\qquad

 CFSTI PRICE(S)
 \qquad
 \qquad
 Hard copy (HC)
 Microfiche (MF)
 \qquad
 REPORTS AMD OPEM LITERATURE - VOL. VII, H0. 6 ENTRIES,"71,646-72,015

JUNE 1963

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA. CALIFORNIA

ASTRONAUTICS INFORMATION ABSTRACTS

REPORTS AND OPEN LITERATURE VOL. VII, NO. 6

ENTRIES 71,646-72,015

Compiled by:
V. S. ANDERSON
N. IVES
T. P. MACDONALD
B. H. NICHOLS
E. C. SIDWELL

ASTRONAUTICS INFORMATION ABSTRACTS

REPORTS AND OPEN LITERATURE

Volume VII, Number 6
Entries $71,646-72,015$

Copyright (C) 1963
Jet Propulsion Laboratory
California Institute of Technology
Prepared Under Contract No. NAS 7-100 National Aeronautics \& Space Administration

PREFACE

This issue of the JPL Astronautics Information Abstracts-Reports and Open Literature covers the month of June 1963.

As in the past, the Astronautics Information series is selective. Report and open literature citations are restricted to the subject of space flight and to applicable data and techniques. Data and techniques arising from other technologies are reported only if their relationship to astronautics is clear. The intent is to give full coverage to astronautics but to exclude peripheral material.

Except under unusual circumstances, the JPL Library is not able to lend copies of the material cited herein. However, when known, the ASTIA AD numbers are included in the citations. Users should request reports from the originator. Subscribers to most of the periodicals covered are listed in the Union List of Serials published by the H. W. Wilson Company of New York and in the list of periodicals abstracted by the Chemical Abstracts Service of Ohio State University.

CONTENTS

Reports and Open Literature 237
Author Index 291
Subject Index 305
Source Index 355
Periodical Citations 363

ASTRONAUTICS INFORMATION ABSTRACTS

ABLATION

```
71,646 AN EXPERIMENTAL INVESTIGATION OF SEVERAL
    ABLATION MATERIALS IN AN ELECTRIC-ARC-
    HEATED AIR JET
    Chapman, A. J.
    April 1963
    National Aeronautics and Space Administration,
    Washington, D.C.
    TN D-1520
```

An investigation to determine the ability of several ablation materials to reduce surface heat transfer in an electric-archeated airstream has shown that ammonium chloride has a higher heat of ablation, and thus greater ability to reduce surface heat transfer, at stagnation enthalpy potential below $8500 \mathrm{Btu} / \mathrm{lb}$ than tefon, nylon, Avcoat 19 , or GE-124. The trend of results indicates that, for stagnation enthalpy potential above $8500 \mathrm{Btu} / \mathrm{lb}$, nylon would have a higher heat of ablation than ammonium chloride because of an increased transpiration effect. Results obtained for a wide range of test stream conditions with subsonic and supersonic flow from the present investigation and several references indicate that the heat of ablation is primarily sensitive to stagnation enthalpy potential.

AIRGLOW

71,647 DYNAMICAL STUDIES OF THE OXYGEN GREEN LINE IN THE AIRGLOW
Tohmatsu, T., Nagata, T.
Planetary and Space Science, v. 10, pp. 103-116, 1963
(Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

Variations in intensity of the oxygen green line [OI]5577 \AA in the airglow are discussed on the basis of the photochemical excitation theory, with special reference to the dynamical behavior of the oxygen transition region for photodissociation.

71,648 METALLIC EMISSIONS IN THE TWILIGHT AND THEIR BEARING ON ATMOSPHERIC DYNAMICS Jones, A. V.
 Planetary and Space Science, v. 10, pp. 117-127, 1963
 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

The possibilities are reviewed of obtaining information about dynamic processes in the upper atmosphere by observing variations in the concentrations of naturally occurring and artificially introduced metallic atoms detected by their twilight fluorescence. In the case of natural sodium, it is concluded that dynamic effects are probably responsible for the seasonal variation, although the exact processes involved remain obscure. Even less is known in the cases of natural
lithium, potassium, and calcium. Theories of the origin and seasonal variation of upper atmospheric sodium are reviewed. The observation of the twilight fluorescence of lithium, after the injection of quantities of the metal into the mesosphere and lower thermosphere, seems to be a promising technique for the study of upper atmospheric dynamics.

```
71,649 LIGHTNING-ENHANCED N N}\mp@subsup{}{}{+}\mathrm{ (RADIATION IN THE
    NIGHT AIRGLOW
    Moore, J. G.
    Journal of Geophysical Research, v. 68, no. 5,
    pp. 1335-1337, March 1, 1963
```

During the night of July $27-28$, 1962, a zenith night airglow photometer recorded intense flashes of the $\mathrm{O}-0$ band of the first negative system of $\mathrm{N}_{2}{ }^{+}$caused by lightning strokes in an electrical storm some $60-\mathrm{km}$ distant. The peak intensity of the brightest flash was about 50 rayleighs above the background of 28 rayleighs for the $3914 \AA$ emission in the airglow above China Lake.

71,650 OBSERVATION OF THE DAY AIRGLOW Wallace, L.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1559-1560, March 1, 1963

A Littrow spectrograph was flown in a balloon on September 24, 1962 to observe the day airglow. The spectrum in the region 4500 to $7500 \AA$ was photographed in the second order. This spectrum showed a stronger Fraunhofer spectrum than had been expected, and the $6300 \AA$ line of atomic oxygen was present but not prominent.

ANNA $1 B$

71,651 GEODETIC STUDIES WITH THE ANNA 1B SATELLITE
 American Geophysical Union, Transactions, v. 44, no. 1, pp. 241-246, March 1963

(Also available in National Academy of Sciences, IGY Bulletin, no. 68, February 1963)

The orbital data, experiments, and instrumentation of the Anna $1 B$ are described.

ANTENNAS

71,652 DESIGN AND CONSTRUCTION OF THE HORN ANTENNA
 Blackmore, R. W.
 Bell Laboratories Record, v. 41, no. 4, pp. 122-129, April 1963

The design, fabrication technique, and materials for the Andover, Maine, horn antenna are described, and a table of operating parameters is given.

ANTENNAS (Cont'd)
71,653 THE HORN ANTENNA DIRECTION SYSTEM Klahn, R., Byrne, E. R.
Bell Laboratories Record, v. 41, no. 4, pp. 130-134, April 1963

The design of the directional control system used on the horn antenna at Andover, Maine, and its operation during a tracking event are described.

APOLLO PROJECT

```
71,654 PROJECT APOLLO'S MISSION: GET TWO AMERICANS TO THE MOON
Reid, M.
Electronics, v. 36, no. 6, pp. 18-20, February 8, 1963
```

A general description of the Apollo project is given, and the electronic equipment to be used is described.

ASTEROIDS

```
71,655 THE 1963 APPROACH OF MINOR PLANET 1580 BETULIA
Hodgson, R. G.
Strolling Astronomer, The, v. 17, no. 1-2, p. 1, January-February 1963
```

An unusual opportunity to observe a minor planet in relatively close proximity is afforded in 1963 when 1580 Betulia approaches to within only 0.157 AU from the Earth. The predicted magnitude is 16.1 on April 21 and June 20. An ephemeris adapted from Harvard Announcement Card 1580 is included in this brief discussion of the asteroid's approach.

ASTRONAUTS

71,656 MEDICAL PROBLEMS OF MANNED SPACE FLIGHT Gazenko, O. G.
Space Science Reviews, v. 1, no. 3, pp. 369-398, March 1963

Certain medical problems of human space flight are surveyed on the basis of experimental research carried out in the USSR during recent years. Problems considered are (1) the influence of the factors of space flight upon the organism, (2) acceleration, (3) weightlessness, (4) cosmic radiation, and (5) biological telemetry.

[^0]
71,658 COMMENTS ON THE INCORPORATION OF MAN INTO THE ATTITUDE DYNAMICS OF SPACECRAFT
 Roberson, R. E.
 Journal of the Astronautical Sciences, The, v. 10, no. 1, pp. 27-28, Spring 1963

Man is discussed as a source of attitude disturbance within the vehicle.

71,659 ASTROPHYSICAL AND RADIOBIOLOGICAL ASPECTS OF HUMAN SPACE FLIGHT (ASPETTI ASTROFISICI E RADIOBIOLOGICI DEL VOLO UMANO NEL COSMO)
 Pasinetti, A., Pasinetti, L. E.
 Rivista di Medicina Aeronautica e Spaziale, v. 25, no. 3, pp. 466-499, July-September, 1962
 (Abstracted in Aerospace Medicine, v. 34, no. 3, pp. 279-280, March 1963)

The astrophysical characteristics, origin, and distribution of ionizing, solar, cosmic, and Van Allen radiation found in space are discussed. Calculations are given of the dosage for cosmic radiations affecting both the interior and exterior of a space vehicle traveling through the Van Allen belt. Consideration is given to the reduction by biological shielding of the radiation dose and the cutaneous lesions caused by protons and by weak and ultrashort X-photons. Radioprotection of pilots by means of drugs (i.e., sulfhydryl compounds) administered parenterally about half an hour prior to radiation exposure is suggested.

71,660 BIOLOGICAL CONSIDERATIONS ON THE PRESENT STATE OF SPACE FLIGHT (CONSIDERAZIONI biologiche sui voli spaziale eseguiti FINO AD OGGI)
 Lomonaco, \mathbf{T}.
 Rivista di Medicina Aeronautica e Spaziale, v. 25, no. 3, pp. 431-449, July-September 1962
 (Abstracted in Aerospace Medicine, v. 34, no. 3, p. 271, March 1963)

Physiobiological data derived from Russian, American, and French suborbital and orbital flights from 1949 to 1961 utilizing animals and humans are reviewed. During the orbital flights of Gagarin and Titov in 1961, neither Soviet astronaut showed any significant change in cardiovascular or respiratory function during the active phase of the flight. No changes were observed during the period of weightlessness, and no disorders of motion or muscle coordination were recorded. Only Titov suffered from nausea and vertigo for several moments. Telemetered biological parameters showed that in Glenn's 1962 orbital flight his cardiovascular functions in hyper- and zero-gravity corresponded to previously observed data. A reduction of twilight vision was the only change in sensory function. Although the astronaut attempted to elicit labyrinthine disorders by voluntary head movements, none were observed during zero-gravity. During his 1962 flight, Carpenter exhibited tachycardia during weightlessness and great changes in blood pressure.

71,661 ASTRONAUTICS AND MEDICINE (ASTRONAUTICA E MEDICINA)
Warren, J. K.
Rassegna Medica e Culturale, Milano, v. 39, no. 9, pp. 15-18, September 1962
(Abstracted in Aerospace Medicine, v. 34, no. 3, p. 271, March 1963)

Results of recent American and Russian research projects and space missions are reviewed in relation to man in space as affected by magnetic fields, solar radiations, gravitational forces, weightlessness, accelerations, decelerations, and psychological factors. A space environment simulator and gondola used for study of disorientation and of the effects of accelerative forces are pictured.

ASTRONOMICAL UNIT

71,662 THE ASTRONOMICAL UNIT OF LENGTH Mikhailov, A. A.
Soviet Astronomy-AJ, v. 6, no. 4, pp. 449-458, January-February 1963

The basic principles and results of the determination of the astronomical unit of length and the solar parallax by the trigonometric, dynamic, spectroscopic, and radar methods are discussed. Some of the sources of uncertainty of these determinations are pointed out and possible errors evaluated. Future possibilities are considered.

ATTITUDE CONTROL SYSTEMS

71,663 SPACECRAFT FLIGHT CONTROL SYSTEMS Walter Kidde \& Co., Inc., Kidde Aero Space Div., Belleville, N.J. 0310-700

Technical information on flight control systems for spacecraft attitude control is presented. The various types of reaction are discussed, including cold gas, monopropellant, and bipropellant systems. Information is also provided concerning several types of thrust vector control systems, including secondary injection, nozzle gimballing, and jet vanes.

71,664 INVESTIGATION OF FEASIBILITY OF A POSITIVE DISPLACEMENT INJECTOR FOR ATTITUDE CONTROL PROPULSION
 January 1963
 Curtiss-Wright Corporation, Wright Aeronautical Div., Wood-Ridge, N.J.
 CTR .00-270

Positive displacement injection is basically a variant of a conventional bipropellant reaction control system which uses solenoid valves to control propellant flow. It differs in that mechanically linked fuel and oxidizer injectors coupled with an actuator replace the propellant solenoid valves. The objective of this feasibility study has been to measure the potential of this device for attitude control propulsion.

AURORAE

71,665 THE DIRECTIONS OF AURORAL RAYS

Cole, K. D.
Australian Journal of Physics, v. 16, no. 1, pp. 32-39, March 1963

The geometry of the radiation point of an auroral corona is examined. The radiation point of two rays is the antidirection of the point within the Earth at which the rays meet or appear to meet. It is therefore incorrect to identify the radiant point of a corona with local auroral zenith. The difference in direction is commonly 0.5 deg of zenith distance. The importance of rays as magnetic disturbance indicators in the 100 to $1000-\mathrm{km}$ height range is stressed, particularly in view of possible deformations of the magnetosphere whose full effects may not be estimated from ground-based observations of the geomagnetic field.

71,666 THE DYNAMICAL MORPHOLOGY OF THE AURORA POLARIS
 Akasofu, S.I.
 Journal of Geophysical Research, v. 68, no. 6, pp. 1667-1673, March 15, 1963

Simultaneous changes of auroral form, brightness, and motion over the whole polar region are studied, using IGY all-sky camera records from widely distributed stations in eastern Siberia, Alaska, Canada, northern United States, and Greenland. Large-scale dynamical features of the auroras, such as the breakup, formation of large loops, and drift motions, are discussed.

71,667 MOTIONS OF THE AURORA AND RADIO-AURORA AND THEIR RELATIONSHIPS TO IONOSPHERIC CURRENTS
 Cole, K. D.
 Planetary and Space Science, v. 10, pp. 129-164, 1963
 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

Observations of magnetic disturbances, aurorae, radioaurorae, and ionospheric movements are reviewed. Correlations between these phenomena are discussed. Distinction is made between aurora which is attributable to the emission of light from particles of the upper atmosphere and radio-aurora which is a feature of upper atmosphere ionization observed by the reflection of radio waves. Some ideas relevant to explanation of the movements are presented. A listing of 160 references is included.

71,668 REFLECTION MECHANISMS FOR RADIO AURORA

 Forsyth, P. A.Planetary and Space Science, v. 10, pp. 179-186, 1963
(Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

Attempts to derive useful information concerning the degree of ionization in the auroral atmosphere from radio meas-

AURORAE (Cont'd)

urements have been the subject of some controversy. One view is that the radar echoes result from relatively slight variations in the spatial distribution of ionization which cause partial reflection of the radio waves. The alternative view is that the radio waves are totally reflected by isolated strong concentrations of ionization. Recently, the main features of both mechanisms were combined in one treatment by Moorcroft. This treatment seems to be physically reasonable and is consistent with recent radar measurements. It appears that multiplefrequency radio observations can now be used to measure peak electron densities (concentrations) with considerable confidence, and more detailed interpretations involving the spatial distribution of the ionization are a distinct possibility.

71,669 PROTON BOMBARDMENT IN AURORA

Galperin, Y. I.
Planetary and Space Science, v. 10, pp. 187-193, 1963
(Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper
Atmosphere Emissions, Paris, France, June 25-29, 1962)
Studies are described of a recently discovered type of aurora, the proton aurora, which systematically appears in the auroral zone, often during quiet magnetic conditions, and moves towards the equator with rising magnetic disturbance. The "hydrogen field" is a wide nearly homogeneous band with borders along magnetic parallels. There is no conclusive evidence of the concentration of hydrogen emission in any other distinct auroral form. The magnetic zenith emission profile is nearly constant with only minor variations. The height of the emission in the hydrogen field and the low energy part of the initial proton energy spectrum cannot be found from published data.

The discovery of the proton aurora as a distinct phenomenon completes the picture of particle bombardment and stresses the lack of understanding of the auroral accelerating mechanisms.

71,670 OPTICAL STUDIES OF PARTICLE BOMBARDMENT IN POLAR CAP ABSORPTION EVENTS Sandford, B. P.
 Planetary and Space Science, v. 10, pp. 195-213, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

The intensities of the polar-glow auroral emissions produced by bombarding protons during a polar cap absorption event are calculated. The first negative bands of $\mathrm{N}_{2}{ }^{+}$have a maximum brightness at a height of 65 km . The enhancement of the forbidden atomic oxygen line at $5577 \AA$ is most likely produced by dissociative recombination of $\mathrm{O}_{2}{ }^{+}$. Comparison of the calculated and observed polar-glow intensities indicates that the proton energy spectrum is approximately the same at all geomagnetic latitudes above 60 deg. This implies that
there is a terrestrial cutoff at about 1 Mev , even at the geomagnetic pole, or that there are relatively few protons of less than $1-\mathrm{Mev}$ energy emitted from the solar flare. The time variations of the polar-glow indicate that the magnetic field in the plasma cloud produced by the flare may be the main trapping region for the protons. The observations tend to support Parker's blast model for the propagation of solar flare particles through interplanetary space. The origin of the great auroral displays observed during the large magnetic storms is briefly reviewed.

71,671 THE PART PLAYED BY AND SOURCE OF PARTICLES OBSERVED IN THE IONOSPHERE AND AURORAE Ivanov-Kholodny, G. S. Planetary and Space Science, v. 10, pp. 219-232, 1963

 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)The source and acceleration of electrons which penetrate deep into the atmosphere are discussed. Experimental data on the connection of the radiation belts with the aurorae are presented. The question of the origin of aurorae and radiation belt particles is discussed. A listing of 98 references is included.

71,672 OBSERVATIONS AND EXPERIMENTS PERTINENT TO AURORAL THEORIES
 Omholt, A.
 Planetary and Space Science, v. 10, pp. 247-262, 1963
 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

Evidence is discussed which supports the conclusion that electrons dominate the energetic particles impinging upon the atmosphere during aurora. Data accumulated by rocket work are included. Available observations and theoretical interpretations of the dynamics of aurora are reviewed. The most recent and important satellite observations of energetic particles and magnetic fields in space are described and discussed.

BIOLOGY

71,673 DOSES OF COSMIC RADIATION

Ivanov, V. I., Keirim-Markus, I. B., Kovalev, E. E. Artificial Earth Satellites, v. 12, pp. 40-51, March 1963

In an assessment of the biological effect of radiation, the following aspects are considered: the magnitude of the absorbed tissue dose in rad due to radiation inside the vehicle, and the relative biological effectiveness of the radiation.

The dose rate due to the natural radiation environment in which life has developed on Earth is adopted as a scale for
the assessment of cosmic radiation doses. Hazards from the intense radiation of solar flares, cosmic rays, and the Van Allen belts are discussed.

71,674 BIOLOGICAL EFFECTS OF HIGH ENERGY PROTONS
Sondhaus, C. A. (University of California, Donner Laboratory, Berkeley)
In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 309-342, Book 1
Atomic Energy Commission, Division of Technical Information, Washington, D.C.
TID-7652, Paper C-4

At present, laboratory whole body exposure to a proton flux is impractical for large animals. Since exposures in space flight are almost certain to occur under omnidirectional conditions, and since a high but variable ratio of superficial to midline dose is expected to result from solar flare proton energy distributions, a means of irradiating large animals with the proton beam of the 184 -in. cyclotron at Berkeley is being developed in such a way as to permit simulation of solar-flare energy and geometry. Apparatus now under construction, which is described, should thus permit direct experimental studies of biological effects, depth dose patterns, and shielding configurations under approximately isotropic flux conditions.

71,675 INVESTIGATION OF THE HIGHER NERVOUS activity of white rats after flight in THE SECOND SATELLITE-SPACESHIP Lukyanova, L. D.
 Artificial Earth Satellites, v. 12, pp. 56-61, March 1963

Investigations conducted by Soviet scientists on the effects of space flight on white rats are discussed. The preparation and training of the experimental animals are described, and postflight examinations and results are presented.

71,676 FIRST RESULTS OF TESTS CONDUCTED WITH A CHLORELLA CULTURE EXPOSED IN SPACE ON THE SECOND SATELLITE-SPACESHIP
 Semenenko, V. E., Vladimirova, M. G.
 Artificial Earth Satellites, v. 12, pp. 62-68, March 1963

An investigation of the radiation effects on unicellular green algae has been conducted as a prelude to the study of complete ecological systems, and in an attempt to solve the problems of air regeneration and food provision for flights of long duration.

A description of the culture and the experimental conditions under which the study was performed is given. Results of an examination of the culture upon its return to Earth are cited. A comparison of the experimental and control cultures of algae in regard to growth kinetics, production of organic matter, morphology, size, and dry weight of the cells, and rate of photosyathatic evolution of oxygen shows that the differences
between the experimental and control cultures lay within the range of errors of measurement.

BOOSTER ROCKETS

71,677 LAUNCH VEHICLE PERFORMANCE

Amster, W. H. (Aerospace Corp., El Segundo, Calif.) American Rocket Society, Inc., New York, N.Y. (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

An analysis is made of launch vehicle size and staging requirements for conducting a manned lunar landing and return mission. Velocities required of rocket stages for each phase of the mission are determined, and the total mission velocity is established. Four types of lunar mission profiles are considered: direct launch, Earth orbit rendezvous, lunar orbit rendezvous, and lunar surface rendezvous. Spacecraft weights for each type of mission are assumed for the purpose of comparing launch vehicle needs.

71,678 HIGH RESOLUTION WIND MEASUREMENTS: A LAUNCH DESIGN PROBLEM Scoggins, J. R.
 Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 106-107, April 1963

Two systems for measuring high-resolution winds to altitudes above the maximum dynamic pressure region (10-14 km) for use in vehicle design and performance analyses are described. These are (1) the smoke-trail/photographic technique, and (2) the radar/spherical balloon technique. New data revealed by these techniques show features never before measured in detail which are important to the design of vertically rising vehicles.

CELESTIAL MECHANICS

71,679 NEW EXAMPLES OF CAPTURE IN THE THREE-BODY PROBLEM Alekseev, V. M. Soviet Astronomy—AJ, v. 6, no. 4, pp. 565-572, January-February 1963

New examples are given of "capture" phenomena in the problem of three mass points moving under mutual Newtonian attraction. Purely qualitative methods are used, and numerical integration is not employed. The examples are general and contain the maximum number of free parameters.

71,680 AN EMPIRICAL RELATION BETWEEN THE ROTATIONAL AND ORBITAL MOMENTA OF THE MAJOR PLANETS
 Goloborodko, T. A.
 Soviet Astronomy—AJ, v. 6, no. 4, pp. 592-593, January-February 1963

It is found that there is an exponential relation between the rotational and orbital angular momenta of the major

CELESTIAL MECHANICS (Cont'd)

planets. Cosmogonically, the relation is consistent with the separation of the planets from a central body.

71,681 ON THE ELLIPTIC CASE OF THE RESTRICTED PROBLEM OF THREE BODIES AND THE REMOTE HISTORY OF THE EARTH-MOON SYSTEM Kopal, Z., Lyttleton, R. A. Icarus, v. 1, no. 5-6, pp. 455-458, April 1963

An attempt is made to show that the Jacobi integral is an entirely special property of the circular three-body problem, and that no equivalent relation, time-dependent or timevarying, exists when orbital eccentricity is present.

```
71,682 PERIODIC SOLUTIONS OF THE RESTRICTED
    THREE BODY PROBLEM REPRESENTING
    ANALYTIC CONTINUATIONS OF KEPLERIAN
    ELLIPTIC MOTIONS
    Arenstorf, R. F.
    May 1963
    National Aeronautics and Space Administration,
    Washington, D.C.
    TN D-1859
```

A detailed mathematical proof is given in this report for the following new result: In the restricted three body problem with small mass ratio there exist one-parametric analytic families of synodically closed solution curves, which are near rotating Keplerian ellipses with rational sidereal frequencies and appropriate positive eccentricities.

CHARGED PARTICLES

71,683 SOME RESULTS OF EXPERIMENTS CARRIED OUT BY MEANS OF CHARGED-PARTICLE COLLECTORS CARRIED BY SOVIET SPACE ROCKETS Gringauz, K. I.
Artificial Earth Satellites, v. 12, pp. 131-144, March 1963

COATINGS

71,684 PORTABLE INTEGRATING SPHERE FOR MONITORING REFLECTANCE OF SPACECRAFT COATINGS Fussell, W. B., Triolo, J. J., Jerozal, F. A. (Continental Technical Service, Inc., Silver Spring, Md.) April 1963
 National Aeronautics and Space Administration, Washington, D.C. TN D-1714

In the thermal design of spacecraft, the input term in the radiation balance equation for a space vehicle in free spaceremoved from significant Earth radiation - is directly proportional to the solar absorptivity of the illuminated portion of the vehicle. For opaque spacecraft coatings, incident solar
radiation which is not absorbed must be reflected; thus, the solar absorptivity of such coatings can be computed from spectrally resolved total reflectance measurements. It is shown that total reflectance data at wavelengths between 0.27 and 1.65μ enable the solar absorptivities of common spacecraft coatings to be estimated to within approximately ± 20 percent or better. An integrating sphere is the most convenient device for measuring the total reflectance of opaque coatings of different degrees of curvature, specularity, and diffusivity. A portable, 8 - lb , single-beam, 6 -in.-D integrating sphere reflectometer has been designed and fabricated at the Goddard Space Flight Center and has been used extensively to detect changes in the solar absorptivity of spacecraft coatings due to environmental testing, aging, or contamination.

71,685 PIGMENTED SURFACE COATINGS FOR USE IN THE SPACE ENVIRONMENT
 Searle, N. Z., Hirt, R. C., Schmitt, R. G. (American Cyanamid Co., Central Research Div., Stamford, Conn.) January 1963
 Aeronautical Systems Division, Directorate of Materials and Processes, Wright-Patterson AFB, Ohio
 ASD TDR 62-840, Part I

Photochemical stabilities of pigmented surface coatings to ultraviolet radiation and vacuum conditions simulating those present in the upper atmosphere were determined for various systems. The amount of photodegradation incurred was determined from the change in solar absorptivity based on reflectance measurements over the range 0.25 to 2.6μ.

COMETS

71,686 ON THE PLASMA NATURE OF A COMET'S HEAD Marochnik, L. S.
Soviet Astronomy-AJ, v. 6, no. 4, pp. 532-539, January-February 1963

On the basis of all available observational data, it is concluded that in many cases the gas of the cometary head is plasma with a high degree of ionization. Two aspects of the problem are considered-the shape of the comet's head and the origin of the ionization.

71,687 THE STRUCTURE OF ICY COMET NUCLEI Levin, B. Yu.
 Soviet Astronomy-AJ, v. 6, no. 4, pp. 593-595, January-February 1963

Instead of conventional ideas on the presence of inclusions of stony substances in icy cometary nuclei, a hypothesis is proposed that these substances are present in the form of separate atoms and molecules embedded in the amorphous noncoherent condensate of different volatile substances. In the course of evaporation of outer layers of the icy nucleus the nonvolatile substances form a porous matrix, the pieces and fragments of which are meteoric particles.

71,688 ON THE NATURE AND ORIGIN OF COMETS Fesenkov, V. G.
Soviet Astronomy-AJ, v. 6, no. 4, pp. 459-464, January-February 1963

The high instability of cometary nuclei and the frequently observed breakup of the nuclei into discrete parts demonstrate that they must constitute compact agglomerations of fairly unstable particles. The total mass of the comet may be estimated from the brightness of the cometary head and the rate of fall-off of brightness with time, and also from the reaction effects attendant upon the rotation of the head about the comet's axis. The presence of reactive forces imparted to the entire mass of the nucleus demonstrates that the distance between the component parts must be quite short. Such compact clusters of unstable particles capable of producing explosions in response to even moderate illumination could not conceivably originate in volcanic eruptions from the interior of a planet.

71,689 OBJECTIVE-PRISM SPECTROGRAMS OF COMET HUMASON (1961e) Miller, F. D.
 Astronomical Society of the Pacific, Publications of the, v. 74, no. 441, pp. 528-529, December 1962

Sketches of a CO^{+}band of comet Humason (1961 e) are reproduced from spectrograms made on August 7, 1962 with the Curtis Schmidt telescope at a time interval of 2 hr 25 min. Apparent changes in structure during this period are noted and explanations suggested. Photographic equipment used is described.

COMMUNICATION SYSTEMS

71,690 ON COMMUNICATION SYSTEMS FOR SATELLITE TELEMETRY
 Schwartz, J. W.
 November 1961
 Yale University, Department of Electrical Engineering, New Haven, Conn.
 Technical Note 1

This research concerns memory systems for use in spacecraft. The study covers the functions performed by memory, component and data storage techniques, and the problems associated with the interfaces between memory and the remainder of the spacecraft telemetry system. Consideration is given to the form in which data must be presented to the modulator, since this places boundaries within which the telemetry system must be designed.

CONTROL SYSTEMS

[^1]
COSMIC DUST

71,692 INTERPLANETARY MATTER
Ingham, M. F.
Space Science Reviews, v. 1, no. 3, pp. 576-588, March 1963 (Paper presented at the European Preparatory Commission for Space Research Symposium on The Interplanetary Medium, Paris, France, June 19, 1962)

Most interplanetary matter is considered to consist mainly of dust particles with a radius of about 0.3μ which can be detected only indirectly by the sunlight which they scatter. The characteristics of this dust are investigated by a study of the solar corona and the zodiacal light, the dust cloud about the Earth, and the gegenschein. The origin of the dust particles and scattering by small particles in interplanetary space are also considered.

71,693 ROCKET AND SATELLITE STUDIES OF METEOR DUST
Nazarova, T. N.
Artificial Earth Satellites, v. 12, pp. 154-158, March 1963
\section*{71,694 ON THE ORIGIN OF THE CONDENSATION OF INTERPLANETARY DUST SURROUNDING THE EARTH

Ruskol, E. L.

Artificial Earth Satellites, v. 12, pp. 159-165, March 1963}

71,695 ON THE "DUST ENVELOPE" OF THE EARTH Moroz, V. I.
Artificial Earth Satellites, v. 12, pp. 166-174, March 1963

COSMIC RAYS

71,696 AN EVALUATION OF THE RADIATION HAZARD DUE TO SOLAR COSMIC RAYS
 Webber, W. R., Freier, P. S. (University of Minnesota, Minneapolis)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 12-32, Book 1
 Atomic Energy Commission, Division of Technical Information, Washington, D.C.
 TID-7652, Paper A-2

The problem of radiation exposure from solar cosmic-ray outbursts is confined to exposure from the few largest events. The total integrated dose from these events may present a problem, the seriousness of which depends on the amount of shielding-as can be seen from the doses due to particles with energies above 30 and 100 Mev . It is quite certain that the appearance of active regions producing major cosmic-ray bursts is not strongly correlated with the maximum in the eleven-year cycle of solar activity. During the recent maximum, 1957-1958, no such major cosmic-ray bursts were recorded, and the yearly integrated solar cosmic-ray intensities at energies greater than 30 and 100 Mev were lower than for

COSMIC RAYS (Cont'd)

adjacent years of lower solar activity. From the limited number of large events available for study, it appears that the bursts are most frequent during periods of increasing and, particularly, decreasing solar activity, with the periods near maximum and minimum relatively free from such events.

71,697 COMPOSITION OF SOLAR COSMIC RAYS
 Fichtel, C. E. (NASA/Goddard Space Flight Center, Greenbelt, Md.)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 33-43, Book 1
 Atomic Energy Commission, Division of Technical Information, Washington, D.C.
 TID-7652, Paper A. 3

In the treatment of solar particle composition, and within the scope of present incomplete knowledge, relative abundances of the less plentiful components (i.e., helium nuclei, heavier nuclei, electrons, and γ-rays) are given.

71,698 DETAILS OF INDIVIDUAL SOLAR PARTICLE EVENTS
 Fichtel, C. E., Guss, D. E., Ogilvie, K. W. (NASA/Goddard Space Flight Center, Greenbelt, Md.)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 44-85, Book 1
 Atomic Energy Commission, Division of Technical Information, Washington, D.C.
 TID-7652, Paper A-4

A time history is presented of the intensities and energies of solar cosmic-ray particles detected at or near the Earth. The survey begins with the event on February 23, 1956-the first event for which there is an estimate of both the low- and high-energy flux components. From that date to the present all of the largest events and some of the smaller ones for which particularly complete data are available have been selected for examination. All events for which there was a riometer reading in excess of 10 db have been included; any event with a high-energy component sufficiently large to be detected on the neutron monitor has been studied. The various detectors used to study the solar particles are described and the individual events are discussed in order to emphasize the interesting features and the variety of geophysical effects occurring from time to time. A listing of 76 references is included.

[^2]
Atomic Energy Commission, Division of Technical Information, Washington, D.C.
 TID-7652, Paper A-5

In the last decade, use of the probing radio wave has enabled ionospheric workers to contribute a considerable quantity of information concerning the nature and occurrence of solar proton events. Radio observations have been made continuously at fixed positions, whereas observations with particle detectors in balloons, rockets, and satellites are conspicuously lacking in continuity, either in space or time. Ground-based cosmic-ray monitors, while operating continuously, detect less than one-fifth of the events related to the problem of radiation hazards in space.

71,700 SOME SPECIFIC CONSIDERATIONS OF THE potential hazards of heavy primary COSMIC RAYS
 Curtis, H. J. (Brookhaven National Lab., Upton, N.Y.)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 291-308, Book 1
 Atomic Energy Commission, Division of Technical Information, Washington, D.C.
 TID-7652, Paper C-3

The ionization produced by the heavy cosmic-ray particles is almost entirely highly concentrated along single tracks; the microscopic dose in tissue within these tracks may be quite high, but the over-all dose rate from these particles in outer space would be very low. Since these particles cannot be produced in the laboratory, a microbeam of deuterons has been developed which simulates the ionization pattern of these particles. Using this microbeam on mice, it is found that this type of radiation causes very little effect in either the brain or the eye, and presumably also in other vital organs. However, it will cause greying of the hair. It is concluded that this type of radiation will cause no serious hazard for space flight.

```
71,701 THE EQUATOR OF COSMIC RAYS FROM DATA OF
    THE THIRD SOVIET SHIP-SATELLITE
    Savenko, I. A., Nesterov, V. E., Shavrin, P. I.,
    Pisarenko,N. F.
    Cleaves, H. F., Translator
    Planetary and Space Science, v. 11, no. 1, pp. 87-91,
    January }196
    (Translated from Iskusstvennye Sputnik Zemli, no. 11,
        p. 30, 1961)
```

The latitudinal dependence of the cosmic radiation for each crossing of the equator was measured by Sputnik 6. Instruments used were a gas-discharging halogen counter STS-5, a scintillation counter (a crystal of $\mathrm{NaJ}(\mathrm{Tl})$), and a photomultiplier FEU-15. Charts and maps are included.

[^3]Various mechanisms leading to the isotropy of primary cosmic rays are discussed on the basis of existing ideas concerning the interstellar magnetic field.

71,703 COSMIC RAYS AND SOME ASTROPHYSICAL PHENOMENA St. Kalitsin, N. Soviet Astronomy-AJ, v. 6, no. 4, pp. 591-592, January-February 1963

The existence of extragalactic cosmic rays having fantastically high energies, up to the order of $10^{50} \mathrm{ev}$, is suggested.

71,704 ASYMMETRIES IN THE FORBUSH DECREASES OF THE COSMIC RADIATION
 1. DIFFERENCES IN ONSET TIMES
 Lockwood, J. A., Razdan, H.
 Journal of Geophysical Research, v. 68, no. 6, pp. 1581-1591, March 15, 1963

The cosmic-ray neutron intensity at 15 stations is analyzed to determine the differences in onset times of the large Forbush decreases occurring from 1957 to 1961. From the directional response characteristics of the neutron detectors, these differences in onset times relate to directions in space beyond the geomagnetic field. Results are explained in terms of the configuration of the solar plasma cloud, and conclusions are drawn about the plasma velocity and the magnitude of the associated magnetic field.

71,705 ASYMMETRIES IN THE FORBUSH DECREASES OF THE COSMIC RADIATION
 2. SUPERIMPOSED INTENSITY VARIATIONS
 DURING A FORBUSH DECREASE
 Lockwood, J. A., Razdan, H.
 Journal of Geophysical Research, v. 68, no. 6, pp. 1593-1604, March 15, 1963

A study has been made of superimposed intensity variations during a Forbush decrease, utilizing the neutron monitor data from many stations distributed in latitude and longitude. The anisotropies recorded as decreased intensities occurred from the west of the Earth-Sun line and those recorded as increases occurred from the east. These anisotropies were both long and short lived. The long-lived anisotropies shifted westward as time progressed. Besides the anisotropies, superimposed intensity increases occurred at all stations at the same universal time, and the magnitudes were larger at stations sampling particles from directions east of the Earth-Sun line at the time of the increase. A qualitative explanation of these observed effects is given in terms of the configuration and the possible instabilities of the plasma cloud.

[^4]It is shown how exponential rigidity spectrums fit the data obtained over the energy range from 1 Mev to several Bev. Proton spectrums were derived at 53 different times during 16 different flares. The solar α-particle flux and the proton to α-particle ratio were determined for the flares in which emulsion measurements were made. Using the measured exponential rigidity spectrums, both the riometer and neutron monitor response for the different flares are calculated. The agreement between the predicted and measured responses for these methods of detection is shown.

71,707 ANALYSIS OF BALLOON OBSERVATIONS DURING THE APRIL 1960 SOLAR COSMIC RAY EVENTS Masley, A. J.
 April 1961
 Minnesota, University of, Minneapolis
 Technical Report CR-35

This article appeared in the Journal of Geophysical Research, v. 67, no. 9, pp. 3243-3269, August 1962, and was abstracted in the Astronautics Information Abstracts, v. 6, no. 5, November 1962. (See Entry \#61,310.)

```
71,708 STUDIES OF THE COMPOSITION OF PRIMARY COSMIC RADIATION AT AN ALTITUDE OF 320 km Alekseeva, K. I., Gabuniya, L. L., Zhdanov, G. B., Zamchalova, E. A., Shcherbakova, M. N., Tretyakova, M. I.
Artificial Earth Satellites, v. 12, pp. 7-17, March 1963
```

71,709 ENERGY SPECTRA OF VARIOUS GROUPS OF COSMIC RAY NUCLEI WHICH WERE OBTAINED IN MEASUREMENTS BY MEANS OF CERENKOV COUNTERS ON SATELLITE-SPACESHIPS Kurnosova, L. V., Logachev, V. I., Razorenov, L. A., Fradkin, M. I.
Artificial Earth Satellites, v. 12, pp. 18-35, March 1963

71,710 A CASE OF A SHORT-TERM RISE IN THE INTENSITY OF HEAVY NUCLEI DURING THE FLIGHT OF SATELLITE-SPACESHIP III
Kurnosova, L. V., Razorenov, L. A., Fradkin, M. I.
Artificial Earth Satellites, v. 12, pp. 36-39, March 1963

71,711 THE BIOLOGICAL ACTION OF COSMIC RADIATION
 Gyurdzhian, A. A.
 Artificial Earth Satellites, v. 12, pp. 83-113, March 1963

Various methods for studying the biological action of cosmic radiation are discussed. These methods include experiments conducted on the ground and during flight. Some features of ionization of body tissues caused by the particles of cosmic radiation, possible genetic action, and the combined action of cosmic radiation and other factors in flight are considered. A total of 196 references is included.

CRYOGENICS

71,712 LOW TEMPERATURES IN SPACE TECHNOLOGY
Fowle, A. A. (Arthur D. Little, Inc., Cambridge, Mass.) January 1962
In "Cryogenics," pp. 12-14
Society of Automotive Engineers, Inc., New York, N.Y. SP-225

Three applications of low temperature engineering to space ventures are discussed: (1) the cold storage of propellants as liquefied gases; (2) the simulation of the low-temperature and high-vacuum characteristics of outer space in environmental test facilities; and (3) the sub-zero refrigeration of electronic components, such as infrared detectors, inertial guidance devices, and optical masers.

71,713 CRYOGENIC SYSTEMS IN MISSILES AND SPACECRAFT
 Parker, W. F. (North American Aviation, Inc., Downey, Calif.)
 January 1962
 In "Cryogenics," pp. 15-18
 Society of Automotive Engineers, Inc., New York, N.Y. SP-225

Several of the various uses of cryogenics in missile and spacecraft systems are discussed briefly; the most widely used applications of liquid rocket propellants are mentioned; and areas of interest to research are brought into focus.

DATA PROCESSING

71,714 DATA STORAGE FOR METEOROLOGICAL SATELLITES

Schneebaum, M. I., Stampf, R. A.
Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 48-51, April 1963

The advanced research being conducted by the Goddard Space Flight Center (GSFC) in the field of electronic and magnetic data storage of video information in meteorological satellites is discussed.

EARTH

71,715 AXIS CHANGES IN THE EARTH FROM LARGE METEORITE COLLISIONS Dachille, F. Nature, v. 198, no. 4876, p. 176, April 13, 1963

Gallant has evaluated axis change in the Earth caused by collisions of large meteorites. He calculates that a Juno-sized meteorite (about $190-\mathrm{km} \mathrm{D}$) colliding at $20 \mathrm{~km} / \mathrm{sec}$ would cause an axis displacement of $0^{\circ} 45^{\prime}$. However, by using the correct criterion of interaction of the Earth's angular momentum with the moment of momentum of the colliding body, the actual displacement would be only about $0^{\circ} 02^{\prime}$. In fact, a bigger body (e.g., $320-\mathrm{km} \mathrm{D}$) colliding at a maximum pos-
sible velocity of $72 \mathrm{~km} / \mathrm{sec}$ would produce only $0^{\circ} 32^{\circ}$ axis shift despite an energy 75 times the Juno example. Examples are given of maximum effects of collisions with the Earth and the Moon. The assumptions made are (1) a collision path tangential to a great circle perpendicular to the equator, (2) a density of 3.5 , (3) a velocity of $72 \mathrm{~km} / \mathrm{sec}$, and (4) a complete rebound caused by a reverse-directed jet of explosion products to approximate as a maximum a twofold momentum exchange.

71,716 A STUDY OF THE FREE OSCILLLATIONS OF THE EARTH
 MacDonald, G. J. F., Ness, N. F. 1962
 National Aeronautics and Space Administration, Washington, D.C. TR R-136

Published observations on the toroidal oscillations of the Earth are critically reviewed. A supplementary analysis of the record obtained by the Lamont strain seismometer is presented. Eleven toroidal modes are identified, and it is concluded that the periods are known to within 1 percent. A perturbation scheme involving the ratio of the angular velocity of the Earth to the resonant frequency. Rotation removes a degeneracy and results in a splitting of a spectral peak of order l into $2 l+1$ peaks. The fractional displacement in frequency for the lowest-order toroidal oscillations is $1 / 206$ and of the same order as the Q of the peak, so that splitting will probably not be observed in the toroidal oscillations. The perturbations of the toroidal oscillations due to core-mantle interaction are treated in detail. Observations on the ${ }_{0} T_{2}$ oscillations lead to an estimate of the toroidal magnetic field in the lower mantle. A calculation of elastic energy in the low-order oscillations suggests a value of $10^{18} \mathrm{erg} / \mathrm{cph}$ for the energy density at low frequencies in the Chilean earthquake. It is shown that the Gutenberg model Earth fits the observations more closely than the Lehmann model and that a slight alteration of the Gutenberg model gives a significantly better fit to the observations. The alteration involves a lower shearwave velocity in the lower mantle while the Gutenberg velocity distribution is maintained in the upper mantle. The results confirm Birch's earlier statement that a temperature gradient in excess of 6 to $7^{\circ} / \mathrm{km}$ is needed to produce a decrease in velocity. The distribution of thermal conductivity and radioactivity consistent with the low-velocity layer is also considered.

ELECTRICAL PROPULSION SYSTEMS

71,717 FORTSCHRITTE BEI KONTINUIERLICHEN ELEKTROMAGNETISCHEN ANTRIEBSANLAGEN (ADVANCES IN CONTINUOUS ELECTROMAGNETIC PROPULSION SYSTEMS)
 Au, \mathbf{G}.
 Luftfahrttechnik Raumfahrttechnik, v. 9, no. 3, pp. 88-94, March 1963

The problems involved in a propulsion system composed of a plasma source and an electromagnetic post-accelerator are discussed.

ELECTRONIC EQUIPMENT

71,718 SURFACE EFFECTS OF RADIATION ON TRANSISTORS
 Peck, D. S., Blair, R. R., Brown, W. L., Smits, F. M. (Bell Telephone Laboratories, Inc., Murray Hill, N.J.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 136-200, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D.C.
 TID-7652, Paper B-2

A wide variety of effects of high-energy radiation on semiconductor materials and devices has been recognized and studied for a number of years. The major emphasis in this field has been on effects involving the bulk properties of semiconductors. Radiation effects on semiconductor surfaces have also been observed. This study is concerned with some special aspects of surface phenomena that have recently come to light. A type of measurement program is indicated that has been found appropriate for dealing with devices intended for use in a radiation environment such as that of the Van Allen belts. Included are (1) a brief discussion of the two broad classes of bulk radiation effects, (2) description of the early observations that provoked the present work, (3) a proposed model of the basic process, (4) results of a number of experiments carried out to test the mechanisms of the process, (5) characterization of effects with significant numbers of devices, and (6) the process of testing and selection undertaken for Telstar devices.

71,719 THE EFFECTS OF PROTONS ON SEMICONDUCTOR DEVICES
 Honaker, W. C. (NASA/Langley Research Center, Langley Field, Va.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 220-229, Book 1
 Atomic Energy Commission, Division of Technical Information, Washington, D.C. TID-7652, Paper B-4

Experimental results are given covering the data obtained from the bombardment of several transistors with 40 - and $440-\mathrm{Mev}$ protons. The data indicate a proton energy as well as a transistor frequency dependence on degradation. Figures are presented showing relative degradation of transistors with integrated flux.

[^5]In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 230-242, Book 1
Atomic Energy Commission, Division of Technical Information, Washington, D.C. TID-7652, Paper B-5

The objective of the study is to interpret observed changes in transistor electrical characteristics in terms of fundamental damage in the semiconductor crystal structure, and, in so doing, to predict the effects of proton bombardment. Proton and neutron displacement production rates are calculated. These rates are used in conjunction with neutron irradiation data and an assumed similarity of defect clusters to determine the effects of protons on transistors. Reasonable agreement with experiment is obtained. The life expectancy of transistors in satellites orbiting in the inner Van Allen belt is given.

71,721 THERMAL DESIGN OF THE ELECTRONICS CANISTER
 Haury, P. T.
 Bell Laboratories Record, v. 41, no. 4, pp. 161-166, April 1963

Design, construction, and environmental testing of the Telstar electronics package are described.

ENVIRONMENTAL CONTROL SYSTEMS

```
71,722 SPACE HARDWARE ASPECTS OF THE SATELLITE
    West, J. W.
    Bell Laboratories Record, v. 41, no. 4, pp. 167-173,
    April 1963
```

An account is given of the design and testing procedures used in development of the environmental and attitude control systems for Telstar.

ENVIRONMENTAL SIMULATORS

71,723 SIMULATION OF DEEP SPACE ENVIRONMENTS FOR WORKING VEHICLES
 Hnilicka, M. P., Geiger, K. A. (National Research Corp., Cambridge, Mass.) Institute of the Aerospace Sciences, Inc., New York, N.Y. Paper 63-56
 (Presented at the IAS 31st Annual Meeting, New York, N.Y., January 21-23, 1963)

The second generation of simulators of large size offers realistic simulation of solar thermal effect and, by using LN_{2} shield cryoarrays at $20^{\circ} \mathrm{K}$, reasonable reliability testing of mechanisms of propulsion and mission support in lower orbit levels up to 700 km . An improved generation of ground simulators will need chilling of containment walls to reduce gas

ENVIRONMENTAL SIMULATORS (Cont'd)

loads from wall materials. Reduction of gas leakage and mass rejection from the tested vehicle will offer high returns in cost of that type of simulator which can establish valid reliability testing of steering, guidance, and communication devices aboard the spacecraft. The efficiency of capturing molecules on walls of the heat sink will need substantial improvement over present cryopumping arrays. Several promising concepts, using cryoadsorption techniques and offering nearly perfect accommodation, even of hydrogen molecules, are described.

71,724 A SURVEY OF LARGE SPACE CHAMBERS Hollingsworth, R. T.
 April 1963
 National Aeronautics and Space Administration, Washington, D. C.
 TN D-1673

Construction has been authorized for a number of large thermal-vacuum chambers to simulate orbital altitudes in the environmental testing of complete spacecraft. The proposed facilities shall be capable of simulating the low temperatures, solar and Earth radiation, and vacuum of outer space. We have outlined in this report the individual specifications and capabilities of each of the proposed space simulation facilities. Since the field of space simulation is growing rapidly, it is recognized that this survey will be out of date upon issue.

```
71,725 JPL 25-FOOT SPACE SIMULATOR SOLAR
    PERFORMANCE AND MARINER TEST RESULTS
    COMPARED TO FLIGHT DATA
    Howard, W. R.
    April 24, 1963
    Jet Propulsion Laboratory, California Institute of
    Technology, Pasadena
    TM 33-137
```

The JPL 25 -ft space simulator solar simulation system has recently been modified to concentrate all of the available radiant energy in a light beam of sufficient size and intensity to test the Ranger and Mariner. Solar simulation system characteristics are compared with the solar environment in space, calibration of the system is described, and flight data are compared with ground-test data for the Mariner Venus probe. Plans for improving the solar simulation system are outlined.

71,726 JPL ADVANCED SOLAR SIMULATOR, DESIGN TYPE A
 Barnett, R. M., Thiele, C.
 April 23, 1963
 Jet Propulsion Laboratory, California Institute of Technology, Pasadena
 TM 33-141

A description of the JPL Advanced Solar Simulator Type A is presented, together with the results of analytical and experi-
mental studies verifying its performance at the subsystem level. A program of subsystem optimization is underway which indicates performance capability far beyond that reported here. A complete full-sized system is currently under construction, and final evaluation at the testing volume will be undertaken as soon as possible. These results, as well as those of the subsystem optimizations, will be published when available. Finally, a program of improvement will be initiated to extract the untapped potential of the system in order to provide large, integrated Sun simulators for use in such applications as the Voyager spacecraft.

71,727 NASA SPACE RADIATION EFFECTS LABORATORY Duberg, J., Rind, E. (NASA/Langley Research Center, Langley Field, Va.)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 201-219, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D. C.
 TID-7652, Paper B-3

NASA, Langley Research Center, Virginia has proposed a ground-based Space Radiation Effects Laboratory which will simulate most of the particulate energy spectrum found in space and which can be used in an effective, accelerated, radiation research program to minimize or eliminate deleterious radiation effects. To achieve these results in a minimum time, a $600-\mathrm{Mev}$ proton synchrocyclotron of proven design with variable energy and variable external beam size, and a 1- to $30-\mathrm{Mev}$ electron accelerator with the same capabilities, have been incorporated into the proposed facility. Although these devices will be used as engineering tools, provision has been made to maintain the basic research capabilities of these accelerators.

ESCAPE SYSTEMS

71,728 LEAP-A ONE-MAN LUNAR ESCAPE AMBULANCE PACK
 Carton, D. S. (College of Aeronautics, Cranfield, Bletchley, Buckinghamshire, England) American Rocket Society, Inc., New York, N. Y. 2485-62
 (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

$L E A P$ is a one-man vehicle intended for operation from the lunar surface in the event of an emergency. The concept involves the launching of the LEAP payload into a trajectory which will place it close to an orbiting space station. A "soft" rendezvous will permit the transfer of the affected crew member into the spacecraft. As presently foreseen, the orbiting space station will be of an Apollo type, but with only two men on board. A "normal" Apollo and three-man crew will be on the lunar surface for an extended exploration.

EXOSPHERE

71,729 THE STRUCTURE OF THE IONIZED GASEOUS ENVELOPE OF THE EARTH ACCORDING TO THE DATA OF DIRECT MEASUREMENTS OF LOCAL CHARGED-PARTICLE CONCENTRATIONS CARRIED OUT IN THE USSR
 Gringauz, K. I.
 Artificial Earth Satellites, v. 12, pp. 114-130, March 1963

71,730 DISTRIBUTION OF HYDROGEN IN THE OUTER ATMOSPHERE
 Donahue, T. M., Thomas, G.
 Planetary and Space Science, v. 10, pp. 65-72, 1963
 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper
 Atmosphere Emissions, Paris, France, June 25-29, 1962)

The experiments relating to the Lyman α radiation observed from rockets in the night sky are reviewed. In part, the radiation appears to be solar Lyman- α transported by the exosphere below 3 Earth radii. However, an important fraction must be attributed also to single scattering in a very extensive envelope of hydrogen moving with the Earth out to 50-100 Earth radii. The amount of hydrogen needed is about 50 times as much as should be present in the escape component of the exosphere required. The principal problem at present is to account for this hydrogen.

71,731 AN ANALYTIC SOLUTION FOR DENSITY DISTRIBUTION IN A PLANETARY EXOSPHERE Shen, C. S.
 Journal of the Atmospheric Sciences, v. 20, no. 2, pp. 69-72, March 1963

An analytical expression $\rho(r)=N_{0}\left[e^{(1-R / r) E}-\left(1-R^{2} /\right.\right.$ $\left.r^{2}\right) e^{-(r E / r+R)}$, where E is a temperature dependent parameter and R is the radius of the base of exosphere, is derived for the density distribution in a planetary exosphere. The difference between this distribution and the barometric (Boltzmann) formula is small near the base of the exosphere but becomes significant at large r; at $r=\infty$ the barometric formula gives a finite density where this distribution tends to zero. It is shown that according to a strict collisionless exosphere model the particles in the velocity space are confined in a region bounded by a hyperbola and a quarter circle. Outside this region there are no particles; inside, they are distributed by a Maxwellian law. The physical significance of this difference and its effect on the escape rate are discussed.

EXPLORER 15

71,732 EXPLORER XV ENERGETIC-PARTICLES SATELLITE American Geophysical Union, Transactions, v. 44, no. 1, pp. 252-257, March 1963

(Also available in National Academy of Sciences, IGY Bulletin, no. 68, Févий̄̈̆ 1063)

The Explorer 15 was launched on October 27, 1962 to study the artificial radiation belt created by the July 9, 1962 high-altitude nuclear test. The satellite and its experiments are described.

F REGION

71,733 THE RELATIONSHIP OF F-LAYER CRITICAL FREQUENCIES TO THE INTENSITY OF THE OUTER VAN ALLEN BELT Muldrew, D. B. Canadian Journal of Physics, v. 41, no. 1, pp. 199-202, January 1963

With the use of the Alouette, certain characteristics of the ionosphere between 1000 km and the height of maximum electron density, together with the intensity (counting rate) of high-energy particles at orbital heights, are measured as a function of latitude.

```
71,734 ETUDE DE LA COUCHE F D'APRES
    L'EMISSION DE LA RAIE ROUGE DU CIEL
    NOCTURNE (STUDY OF THE F LAYER FROM
    RED LINE EMISSIONS IN THE NIGHT SKY)
    Barbier, D.
    Planetary and Space Science, v. 10, pp. 29-35, 1963
    (Paper presented at the International Astronomical Union
    Symposium No. }18\mathrm{ on Theoretical Interpretation of Upper
    Atmosphere Emissions, Paris, France, June 25-29, 1962)
```

Intertropical ares and the western sheet show a strong correlation with the electronic recombination in the F layer. These phenomena are described on a world-wide basis.

71,735 OBSERVATION OF MOVEMENT OF PERTURBATIONS IN THE F-REGION
 Heisler, L. H.
 Journal of Atmospheric and Terrestrial Physics, v. 25, no. 2, pp. 71-86, February 1963

A summary is given of investigations into the phenomenon of traveling ionospheric disturbances in the F region made at the Radio Research Laboratories, University of Sydney, Australia. The results of these investigations are compared with those obtained by other methods, and discrepancies are noted. It is proposed that the Mitra method in particular is not entirely satisfactory and should be supplemented by other techniques.

71,736 THE ELECTRON SCATTERING CROSS-SECTION IN INCOHERENT BACKSCATTER
 Greenhow, J. S., Sutcliffe, H. K., Watkins, C. D.
 Journal of Atmospheric and Terrestrial Physics, v. 25, no. 4, pp. 197-207, April 1963

Some measurements of the electron scattering cross section carried out using two $25-\mathrm{m}$ radio telescopes are described. Both the diumal variations of the cross section and its absolute values are examined.

F REGION (Cont'd)

71,737 TIME OF ONSET OF SPREAD-F IN RELATION TO POST SUNSET $h^{\prime} F$ VARIATIONS
Krishnamurthy, B. V., Ramachandra Rao, B. Journal of Atmospheric and Terrestrial Physics, v. 25, no. 4, pp. 209-210, April 1963

71,738 DRIFT SPEED ESTIMATES FROM LARGE MOVING IRREGULARITIES IN THE F-REGION AT COLLEGE, ALASKA
Ansari, Z. A.
Journal of Atmospheric and Terrestrial Physics, v. 25, no. 4, pp. 210-212, April 1963

The horizontal component of the speed of the moving irregularities in the F region is presented. Drift speeds for July-September 1960 were estimated.

F_{2} LAYER

71,739 GEOMAGNETIC CONTROL OF DIFFUSION IN THE F2 REGION OF THE IONOSPHERE-II NUMERICAL RESULTS
 Kendall, P. C.
 Journal of Atmospheric and Terrestrial Physics, v. 25, no. 2, pp. 87-91, February 1963

The equation governing electron diffusion in the F_{2} region along the lines of force of a geocentric magnetic dipole, whose axis coincides with the Earth's, is solved numerically in the equilibrium case when there is electron production, loss by recombination, but no transport of electrons by electrodynamic drift.

71,740 IONOSPHERE-UNE ECLIPSE DE SOLEIL PEUTELLE MODIFIER L'IONOSPHERE AU POINT MAGNETIQUEMENT CONJUGUE? (IONOSPHEREAN ECLIPSE OF THE SUN. MIGHT IT MODIFY THE IONOSPHERE AT THE MAGNETICALLY CONJUGATE POINT?)
 Haubert A., Laloë, F.
 Journal of Atmospheric and Terrestrial Physics, v. 25, no. 2, pp. 105-107, February 1963

Observations at Garcy, France, for August 11, 1961 indicate a variation in the F_{2} region during a period of quiet solar activity. At Capetown, South Africa, a point roughly conjugate to Garcy, a solar eclipse was visible at the same time. This same correlation was observed during the eclipse of February 15, 1961, and it is suggested that the phenomenon be analyzed during future eclipses.

GEGENSCHEIN

[^6]Soviet Astronomy-AJ, v. 6, no. 4, pp. 540-548, January-February 1963

The optical theory of the gegenschein is considered. It is shown that the scattering of light by particles of interplanetary dust allows an explanation of the main features of the gegenschein: the observed photometric profile and the energy distribution in the gegenschein spectrum.

GEOMAGNETIC DISTURBANCES

71,742 IONOSPHERIC STORMS AND THE MORPHOLOGY OF MAGNETIC DISTURBANCES Rishbeth, H.
 Planetary and Space Science, v. 11, no. 1, pp. 31-43, January 1963

The forms of magnetic changes which accompany ionospheric storms are discussed. Magnetic data from four stations are used to derive $S D$ and $D s t$ variations, for groups of ionospherically "positive" and "negative" storms. The $S D$ variation of the magnetic H element is found to differ for "positive" and "negative" storms at three mid-latitude stations (Washington, U.S.A., Greenwich, England, and Christchurch, New Zealand). The meaning of these differences is discussed. At a lower latitude station (Hawaii), the magnetic $S D$ is the same for both types of ionospheric storms. The magnetic Dst variations are also essentially similar for both types.

71,743 THE INFLUENCE OF THE MOON ON GEOMAGNETIC DISTURBANCES
 Bigg, E. K.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1409-1413, March 1, 1963

It is shown that occurrences of geomagnetic disturbances of various intensities are not uniformly distributed in lunar phase. There is a tendency for storms to occur preferentially near first and third quarters and to avoid dates corresponding to new Moon.

GEOMAGNETIC FIELD

71,744 THE INTERACTION BETWEEN THE GEOMAGNETIC FIELD AND THE SOLAR CORPUSCULAR RADIATION
 Blume, R .
 Icarus, v. 1, no. 5-6, pp. 459-488, April 1963

71,745 INTERACTIONS OF SOLAR PLASMA WITH THE GEOMAGNETIC FIELD
Dungey, J. W.
Planetary and Space Science, v. 10, pp. 233-237, 1963
(Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

The Chapman-Ferraro theory is outlined. The interaction when there is an interplanetary field is considered and leads
to an interpretation of the auroral zones. Early results from Explorer 12 tend to confirm this model. The motion of the auroral primaries is briefly discussed.

