)) =

T j(x) if j 6= σ(i) and
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σATT i(A)σ
−1
A (Tσ(i)(x)) = σATT i(A)(T

i(x))

= Tσ(i)−iT tTi(A)(T
i(x))(T i(x))

(∗)
= Tσ(i)−iT tTσ(i)(A)

(Tσ(i)(x))
(T i(x))

= T
t
Tσ(i)(A)

(Tσ(i)(x))
(Tσ(i)(x))

= TTσ(i)(A)(T
σ(i)(x)),

where the equality in (*) is due to (2). Hence, σATT i(A)σ
−1
A = TTσ(i)(A).

In particular, for 0 ≤ i, j < 3, we have that TT i(A)(TT j(A))
−1 ∈ [[T ]]′.

If 0 ≤ i 6= j < 3, it is easy to check that (π(TT i(A))−1)(π(TT j(A))−1) = 0. Then,

by Lemma 3.3, there is a ∗-homomorphism from C(
∨3
i=1 T) into C∗({π(TT i(A)) :

0 ≤ i < 3} mapping zi into π(TT i−1(A)) for 1 ≤ i ≤ 3. Furthermore, by the

Stone-Weierstrass theorem, C(
∨3
i=1 T) is generated by {ziz∗j : 1 ≤ i, j ≤ 3}. Hence,

π(TA) ∈ C∗π([[T ]]′).
�

Theorem 3.5. Let (X,T, µ) be a Cantor minimal system and π the Koopman rep-
resentation associated to the action of [[T ]] on (X,µ). Then C∗π([[T ]]) = C∗π([[T ]]′).

Proof. By [6, Theorem 4.7], given m ∈ N, [[T]] is generated by
⋃

n≥m
{TA, σA : σ ∈ Sn, A ⊂ X is clopen and n-disjoint}.

By Lemmas 3.2 and 3.4, the result follows.
�

Notice that 1X ∈ L2(X,µ) is invariant under π([[T ]]). Therefore, π weakly con-
tains the trivial representation. Denote by τ the associated character on C∗π([[T ]]).

Lemma 3.6. Let τ be the character on C∗π([[T ]]) coming from weak containment
of the trivial representation. Then ker τ = span{1− π(g) : g ∈ [[T ]]}.
Proof. Given d ∈ ker τ and ε > 0, take d′ ∈ spanπ([[T ]]) such that ‖d − d′‖ < ε

2 .
Then ‖d − (d′ − τ(d′))‖ = ‖(d − d′) + τ(d′ − d)‖ < ε. Furthermore, d′ − τ(d′) ∈
ker τ ∩ spanπ([[T ]]).

Since ker τ ∩ spanπ([[T ]]) = span{1− π(g) : g ∈ [[T ]]}, the result follows.
�

Theorem 3.7. Let τ be the character on C∗π([[T ]]) coming from weak containment
of the trivial representation. Then ker τ is a hereditary C∗-subalgebra of C(X)oZ.

Proof. We are going to show that, for a ∈ C(X) o Z and b, c ∈ ker τ , it holds that
bac ∈ ker τ .

Given A ⊂ X clopen and 2-disjoint, notice that (δ0 − δ1)1A(δ0 − δ−1) = δ0 −
(1(A∪T (A))cδ0 + 1T (A)δ1 + 1Aδ−1) ∈ C∗π([[T ]]).

By using telescoping sums, it follows that, for n,m ∈ Z and A ⊂ X 2-disjoint
and clopen, (δ0 − δn)1A(δ0 − δm) ∈ C∗π([[T ]]).

Given g, h ∈ [[T ]], take a basis B of 2-disjoint, clopen sets for the topology of
X. Moreover, assume that, for each A ∈ B, there is n(A),m(A) ∈ Z such that
g|A = Tn(A)|A and h|h−1(A) = Tm(A)|h−1(A).
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Then

(δ0 − π(g))1A(δ0 − π(h)) = 1A − δn(A)1A − 1Aδm(A) + δn(A)1Aδm(A)

= (δ0 − δn(A))1A(δ0 − δm(A)) ∈ C∗π([[T ]]).

Since C(X) = span{1A : A ∈ B}, we conclude that, for g, h ∈ [[T ]] and f ∈
C(X), (δ0 − π(g))f(δ0 − π(h)) ∈ C∗π([[T ]]).

By Lemma 3.6 and the fact that C(X) o Z = span{fδn : f ∈ C(X), n ∈ Z}, we
conclude that, for b, c ∈ ker τ and a ∈ C(X) o Z, bac ∈ C∗π([[T ]]).

Since τ is a character, the result follows. �

Corollary 3.8. Let τ be the character on C∗π([[T ]]) coming from weak containment
of the trivial representation. Then ker τ is stably isomorphic to C(X) o Z. In
particular, C∗π([[T ]]′) has real rank zero and C∗([[T ]]′) is not AF.