71,746 THE ENERGIZATION OF PLASMA IN THE MAGNETOSPHERE: HYDROMAGNETIC AND PARTICLE-DRIFT APPROACHES
 Hines, C. O.
 Planetary and Space Science, v. 10, pp. 239-246, 1963
 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

Two approaches to the description of the energy changes experienced by the low-energy plasma and the high-energy particles which exist in the magnetosphere are discussed. It is demonstrated that these two approaches, hydromagnetic and particle-drift, are quite equivalent on the differential scale, and that some degree of equivalence can be maintained on the integral scale.

71,747 LUNAR EFFECT ON THE DIURNAL VARIATION OF THE GEOMAGNETIC HORIZONTAL FIELD NEAR THE MAGNETIC EQUATOR Onwumechilli, A. Journal of Atmospheric and Terrestrial Physics, v. 25, no. 2, pp. 55-70, February 1963

Magnetogram studies at Ibadan, Nigeria during the season of northern winter indicate that the lunar tide accounts for about Il percent of the daily range of the geomagnetic horizontal field. A new method is presented for separating the lunar effect at certain hours on individual days, and this has shown that the ratio of intensities of lunar to solar daily variation varies from hour to hour on the same day.

71,748 C-F HOLLOWS FOR SOLAR STREAMS PARTIALLY INCIDENT ON THE EARTH Kendall, P. C.
 Journal of Atmospheric and Terrestrial Physics, v. 25, no. 2, pp. 93-97, February 1963

The shape of the geomagnetic hollow is calculated for a corpuscular flux corresponding to the edge of a unidirectional stream of charged particles which partially surrounds the Earth. The solar stream, only partially incident on the Earth, gives rise to geomagnetic hollows different in shape from the usual. The equatorial cross section of the hollow is considered.

71,749 MOTIONS OF CHARGED PARTICLES TRAPPED IN THE EARTH'S MAGNETOSPHERE Hones, E. W., Jr.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1209-1219, March 1, 1963

Motions of charged particles trapped in the distorted magnetosphere are computed by using, as a model of the
magnetosphere, the field of a weak magnetic dipole in the presence of a strong magnetic dipole. Drift paths through this field are calculated both for particles whose motion is confined to the magnetic equatorial plane and for particles mirroring at low altitudes. The paths of particles of various energies moving in the magnetic equatorial plane under the combined influences of field gradient-induced drift and field rotation are also calculated. It is found that, in the model used, the field rotation energizes trapped particles on the morning side and de-energizes them on the evening side of the Earth. It is suggested that this effect must occur in any realistic model of the distorted magnetosphere, and that it may play a role in the accumulation of the energetic particles that constitute the Van Allen zones.

```
71,750 THE DISTANT GEOMAGNETIC FIELD
    2. MODULATION OF A SPINNING COIL EMF
    BY MAGNETIC SIGNALS
    Sonett, C. P.
    Journal of Geophysical Research, v. 68, no. 5,
    pp. 1229-1232, March 1, 1963
```

The modulation of a spinning search coil signal by timevariant magnetic fields is discussed. For typical spacecraft usage, dipolar inhomogeneity produces a trivial signal. The primary contributions to the signal arise from the coil spin and field time variance. Variations in the scalar value of the field produce both amplitude and phase modulation. In a base field like the Earth's with superimposed fluctuations, amplitude modulation from Alfvén waves is usually trivial. The amplitude power spectrum depends on both the spin rate of the spacecraft and the Fourier decomposed frequencies of the fluctuations. Where frequencies near the spin are encountered, spectral inversion can result from what becomes effectively the mixing of two carrier signals. The results described in the previous paper of this series are discussed in relation to these conditions. (Part 1 of this article appeared in the Journal of Geophysical Research, v. 67, no. 4, pp. 1191-1207, April 1962, and was abstracted in the Astronautics Information Abstracts, v. 6, no. 1, July 1962, Entry \#60,094.)

71,751 THE DISTANT GEOMAGNETIC FIELD 3. DISORDER AND SHOCKS IN THE MAGNETOPAUSE
 Sonett, C. P., Abrams, I. J.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1233-1263, March 1, 1963

The second part of the computer reduction of magnetometer data from the flight of Pioneer 1 is reported. The data include the analysis of selected swaths and are primarily concerned with hydromagnetic disorder as seen at distances of 12.3-14.6 Earth radii on the sunlit hemisphere of the magnetopause. The vehicle orbit and orientation are reviewed; the instrumentation is discussed as directly applicable to the experiment; data handling are discussed with details of

GEOMAGNETIC FIELD (Cont'd)

the computer program given in appendices; the gross structure of the distant field is described; and numerous power spectrums of both field amplitude and direction are included.

71,752 THE DISTANT GEOMAGNETIC FIELD
 4. MICROSTRUCTURE OF A DISORDERED HYDROMAGNETIC MEDIUM IN THE COLLISIONLESS LIMIT
 Sonett, C. P.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1265-1294, March 1, 1963

The fine-scale structure of the geomagnetic field data given in a previous paper is examined. Primary concern is given to the microscopic view of the data, with particular concern to fitting it into some pattern having at least qualitative consistency with viewpoints established in the past concerning the behavior pattern both of the geomagnetic termination and of collisionless plasma.

71,753 A NOTE ON THE COMPRESSION OF THE EARTH'S MAGNETIC FIELD AND HYPOTHETICALLY RELATED PHENOMENA Henrich, L. R.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1295-1302, March 1, 1963

The magnetic field of the Earth is assumed compressed by an incident stream of ionized particles from the Sun. A timedependent magnetic and electric field is propagated as part of this interaction. A simplified model, a mirror dipole moving in space but of constant magnetic moment, is chosen to calculate the manner in which this electric field will compress and possibly accelerate ions already trapped in the Earth's magnetosphere. This model would tend to dump radiation from the terrestrial belts into the atmosphere. For geometrical reasons the effects might be most pronounced in early morning and late evening.

71,754 THE EFFECT OF THE EARTH'S MAGNETIC FIELD ON IRREGULARITIES OF IONIZATION IN THE E LAYER Villars, F., Feshbach, H. Journal of Geophysical Research, v. 68, no. 5, pp. 1303-1320, March 1, 1963

Solutions are investigated of the equation for diffusion and transport of ionization in a weakly ionized turbulent plasma in the presence of a magnetic field. Because of space charge effects, the problem is nonlinear in the ionization density $n(\mathrm{x}, t)$. It is shown that in the linearized approximation, the effect of the magnetic field on turbulence does not lead to irregularities of a scale sufficiently small to explain the observed data. Nonlinear effects may play a role and are being investigated. Preliminary results show that they are capable
of increasing density gradients in irregularities of sufficient amplitude. The present study is an outgrowth of attempts to understand the structure responsible for the backscattering of radio waves by aurora.

71,755 THE EFFECT OF A UNIFORM EXTERNAL PRESSURE ON THE BOUNDARY OF THE GEOMAGNETIC FIELD IN A STEADY SOLAR WIND Spreiter, J. R., Hyett, B. J.
 Journal of Geophysical Research, v. 68, no. 6, pp. 1631-1642, March 15, 1963

Approximate solutions are given for the shape of the boundary separating the geomagnetic field from the interplanetary plasma for a model that assumes the plasma pressure to be composed of two components. One is a dynamic pressure proportional to the normal component of the momentum of the particles of a steady and undisturbed uniform incident stream as is customary in the usual formulation of the steady-state Chapman-Ferraro problem. The other is a static pressure considered over the boundary surface. Results are determined for the traces of the boundary in the equatorial plane and in the meridian plane containing the Sun-Earth line for a complete range of values for the ratio between the two pressure components. Results indicate that the asymmetry between the distances to the boundary of the geomagnetic field on the day and night sides of the Earth may be greatly exaggerated by the results of the usual calculations in which the static pressure is disregarded.

GEOMAGNETIC STORMS

71,756 A SUGGESTION FOR IMPROVING FORECASTS OF GEOMAGNETIC STORMS
 Hakura, Y., Lincoln, J. V.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1563-1564, March 1, 1963

It is suggested that forecasts of geomagnetic storms may be improved by a technique based on the monitoring of HF transmissions from a station within the north polar cap.

GRAVITATIONAL FIELDS

71,757 EARTH'S GRAVITATIONAL POTENTIAL: EVALUATION OF EVEN ZONAL HARMONICS FROM THE 2nd TO THE 12th
 King-Hele, D. G., Cook, G. E., Rees, J. M.
 Nature, v. 197, no. 4869, p. 785, February 23, 1963

A new determination of the even harmonics in the Earth's gravitational potential has been made using the motion of seven satellites. These satellites were chosen with the intention of sampling the gravitational field as thoroughly and evenly as possible; their orbits were inclined to the equator at angles between 28 and 97 deg.

GRAVITY

71,758 GRAVITATIONAL RADIATION
Pirani, F.A.E. (King's College, London, England)
May 1962
Aeronautical Research Laboratories, Wright-Patterson AFB, Ohio
ARL 62-455

A survey is presented of gravitational radiation theory up to the end of 1961. Some technical details, but no calculations, are included.

GROUND SUPPORT EQUIPMENT

71,759 THE GROUND STATION TRANSMITTER AND RECEIVER
Schill, J., Perks, A. F.
Bell Laboratories Record, v. 41, no. 4, pp. 135-141, April 1963

Solutions are described for the special design problems which arose in connection with construction of adequate transmitter and receiver units for the Andover, Maine, horn antenna. Schematic diagrams describe transmitter and receiver operation.

GUIDANCE SYSTEMS

```
71,760 MIDCOURSE GUIDANCE USING RADIO TECHNIQUES
Gates, C. R., Cutting, E. (Jet Propulsion Laboratory, California Institute of Technology, Pasadena) American Rocket Society, Inc., New York, N. Y. 2462-62
(Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)
```

A lunar midcourse guidance system using Earth-based radio tracking and computation is discussed. Primary emphasis is on engineering factors, including requirements placed on spacecraft, tracking stations, and computing facilities. Performance is described, and maneuver size, number of maneuvers, and tracking and guidance accuracy are treated.

71,761 MEASURE DIRECTION BY SPINNING LIGHT RAY Product Engineering, v. 34, no. 5, p. 95, March 4, 1963

A new method for sensing the rotation rate of a vehicle uses coherent light moving in opposite directions around a traveling wave laser, and is based on the physical principle of the constancy of the velocity of light. This method, called a ring laser, may replace the gyroscope as an automatic guidance system as it requires neither bearings nor other moving parts and would be cheaper to produce and more sensitive than present equipment.

HYDROMAGNETIC WAVES

71,762 ON THE FREQUENCY CUTOFF OF HYDROMAGNETIC WAVES IN THE UPPER ATMOSPHERE Kahalas, S. L.
 Journal of Geophysical Research, v. 68, no. 6, pp. 1776-1778, March 15, 1963

A mechanism is discussed which involves Landau damping of hydromagnetic waves by thermal protons in the exosphere and below.

INFRARED RADIATION

71,763 THE INFRARED HORIZON OF THE PLANET EARTH
 Hanel, R. A., Bandeen, W. R., Conrath, B. J.
 Journal of the Atmospheric Sciences, v. 20, no. 2, pp. 73-86, March 1963

Horizon sensors are essential elements in the orientation systems of many space vehicles and satellites. Their design and an evaluation of their capabilities and limitations require a knowledge of the spectral radiance emitted by the Earth. The discontinuity between the surface, the atmosphere, and outer space for various latitudinal, seasonal, climatic, and meteorological conditions is investigated. Calculations are carried out for the following spectral intervals: (1) the water vapor band from 6.33 to 6.85μ, (2) the ozone band from 8.9 to 10.1μ, (3) the atmospheric window from 10.75 to 11.75μ, (4) the carbon dioxide band from 14 to 16μ, and (5) the rotational water vapor band from 21 to 125μ. The superior properties of the carbon dioxide band and the rotational water vapor region for horizon sensor purposes are shown.

INSTRUMENTATION

```
71,764 THE SATELLITE MICROWAVE REPEATER
    Hutchison, P. T.
    Bell Laboratories Record, v. 41, no. 4, pp. 151-155,
        April 1963
```

The electrical features and design considerations peculiar to satellite-borne communication repeaters of the type used in Telstar are discussed.

INTERPLANETARY ENVIRONMENT

71,765 REMARKS ON THE LIMITATIONS OF OPTICAL METHODS FOR MEASURING ELECTRON DENSITIES IN THE CORONA AND INTERPLANETARY SPACE
Blackwell, D. E.
Space Science Reviews, v. 1, no. 3, pp. 612-614, March 1963 (Paper presented at the European Preparatory Commission for Space Research Symposium on The Interplanetary Medium, at Paris, France, June 19, 1962)

Difficulties in measuring electron densities in the outer corona and interplanetary space are discussed which arise

INTERPLANETARY ENVIRONMENT (Cont'd)

because some of the light of the corona is due to scattering by interplanetary dust.

INTERPLANETARY MAGNETIC FIELDS

71,766 MAGNETIC FIELDS IN INTERPLANETARY SPACE 1961
Air Force Cambridge Research Center, Geophysics
Research Directorate, Bedford, Mass.
AFCRL-62-225, Final Engineering Report
ASTIA AD-272,831

This report concerns (1) a study of existing measurements and theories regarding the magnetic fields in interplanetary space, (2) development of a magnetic field model from the available measurements for refining the magnetic field model, and (3) design of a rocket probe magnetometer instrument package suitable for making the required measurements.

```
71,767 MAGNETIC FIELD MEASUREMENTS IN SPACE
    Cahill, L. J., Jr.
    Space Science Reviews, v. 1, no. 3, pp. 399-414,
    March 1963
```

A brief account is given of the general conception of the outer geomagnetic field and of the interplanetary magnetic field prior to satellite magnetometer investigations. An objective account of the important findings of each of the satellite magnetometer experiments, and an interpretation of the effects of these findings on the present status of understanding of the outer geomagnetic field, the boundary region, and interplanetary magnetic field are given.

INTERPLANETARY MATTER

71,768 INTERPLANETARY PLASMA Lüst, R.
 Space Science Reviews, v. 1, no. 3, pp. 522-552, March 1963
 (Paper presented at the European Preparatory Commission for Space Research Symposium on The Interplanetary Medium, at Paris, France, June 19, 1962)

All available evidence concerning the gaseous component of the interplanetary medium is summarized, and the theoretical picture which has been developed is discussed. The discussion is restricted to the undisturbed conditions in the interplanetary space.

[^7]A few of the points discussed in the previous paper ("Interplanetary Plasma", by Dr. Lüst) are considered in greater detail, and the significance of the observations of the comets' plasma tails as natural probes for the interplanetary plasma is reemphasized.

71,770 METEORS AND THE ABUNDANCE OF INTERPLANETARY MATTER
Kaiser, T. R.
Space Science Reviews, v. 1, no. 3, pp. 554-575, March 1963
(Paper presented at the European Preparatory Commission for Space Research Symposium on The Inter-
planetary Medium, at Paris, France, June 19, 1962)

Estimates of the spatial density of interplanetary dust are derived from meteor accretion and zodiacal cloud observations. When the most recent data are considered, it is found that there is no longer any serious discrepancy between the extrapolated meteor values and those from the other sources, and a density distribution is obtained which extends from meteoroids capable of producing the brightest optical meteors to particles approaching the limiting size beyond which they are removed from the solar system by solar radiation pressure. Impacts on rocket and satellite vehicles lead to much higher estimates of spatial densities, and it is concluded that these impacts originate from particles in geocentric orbits belonging to a dust cloud encompassing the Earth. The evidence tends to support the view that these particles are captured from the interplanetary dust cloud rather than being produced, as suggested by Whipple, through the impact of meteorites on the Moon. Some suggestions are made for the direction of future rocket and satellite investigations.

71,771 LIGHT SCATTERING BY SMALL PARTICLES AND MODELS OF INTERPLANETARY MATTER DERIVED FROM THE ZODIACAL LIGHT Giese, R. H.
 Space Science Reviews, v. 1, no. 3, pp. 589-611, March 1963
 (Paper presented at the European Preparatory Commission for Space Research Symposium on The Interplanetary Medium, at Paris, France, June 19, 1962)

A model of interplanetary matter having the same optical properties as those observed in the zodiacal light and involving the presence of small particles ($<0.2 \mu$) is suggested. Methods and results of an analysis of light scattering by single particles and by mixtures of particles are presented in detail.

[^8]This bibliography consists of 567 annotated references on asteroids, comets, meteorites, meteors, micrometeorites, noctilucent clouds, nonterrestrial dust, origin of the solar system, tektites, the zodiacal light, and related subjects. The majority of the references are those published in 1962, and include those released in 1962 by ASTIA and NASA. A few references not listed in the original edition are included.

IONOSPHERE

71,773 ROCKET OBSERVATIONS OF ION DENSITY, ELECTRON DENSITY AND ELECTRON TEMPERATURE IN THE IONOSPHERE Aono, Y., Hirao, K., Miyazaki, S.
 Journal of the Radio Research Laboratories, v. 9, no. 46, pp. 407-419, November 1962

Ionospheric measurements made by sounding rockets at the Michikawa Rocket Range, Japan, in June and October 1961 are reported. The rockets, carrying various combinations of Langmuir and resonance probes, measured ion density, electron density, and electron temperature in the ionosphere at altitudes between 60 and 200 km . Instrumentation and measurement methods are described.

71,774 A METHOD FOR SIMULTANEOUS RECORDING OF THE ECHO AMPLITUDE WITH h^{\prime}-f CURVE IN THE IONOSPHERIC SOUNDING AND SOME APPLICATION TO THE MEASUREMENT OF IONOSPHERIC PARAMETERS Wakai, N., Ishizawa, K. Journal of the Radio Research Laboratories, v. 9, no. 46, pp. 421-442, November 1962

A method and apparatus for recording the echo amplitude and $h^{\prime}(f)$ records on the same film are described. Ten pages of such film records are reproduced and their application discussed.

71,775 IONOSPHERIC EFFECTS OF A HIGH ALTITUDE NUCLEAR EXPLOSION
 Journal of Atmospheric and Terrestrial Physics,

 v. 25, no. 2, pp. 99-100, February 1963Ionospheric stations of the New Zealand network recorded marked effects after the July 9,1962 thermonuclear event over Johnston Island. Observations are compared with those of the 1958 events, and a correlation between height of explosion and time of onset is noted.

71,776 THE REFRACTIVE INDEX AND THE ABSORPTION INDEX OF THE IONOSPHERE
 Murty, Y. S. N., Khastgir, S. R.
 Journal of Atmospheric and Terrestrial Physics, v. 25, no. 2, pp. 102-105, February 1963

Analytical expressions have been obtained for computing the refractive index and the absorption index for various
values of electron number density, electron collisional frequency and wave frequency. The derivation of the expressions for the refractive index and the absorption index for radiowave propagation through the ionosphere is given.

71,777 NONUNIFORM LAMINATION ANALYSIS OF IONOSPHERIC $h^{\prime}(f)$ RECORDS, USING WAVE REFRACTIVE INDEX
 Unz, H .
 Journal of Atmospheric and Terrestrial Physics, v. 25, no. 4, pp. 189-196, April 1963

71,778 IONOSPHERIC EFFECTS FOLLOWING DISTANT NUCLEAR DETONATIONS
 Saha, A. K., Karabin, M., Mahajan, K. K. Journal of Atmospheric and Terrestrial Physics, v. 25, no. 4, pp. 212-218, April 1963

Preliminary results are given of observations made at Delhi of some ionospheric effects following the Russian nuclear detonations during August and September 1962.

71,779 A MODEL OF THE QUIET IONOSPHERE Seddon, J. C.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1339-1345, March 1, 1963

The electron and ion density results obtained with rockets under quiet ionospheric conditions and reasonably favorable scientific conditions are discussed. A simple model of the quiet ionosphere is obtained which can be expressed in analytical form. The model is used to develop a means of obtaining from ionograms an approximate electron density profile and total electron content. It is also shown how such data used in conjunction with total electron content measurements make possible the determination of the electron density profile above $h_{\text {max }} \mathrm{F}_{\mathbf{2}}$.

71,780 EFFECTS OF THE HIGH-ALTITUDE THERMONUCLEAR EXPLOSION OF JULY 9, 1962, 0900 UT, OBSERVED AT JAMAICA
 Armstrong, R. J., Wharton, A. E. B.
 Journal of Geophysical Research, v. 68, no. 6, pp. 1779-1780, March 15, 1963

Unusual effects observed at Jamaica soon after the highaltitude thermonuclear explosion of July 9, 1962 are discussed.

71,781 SCALE HEIGHTS OF THE UPPER IONOSPHERE FROM TOP-SIDE SOUNDINGS Nelms, G. L.
 Canadian Journal of Physics, v. 41, no. 1, pp. 202-206, January 1963

Data from Alouette have been used to calculate electron density profiles of the upper ionosphere.

IONOSPHERE (Cont'd)

71,782 ELECTRIC FIELDS IN THE IONOSPHERE AND THE EXCITATION OF THE RED LINES OF ATOMIC OXYGEN
 Megill, L. R., Rees, M. H., Droppleman, L. K. Planetary and Space Science, v. 11, no. 1, pp. 45-56, January 1963

A detailed formulation for obtaining the excitation rate of optical emissions by electrons heated by a dc electric field is presented. The energy distribution of the electrons is obtained by solving the Boltzmann equation, including all the inelastic collisions of importance in the region of the atmosphere from which airglow and auroral radiations originate. The consequences are examined of a postulated dc electric field in the ionosphere sufficient to excite the $O\left({ }^{1} D\right)$ levels from which the airglow and auroral radiation at $\lambda \lambda 6300-6364 \AA$ originate.

An electric field of $2 \times 10^{-3} \mathrm{v} / \mathrm{cm}$ orthogonal to the geomagnetic field results in an intensity of the red lines of atomic oxygen of about 5 kR , such as is observed in the midlatitude subvisual red arcs, with the height of maximum emission at approximately 400 km .

71,783 SOME RESULTS OF ROCKET MEASUREMENTS OF THE ELECTRON CONCENTRATION IN THE IONOSPHERE UP TO HEIGHTS OF 200 KM MADE IN 1959-1960
 Rudakov, V. A.
 Massey, H. S. H., Translator
 Planetary and Space Science, v. 11, no. 1, pp. 59-60, January 1963
 (Translated from Iskusstvennye Sputniki Zemli, no. 10, p. 102, 1961)

The distributions of $n_{e}(h)$-the relationship of the concentration of free electrons in the ionosphere to height-determined in 1959 and 1960 during firings of USSR Academy of Sciences sounding rockets to heights of 200 km are given. A chart is included which shows the values of the function $n_{e}(h)$ obtained during the firings.

71,784 TURBULENCE IN ATMOSPHERIC MOTIONS BETWEEN 90 AND 130 KM OF ALTITUDE Blamont, J.-E.
 Planetary and Space Science, v. 10, pp. 89-101, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

Data on the structure of the field of motion of the atmosphere are reviewed. These include turbulence spectrum, diffusion coefficients, and limit of turbulence.

[^9]
71,786 A METHOD OF DETERMINATION OF IONOSPHERIC ELECTRON DENSITY PROFILES FROM FARADAY ROTATION OF SATELLITE BORNE RADIO SIGNALS
 Gonzalez, V.
 September 1962
 Illinois, University of, Electrical Engineering Research Lab., Urbana
 Ph.D. Thesis, N 6310168

Faraday rotation records received at a ground station from a transmitting satellite are analyzed in detail. A set of parameters of a Chapman ionosphere model is assumed, and the faraday effect corresponding to a given satellite passage is calculated by means of an electronic computer, using the ray tracing technique. The calculated result is compared with the experimental observations to generate a new set of parameters. The whole calculations are then repeated with the new ionosphere until the differences between the calculated and experimental values have been minimized. Since the ray tracing requires the longest computer time in this selfconsistent approach, it is found that in most cases a secondorder formula is much simpler to use and gives almost equal satisfaction. The phenomenon of one-hop propagation when the satellite moves below the height of maximum electron density, and the occurrence of the minima and maxima in the number of faraday rotations between satellite and station are also examined.

IQSY

71,787 PROVISIONAL PROGRAMME
INTERNATIONAL YEARS OF THE QUIET SUN, 1964-1965
American Geophysical Union, Transactions, v. 44, no. 1, pp. 261-275, March 1963
(Also available in National Academy of Sciences, IGY Bulletin, no. 69, March 1963)

71,788 SPACE RESEARCH AND THE IQSY PROPOSED CONTRIBUTIONS OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION American Geophysical Union, Transactions, v. 44, no. 1, pp. 228-235, March 1963
(Also available in National Academy of Sciences, IGY Bulletin, no. 67, January 1963)

JUPITER

[^10]71,790 DYNAMIC SPECTRA OF JUPITER'S DECAMETRIC EMISSION, 1961
Warwick, J. W.
Astrophysical Journal, The, v. 137, no. 1, pp. 41-60, January 1963

Observations and a theoretical explanation of Jupiter's lowfrequency radio emission are presented. The explanation leans heavily on recent demonstrations that Jupiter possesses energetic radiation belts similar to the Earth's Van Allen belts.

71,791 THE RADIO EMISSIONS FROM JUPITER AND THE DENSITY OF JOVIAN EXOSPHERE
 Ellis, G. R. A.
 Australian Journal of Physics, v. 16, no. 1, pp. 74-81, March 1963

The properties of cyclotron radiation from bunches of electrons trapped in a Jovian exosphere are discussed. It is shown that, if the polar magnetic field intensity is 15 gauss and the magnetic axis is inclined 10 deg to the rotation axis, the calculated properties agree with those observed for the decametric radiation provided Jupiter is surrounded by an extensive exosphere. The electron density of the exosphere varies mainly in proportion to the magnetic field intensity, and at $1.5 R_{\mathrm{j}}$ is equal to $10^{3} / \mathrm{cm}^{3}$.

71,792 LONG BASELINE INTERFEROMETRY OF JOVIAN DECAMETRIC RADIO BURSTS Slee, O. B., Higgins, C. S.
 Nature, v. 197, no. 4869, pp. 781-783, February 23, 1963

Exploratory observations of Jupiter made with a long baseline interferometer during the 1962 opposition are reported. The observations were made at 19.7 Mc with a N -S baseline of 32.3 km , equivalent to 1940λ at the declination of the planet. Information was obtained on the sizes and distribution of the decametric burst sources.

LANDINGS

71,793 DESIGN CONSIDERATIONS OF EARTH LANDING SYSTEMS FOR A MANNED SPACECRAFT Smith, A. M., Hartung, R. M., McMullen, J. C., Burns, T. A. (General Electric Co., Missile and Space Div., Philadelphia, Pa.)
 American Rocket Society, Inc., New York, N. Y. 2491-62
 (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

The problems attendant to the design of a reliable and optimal Earth landing system are among the most critical in achieving mission success. Two limiting requirements tend to emphasize the magnitude of the design problem: (1) from the instant of launch, the Earth landing system must be capable of performing its prescribed function; and (2) in such
a role, it must "know" the flight status at all times so that it can react to an infinite number of situations and perform its function within established design bounds. The system must possess a high degree of reliability and contain an adequate sensory control capacity to maintain operation within established constraints. Some system design concepts embodied in these two requirements are described, and the interplay between the total vehicle design problems and those related to the landing system design is discussed. The crew functions in this system are shown to be a major consideration in the achievement of design flexibility and high reliability.

LAUNCHING

71,794 DURATION OF A COUNTDOWN WHEN CONSIDERED AS AN INTERRUPTED SERVICE PROCESS Firstman, S. I.
 Operations Research, v. 11, no. 2, pp. 210-227, March-April 1963

A countdown could be interrupted by several kinds of problems, and, following each interruption, could continue according to one of several policies; seven such policies are discussed. The problem considered is that of accounting for the randomly occurring problems and the time required to deal with them when estimating the distribution of interrupted countdown durations.

71,795 LAUNCH OPERATIONS AT CAPE CANAVERAL Upthegrove, H. N.
 Bell Laboratories Record, v. 41, no. 4, pp. 174-180, April 1963

Prelaunch testing procedures and final launch operations for the Delta-Telstar combination are described.

LIQUID PROPULSION SYSTEMS

71,796 VARIABLE-THRUST PROPULSION FOR A SOFT. LANDING VEHICLE
 Williamson, F., Jr., Yim, E., Jr. (Naval Ordnance Test Station, China Lake, Calif.)
 American Rocket Society, Inc., New York, N. Y. 2481-62
 (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

One of the engineering problems involved in placing a man on the Moon is the soft-landing of the manned lunar module. In early 1959, the U.S. Naval Ordnance Test Station (NOTS) postulated that a NOTS variable-thrust propulsion system could be used as the retro-propulsion system. In early 1961, NOTS designed, built and flight-tested a vehicle, conclusively demonstrating that a variable-thrust propulsion system could be precisely controlled to soft-land a vertically descending craft.

LUNAR CRATERS

71,797 KLEIN'S "NEW" CRATER-ANOTHER LUNAR PUZZLE
Manasek, F. J.
Strolling Astronomer, The, v. 17, no. 1-2, p. 18, January-February 1963
(Abstract of paper presented at the Association of Lunar and Planetary Observers Convention, Montreal, Canada, 1962)

Klein's discovery in 1877 of a new crater in the Mare Vaporum near Hyginus is discussed, and although it is concluded that modern observations substantiate the existence of the crater, positive identification is not possible because of insufficient data.

71,798 LUNAR-TYPE TERRESTRIAL VULCANOIDS Moore, \mathbf{P}.
Strolling Astronomer, The, v. 17, no. 1-2, pp. 23-26, January-February 1963
(Presented at the Association of Lunar and Planetary Observers Convention, Montreal, Canada, 1962)

The resemblance of terrestrial vulcanoids, such as those in French West Africa and the Lake Mývatn area of Iceland, to lunar forms is pointed out. The view is expressed that the form and distribution of lunar features indicate an origin which was neither cataclysmic nor violently explosive, and that a milder uplift-and-subsidence process is much more likely.

71,799 DIMENSIONS OF THE LINNE CRATERLET
 Ashbrook, J.
 Strolling Astronomer, The, v. 17, no. 1-2,
 pp. 26-28, January-February 1963

Observations made and techniques used in the investigation of the lunar craterlet located within the Linné white patch are described in detail. These observations are important for extending the empirical diameter-depth and diameter-height relationships to smaller objects.

71,800 A NOTE ON THE DARWIN DOME AS SEEN IN SMALL AND LARGE APERTURES Olivarez, J.
 Strolling Astronomer, The, v. 17, no. 1-2, pp. 34-35, January-February 1963

An account is given of recent observations (made with a $121 / 2$-in reflector) of the Darwin dome - one of the largest, most rugged, and spectacular domes on the lunar surface.

LUNAR LANDINGS

[^11](Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

NASA has developed a theoretical and experimental concept for achieving lunar and planetary soft landings by means of gas-filled balloons. This paper discusses the application of the method for soft landings of instruments such as the University of California-Aerospace Corporation neutron-gamma experiment for the quantitative chemical analysis of the lunar surface. This geometry-independent scientific payload would be suspended by a net of nylon threads at the center of a spherically shaped balloon. At the moment it lands - when the kinetic energy has been transformed into compressional energy of the inflating gas - the balloon is ripped open to allow the gas to escape and the instrument to fall to the surface. It appears that a $50-\mathrm{lb}$ payload could be landed with an impact of about 200 Earth g's by a $41-\mathrm{lb}$ balloon system. This assumes that a retrorocket similar to that used on Rangers 3, 4, and 5 could slow the package to a velocity of about $300 \mathrm{ft} / \mathrm{sec}$ at impact.

LUNAR MAGNETIC FIELD

71,802 LUNAR SURFACE AND SUBSURFACE MAGNETIC SUSCEPTIBILITY INSTRUMENTATION
 Bollin, E. M.
 December 1962
 Jet Propulsion Laboratory, California Institute of Technology, Pasadena
 TR 32-343

Multicoil induction measurements of the lunar surface and subsurface magnetic susceptibility are under study. Major considerations are the improvement of the accuracy and logging ability of various probe configurations. Special boundary conditions of high vacuum, extreme ambient temperature variation, restriction to mechanically passive systems, simple electronics, low power and light weight all contribute to degradation of the accuracy of the instrument.

This report also appears in IRE Transactions on Instrumentation, v. I-II, no. 3-4, December 1962.

LUNAR MISSIONS

71,803 THE INDIRECT LUNAR APPROACH SCHEME Straly, W. H. October 17, 1960 George C. Marshall Space Flight Center, Huntsville, Ala. MTP-M-S\&M-F-60-2

The advantages of the indirect lunar approach scheme over the direct approach are shown, including: (1) an earlier opportunity to improve astronomical data, (2) improved mission flexibility, (3) increased mission reliability, and (4) development of a more useful method of subsequent exploration. Other advantages inherent to the indirect scheme are that it provides an economical method of conducting seismic experiments; makes possible minute inspection of the surface
before landing and viewing the landing operations from short range; and utilizes the superior electronic capabilities of the orbiting vehicle. The described approaeh is based on large payloads of the Saturn family, but can be applied to any size payload.

LUNAR MISSIONS (MANNED)

71,804 LUNAR LOGISTIC SYSTEM, VOLUME III, EARTHMOON TRANSITS
 Braud, N. J.
 March 15, 1963
 George C. Marshall Space Flight Center, Huntsville, Ala. MTP-M-63-1, Volume III

Preliminary results are reported of investigations into the problems of Earth-Moon transits, where particular emphasis was placed on the class of trajectories considered for Apollo and support vehicle flights. Flight profiles, velocity budgets, and launch windows are among the areas given most attention. One of the primary points of interest is a newly conceived method of establishing a flight mechanical classification of the transits. The classification is made by use of a simplified time invariant coordinate system. The results are empirical and are generated by the integration of the equations of motion by Cowell's method. Impact and flyby transits are treated, and results are extended to three dimensions.

71,805 LUNAR LOGISTIC SYSTEM, VOLUME VI, TRACKING AND MISSION CONTROL March 15, 1963
 George C. Marshall Space Flight Center, Huntsville, Ala. MTP-M-63-I, Volume VI

Results of the Lunar Logistic System (LLS) studies in the following related areas are presented: (1) tracking and orbit determination, (2) midcourse maneuver requirements, and (3) mission control. The principal conclusions derived in each area are given.

71,806 LUNAR LOGISTIC SYSTEM, VOLUME VII, TESTING ASPECTS
 Tidd, J. L., Guyton, B., Yarbrough, L. S. March 15, 1963
 George C. Marshall Space Flight Center, Huntsville, Ala. MTP-M-63-1, Volume VII

The underlying philosophy and data resulting from an investigation of Lunar Logistic System test requirements, and the most effective means of satisfying these requirements are presented. Test parameters and methodology are emphasized along with test facility requirements and availability of government and private facilities. Transportation of large hardware items is studied, and boosters are evaluated for flight testing. Recommendations are made for flight modes and test ranges.

[^12]George C. Marshall Space Flight Center, Huntsville, Ala. MTP-M-63-1, Volume X

Design criteria for Lunar Logistic System payloads, and conceptual designs for three specific payloads are presented. The design criteria are presented in a narrative and parametric form, with numerous parametric trade-off illustrations. Conceptual designs are presented for the following payloads:
(1) four-man shelter, (2) two-man large roving vehicle, and (3) two-man shelter and small roving vehicle. Each of the three payloads is designed for the Saturn 5 Lunar Logistic Vehicle as the carrier, with a lunar soft-landing capability of $25,000 \mathrm{lb}$. The difference between the $25,000-\mathrm{lb}$ total payload weight and the dry weight of any of the shelters and roving vehicles can be used for expendables, thus permitting long-time missions on the Moon. Several representative missions arc described.

71,808 LUNAR LOGISTIC SYSTEM, VOLUME XI, LUNAR TOUCHDOWN
 Lavender, R. E.
 March 15, 1963
 George C. Marshall Space Flight Center, Huntsville, Ala. MTP-M-63-1, Volume XI

Results are presented of analytical touchdown dynamics investigations conducted to determine the influence of various lunar and configurations design parameters on the touchdown dynamic stability of spacecraft intended to soft-land logistic payloads on the Moon. Parameters used in the analysis include the local lunar slope, coefficient of friction, initial touchdown vertical and horizontal velocity components, vehicle weight and radius of gyration, height of center of gravity, displacement of the center of gravity from the vehicle's longitudinal axis, thrust of stabilization rocket motors, and crushing force of energy absorbing material. The landing-gear spread required to obtain touchdown stability has been determined for various combinations of the investigated parameters for configurations with four extended legs. In addition, some results are presented for configurations with three and five legs.

71,809 LUNAR LOGISTIC SYSTEM PAYLOAD PERFORMANCE STUDY, FINAL REPORT, VOLUME I TECHNICAL DIGEST
 January 1963
 Northrop Corp., Northrop Space Labs., Hawthorne, Calif. NSL 63-4, Volume I

The results are presented of an engineering study to aid NASA in the selection of appropriate payloads for the Lunar Logistic System and in the planning of their development. Volume I, which was prepared as a digest of the technical contents of Volume II (cited in the following entry), is organized to present in condensed form the content and scope of the engineering work performed during the study. The sections on Definitions, Study Program, Operations Research, Conclusions, and Recommendations are quoted directly from Volume II without summary or reduction.

LUNAR MISSIONS (MANNED) (Cont'd)

71,810 LUNAR LOGISTIC SYSTEM PAYLOAD PERFORMANCE STUDY, FINAL REPORT, VOLUME II TECHNICAL
 January 1963
 Northrop Corp., Northrop Space Labs., Hawthorne, Calif. NSL 63-4, Volume II

Technical results are presented of the study on Lunar Logistic System payload performance. The study program is outlined, study methodology described, payload performance and conceptual designs are presented, conclusions drawn, and recommendations offered. This volume is intended to serve as a source of information for other LLS studies.

71,811 LUNAR LOGISTIC SYSTEM PAYLOAD PERFORMANCE STUDY, FINAL REPORT, VOLUME III DEVELOPMENT PROGRAMS, AND ESTIMATED SCHEDULES AND COSTS January 1963 Northrop Corp., Northrop Space Labs., Hawthorne, Calif. NSL 63-4, Volume III

Development programs are presented with estimated development times and estimated development and production costs for a number of the concepts presented in Volume II of the Lunar Logistic System Payload Performance Study, cited in the preceding entry. The development programs for the roving base payload and four typical function units are covered. Since all the designs are conceptual in nature, the approach in planning the development programs has been to explore the critical and pacing factors affecting each development. Estimated development and production costs are also given for an additional twenty-six concepts presented in Volume II.

71,812 LUNAR LOGISTIC SYSTEM PAYLOAD PERFORMANCE STUDY, FINAL REPORT, SUMMARY January 1963
 Northrop Corp., Northrop Space Labs., Hawthorne, Calif. NSL 63-4, Summary

The work accomplished, conclusions reached, and recommendations offered as a result of completion of the study on Lunar Logistic System payload performance are briefly summarized.

71,813 STUDY OF SPACECRAFT BUS FOR LUNAR LOGISTICS SYSTEM VOLUME I, SUMMARY December 22, 1962 Space Technology Laboratories, Inc., Redondo Beach, Calif. 8689-6007-TU000

The results are presented of a 12 -week engineering study of unmanned spacecraft bus concepts for use in a Lunar Logistics System to support the manned lunar landing program. The objective of the LLS is to soft-land a variety of payloads at or near the Apollo landing site, both before and following

Apollo manned missions. The LLS is being studied by NASA as a means of assuring the highest probability of safe crew return and the maximum benefits from lunar surface operations. Essential characteristics of such a program include (1) minimum system development costs and maximum system reliability by utilizing available state-of-the-art components and subsystems to the greatest extent possible, (2) flexibility in LLS mission capability and schedules, (3) operational capability by earliest practicable dates, and (4) maximum potential for growth in mission capability.

71,814 STUDY OF SPACECRAFT BUS FOR LUNAR LOGISTICS SYSTEM VOLUME IIA, TECHNICAL PLAN (SECTIONS I-IV)
 December 22, 1962
 Space Technology Laboratories, Inc., Redondo Beach, Calif. 8689-6002-TU000
 71,815 STUDY OF SPACECRAFT BUS FOR LUNAR LOGISTICS SYSTEM VOLUME III, DEVELOPMENT AND TEST PLAN
 December 22, 1962
 Space Technology Laboratories, Inc., Redondo Beach, Calif. 8689-6006-TU000

71,816 ABORT PROBLEMS OF THE LUNAR LANDING MISSION
 Bartos, G., Greenberg, A. (Aerospace Corp., El Segundo, Calif.)
 American Rocket Society, Inc., New York, N. Y. 2490-62
 (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

The abort problems associated with the manned lunar landing mission are investigated. The purpose of incorporating abort provisions in the vehicle is the same throughout the mission, i.e., to safely return the crew capsule to the vicinity of the Earth; however, the characteristics of the abort maneuvers required for this purpose differ significantly for the various phases of the mission. The phases considered in this study include the Earth-Moon transfer, the lunar landing, and the subsequent ascent from the lunar surface.

71,817 THE GEO-SCIENCES APPLIED TO MANNED LUNAR EXPLORATION
 Green, J.
 July 5, 1961
 North American Aviation, Inc., Space and Information Systems, Div., Downey, Calif.
 SID 61-217

The application of the geo-sciences to manned lunar exploration may be divided into five groups: terrain, rocks, minerals, power, and tools. Understanding the processes which formed certain features on Earth aids in realizing the advantages of impacted and volcanic terrains on the Moon. Volcanic terrains offer more natural protection to man. Volcanic rocks would also be more useful to the lunar astronaut because
of the adaptability of certain volcanic materials for insulation and because their water content (approximately 1 percent by weight) is much higher than meteoritic rocks.

LUNAR ROVING VEHICLES

```
71,818 INSTRUMENTATION AND PAYLOAD DESIGN FOR
    LUNAR ROVING VEHICLES
    Walthall, E. R. (RCA, Camden, N. J.)
    Society of Automotive Engineers, Inc., New York, N. Y.
    632H
    (Presented at the Automotive Engineering Congress,
    Detroit, Mich., January 14-18, 1963)
```

Prior to manned landing, unmanned lunar vehicles will explore the Moon's surface. These vehicles, which will be controlled from Earth, will gather data on elevation contours and surface roughness, soil conditions and classification, electromagnetic radiation and micrometeorite conditions, and the substrate makeup and seismic conditions. Considered are lunar environment, radiation hazard, payload design criteria, environmental control, control and guidance systems, communication systems, and scientific instrumentation.

LUNAR TRAJECTORIES

71,819 ABORT CONSIDERATIONS FOR MANNED LUNAR MISSIONS
 Kelly, T. J., Adornato, R. J., Speiser, K. (Grumman
 Aircraft Engineering Corp., Bethpage, N. Y.)
 American Rocket Society, Inc., New York, N. Y. 2478-62
 (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

Direct and indirect abort trajectory requirements of the lunar orbit and descent phase of a manned lunar mission are considered. Indirect aborts, treated through an intermediate lunar parking orbit, are shown to be possible from any point on the trajectory down to the final touchdown, but regions from which direct aborts can commence are restricted. Velocity increment and time-to-return for several direct and indirect abort sequences are established, with emphasis on how the initial trajectory is shaped to facilitate the abort maneuver.

71,820 TRAJECTORY CONSIDERATIONS FOR THE RETURN TO EARTH PHASE OF LUNAR MISSIONS Gapcynski, J. P., Tolson, R. H. (NASA/Langley Research Center, Langley Field, Va.)
 American Rocket Society, Inc., New York, N. Y. 2487-62
 (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

The lunar injection conditions are discussed which are required to establish Earth-return trajectories satisfying specified re-entry conditions. It has been assumed in this analysis that the return trajectory is initiated from either a circular lunar orbit having an arbitrary inclination and nodal position
with respect to the Earth-Moon plane, or from an arbitrary position on the lunar surface. In the latter case, it is further assumed that a lunar parking orbit is established prior to injection. No consideration is given to the use of orbital plane changes to ensure proper Earth re-entry.

71,821 PREDICTION OF VELOCITY REQUIREMENTS FOR MINIMUM TIME ABORTS FROM THE MIDCOURSE REGION OF A LUNAR MISSION Merrick, R. B., Callas, G. P. April 1963
 National Aeronautics and Space Administration, Washington, D. C.
 TN D-1655

Abort trajectories were computed at several ranges for various fuel capabilities and impulsive velocity increments on both the outgoing and incoming legs of a typical circumlunar trajectory. A two-body equation was used for determining the direction of the abort rocket thrust in the orbit plane and a modification to this equation is presented which markedly reduces the altitude error, at perigee, due to four-body effects. Errors due to inaccuracy in the knowledge of position and velocity at abort and the inaccuracies in the magnitude and aiming of the abort rocket are considered statistically; the last is found to be by far the most significant.

71,822 DIRECT-ASCENT VS PARKING-ORBIT TRAJECTORY FOR LUNAR-SOFT-LANDING MISSIONS
 Gautschi, T. F., Clarke, V. C., Jr.
 December 3, 1962
 Jet Propulsion Laboratory, California Institute of Technology, Pasadena
 TM 33-114

Differences between direct-ascent and parking-orbit modes of transit to the Moon and their effects on a lunar landing mission are studied within the context and constraints of the Surveyor project. Constraints considered (at both "current" and "minimum" levels) include lunar lighting, launch-window duration, landing location, launch azimuth, launch vehicle capability, transit time, observability of landing from Earth, launch opportunities per period, and desired mission frequency. A listing of advantages and disadvantages provides some basis for conclusions. Appendices furnish source material and amplification, together with a glossary of terms used.

MARS

71,823 SOME GEOLOGIC PROBLEMS OF MARS Loomis, A. A.
 March 4, 1963
 Jet Propulsion Laboratory, California Institute of Technology, Pasadena
 TR 32-400

Geological and geophysical knowledge and uncertainties concerning the surface and body of Mars are briefly discussed

MARS (Cont'd)

and evaluated. It is pointed out that accurate values for the figure of the planet and the radii, seismic evidence of internal structure, and measurements of the outward heat flux across the surface are necessary and important in order to achieve a satisfactory description of the body of Mars. Some geological inferences which can be drawn from available photographic and photometric data concerning topography, areas of water accumulation, and biological activity are discussed. The priority of scientific geologic experiments is presented, and some present instrumentation capabilities and deficiencies are listed.

```
71,824 HEAT BALANCE ON THE SURFACE OF MARS
    Hattore, A.
    1962
    Institute of Astrophysics and Kwasan Observatory,
    University of Kyoto, Japan
    Contribution 115
```

The insolations for ($\tau=0,0.1,0.2$, and 0.3) and the heat loss on the Martian surface are calculated for various seasons. The heat balance on the surface and the effects of Martian clouds are discussed. The theoretical results are shown to be in fairly good agreement with observations.

MATERIALS

```
71,825 SPACE ENVIRONMENTAL EFFECTS ON SEALS,
    GASKETS, ADHESIVES AND OTHER ELASTO-
    MERIC AND POLYMERIC MATERIALS: AN
    ANNOTATED BIBLIOGRAPHY
    Abbott, H. M.
    September 1961
    Lockheed Missiles and Space Co., Sunnyvale, Calif.
    SB-61-40
    ASTIA AD-267,531
```

This bibliography contains selected references on seals, gaskets, adhesives, sealants and other elastomeric and polymeric materials under space conditions. Any applications of adhesives in fabricating pressurized containers and attaching solar cell plates were included, as were tests conducted on materials used for seals and gaskets in contact with reactive fluids. Materials used for inflatable space vehicles and structures are included as general applications of plastics or polymers.

71,826 COMPOSITE MATERIALS: AN ANNOTATED BIBLIOGRAPHY
 Abbott, H. M.
 February 1963
 Lockheed Missiles and Space Co., Sunnyvale, Calif. SB-62-58

This annotated bibliography of 190 selected references pertains to composite materials. Material composites are broadly
considered as physical combinations of two or more dissimilar materials. Boron carbide impregnated with aluminum (Boral), metal fibers in glass or plastics, or glass fibers in aluminum are some examples of the various combinations being studied. Sandwich materials were not included in the search, although few fabricated articles cannot in some way be referred to as composites.

71,827 THE EFFECT OF HYDROGEN ON ALUMINUM: AN ANNOTATED BIBLIOGRAPHY
 Gros, C. G.
 March 1963
 Lockheed Missiles and Space Co., Sunnyvale, Calif. SB-62-68

The effect of hydrogen on aluminum is treated, with reference to welding at room temperature and the ultimate reliability in space applications of such aluminum. The period from 1950 through 1962 is covered. A few citations to material on nonferrous metals which might lead to information about aluminum have been included in the 49 annotated references.

71,828 FRICTION MEASUREMENTS ON A LOW EARTH SATELLITE
 Rittenhouse, J. B., Jaffe, L. D., Nagler, R. G., Martens, H. E.
 April 15, 1963
 Jet Propulsion Laboratory, California Institute of Technology, Pasadena
 TR 32-402

During the flight of the Ranger 1, the coefficient of sliding friction for a number of materials was measured. Flat disks of materials of interest were rotated at a speed of 8 to $14 \mathrm{in} . / \mathrm{min}$ while in contact with $1 / 8$-in.-D hemispherical riders. Because of the low orbit achieved by Ranger 1 , the experiment was exposed to vacuum in the range of 3×10^{-6} to $8 \times 10^{-9} \mathrm{~mm}$ Hg. For unlubricated metals sliding on metals, the friction coefficient averaged about 0.5 ; for some combinations of metals, it occasionally exceeded 1.0 . Lower values were observed with lubricants of grease or gold-plate, and for ceramics sliding against metals. The coefficient of friction was very low, averaging 0.04 , for metallic pairs lubricated with molybdenum disulfide and for polytetrafluoroethylene sliding against metals and ceramics. Relatively low friction coefficients were found for metallic materials sliding against unlubricated metallic and ceramic materials when at least one member of the pair was of high hardness. The coefficients observed for unlubricated metal pairs were not inconsistent with the hypothesis that high friction tends to correlate with high mutual solid solubility. In general, the coefficients in space and in a laboratory vacuum of $5 \times 10^{-6} \mathrm{~mm} \mathrm{Hg}$ were not systematically different. For unlubricated metallic materials, friction in vacuum was higher than in air at shorter running times.

71,829 CARBONIZED PLASTICS COMPOSITES FOR HYPERTHERMAL ENVIRONMENTS PART II, SYNTHESIS OF IMPROVED THERMALLY PROTECTIVE PLASTICS AND COMPOSITES Forcht, B. A., Haviland, J. K., McKinney, A. R. (Ling-Temco-Vought, Dallas, Texas) February 1963
 Aeronautical Systems Division, Directorate of Materials and Processes, Wright-Patterson AFB, Ohio ASD TDR 62-352, Part II

New and improved compositions and constructions of pyrolyzed plastic composites were prepared for use as either high-temperature structural or ablative-insulative materials. The use of high density precursory plastics and three dimensional reinforcements resulted in high strength pyrolyzed plastics, having a room-temperature flexural strength up to $14,000 \mathrm{psi}$.

MERCURY PROJECT

71,830 FIRST DETAILS ON MERCURY SPACECRAFT COMMAND RECEIVER
 Elliott, R.
 Electronics, v. 36, no. 5, pp. 32-35, February 1, 1963

METEOR TRAILS

71,831 UNUSUAL OBSERVATION OF A METEOR TRAIN

 Bumba, V.Astronomical Institutes of Czechoslovakia, Bulletin of the, v. 14, no. 1, pp. 22-23, 1963

An observation of a shadow projected on the solar disk by a shock-wave of a meteor in the terrestrial atmosphere is described.

METEORITES

71,832 ULTRA-VIOLET-ABSORBING COMPOUND(S) REPORTED PRESENT IN THE MURRAY METEORITE
 Oró, J.
 Nature, v. 197, no. 4869, pp. 756-758, February 23, 1963

Investigations reported were undertaken to ascertain whether water-soluble ultraviolet-absorbing compounds detected in meteoritic extracts are indigenous to the meteorite, or are the result of contamination by the analytical technique used. Water extracts from the Murray meteorite were used in the analysis.

71,833 IMPACTS ON THE EARTH AND MOON
 Hawkins, G. S.
 Nature, v. 197, no. 4869, p. 781, February 23, 1963

The ratio of stony to iron meteorites is examined. The maximum size of an object which has collided with the Earth and Moon in geologic history is estimated.

METEOROIDS

71,834 SPRAY EJECTED FROM THE LUNAR SURFACE BY METEOROID IMPACT
Gault, D. E., Shoemaker, E. M., Moore, H. J. April 1963
National Aeronautics and Space Administration, Washington, D. C.
TN D-1767

Fragments ejected from the lunar surface by meteoroid impact are analyzed on the basis of experimental studies of hypervelocity impact in rock and sand. It is shown that the flux of fragments of a given mass which are ejected from the lunar surface is at least 10^{3} and probably 10^{4} times greater than the flux of interplanetary debris of the same mass. Most of the fragments are ejected at velocities less than lunar escape velocity and contribute to secondary impact cvents. A small fraction of the ejecta, however, will escape from the gravitational field of the Moon and even from the Earth-Moon system.

METEOROLOGICAL SATELLITES

71,835 NIMBUS DATA IN OPERATIONAL METEOROLOGY Johnson, D. S., Hall, W. F., Bristor, C. L.
 Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 52-56, April 1963

National Operational Meteorological Satellite System (NOMSS) data processing and data dissemination are described. Approximately one-quarter billion bits of meteorological data will be obtained from each orbit of the early Nimbus. The basic computer to be used at the NOMSS Data Processing Center is an IBM 7094. The experimental digitizing and mapping of cloud pictures are discussed and illustrated.

```
71,836 DATA COLLECTION BY SATELLITES Moody, A. B., Widger, W. K., Jr.
Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 57-58, April 1963
```

The concept of ambient sensors immersed in the atmosphere as an approach to augmenting the data collection capabilities of global weather satellites such as Tiros and the forthcoming Nimbus is considered. Several methods of implementing such a system are suggested.

71,837 TOWARDS THE SYNCHRONOUS METEOROLOGICAL SATELLITE
 Jones, W. W.
 Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 59-60, April 1963

The initial concept of a synchronous meteorological satellite as the only economically feasible means of continually viewing the Earth's weather processes is discussed.

METEOROLOGICAL SATELLITES (Cont'd)

71,838 DIRECT READOUT WEATHER SATELLITES
Cowan, L. W., Hubbard, S. H., Singer, S. F.
Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 61-66, April 1963

The approaches to an operational direct-readout satellite system are discussed along with testing of the Nimbus Automatic Picture Transmission (APT) system to be initiated during the latter part of 1963. The APT system, which takes a picture every 208 sec while the satellite is in daylight, is described and its potential evaluated. The major international aspects of a direct-readout satellite system are also briefly appraised.

71,839 RESEARCH WITH TIROS RADIATION MEASUREMENTS
 Nordberg, W.
 Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 76-83, April 1963

Radiometric experiments performed by meteorological satellites are described. The importance of supplementing TV photographs with radiometric observations is emphasized. Measurements discussed resulted from rather simple instruments reflecting the state of satellite radiometry of several years ago.

71,840 PHYSICAL MEASUREMENTS FROM METEOROLOGICAL SATELLITES
 Hanel, R. A., Wark, D. Q.
 Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 85-88, April 1963

Experiments in IR radiation, ozone distribution, cloud top heights, the solar constant, and "sferies" are discussed as part of a possible future effort in meteorological observations from satellites. Instrumentation to carry out the planned experiments is described.

71,841 NON-METEOROLOGICAL OBSERVATIONS FROM WEATHER SATELLITES
 Singer, S. F., Popham, R. W.
 Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 89-92, April 1963

Although the primary function of an operational meteorological satellite system will continue to be aimed toward obtaining observations of direct meteorological significance, experience has shown that such a system may well fulfill the needs of scientists in other fields for broad-scale observations on a real-time basis. Studies of ice, snow, forest fires, and locust swarms are discussed as potentials for nonmeteorological applications.

METEOROLOGY

71,842 RESEARCH WITH SATELLITE CLOUD PICTURES Fritz, S.
 Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 70-74, April 1963

Types of cloud patterns observed from Tiros satellites are compared with laboratory experiment and theory to emphasize the hydrodynamical implications shown by the satellite pictures.

METEORS

71,843 A LUNAR EFFECT ON THE INCOMING METEOR RATE
 Bowen, E. G.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1401-1403, March 1, 1963

Following the recent discovery of a lunar influence on rainfall and on the freezing nucleus count, it is now shown that the radar meteor rate varies in a similar way with lunar phase. The physical mechanism is uncertain, but an electrostatic charge on the Moon could produce an effect on micrometeorites of the right order of magnitude.

71,844 DETERMINATION OF THE HEIGHT OF THE HOMOGENEOUS ATMOSPHERE AND THE EXTRA-ATMOSPHERIC VELOCITY OF A METEOR Katasev, L. A.
 Soviet Astronomy-AJ, v. 6, no. 5, pp. 583-584, January-February 1963

Formulas are derived for computing, from photographic observations, the extra-atmospheric velocity of a meteoroid and the coefficient entering into the formula for the height of the homogeneous atmosphere. These quantities can be obtained directly from the observations.

MOON

71,845 THEORETICAL ASPECTS OF THE LUNAR METEOR Chalk, K.
Strolling Astronomer, The, v. 17, no. 1-2, pp. 19-23, January-February 1963
(Presented at Association of Lunar and Planetary
Observers Convention, Montreal, Canada, 1962)
The purpose and theoretical definition of the A.L.P.O. Lunar Meteor Search are detailed. It is pointed out that an indirect aim of the search is to discover the approximate extent of the tenuous lunar atmosphere.

[^13]Gravitational heating of the lunar interior is discussed. Numerical calculations to ascertain the actual amount of possible gravitational contribution to the internal temperature of the Moon are presented.

```
71,847 AN UNSOLVED ASTROMETRICAL PROBLEM
    Yakovkin, A. A.
    Soviet Astronomy-AJ, v. 6, no. 4, pp. 573-579,
    January-February 1963
```

Attention is drawn to the need for developing methods for computing the coordinates of the Moon's center of mass from observations. Observations at six points are intercompared and yield direct results, depending on no prior hypothesis. A description is given of four models of the Moon used to reduce heliometric observations.

71,848 LUNAR DUST AND TERRESTRIAL ICE NUCLEUS CONCENTRATION
 Vand, V.
 Nature, v. 198, no. 4876, pp. 176-177, April 13, 1963

Bigg demonstrated a relation between summer ice nucleus concentration and lunar phase. Assuming that increase of ice nuclei causes increase in precipitation, relations between precipitation and lunar phase can be accounted for. Predictions of arrival of lunar dust could be improved by using a system of radio telescopes to survey the actual meteor flux coming from the antilunar point. Analysis of the dust at times of maxima might give clues to the chemical composition of the lunar surface. The surface of the Moon may contain appreciable amounts of material which could act as efficient ice nuclei.

71,849 THE INFLUENCE OF THE MOON ON ATMOSPHERIC OZONE
 Adderley, E. E.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1405-1408, March 1, 1963

Evidence is presented for a lunar effect on the amount of atmospheric ozone at Arosa, Switzerland, and Canberra, Australia. The amount of ozone increases at the vernal equinox about the first and third lunar quarter and decreases at the same lunar phases at the autumnal equinox. There is no effect at midwinter or midsummer. The explanation of this lunar effect is unknown, and further investigation is needed.

71,850 AN ORIGIN OF THE MOON BY ROTATIONAL FISSION DURING FORMATION OF THE EARTH'S CORE
 Wise, D. U.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1547-1554, March 1, 1963

Darwin's hypothesis of lunar origin from a rapidly rotating Earth can be modified in substitution of excessive rotation rate and unstable spin driven by conservation of angular momen-
tum during formation of the Earth's core for Darwin's now discredited tidal resonance mechanism. Criticisms which caused rejection of the older hypothesis are considered in the light of this modification and of subsequent discoveries and ideas; most severe is lack of angular momentum in the present Earth-Moon system, a criticism which is itself open to question in terms of possible magnetic frictions during the early history of the solar system. Other criticisms are (1) observed but presently unexplainable components in rate of change in rotation of the Earth, and (2) possible changes in diameter of the Earth with time. Among the explanations provided by the hypothesis are relatively circular lunar orbit, specific gravity of the Moon, apparent nonhydrostatic figure of the Moon, constant face toward the Earth, and gross sequence of geologic events recorded on the lunar face. Several proposed tests of the hypothesis should soon be possible. Until more data become available, it is suggested that a lunar birth from the Earth be reinstated among our current working hypotheses.

```
71,851 CHARGING GRAINS OF DUST
    Coffman, M. L.
    Journal of Geophysical Research, v. 68, no. 5,
    pp. 1565-1566, March 1, }196
```

An independent calculation is given of the maximum charge possible for a grain of dust and the bearing this charge has on the erosion of the surface of the Moon.

71,852 BIBLIOGRAPHY OF THE MOON July 1960
 Department of the Army, Chief of Engineers, Washington, D. C. Bibliography

Since this bibliography pertains to the Moon as a physical object, no attention was directed to the movement of the Moon as a heavenly body, nor to its effect upon the Earth. Entries were compiled by the U.S. Geological Survey in connection with the preparation of the Engineer Special Study of the Surface of the Moon.

71,853 LUNAR THERMAL EMISSION MEASUREMENTS Castelli, J. P., Ferioli, C. P. September 1962
 Air Force Cambridge Research Laboratories, Office of Aerospace Research, Bedford, Mass. AFCRL-62-882

During two lunar eclipses, March 15, 1960 and August 25, 1961, simultaneous records of the lunar thermal emission at 1200 and 3100 Mc were obtained with the $84-\mathrm{ft}$ radio telescope of the USAF Sagamore Hill Radio Observatory. No change in lunar temperature was measured at either frequency during the eclipses. A simple straightforward method is described to convert antenna temperatures to average disk temperatures of the Moon; the latter were found to be $230^{\circ} \mathrm{K}$ at 1200 Mc and $223^{\circ} \mathrm{K}$ at 3100 Mc .

NAVIGATION

71,854 AN EMERGENCY MIDCOURSE NAVIGATION PROCEDURE FOR A SPACE VEHICLE RETURNING FROM THE MOON Havill, C. D.
 March 1963
 National Aeronautics and Space Administration, Washington, D. C.
 TN D-1765

A manual emergency navigation procedure for a vehicle returning from the Moon is presented. The procedure involves photographing the Earth from various positions along the trajectory returning from the Moon and deducing from image measurements the required midcourse corrections. Preliminary tests of the accuracy with which required image measurements can be obtained together with machine computations of the over-all accuracy of the guidance procedure indicate the accuracy could be within the corridor depth of a lifting entry vehicle.

NEUTRONS

71,855 NEUTRON FLUX AND ENERGY SPECTRUM ABOVE THE ATMOSPHERE
 Bame, S. J., Conner, J. P., Brumley, F. B., Hostetler, R. L., Green, A. C.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1221-1228, March 1, 1963

Neutron detectors consisting of $\mathrm{B}^{10} \mathrm{~F}_{3}$ proportional counters and $\mathrm{Li}^{4} \mathrm{I}(\mathrm{Eu})$ scintillation counters, surrounded by varying amounts of moderating material, have been flown above the atmosphere in a number of vehicles. The shape of the neutron energy spectrum given by Hess, Canfield, and Lingenfelter has been verified within experimental limitations, and the flux of neutrons at $650-\mathrm{km}$ altitude and $36.5^{\circ} \mathrm{N}$ geomagnetic latitude has been determined to be 0.28 ± 30 percent neutrons per $\mathrm{cm}^{2} \mathrm{sec}$, whereas at $320-\mathrm{km}$ altitude and $8.7^{\circ} \mathrm{S}$ the flux is 0.12 ± 40 percent neutrons per $\mathrm{cm}^{2} \mathrm{sec}$. This flux determination gives an absolute neutron flux a factor of 3 lower than previously reported determinations.

NIMBUS PROJECT

71,856 NIMBUS SPACECRAFT DEVELOPMENT Press, H., Michaels, J. V.
 Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 42-45, April 1963

Preliminary design of the Nimbus spacecraft was completed in 1960. The approach used in the system is described, a brief history of the development is presented, and design achievements to date are assessed in the light of the original design objectives.

71,857 NIMBUS TESTING

Butler, H. I.
Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 46-47, April 1963

The Nimbus test program will determine the ability of the spacecraft design to meet all performance requirements and demonstrate the dependability of the flight hardware. Currently in the prototype phase, the program consists of two levels of environmental tests: prototype and flight acceptance tests. Photographs of design and test models are included.

OGO PROJECT

71,858 INSIDE THE ORBITING GEOPHYSICAL OBSERVATORY
 Glaser, P. F., Spangler, E. R.
 Electronics, v. 36, no. 7, pp. 61-65, February 15, 1963

ORBITAL OBSERVATORIES

71,859 THE OBSERVATORY GENERATION OF SATELLITES
 March 1963
 National Aeronautics and Space Administration, Office of Scientific and Technical Information, Washington, D. C. SP-30

The American Astronautical Society held its second annual regional meeting as part of the 129th meeting of the American Association for the Advancement of Science in Philadelphia, Pennsylvania, December 1962. Session II of the Special Astronautics Symposium, "Scientific Satellites-Mission and Design," on December 27, 1962, was comprised of the following six papers:
"The Mission of the Orbiting Geophysical Observatories," Scull, W. E.
"The Engineering Design of the Orbiting Geophysical Observatories," Gleghorn, G. E.
"The Mission of the Advanced Orbiting Solar Observatory," Lindsay, J. C.
"One Approach to the Engineering Design of the Advanced Orbiting Solar Observatory," Cervenka, A. J.
"The Mission of the Orbiting Astronomical Observatory," Zeimer, R. R., Kupperian, J. E., Jr.
"The Engineering Design of the Orbiting Astronomical Observatory," Scott, W. H.

[^14]Helios, which is an advanced orbiting solar observatory scheduled for launching in 1966, will be designed to have a pointing accuracy of 5 sec of arc and 70-percent over-all system reliability. Phenomena which might be studied by Helios are listed and design objectives are outlined; block diagrams and illustrations are included. Some of the results obtained to date from the OSO-1 are given.

ORBITS

71,861 ORBITS RETURNING FROM THE MOON TO A SPECIFIED GEOGRAPHIC LANDING AREA Cicolani, L. S.
 April 1963
 National Aeronautics and Space Administration, Washington, D. C.
 TN D-1652

This paper develops a method of computing approximate trajectories returning from the Moon to a fixed landing site. The gravitational field of a spherical Earth is assumed to govern orbital motion and the entry phase of the trajectories is described by a linear relation between entry range and flight time in the atmosphere. As an example, data were computed for trajectories returning to Edwards Air Force Base during the month of February 1966 and an analysis of these data is presented.

71,862 THE CRITICAL INCLINATION PROBLEM IN SATELLITE ORBIT THEORY
 Mersman, W. A.
 1962
 National Aeronautics and Space Administration, Washington, D. C.
 TR R-148

Solutions of the satellite orbit problem are obtained that do not exhibit singularities at the critical inclination angle. Series representations are obtained, their regions of convergence are exhibited, and quantitative measures of their speeds of convergence are provided for use in numerical computations.

71,863 ON THE USE OF INTERPLANETARY PROBE ORBITS OF PERIODS COMMENSURABLE WITH ONE YEAR Roy, A. E.
 Astronautica Acta, v. 9, no. 1, pp. 31-46, 1963

The problem of placing vehicles into interplanetary orbits of periods that are fractions or multiples of one year is discussed. Two missions-an eccentric orbit in the ecliptic and a circular orbit at an inclination to the ecliptic-are studied. It is shown that such missions are practical using present day rockets and guidance techniques and have a number of advantages over interplanetary orbits of periods noncommensurable with one year.

PHYSIOLOGY

71,864 RECENTI RICERCHE IN ITALIA NEL CAMPO della medicina aeronautica e spaziale (RECENT ADVANCES IN ITALY IN THE FIELD OF AEROSPACE MEDICINE)
 Lomonaco, T.
 Rivista di Medicina Aeronautica e Spaziale, v. 26, no. 1, pp. 5-25, January-March 1963

The research being conducted in Italy is surveyed, with special emphasis on experiments carried out at the Aerospace Medical Center in Rome. A bibliography of nearly 120 references is included.

71,865 NUOVE ACQUISIZIONI DI FISIOLOGIA E FISIOPATOLOGIA VESTIBOLARE NEL VOLO SPAZIALE (RECENT ADVANCES IN VESTIBULAR PHYSIOLOGY, AND PHYSIOPATHOLOGY OF SPACE FLIGHT)
 Mazza, G.
 Rivista di Medicina Aeronautica e Spaziale, v. 26, no. 1, pp. 99-136, January-March 1963

The several functions of the inner ear are reviewed, and the reactions of this organ to various degrees of acceleration are described. In relation to the effects of weightlessness, the neurovegetative syndrome of disorientation (satellite sickness) is considered, and an explanation of this condition from a physiological standpoint is attempted. The problem of providing an artificial gravity on prolonged flights is briefly discussed.

```
71,866 PERCEPTION OF MOTION, EQUILIBRIUM, AND
    ORIENTATION IN CONDITIONS OF ZERO
    GRAVITY (LA PERCEZIONE DEL MOTO,
    L'EQUILIBRIO E L'ORIENTAMENTO IN
    CONDIZION' DI GRAVITATIONE NULLA)
    Margaria, R., Gualtierotti, T.
    Rivista di Medicina Aeronautica e Spaziale, v. 25, no. 3,
    pp. 450-465, July-September 1962
    (Abstracted in Aerospace Medicine, v. 34, no. 3,
    pp. 276-277, March 1963)
```

The main systems controlling body sensations in space are reviewed, namely, vestibular and visual systems, and cutaneous exteroceptors. These systems all converge at the level of the cerebellar cortex which analyzes accelerations via labyrinthine connections and integrates visual, acoustic, and other data. The mechanism of action of vestibular receptors is discussed in relation to their anatomical position and to the constant stimulus of 1 g . Gravity receptors appear to follow the WeberFechner law that for a sensation to increase by equal amounts (arithmetical progression), the stimulus must increase by geometrical progression. An hypothesis is presented that under zero-g conditions responses to a given acceleration will be greater than when sense organs are already subjected to a constant stimulus of 1 g . It is also postulated that the otoliths work as a differential inertia meter. Experimental verification of these hypotheses is suggested by means of comparing-in

PHYSIOLOGY (Cont'd)

the same animal-the response to acceleration on Earth and during orbital flight.

PLANETS

71,867 CONVECTION IN PLANETARY INTERIORS Kopal, Z.
 Icarus, v. 1, no. 5-6, pp. 391-400, April 1963

An attempt is made to formulate explicitly the linearized equations safeguarding the conservation of mass, energy, and momentum of viscous flow inside a heterogeneous, compressible fluid sphere in which the coefficient of viscosity is an arbitrary function of central distance. The results are compared with those previously obtained by Chandrasekhar. An application of such equations to the problem of convection in lunar or planetary interiors is considered.

71,868 THE EQUILIBRIUM FIGURES OF THE EARTH AND THE MAJOR PLANETS
James, R., Kopal, Z.
Icarus, v. 1, no. 5-6, pp. 442-454, April 1963

The form, exterior potential, and moments of inertia of the terrestrial globe as influenced by its axial rotation are determined correctly to quantities of second order in superficial distortion, assuming the Earth to be in hydrostatic equilibrium, on the basis of both "standard" and "minimum" distribution of density inside the Earth as deduced by Bullen from seismological evidence. A similar study is presented of all consequences of the axial rotation of Jupiter and Saturn, on the basis of their models of internal structure worked out recently by de Marcus.

71,869 RADIO EMISSION FROM THE PLANETS Roberts, J. A.
 Planetary and Space Science, v. 11, no. 3, pp. 221-259, March 1963

The history and present state of knowledge of the radio emissions from planets are reviewed. The emission from each planet is discussed in order of increasing distance from the Sun. The two types of nonthermal emission received from Jupiter are discussed in detail, and the theories of origin of these emissions are reviewed.

PLASMA

[^15]A dilute ionized gas is considered for which electron-ion collisions can be neglected and which deviates from thermal equilibrium by having an ion temperature T_{i} different from the electron temperature T_{e}. These conditions apply to the ionosphere in the F layer and above. Methods are reviewed for treating statistical mechanics at thermal equilibrium and the Boltzmann equation for general problems. The electronelectron, electron-ion, and ion-ion pair correlation functions are derived for general T_{e} / T_{i} and an arbitrary time-independent magnetic field. The total cross section for scattering of an electromagnetic wave from such a gas is derived for general T_{e} / T_{i}. The results are shown to agree with the integral of the theoretical frequency spectrum derived previously by a number of authors. For long wavelength and $T_{i} / T_{e} \ll 1$ the cross section is proportional to T_{i} / T_{e}. The sources of error for an incorrect result stated by Renau are explained.

PLASMA ACCELERATORS

71,871 ELECTROSTATIC ACCELERATION OF NEUTRAL PLASMA-MOMENTUM TRANSFER THROUGH MAGNETIC FIELDS
 James, G. S., Dotson, J., Wilson, T. September 1962
 Avco Corp., Avco-Everett Research Lab., Everett, Mass. Research Report 150

Electrostatic plasma accelerators which avoid the spacecharge limitations of conventional ion rockets are described. Additional advantages for these devices include moderate requirements on magnetic field strength and on power level. In cylindrical and annular geometries, neutral plasmas can exhibit axial acceleration under the influence of externally applied axial electrostatic fields in the presence of radial magnetic fields. A critical engineering question concerns the effectiveness of the radial magnetic field in inhibiting the upstream diffusion of electrons. This diffusion is an energy loss mechanism. Both classical and anomalous (Bohm type) electron diffusion models are considered. Experiments are described which substantiate the existence of the mechanism for momentum transfer to neutral plasmas. The experiments are in approximate agreement with the anomalous (Bohm type) diffusion model and are in clear disagreement with the classical diffusion model. The engineering significance of this result and possible approaches for dealing with it are considered.

PROPULSION SYSTEMS

71,872 STATUS AND TRENDS-SPACE PROPULSION Tischler, A. O.
Mechanical Engineering, v. 85, no. 3, pp. 48-55, March 1963

Some of the engines available and in development for propulsion for space launch vehicles are listed and discussed,
including the $\mathrm{H}-1$, the $\mathrm{F}-1$, the $\mathrm{A}-3$, the $\mathrm{J}-2$, and the $\mathrm{M}-1$. The trend toward hydrogen-oxygen as a propellant for upper stages, and its value in the light of the economics of a vehicle system development are noted. Other advantages and disadvantages of hydrogen-oxygen as a propellant are discussed, followed by a similar discussion concerning solid propellants. The propulsion requirements of a typical spacecraft systemthe proposed Apollo-are examined, including the command, service, and lunar landing modules. Nuclear rockets are described and their advantages cited. Advantages and limitations of electric rockets are discussed. Several charts and illustrations are included.

71,873 SPACECRAFT PROPULSION REQUIREMENTS FOR LUNAR EXPLORATION MISSIONS
Breshears, R. R. (Jet Propulsion Laboratory, California Institute of Technology, Pasadena) Institute of the Aerospace Sciences, Inc., New York, N. Y. Paper 63-76
(Presented at the IAS 31st Annual Meeting, New York, N. Y., January 21-23, 1963)

Some of the spacecraft propulsion system requirements for lunar orbiting and landing missions are presented. Included are requirements imposed by flight path, accelerometer errors, altitude determination errors, and impulse errors. Major consideration was given to determining the effect on the spacecraft system of minimizing the propulsion system requirements. Of particular concern is minimization of the number of maneuvers, number of engines, and throttling requirements.

RADIATION

```
71,874 SUMMARY OF PRESENT KNOWLEDGE ON
    SPACE RADIATION
    Geodeke, A. D.
    February 1963
    Douglas Aircraft Co., Inc., Missile and Space Systems Div.,
    Santa Monica, Calif.
    Engineering Paper 1567
```

Present knowledge concerning the nature and properties of interplanetary plasma and of galactic, solar, and trapped radiations is discussed. Particular emphasis is placed upon solar cosmic radiation, solar flares, solar-terrestrial relationships, and time variations. Results of analyses of various events are described in the light of biological dose restrictions. Present research programs on prediction of solar cosmic rays and their time variations are also covered.

[^16]A selected list is presented of annotated references to literature regarding ionizing radiation effects on (1) photovoltaic cells, and (2) glasses of various compositions which might be considered for solar battery glass cover slides. The literature search covered the period from January 1948 to August 1961.

71,876 EFFECT OF ELECTRON IRRADIATION ON THE MECHANICAL PROPERTIES OF A COMPOSITE FOIL FOR INFLATABLE SATELLITES
 James, T. G. (NASA/Langley Research Center, Langley Field, Va.)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 260-268, Book 1
 Atomic Energy Commission, Division of Technical Information, Washington, D. C.
 TID-7652, Paper B-7

The primary effect of electron irradiation on the Echo 2 skin material is an increased brittleness which leads to an early and brittle failure in both the burst strength and ultimate strength tests. Severe surface damage, which occurs at doses on the order of $10^{17} \mathrm{e} / \mathrm{cm}^{2}$, causes mechanical damage to the aluminum foil portion of the skin and may lead to changes in the temperature control characteristics of the surface.

71,877 ACUTE EFFECTS OF RADIATION EXPOSURE IN MAN
 Nickson, J. J. (Memorial Hospital \& Sloan Kettering Institute, New York, N. Y.)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 269-274, Book I
 Atomic Energy Commission, Division of Technical Information, Washington, D. C.
 TID-7652, Paper C-1

The data discussed are derived primarily from observations of radiation exposure in man. The events described take place less than three months after the onset of the exposure. The data arise from three sorts of observation: (1) those on patients who receive total body radiation in an attempt to ameliorate some ailment, (2) accounts of nuclear accidents involving reactors, and (3) the consequences of exposure to the events after the use or testing of nuclear devices.

71,878 EFFECTS OF ACUTE RADIATION EXPOSURE ON HUMAN PERFORMANCE
 Payne, R. B. (Air Force School of Aerospace Medicine, Austin, Texas)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 343-374, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper C-5

In an effort to ascertain the effects of acute radiation exposure on human performance, three well-known perceptual-

RADIATION (Cont'd)

motor tasks were given to a group of male adult volunteers, from 19 to 76 years of age, who were usually in advanced stages of neoplastic disease not correctible by surgical intervention or localized radiation therapy. Results are given in charts and tables. Except for the curvature aspect of the 10 day performance sequence for complex coordination, the two studies show no dependable evidence that exposure to ionizing radiation affected the variables measured. Infra-human primate studies are discussed, and 55 references are included.

71,879 SECONDARY-PARTICLE DOSE CONTRIBUTIONS INDUCED BY SOLAR PROTON RADIATION Wilson, R. K., Miller, R. A. (General Dynamics/Fort Worth, Texas)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 595-607, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper D-5

A study was made to determine the biological hazard due to secondary radiation components produced in bulk shielding by high-energy extraterrestrial protons. An idealized shield system-spherical-shell shield with a differential-volume watertarget at the center-was chosen for the study. A comparison was made of the physical dose due to primary protons penetrating the shield and the secondaries produced in the shield. It was found that (1) shield-target geometry and target model greatly influence the ratio of primary proton-to-secondary component dose, and (2) secondaries may well be important for shield thicknesses greater than about $10 \mathrm{gm} / \mathrm{cm}^{2}$ in the case of an aluminum shield and a solar-flare proton spectrum.

71,880 SPACE PROTON DOSES AT POINTS WITHIN THE HUMAN BODY
 Dye, D. L. (The Boeing Co., Seattle, Wash.)
 In "Proceedings of the Symposium on the Protection
 Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 633-661, Book 2
 Atomic Energy Commission, Division of Technical Information, Washington, D. C.
 TID-7652, Paper D-8

In a man exposed to space radiations, e.g., an astronaut, body self-shielding produces nonuniform dose distributions which depend upon external shielding configurations and the incident radiation parameters. This paper presents the doses at twelve specific points in the body of a seated man exposed to isotropic incident space protons, where the man is inside various thicknesses of external vehicle shell shielding. The body points, selected for their radiobiological interest, are in (or on) sternum, chest skin, femur, spinal column, eye, central gut, and a series at various lateral depths on the waist. The protons reaching these specific points from all directions traverse tissue thicknesses that were determined from scale
drawings of a statistically standard man (75-percentile). The proton penetration, secondary radiation generation, and total dose delivered to each specific body point were calculated using an IBM (Fortran) computer code.

71,881 A CALCULATIONAL PROCEDURE FOR ESTIMATING SPACE RADIATION EXPOSURE DURING LUNAR MISSIONS
 Miller, R. A., Cranford, W. (General Dynamics/Fort Worth, Texas)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 739-759, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper E-7

In the effort to determine shielding requirements for the protection of man from the hazards of space radiation, a space trajectory radiation exposure procedure (STREP) has been developed to estimate the magnitude of this radiation hazard by calculating the time-integrated spectra incident on a vehicle on a simulated trajectory during missions in cislunar space. STREP will calculate the dose received from radiation penetrating a thin shield. The trajectory and radiation computational techniques are briefly described. Some results are given for calculations of the integrated spectra and dose incident on a vehicle subjected to trapped radiation, cosmic radiation, and solar-flare radiation during a lunar mission of about seven days.

71,882 RADIATION DOSAGES FROM ELECTRONS AND BREMSSTRAHLUNG IN THE VAN ALLEN BELTS
 Russak, S. L. (Martin-Marietta Corp., Baltimore, Md.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 760-772, Book 2
 Atomic Energy Commission, Division of Technical Information, Washington, D. C.
 TID-7652, Paper E-8

Radiation dose rates have been calculated for six electron spectra. The decrease in dose rate with shielding was determined, and in each case the electron dose becomes insignificant with 2 to $6 \mathrm{gm} / \mathrm{cm}^{2}$ of aluminum. Electron bremsstrahlung dose rates versus absorber thickness were also calculated. Detailed dosage calculations for an Apollo-type spacecraft were made and mission dosages for four lunar trajectories are given to show the effects of trajectory selection. These are compared with the dosages from protons and secondary neutrons in the Van Allen belt. Doses as a function of orbital altitude, inclination and absorber thickness are also presented for the latest version of the inner belt.

[^17]
71,884 SPACE FLIGHTS AND THE RADIATION HAZARD (KOSMICHESKIE POLETY I RADIATSIONNAIA OPASTNOST)
 Savenko, I. A., Pisarenko, N. F., Shavrin, P. I.
 Priroda, Moskva, no. 2, pp. 40-48, February 1962
 (Abstracted in Aerospace Medicine, v. 34, no. 3, p. 280, March 1963)

The following topics are discussed: (1) measurement of radiation dosage in rads, (2) cosmic radiation at the Earth's surface and at low altitudes, (3) the effect of solar radiation on primary cosmic radiation, (4) the radiation belts of Earth, (5) radiation from solar flares, and (6) radiation measurements made on board the second and third Soviet satellites in August and December 1960. The maximum permissible dose in the USSR for individuals working with radioactive materials and innozing radiation sources is $0.1 \mathrm{rem} /$ working week. In 1959, a period of intense solar activity, the magnitude of the flux of primary radiation particles in space was established as 2 particles $/ \mathrm{cm}^{2} / \mathrm{sec}$ behind a $1 \mathrm{~g} / \mathrm{cm}^{2}$ thick shield, resulting in $15 \mathrm{mrad} / 24 \mathrm{hr}$. A third radiation belt was discovered approximately 50,000 to $60,000 \mathrm{~km}$ from the Earth's center, but because of the low energy of its particles (a few hundred ev) it does not constitute a radiation hazard. Shielding provides sufficient protection from the outer radiation belt, but is not adequate for protection from the inner radiation belt; therefore, this zone should be avoided. The main radiation hazard, however, is from the infrequent solar flares. A special well-shielded cabin should be provided for retreat during a flare, or it should be possible to terminate the space flight in time to avoid the flare.

71,885 SPACE RADIATION GUIDE

Saylor, W. P., Winer, D. E., Eiwen, C. J., Carriker, A. W. (American Machine and Foundry Co., Alexandria, Va.) August 1962
Aerospace Medical Research Labs. (6570th), Aerospace
Medical Div., Wright-Patterson AFB, Ohio
AMRL-TDR-62-86
(Abstracted in Aerospace Medicine, v. 34, no. 3, p. 279, March 1963)

The Space Radiation Guide is intended to be a reliable, easily understood handbook that will provide sufficient knowledge of the nature of space radiations to permit comprehension of the total space radiation problem as it pertains to the hazards of manned space flight. The guide is not intended to provide answers to all problems, but to present much of the factual data currently known and to indicate areas where information is sketchy and inconclusive. The radiations considered are cosmic rays, solar radiation, and the geomagnetically trapped (Van Allen) radiations. Included are chapters on instruments used for measuring these radiations, on shielding techniques, and on biological effects. A total of 34 references is included.

RADIATION BELTS

71,886 RADIO MEASUREMENTS OF A MANMADE RADIATION BELT
National Bureau of Standards, Technical News Bulletin, v. 47, no. 3, pp. 38-39, March 1963

In cooperation with the Geophysical Institute of Peru, the NBS Observatory at Jicamarca has made a series of measurements of the synchrotron radiation emitted by the man-made belt of high energy electrons formed by a high altitude nuclear detonation. From these measurements, made at 30 to 50 Mc , the number, energy spectrum, and decay rate of the electron have been derived.

RADIO ASTRONOMY

71,887 BIBLIOGRAPHY ON ATMOSPHERIC ASPECTS OF RADIO ASTRONOMY INCLUDING SELECTED REFERENCES TO RELATED FIELDS Nupen, W.
 May 1, 1963
 National Bureau of Standards, Boulder Labs., Colo. Technical Note 171

This bibliography contains over a thousand abstracts or titles from literature published between 1900 and 1961, inclusive; however, the bulk of the literature follows the discovery (Jansky, 1932) of radio-frequency radiation from the Sun, and especially the building of radio telescopes since World War II. Subject matter is confined to (1) the effects of the Earth's atmosphere on radio-frequency radiation from the Sun, planets, stars, the galaxies and intergalactic space, or (2) knowledge of atmospheric or ionospheric structure, composition, or physics.

RADIO TELESCOPES

71,888 RADIO TELESCOPE STRUCTURES

 Feld, J.Annals of the New York Academy of Sciences, v. 93, Article 10, pp. 351-456, May 31, 1962

The new radio astronomy technique, its purposes, and some of the announced results are explained as a background to discussion of the radio telescope itself. Loading criteria which must be taken as the basis of structural design are discussed, and differences in approach from normal structural design are noted. Feasibility studies of large telescopes are reported, and the design procedure for a $600-\mathrm{ft}$ parabaloid dish is given. Actual constructions in England, The Netherlands, Germany, USSR, and Australia are described. Comparative studies and design of the $140-\mathrm{ft}$ telescope of the Associated Universities, Inc., are reported, and fixed-shell radio telescopes now in use in the U.S. are described. Forty-six pages of illustrations and diagrams are included.

RE-ENTRY TRAJECTORIES

71,889 BIOSATELLITE RECOVERY FROM CIRCULAR ORBITS
 Swet, C. J.
 October 1962
 Johns Hopkins University, Applied Physics Lab., Silver Spring, Md. CM-1026

This report is a primer for the nonballistician who is concerned with the design or selection of biospace experiments, and provides him with some feeling for the ballistics of biosatellite recovery. Some results of a recent parametric study of a wide variety of likely descent trajectories from near-Earth orbits are presented in nonspecialized terms. Although computed by approximate methods, these results are believed to be sufficiently accurate for most planning purposes. No attempt is made to describe the computational methods or the underlying physics.

RE-ENTRY VEHICLES

71,890 OPTIMIZATION OF LIFTING RE-ENTRY VEHICLES
 Hankey, W. L., Jr.
 March 1963
 Aeronautical Systems Division, Wright-Patterson AFB,
 Ohio
 ASD TDR-62-1102

Aerodynamic lift is used during re-entry to provide range maneuverability so that a precise site can be selected and a horizontal landing capability provided. Maximum maneuverability may be achieved by modulating the hypersonic lift-todrag ratio (L / D). In this study the lifting re-entry configuration was optimized to maximize hypersonic L/D within the heating, stability, and landing constraints. A flat bottom surface, clipped delta planform with a 0.32 taper ratio, dorsal delta fins, and elliptical (2:1) nose and leading edges were ascertained to produce maximum hypersonic L / D for the prescribed constraints.

RELATIVITY THEORY

```
71,891 GRAVITATIONAL ENERGY RADIATION
    M\philler, C.
    Physics Letters, v. 3, no. 7, pp. 329-331,
    February 15, }196
71,892 ON THE INVARIANT SPATIAL DISTANCE IN A
    CURVED SPACE-TIME WITH SPHERICAL
    SYMMETRY. II-THE PROBLEM OF THE
    ALLOWABLE MEAN VALUE FOR THE DISTANCES
    AMONG SEVERAL OBSERVERS
    Nariai, H., Ueno, Y.
    Progress of Theoretical Physics, v. 27, no. 4, pp. 707-731,
    April }196
```

An attempt is made to study in detail the problem of the allowable mean value for the invariant spatial distances among several observers in a certain class of the space-time with spherical symmetry. It is found that, except in a few cases, a simultaneous determination can be made of the functional form of the allowable mean value and the metric tensor for the space time under consideration. The results thus obtained are applied to various space-times present in cosmology.

RENDEZVOUS ORBITS

71,893 A PARAMETRIC INVESTIGATION OF THE LUNAR-ORBIT-RENDEZVOUS SCHEME Thomas, D. F., Bird, J. D. April 1963
 National Aeronautics and Space Administration, Washington, D. C.
 TN D-1623

This study was made for various crew sizes, transported weights, lunar-orbit altitudes, types of lunar orbits, and fuels. The results indicate a substantial saving in initial vehicle weight for the lunar-orbital-rendezvous mission as compared with the direct lunar mission for all conditions studied. Also, entry into an elliptic lunar orbit at perilune presents a saving in initial vehicle weight when compared with circular lunar orbits and elliptic lunar orbits entered at apolune with each of the three orbits having the same maximum altitude.

SATELLITES

71,894 SCIENTIFIC SATELLITES, AN ASTIA REPORT BIBLIOGRAPHY Bjorge, S . December 1962
 Armed Services Technical Information Agency, Arlington, Va. ASTIA AD-290,800

This select bibliography covers the design and instrumentation of scientific satellites, properties of the ionosphere derived from satellite research, and meteorological satellites. It was prepared for members attending the Scientific Satellite Symposia sponsored by the American Astronautical Society on December 27, 1962.

71,895 BRIEF DATA ON SOVIET ARTIFICIAL EARTH SATELLITES, SATELLITE-SPACESHIPS, AND SPACE ROCKETS
 Artificial Earth Satellites, v. 12, pp. 3-6, March 1963

[^18]As a portion of the Advent Communications Satellite Program, the General Electric Co.'s Missile and Space Division has developed an approach for assuring long life to nonmaintainable space vehicles, which is based on strength degradation theories and the utilization of design standards, part specifications, and design data sheets. Particular emphasis is placed on methods for evaluating long-life capabilities and the development of screening tests. Analysis of results of tests completed on commercial and MIL specification resistors, capacitors, and semiconductors indicates that (1) physical laws exist in nature which quantitatively define irreversible strength degradation processes for electronic parts; (2) a mathematical relation exists between progressive stress and constant stress test results on like parts; (3) the application of selected screening tests such as current noise, thermal resistance, X-ray, proof tests, etc., on a 100 -percent basis will identify and eliminate potentially short-lived parts; and (4) the theoretical failure distribution which best fits life data, specifically capacitors, is the Weibull with a shape parameter, β, less than 1. Data from tests and investigations of materials and electromechanical parts normally found in spacecraft design are also discussed.

71,897 SATELLITE SITUATION REPORT, VOLUME 3, NO. 6
 March 13, 1963
 National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Md. X-533-63-1

Tables of data on the status of satellites which were computed and compiled by the Goddard Space Flight Center, Norad, and the Smithsonian Astrophysical Observatory are given.

SATURN

71,898 ON THE OBSERVATION OF THE OCCULTATION OF STARS BY SATURN'S RINGS
 Bobrov, M. S.
 Soviet Astronomy-AJ, v. 6, no. 4, pp. 525-531, January-February 1963

Observations of the occultation of stars by Saturn's rings can be used to obtain the following important parameters and data: (1) the optical thickness τ_{0} of the rings as a function of the distance to the center of the planet; (2) the dimensions of the rings; (3) the position, width, and optical thickness of the divisions; (4) the influence of ring matter on the diffraction pattern and the spectra of the occulted stars; (5) the presence or absence of rarefied matter beyond the visible region of the rings; and (6) the variations of the parameters and structure with time. Available observations of occultations are discussed, and recommendations for future observations made.

SATURN PROJECT

71,899 RESULTS OF NASA-LVO SOUND PRESSURE LEVEL MEASUREMENTS DURING SA-3 LAUNCH Byrne, F., Crowell, J. March 7, 1963
 George C. Marshall Space Flight Center, Huntsville, Ala. MTP-LVO-63-4

Sound pressure level data recorded during the launch and flight of the Saturn 3 on November 16, 1962 are presented. The instrumentation systems, measurement locations, systems calibration, and the data reduction system utilized in the recording and/or reduction of the acoustic data are described. The acoustic data presented were reduced primarily from the thirty measurements taken by the Launch Vehicle Operations Division, Marshall Space Flight Center, Cape Canaveral, Florida, and represent the Division's contribution to the Saturn Environmental Measurement Program. This program is a combined effort by several groups to define the induced environment experienced by the vehicle, the ground support equipment and facilities, and the neighboring populated areas during the launch and flight of Saturn vehicles. The acoustic data are shown in both tabular and graphical forms.

71,900 SATURN ASCENDING PHASE GUIDANCE AND CONTROL TECHNIQUES
Moore, F. B., Brooks, M. (NASA/George C. Marshall
Space Flight Center, Huntsville, Ala.)
American Rocket Society, Inc., New York, N. Y. 2458-62
(Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

The Saturn guidance and control concept must be sufficiently broad to accommodate a variety of vehicle configurations and engine specifications, coupled with a large assortment of mission objectives and flight paths. The Adaptive Guidance Mode, the guidance concept under development at the Marshall Space Flight Center, meets these requirements. This mode functions by accepting the present vehicle flight variables and engine parameters as initial conditions and defining the optimum path ahead which meets the mission requirements. This information is supplied in the form of attitude and cutoff commands.

SELENOCENTRIC ORBITS

71,901 ON A MODIFICATION OF HANSEN'S LUNAR THEORY
 Musen, \mathbf{P}.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1439-1456, March 1, 1963

A modification of Hansen's lunar theory is given in a form that permits a purely numerical treatment of solar perturbations of planetary satellites or of perturbations caused by the

SELENOCENTRIC ORBITS (Cont'd)

Earth in the motion of hypothetical lunar satellites. The development of the coordinates and of the velocities of a satellite is obtained in the form of a trigonometric series in four arguments with numerical coefficients. Hansen's basic W function is not used at the earlier stages of the computation. Rather than compute W, two characteristic features of Hansen's theory-the fictitious mean anomaly and the replacement "bar" operation-are used to set up a process of iteration in a convenient form. The preference given to the method of iteration was motivated by the circumstance that an input information must not necessarily be limited to the choice of the rotating ellipse as an intermediary orbit. A systematic investigation of the orbital stability of lunar satellites can be based on the development given in this article.

71,902 GEOMETRICAL CHARACTERISTICS OF LUNAR ORBITS ESTABLISHED FROM EARTH-MOON TRAJECTORIES
 Tolson, R. H.
 April 1963
 National Aeronautics and Space Administration, Washington, D. C.
 TN D-1780

An iterated two-body or patched-conic technique was used to relate the transfer-trajectory injection conditions to the selenocentric orbital parameters through a set of simultaneous transcendental equations. Solutions to these equations are presented for typical sets of injection conditions. These solutions suggest a further approximation which leads to some approximate, simple relationships between the lunar orbital parameters and the transfer-trajectory characteristics.

SELENOGRAPHY

```
71,903 PITON-A LUNAR PROTEUS
    Bartlett, J. C., Jr.
    Strolling Astronomer, The, v. 17, no. 1-2, pp. 3-12,
    January-February 1963
```

The apparent protean transformations of the lunar mountain Piton during a series of systematic observations, beginning in April 1961 and ending in October of the same year, are discussed in detail. The cause of high-Sun darkenings in the semicircular area immediately east of Piton is explored.

71,904 TOPOGRAPHY AND TECTONICS OF THE LUNAR STRAIGHT WALL
 Fielder, G.
 Planetary and Space Science, v. 11, no. 1, pp. 23-30, January 1963

The Straight Wall region of the Moon is surveyed, and the Wall is found to be a dip-slip fault with the upthrow dipping gently away from the fault. Data are drawn from (1) measurement of sumrise shadows, (2) measurement of the width
of the face of the Straight Wall at sunset, (3) photometric measurements of the slope of the country in the immediate vicinity of the Wall, and (4) photographic and visual observations. Igneous activity undoubtedly caused the dominant tectonic forces in the region.

SELENOLOGY

71,905 PROPERTIES OF THE LUNAR SURFACE AS REVEALED BY THERMAL RADIATION Muncey, R. W. Australian Journal of Physics, v. 16, no. 1, pp. 24-31, March 1963

On the assumption that the thermal properties are proportional to the temperature, the uniform lunar surface corresponding to the observed optical values is calculated. Possible mixed surfaces are also evaluated. These are examined to estimate the likely variation in microwave radiation, and by comparison with observed results it is shown that the most probable surface consists (1) partly of rock or gravel overlaid by a thin layer of fine dust, and (2) partly of areas with dust extending to beyond the depth from which the microwave radiation emanates.

SHIELDING

71,906 TECHNIQUES USED IN SHIELDING CALCULATIONS FOR HIGH-ENERGY aCCELERATORS: APPLICATIONS TO SPACE SHIELDING
 Wallace, R., Sondhaus, C. (University of California, Lawrence Radiation Lab., Berkeley)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 829-851, Book 2
 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper F-4

The secondary neutron spectrum produced inside of a thick shield is predicted. The multiplicity of cascade and evaporation secondaries, as well as subsequent moderation of the secondary spectrum, is described quantitatively. Experimental thick-target neutron yields and Monte Carlo cascade data are the bases for these estimates.

71,907 LONG RANGE NASA SHIELDING REQUIREMENTS
 Keller, J. W. (National Aeronautics and Space Administration, Washington, D. C.)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 662-681, Book 2
 Atomic Energy Commission, Division of Technical Information, Washington, D. C.
 TID-7652, Paper E.-1

In many cases future missions will present much more severe shielding problems than those encountered in Apollo,
primarily because of their longer duration in affected regions in space. Several types of future missions are discussed to establish the magnitude of the shielding problems that may exist. Available on-board mass in the form of equipment, fuel, etc., must be utilized as shielding where possible. However, high effectiveness in the utilization of such mass may be difficult. The importance of accurate determination of such effectiveness is cited, and an effort is made to outline a general approach to the space vehicle shielding problem.

71,908 MEASUREMENTS OF SECONDARY SPECTRA FROM HIGH-ENERGY NUCLEAR REACTIONS Strauch, K. (Harvard University, Cambridge, Mass.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5 7, 1962," pp. 409-432, Book 2
 Atomic Energy Commission, Division of Technical Information, Washington, D. C.
 TID-7652, Paper D-2

The mechanism of the interaction of a high-energy nucleon with a complex nucleus is discussed, and the various types of reaction are described. The available experimental data on secondary particles are summarized, with emphasis on those secondaries that might be important for shielding considerations.

```
71,909 SYNTHESIS OF MINIMUM WEIGHT PROTON SHIELDS
Krumbein, A. D., Mittelman, P. S., Troubetzkoy, E. S., Nakache, F., Celnik, J. (United Nuclear Corp., Development Div., White Plains, N. Y.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 773-793, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper E-9
```

A shield optimization technique originally developed for reactor shields has been applied to proton shields. The cases of both spherical and nonspherical shields have been studied, and the effects of certain special constraints and of secondary neutrons have been included in the analysis. The method indicates the materials which should go into making up the minimum weight shield as well as the order and the thickness of each material. The amount of weight saved is found to be a function of the radius of the shielded void and of the specified attenuation required.

[^19]Various methods of shielding are discussed which might be used instead of the standard method of interposing a substantial amount of matter between the astronaut and the radiation. The importance of such methods is directly related to the weight involved in bulk shielding. Only the radiation hazard due to high-energy protons is considered since it appears at present that such protons constitute the most important natural source of danger to the astronaut. Shielding methods discussed are electrostatic and magnetic.

71,911 COMPARISON OF MONTE CARLO AND IONIZATION CALCULATIONS FOR SPACECRAFT SHIELDING
 More, K. A., Tiffany, O. L. (The Bendix Corp., Bendix Systems Div., Ann Arbor, Mich.)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 682-697, Book 2
 Atomic Energy Commission, Division of Technical Information, Washington, D. C.
 TID.7652, Paper E-2

Various methods have been used to calculate shield designs for manned space vehicles. The methods differ in the approximations used to describe the spacecraft geometry and the physical interactions of the space particles in the vehicle shield. Since calculation time is least for the methods with the most approximations, it is desirable to know what degree of approximation is permissible in designing shields. Results of shield calculations using the Monte Carlo method are compared with those obtained using the more approximate ionization loss method.

71,912 THE COMBINATION OF ACTIVE AND PASSIVE SHIELDING
 Norwood, J. M. (General Dynamics/Fort Worth, Texas)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 819-828, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper F-3

It is conceivable that improved shielding of space vehicles against high-energy charged-particle radiation can be obtained by combining active and passive shielding. Methods of shielding calculations and some preliminary observations pertaining to active-passive shielding are given. An analysis based upon the field of a magnetic dipole indicates that weight savings in bulk shielding can be accomplished.

[^20]
SHIELDING (Cont'd)

Santoro, R. T., Scroggs, R. J., Sliski, T. F., Stripling, H. J., Zobel, W. (Oak Ridge National Lab., Tenn.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 523-594, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C.
TID-7652, Paper D-4
Preparations are described for a set of experiments designed to check space shielding calculations. Since the experiments are at an early stage, all information must be considered as preliminary. The approximate calculations of Alsmiller have been used to estimate that spectral measurements are most important for secondary neutrons, protons, and gamma rays arising from the interactions of incident protons in the energy range from 20 to 600 Mev . Both "thin" and "thick" targets are needed to check the two pertinent types of calculations-those for the prediction of cross sections and secondary spectra for intranuclear cascades, and those for transport through shields. Previous measurements exist only for thin targets, all of which are limited in energy resolution or in the range of energies and angles covered.

71,914 SHIELDING OF SPACE VEHICLES BY MAGNETIC FIELDS
Edmonson, N., Verwers, C. D., Gibbons, F. L. (General Dynamics/Fort Worth, Texas) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 808-818, Book 2
Atomic Energy Commission, Division of Technical Information, Washington, D. C.
TID-7652, Paper F-2

Protons emitted by solar flares represent a significant radiation hazard to crew members of an interplanetary space vehicle. Shielding the vehicle from charged particles by the use of magnetic fields is an obvious possibility. Reduction of secondary radiation otherwise produced in bulk shielding is an added incentive for study of magnetic shielding. In a program initiated to study various aspects of this shielding, a procedure has been formulated and coded for the IBM 7090 computer for rapidly computing the field of an optimized superconducting solenoid.

SNAP PROJECT

71,915 AUXILIARY POWER SOURCES IN SPACE: TECHNICAL DOCUMENTATION VOLUME II
 OF III (SNAP)
 July 30, 1962
 North American Aviation, Inc., Space and Information Systems Div., Downey, Calif.
 SID 62-708, Volume II

This bibliographic search surveys the literature on Systems for Nuclear Auxiliary Power (SNAP) from 1957 to July 1962, with special emphasis on space applications of these devices.

SOLAR ACTIVITY

71,916 AN ANALYSIS OF PERIODIC SOLAR ACTIVITY
 Gudzenko, L. I., Chertoprud, V. E.
 Soviet Astronomy-AJ, v. 6, no. 4, pp. 590-591, January-February 1963

A preliminary study, reported in a brief communication, has yielded empirical equations for the variations in solar activity. The equations may be useful for predicting activity and for studying physical processes on the Sun.

SOLAR CELLS

71,917 SOLAR CELL DEGRADATION BY PROTONS IN SPACE
 Madey, R. (Republic Aviation Corp., Farmingdale, N. Y.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 243-259, Book I
 Atomic Energy Commission, Division of Technical Information, Washington, D. C.
 TID-7652, Paper B-6

An analytical expression for the decrease in efficiency of a solar cell behind a protective cover glass exposed to a spectral distribution of protons is formulated on the basis that the time rate of decrease in output power is proportional to the proton dose rate absorbed at the surface of the solar cell.

71,918 N-ON-P SOLAR CELLS GAINING WIDER USE Miller, B.
 Aviation Week d Space Technology, v. 78, no. 9, pp. 88-91, March 4, 1963

Recent tests conducted by NASA indicate that productiontype n-on- p silicon solar cells of seven different solar-cell manufacturers show a factor of 10 improvement in their ability to resist degradation of $1-\mathrm{Mev}$ electrons compared with conventional p-on- n cells.

71,919 RADIATION DAMAGE TO SOLAR CELLS

Baicker, J. A., Rappaport, P. (Radio Corporation of America, RCA Labs., Princeton, N. J.)
In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 118-135, Book 1
Atomic Energy Commission, Division of Technical Information, Washington, D. C.
TID-7652, Paper B-1
The construction, operation, and performance characteristics of solar cells are described. The radiation damage process is discussed, and proton and electron damage to silicon cells
detailed. The degradation of the photovoltaic current-voltage characteristics and the spectral response is shown, and a comparison made of various types of solar cells, including silicon, gallium arsenide and cadmium sulfide. Differences between p / n and n / p silicon cells are discussed and explained in terms of basic properties of the radiation defects.

SOLAR CORONA

71,920 CORONAL TEMPERATURE GRADIENT AND THE SOLAR WIND
Billings, D. E., Lilliequist, C. G.
Astrophysical Journal, The, v. 137, no. 1, pp. 16-20, January 1963

An extremely detailed study of $\lambda 5303$ in one portion of the corona-from $20^{\circ} \mathrm{N}$ to $20^{\circ} \mathrm{S}$ of the equator on the west limb on October 13, 1959-has resulted in evidence for a negative temperature gradient in the inner corona. The significance of such a temperature gradient to solar wind theories is discussed.

71,921 CORONAL IONIZATION BY TWO-STEP COLLISION PROCESSES
 Athay, R. G., Hyder, C. L.
 Astrophysical Journal, The, v. 137, no. 1, pp. 21-25, January 1963

It is suggested that ionization by electron impact for some coronal ions may take place via the double process of collisional excitation to metastable levels, thence collisional ionization from these excited levels rather than by direct ionization from the ground state. The relative efficiency of this doublecollision process depends primarily on the mean decay lifetimes for the excited levels. A specific computation based on estimated upper limits to the mean lifetimes of excited levels in the $\mathrm{Fe} \mathrm{x}-\mathrm{Fe} \mathrm{xv}$ sequence shows a flatter spectrum of ion densities and a somewhat lower ionization temperature than is obtained from direct collisional ionization from the ground state, assuming that the abundance of Fe x equals that of Fe xiv. The two-step collision mechanism permits the possibility of a density dependence in the ionization equilibrium.

```
71,922 RADIATION TRANSFER PROBLEMS IN THE
    ROCKET ULTRA-VIOLET LINES
    Pecker, C., Thomas, R. N.
    Journal of Quantitative Spectroscopy and Radiative
    Transfer, v. 3, no. 2, pp. 163-165, April-June 1963
    (Paper presented at the Third Colloquium on the Theory
    of Stellar Atmospheres, England, August 15-16, 1962)
```

An investigation of the radiative transfer problem in the solar corona and its effect upon the excitation state of coronal ions is summarized. This investigation is one phase of a systematic treatment of the influence of ionic configuration and
physical environment upon the excitation state of an ion. A high-temperature plasma, $T_{e} \sim 10^{5}-10^{6}$, is treated, with interest lying in the radiation from an impurity in the plasma. A two-level-atom representation of the actual ionic configuration is used.

71,923 DISCUSSION OF PAPER BY L. M. NOBLE AND F. L. SCARF, "HYDRODYNAMIC MODELS OF THE SOLAR CORONA"
 Parker, E. N.
 Journal of Geophysical Research, v. 68, no. 6, p. 1769, March 15, 1963

Physical interpretations associated with Noble and Scarf's theoretical calculations of the solar corona are discussed. The original paper appeared in the Journal of Geophysical Research, v. 67, no. 12, pp. 4577-4584, November 1962, and was abstracted in the Astronautics Information Abstracts, v. 7, no. 2, February 1963. (See Entry \#70,550.)

71,924 AUTHORS' REPLY TO PRECEDING DISCUSSION Noble, L. M., Scarf, F. L.
 Journal of Geophysical Research, v. 68, no. 6, pp. 1770-1772, March 15, 1963

71,925 SOME ASSOCIATIONS BETWEEN RISING PROMINENCES AND THE SOLAR CORONA Kleczek, J., Hansen, R. T. Astronomical Society of the Pacific, Publications of the, v. 74, no. 441, pp. 507-510, December 1962

Coronal spectrograms made during the past ten years at the High Altitude Observatory of Climax, Colorado and the Sacramento Peak Observatory were studied in an attempt to find the time-dependent association between a specific kind of prominence-that rising upward from the Sun-and the corona. Photographs of three documented cases are reproduced and are discussed separately.

71,926 ON THE SPATIAL STRUCTURE OF THE SOLAR CORONA. PART II.
 Mustel, E. R.
 Soviet Astronomy-AJ, v. 6, no. 4, pp. 488-496,
 January-February 1963

The physical and geometrical properties of R-rays (coronal rays above active regions) are considered. From a large number of investigations, it is concluded that these R-rays are very long, stretching beyond the Earth's orbit, and approximately radial. Deviations from radiality are discussed. The geometrical and physical properties of streamers and R-rays are compared and shown to differ radically with respect to their most important properties. Coronal rays in the belt of active regions, but not above the active regions themselves, are considered. It is pointed out that these rays should be similar to R-rays but have a smaller gas density, and that they

SOLAR CORONA (Cont'd)

therefore cannot produce appreciable geometric disturbances. (Part I of this paper was abstracted in Astronautics Information Abstracts, v. 7, no. 3, March 1963, Entry \#70,849.)

SOLAR CORPUSCULAR RADIATION

71,927 THE SUN AS A SOURCE OF INTERPLANETARY GAS

 de Jager, C.Space Science Reviews, v. 1, no. 3, pp. 487-521, March 1963
(Paper presented at European Preparatory Commission for Space Research Symposium on The Interplanetary Medium, at Paris, France, June 19, 1962)

The quasi-stationary streaming, emerging from the solar activity region, and the flare-associated bursts of particles are discussed. The paper is divided into the following sections: the solar activity centers and the magnetic chromospheric network, quasi-stationary gas flow from the solar active regions, comparison with observations, solar flares, acceleration of particles near a flare acceleration of electrons, solar proton streams with $v \approx 1500 \mathrm{~km} / \mathrm{sec}$, relativistic particles accelerated in connection with flares, and a summary model of flare events.

71,928 SOME CONSEQUENCES OF NONUNIFORMITY OF SOLAR WIND VELOCITY
 Sarabhai, V.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1555-1557, March 1, 1963

Conditions in interplanetary space along the solar equatorial plane are examined that are likely to arise when the radial velocity of the solar wind is a function of solar longitude. Some broad consequences of the growth and decay of regions of activity and enhanced wind velocity as a function of time are also examined. It is shown that the resulting two-dimensional model has attractive features relevant to the interpretation of several observed cosmic-ray time variations.

SOLAR FLARES

71,929 COMPARISON OF PRIMARY PROTON DOSE WITH THE DOSE FROM GAMMA RAYS PRODUCED BY INELASTIC SCATTERING OF SOLAR FLARE PROTONS
Alsmiller, F. S., Alsmiller, R. G., Jr., Trubey, D. K. (Oak Ridge National Lab., Tenn.)
In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 718-724, Book 2
Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper E-5

The primary proton dose resulting from solar-flare (May 10, 1969) protons incident on an aluminum shield is compared
with the dose from gamma rays produced by inelastic collisions of the primary protons. Both spherical shell and slab shields are considered.

71,930 RECORDING THE IONISING EMISSION OF FLARES AND ERUPTIVE PROMINENCES BY THE ATMOSPHERIC RECEIVER AT THE ONDREJOV OBSERVATORY
 Krivský, L., Salava, T., Šnejdárek, I.
 Astronomical Institutes of Czechoslovakia, Bulletin of the, v. 14, no. 1, pp. 5-9, 1963

71,931 STATISTICAL PREDICTION OF SOLAR PROTON EVENTS
Weddell, J. B. (North American Aviation, Inc., Downey, Calif.)
In "Proceedings of the Symposium on the Protection
Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 88-95, Book 1
Atomic Energy Commission, Division of Technical Information, Washington, D. C.
TID-7652, Paper A-6

A method of correlating solar flares in time with several indices of activity of solar regions is described. The method determines (1) the probability of occurrence of a flare if each of two indices exceeded given limits, and (2) the average time between measurement of these indices and the outbreak of the flare. Significant correlations are listed; the most important is the tendency for major flares to occur in the second passage across the solar disk of regions exceeding 2000 millionths of the solar hemisphere in area which during their first passage gave rise to small flares. These criteria permit prediction of 69 percent of Class III flares at least 14 days in advance. Flare positions have been correlated with the magnetic field in active regions. The field near the sites of flares tends to be frozen into the solar atmosphere to a greater extent than other portions of the field.

71,932 COMMENTS ON THE PRODUCTION OF SOLAR HIGH ENERGY PARTICLES
 Chapman, M. C., Fortney, R. E., Morrison, M. R.
 (Northrop Corp., Northrop Space Labs., Hawthorne, Calif.)
 In "Proceedings of the Symposium on the Protection
 Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 96-117, Book 1
 Atomic Energy Commission, Division of Technical Information, Washington, D. C.
 TID-7652, Paper A. 7

A general qualitative model for the production of solar high-energy particles which can explain several observed flare phenomena is used in the analysis of a specific flare event. The model explains the oceurrence of solar radio emission, the initial anisotropic and later isotropic distribution of flare particles, Forbush decreases in cosmic-ray intensity, decreases in cosmic radio noise, and fluctuations in the Earth's magnetic field due to solar flare particles. Also explained qualitatively
are phenomena such as the occurrence of shock waves during flare events, observed surges in the active region, and movement of magnetic "bumps" before the start of the flare.

SOLAR MAGNETIC FIELDS

71,933 RELATION BETWEEN MOTIONS AND LOCAL MAGNETIC FIELDS IN THE PHOTOSPHERE Bumba, V.
 Astronomical Institutes of Czechoslovakia, Bulletin of the, v. 14, no. 1, pp. 1-5, 1963

An attempt is made to show that the photospheric plasma moves approximately along the lines of force of the intense local field; i.e., that the organization of the radial motions of the photospheric plasma is largely subordinated to the configuration of the local field of the sunspot group.

SOLAR POWER SUPPLIES

71,934 THE SATELLITE POWER SYSTEM

Anderson, R. E. D., Meszaros, G. W., Ciccolella, D. F. Bell Laboratories Record, v. 41, no. 4, pp. 142-150, April 1963
The development of the solar power supply used in Telstar is described. Selection of the individual type of solar cell and its integration into the complete system are covered. Highand low-power regulators, and storage batteries are also discussed along with the methods of testing the complete system.

SOLAR PROBES

71,935 VEHICLE TECHNOLOGY CONSLDERATIONS FOR A SOLAR PROBE
 Foschetti, J. A.
 April 1963
 National Aeronautics and Space Administration, Washington, D. C.
 TN D-1747

This report demonstrates that solar probes are feasible from the viewpoint of presently planned vehicle technology. For the early attempts the Saturn C-1 is considered to be the most likely vehicle to place the final stage or stages into a circular orbit. If two slightly modified but identical Centaur, Jr., vehicles are used for the upper stages, then this four-stage configuration will be capable of placing from 400 to 2500 lb at perihelion distances of 0.120 to 0.245 AU . A more reliable three-stage configuration, using one Centaur, Jr., for the upper stage but requiring greater modification in the original design of the vehicle, would place payloads of 400 to 2500 lb at perihelion distances of 0.185 to 0.290 AU. Analysis of the upper stages was based on the payload value obtained for the Saturn vehicle by using the "Generalized Powered Flight Trajectory Program." At burnout there would be a payload of $24,612 \mathrm{lb}$ in a $100-\mathrm{nm}$ parking orbit.

SOLAR PROMINENCES

71,936 PHYSICAL CONDITIONS IN LIMB FLARES AND ACTIVE PROMINENCES VI. SELECTIVE EXCITATION CONDITIONS
 Tandberg-Hanssen, E.
 Astrophysical Journal, The, v. 137, no. 1, pp. 26-37, January 1963

The complex surge prominence of November 18, 1960 is studied spectroscopically. It is shown that the surge consists of different regions where the physical conditions (temperature and/or internal motions) differ from one region to another. The metal and helium regions are shot out from an underlying flare in different directions. The emission from Fe II is considerably fainter than that from $\mathrm{Ti}_{\text {II }}$ or Ba II.

A finer spectroscopic classification of flares and prominences than that previously introduced is discussed. It is found, as a general rule, that while Ti in lines are stronger than Fe ir lines in prominences, the reverse holds true in flares. As a new classification criterion, the line-intensity ratio $M=\left[I\left(\mathrm{Fe}_{\mathrm{II}}, 4584\right) / I(\mathrm{Ti}\right.$ ir, 4572 $\left.)\right]$ is introduced.

71,937 HYDROGEN LINES IN THE SPECTRA OF PROMINENCES
 Sobolev, V. V.
 Soviet Astronomy-AJ, v. 6, no. 4, pp. 497-503, January-February 1963

Equations which simultaneously determine the intensities and profiles of the Balmer emission lines are obtained. The prominence is assumed to be a homogeneous sphere, the optical radius of which in the Balmer lines can be greater than unity. The equations are solved numerically for two particular cases and the relative intensities and profiles of the H_{α}, H_{β}, and H_{γ} lines are found. It is shown that the theory is in satisfactory agreement with observations. From a comparison of the theory with the observations of one prominence, its optical radius (of the order of 10) and the mean velocity of random motions of hydrogen atoms (about $11 \mathrm{~km} / \mathrm{sec}$) are determined.

SOLAR RADIATION

71,938 THE MEASUREMENT OF FAR ULTRAVIOLET HELIUM RADIATION ON THE SUN
 Bruns, A. V., Prokofev, V. K.
 Matthews, R., Translator
 Planetary and Space Science, v. 11, no. 1, pp. 73-80, January 1963
 (Translated from Iskusstvennye Sputniki Zemli, no. 11, p. 15, 1961)

Measurements of the solar radiation in the $\mathrm{He}^{\mathrm{II}} \lambda 303.8 \AA$ line are presented which were carried out on December 1 and 2, 1960 employing a photoelectric diffraction spectrometer installed on Sputnik 6. These measurements were carried out only in the range of visibility of the Sun, and the

SOLAR RADIATION (Cont'd)

resulting data stored in the memory and later transmitted to Earth. The analysis of these measurements is described. Charts and tables are included.

SOLAR RADIO EMISSION

71,939 SOLAR DECIMETRE RADIO BURSTS
Mullaly, R. F., Krishnan, T.
Australian Journal of Physics, v. 16, no. 1, pp. 8-23, March 1963

Results are presented of observations at 1420 Mc of about 50 burst events made during 1958-1961 using the Christiansen grating interferometer which operated, on most occasions, to provide a fan beam with 2^{\prime} of arc resolution to half-power points in the E-W direction. The aim of the study is to determine typical physical characteristics of the decimeter burst sources-their sizes, positions, brightness temperatures, and movements. These results have bearing on both the physical nature of the burst sources and on questions of the possible classification of microwave bursts into distinct types.

```
71,940 UNUSUAL DECREASE OF SOLAR RADIO EMISSION ON 56 cm WAVELENGTH DURING FLARE ON MAY 13, 1960
Tlamicha, A.
Astronomical Institutes of Czechoslovakia, Bulletin of the, v. 14, no. 1, p. 24, 1963
```


71,941 OBSERVATIONS OF THE SOLAR EMISSION ON METER WAVELENGTHS DURING THE TOTAL SOLAR ECLIPSE OF FEBRUARY 15, 1961 Alekseev, Yu. I., Babii, V. I., Vitkevich, V. V., Gorelova, M. V., Sukhovei, A. G.
 Soviet Astronomy-AJ, v. 6, no. 4, pp. 504-510, January-February 1963

The multichannel radio spectrograph of the Crimean Research station has been recently modified and its wavelength range extended to cover a 40 - to $150-\mathrm{Mc}$ range which is divided into four subranges. Results of observations of solar radio emission in the 1.5 - to $4-\mathrm{m}$ range during the total solar eclipse of February 15, 1961 for the frequencies 70 to 207 Mc , and data on residual intensities, effective radio diameters, and solar intensity on the day of observations are given.