Proof. By Theorem 3.7 and the fact that C(X)oZ is simple, it follows that ker τ is
a full, hereditary C∗-subalgebra of C(X) o Z. Therefore, [2, Theorem 2.8] implies
that ker τ is stably isomorphic to C(X) o Z.

Since C(X) oZ has real rank zero, and K1(C(X) oZ) ' Z, and K1(A) = 0 for
any AF-algebra A, the conclusion follows. �

4. Odometers

We start this section by giving a description of C∗π([[T ]]) when T is an odometer
map.

Given m ∈ N, let Zm := Z/mZ.

Example 4.1. Let (nk) be a strictly increasing sequence of natural numbers such
that, for every k, nk|nk+1. Let ρk : Znk+1

→ Znk be the surjective homomorphism
such that ρk(1) = 1, and define

X := {(xk) ∈
∏

k∈N
Znk : ρk(xk+1) = xk,∀k ∈ N}.

Consider

T : X → X

(xk) 7→ (xk + 1).

Then (X,T ) is a Cantor minimal system, the so called odometer of type (nk).
For k ∈ N and l ∈ Znk , let U(k, l) := {(xm) ∈ X : xk = l}.
Using the notation from (1) and (3), let, for k ∈ N, Γk := 〈{TU(k,l), σU(k,0) ∈

[[T ]] : l ∈ Znk , σ ∈ Snk}〉. As proven by Matui in [13, Proposition 2.1], Γk ⊂ Γk+1,
Γk ' Znk o Snk , and

⋃
k Γk = [[T ]].

For k ∈ N, let Ak := span{1U(k,l)δm : l ∈ Znk ,m ∈ Z}. Then Ak ⊂ Ak+1, and

C(X) o Z =
⋃
k Ak.

Fix k ∈ N and consider the isomorphism ϕk : Ak → C(T,MZnk (C)), such that

ϕk(1U(k,l)) = el,l, for l ∈ Znk , and, for z ∈ T,

(ϕk(δ1)(z))i,j :=





1, if 0 < i ≤ nk − 1 and j = i− 1

z, if i = 0 and j = nk − 1

0, otherwise.
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Let π : [[T ]]→ U(C(X) o Z) be the homomorphism coming from the Koopman
representation and Bk := {b ∈MZnk (C) : ∀i, j ∈ Znk ,

∑
r bi,r =

∑
s bs,j}.

Then, for σ ∈ Snk , we have that ϕk(π(σU(k,0))) =
∑
eσ(i),i and

C∗({ϕk(π(σU(k,0))) : σ ∈ Snk}) ' Bk.
Furthermore, ϕk(C∗(π({TU(k,l) : l ∈ Znk}))) ' C(

∨
l∈Znk

T) and ϕk(C∗π(Γk)) =

{f ∈ C(T,MZnk (C)) : f(1) ∈ Bk}.
In [4], Dykema and Rørdam gave examples of non-locally finite groups G such

that C∗red(G) has real rank zero. As far as we are aware, there is no known example
of non-locally finite group G such that C∗(G) has real rank zero.

Question 4.2. Let (X,T ) be an odometer as in Example 4.1. Does C∗([[T ]]′) have
real rank zero?

Example 4.3. Let (X,T ) be an odometer of type (nk) as in Example 4.1. Consider

J : X → X

(xk) 7→ (−xk).

Then J is an involutive homeomorphism on X such that JTJ = T−1. Hence, T
and J induce an action α of the infinite dihedral group Z o Z2 on X. We will use
Matui’s technique ([13, Proposition 2.1]) in order to compute [[α]].

For every γ ∈ (Z o Z2) \ {e}, it holds that {x ∈ X : αγ(x) = x} has empty
interior (it consists of at most two elements). Hence, given g ∈ [[α]], there exists a
unique continuous function cg : X → Zo Z2 such that, for x ∈ X, g(x) = αc(g)(x).

For k ∈ N and l ∈ Znk , let U(k, l) be as in Example 4.1 and

Γk := {g ∈ [[α]] : cg is constant on U(k, l) for l ∈ Znk}.
Define Jk,l ∈ [[α]] by

Jk,l(x) =

{
T 2lJ(x), if x ∈ U(k, l)

x, otherwise,
x ∈ X.

Then Γk = 〈{TU(k,l), Jk,l, σU(k,0) : l ∈ Znk , σ ∈ Snk}〉 and

Γk ' (Z o Z2)nk o Snk , Γk ⊂ Γk+1, and
⋃

k

Γk = [[α]].(4)

Notice that the constant sequence (0) ∈ X is a fixed point for J . Hence, [1,
Theorem 3.5] implies that C(X) o (Z o Z2) is AF (see also [11]). Moreover, it
follows from (4) that the abelianization of [[α]] is locally finite.

Therefore, the two obstructions that were used for ruling out the possibility of
C∗([[T ]]) and C∗([[T ]]′) being AF do not hold for C∗([[α]]).

Question 4.4. Let α be as in Example 4.3. Is C∗([[α]]) AF?.
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