71,942 CATALOG OF TYPE II (SLOW-DRIFT) AND TYPE IV (CONTINUUM) SOLAR RADIO BURSTS Maxwell, A., Hughes, M. P., Thompson, A. R. Journal of Geophysical Research, v. 68, no. 5, pp. 1347-1354, March 1, 1963

Complete lists are given of solar radio bursts of spectral types II (slow-drift) and IV (continuum) recorded at Fort Davis, Texas, over a five-year period beginning January 1 ,
1957. These radio bursts are generally accompanied by flares of considerable importance and often precede large-scale geophysical phenomena.

SOLAR SPECTRUM

71,943 INFLUENCE DES ECARTS A L'EQUILIBRE THERMODYNAMIQUE LOCAL DE L'HYDROGENE SUR LE SPECTRE CONTINU DU SOLEIL ET DES ETOILES (INFLUENCE OF VARIATIONS IN THE LOCAL THERMODYNAMIC EQUILIBRIUM OF HYDROGEN ON THE CONTINUOUS SPECTRA OF THE SUN AND STARS) Journal of Quantitative Spectroscopy and Radiative Transfer, v. 3, no. 2, pp. 129-132, April-June 1963 (Paper presented at the Third Colloquium on the Theory of Stellar Atmospheres, England, August 15-16, 1962)

71,944 FIRST RESULTS OBTAINED WITH THE DOUBLE PASS SOLAR SPECTROGRAPH AT THE JUNGFRAUJOCH, SWITZERLAND
Delbouille, L., Neven, L., Roland, G.
Journal of Quantitative Spectroscopy and Radiative Transfer, v. 3, no. 2, pp. 189-193, April-June 1963 (Paper presented at the Third Colloquium on the Theory of Stellar Atmospheres, England, August 15-16, 1962)

SPACE SUITS

71,945 A THERMAL PROTECTION SYSTEM FOR EXTRA-VEHICULAR SPACE SUITS
Whisenhunt, G. B., Knezek, R. A. (Chance Vought Corp., Dallas, Texas)
American Rocket Society, Inc., New York, N. Y. 2472-62
(Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

A pressure suit system is described that will provide (1) thermal protection for a worker performing tasks outside a space vehicle, and (2) emergency pressurization within the vehicle.

SPACE VEHICLES

71,946 PROBLEMS IN THE DESIGN OF UNMANNED
SPACECRAFT FOR PLANETARY AND INTER-
PLANETARY EXPLORATION
Miles, J. R., Sr. (National Aeronautics and Space
Administration, Washington, D. C.)
Institute of the Aerospace Sciences, Inc., New York, N. Y.
Paper 63-36
(Presented at the IAS 31st Annual Meeting, New York,
N. Y., January 21-23, 1963)

Problems are discussed that will be encountered in the design of spacecraft hardware for unmanned planetary and interplanetary missions for gathering scientific information
about planets, other deep space bodies, and the interplanetary medium. Topics mentioned include: biological sterilization and its effects upon spacecraft hardware; midcourse maneuvers; capsule ejection; entry, landing, and deployment; power requirements; thermal control; and communications.

71,947 THEORETICAL STABILITY ANALYSIS OF SKIDROCKER LANDINGS OF SPACE VEHICLES
 Fralich, R. W., Kruszewski, E. T.
 April 1963
 National Aeronautics and Space Administration, Washington, D. C.
 TN D-1625

The governing equations for an arbitrary rigid body sliding on a landing surface are used to derive a stability criterion which relates the critical values of initial velocities to the coefficient of friction, center-of-gravity location, and initial angle of contact. A numerical application of the stability criterion is made for a vehicle used in an experimental investigation.

SPECTRAL ANALYSIS

71,948 INTENSITIES OF WEAK LINES AT THE SOLAR LIMB
 Houtgast, J., Koelbloed, D.
 Journal of Quantitative Spectroscopy and Radiative
 Transfer, v. 3, no. 2, pp. 173-179, April-June 1963
 (Paper presented at the Third Colloquium on the Theory of Stellar Atmospheres, England, August 15-16, 1962)

A spectral analysis of the intensities of weak lines in the Fraunhofer spectrum of the Sun's limb and in the emission spectrum of the low chromosphere is discussed. The absolute intensities presented are integrated ones, as observed with a slitless spectrograph, and refer to the radiation from a slice of $1-\mathrm{cm}$ width, through photosphere and chromosphere, parallel to the dispersion in the spectrum, extending outward from the level where the Moon's limb is projected, expressed in 10^{14} $\mathrm{erg} / \mathrm{sec} / \mathrm{ster} / \AA$.

71,949 PHASE CURVES AND ALBEDOS OF TERRESTRIAL PLANETS
 de Vaucouleurs, G.
 June 1961
 Geophysics Corp. of America, Bedford, Mass.
 GCA TR-61-26-A
 ASTIA AD-261,165

This study was undertaken as part of an investigation of navigation within the solar system by optical means. The objective of the investigations was to evaluate the suitability of various physical phenomena as sources of navigational information and to estimate the accuracy of navigational infor-
mation obtained by various techniques. Ten figures and seven tables are included.

71,950 COMMENT ON EMPIRICAL INFERENCE OF DOPPLER WIDTHS
 Thomas, R. N.
 Astrophysical Journal, The, v. 137, no. 1, pp. 38-40, January 1963

The region of validity of Athay's suggested method for isolating the effect of a wholly random, microscopic, depthindependent velocity field in strong Fraunhofer lines is investigated. The applicability of this method to several classes of solar lines is presented.

SPECTROSCOPES

71,951 A SPECTROMETER FOR THE MEASUREMENT OF SOLAR RADIATION IN THE REMOTE ULTRAVIOLET
 Bruns, A. V., Prokofev, V. K.
 Cleaves, H. F., Translator
 Planetary and Space Science, v. 11, no. 1, pp. 81-86, January 1963
 (Translated from Iskusstvennye Sputniki Zemli, no. 11, p. 23, 1961)

The two-channel diffraction spectrometer (installed on Sputnik 6) which was used to carry out investigations in the region of the remote ultraviolet radiation of the Sun outside the atmosphere is described. Several illustrations and charts are included.

71,952 A ROCKET-BORNE HELIUM MASS SPECTROMETER Sauermann, G., Herzog, R. November 1961 Geophysics Corp. of America, Bedford, Mass. GCA TR-61-8-N

The special design, construction, and test performance of a prototype rocket-borne mass spectrometer capable of measuring the helium-partial-density profile in the Earth's atmosphere up to satellite heights are described in detail. To check the possibility of detecting the helium in normal air, a feasibility study was first carried out on a workbench test model. The results of these experiments which led to the design of the rocket-borne prototype are given.

STRATOSCOPE 2

71,953 AIMING A 3-TON TELESCOPE HANGING FROM BALLOON Schlesinger, E. R. Electronics, v. 36, no. 6, pp. 47-51, February 8, 1963

The guidance command and the telemetry subsystems for the Stratoscope 2 are described in detail.

SUN

71,954 THE EARLY EVOLUTION OF THE SUN

Ezer, D., Cameron, A. G. W.
Icarus, v. 1, no. 5-6, pp. 422-441, April 1963
Hayashi has predicted that the early contracting Sun should be highly luminous and fully convective if a correct choice of the photospheric boundary condition is made in constructing solar models in the contracting stages. These predictions are investigated. The results presented are preliminary in the sense that isolated solar models have been calculated rather than evolutionary sequences of models. No nuclear energy generation has been included, so that the luminosity derives entirely from the release of gravitational potential energy. An assumption is made regarding the distribution of this energy source. All models are assumed to be in homologous contraction so that the relative structure would not change in an infinitesimal contraction.

71,955 INVESTIGATIONS OF THE SUN'S X-RADIATION -II MEASUREMENTS WITH SPaCE SATELLITES Mandelshtam, S. L., Tindo, I. P., Voronko, Yu. K., Vasilyev, B. N., Shurygin, A. I. Daisley, R. E., Translator
 Planetary and Space Science, v. 11, no. 1, pp. 61-71, January 1963
 (Translated from Iskusstvennye Sputniki Zemli, no. 11, p. 3, 1961)

The results are reported of measurements of the Sun's Xradiation intensity at wavelengths less than $10 \AA$ on August 19 and 20 and December 1 and 2, 1960 during the flights of the second and third USSR satellites. The purpose of the measurements was to study the intensity of radiation over an extended period. A number of charts, maps, and drawings are included. (Part I of this article was abstracted in Astronautics Information Abstracts, v. 7, no. 3, March 1963, Entry \#70,929.)

71,956 SOLAR NEUTRINO FLUX

Bahcall, J. N., Fowler, W. A., Iben, I., Jr., Sears, R. L. Astrophysical Journal, The, v. 137, no. 1, pp. 344-345, January 1963

A detailed calculation of the expected B^{8} solar neutrino flux has been made, using recently obtained accurate values for the Be^{7} electron-capture cross section and the Be^{7} formation cross section.

SUN TRACKING SYSTEMS

71,957 A SOLAR TRACKING HEAD
Vasilev, I. G., Shapov, A. I.
Cornish, J., Translator
Planetary and Space Science, v. 11, no. 1, pp. 93-98, January 1963
(Translated from Iskusstvennye Sputniki Zemli, no. 11, p. 87, 1961)

The tracking head described is intended to work in combination with a diffraction spectrometer for measuring solar radiation in the far ultraviolet. The task of this head is to direct the beam of solar rays reflected by a mirror into the slit of the spectrometer when the spectrometer is in various positions. Diagrams and a photograph of the tracking head are included.

SUNSPOTS

71,958 ENERGY TRANSPORT IN A SUNSPOT de Jager, C.

Journal of Quantitative Spectroscopy and Radiative Transfer, v. 3, no. 2, pp. 181-184, April-June 1963
(Paper presented at the Third Colloquium on the Theory of Stellar Atmospheres, England, August 15-16, 1962)
The process of the inhibition of the convective energy transport which may cause the darkness in sunspots is discussed.

```
71,959 DIRECT OBSERVATIONAL EVIDENCE FOR A SMALL VALUE OF THE TURBULENCE IN SUNSPOT UMBRAE
Elste, G.
Journal of Quantitative Spectroscopy and Radiative Transfer, v. 3, no. 2, p. 185, April-June 1963
(Paper presented at the Third Colloquium on the Theory of Stellar Atmospheres, England, August 15-16, 1962)
```

71,960 DIFFICULTIES IN THE EXPLANATION OF THE WINGS OF THE BALMER LINES IN SUNSPOT UMBRAE
Elste, G.
Journal of Quantitative Spectroscopy and Radiative Transfer, v. 3, no. 2, pp. 187-188, April-June 1963 (Paper presented at the Third Colloquium on the Theory of Stellar Atmospheres, England, August 15-16, 1962)

71,961 THE ACTIVATION OF A DARK FILAMENT Venugopal, V. R., Alvi, H.
 Astronomical Society of the Pacific, Publications of the, v. 74, no. 441, pp. 529-532, December 1962

Spectrohelioscopic observation from November 12 to 16, 1957, of the solar disk at Nizamiah Observatory, India, reveals the activation and movement of a quiescent dark filament which originated in the vicinity of a group of sunspots and, having moved across the solar disk, was last observed on the limb as a prominence. A connection between spot groups and the disintegration of filaments is noted.

71,962 THE SUNSPOT AREAS AND THE WOLF NUMBERS. A STUDY OF THE ANALYTICAL RELATIONS GIVEN BY J. Xanthakis and J. MERgEntaler Xanthakis, J., Banos, G.
1962
Academy of Athens, Research and Computing Center, Greece
Series I (Astronomy) No. 9

New analytical relations between the sunspot areas and the corresponding Wolf numbers have recently been given by J. Xanthakis and J. Mergentaler. A comparative study of these relations is reported, and an effort is made to explain the great differences arising in some years between the ratio resulting from observational data and the relations given by Xanthakis.

TEKTITES

71,963 RARE-EARTH ELEMENTS IN TEKTITES Haskin, L., Gehl, M. A. Science, v. 139, no. 3539, pp. 1056-1058, March 15, 1963

The rare-earth element content of three tektites has been determined by neutron activation analysis. The relative abundance patterns are all nearly alike and are identical to the pattern characteristic of well-differentiated terrestrial sediments. Possible consequences of finding this pattern in truly extraterrestrial matter are considered.

71,964 THE MORAVIAN MOLDAVITES AND THEIR BEARING ON THE TEKTITE PROBLEM
 Simon, R.
 Astronomical Institutes of Czechoslovakia, Bulletin of the, v. 14, no. 1, pp. 24-25, 1963

TELEMETRY SYSTEMS

71,965 SATELLITE COMMAND AND TELEMETRY SYSTEM Moore, E. P., Maybach, W. J. Bell Laboratories Record, v. 41, no. 4, pp. 156-160, April 1963

A description is given of the Telstar VHF system, including command and telemetry circuits.

TELSTAR PROJECT

71,966 PROJECT TELSTAR-ITS AIMS AND PURPOSES Dickieson, A. C.
Bell Laboratories Record, v. 41, no. 4, pp. 116-121, April 1963

The early history of the Telstar project is described, including (1) antenna sites and equipment, (2) frequency band selection, and (3) orbital path limitations.

TELSTAR 2

71,967 TELSTAR II SATELLITE LAUNCHED Bell Laboratories Record, v. 41, no. 4, p. 181, April 1963

Orbital data, operational characteristics, and equipment changes (based on Telstar 1 data) are considered.

TEMPERATURE CONTROL

71,968 SIMILITUDE IN THERMAL MODELS OF SPACECRAFT
 Katzoff, S.
 April 1963
 National Aeronautics and Space Administration, Washington, D. C.
 TN D-1631

Scaling criteria for the design and testing of thermal models of spacecraft are discussed. Four dimensionless similitude parameters are derived concerning radiation, internal heat generation, thermal conductivities of materials, and heat capacities of materials. Difficulties in achieving accurate simulation are pointed out and methods of effecting compromises without seriously affecting the validity of the data are suggested.

THERMOELECTRIC CONVERTERS

```
71,969 THERMOELECTRIC GENERATORS AND
    MATERIALS: RADIATION EFFECTS, RELIABILITY,
    LIFETIME, AND FAILURE. AN ANNOTATED
    BIBLIOGRAPHY
    Graziano, E.
    January 1962
    Lockheed Missiles and Space Co., Sunnyvale, Calif.
    SB-61-60
    ASTIA AD-273,953
```

This literature search was conducted as part of research on the problems of using thermoelectric generators which would directly convert heat from nuclear sources into electricity. The purpose of the search was to bring to light any information regarding reliability, lifetime, and mean time of failure of thermoelectric generators and materials due to oxidation, cracking, galvanic action, short circuits, radiation effects, and sublimation.

THRUST VECTOR CONTROL

71,970 A STUDY OF THRUST VECTOR CONTROL BY LIQUID INJECTION INTO ROCKET NOZZLES Sehgal, R., Wu, J. M. May 1, 1963 Jet Propulsion Laboratory, California Institute of Technology, Pasadena TM 33-138

Analytical studies are presented of thrust vector control by the injection of a volatile liquid into the expansion cone of a rocket motor. An analytical model is constructed to represent the interaction between the injected liquid and the supersonic stream by considering the mechanism of atomization, the rate of evaporation, and the motion of droplets, based on the injectant and gas properties. The injectant liquid considered has a higher vapor pressure relative to the pressures

THRUST VECTOR CONTROL (Cont'd)

it encounters during the injection process, thus eliminating the phenomenon of flash evaporation. The body shape due to the generated vapor is calculated from basic drag equations. A method for calculating reasonable values of drag coefficient other than Stokes flow is presented.

TIROS PROJECT

71,971 TIROS ACHIEVEMENTS

Rados, R. M.
Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 28-29, April 1963

The record of success of the Tiros satellites is summarized. The significance of each component-spacecraft, launch vehicle, data-acquisition facilities and data-utilization areas-is evaluated in terms of the over-all success of the Tiros project.

71,972 TIROS OPERATIONS

Powers, E. F.
Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 29-31, April 1963

The Technical Control Center (TCC) at NASA Goddard Space Flight Center exercises operational control for the Tiros satellites. TCC is responsible for the monitoring and operational evaluation of both spacecraft performance and Command and Data Acquisition station performance, and for the direction and coordination of the operational phase of the Tiros mission. The manner in which these functions are performed is explained briefly.

```
71,973 TIROS METEOROLOGICAL OPERATIONS
    Jones, J. B., Mace, L. M.
    Astronautics and Aerospace Engineering, v. 1, no. 3,
    pp. 32-36, April 1963
```

The development of the Tiros meteorological data-utilization experiment through exploratory, evolutionary, and interim operational phases is discussed. Tiros storm surveillance capability from data-sparse regions is described and illustrated.

71,974 TOSS: TIROS OPERATIONAL SATELLITE SYSTEM Glaser, A. H., Christensen, F. E.
 Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 38-41, April 1963

TOSS, an interim system based on existing proved components and techniques using two Tiros satellites in orbits in phase opposition, is described as a step toward (1) implementation of the eventual National Operational Meteorological Satellite System (NOMSS), and (2) making possible picture coverage of much of the Earth's surface on a programmed basis each day.

TIROS 3

71,975 A RADIATION VIEW OF HURRICANE ANNA FROM THE TIROS III METEOROLOGICAL SATELLITE
 Bandeen, W. R., Conrath, B. J., Nordberg, W., Thompson, H. P.
 April 1963
 National Aeronautics and Space Administration, Washington, D. C.
 TN D-1713

The Tiros 3 meteorological satellite ($1961 \rho 1$), containing two television cameras and a family of electromagnetic radiation experiments, was launched on July 12, 1961. Nine days later, the satellite passed directly over Hurricane Anna, the first hurricane of the 1961 Atlantic season. Data gathered by a five-channel medium resolution radiometer during one pass over the hurricane are presented in the form of maps; and certain implications of the data are discussed. Supporting television pictures are also given. The design and calibration of the medium resolution radiometer are briefly described.

TOPSIDE SOUNDER PROJECT

71,976 PERTURBATION OF THE LOCAL ELECTRON DENSITY BY ALOUETTE SATELLITE Warren, E. Canadian Journal of Physics, v. 41, no. 1, pp. 188-189, January 1963

Data obtained during the first two weeks of Alouette operation have been examined. Top-side sounder ionograms are presented which give some information concerning the effects produced by a satellite upon its environment.

71,977 TOP-SIDE SPREAD ECHOES
 Petrie, L. E.
 Canadian Journal of Physics, v. 41, no. 1, pp. 194-195, January 1963

Top-side ionograms from Alouette, recorded from September 29 to October 4, 1962, have been examined for spread echoes. The geographic area covered was 25 to $70^{\circ} \mathrm{N}$, and 50 to $105^{\circ} \mathrm{W}$, between 1030 to 1230 and 2015 to 2215 hr local time.

71,978 PLASMA AND CYCLOTRON SPIKE PHENOMENA OBSERVED IN TOP-SIDE IONOGRAMS
 Lockwood, G. E. K. Canadian Journal of Physics, v. 41, no. 1, pp. 190-194, January 1963

The existence of the plasma that surrounds the satellite transmitter gives rise to certain phenomena-the Z-wave pulse propagation, the plasma spike, and the cyclotron spike-which can be used to calculate the electron density of the medium as
well as the magnitude and direction of the Earth's magnetic field at the satellite.

71,979 A PRELIMINARY STUDY OF THE ELECTRON DENSITY AT 1000 KILOMETERS
Hagg, E. L.
Canadian Journal of Physics, v. 41, no. 1, pp. 195-199, January 1963

Top-side ionograms from Alouette for September 29 to October 3, 1962 have been analyzed to determine the electron density near the height of the satellite. Ordinary-wave reflections from the ionosphere near the satellite are not observed on the ionograms; consequently, the plasma frequency was obtained from the frequency at which the extraordinary-wave trace approached the satellite height. Gyrofrequencies were calculated from the magnetic field intensities at the surface of the Earth, using the inverse-cube law.

TRACKING SYSTEMS

71,980 GODDARD RANGE AND RANGE RATE SYSTEM DESIGN EVALUATION REPORT
 November 23, 1962, Revised Motorola, Inc., Scottsdale, Ariz.
 Report W2719-2-1, Revision 1

Results are reported of the Range and Range Rate System design evaluation performed by Motorola under contract with the NASA Goddard Space Flight Center. A technical discussion of the system's operational configuration is presented along with an analysis of performance based upon that system in order to establish performance limits and an optimum design. A sound analytic basis is established for ensuring that all specified performance characteristics will be realized with a reasonable margin of safety.

TRAJECTORIES

71,981 EFFECT OF LIFT ON SEPARATION DISTANCE and loads for an aborting vehicle at MAXIMUM DYNAMIC PRESSURE OF A LUNAR MISSION
 Janos, J. J., Unangst, J. R.
 April 1963
 National Aeronautics and Space Administration, Washington, D. C.
 TN D-1775

This investigation considers some of the effects of using lifting trajectories for abort of a lunar mission during the early part of the launch phase. Particular emphasis is placed on determining the effects of lifting abort trajectories on the possibility of a collision of the launch vehicle and spacecraft if abort is initiated at maximum dynamic pressure of the launch trajectory. Abort trajectories are computed with a range of
constant values of lift-drag ratio from $-\mathbf{1 . 0}$ to 1.0 and thrust levels of 83,450 and $151,300 \mathrm{lb}$.

71,982 ON THE ACCURACY OF APPROXIMATE THRUST STEERING SCHEDULES IN OPTIMAL CORRECTIONAL MANEUVERS
 Moskowitz, S. E.
 Astronautica Acta, v. 9, no. I, pp. 20-30, 1963

For a correctional maneuver, standards of approximation are developed by which the extent of proximity to true or exact values can be ascertained numerically for the dependent variables and the burning time. The degree of relevancy of the linear program as opposed to the more general bilinear program is indicated. A numerical verification is given by examination of a typical example and comparison of the results with the exact solution obtained by numerical integration.

71,983 A METHOD FOR DETERMINING APPROXIMATE INITIAL CONDITIONS FOR INTERPLANETARY TRAJECTORIES
 Rowell, L. N.
 Journal of the Astronautical Sciences, The, v. 10, no. 1, pp. 1-7, Spring 1963

A method to determine an approximate set of the required cutoff conditions for any interplanetary trajectory is described. The method employs a patched conic technique and requires a repeated solution of the two-body problem. The trajectory considered is assumed to consist of two parts: (1) a geocentric hyperbolic orbit, which starts at the cutoff point and ends at the Earth's sphere of influence; and (2) a heliocentric elliptical orbit, based on massless planets, which ends at the destination planet. Elliptical and noncoplanar planetary orbits are used and planetary perturbations ignored.

TRANSFER ORBITS

71,984 AN ANALYTIC PROOF THAT THE HOHMANNTYPE TRANSFER IS THE TRUE MINIMUM TWO-IMPULSE TRANSFER
 Barrar, R. B.
 Astronautica Acta, v. 9, no. 1, pp. 1-11, 1963

71,985 MINIMUM TIME TRANSFER BETWEEN COPLANAR, CIRCULAR ORBITS BY TWO IMPULSES AND THE PROPULSION REQUIREMENTS
Wang, K.
Astronautica Acta, v. 9, no. 1, pp. 12-19, 1963
The problem of minimum time transfer between coplanar circular orbits by two impulses is studied and an approximate solution obtained. A convenient procedure is also presented for the determination of the propulsion requirements for twoimpulse rendezvous between satellites in circular orbits.

UPPER ATMOSPHERE

71,986 HYDROXYL EMISSION IN THE UPPER ATMOSPHERE
Krassovsky, V. I.
Massey, H. S. H., Translator
Planetary and Space Science, v. 10, pp. 7-17, 1963
(Paper presented at the International Astronomical Union
Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

The main factual data which have become available on upper atmospheric emissions since the recent accumulation of observational material in the USSR are surveyed. The mechanisms causing these emissions and their variations are analyzed.

71,987 VIBRATIONALLY EXCITED MOLECULES IN ATMOSPHERIC REACTIONS
 Dalgarno, A.
 Planetary and Space Science, v. 10, pp. 19-28, 1963
 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

The production in the atmosphere of vibrationally excited molecules in the ground electronic states by collisional processes is discussed, and it is estimated that the corresponding yield of vibrationally excited oxygen, $\mathrm{O}_{2}{ }^{\circ}$, is of the order of $10^{12} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$; of vibrationally excited nitric oxide, NO°, is of the order of $10^{11} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$; and of vibrationally excited nitrogen, $\mathrm{N}_{2}{ }^{\circ}$, is of the order of $10^{10} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$. It is pointed out that the fundamental vibration bands of NO and possibly of NO^{+} should appear in emission with sufficient intensity to be detectable by balloon or rocket observations, especially during periods of auroral activity.

71,988 THE PRODUCTION OF $\mathbf{N}_{\mathbf{2}}{ }^{+}$IN THE ATMOSPHERE
 Hunten, D. M.
 Planetary and Space Science, v. 10, pp. 37-45, 1963
 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

Studies of the emission of the first negative bands of $\mathrm{N}_{2}{ }^{+}$in aurora (normal and sunlit) and twilight are reviewed. Ion densities of 10^{3} ions $/ \mathrm{cm}^{3}$ are deduced for sunlit aurora. A very rapid loss process appears to limit the ion density below 150 km , and reactions of charge-transfer or ion-atom interchange are suggested. The normal twilight must therefore occur in the F region, the ions being produced by solar extreme ultraviolet (EUV). It is suggested that this effect may be observable only near sunspot maximum, when the EUV flux is largest and perhaps the N_{2} concentration in the F region is unusually large. Quantitative difficulties in accounting for the
intensity of the twilight and of high sunlit auror seem to require this enhanced N_{2} concentration when sofar activity is high, and especially during large magneti申 disturbances. Satellite-drag and ionospheric observations sypport this idea.

71,989 UPPER ATMOSPHERIC DISTURBANCES DUE TO HIGH ALTITUDE NUCLEAR EXPLOSIONS Obayashi, T. Planetary and Space Science, v. 10, pp. 47-63, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

The geophysical effects due to high-altitude nuclear explosions are reviewed. The sources of information are mainly from the high-altitude detonations of August-September 1958 in the Pacific and in the South Atlantic. The October 1961 nuclear tests at Novaya Zemlya are also included. Various upper atmospheric phenomena, such as ionospheric and geomagnetic storms, airglows, trapped particles and blast waves are identified as a consequence of nuclear explosions. Disturbance effects are explained, and the significance of controlled experiment in the upper atmosphere is discussed.

71,990 HELIUM IN THE UPPER ATMOSPHERE Shefov, N. N. Planetary and Space Science, v. 10, pp. 73-77, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

During a study of the problem of upper atmosphere emissions, displays of twilight enhancement of $\lambda 10830 \AA$ helium and $\lambda 8446 \AA$ oxygen were discovered. Recordings of $\lambda 10830$ \AA were made during the solar eclipse of February 15, 1961, and a twilight enhancement of $\lambda 10830 \AA$ of HeI in the absence of aurora was observed with a spectrograph and a Fabry-Perot étalon. Emission of $\lambda 10830 \AA$ is observed only in the sunlit atmosphere and appears to be due to fluorescence. The excitation of the helium emission, $\lambda 10830 \AA$, essentially depends on ultraviolet solar radiation with $\lambda<304 \AA$ and $\lambda 584 \AA$. The variations of this radiation are examined.

71,991 TEMPERATURE AND CORPUSCULAR HEATING IN THE AURORAL ZONE
 Mulyarchik, T. M., Shcheglov, P. V. Planetary and Space Science, v. 10, pp. 215-218, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

Results of observations of the polar atmosphere temperature are discussed. Several heating mechanisms-ultraviolet radiation of the Sun, corpuscular streams, and hydromagnetic waves-are examined.

71,992 IMPROVED FORMULAE FOR DETERMINING UPPER ATMOSPHERE DENSITY FROM THE CHANGE IN A SATELLITE'S ORBITAL PERIOD King-Hele, D. G.
 Planetary and Space Science, v. 11, no. 3, pp. 261-268, March 1963

Improved formulas are derived for determining the air density at a specified height above the perigee of a satellite's orbit from the decrease in orbital period, when due allowance is made for atmospheric rotation and oblateness, and the variation of scale height with altitude. The density is evaluated at a height chosen so that the formulas are insensitive to errors in the value used for scale height H_{p} at perigee.

71,993 NOTE ON THE THICKNESS OF THE HELIUM ION LAYER
 Bauer, S. J.
 March 1963
 National Aeronautics and Space Administration, Washington, D. C.
 TN D-1686

On the basis of recent experimental results as well as theoretical considerations of the temperature dependence of the light constituents (hydrogen and helium) in the upper atmosphere, a model of the helium ion belt-the "heliosphere" -is constructed. The thickness of the helium ion layer varies significantly with atmospheric temperature: about 2000 km at $1600^{\circ} \mathrm{K}$ and only about 200 km at $600^{\circ} \mathrm{K}$. Correspondingly charged particle profiles in the topside ionosphere may show a slope corresponding to He^{+}at high temperature, but not at low temperatures when the thickness of the helium ion layer is comparable to or less than the scale height of helium ions.

VAN ALLEN RADIATION BELTS

71,994 INTENSITY OF ELECTRONS IN THE EARTH'S INNER RADIATION ZONE
 Frank, L. A., Van Allen, J. A.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1203-1207, March 1, 1963

The intensities of electrons as measured with Injun 1 during its deepest penetrations into the Earth's inner radiation zone are reported for the period July 16 to August 10, 1961. The basic detector was a collimated Anton-type 213 endwindowed Geiger-Müller tube. The unidirectional intensity of electrons of energy greater than 40 kev was 5×10^{6} electrons $/ \mathrm{cm}^{2}$ sec ster in a direction perpendicular to \mathbf{B} at $L=1.22$ in the magnetic equatorial plane. The corresponding omnidirectional intensity is estimated to be $1 \times 10^{7} / \mathrm{cm}^{2}$ sec. No temporal variations greater than the experimental uncertainty of 30 percent were found in this region during the period of observation.

71,995 ABSOLUTE INTENSITIES OF GEOMAGNETICALLY TRAPPED PARTICLES WITH EXPLORER 14
Frank, L. A., Van Allen, J. A., Whelpley, W. A., Craven, J. D.
Journal of Geophysical Research, v. 68, no. 6, pp. 1573-1579, March 15, 1963

This is the initial report on a new series of observations on the absolute intensities of geomagnetically trapped protons and electrons in the Earth's outer radiation zone and on the nature of the outer boundary of the magnetosphere. The equipment was carried on Explorer 14, which was launched on October 2, 1962 into an eccentric orbit whose apogee was initially at 16.5 Earth radii from the center of the Earth on a line at 71 deg to the line from the center of the Earth to the Sun. Sample omnidirectional intensities of electrons at a geocentric radial distance of $39,000 \mathrm{~km}$ and of electrons and protons at a geocentric radial distance of $20,000 \mathrm{~km}$ were taken on October 5, 1962. There are large fluctuations from day to day.

71,996 AURORAL X-RAYS, ELECTRON BOMBARDMENT AND TRAPPED RADIATION
 Kellogg, P. J.
 Planetary and Space Science, v. 10, pp. 165-178, 1963
 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

Recent measurements of the characteristics of energetic particles incident on the top of the atmosphere and presumably precipitated from the Earth's trapped radiation are discussed. The incident flux varies widely, from 10^{8} to 10^{10} particles $/ \mathrm{cm}^{2}$ sec for electrons. Other characteristics of the flux also vary from event to event, independent of the flux and of each other. During the most intense events-those which correspond to aurorae-the lifetime of an electron in the trapping region is only a few seconds. Clearly, violent processes take place during such events-so violent as to destroy the effectiveness of the trap. Several mechanisms are examined, and it is concluded that no one process accounts for all observations.

71,997 BRIEF NOTE ON THE RADIATION BELTS OF THE EARTH
 Van Allen, J. A. (State University of Iowa, Iowa City) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 1-11, Book 1
 Atomic Energy Commission, Division of Technical Information, Washington, D. C.
 TID-7652, Paper A-1

A brief graphical summary is presented of one of the aspects of the Earth's radiation belts, namely, the positional dependence of the absolute intensity of several selected components of the trapped particle population.

VAN ALLEN RADIATION BELTS (Cont'd)
71,998 PROTON FLUXES ALONG TRAJECTORIES THROUGH THE INNER VAN ALLEN BELT Perry, F. C. (The Boeing Co., Seattle, Wash.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 725-738, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper E-6

A method is formulated to calculate, by means of highspeed digital computing equipment, the total time-integrated proton flux for an arbitrary trajectory through the inner Van Allen belt. To this end, a map of the inner belt proton flux has been prepared in the (B, L) coordinate system, where B is computed from the 48 -term spherical harmonic expansion of the Earth's magnetic potential due to Finch and Leaton, and L is the McIlwain parameter. This map is feasible since the high-energy trapped proton component is generally quite stable with respect to geomagnetic activity.

71,999 REVIEW OF STUDIES OF TRAPPED RADIATION WITH SATELLITE-BORNE APPARATUS O'Brien, B. J.
 Space Science Reviews, v. 1, no. 3, pp. 415-484, March 1963

A comprehensive review of studies of trapped radiation in both the Van Allen radiation belts and the artificial radiation belts is given. The aim is to provide for experimentalists a comprehensive set of references and very brief descriptions of experiments concerning radiation zone studies, and to provide for theoreticians a review of some measurements which have been misinterpreted. Parameters involved in studies of the geomagnetically trapped radiation are discussed. An historical outline of studies with a tabulation of relevant experiments from 1957 to 1961 is given. The current experimental knowledge of the radiation zones is presented, and a separate discussion of the artificial radiation belt included. Revised interpretations of data are listed, proceeding chronologically from satellite to satellite. Information from groundbased observations is also included. A few of the requirements for an ideal experimental study of the radiation zones are given. A total of 147 references is included.

VENUS

```
72,000 ON THE VENUS CUSP EFFECT REPORTED BY
    BRINTON AND MOORE
    Cruikshank, D. P.
    Strolling Astronomer, The, v. 17, no. 1-2, pp. 1-2,
    January-February 1963
```

Filar micrometer measuremerts of Vemus both in visual light and with color filters indicate that the reported cusp anomaly is due entirely to contrast. The view is also expressed that low magnification and consequent high contrast logically explain many "phenomena" of Venus.

72,001 A NOTE ON PHASE ANOMALIES OF VENUS Hartmann, W. K.
Strolling Astronomer, The, v. 17, no. 1-2, pp. 2-3,
January-February 1963

It is concluded that no real evidence has been given to show that any of the phase anomalies associated with Venus are due to anything more unusual than contrast effects and the rapid decrease in brightness near the terminator.

72,002 VERTICAL DISTRIBUTION OF NEUTRAL GASES ON VENUS
 Shimizu, M.
 Planetary and Space Science, v. 11, no. 3, pp. 269-273, March 1963

The vertical distribution of neutral $\mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{CO}$ and O gases on Venus is calculated, photochemical equilibrium being assumed. Kaplan's model of the atmospheric structure is adopted, and the spectral distribution of solar ultraviolet radiations in the wavelengths from 1250 to $1950 \AA$ is described as that of a $5000^{\circ} \mathrm{K}$ black body, taking into account the superposition of the Fraunhofer lines on the photospheric emission. An investigation of the photo dissociation process in the cytherean upper atmosphere is attempted.

72,003 CARBON DIOXIDE ABSORPTION FOR PATH LENGTHS APPLICABLE TO THE ATMOSPHERE OF VENUS
 Plass, G. N., Stull, V. R.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1355-1363, March 1, 1963

Calculations of the spectral transmittance of CO_{2} from 500 to $9500 \mathrm{~cm}^{-1}$ have been extended to pressures of 31 atm and CO_{2} amounts of $2.34 \times 10^{7} \mathrm{~atm} \mathrm{~cm}$. From the tables and figures presented, it is possible to obtain the transmittance of the atmosphere of Venus for a wide range of assumed conditions. It is possible that the high surface temperature of Venus can be explained as a CO_{2} greenhouse effect if the amount of CO_{22} is of the order of $2 \times 10^{7} \mathrm{~atm} \mathrm{~cm}$ or the surface pressure is 60 atm . If the amount of CO_{2} is $10^{6} \mathrm{~atm} \mathrm{~cm}$ and the surface pressure is 20 atm , the addition of $10 \mathrm{~g} \mathrm{~cm}^{-2}$ of $\mathrm{H}_{2} \mathrm{O}$ to the atmosphere may be sufficient to explain the surface temperature.

72,004 MARINER REVEALS 800F VENUS TEMPERATURE Kolcum, E. H.
 Aviation Week \& Space Technology, v. 78, no. 9, pp. 30-31, March 4, 1963

According to measurements made by the Mariner 2 payload, Venus has a uniform surface temperature of $800^{\circ} \mathrm{F}$ and is surrounded by a dense cloud layer, 17 miles thick, which has a base temperature of $200^{\circ} \mathrm{F}$ and a top temperature of $-6.5^{\circ} \mathrm{F}$.

72,005 THE ELECTRICAL CHARACTERISTICS OF THE ATMOSPHERE AND SURFACE OF VENUS FROM RADAR OBSERVATIONS
 Muhleman, D. \mathbf{O}.
 Icarus, v. 1, no. 5-6, pp. 401-411, April 1963

Radar observations of Venus were made at wavelengths of 12.5 and 68 cm during several months surrounding the 1961 inferior conjunction. These observations are quantitatively compared for possible dispersion effects caused by the atmosphere of Venus and the interplanetary medium. The fundamental results of these observations, pertinent to the investigation of the atmosphere and surface electrical characteristics of Venus, are summarized.

72,006 ON THE RADIUS OF VENUS. II Martynov, D. Ya.
 Soviet Astronomy-AJ, v. 6, no. 4, pp. 511-517, January-February 1963

A new determination of Venus' radius has been carried out on the basis of occultations of Regulus by the planet, incorporating hitherto unknown observations. Auwers' value of the radius, $8^{\prime \prime} .41 \approx 6100 \pm 30 \mathrm{~km}$, was confirmed. The possibility of a gap in the cloud layer of Venus is discussed, as well as the diurnal variations of the height of the cloud layer.

72,007 OBSERVATIONS OF RADIO EMISSION FROM VENUS AND JUPITER AT 8 MM WAVELENGTH Kuzmin, A. D., Salomonovich, A. E. Soviet Astronomy-AJ, v. 6, no. 4, pp. 518-524, January-February 1963

Results of observations of radio emission from Venus at 8 mm on the $22-\mathrm{m}$ radio telescope of the Lebedev Physics Institute during the period March through May 1961 are cited. The minimum disk-average brightness temperature near inferior conjunction was determined. Confirmation is forthcoming for the phase dependence of the disk-average brightness temperature. Some $8-\mathrm{mm}$ wavelength observations of radio emission from Jupiter are also reported.

[^21][^22]This article appeared in Icarus, v. 1, no. 3, pp. 266-270, October 1962, and was abstracted in the Astronautics Information Abstracts, v. 6, no. 6, December 1962. (See Entry \#61,879.)

VENUS MISSIONS

72,010 MANNED VENUS-MARS FLY-BY IN 1970 STUDIED Alibrando, A. P.
Aviation Week \& Space Technology, v. 78, no. 9, p. 56, March 4, 1963

Interplanetary flights in which three-man spacecraft would fly by both Venus and Mars on missions launched in 1970 or 1972 have been suggested. Trip times would vary from about 460 to about 680 days if launched during opportunitios in the 1970-1972 period. Re-entry techniques, spacecraft weights, and life support allotments are discussed.

VENUS TRAJECTORIES

72,011 EARTH-VENUS TRAJECTORIES, 1964
Clarke, V. C., Jr., Roth, R. Y., Bollman, W. E., Hamilton, T. W., Pfeiffer, C. G.
March 15, 1963
Jet Propulsion Laboratory, California Institute of
Technology, Pasadena
TM 33-99, Volume 1C
This volume is one of five giving key characteristics of Earth-to-Venus trajectories during the period 1964-1970. See Astronautics Information Abstracts, v. 7, no. 3, March 1963, Entry \#70,927, for abstract.

72,012 EARTH-VENUS TRAJECTORIES, 1965-66
Clarke, V. C., Jr., Roth, R. Y., Bollman, W. E.,
Hamilton, T. W., Pfeiffer, C. G.
April 15, 1963
Jet Propulsion Laboratory, California Institute of Technology, Pasadena
TM 33-99, Volume 2A
See Astronautics Information Abstracts, v. 7, no. 3, March 1963, Entry \#70,927.

WEIGHTLESSNESS

[^23]
WHISTLERS

72,014 WHISTLER EVIDENCE OF A "KNEE" IN THE MAGNETOSPHERIC IONIZATION DENSITY PROFILE Carpenter, D. L.
 Journal of Geophysical Research, v. 68, no. 6, pp. 1675-1682, March 15, 1963

Study of a new whistler phenomenon shows that the magnetospheric ionization profile often exhibits a "knee", i.e., a region at several Earth radii in which the ionization density drops rapidly from a relatively normal level to a substantially depressed one. The new whistler phenomenon (called the "knee whistler") is compared with ordinary whistlers and is illustrated by a number of examples recorded at middle- and high-latitude stations. It is suggested that the knee exists at all times in the magnetosphere, and that its position varies, moving inward with increasing magnetic activity. There are indications that conditions of whistler-mode propagation may be unusually favorable on the low-latitude side of the knee, and that the region on the high-latitude side may be favorable for the production of triggered ionospheric noise. It is pointed out that the knee whistlers account for a substantial number
of the observations of deep density depressions during magnetic storms. Several questions of interpretation are raised, and future investigation is indicated.

X-RAYS

72,015 INTERPRETATION OF X-RAY PHOTOGRAPH OF THE SUN
 Blake, R. L., Chubb, T. A., Friedman, H., Unzicker, A. E. Astrophysical Journal, The, v. 137, no. 1, pp. 3-15, January 1963

An X-ray picture of the Sun was obtained on April 19, 1960, using a pinhole-camera flown in an Acrobee-Hi rocket. Photometric analysis of the picture has shown that at least 75 percent of the X-radiation passed by the pinhole window material emanated from condensations in the lower corona localized above CaK plages. The solar X-ray flux at the Earth was estimated. A detailed quantitative evaluation of the intensities and geometries of localized X-ray sources and their relationship to plage formations is given. A second set of exposures was obtained in several different wavelength bands, up to $90 \AA$, from a rocket flight on June 21, 1961.

AUTHOR INDEX*

Author	Entry	Author	Entry	Author	Entry	Author	Entry
Aarons, J.	. 71,174	Anderson, R.E.D.	.70,309	Bagby, J. P.	70,280	Barth, C. A.	70,618
Abbott, H. M.	.71,268		71,934	Bahcall, J. N.	71,956	Barth, V. D.	.71,452
	71,599	Anderton, D. A.	.70,212	Baicker, J. A.	70,549	Bartlett, E. P.	71,546
	71,825		70,453		71,720	Bartlett, J. C., Jr.	70,921
	71,826	Andrew, J. D.	70,459		71,919		71,903
Abrams, I. J.	.71,751	Andrews, E. P.	.71,044	Bailey, D. K.	71,699	Bartoe, O. E.	70,795
Abrams, S. .	.70,179	Anger, C. D. .	.71,270	Bailey, R. N.	.70,204	Bartos, G.	71,816
Abzug, M. J.	.70,017	Annenskii, F. D.	.70,215		70,560	Bartz, D. R.	.70,189
Adachi, S.	.70,070	Ansari, Z. A. . .	.71,738	Bailie, A. E.	70,789	Basel, D. R.	.70,343
Adam, M. G. Adams, J. J.	. $\mathrm{} 70,$.	Ansley, S. P., Jr.	.71,003	Baker, C. A.	71,107	Basler, R. P.	71,026
Adams, J. J. . Adams, M. C.	. .70,049	Anthony, F. M.	.71,531		71,108	Bastin, J. A.	.71,162
Adderley, E. E.	. 71,849	Anthony, M. L.	70,488	Baker, R. C. . .	70,416	Basu, D.	.71,179
Adornato, R. J.	.71,819		70,794	Baker, R. M. L.,	71,098	Bates, D. R.	.70,907
Akasofu, S.-I.	.70,088	Antipov, V. V.	.70,023		71,497	Battin, R. H.	70,474
	71,018	Aoki, M.	.70,947	Bakke, J. C.	71,121		70,785
	71,272	Aoki, S.	.70,524	Ballif, J. R.	70,610	Battle, C. T.	70,647
	71,365	Aono, Y. . .	.71,773		71,241		70,648
	71,367	Apelt, A. O.	70,500	Balser, M.	70,512	Batutis, E. F.	.70,163
	71,666	Appleton, E.	.71,333	Bame, S. J.	71,227	Bauer, S. J.	.71,223
Albright, G. A.	.70,400	Apt, C. M.	.71,036		71,855		71,993
Alekseev, V. M.	.71,679	Arendt, P. R.	.71,029	Bandeen, W. R.	71,763	Baum, S. J.	70,217
Alekseev, Yu. I.	. 71,941		71,404		71,975	Baumann, H. A.	.70,609
Alekseeva, K. I.	.71,708		71,524	Bandyopadhay, P .	71,133	Bazer, J.	.71,052
Alekseeva, O. G.	71,657	Arenstorf, R. F.	.70,368	Banos, G.	71,962	Bean, E. E.	.70,459
Alexander, G. .	.70,071		70,965	Bappu, M. K. V.	70,286	Beard, D. B.	.70,283
Alexander, J. K., Jr.	.70,810		71,682	Barabashov, N. P.	70,535		70,554
Alexander, W. M.	.70,977	Arman, A.	.70,829		70,759	Beasley, G. P.	.71,540
Alfvén, H.	.70,668	Armstrong, J. M.	.70,735		70,832	Bech, A. I.	70,400
	70,869	Armstrong, R. C.	. 71.342		70,840	Bechberger, P. F.	.70,119
	71,477	Armstrong, R. J.	$\begin{array}{r}.71,780 \\ \hline 71720\end{array}$		71,479	Beck, A. J.70,567
Alibrando, A. P. .	72,010	Arnold, D. M.	.71,720	Baradell, D. L.	70,243	Beckers, J. M.	.70,847
Allcock, G. McK. Allen, S. J.71,235	Arnold, J. R.	$.70,298$ 70,514	Baranne, A. ..	70,372	Beckmann, P.	.70,510
Allen, S. J. Aller, L. H	$.70,002$ $.70,565$	Arnoldy, R. L.	70,514 $.70,603$	Barasch, M. L.	70,472 71,476	Beehler, C. C.	.71,252
Aller, L. H. Alley, V. L.	$.70,565$ $.70,736$	Arp, H. C. . .	.71,329	Barath, F. T.	71,476 $.71,633$	Beers, L. S.	.70,213
	71,279	Arseneva, M. A.	.70,023	Barbee, B. H.	. .70,413	eheim, M. A.	71,278
Alouette, G. A.	. 70,258	Ashbrook, J.	.71,163	Barber, D. R.	.70,779	Behring, W. E.	71,182
Alsmiller, F. S.	.71,929		71,799	Barber, R. E.	.70,560	Bekker,	70,452 71,046
Alsmiller, R. G., Jr.	. 71,929	Ashburn, E. V.	.70,418	Barbier, D. .	.71,734		71,046
Altman, C.	. 71,407	Ashour, A. A. .	$.70,435$ $.70,033$	Barcus, J. R.	.71,270	Beletskii,	70,527 71,586
Altman, S. P.	.71,618	Askwyth, W. H.	$.70,033$ $.71,565$	Barnes, F. L.	.70,460		71,586 $.70,349$
Alvi, H. Aly, M. K.	. 71,961 $. .70,867$	Athay, R. G.	$.71,565$ 71,921	Barnes, S.	71,053 $.71,189$	Belf, C, . Beller, W.	$.70,349$ $.70,152$
Aly, M. K. 70,867149	Au, G.	.71,717	Barnes, W. S.	.70,969		70,608
Amster, W. H.	. 71,677	Au, G. F.	.71,340	Barnett, R. M.	.71,726		70,902
Anders, E.71,009	Auger, P.	.70,568	Baron, R. C.	.70,650		71,490 71,875
	71,068			Barrar, R. B.	.71,216	Bender, D. F.	.70,322
Andersen, F.	. .70,697	Babb, C. D.	.70,242		71,984	Benedict, T. R.	.71,100
Anderson, E. C.	. .70,298	Babii, V. I.	.71,941	Barrett, A. H.	.70,763	Benediktov, E. A.	.71,522
	70,514	Babineaux, T. L.	.71,259		71,633	Benfield, W. A.	.71,285
Anderson, J. R.	. .71,402	Back, K. C.	. .71,188	Barricelli, N. A.	.70,153	Bennett, G.	.70,799
Anderson, K. A.	. .70,284	Bader, M.	.70,691	Barrington, R. E.	.70,986	Benoit, R.	.70,808
Anderson, R. E.	.70,784	Badhwar, G. D.	.70,978	Barrow, C. H.	.71,412	Berg, O. E.	. 70,977

[^24]JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 AUTHOR INDEX

Author	Entry	Author	Entry	Author	Entry	Author	Entry
Bergan, R. A.	.71,024	Bobrov, M. S.	.71,898	Brinton, H.	.70,923	Butler, H. I.	71,857
Berger, R. T.	.71,542	Boehm, B. W.	.70,375	Brissenden, \mathbf{P}.	.70,636	Butler, S. T.	71,620
Bergh, H. W.	.70,086	Bollhagen, H.	.70,440		70,802	Butz, J. S., Jr.	71,014
Berglund, R. A.	.71,494	Bollin, E. M.	. 71,802	Brissenden, R. F.	.70,200	Buwalda, P.	70,143
Berkhuijsen, E. M.	.70,436	Bollman, W. E.	.70,460		71,541	Byerly, P. E.	70,417
Berman, L. J.	.70,746		70,927	Bristor, C. L.	.70,652	Byrne, E. R.	71,653
Bernados, J. E.	.71,448		71,053		71,835	Byrne, F.	.71,899
Bernett, E. C.	.71,057		71,232	Britton, J. E.	.70,809	Byrne, R. W.	70,815
Berry, C. A.	.70,356		71,442	Brodsky, R. F.	.71,529	Bystrov, N. F.	70,778
	71,455		72,011	Broglio, L.	.70,238		
Best, G. T.	.70,708		72,012		70,816		
	70,905	Bologna, J. M.	.71,161	Bronshten, V. A.	.70,759	Cahill, J. E.	70,498
Betchov, R.	.70,232	Boltz, F. W. .	.70,940		70,771	Cahill, L. J., Jr.	71,767
Beyer, M.	70,639	Bonavito, N. L.	.70,196	Brooks, M.	.71,900	Cain, J. C.	70,088
Beynon, W. J. G.	.70,433	Bond, D. S. .	.70,645	Brooks, R. D.	.70,107		70,693
Bhatnagar, A.	.70,286		70,895	Brouw, W. N.	.70,436		$71,367$
Bibl, K.	.70,078	Bonnet, R. M.	.70,492	Brouwer, D.	. 70,009	Calamai, G.	71,224 71821
Biblarz, O .	.70,280	Bono, P.71,287	Brown, D. J.	.70,728	Callas, G. P.	$.71,821$ 70.120
Bickler, D. B.	.70,999	Booker, H. G.	.70,226	Brown, G. A. Brown, H	.70,110	Cameron, A. G. W.	$\begin{array}{r} 70,120 \\ 70,577 \end{array}$
Biermann, L.	.71,769	Booker, H. G.	70,811	Brown, H.	$.71,338$ 71,575		70,577 70,578
Bigg, E. K.	$.71,743$ 70,490	Booton, W. D.	.70,860	Brown, R. R.	71,575 $.70,091$		70,578 70,579
Billik, B.	$\begin{array}{r} .70,490 \\ 70,821 \end{array}$	Borchers, R. V.	.71,101		71,270		70,667
Billik, B. H.	.71,102	Bosch, M. C. .	71,032	Brown, W. L.	.71,225		70,983
Billings, D. E.	.70,844	Bostrom, C. O.	.70,853		71,718		71,330
	71,568		71,569	Brownlow, C.	.70,355		71,623
	71,920	Both, E. E.	.70,756	Brueckmann, H.	71,244		71,954
Bird, J. D.	. 71,893	Bowen, E. G.	.71,843	Brumley, F. B.	.71,855	Cameron, R. E.	71,076
Bird, R. M.	.70,347	Bowhill, S. A.	.70,131	Bruns, A. V.	.71,938	Campbell, C. E.	70,747
Birney, D. S.	.71,183	Bowles, K. L.	.71,005		71,951	Canright, R. B.	70,956
Biswas, S. .	.70,979		71,133	Bryant, D. A.	.70,854	Capen, C. F.	70,828
Bitoun, J.	.71,222	Bowman, G. G.	. 70,686	Bryden, J. N.	70,974	Caputo, M.	70,803 70,737
Bittman, L. R.	.71,413	Boyer, K.	.70,523	崖son,	70,648	Carlson, D. D.	70,737
Bjelland, B .	.70,986	Boyer, R. H.	.70,516	Buck, K. E.	. 70,225	Carmichael, H.	70,861
Bjerklie, J. W.	.70,211	Brady, B. P.	71,393	Buckley, D. H.	.70,134	Carpenter, D. L.	72,014
Bjorge, S.	.71,894	Bramley, E. N.	.70,264	Buckner, J. K.	. 71,486	Carpenter, F. D.	.70,313
Blackman, V. H.	.70,496	Brandt, J. C.	.70,852	Budden, K. G.	.70,509	Carpenter, M. S.	70,436
Blackmon, J. B.	. 71,514	Branigan, C. K.	.71,235	Buginas, S. J.	.71,362	Carpenter, R. L.	.71,635
Blackmore, R. W.	.71,652	Branson, L. K.	.70,722		71,642	Carr, T. D.	70,440
Blackwell, D. E.	.71,765	Brashear, H. R.	71,913	Bulban, E. J.	70,165	Carriker, A. W.	70,154
Blair, R. R.	.71,718	Braud, N. J.	.71,804	Bullock, E. K.	70,411	Carroll, J. F.	.71,090
Blake, F. A.	.70,276	Braude, S. Ya.	.70,865	Bumba, V.	71,570	Carru, H.	70,808
Blake, R. L.	.72,015	Bray, R. J.	.71,590		71,831	Carstens, J. P.	70,669
Blamont, J. E.	.71,784	Brayshaw, J. M.,	.71,259		71,933	Carter, R. E.	.71,130
Blanchard, U. J.	.70,241	Breakwell, J. V.	.71,616	Bunk, A. P.	70,159	Carton, D. S.	71,728
Bland, W. M., Jr.	.71,455	Breido, I. I.	.70,830	Burchfield, H. P.	.71,187	Castelli, J. P.	.71,174
Bliss, P. H.	. 71,427	Brenner, J. L.	.70,194	Burhans, R. W.	.71,611		71,853
Blitzer, L.	.71,019	Breshears, R. R.	.71,873	Burkard, O.	.70,409	Catherine, J. J.	70,829
Block, N.	.70,403	Briggs, M. H.	.70,174	Burns, E. A.	.70,473	Cavoti, C. R.	.70,589
Bloom, M. H.	. 70,815		70,267	Burns, T. A.	.71,793	Celnik, J. . .	.71,909
Blosser, T. V.	. 71,913		70,772	Burroughs, J. L.	.71,390	Chadwick, W. B.	.71,198
Blume, R.	.71,744		71,008	Burrus, W. R.	.71,913	Chaffee, J. W.	.70,345
Blumle, L. J.	.70,437		71,463	Burton, G. T.	. .70,207	Chalk, K.	.71,845
Blumrich, J. F.	. .71,286		71,464	Bushong, R. M.	. 71,446	Chamberlin, J. A.	.71,383
Boardman, W. P.,	. 70,609		71,465	Bussard, R. W.	. .71,487	Chan, S. P.	.71,285
Bobbitt, P. J.	. .71,530	Briggs, R. E.	.70,470	Butler, G., Jr.	.70,271	Chandra, S .	.71,356

[^25]| Author | Entry | Author | Entry | Author | Entry | Author | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chandrasekhar, S. | .70,710 | Cole, K. D. | .71,665 | Cummings, R. L. | .70,209 | Dehnew, H . | 70,666 |
| Chapman, A. J. | .71,646 | | 71,667 | Cunningham, F. G. | .71,177 | de Jager, C. | .71,927 |
| Chapman, C. R. | .70,754 | Cole, P. T. | 70,118 | Curkendall, D. W. | .70,460 | | 71,958 |
| Chapman, H. D. | .71,386 | Cole, R. W. | .71,306 | | 71,053 | Delbouille, L. | .71,944 |
| Chapman, M. C. | .71,932 | Coleman, P. J., Jr | .70,694 | Curtis, H. | .71,700 | Del Duca, M. G. | .70,390 |
| Chapman, S . | .70,088 | | 71,634 | Cutteridge, O. P. D. | .70,489 | Delie, A. | .71,291 |
| | 71,018 | Collins, D. F., Jr. | .71,415 | Cutting, E. | .71,760 | | 71,293 |
| | 71,367 | Collins, W. E. | .70,199 | Cuttitta, F. | .71,594 | De Mastry, J. A. | 71,451 |
| Charvin, P. | .71,180 | Colombo, G. | .70,525 | Cybulski, R. | .70,124 | Demetriades, S. T. | .70,386 |
| | 71,317 | Colyer, D. B. | .70,211 | Czamanske, G. K. | .70,891 | Demin, V. G. | .70,790 |
| Chase, H. B. | .71,277 | Compton, D. L | 71,240 | Czarnecki, E. G. | .70,465 | de Mocskonyi, E. S. | .71,004 |
| Chase, J. W. | .70,891 | Conklin, J. E. | .71,042 | | | Demoret, R. B. | .70,878 |
| Chase, S. C. | .71,632 | Conner, J. A. | .70,397 | Dachille, F. | .71,715 | Demshki, R. J. | 71,582 |
| Chazen, M. L. | .70,899 | Conner, | 71,227 71855 | Dale, S. H. | .70,773 | Denholm, A. S. | $.70,804$ |
| Chen, S.-Y. - | .70,002 | Conrath. B. J. | 71,855 $.71,763$ | Dalgarno, A. | .71,987 | Denny, J. M | |
| Cheng, H. K. | .71,388 | Conrath, B. J. | .71,763 $\mathbf{7 1 , 9 7 5}$ | Dalkey, N. C. | .70,354 | Deprit, A. | $\begin{aligned} & 70,548 \\ & .71,291 \end{aligned}$ |
| Cheng, S.-I. | .70,936 | Cook, G. E. | .71,498 | Dalton, C. C. | .70,876 | | 71,292 |
| Cherecwich, P. | .70,251 | Cook, G. E. | -71,757 | Daniel, R. R. | .70,978 | | 71,293 |
| Chertoprud, V. E. | .71,916 | Cooper, R. S. | .70,028 | Daniels, F. B. . | .70,837 | | 71,294 |
| Chevalier, H. L. | .70,320 | Cooper, T. D. | .71,447 | Danielson, R. E. | .70,582 | | 71,295 |
| Childs, C. B. | .71,300 | Copeland, J. | .71,633 | Danileiko, V. I. | . 70,935 | Derblom, H. | .70,627 |
| Chistyakov, V. F. | .70,886 | Coppinger, L. L. | .71,570 | Danilov, A. D. | .70,909 | Desai, U. D. | .70,854 |
| Christensen, F. E. | .71,974 | Corbett, H. H. | .71,638 | Danner, J. | 70,856 | DeSanto, G. | .70,155 |
| Christiansen, W. N. | .71,525 | Corbett, L. .. | .71,309 | Das Gupta, M. K. | 71,179 | Dessler, A. J. | 70,553 |
| Christophe-Glaume, | .71,369 | Corcoran, D. M. | .71,379 | Davenport, P. B. | 71,087 | Deutsch, R. W. | .71,483 |
| Chubb, T. A. | .72,015 | Corcuff, Y. | .71,234 | David, H. | 70,166 | Devadas, P. . | 70,744 |
| Ciccolella, D. F. | .71,934 | Cord, J. M. | 70,449 | | 70,447 | Devanathan, C. | 71,375 |
| Cicolani, L. S. | .71,861 | Cordero, J. | .71,600 | Davidson, J. R. . . | .70,774 | de Vaucouleurs, G. | .71,949 |
| Cigich, E. B. | .70,895 | Corliss, C. H. | .70,461 | | $\begin{array}{r} 70,965 \\ 70.053 \end{array}$ | Devereaux, H. L. | .70,614 |
| Cladis, J. B. | .70,692 | Corliss, W. R. | 70,181 | Da | $\begin{array}{r} .70,053 \\ 71,536 \end{array}$ | Dews, E. | 70,643 |
| Clarke, V. C., Jr. | .70,927 | | 70,206 71262 | Davies, H. | 71,547 | DeZur, R. S. | 71,336 |
| | 71,232 | Cornille, H | 71,262 71957 | Davies, J. G. | . 70,671 | Dicke, R. H. | 70,061 |
| | 71,442 | Cornish, Cory H | 71,957
 71,407 | Davies, K. . | 70,438 | | 70,981 |
| | 71,822 | Cory, H.
 Courtès | .71,407 | Davies, W. O. | .71,437 | Dickieson, A. C. | 71,966 |
| | 72,011 | Covington | | Davis, D. B. | .70,591 | Diederich, F. W. | 71,600 |
| Claus, A. J. | 72,012 70,486 | Cowan, L. W. | .71,838 | Davis, G. | .70,955 | Diedrich, J. H. | .70,221 |
| Clauss, F. J. | . 71,346 | Cox, H. L. | . .71,285 | Davis, H. L. | .71,082 | Dierssen, G. H. | 70,272 |
| Claxton, B. H. | .70,784 | Coyle, G. G. | .70,296 | | 71,510 | | |
| Cleaves, H. F. | .71,951 | Coyne, G. V. | 70,534 | Da | | Dirac P | $\begin{aligned} & 71,485 \\ & 70,096 \end{aligned}$ |
| | 71,701 | | 71,552 | | $.71,457$ $.71,086$ | Dittman, B. F. | .70,205 |
| Clemence, G. M. | .70,604 | Craig, A. J. . . | .70,515 | Davis, J. L., Jr. | . .70,283 | Divita, E. L. . | 70,567 |
| Clemens, P | 71,055 $.71,203$ | Cramblit, D. C. Cranford, W. . | . .71,040 | Davis, L., Jr. Davis, L. R. | $.70,283$ $.70,855$ | Dix, R. W. . | . $\mathrm{.71,148}$ |
| Click, H. F. | . 71,058 | Crary, J. H. | . .70,557 | | 71,368 | Dixon, T. P. | .71,022 |
| Cline, T. L. | . 70,854 | Craven, J. D. | . .71,995 | Davison, W. R. | .70,669 | Dizer, M. | .71,370 |
| Clinger, E. C. | .70,399 | Creasey, F. E. | . .70,209 | Dawe, J. A. | .70,292 | Dluzhnevskaya, O | .70,759 |
| Clough, N . | . 70,222 | Crocker, A. R. | . .70,428 | Day, R. E. | 71,256 | Dobson, W. F. | .70,633 |
| Cockett, A. T. K. | .71,252 | Croome, A. | . 71,139 | Daye, G. T. | .70,058 | Doerr, F. .. | .71,613 |
| Coe, C. S. | . 70,680 | Crouch, W. H., Jr. | .70,385 | Dayman, B., Jr. | .71,259 | Dolder, F. P. | .70,795 |
| Coenraads, C. | . 70,804 | Crouchley, J. | .71,643 | Dean, C. F. | .71,001 | Dolginov, Sh. Sh. | .71,422 |
| Coffman, M. L. | . 71,851 | Crowell, J. | . .71,899 | Dearnaley, G. | . .70,988 | Domitz, S. | 71,403 |
| Cohen, A. D. | . .70,213 | Crowther, D. L. | .71,562 | Debus, K. H. | .71,416 | Donahue, T. M. | .70,619 |
| Cohen, H. W. | . 71,174 | Cruikshank, D. P. | . 72,000 | Decker, J. L. | .70,026 | | 71,730 |
| Cohen, W. | . .70,961 | Cuerou, T. R. | . .70,185 | Decker, R.S. | .70,480 | Donn, B. | . 70,373 |
| Cole, D. M. | . .71,248 | Cummings, C. I. | .70,144 | de Feiter, L. D. | . 70,642 | | 71,304 |

[^26]| Author | Entry | Author | Entry | Author | Entry | Author | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dorman, B. L. | .70,421 | Eichelberger, R. J: | .70,115 | Faughnan, B. W. | .70,549 | Fisher, D. E. | .71,067 |
| Dorman, L. L. | .71,322 | Eimer, M. | .71,104 | Faulders, C. R. | .71,217 | Fisher, P. C. | .70,991 |
| Dorosheski, G. | 70,975 | Elford, W. G. | 71,405 | Faulkner, A. H. | .70,656 | Fitch, F. W. | .71,009 |
| Doshay, I. | .70,398 | Elliot, D. G. | .70,676 | Faulkner, D. J. | .70,845 | Flatley, T. W. | .70,870 |
| Dotson, J. | .71,871 | Elliott, D. D. | 71,128 | Fay, J. A. | .70,114 | Flicker, H. | .71,720 |
| Douglas, J. N. | .70,441 | Elliott, R. | .71,830 | Federline, M. F. | .70,870 | Florenskii, K. P. | .71,466 |
| Douglas, W. K. | .71,255 | Ellis, G. R. A. | 70,729 | Fedor, J. V. | .71,261 | Fogarty, L. E. | .70,237 |
| Dowden, R. L. | .71,644 | | 71,791 | Fedorov, E. K. | .71,576 | Fonseca, E. | .71,538 |
| Downhower, W. J. | .70,143 | Ellison, M. A. | 70,858 | Feibelman, F. E. | .70,343 | Fontenot, L. L. | .71,283 |
| Downing, R. G. | .70,548 | Elste, G. | .71,959 | Feitknecht, J. | .71,467 | Forbes, E. . | .70,563 |
| Dragt, A. J. | .70,724 | | 71,960 | Feld, J. | .71,888 | Forcht, B. A. | .71,829 |
| Drinkwater, F. J., III | .70,748 | Engel, K. | 70,745 | Feldman, D. | .70,309 | Forlini, J. B. | .70,178 |
| Droppleman, L. K. | .71,782 | England, W. A. | .70,657 | Felix, B. R. | 70,024 | Forsyth, P. A. | 71,015 |
| Duane, J. T. | . 70,383 | Epstein, A. . . | .70,874 | Fellows, W. S. | .70,522 | | 71,668 |
| Duberg, J. | $.71,727$ 70093 | Epstein, S. | .70,305 | Ferguson, E. E. | .70,908 | Fortier, R. E. | 71,508 |
| Dubin, M. | $\begin{array}{r} .70,903 \\ \mathbf{7 0 , 9 7 7} \end{array}$ | Erdmann, R. C. | . 70,280 | Ferioli, C. P. . | .71,853 | Fortney, R. E. | 71,932 |
| | $\begin{array}{r} 70,977 \\ .70,333 \end{array}$ | Ergott, H. L. . | .70,651 | Fernandez, M. | .71,381 | Forward, R. L. | 70,101 |
| Dubrovein, V. M. | $\begin{array}{r} .70,333 \\ 72,008 \end{array}$ | Erickson, W. C. | .70,636 | Ferrara, J. P. | .70,175 | Foschetti, J. A. | .71,935 |
| Dufay, J. | .70,372 | | | Ferraro, A. J. | .71,331 | Fosdick, G. E. | .70,488 |
| Duff, K. J. | .71,643 | Ermatinger, C. E. | | Ferraro, V. C. A. | .70,435 | | 70,794 |
| DuFresne, E. R. | .71,068 | Escobal, P. R. . | | Fer | .70484 | Foudriat, E. | 70,819 |
| Dukes, W. H. | .71,531 | Escobal, P. K. | . 70,135 | Ferris, G. A. Ferro, J. . | . 71,337 | Fowle, A. | $\begin{array}{r} 71,513 \\ 71,712 \end{array}$ |
| Dungey, J. W. . | . 71,745 | Etkin, B. | .70,011 | Fesenkov, V. G. | .71,688 | Fowler, W. A. | 71,956 |
| Dunham, T., Jr. | .70,575 | Ekin, B. | 71,296 | Feshback, H. . | .71,754 | Foy, W. H., Jr. | . 70,360 |
| Dunkelman, L | $\begin{array}{r} 70,346 \\ 71,105 \end{array}$ | Etter, J. E. | 71,402 | Feucht, R. E. | .70,048 | Fradkin, M. I. | . 70,634 |
| Dunlap, A. K. | .71,444 | Evans, D. C. | .70,926 | Feuerstein, E. | 71,028 | | 71,709 |
| Dusek, H. M. | .70,713 | Evans, D. S. | 70,625 | Fichtel, C. E. | 70,979 | | 71,710 |
| DuVall, B. W. | .70,777 | | 71,270 | | 70,980 | Fralich, R. W. | 71,947 |
| Dvoryashin, A.S. | . .70,859 | Evans, H. E. | .70,870 | | 71,697 | Francis, R. N. | 70,418 |
| Dyce, R. B. | . 71,026 | Evans, J. V. | 70,408 | | 71,698 | Francis, W. E. | 70,724 |
| | 71,123 | | 70,836 | Field, E. C. | 71,366 | Frank, H. A. | 70,412 |
| Dye, D. L. | .70.271 | | 71,077 | Field, G. B. | .70,466 | Frank, L. A. | 70,602 |
| | 71,880 | | 71,079 | Fielder, G. | .70,138 | | 71,125 |
| Dzilvelis, A. A. | .71,265 | Evans, J. W. | .70,867 | | 70,833 | | 71,127 |
| | | Evans, M. | .70,592 | | 70,834 | | 71,631 |
| | | Evans, R. L. | .71,035 | | 71,039 | | 71,994 |
| Early, L. B. | $\begin{array}{r} \text {. } 70,643 \\ \text {. } 70,782 \end{array}$ | | 71,378 71,095 | | 71,904 | | $\begin{array}{r}71,995 \\ \hline 70,652\end{array}$ |
| Eckard, L. D., Jr. | . 71,218 | Evans, W. J. Ewart, D. G. | 71,095 $.71,096$ | Filipovich, O. P. | 70,325 | Frank-Kamenetskii, | 70,652 |
| Eckel, K. | .70,323 | Ewart, D. | | Fimple, W. R. | $.70,594$ 71617 | D. A. | .70,982 |
| Eckman, P. K. | .70,143 | Ezer, D. . | . 70,577 | | 71,617 71,140 | Fraser, B. J. | .70,415 |
| Edelberg, S. ... | $\begin{array}{r}.70,814 \\ 70,818 \\ \hline .70187\end{array}$ | Ezer, D. | 70,578 | Finday, J. W. | $.71,140$ $.70,897$ | Freden, S. C. .- | .71,128 |
| Edelen, D. G. B. | .70,818 | | $70,579$ | Findley, R. | $\begin{array}{r}.70,897 \\ \hline 70,478\end{array}$ | Fredendall, G. L. | .70,645 |
| Edmond, J. J. | .70,187 | | 71,954 | Finger, H. B. | .70,478 | Fredriksson, K. . | .71,458 |
| Edmonson, N . | .71,914 | | 71,954 | | 71,484 | | 71,459 |
| Edwards, D. K. | . .70,224 | | | Fink, D. E. | 70,363 | Freeman, D. J. | .70,257 |
| Efimov, O. N. | . .70,716 | Faget, M. A. | . .70,142 | Finke, R. C. | .70,125 | Freeman, R. S. | .70,997 |
| | 70,863 | | 71,401 | Finkelman, E. M. | .70,429 | Freier, P. S. | .71,696 |
| Efremov, A. I. | . 70,716 | Falwell, R. C. | .70,995 | Fireman, E. L. | .70,552 | | 71,706 |
| | 70,863 | Faragher, W. E. | . .70,459 | Firstman, S. I. | .71,794 | Friedland, S. S. | .70,989 |
| Eggleston, J. M. | .70,168 | Farber, M. | .71,425 | Fischbeck, K. H. | . .70,644 | Friedlander, A. L. | .70,157 |
| Egorova, A. V. | .71,501 | Farkas, L. | .70,475 | Fischell, R. E. | . .71,172 | Friedlander, M. W. | . 71,320 |
| Ehmann, W. D. | . .71,066 | Farley, D. T., Jr. | . .70,685 | | 71,173 | Friedman, H. | .71,106 |
| Ehmert, A. | . .70,700 | | 71,133 | Fish, R. A. | . .70,172 | | 72,015 |
| Elhricke, K. A. | .71,440 | Farthing, E. D. | . .70,738 | Fisher, D. | .70,789 | Frink, A. M., Jr. | .70,501 |

[^27]| Author | Entry | Author | Entry | Author | Entry | Author | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fritz, S. | .71,842 | Giacconi, R. | .71,238 | Gorman, H. A. | 70,954 | Haave, C. R. | 71,136 |
| Frost, K. J. | .71,584 | Gibbons, F. L. | .71,914 | Gossard, U. H. | .70,340 | | 71,137 |
| Fuhs, A. E. | .70,232 | Gibbons, J. H. | .70,984 | Gould, R. G. | .70,035 | Hablanian, M. H. | .70,423 |
| Fuller, D. E. | .70,242 | Gibson, J. E. | .71,637 | | 70,045 | Hackman, R. J. | 70,838 |
| Fussell, W. B. | .71,302 | | 71,638 | Gouse, S. W., Jr. | 70,110 | Haddock, F. T. | 70,763 |
| | 71,303 | Gibson, W. A. | .71,913 | Gowdy, R. | .71,458 | Hagen, K. G. | 70,807 |
| | 71,684 | Gicca, F. A. | .70,586 | Graham, K. W. T. | .70,696 | Hagg, E. L. | .71,979 |
| | | Giese, R. H. | .71,771 | Granan, J. R. | .70,047 | Haig, C. R., Jr. | 71,439 |
| | | Giffen, C. H. | .70,262 | Grant, C. R. | .71,638 | Hake, E. A. . | 70,309 |
| Gabbe, J. D. . ${ }^{\text {Gabuniya, L. L. }}$ | $.71,225$ $.71,708$ | Gignoux, D. Gilkey, K. J. | $.70,210$ $.71,080$ | Grashchenko, S. M. | 71,892 70,335 | Hakura, Y. . . | 71,756 |
| Gade, D. W. . | .70,893 | Gilkey, K. J. Gilruth, R. R. | . 71,080 | Graveline, D. E. | 70,335 71,639 | Halajian, J. D. | 71,165 |
| Gaertner, W. W. | .70,679 | Gilvarry, J. J. | .71,043 | | 71,639 70,499 | Hales, A. L. | 70,696 70,054 |
| Gaizauskas, V. | .70,285 | Gindilis, L. M. | .71,741 | Graybiel, A. | .70,167 | Hall, | 2 |
| Gallagher, H. E. | .71,402 | Ginzburg, M. A. | .70,528 | | 70,198 | Hall, J. E. | |
| Gallant, R. L. C. | .71,071 | Ginzburg, V.L. | .71,522 | | 70,199 | Hall, J. E.
 Hall, W. F. | $\begin{aligned} & 71,457 \\ & 71,835 \end{aligned}$ |
| Gallet, R. M. | .70,432 | | 70,634 | Graziano, E. | 71,969 | Halpern, L | |
| Galperin, Y. I. | .71,669 | Giumarro, C. | .70,955 | Graziano, E. E. | 71,385 | Halpern, L | -71,089 |
| Gandolfo, D. A. | .71,720 | Glaser, A. H. | .71,974 | | 71,390 | Hamilton, A. F. | |
| Gapcynski, J. P. | .71,820 | Glaser, P. F. | .71,858 | | 71,875 | Hamilton, A. F. Hamilton T W | $\begin{aligned} & 70,874 \\ & 709 \end{aligned}$ |
| Garazha, V. I. | .70,840 | Glaser, P. R. | .70,730 | Grebenikov, E. A. | .70,630 | | $\begin{array}{r} 70,927 \\ 71,232 \end{array}$ |
| Garber, A. M. | .71,450 | Glass, F. M. | .71,913 | Greco, R. V. | .71,263 | | 71,232 72,011 |
| Gardner, L. B. | .70,396 | Glassburn, C. W | .70,319 | Green, A. C. | .71,855 | | 72,011 72,012 |
| Garrick, I. E. | .71,532 | Glasser, S. P. | .71,314 | Green, C. J. | .71,606 | Hamza, V. | 70,063 |
| Garriott, O. K. | .70,077 | Gledhill, J. A. | .71,032 | Green, J. | .71,817 | Hanel, R. A. | 71,763 |
| Garstang, R. H. | .70,292 | Gliddon, J. E. C. | .70,687 | Green, J. S. . | 71,691 | | 71,840 |
| Gary, B. L. | .70,444 | | 70,688 | Green, P. E., Jr | 70,809 | Hankey, W. L., | 71,890 |
| Gast, P. W. | .70,173 | | 71,348 | Greenberg, A. | 1,816 | Hannah, M. E. | .71,089 |
| Gates, C. R. | .71,760 | Godbey, T. W. | .70,422 | Greenhow, J. S. | 71,736 | Hansen, C. F. | 70,931 |
| Gault, D. E. | .71,834 | Goedeke, A. D | 71,874 | Greenland, L. | | Hansen, R. T. | 71,925 |
| Gaumer, R. E. | .70,066 | Gökdogan, N. | 70,566 | Greenland, L. P. | $.71,201$ $.71,601$ | Hanson, H. . | 70,426 |
| Gautschi, T. F. | .71,822 | Gold, T. | .70,448 | Greenshields, D. Grench, H. A. | $\begin{array}{r} .71,601 \\ .70,991 \end{array}$ | Hapke, B. W. | 70,266 |
| Gay, A. C. | .70,644 | | 70,705 | Grench, H. A. | $\begin{array}{r} .70,991 \\ .70,216 \end{array}$ | | 71,556 |
| Gazenko, O. G. | .70,020 | Goldberg, L. | .70,882 | Grether, W. | 71,214 | Happ, W. W. | .71,390 |
| | 70,021 | Goldburg, A. | 70,114 | | $.70,272$ | Harang, L. | 71,406 |
| | 71,656 | Goldstein, H. S. | .70,331 | | | Harmon, W. L. | .71,080 |
| Gear, A. E. | .71,162 | | 71,085 | | $.71,596$ | Harrington, V. L. | 70,348 |
| Gebel, R. K. H. | .71,211 | Goldstein, R. M. | .70,607 | Gringauz, | .71,729 | Harris, I. | 70,599 |
| Gebhart, B. | .71,641 | | 71,635 | Grodzovsky, G. L. | 70,311 | Harris, J. E. | .70,950 |
| Gehl, M. A. | .71,963 | Goles, G. G. | .70,172 | Gros, C. G. | .71,827 | Harrison, E. F. | .70,263 |
| Gehring, J. W. | .70,115 | Goloborodko, T. A. | .71,680 | | .71,032 | Hart, E. M. | .70,065 |
| Geiger, K. A. | .71,723 | Golton, E. | .70,674 | Grunzke, M. E. | .71,253 | Hart, E. M. . . . | 70,065 |
| Geiss, J. | .70,768 | | 71,160 | Gualtierotti, T | .71,866 | Hartmann, W. K. | .70,922 |
| Geissler, E. D. | . 71,281 | Gonzalez, V. | 71,409 | Gudzenko, L. I. | .71,916 | | 71,229 |
| Genin, A. M. | .70,020 | | 71,786 | Guedry, F. E. . | . 70,198 | | 72,001 |
| Gentile, R. G. | .70,081 | Goodell, R. S. | .70,647 | | 70,199 | Hartung, R. M. | 71,793 70,091 |
| Germain, C. . | . 71,433 | | 70,648 | Guerin, P. | . .71,435 | Hartz, T. R. | .70,091 |
| Gerson, N. C. | . .70,340 | Goodman, J. W. | . 70,826 | Gummel, H. K. | . .71,561 | Haskin, L. | 71,963 |
| Gersten, R. H. | . 71,551 | Gopal Rao, M. S. V | . 70,811 | Gurney, R. D. | .70,425 | Haslam, C. G. T | .70,671 |
| Gervais, R. L. | . 70,358 | Gorchakov, Ye. V. | . 70,913 | Gurovskii, N. N. | . .70,336 | Hastings, E. C., | 71,349 |
| | 71,482 | | 70,914 | Gursky, H. | . 71,238 | Hattore, A. | .71,824 |
| Getler, M. | . .70,231 | Gorchyakov, E. V. | .71,628 | Gurzi, F. | .70,656 | Haubert, A. | .71,740 |
| Getmantsev, G. G | . .71,319 | Gordon, F. | . .70,644 | Guss, D. E. | . .70,979 | Haury, P. T. | 71,721 |
| | 71,522 | Gordon, R. W. | . 70,894 | | 71,698 | Haviland, J. K. | .71,829 |
| | 71,702 | Gordon, T. J. | . 71,550 | Guyton, B. | . .71,806 | Haviland, R. P. | .70,601 |
| Gex, R. C. | .71,509 | Gorelova, M. V. | .71,941 | Gyurdzhian, A. A. | 71,711 | | 71,299 |

[^28]| Author | Entry | Author | Entry | Author | Entry | Author | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Havill, C. D. | 71,854 | Hills, H. K. | .71,631 | Howard, W. R. | 71,725 | Iuganov, E. M. | 70,336 |
| Hawkes, R. | .70,622 | Hilton, J. L. | .71,084 | Howe, R. M. | 70,237 | Ivanov, Iu. N. | 71,212 |
| Hawkins, G. S. | .71,202 | Hinds, G. | .71,151 | Hower, G. L. | 70,968 | Ivanov, M. A. | 70,863 |
| | 71,833 | Hines, C. O. | .71,746 | Hoyle, F. | 70,100 | Ivanov, V. I. | 71,673 |
| Hayakawa, S. | .70,051 | Hintenberger, H . | .71,064 | | 70,719 | Ivanov-Kholodny | .71,671 |
| Hayes, R. J. . | .70,033 | Hinteregger, H. E. | 70,410 | Hritzay, D. | .71,445 | Izsak, I. G. 71,503 | |
| Hayre, H. S. | .70,265 | | 70,904 | Hrušková, F. | 70,439 | | |
| Heacock, R. L. | .70,121 | | 71,178 | Hrycak, P. | 71,159 | Jacchia, L. G. | 71,094 |
| Headrick, R. E. | .70,162 | Hirao, K. | 71,773 | Hsi, H.-K. | .70,207 | Jack, J. R. . . | .71,491 |
| Heartz, R. A. | .70,064 | Hirt, R. C. | .70,971 | Huang, S.-S. | 70,484 | Jackson, C. D. | . 70,683 |
| Heath, A. R., Jr | .70,245 | | 71,685 | | 71,290 | Jackson, H. T., | 71,384 |
| | 70,278 | Hnilicka, M. P. | .71,723 | Hubach, R. A. | .70,431 | Jackson, J. E. | . 70,427 |
| Hédervári, P. | .70,841 | Hodge, J. D. | .71,376 | Hubbard, S. H. | 71,838 | | 71,410 |
| Hedgepeth, J. | .71,533 | Hodge, P. W. | .70,912 | Hudson, R. G. | 70,313 | Jaffe | 70,972 |
| Hegarty, D. M. | .71,480 | Hodgson, R. G. | .70,824 | Huebner, D. F. | 71,896 | Jaffe, L. D. | 71,057 |
| Heisler, L. H. | .70,405 | | 71,655 | Huff, V. N. | 70,633 | | 71,587 |
| | 71,735 | Hoffman, D. H. | 70,344 | Hughes, E. L. | .70,656 | | 71,828 |
| Heizman, C. | .70,679 | Hoffman, E. L. | .70,938 | Hughes, M. P. | 71,942 | Jaffe, P. | 70,236 |
| Helliwell, R. A. | .71,235 | Hoffman, R. A. | .70,603 | Hughes, V. A. | .70,227 | Jakubski, Z. | . .71,311 |
| Hellman, A. | .70,058 | | 70,855 | Huie, J. A. | .70,195 | | 71,466 |
| Helvey, W. M. | .70,400 | | 71,368 | Hull, N. T. | .71,604 | James, R. | 71,868 |
| Hendel, F. J. | .70,994 | Hogbom, J. A. | 71,525 | Hultqvist, B. | .70,091 | James, T. G. | . .71,876 |
| Henderson, W. P. | .71,012 | Hogg, H. S. | .71,062 | Hunsucker, R. D. | 70,060 | Janes, G. S. | .71,871 |
| Hengeveld, D. H. | .70,521 | Hohmann, B. A. | .71,456 | Hunt, D. C. | .71,011 | Janos, J. J. | .71,981 |
| Hennigan, T. J. | .70,500 | Hohmann, R. E. | .70,683 | Hunten, D. M. | .70,953 | Jansen, W. | .71,486 |
| Henninger, J. H. | . 71,303 | Holahan, J. | .70,040 | | 71,988 | Jarrett, A. H. | .70,880 |
| Henrich, L. R. . . . | .70,089 | | 70,379 | Hunter, M. W., Jr. | .71,190 | Jean, A. G. | .70,557 |
| | 71,753 | | 70,945 | Hurlburt, H. M. | . 70,823 | Jenkins, A. W., | .70,777 |
| Henry, J. C. | .70,446 | Holdstein, H. S. | .70,762 | Hurley, J. . | .71,052 | Jenkins, E. B. | .70,554 |
| Heppner, J. P. | .70,693 | Holland, J. W. | $.70,315$ | Hurwicz, H. | .71,598 | Jerozal, F. A. | .71,302 |
| | 71,006 | Hollingsworth, R. T | $.71,724$ | | 71,600 70,699 | | 71,684 |
| Heroux, L. | .71,583 | Hollister, W. | .71,361 | Hurwitz, L. | $\begin{array}{r}\text { 70,699 } \\ \hline 70,343\end{array}$ | Johnson, B. A. | .71,337 |
| Herriman, A. G. | .70,798 | Holly, F. E. | .71,227 | Huse, P. C. | .70,343 | Johnson, C. F. . | .71,913 |
| | 71,504 | Holmes, D. G. | .70,519 | Huston, W. B. . | . 71,221 | Johnson, D. R. | .71,417 |
| Herring, A. K. | .70,137 | Holt, O. | .70,091 | Hutchison, P. T. | 71,764 | Johnson, D. S. | .70,260 |
| | 70,740 | Honaker, W. C. | .71,719 | Hyder, C. | | | 71,835 |
| | 71,421 | Hones, E. W., Jr | .71,573 | Hynek, D. P. 70,727 | | Johnson, F. S. | .70,598 |
| Herzog, R. | . 71,952 | | 71,749 | | | Johnson, G. W. | .71,432 |
| Herzog, R. F. K. | .71,192 | Hönl, H. | . .70,666 | | | Johnson, H. I. | . 71,358 |
| Hess, W. H. | . 70,008 | Hook, J. L. | . .70,091 | Iakubov, B. A. | .70,336 | Johnson, L. | .70,898 |
| Hess, W. N. | .70,219 | | 70,675 | Iazdovskii, V. I. | .70,336 | Johnson, P. G. | .70,188 |
| | 70,918 | Hooper, J. W. | . . 70,969 | Iben, I., Jr. | 71,956 | | 70,479 |
| | 70,967 | Hopkinson, E. C. | . .71,024 | Idlis, G. M. | .71,231 | | 70,788 |
| | 70,970 | Hopko, R. N. . | . .70,001 | | 71,624 | Johnson, R. L. | .70,134 |
| | 71,131 | Hord, R. A. | . .71,221 | Ilina, S. S. | .70,023 | Johnson, R. W. | .71,441 |
| | 71,132 | Horowitz, N. H. | . .71,351 | Imhof, W. L. | .71,121 | Jolley, C. E. | .71,199 |
| | 71,520 | Horowitz, S. | . .71,123 | | 71,126 | Jones, A. V. | .71,648 |
| | 71,625 | Hoshizaki, H. | .70,111 | Inada, T. | .70,984 | Jones, D. E. | .71,633 |
| Hey, J. S. | . .71,328 | Hostetler, R. L. | . .71,855 | Ingham, M. F. | .70,611 | Jones, E. S. O. | .70,433 |
| Hibberd, F. H. | .70,129 | Hotinli, M. | . .70,566 | | 70,612 | Jones, E. W. | .70,334 |
| Hidalgo, H . | . .70,932 | Houbolt, J. C. | . .71,424 | | 71,692 | Jones, F. S. | .70,289 |
| Higgins, C. S. | . 70,440 | House, C. M. | . .71,299 | Ingrao, H. C. | .71,258 | Jones, J. B. . | .71,973 |
| | 71,792 | House, L. L. | . .71,565 | Irwin, K. | .71,360 | Jones, R. T. | .71,534 |
| Hill, H. H. | . 71,227 | Houtgast, J. | . .70,605 | Ishizaki, M. | .70,933 | Jones, W. B. | .70,432 |
| Hill, $\mathrm{N} . \mathrm{W}$. | . 71,913 | | 71,948 | | 70,934 | Jones, W. W. | . 71,837 |
| Hill, P. R. | .70,957 | Howard, W. E., III | . .70,763 | Ishizawa, K. | .71,774 | Jonsson, V. K. | .70,220 |

[^29]| Author | Entry | Author | Entry | Author | Entry | Author | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jordan, H. W. | 70,058 | Kerzon, W. J. | 71,001 | Kopecký, M. | .70,543 | Kuroda, P. K. | .70,384 |
| Joseph, R. D. | .70,655 | Khabakov, A. V. | .70,835 | | 70,887 | | 70,385 |
| Judge, D. L. | .70,694 | Khastgir, S. R. | .71,776 | Kordylewski, K. | 70,825 | Kurt, V. G. | .70,850 |
| | | Kibby, B. G. | .70,048 | Korenberg, E. B. | 70,333 | Kurzhals, P. R. | .71,267 |
| | | Kiess, C. C. | .70,461 | | 72,008 | Kuvshinoff, B. W. | 71,231 |
| Kadanoff, L. P. | .70,932 | | 71,183 | Kork, J. | 70,259 | | 71,522 |
| Kahalas, S. L. | .71,762 | Kiess, H. K. | .70,461 | Korkan, K. D | 71,021 | Kuzmin, A. D. | .70,925 |
| Kaiser, T. R. | .71,770 | Kiinzel, H. | .70,887 | Koskela, P. E. | 70,290 | | 72,007 |
| Kakinuma, T, | .70,862 | Kimura, T. | .70,097 | Kosmo, J. J. . | 71,144 | Kuzmin, A. I. | 71,322 |
| Kaliszewski, T. | .70,767 | King, J. W. | .71,609 | Kotadia, K. M. | .70,090 | | |
| | 71,518 | King-Hele, D. G | .71,622 | | 71,354 | Lacy, L. | 70,546 |
| Kallmann-Bijl, H. K. | .70,328 | King Hele, D. G. | 71,757 | Kotanchik, J. N. | 71,601 | Lady, L. I | .70,546 |
| Kalter, S. S | . 70,058 | | 71,992 | | 71,602 | LaGow, H. E. | .71,470 |
| Kamiyama, H. | 70,613 | Kipp, E. W. | 70,498 | Kotelnikov, V. A. | 70,333 | Laidlaw, W. R. | 71,581 |
| Kane, J. A. | .70,427 | Kislik, M. D. | 70,333 | | 71,630 | Laird, M. J. . . | 71,016 |
| Kang, G. | .71,019 | | 72,008 | | 72,008 | Laloë, F. . | 71,740 |
| Kaplan, L. D. | .71,632 | Kislyakov, A. G. | 70,925 | Kotnik, J. T. | 70,124 | Lambert, P. V. | 71,311 |
| Kaprielyan, S. P. | .70,402 | Klahn, R. | .71,653 | Kovacik, V. P. | 70,282 | Lamorte, M. F. | 70,274 |
| Karabin, M. | .71,778 | Klass, P. J. | .71,020 | Koval, I. K. | $\begin{array}{r}70,759 \\ \hline 11673\end{array}$ | Lander, J. J. . | 70,805 |
| Karplus, R. | .70,724 | Kleczek, J. | .71,925 | Kovalev, E. E. | 71,673 | Landmark, B. | .70,091 |
| Karzas, W. J. | .70,420 | Kleiger, L. B. | .70,672 | | 71,883 70793 | Lang, R...... | .70,561 |
| Kash, S. W. | .71,167 | Kloster, R. L. | .71,122 | Kovalevsky | .70,793 | Langenecker, B. | .71,059 |
| Kasian, I. I. | .70,336 | Klozenberg, J. P. | .70,677 | Kovit, B. | | Langfeld, P. G. | .70,357 |
| Kassner, R. R. | . 70,351 | Knapp, D. G. | . 70,699 | | 71,418 $.70,193$ | Langley, R. A. | .70,969 |
| Kasten, D. F. | . 71,254 | Knecht, R. W. | .71,410 | Kozai, Y. | $\begin{array}{r} 70,193 \\ 70,353 \end{array}$ | Lanza, G. | .71,028 |
| | 71,539 | | 71,610 | | $\begin{aligned} & 70,353 \\ & 71,09 \end{aligned}$ | Large, M. I. | .70,671 |
| Katasev, L. A. | . 71,844 | Knezek, R. A. | .71,945 | | 7,091 $.70,004$ | Larsen, S. H. H. | .70,628 |
| Kato, S. | . 70,910 | Kniffen, D. A. | . 70,980 | Krassner, G. | $.70,004$ 70,043 | Larson, T. J. | .71,237 |
| Katz, L. | .71,118 | Knight, D. C. | . 70,649 | | 70,044 | Latter, R. ... | .70,420 |
| Katzenstein, H. S. | .70,989 | Knighton, D. | . 71,512 | | 70,093 | Latto, W. T., Jr. | .71,545 |
| Katzoff, S. | .71,968 | Knighton, D. . ${ }^{\text {Knollman, }}$ C. | +.71,614 | | 70,093 $.70,616$ | Latva, J. D. | .71,449 |
| Kaufmann, R. | .70,695 | Knox, F. B. . . | (70,678 | Krassovsky, V.1. | $.70,616$ 71,986 | Laughlin, C. D. | .70,602 |
| Kaufmann, R. L. | .70,967 | Knox, F. B. | $.70,678$ $.71,460$ | | 71,986 | Lauter, E. A. | 70,857 |
| Kaula, W. M. | .70,820 | Knox, R., Jr. | 71,460 70,987 | Kraus, J. D. | .70,256 | Lautman, D. A. | .70,525 |
| Kaye, J. | .70,110 | Kochanski, A. | . 70,987 | Krebs, R. P. . . . | . 70,223 | Lauxen, C. | .71,002 |
| Kaye, S. | .70,273 | Koelbloed, D. | 71,948 | Kreiselmaier, K. W | .70,413 | Lavelle, J. | . 70,804 |
| Keenan, R. K. | .70,037 | Koelle, H. H. | .70,570 | Krieger, F. J. | .71,155 | Lavender, R. E. | .71,808 |
| Keirim-Markus, I. B | . 71,673 | Koerner, W. | 70,136 | Krishnamurthy, B | .71,737 | Lavery, J. | .70,191 |
| | 71,883 | Kolcum, E. H. | . .70,151 | Krishnan, T. | .71,939 | Lawrence, H. R. | 70,144 |
| Keith, J. E. | .70,388 | | 70,326 | Krivský, L. | . 71,930 | Lawrence, J. D., J | .70,810 |
| Kelble, J. M. | .71,448 | | 70,569 | Krotikov, V. D. | .71,474 | Lawrence, L., Jr. | .71,048 |
| Keller, J. W. | .70,546 | | 72,004 | Krstansky, J. J. | .70,036 | | 71,429 |
| | 71,907 | Kolder, H. | 70,007 | Krumbein, A. D. | . .71,909 | Lawrie, J. A. | .71,371 |
| Kelley, H. J. | .70,102 | Kolyer, R. C. | .70,024 | Kruszewski, E. T. | . . 71,947 | Leach, R. . . | .70,593 |
| Kellogg, P. J. | .71,996 | Kondratyev, K. Ya. | .70,325 | Kueser, P. E. | . . 71,603 | Leach, R. F. | .71,135 |
| Kelly, T. J. . | .71,819 | Kondratyeva, M. A. | .70,621 | Kuhne, C. . . | . .71,526 | Leadbetter, S. A. | .70,736 |
| Kemp, R. F. | $.70,721$ 70084 | Kondurar', V. T. . | .70,629 | Kuiper, G. | .70,869 | | 71,279 |
| Kendall, P. C. | $.70,084$ 70888 | Konecci, E. B. . | .70,008 | Kuleshova, K. F. | .70,884 | Leak, W. R. | . 70,931 |
| | | | 70,364 | Kulkarni, P. V. | .70,797 | Leatherman, B. | .71,028 |
| | 71,748 | König, H. | .71,064 | Kumagai, T. T. | .71,500 | Lebeau, A. . . | .71,222 |
| Keonjian, E. | .70,658 | Konovalov, A. I. | .70,336 | Kumpitsch, R. C. | .70,047 | Lebedev, A. A. | .70,716 |
| Keppler, E. | . 70,700 | Kopal, Z. | .70,781 | Kundt, W. | .70,247 | Lebedinskii, A. I. | .70,758 |
| Keralla, J. A. | .70,805 | | 71,681 | Kundu, M. R. | .71,574 | Lebovitz, N. R. | .70,710 |
| Kerfoot, H. P. | .70,066 | | 71,846 | Kurnosova, L. V. | .70,634 | Lecar, M. | .70,327 |
| Kern, J. W. | .71,050 | | 71,867 | | 71,709 | Lederberg, J. | . .70,156 |
| Kerr, F. J. | .70,308 | | 71,868 | | 71,710 | Lederer, S. | .71,373 |

[^30]| Author | Entry | Author | Entry | Author | Entry | Author | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lee, H. S. | .71,331 | Link, F. | 71,789 | Maeda, H. | 70,703 | Maxwell, A. | 1,942 |
| Lee, J. B. | .70,614 | Lipskii, Yu. N. | 70,780 | | 71,175 | May, B. R. | .70,906 |
| Lee, J. P. | .70,418 | Lockwood, D. L. | .70,063 | Maeda, K. | 70,952 | May, J. | .70,440 |
| Lefferts, E. J | .70,360 | | 70,124 | Maehlum, B. | 71,527 | May, J. R. | .70,145 |
| Legalley, D. P | .70,362 | Lockwood, G. E. K. | .71,978 | Magnolia, L. R. | 71,772 | Maybach, W. J | 71,965 |
| Lehner, F. E. | .70,425 | Lockwood, J. A. | .71,704 | Mahajan, K. K. | 71,778 | Maynard, O. E. | 71,494 |
| | 70,513 | | 71,705 | Maiden, C. J. | 70,931 | Mayo, A. P. | .71,089 |
| Lehr, P. E. | .70,057 | Lodi, E. A. | .71,562 | Maienschein, F. | 71,913 | Mazza, G. | 71,865 |
| Leinbach, H. | .70,091 | Loeffler, I. J | 70,222 | Malitson, H. H. | 71,560 | McArthur, G. L | .70,310 |
| | 71,026 | Logachev, V. I. | 70,634 | Malville, J. M. | 70,551 | McCabe, W. M. | 70,813 |
| Leiphart, J. P. | .71,407 | Logachev, V.I. | 71,709 | Mamikunian, G. | 70,772 | McCall, G. J. H. | .70,536 |
| Leitmann, G. | 70,321 | Loh, W. H | 70,010 | | 71,463 | | 71,420 |
| Leitz, F. B. | .70,081 | Lokanadham, B. | .71,063 | Manasek, F. J | 70,741 | McCally, M. | 70,335 |
| Leondes, C. | $.70,947$ 70 | Lomonaco, T. . | . 71,251 | | 71,797 | | 71,639 70,378 |
| | 70,948 $.70,314$ | | 71,660 | Mandelshtam, Mandelshtam, S | $\begin{array}{r}70,929 \\ \hline 11,955\end{array}$ | McCartney, J. F. | 70,378 |
| Lessor, A. E. | .70,653 | | 71,864 | Mandelstam, S | .70,095 | McClain, E. F. | .70,443 |
| Letounov, S. P. | .70,006 | Longden, G. B. | .71,499 | Mann, D. J. | 71,515 | McClelland, D. H. | .70,281 |
| Lett, P. W. | .71,048 | Loomis, A. A. . . | 70,881 | Mannex, H. R. | .70,037 | McClure, R. B. | .70,244 |
| | 71,429 | Louderback, A. L. | 70,881 | Manson, J. E. | 71,583 | McCormick, H. B. | 71,519 |
| Levene, M. L. | .71,002 | Loughhead, R. E. | 71,590 | Manson, L. | 70,588 | McCormick, J. C. | 71,419 |
| Levin, A. D. | .70,025 | Love, T. A. | 71,913 | Manuel, O. K. | .70,384 | McCoy, F. | 70,804 |
| Levin, B. | .70,469 | Lovering, J. F. | . 71,201 | Margaria, R. | 71,866 | McCracken, K. G. | .70,662 |
| Levin, B. Yu. | .71,687 | | 592 | Markelova, A. A. | .70,830 | McCrosky, R. E. | 70,775 |
| Levin, G. V. | .70,154 | Low, C. A., | . 70,392 | Markov, A. B. | .71,473 | McCullough, F., Jr | .71,606 |
| Levin, L. | .71,598 | Lowe, R | .70,358 | Markov, A. V. | .70,831 | McDaniel, E. W. | .70,969 |
| Levitskii, L. S. | .70,859 | Lowry, R. D. | .71,359 | Markow, E. G. | .71,045 | McDonald, F. B. | 70,854 |
| Levy, C. | .70,679 | Lubin, B. | .70,561 | | 71,428 | McDonald, P. F. | 71,384 |
| Levy, G. | .70,395 | Ludford, G. S | 148 | Markus, G. | .71,482 | McDowell, E. P. | 70,450 |
| Levy, R. H. | .70,113 | Lukyanova | | Marmo, F. F. | 71,110 | McElhoe, B. A. | 70,252 |
| | 71,910 | Lukyanova, L.
 Lundquist, C. A. | | Marochnik, L. S. | .71,686 | McFadden, N. M. | 70,451 |
| Lewis, C. T. | 71,271 | Lundquist, C. A
 Lüst, R | 70,330 | Marshall, R. R. | .70,468 | McGillem, C. D. | 70,445 |
| Lewis, P. | .70,135 | | | | 71,467 | McGinn, J. H. | .71,344 |
| Lianis, G. | .71,283 | | 70,039 | Martens, H. E. | 71,057 | McGuire, F. G. | .70,032 |
| Lichnerowicz, A. | .70,246 | | 70,975 | | 71,828 | | 70,539 |
| Lichtenberg, D. B. | .70,516 | Lvova, T. S. | .70,023 | Martin, D. W | $\begin{array}{r}71,8969 \\ \hline 70,810\end{array}$ | McGuire, J. B. | 71,019 |
| Lidov, M. L. . . . | .70,792 | Lyle, J. P., Jr. | . 70,293 | Martin, J. D. | 70,810 | McIntosh, B. A. | .71,075 |
| Lieber, R. | 70,475 | Lyman, R. . | .70,277 | Martin, | | McIntosh, P. S. | 70,739 |
| Lieberman, S. I. | .70,015 | Lynden-Bell, D. | .70,665 | | | | 70,743 |
| Lieblein, S. | . 70,221 | Lyon, R. J. P. | .70,177 | Martinek, | | | 71,197 |
| | 70,222 | | 70,473 | Martres, M | | McKay, V. A. | 71,913 |
| | 70,223 | | 71,585 | Martynov, | | McKee, H. C. | .71,187 |
| Liemohn, H. B. | . 70,339 | Lyttleton, R. A. | .71,595 | Marvin, | $\begin{aligned} & 70,769 \\ & 70658 \end{aligned}$ | McKenna, S. M. P. | .70,858 |
| Lienesch, J. H. | .70,901 | | 71,681 | Marye, R. B. | $\begin{aligned} & .70,658 \\ & .70,895 \end{aligned}$ | McKinney, A. R. | .71,829 |
| Lietzke, A. F. | .70,188 | | | Mascola, R. E. | .71,598 | McKinnon, R. A. | .70,580 |
| Liller, W. | .71,157 | MacDonald, G. J. F. | 71,716 | Mash, D. R. . | .70,158 | McManamon, P. M. | .70,036 |
| Lillestrand, R. L. | . 71,090 | MacDonald, W. M. | .70,600 | Masley, A. J. | .71,707 | McMillan, J. A. | .70,985 |
| Lilley, A. E. | . .71,633 | | 70,919 | Massey, H. S. H. | .71,783 | McMullen, J. C. | .71,793 |
| Lilliequist, C. G. | .71,920 | | 70,920 | | 71,986 | McNally, D. | .71,567 |
| Lin, W. C. | .71,365 | Mace, L. M. | 71,973 | Mast, L. T. | .71,377 | McNerney, J. D. | .71,529 |
| Lincoln, J. V. | .70,087 | MacKay, J. S. | .70,761 | Mathews, C. W. | .71,495 | Megill, L. R. | .71,782 |
| | 71,756 | | 71,612 | Matthew, R. E. | .71,315 | Megla, G. K. | . 70,734 |
| Lindsay, J. C. | . 70,795 | Mackey, R. J., Jr. | .70,377 | Matthews, R. | .71,938 | Meinel, A. B. | .70,623 |
| Lineberry, E. C., Jr | . .70,819 | Macklin, R. L. | . 70,984 | Mattig, W. | .70,889 | Meineri, G. | .72,013 |
| Ling, S. C. | . .70,268 | MacNaughton, J. D. | . . 71,588 | Mattoni, R. H. | . . . 71,249 | Meisel, D. D. | .70,640 |
| Linhardt, H. D. | .70,239 | Madey, R. | .71,917 | Mawardi, O. K. | . .71,112 | | 70,641 |

[^31]| Author | Entry | Author | Entry | Author | Entry | Author | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Meisenholder, G. W | . 70,495 | Minnett, H. C. | .70,307 | Mullaney, J. E. | .70,560 | Newman, D. B. | .70,505 |
| Melbourne, W. G. | .70,214 | Mitchell, C. A. | .71,580 | Mullikin, T. W. | .70,801 | Newman, J. B. | .70,644 |
| | 71,153 | Mittelman, P. S. | .71,909 | Mullin, C. R. | .70,228 | Ney, E. P. | 71,176 |
| | 71,443 | Mityakov, N. A. | .71,301 | Mullins, P. L. | .70,735 | Nicholls, R. W. | 71,156 |
| Men, A. V. | .70,865 | Mixsell, S. A. . | .71,205 | Mulyarchik, T. M. | .71,991 | Nichols, J. H. | 70,443 |
| Menzel, D. H. | .70,289 | Mixson, J. S. | .70,829 | Muncey, R. W. | .71,905 | Nichols, K. E. | .70,288 |
| | 71,258 | Miyazaki, S. | .71,773 | Münch, G. | .70,494 | Nichols, R. T. | .70,643 |
| Mercure, R. C., Jr. | .70,795 | Modesitt, G. E. | .70,530 | Munick, H. | .70,596 | Nicholson, S. B. | 70,414 |
| Merrick, R. B. | .71,821 | Moe, K. | .70,404 | Munick, R. J. | .70,493 | Nickson, J. J. | .71,877 |
| Merrihue, C. M. | .71,073 | | 70,491 | Murakami, T. | .70,896 | Nicoll, H. E., Jr. | 71,338 |
| Merrill, P. S. | .71,603 | Molitor, J. H. | .70,720 | Murphy, C. G. | .70,584 | Niemi, N. J. | 71,383 |
| Merris, D. K. | .70,576 | M ¢ller, C. | .70,248 | Murray, B. C. | .71,575 | Nikiforov, V. N. | .70,863 |
| Mersman, W. A. | .71,862 | | 71,891 | Murray, S. F. | .70,135 | Nikitskii, N. I. | 70,333 |
| Meszaros, G. W. | .71,934 | Molmud, P. | .70,507 | Murthy, V. R. | .71,074 | | 72,008 |
| Metzger, A. E. | .70,123 | Monaghan, R. | .71,024 | Murty, Y. S. N. | .71,776 | Nininger, H. H. | 71,065 |
| | 70,298 | Monroe, J. E., Jr. | .70,182 | Muscolino, C. J. | .71,542 | Nisbet, J. S. | .71,352 |
| | 70,514 | Monson, 1). S. . | .71,115 | Musen, P. | .71,901 | Nixon, C. W. | 71,640 |
| Metzger, S. | .70,517 | Moody, A. B. | .71,836 | Mushiake, Y. | 70,070 | Noble, L. M. | 70,550 |
| Meyer, A. J. | .71,363 | Moorcroft, D. R. | .71,015 | Mustel, E. R. | 70,660 | | 71,924 |
| Meyer, \mathbf{P}. | 71,324 | Moore, E. P. . . | .71,965 | | 70,849 | Nobles, R. A. | 70,991 |
| Meyer, R. X. | .70,232 | Moore, F. B. | .71,900 | | 71,926 | Noeske, H. O. | 70,351 |
| Meyerott, A. J. | .70,991 | Moore, H. J. | .71,834 | Myers, T. E. | 70,366 | Nordberg, W. | 71,839 |
| Michaels, J. V. | . 71,856 | Moore, J. G. | 71,649 | | | | 71,975 |
| Michelson, I. . | $.70,526$ 70,944 | Moore, P. | 70,338 | Nagamatsu, H. T. | 70,458 | Norling, R. A. | .71,147
 $. .71,343$ |
| | 70,944 | | 70,463 | Nagata, T. | .71,647 | Norman, C. F. | $\begin{array}{r} .71,343 \\ 70,369 \end{array}$ |
| | 71,260 | | 70,742 | Nagler, R. G. | .71,828 | Norman, H. L. Norwood J. M | 70,369 $.71,912$ |
| | 71,549 | | 70,923 | Nakache, F. | .71,909 | Norwood, J. M.
 Notni, P. | 71,912 $.70,638$ |
| Mickelsen, W. R. | 70,852 | | 71,230 | Nakada, M. P. | 71,226 | Notnosad, R. S. | .71,636 |
| | 70,392 71,339 | | 71,420 71,798 | Nakada, P. ... Namazov, S. A. | 70,219 $.71,408$ | Noxon, J. F. . | . 70,003 |
| Mihalov, J. D. | .71,128 | More, K. A. | 71,911 | Namikawa, T. . | . 70,681 | Nupen, W. | 71,887 |
| Mikami, K. | .70,647 | Morgan, H. G. | .71,415 | Naraghi, M. . | . 71,112 | Nussle, R. C. | 71,061 |
| | 70,648 | Morgan, N. E. | .70,205 | Nariai, H. . | . 70,097 | Nyman, A. | 70,964 |
| Mikhailov, A. A. | .71,662 | Moroz, V. I. | .71,695 | | 71,892 | | |
| Mikk, G. | .70,033 | Morozov, V. A. | .70,333 | Narlikar, J. V | .70,100 | Obashev, S. O. | .71,231 |
| Miles, J. R., Sr. | .71,946 | | 72,008 | Nash, D. B. | . 71,423 | Obayashi, T. | . 70,126 |
| Miller, A. C. | .70,444 | Morris, V. B., Jr. | . 71,307 | Naumann, R. | .70,330 | | 71,989 |
| Miller, B. | .70,303 | Morrison, M. R. | .71,932 | Nazarova, T. N. | $.71,693$ | Obery, L. J. | 71,278 |
| | 70,538 | Morrison, R. | .70,327 | Neff, S. H. . . . | .70,626 | O'Brien, B. J. | .70,602 |
| | $\begin{array}{r}71,918 \\ \hline 70445\end{array}$ | Morse, J. G. | .70,540 | Neff, S. H. .. | . $.71,485$ | | 70,853 |
| Miller, B. P. | .70,445 | | 71,511 | Negro, A. G. | . 71,781 | | 71,125 |
| Miller, C. E. | .70,881 | Moskowitz, S. E. | .71,982 | Nelms, G. L. | 71,781 71,259 | | 71,527 |
| Miller, D. E. | .70,038 | Motz, H. T. . . | .71,130 | Nelson, D. A. | $.71,259$ $.70,699$ | | 71,626 |
| Miller, F. D. | .71,689 | Mountjoy, J. C. | .71,235 | Nelson, J. H. | .70,699 | | 71,999 |
| Miller, G. B. | .70,220 | Mowlem, A. R. | .70,359 | Nelson, T. M. | .70,930 | Ochs, G. R. | 71,133 |
| Miller, J. | .70,856 | Mozer, F. S. | .71,128 | Nesmyanovich, | .70,848 | Odencrantz, F. K. | .70,614 |
| Miller, R. A. | . 71,122 | Mrazek, W. A. | .71,060 | Ness, N. F. | 71,006 | Oeschger, H. | .70,768 |
| | 71,879 | Mueller, D. D. | .71,250 | | 71,716 | Ogilvie, K. W. | .70,980 |
| | 71,881 | Mueller, G. | .71,070 | Nesterov, V. E. | .71,701 | | 71,698 |
| Miller, W. | .70,425 | Mueller, G. E. | . 71,305 | Nesterov, V. Ye. | .70,661 | Ohring, G. | .70,155 |
| Millman, P. M. | . 70,467 | Mueller, M. W. | .70,314 | | 70,915 | | 71,436 |
| Mills, R. F. N. | . .71,535 | Mueller, R. F. | .71,461 | Neuffer, B. H. | .71,496 | Okano, F. | .70,170 |
| Minashin, V.P. | . . . 70,333 | Mugglestone, D. | .70,845 | Neugebauer, G. | 71,632 | O'Keefe, J. A. | .71,593 |
| | 72,008 | Muhleman, D. O. | . . .72,005 | Neupert, W. M. | .71,182 | O'Keefe, J. A., III | .70,346 |
| Miner, W. E. | . . .70,487 | Muijtjens, M. J. | . . .70,796 | Neuts, M. F. | .71,311 | Okuda, H. | .70,051 |
| Minnaert, M. | .70,202 | Muldrew, D. B. | . .71,733 | Neven, L. | .71,944 | Okuzawa, T | .70,682 |
| Minneman, M. J. | .70,104 | Mullaly, R. F. | . .71,939 | Newell, H. E. | .70,873 | Ol, A. I. | .71,323 |

[^32]| Author | Entry | Author | Entry | Author | Entry | Author | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Olivarez, J. | .71,800 | Payne, R. B. | .71,878 | Pisarenko, N. F. | .70,661 | Raab, B. | 71,558 |
| Olivier, J. R. | .71,035 | Peabody, P. B. | .70,421 | | 70,915 | Rabe, E. | 70,371 |
| Olling, E. H. | .71,493 | Peabody, P. R. | .70,403 | | 70,916 | Radhakrishnan, V. | .71,523 |
| Olson, E. C. | .70,866 | Peake, H. J. | .70,118 | | 71,321 | Radnofsky, M. I. | .71,144 |
| Omholt, A. | .71,672 | Peattie, C. G. | .70,413 | | 71,701 | Rados, R. M. | 71,971 |
| Ondoh, T. | .70,690 | Peck, D. S. | .71,718 | | 71,884 | Rafel, N . | .70,956 |
| | 70,703 | Pecker, C. | .71,922 | Pisharoty, P. R. | .70,419 | Ragsac, R. V. | 70,718 |
| | 71,175 | Pecker, J.-C. | .70,566 | Pistiner, J. S. | .71,618 | Ragsdale, G. C. | .71,411 |
| Onwumechilli, A. | .71,747 | Peebles, P. J. | .70,981 | Pitteway, M. L. V. | .70,726 | Rahman, M. A. | 70,031 |
| Opfel, J. B. | .70,881 | Peelle, R. W. | .71,913 | Plass, G. N. | .72,003 | | 71,093 |
| Orlova, N. N. | .70,023 | Penndorf, R. | .70,406 | Plattner, C. M. | .70,300 | Ramachandra Rao, B | .71,737 |
| Oró, J. | .71,832 | Penner, S. S. | .70,424 | Platner, C. M. | 70,960 | Ramanathan, A. S. | .71,591 |
| Orr, W. I. | .71,103 | Pennington, J. E. | .71,541 | | 71,056 | Ramke, W. G. | .71,449 |
| Orrall, F. Q. | .70,867 | Penzo, P. A. | .70,454 | | 71,056 70,975 | Rand, S . | .71,030 |
| Ortner, J. | .70,091 | Perkel, H . | .70,644 | Plotkin, S. | 70,716 | Rao, U. R. | .70,662 |
| | 70,700 71645 | Perks, A. F. Perry F C | $.71,759$ $.71,998$ | Podmoshenskii, A. L | 70,716 70,863 | Rapoport, I. D. | .70,621 |
| Osborne, R. S. Osgood, C. . | $.71,645$ $.70,517$ | Perry, F. C. Peters, G. A. | $.71,998$ $.71,580$ | Pohle, F. V. | 70,863 $.70,825$ | Rapoport, V. O. | .71,301 |
| Oster, L. . | .70,559 | Peterson, A. M. | .70,968 | Poirier, J. A. | .71,625 | Rappaport, P. | .71,919 |
| Otten, K. W. | .70,042 | Peterson, M. B. | .70,135 | Pokhunkov, A. A. | 71,785 | Rappaport, P. J. | .70,501 |
| Otto, E. W. | .70,337 | Petit, M. | 70,808 | Pollack, J. L. | .71,000 | Rashis, B. | .70,001 |
| | 70,930 | Petrash, D. A. | .70,337 | Poole, H. G. | .71,554 | Rasool, S. I. | .71,111 |
| | 71,061 | | 70,930 | Poor, J. G. | .71,148 | Rastogi, R | 71,357 |
| Owren, L. | .70,060 | | 71,061 | Pope, J. H. | 71,233 | | 71,357 70,451 |
| | 70,675 | Petrie, L. E. . | 71,977 | Popham, R. W. | .71,841 | Rathert, G. A. | 70,457 |
| Ozkaptan, H. | .71,310 | Petrov, G. M | 70,333 72,008 | Portsevskiy, K. | .71,471 | Rauch, W. T. | 70,122 |
| Ozsváth, I. | .70,666 | | 72,008 | Potter, A. E., Jr. | .71,564 | Rawson, E. G. | .70,953 |
| | | Petrov, V. | .71,481 | Potter, J. A. | 70,055 | Razdan, H . | .71,704 |
| Page, R. J. | .70,393 | Petrovich, G. | . 71,577 | Potter, N. S. | .71,308 | Razda, H . | 71,705 |
| Paghis, I. | .70,291 | Petschek, A. G. | .70,992 | Potter, R. A. | .70,546 | Razorenov, L. A. | .71,709 |
| Pan, W. Y. | .70,896 | Petschek, H. E. | . 70,113 | Pounder, E. | 70,143 | | 71,710 |
| Pankratov, A. K. | .70,859 | | 70,203 | Power, W. H. | 70,081 | Rea, D. G. | 70,800 |
| Paolini, F. R. | .71,238 | Pettengill, G. H. | .70,446 | Powers, E. F | 71,972 | Reader, P. D. | .70,125 |
| Papell, S. S. | .70,108 | | 70,836 | Press, H. | 71,856 | Reagan, J. B. | .70,991 |
| Pardoe, G. K. C. | .70,365 | Pfeiffer, C. G. | .70,927 | Prew, H. E. | 70,505 | | 71,120 |
| Parker, E. N. | .70,704 | | 71,232 | Price, A. T. | 70,092 | Reed, J. C. | 71,199 |
| | 71,923 | | 72,011 | | 70,434 | Rees, J. M. . | 71,757 |
| Parker, J. R. | .71,720 | | 72,012 | Price, J. F. | 71,274 | Rees, M. H. | .70,951 |
| Parker, S. G. | .70,413 | Pfotzer, G. . . | .70,700 | | 71,275 | | 71,782 |
| Parker, W. F. | . 71,713 | Philip, K. W. | . 70,562 | | 71,444 | Reese, E. J. | 70,731 |
| Parsons, W. D. | .71,097 | Phipps, T. E., Jr. | .70,516 | Priester, W. | 71,541 70,599 | Reeves, D. F. | 71,033 $.70,609$ |
| Parvin, R. H. | .70,714 | Picking, J. W. | . 70,302 | | | Reich, A. . . . | 70,506 |
| Pasinetti, A. | . 71,659 | Piddington, J. H. | .70,706 | Prokofev, V. K. | 71,938 71,951 | Reid, J. H. | 70,858 |
| Pasinetti, L. E. | .71,659 | | 70,707 | | 71,192 | Reid, M. | .71,654 |
| Patapoff, M. | .70,618 | Pieper, G. F. | 70,853 | | 71,192 70,286 | Reiger, S. H. | 70,643 |
| Patterson, T. N. L | .70,708 | | 71,124 | | | Reilly, F. N. | .71,023 |
| | 70,905 | | 71,127 | Purcell, E. W | | Reilly, W. J. | .70,180 |
| | 70,907 | | 71,129 | Purdy, D. L. | 70,163 | Reisman, E. | .70,898 |
| Patterson, W., Jr. | .70,027 | | 71,569 | | 70,317 | Reismann, H. | .70,229 |
| Patton, R. M. | .70,451 | Pierce, D. | .70,192 | Purser, P. E. - | 71,401 | Rense, W. A. | .71,219 |
| Paul, B. | . .71,548 | Pierce, D. A. | .70,520 | Pushkov, N. V. | .71,422 | Renwick, G. | .70,955 |
| Paul, E. W. | 70,485 | Pilkington, W. | .70,585 | Pyron, B. O. | .71,614 | Resler, E. L., Jr. | .70,457 |
| Paulikas, G. A. | . .71,128 | Pinckernell, H. | . 70,426 | | | Reynolds, H. H. | . .71,253 |
| Pawlik, E. V. | .70,721 | Pineo, V. C. | .70,727 | Quimby, F. H. | . .70,299 | Rhoades, J. W. | . .71,187 |
| | 71,403 | Pirani, F. A. E. | . 71,758 | Quinn, T. P. | .71,352 | Rice, C. F. . | . 70,118 |

[^33]| Author | Entry | Author | Entry | Author | Entry | Author | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rich, J. C. | .70,301 | Rossa, L. G. | 70,761 | Sanders, N. D. | .71,543 | Schoen, A. H. | 70,973 |
| Richards, P. B. | .70,962 | | 71,612 | Sandford, B. P. | 71,670 | Scholey, W. J. | 71,442 |
| Riddell, F. R. | .70,230 | Rosser, W. G. V. | 70,602 | Sandorff, P. E. | .70,774 | Schrader, C. D. | 70,123 |
| Rieder, R. A. | .70,143 | Rossi, B. B. | .71,238 | | 70,877 | | 71,801 |
| Riedesel, R. G. | .71,482 | Roth, R. Y. | 70,927 | | 71,282 | Schreiner, W. | 70,517 |
| Rind, E. | .71,727 | | 71,232 | Sano, Y. | .70,701 | Schrello, D. M. | 70,012 |
| Ringnes, T. S. | .71,589 | | 71,442 | Santoro, R. T. | 71,913 | Schrenk, G. L. | 71,313 |
| Ringwood, A. E. | .71,462 | | 72,011 | Sarabhai, V. | .71,928 | Schroeder, R. L. | 70,240 |
| Rishbeth, H. | .71,355 | | 72,012 | Sartwell, F. | .70,812 | Schröter, E. H. . | 70,890 |
| | 71,742 | Rothe, E. D. | 71,584 | Sato, T. | 70,783 | Schubert, G. | 70,007 |
| Rittenhouse, J. B. | .71,828 | Rothenberg, C. | .70,349 | Satyendra, K. N. | .70,180 | Schücking, E. | 70,666 |
| Roach, F. E. | .71,269 | Rothwell, P. | 71,027 | Sauer, C. G., Jr. | .70,214 | Schuller, M. | 70,679 |
| Roberson, R. E. | .70,112 | Rousseau, J. | 70,680 | | 71,153 | Schulman, F. | .70,183 |
| | 70,943 | Row, R. V. | 70,056 | | 71,298 | Schulte, H. A., Jr. | 70,502 |
| | 70,947 | Rowe, R. D. | . 71,345 | | 71,443 | Schwartz, I. R. | 70,394 |
| | 70,948 | Rowell, L. N. | 71,983 | Sauer, H. H. | .71,326 | Schwartz, J. W. | 71,690 |
| | 71,658 | Rowen, B. | .70,342 | Saucrmann, G. | 71,952 | Schwartz, S. | 71,454 |
| Roberts, J. A. | . 71,869 | Rowland, J. H. | .71,121 | Savenko, I. A. | .70,621 | Schwartz, U. | 70,768 |
| Roberts, J. E. | . 71,252 | Roy, A. E. | .71,863 | | 70,661 | Schwarzbein, Z. E. | .71,551 |
| Roberts, T. | .71,376 | Rozarenov, L. A. | .70,634 | | 70,915 | Schwartzman, L. . . | .70,349 |
| Robertson, J. E. | .70,320 | Rozenberg, D. P. | .70,651 | | 70,916 | Scott, W. G. . . | .70,348 |
| Robinette, W. C. | .71,242 | Rubin, S. | 71,627 | | 71,321 | Scott, W. R. | 70,390 |
| Robinson, L. J. | .71,038 | Rudakov, V. A. | . 71,783 | | 71,701 | Scroggins, J. R. | 71,469 |
| Roble, R. G. | $.70,207$ | Rudy, J. A. . . | .70,302 | | 71,884 | | 71,678 |
| | $70,502$ | Ruhstrat, E. | .70,426 | Savet, P. H. | 70,014 | Scroggs, R. J. | 71,913 |
| Robley, R. ... Roddick, R. D | $.71,239$ $.70,224$ | Ruskol, E. L. | $.71,694$ | Sawochka, S. G. | .70,107 | Scull, W. E. | .70,482 |
| Roddick, R. D Roeder, A. W. | $.70,224$ $.70,422$ | Russak, S. | .70,270 | Sayers, J. | .71,027 | Scully, C. N. | .71,389 |
| Roeder, A. W. Roels, J. . . . | .70,422 | Russak, S. L. | .71,882 | Scala, E. | .70,181 | Scully, E. J. | .70,712 |
| Roels, J. | .71,292 | Russell, S. . | .71,410 | Scala, S. M. | .70,941 | Seale, L. M. | .70,449 |
| Roemer, M. | .70,541 | Rzhiga, O. N. | 70,333 | | 71,507 | Searle, N. Z. | 71,685 |
| Rogers, S. C. | .70,996 | | 72,008 | Scarf, | .70,339 | Sears, R. L. . | . 71,956 |
| Rogers, T. A. | .70,451 | | | | 70,550 | Sebring, P. B. | .70,646 |
| Rohles, F. H. | . .71,253 | | | | 71,228 | Secretan, L. | 71,470 |
| Rohrbach, E. J. | . 70,331 | Sachs, R. K. | 70,709 71,152 | | 71,924 | Seddon, J. C. | 70,993 |
| | 70,762 | | | Scearce, C. S. | .71,006 | | 71,025 |
| | 71,085 | Safronov, V. S. | 70,663 $.71,010$ | Schaefer, E. J. | .71,621 | | 71,779 |
| Rohrback, G. H. | .70,390 | Sagalyn, R. C. | 71,010 | Schaffer, A. B. | .70,232 | Sehgal, R. | 71,970 |
| Roig, R. W. | .71,619 | Sagan, C. | .70,158 $70,201$ | Schanz, J. L. . . | .70,411 | Seifert, H. S. | .70,806 |
| Roland, G. . | $.71,944$ 70748 | | $\begin{array}{r}70,201 \\ \hline 71,778\end{array}$ | Schanzle, A. | .70,371 | Selig, E. T. | 71,345 |
| Rolls, L. S. Rom, F. E. | $\begin{array}{r}\text {.70,748 } \\ \hline 70188\end{array}$ | Saha, A. K. | $.71,778$ $.70,757$ | Schechter, H. B. | .70,595 | Sellen, J. M., Jr. | .70,721 |
| Rom, F. E. | $\begin{array}{r} .70,188 \\ 70,478 \end{array}$ | Saheki, | $.70,757$ $.70,933$ | | 71,049 | Semenenko, V. E. | .71,676 |
| | 70,888 | | 70,934 | Schiff, D. | .70,160 | Senftle, F. E. | .71,594 |
| Romagnoli, R. J. | .71,572 | Sakurai, K. | .71,175 | Schill, J. | .71,759 | Sen Gupta, P. | .70,664 |
| Romaine, O. . | .70,083 | Salava, T. | .71,930 | Schlesinger, E. R. | .71,953 | Sentman, L. H. | .71,220 |
| Romanchuk, P. R. | .70,885 | Salisbury, J. W. | .71,164 | Schlotter, W. J. | .70,498 | Serbin, H. | .70,574 |
| Romer, E. M. | .70,597 | Salmon, W. A. . | .71,036 | Schlüter, H. | .70,908 | Setser, J. L. | .71,066 |
| Roper, R. G. | .71,405 | Salomonovich, A. E. | . .70,864 | Schmalberger, D. C. | .70,544 | Severnyi, A. B. | .70,287 |
| Rose, D. C. | . .70,725 | | 70,925 | Schmelovsky, K. H. | .70,857 | Seybold, P. G. | .71,007 |
| Rose, H. E. | . 70,895 | | 72,007 | Schmidt, R. | .70,279 | Shaffer, A. | .70,680 |
| Rose, W. K. | .71,161 | Salova, G. I. | .70,758 | Schmidt-Kaler, T. | .70,541 | Shair, R. C. | .70,499 |
| Rosen, M. W. | .71,284 | Salpeter, E. E. | . .71,870 | Schmied, L. | .70,583 | Shakhovskoi, A. M. | .70,333 |
| Rosenbaum, R. | . .71,092 | Salter, R. G. | . .70,459 | Schmitt, R. A. | .71,074 | | 72,008 |
| Rosenblatt, A. | . .71,116 | Salvinski, R. J. | . .71,393 | Schmitt, R. G. | . .70,971 | Shapiro, G. | .70,485 |
| Rosenzweig, W. | . .71,561 | Sama, D. A. | .70,081 | | 71,685 | Shapiro, I. R. | .70,693 |
| Ross, F. W. | . .71,280 | Samuel, A. H. | .71,627 | Schneebaum, M. I. | .71,714 | Shapov, A. I. | .71,957 |
| Ross, S. . . | .71,400 | Sandage, C. | .71,188 | Schnetzler, C. C. . | .70,891 | Sharonov, V. V. | .70,759 |

[^34]| Author | Entry | Author | Entry | Author | Entry | Author | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Shats, M. M. | .70,892 | Singh, M. P. | 70,148 | Sobouti, Y. | .71,506 | Stevenson, C. G. | .70,314 |
| Shavrin, P. I. | .70,661 | Singleton, D. G. | .70,073 | Sodin, L. G. | .70,865 | Steverding, B. | .71,453 |
| | 70,915 | | 70,074 | Soicher, H. | .71,524 | Stinnett, G. W. | .70,451 |
| | 70,916 | | 70,075 | Sokoloff, A. | .70,068 | Stitt, L. E. | .71,545 |
| | 71,321 | | 70,076 | Sokolsky, S. | .70,066 | St. Kalitsin, N. | .71,703 |
| | 71,701 | | 71,353 | Sola, F. L. | .70,143 | St. Kalitzin, N. | .70,631 |
| | 71,884 | Sirotkin, I. A. | 70,634 | Solarski, A. H. | .71,613 | Stoffregen, W. | .70,627 |
| Shaw, B. W. | .71,136 | Sisakian, N. M. | .70,019 | Sondhaus, C. | .71,906 | Stolarik, J. D. | .70,693 |
| | 71,137 | | 70,020 | Sondhaus, C. A. | . 71,674 | Stolwyk, C. F. | .70,813 |
| Shaw, R. H. | .70,503 | Sissenwine, N . | 70,903 | Sonett, C. P. | .71,634 | Stone, I. | 70,197 |
| Shcheglov, P. V. | 71,991 | Sitler, J. | 70,827 | | 71,750 | Stoner, W. A. | .71,263 |
| Shchegolev, D. Ye. | .70,830 | Sivo, J. N. | .70,747 | | 71,751 | Strack, W. C. | 70,633 |
| | 71,473 | Sjoberg, S. A. | . 71,380 | | 71,752 | Strahle, W. C. | .70,606 |
| Shcherbakova, M. N. | .71,708 | Skerritt, J. W. | . 70,653 | Sonnerup, B. U. O. | .71,016 | Straile, W. E. | .71,277 |
| Shchigolev, B. M. | 71,297 | Skillman, T. L. | .71,006 | Sorokin, O. M. | .70,715 | Straka, R. M. | 11,174 |
| Shea, J. F. . | .70,654 | Sklar, S. J. . . | .70,013 | Soules, S. D. | .71,236 | Straly, W. H. | .71,803 |
| Shearin, J. G. | .71,267 | Skripin, G. V. | .71,322 | Spangenberg, W. W. | .70,764 | Strass, H. K. | 71,602
 71,908 |
| Shearman, E. D. R. | .71,210 | Skuta, E. B. | .70,187 | Spangler, E. R. | .71,858 | Strauch, K. | 71,908
 70,998 |
| Sheer, R. E., Jr. | .70,458 | Slade, M. | .70,287 | Sparks, O. L. | .71,378 | Strauss, H. S. . . | $\begin{aligned} & 70,998 \\ & .71,488 \end{aligned}$ |
| Shefov, N. N. | $.70,616$ 71,990 | Slater, A. E. | .70,332 | Sparrow, E. M. | .70,220 | Strayhorn, T. R.
 Stricbel, C. T. | $\begin{aligned} & .71,488 \\ & .71,616 \end{aligned}$ |
| Shelton, R. D | 71,990 $.70,546$ | Slee, O. B. | .71,792 | Sparro | | Stripling, H. J. | . 71,613 |
| Shen, C. S. | .71,731 | | | Speed, R. C. | .71,555 | Strome, W. M. | .70,416 |
| Shen, S. P. | .70,269 | Sloan, J. E. | .71,245 | Speiser, K. . | 71,819 | Strong, J. | .71,257 |
| Shepherd, G. G. | .70,937 | Sloanaker, R. M. | .71,161 | Speiser, R. C. | .70,722 | | 71,636 |
| Sherman, A. | .70,149 | Slocum, R. E. . | . 71,023 | Spencer, C. L. | .71,574 | Stroup, E. R. | .70,352 |
| | 71,051 | | .71,094 | | .70,462 | Strughold, H. | 71,334 |
| Sherrell, F. G. | .71,392 | Smiddy, M | 71,094 | Spinrad, H. | $.70,494$ | Struve, 0 . | 71,191 |
| Shimazaki, T. | .70,407 | Smiddy, M. | | | 7,494 72,009 | Stubbs, P. | 70,556 |
| Shimizu, M. . . | .72,002 | Smith, A. G. | $.70,440$ $.71,793$ | Spreiter, J. R. | 71,755 | | 71,318 |
| Shirland, F. A. . | . 70,272 | Smith, D. E. | $.71,793$ $.70,791$ | Sprenger, K. | 70,857 | Stuhlinger, E. | 70,391 |
| Shoemaker, E. M. | $.71,834$.70542 | Smith, D. E. Smith, D. S. | . $70,71,515$ | Spring, C. T. | 71,320 | | 70,394 |
| Shore, B. W. . | $.70,542$ 70,068 | Smith, D. S. | . 71,515 | Spring, C. T. ${ }_{\text {Srirama Rao, }}$ | 71,063 | Stull, V. R. | 72,003 |
| Shrode, R. R. | $.70,068$.71080 | Smith, E. J. . | $. .71,634$ $.71,571$ | Srirama Rao, M. Srp, O. O. . . . | 71,063 71,447 | Stumpff, K. | 70,069 |
| Shroyer, G. J. | . 71,080 | Smith, E. V. P. Smith, F. H. . | $.71,571$ $.71,580$ | Srp, O. O. . Staley, R. | 71,447 71,382 | | 70,632 |
| Shteins, K. A. | .70,635 | Smith, F. T. | . 71,580 | Staley, R. M. | 71,382 | | 71,288 |
| Shuba, Yu. A. | 70,715 | Smith, F. T. Smith, H. J. | . 70,370 | Stambler, I. | 70,150 | | 71,289 |
| Shucker, S. | .70,506 | Smith, H | 70,442 70,860 | | 70,190 70,430 | Sture, S. Ya. | 70,635 |
| Shulman, Y. | .70,521 | | 70,860 71,083 | | 70,430 | Sturman, J. C. | 70,976 |
| Shurygin, A. I. | .70,929 | Smith, H. P., Jr.
 Smith, J. O. ... | $.71,083$ $.70,081$ | | 71,088 | Sturman, J. C. . | 70,817 |
| | 71,955 71,593 | Smith, J. O. | $.70,081$ $.71,469$ | Stamp | 71,247 71,081 | Subotowicz, M. | 70,624 |
| Siegel, S. M | . $.710,955$ | Smith, R. . | .71,583 | Stamph | 71,714 | Sugiura, M. | .70,702 |
| Siegried, W. H. | .71,550 | Smith, R. V. | .71,120 | Stankiewicz, N. | 70,723 | Sukhovei, A. G. | 71,941 |
| Silber, R. | .70,487 | | 71,121 | Stanley, C. V. . . | .71,022 | Sullivan, G. H. | .71,249 |
| Sill, C. W. | . 71,069 | | 71,126 | Stanyukovich, K. P. | .70,771 | Sullivan, J. | 71,110 |
| Silverman, S. M. | .70,615 | Smith, T. D. | .70,712 | Starik, I. Ye. | .70,892 | Sullivan, R. | 71,596 |
| Silvern, D. H. . | . 70,208 | Smith, W. B. | .70,512 | Stark, K. W. | .70,995 | Sulzmann, K. G. P. | 70,508 |
| Simmons, P. L. | . 71,414 | | 71,629 | Stecher, T. P. | .70,545 | Sunderland, R. J. | .70,496 |
| Simon, G. W. | .70,548 | Smits, F. M. | .71,171 | Steedman, W. C. | . .71,107 | Sussman, M. | 71,337 |
| Simon, R. | . .71,374 | | 71,561 | | 71,108 | Sutcliffe, H. K. | .71,736 |
| Simon, R. | . .71,964 | | 71,718 | Stehling, K. R. | .71,041 | Svestka, Z. | 70,558 |
| Simon, W. E. | . 71,605 | Snejdárek, I. | .71,930 | Stein, W. A. | .71,176 | Swalley, F. E. | .70,312 |
| Simons, D. G. | . .71,276 | Snyder, N. W. | .70,497 | Steinberg, M. | .70,931 | Swarup, G. | .70,862 |
| Simons, J. C. | . 71,250 | Soberman, R. K. | .70,775 | Stelzriede, M. E. | .71,314 | Swet, C. J. | .71,889 |
| Singer, S. F. | . 71,838 | Sobolev, V. V. | .71,937 | Stephenson, W. B. | .70,116 | Swift, D. W. | 70,511 |
| | 71,841 | Sobotovich, E. V. | $\cdot 70,892$ | Stern, D. | 71,325 | Switzky, H. | .70,875 |

[^35]| Author | Entry | Author | Entry | Author | Entry | Author | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Synge, J. L. | .70,094 | Titus, R. R. | 70,718 | Vaeth, J. E. | 70,018 | Waak, J. A. | 70,443 |
| Sytinskaya, N. N. | .70,759 | Tiuri, M. E. | .70,256 | Vaglio-Laurin, R. | .70,815 | Waddell, J. | 71,181 |
| Szebehely, V. G. | .70,367 | Tlamicha, A. | .71,940 | | 71,387 | Wade, G. L. | 70,024 |
| | 71,099 | Tohmatsu, T. | .71,647 | Vampola, A. L. | .71,128 | Wager, J. H. | 71,027 |
| | | Tokarev, V. V. | 71,213 | Van Allen, J. A. | 70,602 | Waggoner, C. E. | 71,640 |
| Tamers, M. A. | .71,072 | Tokuda, H. | .70,689 | | 71,125 | Waggoner, J. A. | 70,123 |
| Tandberg-Hanssen, E. | .70,555 | Tolefson, H. B. | .71,221 | | 71,631 | Waggoner, J. N. | 71,335 |
| | 70,564 | Tolson, R. H. | .71,820 | | 71,994 | Wait, J. R. | 71,134 |
| | 71,936 | | 71,902 | | 71,995 | Wakai, N. | 71,774 |
| Tang, W. | .70,155 | Tompkins, D. | .70,898 | | 71,997 | Wakefield, R. M. | 71,240 |
| Tao, K. | .70,684 | Tonnelat, M.-A. | .71,373 | Van Biesbroeck, G. | .70,637 | Walendziewicz, | 70,659 |
| Taplin, L. B. | .70,048 | Tooper, R. F. | 71,167 | Vand, V. | .71,848 | Walker, J. A. | 70,928 |
| Tarter, J. H. | $\begin{aligned} & .70,310 \\ & 70.309 \end{aligned}$ | Tousey, R. . | .71,193 | van de Kamp, P | $.71,848$ $.70,029$ | Walker, J. K. | 70,953 |
| | 70,502 $.70,099$ | Tow, S. . | .70,644 | Van Dilla, M. A. | $.70,298$ | Wallace, L. | 70,324 |
| Taub, A. H. | $.70,099$ $.71,603$ | Towner, R. J. . | 70,293 | | 70,514 | Wall | 71,650 71,906 |
| Taulbee, C. D. | .70,187 | Trachtenberg, 1. | .70,413 | van Lint, V. A. J. | 71,119 70,605 | Wallace, W. B. | 71,196 |
| Taylor, G. E. . | .70,755 | Trafton, L. M. | $.70,494$ 70,250 | van Sluiters, A. . | 70,605 71,610 | Waller, R. W. | 70,650 |
| Taylor, H. | $.71,434$
 70305 | Trautman, A. Treble, F. C. | $.70,250$ $.70,846$ | Van Zandt, T. E. van Ziil, J. S. V. | $.71,610$ $.70,696$ | Walsh, T. M. | 70,650 71,896 |
| Taylor, H. P., Jr. Taylor, S. R. . | $.70,305$ $.70,304$ | Treble, F. C. .. | $.70,846$ $.70,341$ | van Zijl, J. S. V. Vasilev, B. N. . | $.70,696$ $.70,929$ | Walt, M. . . . | 70,600 |
| Taylor, W. B. | . 71,426 | Trent, C. H. | .70,476 | Vasilev, I. G. | .71,957 | | 70,692 |
| Tempelman, W. H. | .70,233 | Tretyakova, M. I. | .71,708 | Vasilyev, B. N. | 71,955 | | 70,919 |
| Tenenbaum, D. M. . | .71,207 | Triolo, J. J. | 71,302 | Vaughan, V. L., Jr | . 70,938 | | 70,920 |
| Tepper, F. | .70,185 | | 71,303 | Vaughan, W. W. | .71,469 | Walthall, E. R. | 71,818 |
| Thiele, C. | .71,726 | | 71,684 | Venkatesan, D. | .70,662 | Wang, K. | $71,985$ |
| Thigpen, M. H. | .71,480 | Troitskiy, V. S. | 71,475 | Venkateswaran, S. | . 70,610 | Wänke, H. | 71,064 |
| Thomas, A. A. | .71,188 | Trotter, D. E. | .70,844 | | 71,241 | Ward, F. | 70,615 |
| Thomas, D. F. | .71,893 | Troubetzkoy, E. S. | 71,909 | Venugopal, V. R. | 71,961 | Ward, J. W. | .70,431 |
| Thomas, G. . | .71,730 | Truax, R. C. | . 70,958 | Verniani, F. . . | .70,776 | Ward, S. H. | .71,017 |
| Thomas, J. O. | .70,077 | Trubey, D. K. | $\begin{array}{r} 70,958 \\ .71,929 \end{array}$ | Vernov, S. N. | 70,915 | Wark, D. Q. | 70,901 |
| Thomas, R. N. | .71,922 | Trubey, D. K. | $\begin{aligned} & 71,929 \\ & 70617 \end{aligned}$ | Vernov, S. N. | 70,916 | | 71,840 |
| | 71,950 | Truittse, Yu. L. | | Verwers, C. D. | 71,914 | Warneck, P. | .71,109 |
| Thomas, T. Y. . | 70,098 | Turkevich, A. L.
 Turner, R | $.70,388$ $.71,613$ | Vestine, E. H. | . 70,455 | | 71,110 |
| Thompson, A. R. | 71,942 | Turner, R. . . | 71,613 71,489 | Vestine, E. H. | 71,950 | Warner, B. | .70,536 |
| Thompson, G. E. | .70,209 | Turner, W. R. | 71,489 | Viglione, S. S. | 70,361 | Warnock, L. F., | .70,105 |
| Thompson, H. P. . | .71,975 | Twombly, J. W. | 70,169 | Vighone, S. S. | $70,655$ | Warren, E. | .71,976 |
| Thompson, R. A. | .70,503 | Tyler, J. S. | .70,055 | | $\begin{array}{r} 0,650, ~ \\ \hline 70,978 \end{array}$ | Warren, E. S. | 71,608 |
| Thorman, H. C. ... | .70,839 | Tyler, R. D. | 70,244 | Vilenskiy I | $\begin{aligned} & 70,978 \\ & 71,528 \end{aligned}$ | Warren, J. K. | 71,661 |
| Thornton, T. H., Jr. | .70,460 | Tyson, M. R. | 70,024 | Villars, F. | $71,754$ | Warwick, C. S. | .71,395 |
| | 71,053 | Tyutikov, A. M. | .70,715 | | | Warwick, J. W. | .71,790 |
| Thorpe, A. N. | .71,594 | | | | $.71,720$ | Wasel, A. D. | . 70,963 |
| Thouret, W. E. | .70,998 | | | Vitkevich, V. V.
 Vladimirova M. G | $.71,941$ | Washburn, H. W. | .70,798 |
| Thrane, E. V. | . 70,986 | | .71,892
 71,000 | Vladimirova, M. G. | $.71,676$.70,765 | | 71,504 |
| Thun, R. E. | .70,653 | Uguccini, O.
 Ullock M H | $.71,000$ 70,973 | Voas, R. B. | .70,765 | Wasko, P. E. | .71,411 |
| Tichler, V. A. | .70,006 | Ullock, M. H. | .70,973 | Vogler, F. H. | .71,559 | Wasko, R. A. | 70,109 |
| Tidd, J. L. | .71,806 | Unangst, J. R. | 71,981 | Vogler, L. E. | 71,078 | Waterman, A. T. | .71,031 |
| Tiffany, O. L. | .71,911 | Underwood, J. F. | .71,245 | Vogt, R. | .71,324 | Watkins, C. D. | 71,736 |
| Tikhov, G. A. | .70,759 | Unsöld, A. | .71,170 | Volland, H. | .70,130 | Watson, K. | .71,575 |
| Tilley, R. | . 70,349 | Unterberger, R. R. | .70,417 | Vollmer, J. | . 71,720 | Weaving, B. | .70,770 |
| Tindo, I. P. | . 70,929 | Unz, H. | . 71,777 | von Tiesenhausen, | .71,492 | Webb, J. A. | .70,751 |
| | 71,955 | Unzicker, A. E. | .72,015 | Voorhees, B. G. | . 70,477 | Webb, L. D. | . 71,237 |
| Tinling, B. E. | .70,016 | Upthegrove, H. N. | .71,795 | Voronko, Yu. K. | .70,929 | Webber, W. | .70,670 |
| Tinnan, L. M. | . .70,959 | Urey, H. C. | .71,200 | | 71,955 | Webber, W. R. | 71,696 |
| Tischer, R. G. | . .70,191 | Usher, P. D. | . .71,141 | Vruggink, J. E. | .70,293 | | 71,706 |
| Tischler, A. O. | . 71,872 | Uspenskii, L. N. | .71,883 | Vsekhsvyatskii, S. K | . .70,732 | Weber, A. H. | .70,330 |

[^36]| Author | Entry | Author | Entry | Author | Entry | Author | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weber, H. E. | 71,344 | Whatley, E. M. | .70,387 | Wilson, R. K. | .71,122 | Yamamoto, M. | .71,175 |
| Weber, J. | .71,151 | Wheeler, R. J. | .71,187 | | 71,168 | Yang, L. | .70,313 |
| Weddell, J. B. | .71,931 | Whelpley, W. A. | .71,995 | | 71,879 | Yarbrough, L. S. | .71,806 |
| Weed, D. S. | .70,653 | Whipple, F. L. | .71,468 | Wilson, T. | .71,871 | Yarin, V. I. | .70,616 |
| Wegener, P. P. | .70,924 | Whisenhunt, G. B. | .71,945 | Wilson, T. G. | .70,050 | Yeh, K. C. | .70,132 |
| Wegner, G. | .70,842 | Whitaker, R. O. | .71,313 | Winch, D. M. | .70,223 | Yeroshenko, E. G. | .71,422 |
| Weich, R. F. | .70,451 | White, A. F. | .70,995 | Winchester, J. W | .70,891 | Yim, E., Jr. | .71,796 |
| Weide, D. L. | .71,166 | White, A. W. | .70,413 | Winckler, J. R. | .70,284 | Youmans, A. H. | .71,024 |
| Weil, H. | .70,472 | White, C. E. | .70,537 | | 70,603 | Yuan, S. W. . . | .71,389 |
| | 71,476 | White, J. A. | .70,139 | Winfield, D. H. | .70,518 | | |
| Weil, J. A. | .70,458 | | 70,711 | Winkler, H. B. | .70,230 | Zahn, S. | 70,146 |
| Weill, G. | .71,273 | White, O. R. | .70,275 | Winovich, W. | 71,240 | Zajac, E. E. | .70,942 |
| Weiman, I. | .70,273 | White, R. M. | .70,342 | Winters, C. | $70,001$ | Zajac, E. E. | 71,264 |
| Weinberg, A. F. | .70,313 | Whitehead, J. D. | .71,332 | Wise, J. F. | 71,850 | Zambelli, E. D. | .70,261 |
| Weiner, S. D. . | .71,372 | Whitham, K. . | .70,697 | Wisnia, J. | 71,316 | Zamchalova, E. A. | .71,708 |
| Weinstock, R. | .70,966 | Whitman, M. J. | $.70,186$ 71445 | Witt, E. O. | 70,425 | Zee, C.-H. | .71,215 |
| Weis, W. G. | .70,592 | Wiant, R. Wickramasinghe | $\text { . } 71,445$ $.70,719$ | Witte, W. G. | 70,001 | | 71,615 |
| Weisbrod, S. | .71,331 | Wickramasinghe, \mathbf{N}
 Widger, W. K., Jr. | $\begin{array}{r} 70,719 \\ .71,836 \end{array}$ | Witten, L. . | 71,118 | Zeiberg, S. L. | .70,235 |
| Weiss, E. H. | .70,369 | Widmayer, E., Jr | . 71,533 | Wolf, H. F. | 70,361 | Zeldovich, Ya. B. | .71,150 |
| Weiss, M. | .71,542 | Wikner, E. G. | . 71,119 | | 70,655 | Zenger, J. H. . . . | .70,123 |
| Weiss, R. J. Weiss, W. L. | $.71,364$ 70,387 | Wilcox, J. M. | .70,668 | Wolff, J. R. . | 70,122 | Zetkov, G. | .71,310 |
| Weiss, W. L. | .70,387 | Wilde, A. F. | .70,081 | Wolf, W. M. | 71,359 | Zhdanov, G. B. | .71,708 |
| | 70,990 | Wilder, L. B. | .71,307 | Wolman, W. | .70,170 | Zhuravlev, D. A. | 70,621 |
| Welber, I. | 70,587 | Wilkes, L. ... | .70,426 | Wood, H. L. ... | . 71,057 | Zhuzgov, L. N. . | .71,422 |
| Welch, J. A., Jr. | .70,967 | Wilkinson, K. J. R. | .71,537 | Woodbridge, D. | .70,128 | Ziauddin, S. . | 70,725 |
| Welles, O. W. | .70,184 | Willard, C. F. . . . | .70,822 | Wray, D. | $.71,521$ 70,912 | Ziemba, F. P. | 70,989 |
| Wells, D. L. | .71,454 | Williams, D. J. | .71,127 | Wright, F. W. Wright, J. W. | $.70,912$ $.70,728$ | Zimmerman, A. V. | 70,761 |
| Welsh, H. W. | 71,115 | Williamson, F., Jr. | .71,796 | Wright, J. W. | 70,728 $.70,072$ | Zirin, H. | 70,851 |
| Wescott, L. R. | .70,728 | Williamson, J. M. | .70,855 | Wright, M. D. Wright, W. | . .70,072 | Zmuda, A. J. | 70,853 |
| West, J. W. Westerman, C. W. | .71,722 | | 71,368 | Wright, W. $\mathrm{Wu}, \mathrm{~J} . \mathrm{M} .$ | $\begin{array}{r}\text { 70,273 } \\ \hline 71,970\end{array}$ | | 71,136 |
| Westerman, C. W. Westerman, H. R. | .70,348 | Willingham, D. E. | .70,798 | Wulf O R | $\begin{array}{r} 71,970 \\ 70,414 \end{array}$ | | 71,137 |
| Westerman, H. R. Westfall, J. E. . | $.71,096$ $.71,037$ | | 71,504 71,069 | Wykes, J. H. | . 71,4141 | | 71,569 |
| Wetmore, W. C. | . .71,194 | Wills, A., Jr. | . 71,069 | | | Zobel, W. | 71,913 |
| | 71,860 | Wilson, A. G. | .70,760 | Xanthakis, J. | 70,581 | Zonov, Y. V. | 71,586 |
| Wexler, H. | .70,900 | Wilson, A. T. | .70,329 | | 71,962 | Zotkin, I. T. | .70,733 |
| | 70,903 | | 70,141 | | | | 71,466 |
| Whale, H. A. | . 70,427 | Wilson, E. L. | .70,712 | Yagerhofer, F. | .70,005 | Zoutendyk, J. A. | 70,547 |
| | 70,620 | Wilson, J. N. | .70,296 | Yagoda, H. | . 70,673 | Zumbrun, S. H. N. | .71,047 |
| Whalen, R. J. | . 70,234 | Wilson, L. D. | .70,405 | Yakovkin, A. A. | .71,847 | Zvara, J. | 70,240 |
| Wharton, A. E. B. | .71,780 | Wilson, P. R. | .70,883 | Yamamoto, G. | . 70,901 | Zwick, H. H. | .70,937 |

[^37]
SUBJECT INDEX*

Abort
\quad considerations, manned lunar
\quad missions71,819
problems, lunar landing missions. 71,816

Acceleration

biological and physiological effects, USSR data \qquad
disturbances, effects on liquid-vapor interface in baffled tank during weightlessness
$.71,061$
effect of load on respiratory function $.70,934$
effects of change in direction on human center of gravity. 70,345
effects on brain function as evaluated by flicker test 70,933
effects on chimpanzee performance
.71,253
effects on inner ear71,865
effects on space orientation 70,007
physiological and psychological effects, bibliography \qquad
prolonged transversal, physiological reaction of small animals.70,935

Adaptive Control Systems

pulsed rocket control techniques. .70,609

Advanced Propulsion Systems

colloid ionization, isotope engines, and controlled-fusion power supplies; possibilities70,430

Subject	Entry
Airglow (Cont'd)	
twilight intensity, fluctuation with lunar age	70,779
visible sodium	.70,614

Alouette

(see Topside Sounder Project)

```
Amplifiers
    electrometer; drift-free, solid-
        state\(.70,347\)
```


Anna 1B

```
description and objectives. . . . . . .71,651
```


Antennas

(see also Radio Antennas)

control system for satellite tracking 71,653
design and construction of Andover, Maine facility 71,652
directivity, for preservation of satel-
lite interference margin70,376
electrically short, excitation of electroacoustic waves 70,620
for Relay, unique design70,251
Goonhilly Downs, description. . . .71,243
high-gain, for communication satellites 70,350
horn-reflectors for Telstar 71,966
impedance probe measurements . .70,620
large steerable, gear equipment. .71,242
noise temperature, effect on S / N ratio
$.70,004$
pattern measurement by Explorer 7 71,244
retro-directive, for satellite data transmission 70,349
space, flexible foam for erecting mechanism and supporting structure
$.70,938$
wide-angle circularly polarized, spacecraft design requirements. 70,348

Antigravity

machine, theoretical design 70,101
Antimatter
search for presence in cosmic rays and outer space by Sputnik 2 . .70,621

Apollo Project

basic objectives and lunar logistic system plans, brief summary . . .71,426
electronic equipment to be used, description 71,654

[^38]

Subject
Entry

Astronauts

animal, effects of simulated launch and re-entry on chimpanzee performance \qquad . . 71,253
attitude, physical, and psychologic selection requirements 70,356
body fluid distribution study70,335
celestial recognition training program
$.70,357$
chronological report of Glenn's flight . 70,765
conference on flight hazards 70,355
disorientation and nystagmus, tests 70,199
dogs, factors of natural immunity during flight71,657
effects of changes in direction of acceleration on human center of gravity
. 70,345
effects of physiological functions on attitude control of vehicle....71,658
effects of reduced gravity on efficiency 70,008
effects of space environment, review of U.S. and Soviet research and missions71,661
effects of space flight 70,799
feeding console for 14-day mission, description71,489
habitable environment within lunar surface vehicle, requirements. . .71,047
human rendezvous capability in short orbital transfer71,254
inflatable components of personal equipment for survival at sea, development and fabrication. . .71,144
injured on lunar exploration, emergency vehicle for return. 71,728
man and animal, review of physiobiological data from suborbital and orbital flights, 1949-61 . . . 71,660
man-rating environmental simulators, medical, engineering, and operational considerations70,400
man's role in space70,354
medical problems of space flight, USSR data71,656
perception of motion, equilibrium, and orientation in zero-g71,866
physiological and psychological responses, Mercury data71,455
physiological problems of re-entry70,011
physiological reaction to rotation, disorientation and nystagmus. .70,198
pilot studies in simulated lunar landing vehicle70,447

Subject
Entry

```
Astronauts (Cont'd)
    preparation for MA-6 flight, chron-
        ological description
            .71,255
    psychological problems in space
        environment . ...............70,215
    radiation exposure, permissible
        levels
            .70,217
    radiation hazard, biological shield-
        ing and protection by drugs. . .71,659
    radiation hazard from solar flares.70,556
    reactions to weightlessness, Soviet
        experiments . ................ . 70,021
    safety program, Mercury project . .71,456
    sanitation and hygiene during
        space missions ...............71,249
    Schirra's MA-8 flight, complete
        report of mission results . . . . . . 70,766
    selection and training, brief
        description . . . . . . . . . . . . . .71,256
```

 single-impulse launch by subjects
 outside orbiting vehicles, trajec-
 tory calculations71,250
 Soviet concept for selection 71,251
 Soviet cosmonauts, selection and
 training
 \(.70,019\)
 Soviet medical selection techniques
 and training71,576
 speech studies during weight-
 lessness
 \(.71,640\)
 techniques for physiological
 monitoring
 \(.71,276\)
 training, proposed Gemini and
 Apollo facilities71,358
 training facilities, Manned Space-
 craft Center71,602
 training for \(\mathrm{X}-20\) flight testing. . . 70,342
 two-man crew in small capsule,
 efficiency study 70,451
 urolithiasis hazard during
 prolonged flights71,252
USSR, training apparatus 70,006
USSR, weightlessness effects, test
results
$.70,336$
visual capability in rendezvous and
docking maneuvers71,541
visual detection of angular motion
for space rendezvous control. . 70,200
visual perception during accelera-
tion, testing
.70,007

Astronomical Unit

determination; methods and results, USSR
determination by radar echoes from Venus 70,604 71,630

[^39]

Astronomy

(see also Radio Astronomy)
1963 graphic ephemeris 71,347 of observational conditions
lin 10,783
handbook, data for 196370,939
igh-altitude balloon observations, proposed programs for IR studics of planetary atmospheres71,257 strumentation, recent major technological advances70,623
IR, techniques to obtain thermal picture of Moon71,258
meridian, use of photography. . . .70,030
programs, present and future . . .70,030 oucope project, balloon-borne $300-\mathrm{ft}$ effective focal length telescope$.70,300$

Atmosphere
(see Upper -; for other planets, see
Planetary Atmospheres)
Atmosphere Sampling
bacterial air sampler 70,471
Atmospheric Entry
(for Earth, see Re-entry)
analytical solutions for entire region of entry into any planet 70,010
ecological and cryogenic fuel
eating problems at supercircular velocities 70,941
of manned maneuverable space-
Mars, analysis of vehicle requirements

1,056 tainties on vehicle design70,462
Mars and Venus, aerothermodynamic analysis of vehicle requirements. 70,358 and Venus, importance of recision landings from hyperorbital approach trajectories71,508 transfer effects70,109

Venus, atmospheric simulation to determine heat transfer rates during entry70,111 utions for motion and heating during entry from equatorial orbits of rotating planet. . 70,940

Attitude Control

Cill.................. 71,658
equations of motion, selection of base point 70,943 orientations of gravity
ertia sphere to damp angular motions, thenretical study 70.624
librational dynamic-response limits $.70,944$
orbit . 70,012
of satellite in highly eccentric
orbit . 70,014
reference frame established by
Tiros satellites, IR sensor data70,359
to minimize perturbations on
wo-body schemes, for communication satellites 70,942

Attitude Control Systems
(see also Thrust Vector Control)
analysis and synthesis 70,947
70,948
arc plasma-jet thruster, design . . .71,263
tomatic and manual subsystems
bang
ang-bang reaction jet system. . 70,015
chemical rocket engines for satellite and space vehicle control.70,737 sing spring for gravity attitude
finned
for manned rotating space
stations 71,267
gravity-gradient, limits on
nertia-wheel, perturbation analysis
in elliptical orbits70,017
70,016 parameters and preliminary design .70,720

low-thrust
Mercury capsule, description70,169
natural energy source possibilities
and advanced actuator
characteristics 70,945
nonlinear analysis and design techniques, annotated bibliography. 71,266
$O A O$, development of mathematical
model for solution of problems . .71,087 propulsion, feasibility of positive
displacement injector71,664
pulsed rocket control techniques. . 70,609 reaction and thrust vector, technical data 71,663
Relay project, system analysis. . . 70,517
reliability through redundancy . .70,119 retrorocket, heat transfer effects
from gases and free stream. . 70,109 rigid yo-yo system, to control spin
rate of rotating spacecraft71,262

art 70,537
spin control, simulator study70,049
star field recognition for inter-
planetary missions 70,361
71,265
bibliography71,268
stretch yo-yo for satellite de-spin,
analytical theory 71,261
elstar, design and preflight
testing
71,314

Aurorae

$5577 \AA$ emission, photometric observations 71,271 A exctation by geomagnetic

electrons

1,269
dc ionospheric electric field71,782
ctivity, correlation with radio star

[^40]| Subjec | |
| :---: | :---: |
| Aurorae (Cont'd)
 artificial, photometric observations on July 9, 1962 70,626
 auroral absorption of radio waves. 71,527
 auroral zone X-ray pulsations, observations 71,270
 corona, geometry of radiation point . 71,665
 dynamical morphology over polar region .71,666
 echo indices to study relation between chorus and geomagnetic conditions 70,689
 electron concentration and ionization distribution. 71,668
 formation, influence of Van Allen particles70,913
 hydrogen emission related to charge separation in magnetosphere. . .70,627
 hydromagnetic theory70,706
 influence of solar flares and prominences 70,705
 interferometric measurements of 5200/02 \AA [NI]-doublet 70,628
 molecular oxygen dissociation, polar mesosphere heating contribution . 70,952
 motions, relationships to ionospheric currents 71,667
 $\mathrm{N}_{2}{ }^{+}$ion density. 71,988
 $\mathrm{N}_{2}{ }^{+}$rotational temperature, photometric measurements 70,953
 observations during X-ray event, 100 -sec periodicity 70,625 origin theories, observational and experimental evidence71,672 polar-glow emissions, calculated and observed intensities 71,670 precipitation of trapped particles. . 71,996 proton, hydrogen emission, theory . 71,669 proton bombardment 71,669 radio aurora, reflection mechanisms 71,668
 radio aurora, relationship of motion to ionospheric currents 71,667
 ray structure 71,272
 rays, directions 71,665
 source and accelcration of particles, radiation belt theory. 71,671
 synoptic and photometric studies. .70,880 temperature and corpuscular heating variations in electron flux, relation to peaks in X-ray intensity70,625 X-rays, olscrvations 71,996 | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

[^41]| Subject Entry | Subject Entry | Subject Entry |
| :---: | :---: | :---: |
| Biology (Cont'd) human simulator for testing life support systems 71,337 | Booster Rockets (Cont'd) materials and structures, design considerations71,060 | Celestial Mechanics (Cont'd) conference, Moscow, Nov. 20-25, 1961 . 70,630 |
| Italian research and environmental studies71,864 | multicell configurations 71,286 multistage, cost optimization . . . 70,957 | equinox and equator, determination 70,030 |
| life support during planetary missions 70,020 | multistage, optimum number . . . 70,028 multistage, prediction and measurement of natural vibrations
 $.71,279$ | evolution of orbits under gravitational perturbations of external bodies |
| spacecraft assembly facility,
 study . 70,881 | nonrecoverable, state of the art. . . 70,956 Nova-class, solid system feasi- | galactic system, alternating
 density model 70,030 |
| natural immunity in dogs during space flight, Soviet investigations 71,657 | bility study 70,294 recoverable and sea launched, economic feasibility considerations. 70,958 | geocentric orbit determination . . .70,031
 Hansen's lunar theory,
 modification 71,901 |
| potential hazards of heavy primary cosmic rays71,700 | research history and future development plans | Hill's lunar theory, remarks 71,288 |
| problems, Soviet experiments and development 70,019 | response problems, wind profile
 data..... 71,415 | Kepler's 3rd law for elliptical
 orbits 70,966
 Lagrange problem of equal |
| problems associated with galactic, solar, and trapped radiation; | reusable, design studies 70,960 | masses71,295 |
| solar, and trapped radiation; dose restrictions 71,874 | reusable, for Saturn-class payloads. 70,959 reusable, retrieval system concept | least density of spherical swarm of particles orbiting at L_{5}. 70,825 |
| radiation dose rates, Soviet studies | for recovery 70,960 role of meteorology in develop- | libration points for circular orbits 70,029 |
| mulating effects of cosmic rays . .71,277 | ment 71,469 | n-body problems, solution using |
| space environment effects on flour
 beetle eggs 70,068 | Saturn C-1 and Centaur, Jr., as launch vehicles for solar probes. 71,935 | FORTRAN code70,633 orbital prediction errors due to drag |
| USSR research 70,384 | size and staging requirements, analysis71,677 | fluctuations, stochastic models. .70,491 periodic orbits for Moon probes, |
| stability of viruses on Discoverers
 29 and 30 flights 70,058 | solid-propellant, requirements and potentialities 70,961 | restricted three-body problem. .70,484
 71,290 |
| transversal acceleration tolerance | solid-propellant, state of the art. .70,366 | periodic orbits in plane-restricted |
| unicellular green algae, effects of radiation \qquad 71,676 | optimization analyses71,280 structures considerations in | Earth-Moon problem,
 determination70,371
 perturbations in rotational motion |
| use of fungus as radiation detector. 71,117 | design 71,281 | of bodies caused by oblateness. . 70,629 |
| USSR, space biology conference. . 70,021 | 71,282 | perturbations of hyperbolic orbit |
| | technology, state of the art 71,543 | by oblate planet 71,298 |
| Blue Streak
 description and mission potential. 70,365 | $\begin{aligned} & \text { transient vibrations, method of } \\ & \text { analysis and determination71,285 } \\ & \text { U.S., thrust data } 70,258 \end{aligned}$ | perturbations of satellite orbits by tesseral harmonics in Earth's gravitational potential \qquad 71,498 |
| oos | USSR, size estimate 70,027 | planar three-body problem, canonical reduction71,292 |
| base heating, wind tunnel studies71,278 | Celestial Mechanics application to Mercury project. . . 70,369 | planar three-body problem, curvature of Riemann metric71,293 |
| clustered boosters, analysis of vibrations 71,283 | asymptotic stability in restricted three-body problem 70,962 | planetary ephemerides, calculation from initial values 70,069 |
| clustered solid, advantages and disadvantages 70,024 | azimuth in southern hemisphere,
 determination 70,030 | planetary position-velocity onhemerides obtained by special |
| drag effect during boost. 70,025 | calculation of orbits of natural | perturbations 70,403 |
| finned, roll control during launch 70,026 | satellites70,489 canonical variables, use70,030 | restricted three-body problem,
 elliptic case71,681 |
| high-resolution wind measurement for design analysis 71,678 | completed theory of motion of $\text { Mars . } 71,055$ | restricted three-body problem, periodic solutions 70,368 |
| landing and recovery research and technology 70,297 | compound satellite systems, analysis of rotational and relative | restricted three-body problem, 71,682 |
| large, design objectives 71,287 | motions71,296 | solutions 70,965 |

[^42]| | |
| :---: | :---: |
| Celestial Mechanics (Cont'd)
 rotation and figure of celestial bodies, mathematical analysis . 70,631
 rotational and orbital momenta of major planets, empirical relation 71,680
 satellite motion, influence of Sun and Moon 71,501
 stability of synchronous orbits of sphere and ellipsoid in orbital plane 71,372
 state of the art, 1962 70,367
 three-body problem, capture examples 71,679
 three-body problem, modern mathematical expression of Lagrange's theory . 70,632
 three-body problem, planar movement in coordinate systems71,291
 three-body problem, theories and results 70,030
 three-body problem, two fixed centers71,294
 three-body refinements of preliminary orbit methods \qquad 71,497
 two-body case, dynamic orbital element form 70,963
 two-body equations of motion, approximate solution \qquad
 two-body orbital parameters for nearly circular orbits70,370
 velocity and timing charts for orbit determination 70,964
 Celestial Navigation Systems
 for manual operation by human observer 71,299
 Centaur Project
 DX priority possibility, shift to Lewis Research Center 70,032
 Cesium
 ionization potentials, comparison with argon and mercury 70,722
 Charged Particles
 associated with Venus, Mariner 2 measurements; preliminary report . 71,631
 atomic collisions, relevance to atmospheric and space physics $.70,969$ directional flux densities and mirror-point distributions in Van Allen belts 70,330 effects on geomagnetic ficld, model dipole calculations70,089 | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

Subject
Entry
Coatings
for radiators, testing of emittance in vacuum at 200 to $2200^{\circ} \mathrm{F}$. $.70,033$ nonmetallic, optical properties . . .71,448 optical, for solar cells; investigation .
.71,572
pigmented surface, photochemical stabilities 71,685
plasma-are spray technique 70,158
protective UV absorbers, photochemical stability 70,971
reflectance measurements, monitoring with portable integrating sphere 71,302
spacecraft, portable integrating sphere for monitoring reflectance
$.71,684$
spacecraft; thermal vacuum technique for measuring solar absorptance, thermal emittance 71,303

Comets

1960 n, 1960 i, 1961 d, 1961 e, 1961 f; observations and analysis70,641
analysis of spectroscopic observations and colors .70,373
annotated bibliography 71,772
Arend-Roland 1956 h , photoelectric brightness measurements . . 70,638
Burnham 1959 k , colorimetric and spectral observations 70,640
comet-metcorite ring around
Jupiter, theory 70,732
composition of head, theory.....71,686
diffusion, theory 70,635
clistant, analysis of spectroscopic observations and colors71,304
Humason 1961 c, CO^{+}band spectrograms 71,689
Humason 1961 e , observations . . .70,034
Humason 1961 e, photographic record of activity 70,374
Humason 1961 c , tail activity . . . 70,637
icy nuclei structure, theory 71,687
nature and origin, theory. 71,688
physical observations 70,639
plasma tail observations, for interplanetary matter studies.71,769
Wilson 1961 d, search for decameter radiation70,636
Wilson-Hubbard 1961 d, spectrophotometry data, July 26, 1961.70,372

Communication Satellites

$24-\mathrm{hr}$ vs. low altitude orbits, comparison 71,082
antenna directivity for preservation of interference margin 70,376

[^43]
omparison of active, passive, and
synchronous
-
work arrangement 70,973
coverage probability calculations. 70,375
for intercontinental TV trans-
mission 71,305
or lunar surface communi-
cations
control 71,306
ground receivers for TV system,
design considerations70,896
high-gain antennas for blanket
coverage 70,350
aunching and orbiting requirements,
vehicle design considerations . .70,644
operational reliability, require-
ments . 70,035
orbit attainment problems70,035
calculation method
rbital constraints on channel
sharing 70,038
dio signals, variations of radio
horizon 71,524
references and source guides 71,309
Relay, design details 70,251
Relay, Syncom, Telstar; detailed
description
systems integration70,517
elays and ground transmitters,
means of satisfying standards
and requirements70,895
power supply, develop-
tate of the art, $1962 \ldots . . .70,428$
Syncom, general description . . . 70,584
technological and economic problems
related to practicability study . .70,643
Telstar, Relay, Syncom, Advent;
general description 70,897
racking, telemetering, and iono-
spheric influence on signals70,642
wo-body schemes for attitude
control reliability 70,942
Communication Systems
co-channel, interference
problems 70,038
combined optical and RF using
Earth satellite relay link to
nuclear space vehicle
71,307

[^44]

Subject
Entry
Converters (Cont'd)
waste heat rejection, thermal radiation characteristics of surfaces. . 70,224

Cooling Systems
(see Temperature Control)

Coronameters

Paris Observatory instrument, description and test results71,317
Cosmic Dust
(see also Interplanetary Matter)
calculation of maximum charge. . 71,851
cloud orbiting Earth at L_{3}. 70,824
70,825
particles, investigation of properties
.71,692
showers, direct measurements . . . 70,977
spherical swarm, least constant density 70,825
surrounding Earth, origin theory . 71,694
surrounding Earth, Sovict and U.S. observations 71,695
surrounding Earth, Sovict measurements $.71,693$

Cosmic Radio Noise

absorption accompanying SC
of 71 storms
.70,091
explanation by qualitative model. . 71,932
increase of ionospheric absorption
during nuclear event71,026
Cosmic Ray Showers
measurements
.71,318

Cosmic Rays

Apr. 1960 balloon observations . .71,707
Sept. 26, 1960 cvent, data 70,980
Sept. 28, 1961 observations by
Explorer 12
$.70,854$
α-particle energy spectrum 71,320
albedo, neutron decay formation of
high-energy electrons71,226
as major neutron source near planets
.70,970
asymmetries in Forbush decreases . 71,705
biological and physiological effects,
USSR data 71,656
biological effects, assessment71,673
biological effects, Soviet studies. . 71,711
chemical composition of nuclear
component 71,710
composition, Sovict studics. 71,708
cutoff rigidity computation method
$.71,326$
diffusion in interstellar magnetic
fields
$.71,319$

[^45]
diurnal variation, calculations70,662
diurnal variation, study by asymp-
totic cones of acceptance 70,662
ects on equipment and
nergy spectra of nuclei, Cerenkov
counter measurements71,709
exponential rigidity spectrums...71,706
Forbush decrease, superimposed intensity variations 71,705
frec electron production in D layer
by solar and galactic 70,670
galactic, intensity and energy ectrum of electrons,
calculation70,051
galactic, novae as possible sources. 70,660
eographical position of minimum
cavy primary, potential biological hazards

Subject
Entry

Cosmology (Cont'd)
formation of solar system elements, theory
$.70,984$
from Earth, theory of origin of Moon rotational fission71,850
gravitational collapse of cold, rotating gas cloud .70,665
implications of samarium, europium, and gadolinium in solar system history 71,074
multiple creation of nucleon pairs by thermal photons, theoretical analysis

70,982
origin of atmospheric xenon 70,667
protoplanetary cloud, dust component temperature 70,663
pulsating universe 70,664
radio background as criterion for models 70,053
relation of principles of relativity
.71,327
satellites and planets, theory70,668
star produced graphite grains in interstellar space 70,719
theories, radioactive decay ages of rocks and meteorites 70,981
time interval between nucleosynthesis and formation of Earth, calculation method 70,384
70,385

Cryogenic Propellants

evaluation of space storability . . 70,669
for liquid rocket and nuclear engines
$.71,713$
integration with vehicle cooling system, effects
$.70,310$

Cryogenic Storage

fabricating operations and suitable materials 70,159
hydrogen-bonded propellants, radiation damage estimates 70,985
hydrogen storage and delivery subsystem 70,054
in space vehicle, hydrogen and oxygen for direct energy conversion 70,055
nonvented propellant tank, weight analysis 70,669
of propellants as liquefied gases . . .71,712 on lunar surface and in orbit70,669 problems of containment during flight and on planet surface. . .70,358 propellant tank surface temperature analysis
$.70,669$
propulsive fluid accumulator system 70,386

[^46]Subject
Cryogenic Storage (Cont'd)
vented, nonvented, and refrigerated
systems; comparative analysis. . 70,669
Cryogenics
application to space simulation test
cell design and fabrication71,003
chemical dynamic power system
compared to fuel cells and solar
cells, analysis70,502
in missiles and spacecraft........71,713
space applications; propellant stor-
age, environmental simulation,
refrigeration71,712
testing of cryogenic components. .70,399

D Region

electromagnetic resonant frequencies 70,056
electron densities, diurnal and seasonal variations70,986
electron density, phase interaction measurement technique71,331
free electron production by cosmic rays and resultant radio wave absorption70,670
thermal structure and wind flow, 70-100 km 70,987

Data Processing
automation of checkout GSE, feasibility71,377
Explorers 1 and 3, transmission and recording techniques 70,585
for continuous orbital guidance system70,422
method for digital reduction of radio telescope data70,671
method for position-reduction using discrete measurements of trajectories 70,593
methods of archiving and retrieving Tiros data 70,057
planned flight operations
facilities 71,376
storage system for Nimbus71,714
systems for $O G O$ and "universal" concept satellites, design considerations 70,672
use of high-speed computers at NOMSS Data Processing Center 71,835
Deceleration
physiological and psychological
effects, bibliography71,274

[^47]| Subject Entry | |
| :---: | :---: |
| Earth (C | |
| orbital eccentricity, effect on solar radiation intensity in | |
| and formation, calculation. . . . 70,384 | |
| toroidal oscillations, study71,716 | |
| | |
| Echo I | |
| catalog of precisely reduced observations of positions 71,503 | |
| orbit perturbations by extra | terrestrial gravitation70,791 |
| Echo 2 | |
| kin m | |
| Ecologi | |
| air contaminants, gas chromatograph for analysis and monitoring. . . .71,187 | |
| algae suspension, fiber method | |
| biochemical fuel cell potentialit | |
| cabin atmosphere, trace contaminant tolerance criteria 71,188 | |
| choice for each of three Earth orbital manned vehicles71,341 | |
| feeding console for 14-day mission 71,489 | |
| human simulator for testing 71,337 | |
| physiological parameters f | |
| problems in creating optimum environment for astronauts on lunar surface71,334 | |
| Soviet studies 71,576 | |
| two-systems integration, feasibility and advantages 71,314 | |
| water recovery processes, state of the art 70,994 | |
| Electrical Propulsion Systems (see also Arc Jet-, Ion-, Plasma-) | |
| advances in continuous electromagnetic systems 71,717 | |
| annular-beam ion engines, advantages 71,402 | |
| application of nuclear-thermionic power, conceptual design . . . 70,062 | |
| application to space missions . . . 71,340 | |
| arc jet and resistojet systems, comparison of various configurations. . .70,393 | |
| capabilities for lunar exploration. .71,338 | |
| conceptual design of nuclear reactor as power source71,086 | |

Electrical Propulsion Systems (Cont'd)
constant magnitude and direction of acceleration, mathematical model
. .70,485
electrostatic, space-charge-flow theory and electrode design . . 70,063
electrothermal, electrostatic, electromagnetic, heavy-particle; state-of-the-art review
.70,391
heavy-particle electrostatic thrustors, research $.71,339$
mass/power ratios, optimization. . 70,392
microwave exhaust characteristics of engines . 70,395
optimum thrust programming, for Farth escape 71,217
role in future space programs, solar system exploration70,394
state of the art and future development 70,676

71,872

Electromagnetic Waves

(see also Radio Waves)
energy equipartition during propagation in uniform magnetic field
.70,677
guidance in magnetosphere 70,226
propagation in horizontally stratified ionosphere70,130
propagation in plasma with constant collision frequency and variable plasma density71,028
reflection from moving boundary between two independently moving ionized media 70,678

Electronic Equipment

cryogenic testing of components. . 70,399
effects of Van Allen and artificial belt radiation on circuits 70,996
endless-loop magnetic tape recorder for space applications 70,995
manned lunar mission support system 70,064
microelectronic function blocks, description and space applications
.70,679
nuclear radiation effects71,085
part failure rates in space
environments 70,397
semiconductor devices, effects of proton bombardment71,719 71,720
semiconductor devices, surface effects of radiation $.71,718$

[^48]| ubject | |
| :---: | :---: |
| Env | |
| IR radiators, reflector surface contamination | |
| | JPL $25-\mathrm{ft}$ space simu |
| large space chambers, survey 71,7 | |
| lunar surface operations, for command operations training. . 70,067 | |
| Manned Spacecraft Center facilities, description 71,602 | |
| man-rating considerations; medical, engineering, and operational. . 70,400 | |
| Mark I solar, instrumentation and control devices 71,343 | |
| MARS, to simulate all biological environments of orbit 71,342 | |
| planned and operational, listing. .70,402 | |
| proposed NASA Space Radiatio | |
| requirements and possible solution for lubrication of bearings and gears . 71,001 | |
| solar, 28 -kw high-intensity carbonare, design concepts and operational evaluation 71,000 | |
| solar, JPL advanced design type. . 71,726 solar radiation, continuously operating carbon-arc lamp 70,997 | |
| | |
| | |
| solar radiation, design and technology of high-wattage xenon and mercury compact are lamps . . . 70,998 | |
| space test cell, cryogenics applied to design and fabrication 71,003 | |
| sunlight, calibration utilizing absolute spectral units 70,999 | |
| tandem Gerdien are, for highenergy gas flow 71,344 | |
| to determine design requirements of equipment used outside spacecraft70,401 | |
| Environmental Testing advantages and disadvantages of using flour beetles70,068 | |
| | |
| effects of space flight on flour beetles 70,068 | |
| hard vacuum, penetration studies of simulated lunar dust 71,345 | |
| large space chambers, survey. . . . 71,724 | |
| materials and components, techniques and results 71,346 | |
| of Project Fire vehicle for static stability characteristics 70,242 | |
| of Ranger impact limiter system and materials performance at 74 to - 15^{\prime} F 71,004 | |

Subject Entry
Environmental Testing (Cont'd)
of silicon radiation detectors 70,990
propulsion and mission support mechanisms, reliability71,723
vibration shock and temperature
effects on Fresnel solar reflector $.70,244$

Ephemerides

1963 graphic timetable 71,347
approximate calculation method . . 71,297
computation from two-body parametric equations 70,370
planetary, calculation from initial values
$.70,069$
planetary position-velocity, obtained by special perturbations 70,403

Escape Systems

ASIS for Mercury capsule 71,456
design considerations, effects of changes in angle of acceleration on human center of gravity . . 70,345
emergency ambulance for returning injured astronauts from lunar surface $.71,728$
for three types of Earth orbital manned vehicles
.71,341

Exosphere

distribution of hydrogen71,730
distribution of ions 71,348
electron density and temperature profiles, measured by incoherentscatter technique 71,005
hydromagnetic wave frequency cutoff . 71,762
hydromagnetic wave propagation 70,681
isotropic hydromagnetic waves propagation70,682
neutron flux and energy spectrum. 71,855
planetary, analytic solution for density distribution 71,731
vertical distribution of free electron concentration, Soviet measurements .71,729
VLF emission 70,070

Explorer 1

instrumentation and data processing techniques $.70,585$

Explorer 3

instrumentation and data processing techniques
$.70,585$

Explorer 14

data on electron and proton intensi-
ties in Van Allen belts 71,995
radiation data and experiments. . 70,071
Explorer 15
description 71,732
to study artificial radiation belt . . 71,732

Explorer 16

micrometeoroid penetration experiments, Mar. 2, 1963 status 71,349

Extraterrestrial Life

bibliography, evidence of existence 71,008
current speculations and proposed experiments71,007 experiments for investigation, description71,351 indirect evidence of existence . . . 71,008 investigations and experimental data by Tesla, Marconi, and Todd . .70,683

[^49]F Region (Cont'd)spread F and F-layer electrondensity 70,073
spread F and F-layer height70,074
spread F and F -layer parameters,
causative mechanisms.........70,076
spread F and F-layer parameters
theory 70,076
spread F and F-layer vertical
movement70,075
spread F associated with nuclearexplosions$.70,405$
spread F at high latitudes, occur-
rence probability70,407
spread F in polar regions 70,406
thermal balance, investigation of
atmospheric temperature and
density 71,011
traveling disturbances, summary of
investigations
$.71,735$
upper, electron density
distribution
71,356
F_{2} Layer
behavior during solar eclipses ...70,688
critical frequency, lunar perturba-
tions71,357
critical frequency and K -indices,
relation70,086
disturbances caused by Aug. 1, 1958
nuclear explosion 70,686
effects of geomagnetic storm. . . .70,090
effects of solar eclipse.71,740
electron density, height of
maximum 70,079
electron density and frequency
spreading 70,073
electron distribution under middle
latitude conditions 70,688
geomagnetic control of diffusion,
numerical results 71,739
ionization decay 70,687
ionization displacement, effect
of diffusion and divergence
of geomagnetic field 70,078
mathematical model of
ionization 70,688
midday critical frequencies, lunar
semi-diurnal variations 70,079
peak electron density variations asso-
ciated with nuclear explosions . .70,433
vertical movements 70,075
virtual height analysis 70,074
Fire Project
re-entry model configurations,
static stability characteristics. .70,242SubjectEntry
Fire Project (Cont'd)vehicle configuration forward portionscale model, pressure distributiontests$.71,012$
Flight Simulation
active control system analysis for a spinning body 70,049
of lifting re-entry vehicles at parabolic velocities71,148
of manned landings, flight evaluation using VTOL aircraft 70,748
of pilot controlled lunar landings. 70,447
return from lunar landing abort to orbit, analysis
.70,139
Flight Simulators
Gemini and Apollo flight trainers, proposed 71,358
Manned Spacecraft Center facility, description71,602
to reproduce all mission phases . . .71,013
vertical accelerator, to simulate vibration and buffeting
$.71,359$

Free Molecular Flow

aerodynamic force coefficients and equilibrium surface temperatures
in Earth's atmosphere, effects on satellite $.71,220$

Fuel Cells

15-w battery using soluble fuels and oxidants .70,081
biocells, survey of status 70,080
biochemical, potentialities as auxiliary power unit and chemical converter for closed ecological system. . .70,390
comparison with solar cells and cryogenic chemical dynamic systems
$.70,502$
electrically regenerative hydrogenoxygen, developmental status. .70,412
electrochemical, annotated bibliography
electrochemical; annotated bibliography, late 1961-Sept. 6271,362
energy conversion systems, reference handbook70,504
high-temperature, potential advantages for space power source . . 70,413
hydrogen-oxygen, ion-exchange membrane cell for Gemini. 70,411
Hydrox hydrogen-oxygen system, integration into optimum powerplant
70,503

[^50]

[^51]Subject Entry
Inertial Navigation Systems (Cont'd)
magnetic-induction gyros for
drift minimization70,104
subminiature general purpose dig-
ital computer, application70,657

Infrared Detectors

(see also Horizon Sensors)
$20-\mathrm{in}$. aperture radiometer for satel-
lite emission 71,022
current and projected applications. 71,391
for attitude determination of Tiros satellites
$.70,359$

Infrared Radiation

harkground measurements for daytime, twilight, and night sky conditions
. .71,022
for spectrophotometric analysis of lunar soil 70,177
from satellites, detection with 20 -in. aperture radiometer 71,022
from Venus, preliminary report of measurements by Mariner 2 . . . 71,632
of Earth, investigation 71,763
radiators for space simulators, reflector surface contamination71,392

Injun 1

July 1961, solar proton observations

70,853
Feb. 1962 data 71,569
data on artificial radiation belt formed by July 9, 1962 nuclear event . . 71,520 diurnal variation of trapped radiation, observations
$.71,626$
electron intensity measurement of inner radiation belt
.71,994
radiation belt studies 71,527
shielded Geiger counter, efficiency .70,992

Instrumentation

(see also Bioinstrumentation, and
specific type of instrument)
acoustic, for near- and far-field measurements of sound pressure levels during rocket launches. . .71,899
and payload design, lunar roving vehicles 71,818
balloon-borne and orbiting telescopes, major technological advances 70,623
beam current measuring device for ion engine research 71,403
carried by OSO spacecraft 70,795
charged-particle collectors, description
.

Subject
Entry
Instrumentation (Cont'd)
miniaturized chromatograph to monitor space cabin atmosphere71,394
multichannel analyzers, miniaturization
$.70,122$
neutron- γ-ray, for lunar surface analysis
$.70,123$
nuclear, for space missions.70,121
nuclear, role in space studies. . . $\mathbf{7 0 , 1 2 0}$
performance and reliability, state of the art
.70,428
photocathodes for solar SW emission investigations $.70,715$
pressure-type airspeed-altitude systems for X-15, calibrations and comparisons 71,237
radar, for gendetic measurements. . 70,506
radiation monitoring system70,218
RF impedance probe for ionospheric measurements 70,427 satellite, for heavy primary cosmicray flux measurement 70,426
satellite and space probe, capa-
bility survey, 1957-62
scalar proton magnetometer on Vanguard 3

70,117
scintillation spectrometer for proton
measurements in Van Allen belts. 71,227
search coil magnetometer carried
on Pioneer 1, description.71,751
seismograph for Ranger project. . . 70,425
self-orienting magnetometer, Sputnik 3
$.71,586$
solar X-ray measurements70,929
space exploration problems70,121
spectrometers, electrostatic probes,
and neutral pressure gages for
atmospheric study
.70,326
spectrometry studies in space. . . .70,120
spinning search coil, modulation
by magnetic signals. 71,750
standardized nuclear power supplies 70,181
SUI detectors on Explorer 12, characteristics 70,602
tape recorders for satellites, modularization concept 70,118
Telstar on-board transmitter and receiver 71,764
USSR, solar short-wave radiation measurements 70,716
valves for spacecraft engines, advanced technology 71,393

Interplanetary Environment

effects of charged particle bombard-
ment on photovoltaic cells. . . 70,548

[^52]| Subjec | Entry |
| :---: | :---: |
| Interplanetary Environment (Cont'd) effects on design of space training simulator, survey 70,065 | |
| | |
| effects on lubricants for bearing systems 70,135 | |
| electron density measurement, limitations on optical methods. . . . 71,765 | |
| parameters, effects on space travel 70,717 | |
| protection for manned vehicles. . .70,429 | |
| search for presence of antimatter. . 70,621 solar wind, parameters near Earth | |
| orbit and inner corona 70,852 | |
| Interplanetary Magnetic Fields data from satellite magnetometer experiments 71,767 | |
| | |
| determining factor of auroralzones 71,745 | |
| existing measurements and theories, study and development of model 71,766 | |
| influence of Sun; study using models 71,395 | |
| Interplanetary Matter (see also Cosmic Dust | |
| annotated bibliography 71,772 | |
| boundary phenomenon with geomagnetic field 70,691 | |
| density estimates from meteor data
 and zodiacal cloud observations . 71,770
 evidence for geocentric dust
 cloud 71,770 | |
| gaseous component, summary. . . 71,768 | |
| light scattering by small particles, analysis 71,771 | |
| model for steady-state space distribution of meteoric particles . .70,470 | |
| models derived from zodiacal | |
| light data71,771 | |
| nuclear instrument study 70,120 | |
| observations of comet tails as natural probes71,769 | |
| scattering of light to produce gegenschein71,741 | |
| Interplanetary Missions | |
| approximate propulsion cutoff conditions for trajectories71,983 | |
| attitude control by star field recognition70,361 | |
| development; from Mercury, Gemini and Apollo technology 71,401 | |
| future programs, discussion 71,401 | |
| manned Venus-Mars flyby in 1970, study72,010 | |

Subject

nterplanetary Missions (Cont'd) nuclear, and chemical propulsion systems, comparison nonstop round trip, general
optimum thrust programs for power-
limited systems 71,153
orbits of periods commensurate to
one year 71,863
propulsion requirements for soft landing in extraterrestrial enviromments71,396

71,397
71,398
stopover, analysis and
transversality relation for flyby and rendczvous70,214

Interplanetary Missions (Manned)
debilitating effects of prolonged eightlessncss and radiation -70,355

terstellar Matter

解1,402
ttitude control and station keeping system, preliminary engine design .70,720
contact ionization and electron bombardment types, capabilities
for solar system exploration . . .70,394
electrometer amplifier, efflux
detector measuring system70,347
electron bombardment engine, beam neutralization tests of flight model 70,721
electron bombardment type with cesium expellant, characteristics 70,722
engine rescarch, beam current . .71,403 emission 70,723
methods of neutralizing ion beams, comparison70,43
operation with ac supplies, surface and volume sonization, comparative design analysis. . .70,430
theoretical plane-diode engine . . .70,723 performiance test results 70,124

Subject

Entry
Ionosphere
(see also D, E, and F Regions,
F_{2} Layer)
$80-400 \mathrm{~km}$ region, wind flow characteristics
May 9-10, 1961 observations of incoherent backscatter characteristics
$.70,727$
absorption anomalies during solar eclipses
.70,857
absorption of radiation 71,030
Alouctte data 71,609
Alouette data, preliminary results. . 71,608 antennas for study of random diffusion in $.70,808$
attenuation of hydromagnetic
\qquad
currents, relationship to auroral motions 71,667
de electric fields sufficiently heated to excite the $O\left({ }^{\prime} D\right)$ levels 71,782
disturbances due to Oct. 1961 nuclear explosions 70,126
diurnal variations at magnetic
equator, satellite observations. . 70,437
drift at high latitude, determined
from radio star scintillations71,406
drifts, measurement by doppler shift technique 70,438
echo amplitude, $h^{\prime}(f)$ simultaneous recording method 71,774
effects of Feb. 15, 1961 solar eclipse
effects of high-altitude explosions $.71,780$ 71,989
effects of nuclear detonations71,778
effects of Sept. 28, 1961 solar flare $.70,557$
effects of solar flares and
prominences 71,930
effects on flour beetles70,068
electric effects on satellite. 70,528
electromagnetic waves, propaga-
tion in horizontally stratified
ionosphere
.70,130
dectron concentration, determina-
tion by polarization fading in
satellite signals
$.71,408$
electron content, new method of determination $.70,436$
dectron content measurement71,404
electron content measurement with
single satellite frequency. 71,029

[^53]| Subject Entry | Subject Entry | Subject Entry |
| :---: | :---: | :---: |
| Ionosphere | Ionosphere (Cont'd) | IQSY (Cont'd) |
| , possibilit | to-ionic equations, validit | program objectives71,031 |
| by plas | . and Q.T. approximations. 70,12 | 87 |
| diation71,301 | measurement of motion b | proposed NASA contributions |
| electron density and temperature, sounding rocket measurements .71,773 | $\begin{aligned} & \text { trail observations71,405 } \\ & \text { methods of investigation } 70,131 \end{aligned}$ | 1,788 |
| electron density and temperature profiles, measured by incoherentscatter technique 71,005 | negative and positive disturbances, relation to geomagnetic variations 71,74 | Juno 2 S-46 design and construction, summary project report70,255 |
| electron density at 1000 km , study
 by Alouette 71,979 | numerical maps of characteristics, methods of use | Jupiter |
| electron density measurements . . .71,210 | optical emissions of electrons | 1959-61 decameter noise storms, statistical analysis 70,441 |
| RF impedance probe 70,4 | penetration by VLF radio signals . .71,407 | 1961 radio observations at decameter wavelengths 70,440 |
| electron density profiles, determination from satellite radio signals 71,409 | perturbations of electron density
 by Alouctte
 71.976 | 1963 predicted occultations and appulscs 70,755 |
| electron density profiles, determination from faraday rotation of satellite radio signals71,786 | plasma, energization71,746 plasma and cyclotron spike phenom- | 38-Mc radiation measurements . .71,412 atmospheric properties, recent ob- |
| electron density variations,
 Oct. 1959 70,728 | polar cap absorption effects70,725 | servational results71,111
 belts, two-decade cycle70,202 |
| electron density variations associated with nuclear explosions 70,433 | propagation of spherical waves through anisotropic | met-meteorite ring, criticism
 of theory70,733 |
| electron distribution, behavior pattern 70,131 | irregularities70,132
 properties, data from scientific | clotron radiation possible cause
 of radio emissions
 70,729 |
| elongated irregularities of F region, radio wave propagation theory . .70,726 | satellites 71,894 quiet, simple model 779 | decameter radiation bursts, observations and theories of origin71,869 |
| excitation of red lines of atomic oxygen71,782 | quiet, simple model electron and ion | decameter radio emissions, longitude effects 70,442 |
| experiments planned for July 20 ,
 1963 eclipse 70,127 | measurements71,025
 refractive and absorption index, | decameter radio emissions, probably |
| first topside soundings 71,410 | erivation of expressions71,776 | trapped electrons 70,729 |
| free electron concentration to 200 km , data from USSR sounding rockets 71,783 | resonance property due to anisotropic conductivity70,434 | decametric emissions, dynamic spectra71,790 decametric radio bursts, inter- |
| $h^{\prime}(f)$ records, nonuniform lamination analysis 71,777 | scale heights, data from Alouette . .71,781 | ferometric observations71,792 decimeter radiation, measurements. 70,444 |
| HF oblique transmissions, amplitude statistics measurements70,512 | spread echoes, study by Alouette . .71,977
 structure of field of motion71,784 | decimeter-wave emission
 variations 70,443 |
| high altitude nuclear explosion effects . 71,775 | use of $f_{m i n}$ data to study sola | illuminance, theoretical value . . 70,495 internal structure, influence of |
| induction of electric currents in uniform anisotropic ionosphere .70,435 | X-ray emission variations in mean molecular | axial rotation71,868 luminescence of satellites71,789 |
| interaction of radio waves, analysis 71,528 | weight of night air 71,785 variations of oxygen red line in | microwave radiation, observations and theories of origin 71,869 |
| ion density, sounding rocket measurements 71,773 | night airglow 70,613
 VLF radio propagation, | origin, structure, and chemical evolution 70,202 |
| ionization density, effect of highaltitude nuclear event71,027 | mathematical description 70,511 winds, data showing existence in | photographic methods and results, $1962 \text {. 70,730 }$ |
| joule heating effects 70,910 | lower areas 70,128 | physical characteristics 71,183 |
| lower, high-latitude ionization associated with high-altitude nuclear burst \qquad 71,026 | IQSY
 description and objective of all-sky | radiation belts as source of deca-
 metric emissions, theory 71,790 radio emission at $8-\mathrm{mm}$ |
| lower, investigation of magnetohydrodynamic interaction and mechanism for sporadic-E production. 71,028 | photometer 70,797
 planned experiments and related
 instrumentation 70,326 | wavelength72,007 radio emissions and exospheric density71,791 |

[^54]| Subject Entry | Subject Entry | Subject Entry |
| :---: | :---: | :---: |
| Jupiter (Cont | L | Lubricatio |
| radio observations, 196271,032 | lifting abort trajectories, possible | nd bearing materials for nucle |
| resolving surface using inferential approaches 70,442 | collision hazards 71,981
 multistage vehicles, prediction and | ntrol systems, analysis70,136 dary, gallium-rich films in air |
| results of transit observations during
 1961-62 apparition \qquad | measurement of natural
 vibrations \qquad 70,736 | and in vacuum to $10^{-9} \mathrm{~mm} \mathrm{Hg}$, 70,134 |
| satellite system, agreement with Bode's Law 70,823 | ocean-based, of very large booster vehicles \qquad | for bearing systems operating in space environment, evaluation. . 70,135 |
| satellites, two-parameter formula to determine orbit radii 70,489 | optimization for injecton into space-fixed circular orbit70,487 | for bearings and gears in space simulator, requirements and possible solution |
| spectroscopic investigation. | orbital stations 71,496 | small ball bearings, vacuum |
| CH_{4} and NH_{3} lines 70,494 | sound pressure levels, S-3 | conditions71,346 |
| stability of volatile ices on satellite | measurements 71,899 | ate of the art 71,448 |
| surfaces 71,575 steady-state magnetic field | techniques for obtaining wind profile data71,415 | system for space vehicles, problems 71,036 |
| measurements 70,455 theory of upheavals70,731 | Launching Facilities
 for Saturn-Apollo mission 71,416
 water launch facilities, feasibility. . 71,417 | Lunar Cartography
 by lunar satellite. 70,751 mapping of single crater, |
| Ki | | Eratosthenes 71,037 |
| performance analysis70,133 | LEM Project description and timetable 71,418 | reverse side of Moon, map70,830
 standard crater outline as
 observation aid . \qquad 70,739 |
| Landings (see also Lunar -, Planetary -, and specific planets) | Liquid Propellants
 98 -percent $\mathrm{H}_{2} \mathrm{O}_{2}$, performance and | Lunar Craters association with white |
| Earth, design considerations of systems for manned spacecraft . .71,793 impact and slideout tests for winged re-entry vehicle 70,241 | advanced, development of zero-g ex-
 pulsion and orientation systems. 71,034 evaluation of space storability . . . 70,669 mass measurement system for zero-g | formations70,744 bright-banded, theory of origin. . 71,038 correlation with Earth craters . . . 71,043 Darwin, dome in north part, observation 71,800 |
| L | environment71,035 | deltoid areas, theory of origin . . 70,138 |
| annotated bibliography to
 Apr. 1962
 71,444 | state of the art. 70,424 | diameter-depth relations and origin . 70,745 |
| application to communications . . 70,734 | Liquid Propulsion Systems | Eratosthenes, relief map 71,037 |
| closed-circuit, for automatic guidance of space vehicles71,761 | advanced, development of zero-g expulsion and orientation systems. 71,034 | geophysical theory of formation . .70,841
 impact hypothesis, discussion . . . 71,420 |
| for optical tracking systems 70,787 | alloys for thrust chambers, evalu- | Klein's 1877 discovery 71,797 |
| for space communication, bibliography 71,414 | tion . 71,453 catalytic hydrogen-oxygen | Linné, dimensions 71,799 Lubiniezky, description 71,421 |
| high-powered, continuously operable for relay satellite71,307 | reaction chambers 70,204
 for attitude control of satellites | Messier and W. H. Pickering,
 observations70,743 |
| limitations for deep-space communication systems 71,413 | and space vehicles, study 70,737 low-thrust, for vehicle orientation or maneuvering, design | origin, discussion 71,798
 origin, volcano-tectonic
 undation theory 70,536 |
| L | considerations 70,738 | Plato, chart of floor details 70,740 |
| | NOTS variable-thrust for manned | relative ages, determination by albedo |
| countdown duration, affected by interruption 71,794 | lunar soft landing 71,796 rocket motors, thermal protection. .71,546 | standard outlines as observation
 aid 70,739 |
| Delta-Telstar, prelaunch preparation 71,795 | Lofti 1 interim results, discussion71,407 | statistical data on size
 distribution
 .70,445 |
| finned boosters, roll contro | interim results, discussion 71,407 | distribution70,449,741 |
| systems 70,026 | Low Gravity | theory of origin 70,742 |
| high-resolution wind measurements for vehicle design and performance analysis \qquad $.71,678$ | effects on efficiency of astronauts. 70,008 physiological and psychological effects, bibliography71,275 | Tycho, association with enhance-
 ment of radar reflectivity70,446
 Wallace, description 70,137 |

[^55]

Subject
Entry
Lunar Maria (Cont'd)
photometric model, to develop lighting parameters for Ranger TV experiment 70,798
predominance on near side, hypothetical explanation71,423 resemblance to terrestrial ocean basins, theory71,071

Lunar Missions

calculational procedure for estimating radiation exposure71,881
computation of trajectories for return to specified Earth site . . .71,861
indirect approach scheme, advantages and comparison to direct approach 71,803
lunar orbit rendezvous, parametric investigation71,893
orbiting and landing, propulsion system requirements71,873
requirements affected by precession of Earth rendezvous orbits. . . 70,253
surface operations simulator, for command operations training. . 70,067
Surveyor project, payload and flight procedure 70,303
trajectories and landing schemes 70,140

Lunar Missions (Manned)
abort problems71,816
Apollo and lunar logistic system plans, brief summary 71,426
automatic checkout systems 71,245
direct and indirect abort trajectory requirements71,819
effect of part failure rates on operator activity and equipment design . 70,450
electrical propulsion capabilities. . 71,338
electronic support system 70,064
exploration, basic profile71,338
geo-sciences applied to exploration and man's survival71,817
launch vehicle size and staging requirements, analysis 71,677
LLS for Apollo, unmanned spacecraft bus concepts 71,813

71,814
71,815
logistic system, payload design criteria
.71,807
logistic system flight profiles, for impact and flyby Earth-Moon transits 71,804

[^56]| Subject Entry | Subject Entry | Subject Entry |
| :---: | :---: | :---: |
| Lunar Roving Vehicles (Manned) concepts, using Apollo launch vehicle system71,048 | Lunar Trajectories (Cont'd) tracking, orbit determination, and midcourse maneuver | Magnetic Fields (Cont'd)
 Venus, preliminary report on
 Mariner 2 measurements 71,634 |
| configurations, including design parameters and subsystem development 71,048 | requirements $\ldots \ldots . \ldots71,805$ Lunar Vehicles | Magnetohydrodynamic Converters chemically fueled, channel |
| design, propulsion, auxiliary power, and steering systems 71,429 | high area/mass ratio, capture
 by the Moon 70,525 | flow analysis 70,149 electron release using magnetic |
| interior environment required by astronauts 71,047 | interaction of hot exhaust jets with lunar surface, effect on vehicle. . 71,545 | field within70,456 energy conversion systems, |
| state of the art 71,427 | internal temperature control of lunar surface capsule70,898 | reference handbook70,504 state of the art. 70,457 |
| Lunar Satellite Orbits (see Selenocentric Orbits) | landing gear analysis 70,147 logistic, analysis of touchdown | Magnetohydrodynamics |
| Lunar Satellites configuration 70,751 | dynamic stability and land-
 ing gear parameters 71,808 | crossed fied devices and Hall accel-
 erators, description 71,051 interaction in lower ionosphere, |
| data transmission system, requirements 70,751 | aracteristics70,449 | mechanism for production of sporadic E \qquad |
| guidance and orientation
 considerations 70,751 | for LLS Apollo support71,813 | interaction of hypersonic flow with magnetic field, analysis 70,113 |
| orbital stability, investigation . . . 71,049 | 71,814 | |
| orbiter capsule study for Ranger program, final report71,430 | Lunar Vehicles (Manned) 71,8 | of plasma for power generation, investigation 70,458 |
| 71,431 | descents from lunar orbit, analog | over-all theory, review 70,457 |
| Lu | study 70,747 | propulsion, comprehensive review . 71,051 |
| assembly and placement of shelters, methods 70,453 | NOTS variable-thrust propulsion for soft landing 71,796 | pulsed electrodeless device, experimental work 71,051 |
| LEM project, description and timetable71,418 | weight and performance, comparisons for LOR and EOR71,424 | time-harmonic wave motion 71,052 |
| optimum environment for astro-
 nauts, requirements71,334
 permanent, development and
 operation70,146 | Lunik 2
 lunar magnetic field data71,422 | Mariner Project
 communications system, design considerations and operation 70,974 data handling and control, desigus for two systems 70,650 |
| permanent manned bases, possibil-
 ities . 71,432 | (see also Geomagnetic-, Lunar
 Magnetic-, Solar Magnetic-) | look-angle problem, design solution 70,296 |
| requirements for one-way mission 70,449 | effects on motion of sphere | reliability assessment and |
| role of Rift in establishment and maintenance, study 71,544 | through conducting fluid 70,148 interstellar, cosmic-ray isotropy theory . 71,702 | test facilitics 70,459
 Mariner 2
 charged particle measurements |
| Lunar Trajectories (see also Selenocentric Orbits) | interstellar, diffusion of cosmic rays 71,319 | $\begin{aligned} & \text { preliminary report } 71,631 \\ & \text { datal concerning life on Venus. . . } 71,230 \end{aligned}$ |
| circumlunar, minimum time aborts from midcourse region 71,821 | Jupiter, trapped electrons as possible cause of radio emissions . .70,729 | data from five experiments, initial report 70,151 |
| direct and indirect abort requirements71,819 | lunar and planetary, estimated measurements70,455 | deep-space communications 70,379 description of experiments and early |
| direct-ascent vs. parking orbit for soft-landing missions71,822 | magnetometer for space measurements 71,023 | data from Venus flyby 70,703 |
| for coplanar and threc-dimensional Earth-Moon transits for Apollo and logistic vehicles \qquad $.71,804$ | mapping in vicinity of current
 shects . 71,112
 methods of measuring, | design and experimental results . .70,752 measurements of Venus IR radiation, preliminary report 71,632 |
| Moon-to-Earth, analytic model and computer program study. 70,454 optimum navigation procedure . .70,474 return to Earth phase, considerations 71,820 | bibliography 71,433 of a model Earth radiation belt,
 distribution70,088 of planets, inferences and rough estimates71,050 | measurements of Venus magnetic
 fields, preliminary report71,634
 measurements of Venus radio emission,
 preliminary report 71,633
 results . 71,054 |

[^57]

Subject
Entry
Mars Vehicles (Manned)
ecological and cryogenic fuel requirements during atmospheric entry $\mathbf{7 0 , 3 5 8}$

Masers
 annotated bibliography to Apr. 1962 71,444

Materials

(see also Coatings, Lubrication)
ablation, experimental investigation in electric-arc-heated air jet . . .71,646
adaptation and testing for high re-entry speed
. 70,161
alkali metals as working fluids for space power, characteristics. . 70,107
alloys for liquid engine thrust
chambers, evaluation71,453
and components, environmental testing
bearing, and lubricants for nuclear control systems 70,136
char-forming ablation, developments $.70,465$
coefficient of sliding friction, measured during Ranger 1 flight. . . .71,828
composite, annotated bibliography 71,826
effect of hydrogen on aluminum, annotated bibliography 71,827
elastomeric and polymeric, space environmental effects; bibliography
$.71,825$
epoxy adhesive for Sunflower petal fabrication
. .71,566
erosion prevention during plasma jet operation 70,496
existing heat-shield, modifications .70,161
exposure to sonic and ultrasonic radiation, effects
.71,059
fabrication effects on toughness. .70,159
fabrication methods, state of the art 70,465
for booster vehicle design considerations 71,060
for cryogenic storage tanks.70,159
for Fresnel solar reflectors, environmental tests70,244
for radiator coatings, emittance testing 70,033
for radiators, thermal radiation characteristics
for solar absorber surfaces, analysis of effectiveness 70,279
for space powerplant radiator design
.70,221

[^58]| Subject Entry | Subject Entry |
| :---: | :---: |
| Materials (Cont'd)
 for thermoelectric generators, radiation effects and reliability; bibliography \qquad
 fusible, for high temperature energy storage 70,163
 glassy, comparison between theory and flight ablation data 70,932
 graphite, applications in space technology \qquad 71,466 | Materials (Cont'd) teflon and Zelux, laboratory study of radiation from ablation models. 70,931 teflon resins, survey of behavior in space environment 71,199 tissue depth-dose for various shielding thicknesses 70,271 wire cloth for use as flexible radiating structure at $1200^{\circ} \mathrm{F}$ for blunt re-entry vehicle \qquad 71,445 |
| high temperature nonmetallic, review 71,448 | Mercury
 Nov. 1960 transit, black drop |
| liquid metals for direct fluid heat exchange Rankine cycles, analysis70,185 | observations 70,764 atmospheric properties 70,466 illuminance, theoretical value . . 70,495 |
| melting ablation in stagnation region . 70,002 | measurements of radio cmission . . .71,869 microwave radiation measure- |
| metals, tungsten as coating 70,158 | ments70,763 |
| molybdenum and silver as seals for extreme environments, testing and evaluation70,162 | search for decametric radiation . .70,802 size and surface erosion70,202 |
| NaK-77 as hydraulic fluid in control systems 70,047 | measurements 70,455 subsolar point temperature 70,763 |
| new fuels developed for nuclear power systems, review 70,186 | Mercury Project |
| nitrile-phenolic adhesive bonding for $X-21$ wing surface assemblies, development71,058 | abort techniques and procedures. 70,168 application of celestial mechanics. 70,369 atmospheric density determination |
| oxides, ZrO_{2} and UO_{2} as spray coatings70,158 | from capsule orbit 70,327 attitude control system, |
| plastic structures, fabrication in space . 71,454 | description 70,169 capsule escape mechanism, role of |
| pyrolytic, effects on re-entry
 vehicle performance70,160 | animal tests 70,954 check-out and launch, reliability |
| pyrolytic, for thermal protection systems 71,450 | tests71,379 command receiver, design details. 71,830 |
| pyrolytic graphite and pyrolitic | comparison with Gemini 71,363 |
| boron nitride, characteristics . . 70,160 | flight monitoring and control . . . 71,380 |
| pyrolyzed plastic composites, improved compositions and constructions \qquad 71,829 | history of biomedical findings71,455 MA-6, chronological description of astronaut preparation71,255 |
| radiation tolerance limits 70,762 | MA-6, chronological report of |
| refractory ceramics and intermetallic | Glenn's flight 70,765 |
| compounds, review 71,449 | MA-6, re-entry experiments 70,814 |
| refractory metals, advantages and limitations for nuclear applications \qquad 71,451 | MA-7, effects of acceleration on liquid-vapor interface in baffled tank during weightlessness71,061 |
| refractory metals, present usability and future requirements71,452 | MA-8, 24-hr orbit fuel and weight requirements70,164 |
| refractory metals, properties 71,447 simulated lunar, thermal properties in air and vacumen 71,057 | MA-8, bioinstrumentation, dosimeters, and biomed tests of weightlessness effects 70,166 |
| teflon, frec-flight investigation of ablation characteristics 70,001 | MA-8, complete report of mission results $.70,766$ |
| teflon and polyethylene, ablation at low heating rates71,240 | MA-8, quantitative data on operation and performance $.70,165$ |

[^59]

Micrometeoroids
as hazards to space vehicle crew. .70,429 penetration experiment aboard Explorer 16, Mar. 1963 status . .71,349

Microorganisms

Gulliver detection experiment . . .70,154
in soil of harsh terrestrial environments, studies in anticipation of extraterrestrial findings71,076
in upper atmosphere, electrostatic bacterial air sampler70,471

Moon

(see also Selenography, Selenology, and specific lunar headings)
1963 graphic ephemeris 71,347
artificial ionosphere for intra-lunar communications, proposal70,338 as a physical object, bibliography .71,852 atmosphere, discussion 70,869 atmosphere, planned research. . . .71,845
atmosphere and surface, Soviet
research review 71,472
atmosphere and surface, supplement to Soviet research review71,438
atmospheric composition and temperature measurements, methods 70,473
axis changes from large meteorite collisions
$.71,715$
center of mass, determination from observations
$.71,847$
center of mass, photographic determination 70,778
characteristics, bibliography70,178
communications, summary of parameters and results of Moonbounce voice trials70,646
communications on surface, using satellites
.70,175
convection in interior71,867

[^60]

Subject
Entry
Navigation Systems (Cont'd)
cosmic, for interplanetary flight, Soviet developments
$.71,481$
on-board optical trackers, description
.71,080
open and closed loop70,180
parallel logic distributed memory and self-organizing systems, applications
$.70,655$
satellite transmissions and ground equipment, design requirements .70,475
self-contained, description 70,180
sensor requirements, state of the art
$.70,537$

Neptune

illuminance, theoretical value ...70,495
steady-state magnetic field measurements
$.70,455$
Nerva Project
pumping system, controls and destructor; design goals.

Neutrons

flux and energy spectrum above atmosphere
.71.855
sources in solar system 70,970

Nimbus Project

assessment of development and design achievements 71,856
automatic picture transmission system
$.71,838$
command clock system, description . 70,893
data storage system 71,714
instrumentation for future experiments
meteorological data processing and dissemination
$.71,835$
spacecraft and communication system as of Sept. 1961, description. . 71,081
test program 71,857

Nitrogen

molecular, presence in upper atmosphere
.70,909

Nova Project

possible configuration for first stage
$.70,786$
Nuclear Converters
open- and closed-cycle dynamic
engines, state of the art. 70,282
radioisotopic, for electro-
static propulsion $\ldots \ldots70,392$

Nuclear Converters

open- and closed-cycle dynamic
radioisotopic, for electrostatic propulsion
.70,392

[^61]

[^62]| | ubject Entry |
| :---: | :---: |
| Orbital Ferries design concepts based on existing spacecraft configurations 71,495 | |
| Orbital Launching | |
| design approach and requirements for launch stations 71,492 | |
| nuclear rockets, optimizing nozzle performance71,491 | |
| perigee propulsion program for nuclear rockets 70,788 | |
| Orbital Observatories
 geophysical, primary objective. . .70,482
 geophysical, solar, and astronomical; missions and engineering design . 71,859 | |
| | |
| | |
| S-17, description of instrumentation 71,157 | |
| second-generation Helios, description and design objectives.71,860 | |
| Orbital Stations accidental single-impulse launch of astronaut while outside vehicle 71,250 | |
| | |
| design approach and requirements for launch stations71,492 | |
| large preassembled, single-stage | |
| man-rating considerations; medical, engineering, and operational. . . 70,400 | |
| missions, objectives and capabilities; general analysis 71,493 | |
| proposed assembly methods and rotational characteristics71,494 | |
| resupply logistics and operational requirements 71,495 | |
| self-deploying, basic requirements . 70,483 | |
| stability and control 71,267 | |
| supplied by X-20, feasibility | |
| Orbital Transfer (see Transfer Orbits) | |
| Orbits | |
| (see also Geostationary -, Lunar
 Satellite -, Parking -, Rendezvous -,
 Selenocentric -, Transfer -) | |
| acceleration by solar radiation, mathematical model 70,485 | |
| accurate intermediary, computational procedure for Vinti's | |
| | acrodynamic and radiation disturb)ance torques 71,095 |

Subject
Orbits (Cont'd)
analytical solution of Musen's
theory for orbit computation. . .70,789
artificial satellites, numerical results
derived by dynamical methods. 71,091
calculation methods, for communication satellites 70,790
catalog of precisely reduced observations of satellite positions. . . 71,503
catalog of precisely reduced observations of Sputnik 3, Vanguards 2 and 3 positions 71,502
changing inclination of satellite . .71,499
circular, atmospheric density determination by short arc . . . 70,327
circular, effect of lift on decay. . . .71,092
circular, libration points 70,029
circular, three-dimensional pulse optimization for disorbiting maneuvers
$.70,794$
communication satellite, determina-
tion from angular data only . . 70,486
critical inclination problem.71,862
decay characteristics due to drag, calculation 71,097
determination, modifications of classical methods 70,793
determination by doppler shift . . .70,195
eccentric, accurate drag determina-
tions for eight artificial satellites . 71,094
effect of atmospheric drag71,096
elliptical, analysis of satellite lifetimes
$.70,821$
elliptical, demonstration of Kepler's 3rd law
$.70,966$
elliptical, satellite lifetime calculations 70,259
elliptical, satellite lifetime equations71,102
elliptical, three-dimensional pulse optimization for disorbiting vehicles
$.70,488$
equatorial, formula for near-Earth satellite motion .70,194
errors in prediction due to air drag, stochastic models and calculations .70,491
evolution under gravitational perturbations of external bodies. . .70,792
Explorer 6, for testing model atmosphere 70,404
geocentric circular, percentage cclipsed by Earth, determination $.70,192$
heliocentric elliptical, determination
$.71,093$

[^63]

[^64]

Subject
Entry
Power Supplies (Cont'd)
active-shield concept for nuclear reactors 71,558
advanced, analytical study71,113
alkali metal two-phase heat trans-
fer, present status 70,107
ASTEC 15-kw advanced turboelectric concept, development. . 70,288
batteries, hermetically sealed silver oxide-zinc for satellite applications $.70,805$
batteries; specific types for re-entry, satellite, and recovery vehicle. . 70,498
catalytic hydrogen-oxygen reaction chambers 70,20
constant oblique field electrostatic generator, analysis 70,210
cryogenic hydrogen-fueled reciprocating, for manned lunar missions

70,208
cryogenic propellants, effects of integration with cooling system

70,310
dynamic energy conversion systems, state of the art
$.70,282$
dynamic mercury Rankine cycle, complete self-contained70,209
electric, for $X-20$ glider 70,343
electric, hermetically sealed nickel-
cadmium batteries for $O A O$. . .70,499
electrostatic disk-type generators, design considerations 70,804
energy conversion systems, reference handbook 70,504
Explorer 12, secondary sealed silver cadmium battery 70,500
for lunar roving vehicles, power supply sources 70,145
for manned lunar roving vehicles. 70,750
for mobile lunar vehicles, parametric analysis 70,207
for space missions, 1962-76 70,206
fuel cell, solar cell, and cryogenic chemical dynamic systems; comparative analysis $.70,502$
hermetically sealed rechargeable battery systems for satellite energy storage 70,501
hydraulic, pneumatic, or electrical for control, comparison70,382
Hydrox fuel cell integration into optimum powerplant70,503
Hydrox internal combustion engine, development and advantages . .70,205
inflatable, foam-rigidized solar concentrators; fabrication and testing techniques

[^65]Subject
Power Supplies (Cont'd)
ion-exchange membrane, hydrogenoxygen fuel cell for Gemini. . .70,411
isotope costs and availability, review and projections 71,510
MHD, investigation of nonlinear electrical conductivity of plasma 70,458
nuclear turbogenerator 1 -Mw system

70,212
Pu^{238}-fueled thermoelectric generator, preliminary operational safety report
$.71,512$
radiators for powerplants, material considerations 70,221
radioisotope generators; fuels, conversion systems, and applications71,511
rechargeable, nickel-cadmium, 6-amp-hr secondary battery for Ariel 1 70,352
re-entry turbines, analysis 70,239
requirements, 1962-7670,206
SNAP, bibliography from 1957July 1962 71,915
solar concentrator calibration program 70,276
state of the art 70,497
static and dynamic systems, compari-
son for manned lunar missions. .70,208
Stirling closed-cycle externalcombustion engine 71,115
Sunflower project, thermodynamic system 70,302
system using Cryhocycle principle, description 70,211
thermoelectric generators, bibliography 71,969
two-systems integration, feasibility and advantages71,314
vibratory power transmission, analytical and experimental investigation 71,114
weight saving, with electronbombardment ion rocket 70,125

Powerplants
lunar, for processing water to liquid hydrogen and oxygen . . 71,513

Propellants

(see also Cryogenic -, Hybrid -,
Liquid -, Solid -)
advantages of OF_{2} combined with MMH or $\mathrm{B}_{3} \mathrm{H}_{6} \ldots \ldots$. 71,515
for lunar landing vehicles, requirements and comparisons71,041

Subject
Entry
Propellants (Cont'd)
orientation in zero-g with electric fields \qquad $.71,514$
storage, studies of liquid-vapor interface configuration in weightlessness $.70,337$

Propulsion Systems

(see also Advanced - Arc Jet -,
Electrical -, Ion -, Liquid -,
then muctear, and of the art and future development .
comparison of chemical and nuclear rockets 70,479
comprehensive survey 70,806
electrical, nuclear, and chemical; for Mars missions, capabilities. . 70,213
for lunar orbiting and landing missions, requirements 71,873
power-limited, optimum thrust programs
$.70,214$
power-limited, optimum thrust programs for interplanetary rendezvous $.71,153$
requirements and systems investigations, analyses 71,517
requirements for attitude control and trajectory correction maneuvers 71,516
space maintenance tasks 71,580
survey of costs, R\&D, future plans . 70,872
thrust requirements for lunar manned mission 71,425

Psychology
contribution to space flight, summary 70,216
disorientation during space flight, problems 70,215
effects of acceleration, deceleration, and impact; bibliography 71,274
effects of weightlessness and subgravity; bibliography 71,275
Mercury project, data 71,455

Radar Antennas
(see Radio Antennas)
Radar Astronomy
\quad (see Radio Astronomy)

Radar Echoes

effect of lunar surface irregularities

Subject
Entry
Radar Echoes (Cont'd)
exploration of Venus 70,607
lunar observations at $68-\mathrm{cm}$ wavelength . .71,079
meteor-head, study of amplitude. . 71,075
scattering characteristics of lunar
surface 70,836
scattering from meteor trails,
asymmetric model 71,518
to measure electron densities
in aurorae71,668
USSR location of Venus, Apr.1961.70,333

Radar Systems

for geodetic measurements with passive corner reflective satellite70,506
for rendezvous, docking, and plan-
etary landings; description.71,116
Gemini project rendezvous, interferometer techniques 70,082 interference effects of vernier
exhaust during lunar landings. . 70,507
sensor requirements for rendezvous and lunar landings
$.70,505$

Radar Telescopes

(see Radio Telescopes)

Radiation

(see also Infrared -, Nuclear -,
Solar Corpuscular -, Solar -,
Thermal - Ultraviolet -
Cosmic Rays)
acute exposure, effects on human performance71,878
as hazard to space vehicle crew. . 70,429 auroral zone balloon observations, Kiruna, Sweden 70,700
Chandrasekhar's X and Y functions
for homogencous atmospheres,
method of computation70,801
composition near Earth 70,978
computer code for tissue doses
from proton fluxes70,271
correlation of types with effects. . .71,119
damage, effect of $1-\mathrm{Mev}$ electron bombardment on solar cells71,561
damage resistance of silicon $p-n$ junction solar cell 70,273
damage to hydrogen-bonded propellants during orbital storage, estimates 70,985
damage to semiconductor devices from proton bombardment71,719
data from Explorer 14 70,071
detection within spacecraft by fungus71,117

[^66]
dosages from electrons and bremsstrahlung in Van Allen belts, calculations70,846
effects on metals and plastics 70,762
effects on resistors 70,398
effects on solar cells and glass,
annotated bibliography 71,875
ffects on spacecraft electronic systems, components, materials; annotated bibliography71,519
en unicelluar green algae, ectron, primary effect on cho 2 skin material... ectron detection during nuclear detonation by sounding rockets70,619
exposure, acute effects in man. . . .71,877
exposure, calculational procedure for estimating during lunar missions71,874
galactic cosmic rays, potential
hazards of particles71,700
evaluation71,696
hazard from solar proton fluxes . . .71,674
hazard to crew during re-entry . . .70,270
hazards to manned flight,
handbook71,885
rumentation for detection and
istrumentation for electron flux
and energy distribution
nizing, solar, cosmic, and Van
Allen; astrophysical character-
istics, origin, and distribution. .71,659

measurements, hazards to space flight71,884
eutron dosage produced in vehicle by geomagnetically trapped protons71,118 studies

70,673

overshoots caused by temperature decreases in re-entry vehicle70,508
permisible dose for humans.70,217
proton damage, semiconductor devices71,720
proton hazards from Van Allen belts and major solar flares71,122
scattering and transmission from planetary atmospheres, optical depth and albedo
$.71,506$
shielding, comparison of require-

dose contributions71,879
space proton doses at points within
human body71,880
spaceborne monitoring system. . .70,218
rface effects on semiconductor
devices71,718
synchrotron, measurements during
high altinde muchar evon....71,123
high-altitude nuclear event71,133
Tiros measurements, analysis 71,839
(see also Van Allen Radiation Belts)
artificial, caused by July 9, 1962
nuclear explosion, symposium. . 70,219
from satellite detectors 71,124
artificial, combined data from four satellites71,131 data from Iniun, TRAAC
observations 71,125
artificial, effects on solar cells71,172
artificial, effects on solar power systems71,173
by satellite 71,126
artificial, flux and energy spectra of protons and electrons71,128
artificial, formed by July 9, 1962 nuclear event 71,520
artificial, omnidirectional electron fluxes71,127 of electrons 70,967
Subject EntryRadiation Belts (Cont'd)artificial, radio measurements ofelectron number, energy spec-trum, and decay rate. 71,886artificial, studies by Explorer 15. .71,732artificial, studies with fission βsource71,130
artificial, survey article 71,999
artificial, trapped relativistic elec-
trons, observation 71,123
effects on satellite electronic components 70,996electron dumping, effects on radiocommunication$.71,527$
injection of electrons by highaltitude nuclear detonations.$.70,692$model Earth, magnetic fielddistribution70,088
of Jupiter, theory 71,790
second artificial; spatial character-
istics, origin, and time history. . 71,129

Radiators

(see also Temperature Control)
annular finned, effectiveness. . . . 70,220
coatings, testing of emittance of suitable materials$.70,033$
contour heat rejection fins forradiative cooling 70,311core dimension determination . . 70,588
design considerations, nuclearelectric spacecraft70,807
energy conversion systems, reference handbook70,504
finned vs. unfinned, relative effectiveness$.70,220$
for nuclear-electric power sup-plies, interfaces70,184
irradiation between elements $.70,220$
meteoroid impact damage pro-tection, weight problems 70,223
meteoroid protection require-ments, design considerations . . 70,222nonredundant direct condensingfinned-tube, for l-Mw Rankineelectrical power system 70,223
thermal radiation characteristicsof surfaces for heat rejectionby radiation70,224thermionic system, feasibilitystudy$.70,225$tubular and nonfluid, materialsfor powerplants$.70,221$
Radio Antennascomet scanning instrument,description70,636

[^67]| | Entry |
| :---: | :---: |
| Ra | |
| for ionospheric random diffusio studies | |
| Goonhilly Down | |
| Radi | |
| $8-\mathrm{mm}$ wavelength observations of Venus and Jupiter radio emission 72,007 | |
| 210-ft telescope, Parkes, Australia, first results \qquad | |
| bibliography, atmospheric aspects. 71,887 | |
| bibliography, theoretical articles, experimental data and description of equipment: 1946-62 . . . 70,809 | |
| contributions to cosmology71,328 data obtained with fully steerable telescope 70,671 | |
| | |
| effect of internal heat flow on lunar temperature measurements71,475 | |
| investigations with artificial sat | |
| Jovian decameter radio emission observations70,442 | |
| lunar emission on 9.6 cm , precision measurement71,474 | |
| measurements to estimate Venus rotation period71,635 | |
| observations of Venus at inferior conjunction 70,925 | |
| radio signals method for determining exponent in distribution of peak values 70,510 | |
| solar system, nature of radio emanations 71,523 | |
| star scintillations, correlation with auroral and magnetic activity. . 71,015 | |
| Radio Noise prediction and control, mathematical model 70,036 synchrotron, observations after high-altitude nuclear event. . . .71,133 | |
| | |
| | |
| Radio Signals backscattered from \mathbf{F} region, characteristics \qquad 70,727 | |
| | |
| edge focusing of signal received in ionosphere from space70,509 | |
| from satellites, scintillation from ionospheric irregularities 70,810 | |
| propagation, bandpass characteristics . 71,135 | |
| propagation, effects of satellite free body motion71,160 | |
| radio horizon variati | |

Subject
Entry
Radio Signals (Cont'd)
satellite-borne, determination of ionospheric electron density profiles from faraday rotation. . .71,786
study to ascertain E-region irregularities
$.70,675$
VLF phase perturbations associated with nuclear bursts 71,136
VLF propagation, mode theory. . .71,134
VLF transmissions, perturbations by high-altitude nuclear burst. .71,137

Radio Telescopes

210-ft, Parkes, Australia, description
210-ft, Parkes, Australia, first results 70,308
Australia, description and operating experience71,139
Benelux, design revision 71,525
German, for Telstar participation.71,138
Green Bank, detailed description. . 71,140 measurement of lunar thermal emission 71,853
optical link for antenna positioning 71,526
radio-transit, steerable in azimuth $.71,141$
structures; feasibility studies, design criteria and procedures 71,888

Radio Tracking Systems
for lunar midcourse guidance. . . .71,760

Radio Waves

auroral absorption, relationship to dumped electron fluxes71,527
effects of solar eclipse 70,439
electron scattering cross section in incoherent backscatter from F region 71,736
extragalactic radio sources related to cosmological models 70,053
extraterrestrial, absorption by free electrons in D layer 70,670
for artificially heating electrons in F region 70,685
guidance in magnetosphere 70,226
guided propagation along magnetic field lines
.70,811
HF, oblique transmission, amplitude statistics measurements70,512
interaction in ionosphere, analysis. 71,528
low and medium frequency propagation, solar eclipse effects.70,857
propagation by elongated irregularities in ionosphere 70,726
propagation through ionosphere, refractive and absorption index. .71,776
Subject
Entry
Radio Waves (Cont'd)
radio-echo lunar observations at $68-\mathrm{cm}$ wavelength
$.71,079$
resonant frequencies in D region $.70,056$

scattering by meteor trails, ampli-

 tude distribution 70,510scattering from low density meteor trails
$.70,767$
scattering from lunar surface, diffraction theory
.70,227
VLF, propagation in ionosphere . .70,511
Radiometers
IR, on Mariner 2 for Venus measurements71,632
Tiros instruments, description71,839
two-channel microwave, on
Mariner 2 for Venus measurements71,633

Ranger Project

future plans
.70,812
impact limiter system and materials performance, evaluation tests . 71,004
lunar orbiter capsule study, final report .71,430
71,431
lunar rough landing capsule, development program
$.71,143$
photometric model of lunar mare
surface for TV experiment . . . 70,798
71,504
Rangers 6-9, reliability study. . . 71,142
seismograph, description 70,425
seismology experiment 70,513

Ranger 1

coefficient of sliding friction for materials during flight.
$.71,828$
Ranger 3
gamma-radiation experiment, preliminary results
$.70,514$
Ranger 4
gamma-ray spectrometer, description
70,298
Reactors
(see Nuclear Reactors)

Receivers command, for Mercury spacecraft \qquad 71,830
ground-based, for Telstar project. .71,759
micro-mod, design requirements for satellite navigation system. . 70,475
Telstar on-board unit, description 71,76

[^68]| ubj | En |
| :---: | :---: |
| Recovery
 (see also Paragliders) | |
| booster, ocean-based launchrecovery concept 70,735 | |
| booster, paraglider methods71,529 | |
| Gemini systems 71,363 | |
| ground control center, functions. . 70,240 | |
| inflatable components of astronaut equipment for survival at sea, development and fabrication. . .71,144 | |
| research and technological development70,297 | |
| Re-entry (for other planets, see Atmospheric Entry) | |
| | |
| aerophysical aspects of slender body configurations 70,815 | |
| analytical solutions for entire region of entry into any planet 70,010 | |
| burn-up characteristics of nuclear power package, investigation . . 70,539 | |
| effects of banking on lateral and longitudinal ranges, study 71,145 | |
| effects of shape at hyperbolic velocities 71,530 | |
| electromagnetic propagation through ionized air around vehicle 70,813 | |
| elimination of radio blackout. . . .70,228 field experiments compared with theoretical and laboratory studies 70,814 | |
| | |
| from lunar missions, trajectory considerations71,820 | |
| guidance and control systems. . . .70,240 | |
| heat transfer and mass loss, comparison to meteorites. . . . 70,230 | |
| high-temperature hydraulic control system 70,231 | |
| hypersonic laminar and turbulent heating rates for axisymmetric vehicle, equations \qquad | |
| hypersonic trails, investigations . .71,387 inflatable micrometeoroid paraglider, test objectives 70,197 | |
| influences on structural design criteria for space vehicles.70,874 | |
| ionized air, electrical conductivity measurement 70,232 | |
| lateral range control by banked attitude70,243 | |
| lifting, thermal stress levels 70,941 | |
| low-angle, ablating heat-shield materials 71,240 | |

Subjec
Entry
Re-entry (Cont'd)
MA-6 and Trailblazer, radar data interpretation 70,814
materials for thermal-protection, modification and testing70,161
passive, optimum aft body configuration 70,236
spinning sphere temperature distribution 70,229
structures and materials, test facilities71,600
super-orbital speeds, heat-transfer problem70,106
unsteady pressures and scale effects on Titan B models. . . .70,320

Re-entry Trajectories

axis system for computation of orbital flight and re-entry.70,237
criticism of previous calculations . .71,146
for biosatellites, parametric study71,889
for reducing danger of Van Allen belts
.70,332
guidance and landing accuracy requirements 70,816
minimum impulse for specified descent 70,233
optimum, for disorbiting from elliptical orbits 70,488
problems of descent to lateral range 70,233

Re-entry Vehicles

banked attitude for lateral range control
blunt, wire cloth for use as flexible radiating structure at $1200^{\circ} \mathrm{F} . .71,445$
computation of trajectory and orientation, axis system.70,237
configuration for post-Apollo flight tests
$.70,622$
cvaluation of shielding characteristics 70,270
glide; radiation and radiation-ablation systems, thermal protection and material performance study . . .71,598
ground and on-board control, functions
.70,240
impact point displacement by offset center of gravity, estimate71,149
improving performances with pyrolitic materials 70,160
kinetic heating, origin and control 70,515
lifting, dynamic and aeroelastic problems71,533
lifting, dynamics considerations at parabolic velocities, simulation. 71,148

Subject
Entry
Re-entry Vehicles (Cont'd)
lifting, investigation of viscous and inviscid hypersonic flow about leading edges 70,234
lifting, thermal protection71,531
lifting optimization71,890
maneuverability70,240
melting and vaporizing ablation for glassy materials 70,002 nonlinear thermal problems, solution method 70,238
ptimum aft configuration for passive entry 70,236
oscillating, wake analysis70,235
Project Fire, static longitudinal stability characteristics70,242
adiation overshoots caused by temperature decrease in wake. . 70,508
shapes and L/D ratios70,240 wly tumbling, altitude of tructural concepts for aerothermoelastic considerations71,532 turbines for secondary power systems 70,239
unsteady hypersonic wakes70,114 winged, landing-impact and slideout tests
$.70,241$

Reflectors

(see also Solar Collectors)
Fresnel, efficiency improvement. .70,245
Fresnel, materials and construction techniques
$.70,244$
Relativity Theory
application of general principles to cosmology 71,327 canonical formalism of gravitational field, in expanding
universe 70 ,007
clock paradox, denial71,535
clock paradox, support 71,536 conformal coordinates associated with space-like motions 71,534
Einstein's gravitational field equa
foundations of continuum mechanics, basic research 70,818 general, corrections to planctary distances
gencral, static solutions with energy
ravitation analogy to electro-

[^69]

Subject
Rendezvous (Cont'd)
LOR and EOR comparison71,424
lunar-orbit, feasibility study 70,519
lunar surface technique70,143
one-man escape vehicle with space station, lunar orbit71,728 optimum steering program using proportional navigation70,252 pilot control tests, visual detection of angular motion. 70,200 radar, interferometer techniques for Gemini project70,082
radar system, description 71,116 simulated short orbital transfer, human performance71,254 71,539
space vehicle attachment and connection 71,542
techniques for Gemini, analysis . .70,083
techniques for space station operations71,495
terminal guidance system 71,383
terminal phase between spacecraft and commanded module; simulation study 71,540
two impulse, propulsion requirements between satellites in circular orbits71,985
vehicle maneuvers relative to a satellite, analytical equations . . 70,518
visual skills required for manned vehicle operations71,107 71,108

Rendezvous Orbits
Earth, precession effects on lunar mission requirements 70,253
lunar, parametric investigation . . .71,893
synchronous, determination of
best location 70,520
terminal, solution for continuous thrust and impulse correction. . 70,521

Research
booster and spacecraft technology, state of the art71,543
NASA-University orientation conference71,154
need for laboratory astrophysics programs71,156
past, present, and future space research in USSR 71,155
satellite reliability study, results. . 70,822
Research Facilities
Aerospace Medical Center, Rome; description 71,864
JPL, background and current programs 70,752Entry
Retrorockets
exhaust effects on radar and altimeter systems 70,507
Rift Project
program development, description. 70,522role in establishing Moon base,study$.71,544$
Rocket Motors
for $\mathrm{X}-15$, design and development. 71,547
highly underexpanded exhaust jets,
interaction with simulatedlunar surface71,545
liquid, thermal protection 71,546
Rover ProjectKiwi reactors, developmentaltesting problems$.70,523$
S-17
(see OSO Project)
S-27
(see Topside Sounder Project)
S-46
design and construction, summaryproject report$.70,255$
S-51
(see Ariel 1)
Sampling
(see Atmosphere -, Surface -)
Satellites
(see also Communication -,
Geostationary -, Lunar -,
Satelites (Natural))
1962 launchings, data 70,531
aerodynamic stabilization, analysisof various configurations 70,012
analog solutions of orbital
flight, examples $.70,237$
attitude control, in highly eccentricorbit$.70,014$
attitude disturbance, wind and radi-
ation flux components 71,095
attitude equations of motion 70,943
automatic lat./long. sensing
technique 70,257
catalog of launch data, Sept. 1962.70,533
charge-up in Van Allen region,
theory 70,530
compound systems, rotational andrelative motions, analysis71,296
computations of trajectory and
orientation, simulation
problems70,237

[^70]

Subject
Satellites (Cont'd)
two-body gravitationally oriented, limits on damping
$.71,264$
U.S. Space Science Program, Jan. 1960-Mar. 1961 70,571
U.S. Space Science Program, Apr. 1961-Apr. 1962 70,572
USSR, 1952-60 data 71,895
Satellites (Natural)
cloud orbiting Earth at L_{5}. 70,824
70,825
Jupiter, possibility of luminescence71,789
Jupiter, Saturn, and Uranus; application of Bode's Law
$.70,823$
Jupiter, two-parameter formula to determine orbit radii
.70,489
Jupiter and Saturn, stability of volatile ices on surfaces71,575
mass, distribution in planetary systems
.70,869
Saturn, two-parameter formula to determine orbit radii
.70,489
theory of origin70,668
translational-rotational notion, perturbations caused by oblateness
$.70,629$
Uranus, two-parameter formula to determine orbit radii
$.70,489$

Saturn

atmospheric disturbances, observation
$.70,262$
Dollfus white spot, origin and development
$.70,827$
illuminance, theoretical value . . . 70,495
internal heat flux and rings, study
$.70,202$
internal structure, influence of axial rotation71,868
linearly polarized decimeter radiation71,161
observation of rings, July 23, 1962 70,826
occultation by Moon, Sept. 1962 . 70,176 70,828
occultation of BD-19 ${ }^{\circ} 5925$, July 23, 1962 70,826
rings, occultation of stars, observations71,898
rotation period, new value.70,262
satellite system, agreement with Bode's Law
$.70,823$
satellites, two-parameter formula to determine orbit radii 70,489
spectroscopic investigations, H_{2} and CH_{4} lines.
$.70,494$

[^71]| Subject Entry | Subject Entry | Subject Entry |
| :---: | :---: | :---: |
| Saturn (Cont'd)
 stability of volatile ices in rings . . .71,575
 steady-state magnetic field measurements70,455 | ```Selenography (Cont'd) current theories and photographs of far side of Moon 70,535 71,479``` | Selenology chemical evolution, theory 70,267 colorimetric and spectroscopic observations 70,842 |
| Saturn Project comparison of booster configurations for unmanned LLS spacecraft bus \qquad 71,813 71,814 71,815 | geo-sciences applied to man's survival 71,817
 laboratory studies to determine
 light scattering characteristics. .70,266
 lunar altitude measurements, shadow length estimation 70,833 | comparison to Earth surface
 features71,071
 dust layer and bare rock, radar and IR observations 71,557 effect of meteoroid impact on lunar surface, experimental studies . . 71,834 |
| design, construction, and operation of test facilities70,712 | lunar altitude measurements, Straight Wall shadows 70,834 | geologic map and sections of Kepler region of Moon70,838 geo-sciences applied to man's |
| growth potential after
 Atlas-Centaur 71,550
 guidance and control techniques, ascending phase 71,900 | Eratosthenes 71,037
 method for height computation of mountains 71,163 | survival71,817 indications of thermal inertia, radar and IR observations71,557 internal constitution70,781 |
| lunar mission launch facilities71,416 | origin of formations, theory 71,798 | lunar dust and terrestrial ice nu- |
| PCM telemetry station for conversion of launch vehicle data.71,204 | Piton, area of high-Sun darkening explored 71,903 | cleus concentration, relation. . .71,848 |
| S-1, lateral vibration characteristics of $1 / \%$-scale model. 70,829 | Piton, observations Apr.-Oct. $\quad 1961$. 71,903 | lunar rocks as source of oxygen, possibilities71,554 |
| S-3, sound pressure level measurements during launch 71,899 | radar determination of surface slope . 70,837 | bibliography71,166 nuclear techniques for surface |
| Sa | radar scattering characteristics of surface 70,836 | analysis 71,024 |
| launch deflector configuration and performance 71,378 | reverse side of Moon, comparison of characteristics 70,835 | penetration studies of simulated
 lunar dust 71,345
 photometric function for lunar |
| Saturn C-5
 for logistic lunar vehicle, evaluation71,806 | reverse side of Moon, detection of details from first photographs. . 70,830 reverse side of Moon, first | surface, theoretical model71,556 plasticity zones around lunar craters70,138 |
| for lunar logistic vehicle, payload design criteria 71,807 | photographs70,780 reverse side of Moon, structural details
 70,831 | probable mineral composition, similarity to Earth 70,842
 Ranger seismometer experiment. . 70,513 |
| Scout Project static stability characteristics, wind tunnel tests 70,263 | ```reverse side of Moon, surface structure, photographs 70,832 spectrophotometric study of selected surface areas70,534``` | simulated surface material, thermal properties 71,057 soil, IR spectrophotometry for compositional analysis \qquad |
| entric | selected surface areas $70,51,552$ | , 71,585 |
| circumlunar parking for manned landings70,140 | state of the art and brief survey of lunar features 71,553 | Soviet research review71,472 surface analysis by neutron |
| determination from range-rate data71,551 | statistical model of large-scale irregularities 70,264 | bombardment70,123 surface material, characteristics . . .71,164 |
| Earth perturbations71,901 geometrical characteristics, from
 Earth-Moon trajectories 71,902 | Straight Wall region, analysis of measurements \qquad | surface microstructure, photometric properties 70,840 |
| LEM, uncoupled from Apollo....71,418 perturbation effects of Earth and
 Sun .71,049 | structural details and characteristics, Soviet description71,471 surface configuration of far side, | surface patterns, mode of origin. .70,536 surface properties from thermal radiation data71,905 |
| rendezvous mission, parametric investigation71,893 return from lunar landing abort, simulation studies 70,139 | photometric analysis 71,473 surface erosion, relation to charged dust grains 71,851 surface roughness estimated from crater statistics70,445 | techniques for measuring rock and soil strength properties at lunar surface, review 70,839 temperature measurements and compositional assignments, |
| Selenography | surface roughness estimated from | methods 70,473 |
| bright-banded craters, theory of origin038 corrugated model for surface ...71,162 | radar scattering cross sections. .70,265 surface studies by radar scattering techniques 70,836 | theory of ring-mountain formation 70,841 vehicle-soil mechanics 71,165 |

[^72]

路
Shielding (Cont'd)
long range NASA requirements . . .71,907
materials testing and development program 70,161
methods of reducing meteoroid damage to space vehicles. 70,774
of re-entry vehicles from cosmic rays . 70,270
of space vehicles by magnetic fields 71,914
proton, synthesis of minimum weight
$.71,909$
proton dose rate estimates for shielding thickness calculations. 71,118
spherical-shell for manned space missions 71,168
techniques, handbook71,885
thicknesses necessary for crew protection71,122
tissue depth-dose for various materials70,271
weight optimization for manned vehicles 70,429

SNAP Project
bibliography, 1957-July 62 71,915
flight safety tests, description . . . 70,539
generators, specifications and operational characteristics70,540
radioisotope-fueled generator systems, in use or planned71,511

SNAP-8
development for satellite TV broadcasting71,082

Solar Activity

July 1961 satellite observations. . .70,853
80-yr period, physical interpretation 70,543
association with the magnetic chromospheric network 71,927
correlation between AU value and $20-\mathrm{cm}$ flux 70,541
dark filament activation, sunspot association71,961 distribution during present solar cycle . 70,844
effect on time lag between magnetic and ionospheric changes. . 70,086
effects of various levels on upper atmosphere 70,599
effects on variation of cosmic-ray intensity in high latitudes 71,323 empirical equations for determining variation, preliminary study . . . 71,916 geophysical data, compilations. . .71,169 monthly index 70,843
Subject EntrySolar Activity (Cont'd)prediction, for astronautprotection70,54271,560
Solar Atmosphere
absorption produced byquasi- H_{2} molecule 70,545
abundance of oxygen, determinedby medium-strong line theory. . 70,845deviations from local thermody-namic balance71,170
deviations in LTE, effectson iron lines. 70,566
photosphere, depth dependence of turbulence 70,544
study of profile shapes of emission in $\lambda 10830$ A line
.70,564

Solar Cells

$$
\begin{aligned}
& \text { and glass, radiation effects; } \\
& \text { annotated bibliography } \ldots . . .71,875
\end{aligned}
$$ battery protection devices, circuit breaker 70,050

CdS front wall film cell, spectral performance curves
$.70,272$
degradation by protons in space. . 71,917
degradation under 1-Mev electron bombardment71,561
degradation under Van Allen radiation
effects of artificial radiation belt on performance
.71,173
effects of charged particle bombardment on photovoltaic cells.70,548
effects of high-energy electron radiation71,172
effects of low-energy protons on several types 71,562
effects of radiation damage. 70,846
for operation in inner region of solar system, design considerations .70,274
investigation of optical coatings. . 71,572
n-on- p, tests showing radiation resistance superiority 71,918
photovoltaic power generator, design and component selection . .70,281
progress in research and utilization, survey
71,563
radiation damage71,919
radiation damage resistance, research status 71,564
radiation damage study70,546
silicon, for Telstar power system
.70,309
silicon, radiation-induced changes
$.70,549$

[^73]| Subject Entry | Subject Entry | Subject Entry |
| :---: | :---: | :---: |
| Solar Cells (Cont'd) silicon and gallium arsenide, proton bombardment tests 70,846 silicon $p-n$ junction, radiation damage resistance70,273 spectral correction factors, determination by balloon flight measurements 70,547 | Solar Converters (Cont'd) photovoltaic power generator, design and component selection 70,281 solar collector-thermionic generator, performance test 70,314 weight analysis for 1 - to $25-\mathrm{kw}$ power range 70,560 | Solar Corpuscular Radiation (Cont'd) association with July 20, 1961
 flare surge 70,285
 coronal streamers, properties70,849
 coronal temperature gradient, anal-
 ysis of influence 71,920
 creation of geomagnetic cavity, hypothesis71,222 |
| Telstar, development and integration into total power system 71,934 | Solar Corona electron density measurement, limi- | density estimate from interaction with solar cosmic rays 70,552 |
| Solar Chromosphere above sunspots, pressure distribution calculations 70,889 chromospheric Mg I, analysis71,565 | tations on optical methods 71,765
 EUV spectrum rocket and ground-
 based observations, results . . . 70,851 expansion in interplanetary environ- | effect of proton bombardment on lunar rocks and minerals.70,266 effects of uniform pressure on shape of geomagnetic field boundary. .71,755 |
| Evershed velocitics, studies from filtergrams 70,847 | ment .70,852 hydrodynamic models 70,550 | effects on geomagnetic field 71,018 following flare of Sept. 28, 1961, |
| flow of chromospheric matter into sunspots 70,847 | hydrodynamic models, controversy 71,923 | observations 70,854 formation of lunar ionosphere from |
| $\mathrm{H} \alpha, \mathrm{H} \beta, \mathrm{H} \gamma$; limb-darkening, observations70,275 | ionization by two-step collision processes 71,921 | interaction with lunar surface. .70,472 heating mechanism of auroral zone, theory \qquad |
| emission 71,948 | loss of solar mass by gaseous emission 71,567 | hollow created by geomagnetic field . 70,084 |
| Solar Collectors | negative temperature gradient, re- 71 , | Iniun 1 proton observations71,569 |
| 15-kw solar dynamic power sys-
 tem, development 70,288 | lation to solar wind 71,920 observations with Paris Observatory | |
| absorber surfaces, analysis of effectiveness 70,279 | coronameter 71,317 optical observations, comparison | field $\quad \begin{array}{r}\text {. }\end{array}$ |
| efficiency improvement for
 Fresnel reflectors \qquad 70,245 | with radio and polarimetric data . 70,849 | 71,744 71,745 |
| for power systems, calibration program 70,276 | photometric study of continuum and 17 emission lines 70,867 | $\begin{aligned} & 71,753 \\ & \text { interaction with geomagnetic field, } \\ & \text { correction to calculations70,554 } \end{aligned}$ |
| Fresnel reflectors, materials and construction technique 70,244 | radiative transfer, effect on exci-
 tation state of coronal ions 71,922 spatial structure, study of coronal | interaction with lunar magnetic
 field 70,448 |
| inflatable, foam-rigidized; fabrication and testing techniques. . . .70,277 status report 70,278 | rays above active regions71,926 spatial structure, study of problems related to corpuscular streams. . 70,849 | near orbit of Earth, connection
 with inner corona 70,852 nonuniform velocity, conse- |
| Sunflower petals, fabrication technique71,566 | spectrographic observations during total eclipse of Feb. 15, 1961 . . .70,850 | quences 71,928 partially incident streams, inter- |
| Sunflower project, development status . 70,302 | spectroscopic observations71,568 | action with geomagnetic
 field \qquad 71,748 |
| thermionic concentrators, fabrica-
 tion and optical performance
 tests . 70,280 | spectrum of coherent electron waves70,551 structure, observations on Feb. 15, 196170,848 | field71,748 particle bombardment in PCA, optical studies71,670 |
| with thermionic generator, performance test70,314 | study to investigate properties of interplanetary dust 71,692 | Earth's upper atmosphere70,856 prediction, as safeguard during |
| Solar Conver | time-dependent association with rising prominences 71,925 | manned space flight 70,542 protons, July 1961 satellite |
| electric concept, development . 70,288 | Solar Corpuscular Radiation 1959-61 high-energy solar- | observations 70,853 protons, bombardment of |
| biaxial control system 71,313 | particle events 70,861 | Discoverer $17 . \ldots70,388$ |
| energy conversion systems, reference handbook 70,504 | Sept. 30, 1961, low energy protor. and electron observations70,855 | protons, trajectory distortion by ring current 71,365 |
| open- and closed-cycle dynamic engines, state of the art.70,282 | Feb. 2-7, 1962 proton
 observations $.71,569$ | quasi-stationary streaming and flare-associated streams 71,927 |

[^74]| Subject Entry | Subject Entry | Subject Entry |
| :---: | :---: | :---: |
| Solar Corpuscular Radiation (Cont'd) screening effect of Venus' magnetic field 70,605 stability of interface between solar wind and magnetosphere 70,553 velocity and magnitude of associated magnetic field 71,704 | Solar Flares (Cont'd)
 energetic particle fluxes, hazard potential 70,598
 excitation of metal lines 70,555
 filament disappearances, flare sprays, and loop prominences; tabulation and details 70,860 | Solar Power Supplies (see also Solar Converters)
 1-25 kw power range, design considerations 70,560
 Ariel system, design parameters. . 70,005 cells, investigation of optical coatings71,572 |
| Solar Eclipses
 Oct. 2, 1959, radio measurements. 71,174 | model for production 71,932
 ydromagnetic behavior theory . . .70,861 | cesium thermionic converters, design requirements70,316 |
| Feb. 15, 1961, investigation of spectrum of solar corona 70,850 | interaction with magnetic fields, photoelectric measurements...70,287 | 12 |
| Feb. 15, 1961, ionospheric effects 70,439 | ionizing emission, recording with atmospherics receiver71,930 | systems, analysis70,502
 at-plate thermoclectric generator, |
| Feb. 15, 1961, observations of solar corona 70,848 | ionospheric effects71,930 mass loss processes71,567 | research and concept
 operations 70,319 |
| Feb. 15, 1961, radio emission on meter wavelengths, observations | monthly index70,843
 physical conditions, selective exci-
 tation conditions 71,936 | foldable solar panels, research status71,564 instantaneous Earth-radiated power |
| Feb. 15, 1961, radio measurements.71,174 | physiological hazards70,556 | incident upon cell panels 71,177 |
| Aug. 11, 1961, effects on ionosphere 71,740 | prediction, as safeguard during manned space flight 70,542 | lithium hydride as heat storage method for conversion systems |
| July 20,1963 , ionospheric measurements to be made. 70,127 | proton fluxes, evaluation of dose received in typical spacecraft. . 70,567 | $\begin{aligned} & \text { during shade-time operation . 70,580 } \\ & \text { R\&D survey } \ldots \text {. } 71,563 \end{aligned}$ |
| effects in low and medium
 frequency propagation 70,857 | proton dose compared with γ-ray dose produced by inelastic scattering71,929 | simulation using analog computer, feasibility study 70,050 |
| Solar Flares | radio emission and geomagnetic | solar-cell panel testing, Table $70,547$ |
| May 13, 1960, effect on solar radio emissions 71,940 | storms, correlation 71,175 | state of the art \qquad |
| Sept. 2, 1960, spectrum 71,571 | spectroscopic classification 71,936 | |
| Sept. 26, 1960, with short Type IV burst; relation to cosmic-ray event 70,980 | Stark broadening in Balmer lines. . 70,558 statistical prediction 71,931
 synchrotron radiation spectrum . . .71,176 | operational characteristics71,934
 thermionic concentrators, fabrica-
 tion and optical performance |
| Nov. 12-14, 1960, induced radioactivity in Discoverer 17 70,388 | theoretical discussion of phenomenon 71,927 | tests 70 hermionic generator, solar test |
| July 20,1961 surge, radio and corpuscular emission 70,285 | X-ray emission, observations from rockets and satellites71,106 | and results
 hermoelectric converters, energy |
| July 1961, association with cosmic rays . 70,858 | X-ray emission, study using
 ionospheric data \qquad 70,859 | rage an |
| Sept. 28, 1961, observations by
 Explorer 12 70,854 | Solar Magnetic Fields | Solar Probes launch vehicle technology |
| Sept. 28, 1961, VLF phase observations on ionospheric effects . . . 70,557 | in active regions of solar disk, photoelectric measurements.. . .70,287 | considerations 71,935 Solar Prominences |
| Sept 28, 1961, X-ray observation. 70,284 as source of thermonuclear | influence on organization of plasma motion in photosphere 71,933 | 1944-54 observations 70,289 effects on aurorae and geomagnetic |
| neutrons 70,970 assessment of biological effect. . . 71,673 | of sunspots, changes during 80-yr period 70,543 | activity 70,705 |
| chromospheric, relation to magnetic fields of sumspot groups 71,570 | of sunspots, new model of configuration proposed 71,590 | excitation of metal lines 70,555 |
| continuum electromagnetic radiation . 71,176 | possible relationship with intensity distribution of sunspots71,590 | ionizing emission, recording with |
| effects on equipment and components 70,331 | relation between motions and local fields in photosphere 71,933 | $\begin{array}{r} \text { atmospherics receiver } 71,930 \\ \text { ionospheric effects } 71,930 \end{array}$ |
| ffects on H α striation pattern. . .70,286 | structure in outer atmosphere. . . .70,559 | ectroscopic classification71,936 |
| emitted plasma, estimate of density 70,552 | variation in structure, relation to solar emission 70,859 | time-dependent association with solar corona 71,925 |

[^75]

Subject	Entry
Solar System	
1963 graphic ephemeris71,347	
chronology of formation	70,384
	70,385
Earth-Moon system, history	70,869
formation of elements, theory	70,984
mass distribution, variations	.70,869
moment of momentum distrib Kent-Laplace's theory . . .	$\begin{aligned} & \text { on, } \\ & \text {. .70,631 } \end{aligned}$
Moon, Venus, Mars, Jupiter; physical characteristics .	.71,183
planetary distances according to general relativity	$.70,604$
stability of ices of common volatiles	.71,575
theory of origin of satellites planets	.70,668

Solar Wind

(see Solar Corpuscular Radiation)

Solid Propellants

state of the art 70,424
use of aluminum powders, survey
$.70,293$
Solid Propulsion Systems
applicability of present motors to space operations. 71,184
applicability to space, study appendices71,186
feasibility study for Nova-class
booster .70,294
research and development trends . 70,366
technology advancements for improved space applicability . .71,184

71,185

Space Cabins

air contaminants, gas chromatograph for analysis and monitoring 71,187
size requirements, two-man crew efficiency study70,451
tolerance criteria to trace contaminants71,188

Space Environment

(see also Cislunar —, Interplanetary —)
design considerations for solar cell operation
$.70,274$
effects on astronauts, review of U.S. and Soviet research and missions 71,661
effects on electronic part failure. . 70,397

[^76] SUBJECT INDEX

Subject
Space Environment (Cont'd) design considerations and test results
ects on structural design criteria
flexible design concept for vehicles, systems, hardware 70,877
hazards from radiation belts, solar, and cosmic radiation 71,884 radiation levels, evaluation of doses received in typical spacecraft. . 70,567
space-erected plastic structures . . .71,454

Space Flight

biological effects, Soviet white rats studies 71,675
physiological and psychological effects, bibliography 71,274

71,275
sanitation and personal hygiene facilities during missions 71,249 Second National Conference on the Peaceful Uses of Space, 1962. .70,879
Soviet development, brief review. . 71,577

Space Projects
based on Blue Streak launching vehicle 70,365
current status, data 70,532
rance, description70,568

Oct. 1957-Dec. 62; table. 71,578
NASA $10-\mathrm{yr}$ program 70,573
NASA Communications Satellite
Program 70,879
NASA long-range timetable,
1962-8070,569
NASA missions and future trends. 71,579
program, objectives70,183
NASA program through 198070,871
nurses for space evacuation projects
.70,295
achievements and future
pace science and satellite applica-
tions programs, state of the art. . 70,873
survey of costs, R\&D, future plans . 70,872
U.S. Navy Medical Dept., contributions Jan. 1960-Mar. 1961 . 70,572

Subject	Entry
Space Su	
design stu	
development, U.S. and USSR. . . .70,364	
extra-vehicular, thermal	
for Apollo project	
Space Vehicles (see also Lunar -, Mars -, Venus -)	
atmospheric control processes, analytical studies 70,680	
attitude control, advanced actuators and natural energy sources $.70,945$	
attitude control systems using chemical rocket engines 70,737	
catalog of launch dat	
	,5
current status, Nov. 196270,532	
design, for propulsive fluid accumulator system70,386	
digital TV equipment, bit-rate and weight problems70,586	
flexible design concept 70,877	
interplanetary, for scientific observation; hardware design problems 71,946	
landing and recovery, research and technology 70,297	
limitations on nuclear-electric power supplies, interfaces.70,184	
look-angle problem, design solution 70,296	
low thrust propulsion systems for vehicle orientation or mancuvering . 70,738	
lubrication system, problems71,036 mathematical model, bang-bang attitude control 70,360	
meteoroid hazard in Earth orbit, design considerations 70,876	
minimum weight structural components, design techniques . . . 70,875	
motion of body with constant thrust and variable mass in gravitational field71,213	
multistage, prediction and measurement of natural vibrations. . 70,736	
multistage, propellant distribution techniques 71,582	
potential aerothermoelastic problems 71,581	
owe	70,2

Subject

Entry
Space Vehicles (Cont'd)
single-stage, gas-core reactor concept, feasibility …... skid-rocker landings, theoretical stability analysis71,947 structural design, reliability concepts .70,574
structural design criteria 70,874 survey of costs, R\&D, future plans .70,872
technology, state of the art71,543 typical configuration and design requirements71,581
USSR, 1952-60 data
.71,895
Space Vehicles (Manned)
abort procedures and techniques $.70,168$
cryogenic propellant storage systems, for direct energy conversion .70,055
guidance during landing70,011
human factors criteria for display of space navigation information
$.70,059$
long-range NASA shielding requirements 71,907
magnetic shielding, by super-
conducting solenoid coils
.71,167
nuclear, operational hazards 70,480
PCM/PM communication system, parametric analysis
radiation hazards, evaluation of primary and secondary doses received on typical mission70,567
reliability, relation of airplane study to vehicle design 70,878
shielding, weight optimization. . 70,429
spherical-shell shield for radiation protection71,168
survey of costs, $\mathrm{R} \& \mathrm{D}$, future plans . 70,872
temperature problems during reentry deceleration70,011
thermal and atmospheric control systems
. 71,341

Spectral Analysis

(see also Solar Spectrum)
Athay's method 71,950
intensities of weak lines at solar limb 71,948
molecular spectra, IBM 701 analysis71,191
multistage image amplifying tubes, applications
. .70,575
observations and colors of distant comets $.71,304$

[^77]

[^78]| Subject Entry | Subject Entry | Subject Entry |
| :---: | :---: | :---: |
| Structures (Cont'd) folding, designed by variablegeometry concepts 71,196 | Sunflower Project (Cont'd) lithium hydride storage unit, design and fabrication tests 70,580 | Sunspots (Cont'd)
 statistical techniques for estimation of depth 70,886 |
| freeze forming process, description and applications 70,576 | thermodynamic power system, development status70,302 | structure of penumbrae70,890
 turbulence velocity in umbrae. . . .71,959 |
| high temperature, state of the art . 70,465 | Sunspots | visibility conditions of 165 spots. . 70,885 visual observations with |
| integration with material technology in design application. . .70,465 | Jan. 1961-July 1962, effective
 numbers71,198
 annual values of groups, study . . .70,581 | catadioptric telescope 71,197 wings of Balmer lines in umbrae. . 71,960 |
| minimum weight components of space vehicles, design techniques . 70,875 | association with filament
 activation 71,961 | Surface Sampling
 lunar rock and soil, review of |
| self-erecting flexible foam, for space antennas 70,938 | oundary determination, shape, and inclination of axes of 165
 spots \qquad 70,885 | techniques 70,839 of soils in terrestrial and simulated |
| structural plastics and adhesives, analysis 71,448 | comparison with solar promi-
 nences 70,289 | extraterrestrial environments ..71,076 Surveyor Project |
| unfurlable, applications71,588 winged re-entry vehicles, aero- | distribution in heliographic | payload and flight procedure . . . 70,303 |
| thermoelastic considerations ...71,53 | distribution of chromospheric | Syncom Project
 description 70,377 |
| Su | matter70,847 | 70,584 |
| abundance of He^{3}, theoretical
 calculation 70,882 | distribution of magnetic fields and radial velocities in groups71,933 | guidance and control 71,306 |
| abundance of metals, revised data 70,565 | emission of hydromagnetic waves from umbras 70,582 | Tefon |
| as source of interplanetary gas . . . 71,927 | energy transport 71,958 | behavior under space conditions, |
| $\mathrm{B}^{\text {s }}$ neutrino flux, calculation 71,956 capture of small absorbing particles | Evershed-type lines, investigation . 70,888 | survey 71,199 |
| by radiation field70,708 | formation zones, observations70,884 | Tektites annotated bibliography71,772 |
| contracting phases, new models. .70,577 early contracting phase of evolution 71,954 | geophysical data on 11 centers of
 activity, compilations71,169
 heliographic distribution of | cometary origin, theory of formation by accretion process 71,595 evolution, elemental volatilization |
| early evolution, Hayashi's theory. .70,579 early evolution, time-dependent energy and mass-fow equa- | influence of magnetic field on
 granulation \qquad | determined by spectrophotometry and spectrography 71,592 ferrous and total iron, investigation |
| tions 70,301 geomagnetic and solar data . . . 70,087 | intensity distribution in umbrae and penumbrae, photometric maps. . 71,590 | by chemical and magnetic |
| high luminosity, fully convective contracting; properties 70,578 | magnetic fields, changes during 80-yr period 70,543 | susceptibility techniques 71,594
 La, Eu, and Dy contents,
 determination
 70,891 |
| high luminosity, fully convective contracting; theory 71,954 | magnetic fields of groups, relation to chromospheric flares71,570 | Moravian Moldavites, description .71,964 |
| high luminosity in early contracting phases 70,577 | monthly index 70,843 numbers of groups originating | origin, assessment of various
 theories 71,202 |
| intensity variations across photospheric granules 70,883 | during rotation, study 70,581 observed depths, based on Wilson's | origin, cometary collision 71,593 |
| $\begin{aligned} & \text { measurement of X-radiation to } \\ & \text { study intensity } 71,955 \end{aligned}$ | effect . 70,886
 pressure distribution in chromo- | hypothesis71,200 origin, oxygen isotope studies. . . 70,305 |
| X-ray photographs 72,015 | sphere above spot70,889 | origin, theories 71,200 |
| X-radiation intensities, USSR studies 71,955 | radio emission from total sunspot area 70,864 | origin by meteoritic splash,
 hypothesis 70,304 |
| Sun Tracking Systems head, for use with diffraction spectrometer \qquad | relation between sunspot areas and corresponding Wolf numbers . . 71,962 relation between zone-width of occurrence and relative | possible origin, mathematical analysis of data on uranium and lead in samples 70,892 rare-earth element content, deter- |
| Sunflower Pr | number 70,583 | mination by neutron activation |
| epoxy adhesive for petal | short-lived, secular variations . . . 71,589 | analysis 71,963 |
| fabrication71,566 | solution of radiative transfer.70,883 | selective volatilization71,201 |

[^79]

[^80]

Tiros 2

estimation of IR flux and surface temperature of Earth 70,901

Tiros 3
radiation view of Hurricane Anna . 71,975
Tiros 5
cloud photography, catalog for
Oct. 1962
$.71,607$

	Entry
Tiros 6 cloud photography, catalog for Oct. 1962 \qquad	
Titan Project unsteady pressures and scale effects on Titan B models 7	
Titan 2 possible use with Centaur, other applications 70,032	
Tools design problems design requirements, environ simulation studies design study for space maint tasks	$\begin{aligned} & 0,590 \\ & 0,401 \\ & 1,580 \end{aligned}$
Alouette, analysis of spread from topside ionograms	77
Alouette, effects on ionospheric electron density	976,
Alouette, electron density stu at 1000 km	$1,979$
Alouette, ionosphere measurements	$1,609$
Alouette, launch and orbital description of spacecraft and experiments	$71,209$
Alouette, measurement of ionospheric characteristics Van Allen particle intensiti	$71,733$
Alouette, measurement of upper ionospheric scale heights.	$71,781$
Alouette, topside ionogram analysis	71,978
Alouette data, analysis	71,210
Alouette data, early results	71,610
Alouette piggyback experim description	$70,902$
first radio-pulse soundings	71,410
preliminary results of data.	71,608
S-27 flight, early performan	70,254
TRAAC artificial radiation belt formed by July 9, 1962 nuclear event, data 71,520 omnidirectional electron flux measurements of artificial radiation belt71,127 second artificial radiation belt, data 71,129	

Subject
Entry

Tracking

orbit determination for communication satellites from angular data only 70,486

Tracking Stations

for Telstar, description of Andover Earth Station

70,587
Sohio off-duty, description 71,611
Tracking Systems
(see also Doppler —, Optical —)
closed circuit TV light amplifier, applications
.71,211
delay-lock discriminator for vehicle rendezvous 70,592
Mariner 2, integration with command and telemetry systems. . 70,379
position-prediction systems, evaluation of quality of prediction. . .70,593
range and range rate, design evaluation 71,980
Relay project, system analysis. . . 70,517
satellite assisted, for accurate
trajectory determination 70,591
state of the art. 70,428
Trailblazer Project
re-entry experiments
$.70,814$
Trailblazer 1
artificial meteor experiment, measurement of luminous efficiency. . . 71,468

Trajectories
(sce also Cislunar -, Lunar —, Mars —,
Venus -)
abort, study of effects of lift. . . . 71,981
arbitrary, through inner Van Allen belt; method for calculating time-integrated proton flux.... 71,998
calculations, after single-impulse launch by astronauts outside orbiting vehicle $.71,250$
disorbiting three-dimensional pulse optimization .70,794
dynamics of separating bodies, theoretical analysis $.71,613$
Earth-Mars, optimum interplanetary rendezvous71,153
Earth-Mars, optimum low-acceleration transfer study 70,761
error propagation in aerospace systems, bibliography 71,390
for soft landing on airless body, numerical examination70,746
hyperorbital approach, planetary landings71,508
interplanetary, IBM 7090 program for initial velocity determination 70,380

[^81]

[^82]

Uranus

illuminance, theoretical value . . . 70,495 satellite system, agreement with Bode's Law
$.70,823$
satellites, two-parameter formula to determine orbit radii 70,489
search for decametric radiation. . .70,302
steady-state magnetic field measurements 70,455

Vacuum

(see High Vacuum)
Van Allen Radiation Belts
(see also Radiation Belts)
as source of auroral particles, theory .71,671

ubje	
Van Alle	
assessment of biological effect. . . 71,673	
behavior of trapped electrons, diffusion equation70,600	
captured electrons, relativistic effect in light scattering 71,224	
cosmic radiation, calculation dose affecting vehicle 71,659	
directional particle flux densities, investigation using Explorer 4 data 70,330	
diurnal variation of trapped particles 71,626	
effects on equipment and components 70,331	
effect	70,530
effects on solar cells 70,549	
electron diffusion, Fokker-Planck equation 70,919	
electron diffusion, Fokker-Planck equation, solution for distribution of mirror points 70,920	
electron distribution, July 1962,	
electron fluxes, measurements . . .70,598 geomagnetic tube hypothesis of auroral 5577 A excitation.71,269	
high-energy electron birth spectra 71,226	
influence of outer zone on aurora. . 70,913 inner, boundary determination from Sputnik 3. \qquad 70,914	
inner, detected at 320 km over South Atlantic magnetic anomaly70,916	
inner, electron intensity measurement by Injun 1. 71,994	
inner, energetic particles 70,918	
inner, method for calculating timeintegrated proton flux for arbitrary trajectory $.71,998$	
inner boundary, Sputnik 3 data. . 71,628	
intensities, relation to F-region critical frequencies 71,733	
intensity distribution, investigation by Sputniks 2 and 3. 70,634	
intensity increase from unshielded nuclear devices in space 70,601	
measurements, hazards to manned flight; handbook71,885	
measurements by Sputnik 2. 71,321	
mirror-point distributions of trapped particles 70,330	
neutron production	
outer, effects of hydromagnetic disturbances 70,694	

Subject
Entry
Van Allen Radiation Belts (Cont'd)
outer, energy spectrum of electrons.
$.71,625$
outer, intensity distribution at 320 km
.70,915
outer zone proton measurements. . 71,227
particle accumulation, role of geo-
magnetic field rotation71,749
positional dependence of absolute
intensity, brief summary. 71,997
precipitation of trapped particles. . 71,996
primary cosmic radiation, properties
and origin 70,917
properties of outer region, variations
with magnetic activity 70,603
proton dosage calculations.71,118
proton energy and flux, nature of hazard71,559
proton level, evaluation of dose received on typical mission. . . 70,567
protons and electrons, intensities in outer zone71,995
radiation damage to solar cells, study
$.70,546$
radiation dosages from electrons and bremsstrahlung, calculations71,882
radiation level reduction by injection of matter
.71,627
satellite studies, review 71,999
spatial structure, preliminary results from Explorer 12 70,602
trapped radiation data, review. .. 71,999
traversing, in re-entry or takeoff. . 70,332
Vanguard 2
catalog of precisely reduced observations of positions71,503
third stage, catalog of precisely reduced observations of positions
$.71,502$

Vanguard 3

catalog of precisely reduced observations of positions
geomagnetic field observations . . 70,693
Venus
1963 predicted appulses, time of radio source70,755
4-mm radio emission 70,925
$4.3-\mathrm{mm}$ radiation, measurements. 71,638
$800^{\circ} \mathrm{F}$ surface temperature revealed by Mariner 72,004
aerodynamic flight regimes and atmospheric composition, estimates

70,924

[^83]| Subject Entry | Subject Entry | Subject Entry |
| :---: | :---: | :---: |
| Venus (Cont'd)
 atmosphere, spectral analysis . . . 70,800 atmosphere, supplement to Soviet research review71,438 | Venus (Cont'd) physical conditions and probability of life, review and analysis | Venus Vehicles (Manned) ecological and cryogenic fuel requirements during atmospheric entry .70,358 |
| atmosphere, theory 70,921 | physical properties70,926 | Weightlessness |
| atmosphere, transmittance for a wide range of conditions. 72,003 | radar observations, 1959 and 61. .71,629 radar observations, analysis of | celeration disturbances, ts on liquid-vapor |
| atmosphere, water vapor and trace constituents 72,009 | narrow- and broad-band
 components of spectrum71,630 | interface 71,061 biological and physiological effects, |
| atmospheric properties, recent observational results71,111 | radar observations at 440 Mc . . . 70,541 | USSR data 71,656
 biological effects, annotated |
| atmospheric simulation, to determine heat-transfer rates during superorbital entry70,111 | wavelength 72,007
 radio emission measurements by | bibliography71,642 debilitating effects of prolonged \qquad |
| brightness temperature, estimate. . 70,925 | Mariner 2, preliminary report . .71,633 dius determination from occulta- | effects on astronauts, Soviet |
| | ns of Regulus 72,006 | studies 70,021 effects on human factors in sub- |
| Mariner 2, preliminary report. .71,631 | t observations, new effect. . .70,923 | orbital, orbital, Earth-Moon |
| cloud layer, diurnal variations in height . 72,006 | rotation period estimated from radar measurements 71,635 | flights 70,334 |
| cusp effect 72,000 | Schröter dichotomy effect, | ,865 |
| data to be obtained by
 Mariner 2 70,151 | observations 71,229 screening effect on solar wind. . . 70,605 | luntary motion, Soviet |
| eastern apparition, 1960-61; observations | search for decametric radiation. . .70,802 | studies 70,336 experimental techniques and facili- |
| electrical characteristics of atmosphere and surface, radar observations 72,005 | ```steady-state magnetic field measurements 70,455 surface temperature, explanation. .72,003``` | ties in Italy \qquad 72,013
 liquid-vapor interface configuration studies 70,337 |
| exploration by radar echoes.70,607 fast manned flights, mission analysis 71,440 | temperature, pressure, and chemical analysis 70,202 | physiological and psychological
 effects, bibliography71,275
 prolonged, two new tests con- |
| illuminance, theoretical value....70,495 | limiting atmospheric models. .70,924 | ducted on MA-8 flight70,166 |
| interpretation of radar echoes for
 AU determination 70,604
 ionosphere-solar wind interaction. 71,228 | measurements with Strato-Lab .71,636
 USSR radio location, Apr. 1961 . .70,333 | random convection in space devices, effect on transport rates 71,641 simulation, body fluid distribu- |
| IR radiation measurements by Mariner 2, preliminary report . .71,632 | ertical distribution of neutral gases in upper atmosphere 72,002 | tion study 70,335 simulation by immersion and |
| magnetic field and rotation period, theoretical evaluation71,231 | Venus Missions manned Venus-Mars fly-by | recumbence 70,335 sleep during, electroencephalo- |
| magnetic field measurements by
 Mariner 2, preliminary report . .71,634 | 1970, study 72,010 | graphic and electrooculographic
 recordings71,639 |
| magnetic field strength, estimate. . 70,605 | | speech production and reception, |
| Mariner 2 data concerning existence of life 71,230 | ballistic, 1962-70, characteristics
 in graphical form 71,442 | evaluation 71,640 |
| Mariner 2 results 70,752 70,753 | machine computations of threedimensional ballistic trajectories for 1964 , characteristics | West Ford Project for intra-lunar communications, |
| tures, theory 71,228 | for 1964, characteristics $\begin{array}{r}70,327 \\ 71,232\end{array}$ | 70,338 |
| microwave radiation, present state of knowledge 71,869 | machine computations of three- $\quad \mathbf{7 2 , 0 1 1}$ | Whistlers attenuation by electrons with |
| model atmosphere, thermodynamic properties and shock-wave characteristics \qquad 70,606 | dimensional ballistic trajectories
 for 1965-66, characteristics . . 72,012
 Mariner 2, analysis70,460 | $E^{-2.5}$ distribution 70,339 chorus, high-latitude investigation . 71,233 |
| nonstop round trip, survey and analysis 71,400 | 71,053 | chorus bursts and preceding geomagnetic disturbances70,689 |
| phase anomalies 72,001 | Ve | , |
| physical characteristics71,183 | time 70,043 | magnetic pulsations 70,690 |

[^84]

[^85]
SOURCE INDEX*

[^86]\qquad SOURCE INDEX

$\left.\begin{array}{ccccc}\text { Source } & \text { Report No. } & \text { Entry } & \text { Source } & \text { Report No. }\end{array}\right]$ Entry

[^87]| Source | Report No. | Entry | Source | Report No. | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: |
| American Rocket | 2701-62 | 70,737 | Atomic Energy Commission (Cont'd) | TID-7652, Paper C-1 | 71,877 |
| Society, Inc. (Cont'd) | 2702-62 | 70,738 | | TID-7652, Paper C-3 | 71,700 |
| | 2704-62 | 70,609 | | TID-7652, Paper C-4 | 71,674 |
| | 2705-62 | 70,899 | | TID-7652, Paper C-5 | 71,878 |
| | 2711-62 | 70,870 | | TID-7652, Paper D-2 | 71,908 |
| | 2716-62 | 70,878 | | TID-7652, Paper D-4 | 71,913 |
| | 2717-62 | 70,877 | | TID-7652, Paper D-5 | 71,879 |
| | 2722B-62 | 70,645 | | TID-7652, Paper D-8 | 71,880 |
| | 2722C-62 | 70,644 | | TID-7652, Paper E-1 | 71,907 |
| | 2722D-62 | 70,895 | | TID-7652, Paper E-2 | 71,911 |
| | 2722E-62 | 70,896 | | TID-7652, Paper E-5 | 71,929 |
| | 2723-62 | 70,669 | | TID-7652, Paper E-6 | 71,998 |
| | 2724-62 | 70,807 | | TID-7652, Paper E-7 | 71,881 |
| | 2725-62 | 70,718 | | TID-7652, Paper E-8 | 71,882 |
| | 2730-62 | 70,683 | | TID-7652, Paper E-9 | 71,909 |
| | Paper | 70,106 | | TID-7652, Paper F-1 | 71,910 |
| American Society of Lubrication Engineers | $\begin{aligned} & 62 \text { LC-1 } \\ & 62 \mathrm{LC}-4 \end{aligned}$ | $\begin{aligned} & 70,134 \\ & 70,135 \end{aligned}$ | | TID-7652, Paper F-2 | 71,914 |
| | | | | TID-7652, Paper F-3 | 71,912 |
| | | | | TID-7652, Paper F-4 | 71,906 |
| American Society of Mechanical Engineers | 62-WA-208 | 70,997 | Avco Corp. | AMP 93 | |
| | 62-WA-215 | 70,998 | | AMP 93 | 70,203 |
| | 62-WA-240 | 70,999 | | RR 139 | 70,114 |
| | 62-WA-241 | 71,000 | | RR 140 | 70,113 |
| | 62-WA-331 | $\begin{aligned} & 71,001 \\ & 71,002 \end{aligned}$ | | RR 150 | 71,871 |
| ARINC Research Corp. | Publication 173-5-280 | 70,822 | Bell Aerosystems Co. | SSD-TDR-62-172 | 71,034 |
| Armed Services Technical Information Agency | ASTIA AD-290,800 | 71,894 | Boeing Scientific Research Labs. | Translation R15 | 71,323 |
| Armour Research Foundation | | 71,345 | British Astronomical Association | Handbook | 70,939 |
| Army Engineer Research and Development Laboratories | LTIS Bibliography 15 | 70,178 | Brown Engineering Co., Inc. | TN R-13 | 71,384 |
| | AEDC-TDR-62-178 | | California, University of | Final Report | 70,471 |
| Arnold Engineering Development Center | AEDC-TDR-62-191 | 71,343 | Cornell University | CRSR 124 | 70,268 |
| | AEDC-TDR-62-201 | 71,003 | | CRSR 127 | 70,266 |
| | AEDC-TDR-62-209 | 70,717 | | CRSR 138 | 71,556 |
| | AEDC-TDR-62-233 | 71,392 | | TR 2 | 70,148 |
| | AEDC-TDR-63-36 | 71,203 | Curtiss-Wright Corp., | CTR .00-270 | 71,664 |
| Astronomical Observatory, Republica Argentina | | 70,030 | Aeronautical Div. | | |
| | | | Department of the Army | Bibliography | 71,852 |
| Atomic Energy Commission | TID-7652, Paper A-1 | 71,997 | Douglas Aircraft Co., Inc. | Engineering Paper 1384 | 70,017 |
| | TID-7652, Paper A-2 | 71,696 | | Engineering Paper 1567 | 71,874 |
| | TID-7652, Paper A-3 | 71,697 | | SM-41506 | 70,926 |
| | TID-7652, Paper A-4 | 71,698 | | SM-42582 | 71,166 |
| | TID-7652, Paper A-5 | 71,699 | Duke University | | |
| | TID-7652, Paper A-6 | 71,931 | | | 70,050 |
| | TID-7652, Paper A-7 | 71,932 | Dunlap and Associates, Inc. | Report | 70,059 |
| | TID-7652, Paper B-1 | 71,919 | Dynamic Science Corp. | Report R-2 of SN-27-1 | 70,881 |
| | TID-7652, Paper B-2 TID-7652, Paper B-3 | 71,718 71,727 | Electro-Optical Systems, Inc. | EOS 1890-A Part I | |
| | TID-7652, Paper B-4 | 71,719 | Inc | EOS 180)-A, Pan | |
| | TID-7652, Paper B-5 | 71,720 | Fairchild Stratos Corp. | Final Report | |
| | TID-7652, Paper B-6 | 71,917 | | SSE63-1400-102 | 71,142 |
| | TID-7652, Paper B-7 | 71,876 | Ford Motor Co. | LC(b) -417 | 71,004 |

[^88]\qquad

Source	Report No.	Entry	Source	Report No.	Entry
Ford Motor Co., Aeronutronic Div.	U-1230	70,898	Institute of Radio		70,656
	U-2007	71,143	Engineers, Inc. (Cont'd)		70,657
Fuel Cell Corporation					70,658
		70,080			70,659
General Dynamics/ Astronautics	AE62-0814	70,508			70,672
					70,679
					70,893 70,396
General Dynamics/ Fort Worth	FZK-144	71,122			70,396
					70,397
General Electric Co.	Document 62SD4299	71,896			70,398
	R61SD176	70,941			70,450
	R63SD5	71,051	Institute of the Aerospace		70,426
General Motors Corp.	TR62-209H	70,931	Sciences, Inc.		70,585
					71,310
Geophysics Corp. of America	GCA TR-61-8-N	71,952			71,514
	GCA TR-61-13-N	71,109			71,582
	GCA TR-61-17-N	71,110			71,598
	GCA TR-61-26-A	71,949			71,605
	GCA TR-62-1/-G	71,192		Paper 62-120	70,213
George C. Marshall Space Flight Center	MTP-LVO-63-4	71,899		Paper 62-135	71-428
	MTP-M-63-1, Vol. III	71,804		Paper 63-12	71,559
	MTP-M-63-1, Vol. VI	71,805		Paper 63-19	71,339
	MTP-M-63-1, Vol. VII	71,806		Paper 63-32	71,482
	MTP-M-63-1, Vol. X	71,807		Paper 63-36	71,946
	MTP-M-63-1, Vol. XI	71,808		Paper 63-56	71,723
	MTP-M-S\&M-F-60-2	71,803		Paper 63-58	71,346
				Paper 63-68	71,483
Georgetown College Observatory	Monograph 15	71,183		Paper 63-76	71,873
				Paper 63-80	71,616
Hughes Aircraft Co.				Paper 63-99	71,484
		70,376		Report	70,735
Hughes Research Labs.	Report 2	70,975	ITT Federal Laboratories	Scientific Report 1	71,022
Illinois, University of	Ph.D. Thesis, N 6310168	71,786			
Institute for Defense Analyses	TN 62-2	71,573	Jet Propulsion Laboratory	AI/Seminar Proceedings	71,596 71,386
Institute of Astrophysics and Kwasan Observatory, Japan	Contribution 115	71,824		AI/Seminar Proceedings	71,426
				AI/Seminar Proceedings	71,427
				AI/Seminar Proceedings	71,432
Institute of Radio Engineers, Inc.		70,348		AI/Seminar Proceedings	71,513
		70,349		AI/Seminar Proceedings	71,554
		70,359		Al/Seminar Proceedings	71,555
		70,360		TM 33-99, Vol. 1A	70,927
		70,361		TM 33-99, Vol. 1B	71,232
		70,378		TM 33-99, Vol. 1C	72,011
		70,395		TM 33-99, Vol. 2A	72,012
		70,422		TM 33-114	71,822
		70,475		TM 33-126	71,242
		70,505		TM 33-137	71,725
		70,506		TM 33-138	71,970
		70,518		TM 33-141	71,726
		70,591		TR 32-77	71,442
		70,592		TR 32-131	71,298
		70,650		TR 32-217	70,189
		70,651		TR 32-256	72,009
		70,654		TR 32-280	70,607
		70,655		TR 32-311	70,296

[^89]| Source | Report No. | Entry | Source | Report No. | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Jet Propulsion Laboratory (Cont'd) | TR 32-325, Rev. | 71,587 | Minnesota, University of | Technical Report CR-35 | 71,707 |
| | TR 32-343 | 71,802 | | | |
| | TR 32-347 | 71,104 | Motorola, Inc. | Report W2719-2-1, | |
| | TR 32-356 | 71,595 | | Revision 1 | 71,980 |
| | TR 32-361 | 70,495 | | | |
| | TR 32-368 | 71,057 | National Academy of Sciences | | 70,529 |
| | TR 32-371 | 71,467 | | | 70,571 |
| | TR 32-374 | 70,839 | | | 70,572 |
| | TR 32-377 | 70,974 | National Aeronautics and | | 70,297 |
| | TR 32-384 | 70,798 | Space Administration | F-12-62 | 70,297 71,209 |
| | TR 32-384, Rev. | 71,504 71,086 | | Report | 70,873 |
| | TR 32-385 | 71,086 71,053 | | SP-8 | 70,879 |
| | TR 32-398 | 70,772 | | SP-11, Vols. I and II | 71,154 |
| | TR 32-399 | 71,076 | | SP-12 | 70,766 |
| | TR 32-400 | 71,823 | | SP-13-SP-28 | 71,154 71,579 |
| | TR 32-402 | 71,828 | | SP-30 | 71,579 71,859 |
| | TR 32-429 | 71,631 | | TM X-758 | 71,645 |
| | TR 32-429 | 71,632 | | TM X-789 | 70,876 |
| | TR 32-429 | 71,633 | | TM X-824 | 71,349 |
| | TR 32-429 | 71,634 | | TN D-608 | 70,255 |
| Johns Hopkins University | CM-1001 | 71,218 | | TN D-1083 | 71,144 |
| | CM-1026 | 71,889 | | TN D-1275 | 71,378 |
| | Report | 71,257 | | TN D-1321 | 70,124 |
| Johns Hopkins University, Applied Physics Lab. | TG 230-T278 | 71,522 | | TN D-1344 | 70,993 |
| | TG 230-T304 | 71,231 | | TN D-1357 | 70,299 |
| Johns Hopkins University, Laboratory of Astrophysics and Physical Meteorology | | 71,258 | | TN D-1402 | 70,341 |
| | | 71,636 | | TN D-1415 | 70,069 |
| | | | | TN D-1417 | 70,632 |
| Kitt Peak National | Contribution 11 | 70,623 | | TN D-1422 | 70,081 |
| Observatory | Contribution 19 | 71,181 | | TN D-1433 | 70,157 |
| Library of Congress | AID Report 62-24 | 71,472 | | TN D-1445 | 70,196 |
| | AID Report 62-33 | 71,624 | | TN D-1447 | 70,088 |
| | AID Report 62-87 | 71,505 | | TN D-1451 | 70,118 |
| Lockheed Missiles and Space Co. | SB-61-40 | 71,825 | | TN D-1456 | 70,761 |
| | SB-61-58 | 71,875 | | TN D-1457 | 70,125 |
| | SB-61-60 | 71,969 | | TN D-1461 | 70,063 |
| | SB-62-15 | 71,385 | | TN D-1462 | 70,976 |
| | SB-62-20 | 71,509 | | TN D-1468 | 70,789 |
| | SB-62-26 | 71,268 | | TN D-1493 | 70,774 |
| | SB-62-30 | 71,599 | | TN D-1496 | 70,241 |
| | SB-62-46 | 71,519 | | TN D-1497 | 70,242 |
| | SB-62-50 | 71,390 | | TN D-1498 | 70,200 |
| | SB-62-51 | 71,362 | | TN D-1500 | 70,001 |
| | SB-62-53 | 71,642 | | TN D-1508 | 70,263 |
| | SB-62-58 | 71,826 | | TN D-1511 | 70,243 |
| | SB-62-68 | 71,827 | | TN D-1512 | 70,253 |
| | SRB-62-2 | 71,361 | | TN D-1514 | 70,139 |
| Martin-Marietta Corp. | MND-P-2356 | 71,512 | | TN D-1515 | 70,049 |
| Massachusetts Institute of Technology | R-341 | 70,785 | | TN D-1520 | 71,646 |
| | | | | TN D-1524 | 70,312 |
| Massachusetts Institute of | 30G-0011 | 70,646 | | TN D-1530 | 71,040 70,747 |
| Technology, Lincoln | Bibliography | 70,809 | | TN D-1535 | 70,109 |
| Laboratory | TR 272 | 71,079 | | TN D-1538 | 71,410 |

[^90]| Source | Report No. | Entry | Source | Report No. | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: |
| National Aeronautics and Space Administration (Cont'd) | TN D-1539 | 71,101 | National Aeronautics and Space Administration (Cont'd) | TN D-1767 | 71,834 |
| | TN D-1540 | 71,288 | | TN D-1775 | 71,981 |
| | TN D-1541 | 71,289 | | TN D-1780 | 71,902 |
| | TN D-1542 | 70,995 | | TN D-1825 | 71,187 |
| | TN D-1544 | 70,977 | | TN D-1859 | 71,682 |
| | TN D-1545 | 71,177 | | TN D-1871 | 71,585 |
| | TN D-1547 | 71,300 | | TR R-128 | 70,819 |
| | TN D-1555 | 70,940 | | TR R-136 | 71,716 |
| | TN D-1558 | 70,170 | | TR R-137 | 70,624 |
| | TN D-1563 | 70,723 | | TR R-140 | 70,788 |
| | TN D-1571 | 71,035 | | TR R-148 | 71,862 |
| | TN D-1573 | 71,411 | | TT F-89 | 70,771 |
| | TN D-1577 | 71,061 | | TT F-93 | 70,759 |
| | TN D-1578 | 71,491 | | TT F-103 | 70,325 |
| | TN D-1582 | 70,930 | | TT F-113 | 70,892 |
| | TN D-1593 | 70,829 | | X-533-63-1 | 71,897 |
| | TN D-1604 | 71,089 | National Burcau of Standards | TN 162 | 71,011 |
| | TN D-1607 | 70,711 | | TN 171 | 71,887 |
| | TN D-1608 | 70,950 | | Abstracted from CRPL-f, | |
| | TN D-1610 | 70,938 | | Part B | 71,169 |
| | TN D-1612 | 71,012 | | | |
| | TN D-1613 | 71,540 | National Bureau of Standards, Central Radio Propagation Lab. | TN 40-8 | 70,728 |
| | TN D-1617 | 71,145 | | | |
| | TN D-1623 | 71,893 | | | |
| | TN D-1625 | 71,947 | National Research Council | | 70,571 |
| | TN D-1631 | 71,968 | | | 70,572 |
| | TN D-1649 | 70,748 | North American Aviation Inc. | SID 61-217 | |
| | TN D-1652 | 71,861 | | SID 62-708, Vol. II | $71,915$ |
| | TN D-1653 | 71,480 | | | |
| | TN D-1655 | 71,821 | North Atlantic Treaty Organization | AGARD Report 384 | 70,642 |
| | TN D-1660 | 71,612 | | | |
| | TN D-1668 | 71,087 | Northrop Corp. | | |
| | TN D-1670 | 71,025 | | NSL 63-4, Vol. II | 71,809 |
| | TN D-1671 | 71,304 | | NSL 63-4, Vol. III | 71,811 |
| | TN D-1673 | 71,724 71,367 | | NSL 63-4, Summary | 71,812 |
| | TN D-1675 | 70,980 | Planning Research Corp. | PRC R-293 | 70,459 |
| | TN D-1676 | 71,261 | Quartermaster Food and Container Institute for the Armed Forces | Library Bulletin 1 | 70,191 |
| | TN D-1682 | 70,983 | | | |
| | TN D-1684 | 71,325 | | | |
| | TN D-1685 | 70,667 | | | |
| | TN D-1686 | 71,993 | Radio Corporation of America | AED 1542 | 71,430 |
| | TN D-1687 | 71,520 | | AED 1762 | 71,431 |
| | TN D-1693 | 71,584 | Rand Corp. | P-1593 | 70,760 |
| | TN D-1696 | 70,970 | | P-1702 | 71,155 |
| | TN D-1700 | 71,368 | | RM-2826-PR | 70,606 |
| | TN D-1701 | 71,290 | | RM-2946-PR | 70,924 |
| | TN D-1713 | 71,975 | | RM-3096-PR | 70,530 |
| | TN D-1714 | 71,684 | | RM-3140-NASA | 70,455 |
| | TN D-1716 | 71,303 | | RM-3178-PR | 71,007 |
| | TN D-1717 | 71,625 | | RM-3277-NASA | 70,089 |
| | TN D-1722 | 71,470 | | RM-3297-PR | 70,375 |
| | TN D-1723 | 71,041 | | RM-3329-PR | 70,818 |
| | TN D-1724 | 71,237 | | RM-3353-NASA | 70,698 |
| | TN D-1747 | 71,935 | | RM-3376-JPL | 70,801 |
| | TN D-1751 | 71,356 | | RM-3487-RC | 70,643 |
| | TN D-1765 | 71,854 | | RM-3523-NASA | 71,050 |

[^91]| Source | Report No. | Entry | Source | Report No. | Entry |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rocketdyne | Final Report R-3923, Vol. 2 | 71,516 | U. S. Department of Commerce, Coast and Geodetic Survey | Publication 40-1 | 70,699 |
| | Final Report R-3923, Vol. 4 | 71,517 | | | |
| | Final Report R-5061, Vol. I | 71,396 | U.S. Department of Commerce, Office of Technical Services | OTS:
 OTS: $61-23,461$
 $1-28,637$ | 71,471 70,287 |
| | Final Report R-5061, | | | OTS: 62-13,403 | 70,917 |
| | | 71,397 | | OTS: 62-24,342 | 71,481 |
| | Final Report R-5061, | | | OTS: 62-24,481 | 71,472 |
| | | 71,398 | | OTS: $62-24,486$ | 71,473 |
| | Final Report R-5061, | | | OTS: 62-24,492 | 71,624 |
| | | 71,399 | | OTS: 62-32,103 | 71,438 |
| | ROM-2181-1004 | 71,580 | | OTS: 62-32,232 | 71,570 |
| | ROM-2181-1004 | | | OTS: 62-32,233 | 71,505 |
| Royal Aircraft Fstablishment, Great Britain | TN Space 20 | 71,499 | | OTS: 62-33,452 | 71,301 |
| | TN Space 19 | 71,498 | | OTS: 62-33,452 | 71,319 |
| | TN Space 21 | 71,622 | | OTS: 62-33,452 | 71,474 |
| Scientific Translation Service | | 70,535 | | OTS: 62-33,452 | 71,475 |
| | | | | OTS: 62-33,452 | 71,528 |
| Smithsonian Institution | Special Report 91 | 70,912 | | OTS: 63-13,076 | 71,577 |
| | | 71,502 | | OTS: 63-13,554 | 71,630 |
| | Special Report 92 | 71,503 | | OTS: N62-15,186 | 70,795 |
| | Special Report 100 | 71,094 | | OTS: N62-17,072 | 71,302 |
| | Special Report 101 | 71,091 | | OTS: N63-10,168 | 71,409 |
| Society of Aerospace Material and Process Engineers
 Society of Automotive | | 71,058 | U.S. Department of Commerce, Weather Bureau | Report 13 | 71,236 |
| | 632A | 71,164 | | | |
| Engineers, Inc. | 632 B | 71,165 | U. S. Department of Commerce, Weather Bureau, Meteorological Satellite Laboratory | Report 11 | 70,652 |
| | 632 C | 70,839 | | | |
| | 632 E | 71,036 | | | |
| | 632 F | 71,044 | | | |
| | 632G | 71,047 | | | |
| | 632H | 71,818 | U.S. Department of Commerce, Weather Bureau, National Weather Satellite Center | Paper | 71,607 |
| | 632J | 71,045 | | | |
| | 632K | 71,046 | | | |
| | 632 L | 71,048 | | | |
| | SP-225 | 71,712 | | MAP-I-355 | 70,838 |
| | SP-225 | 71,713 | U. S. Department of the Interior, Geological Survey | | |
| Space Technology Laboratories, Inc. | 8689-6002-TU000 | 71,814 | U.S. Naval Observatory | Astronomical Papers, Vol, XVI, Part II | |
| | 8689-6006-TU000 | 71,815 | | | 71,055 |
| | 8689-6007-TU000 | 71,813 | | | |
| | $9990-6302-\mathrm{KU}-000$ | 71,274 | USSR Academy of Sciences | Scientific Report | 70,333 |
| | 9990-6339-KU-000 | 71,275 | | | |
| | 9990-6345-KU-000 | 71,311 | Walter Kidde \& Co., Inc. | 0310-700 | 71,663 |
| | $9990-6346-\mathrm{KU}-000$ | 71,466 | Weapons Research Establishment, South Australia | TRD 63 | 70,649 |
| | $9990-6369-K U-000$ | 71,444 | | | |
| | $9990-6380-\mathrm{KU}-000$ | 71,772 | | | |
| | Final Report 8651-6016-RU-000 | 71,393 | Wisconsin, University of, Mathematics Research Center | MRC Technical Summary Report 351 | 70,825 |
| Space-Craft, Inc. | 62-402 | 70,067 | | | |
| Spectrolab | Final Report 2004 | 71,572 | Wright Air Development Division (see Acronautical Systems Division)
 Yale University | | |
| Stanford Research Institute | Final Report, NASr-49(04) | 70,177 | | | |
| Toronto, University of, Canada | UTIA Report 89 | 71,296 | | | |
| | | | | Technical Note 1 | 71,690 |

[^92]
PERIODICAL CITATIONS FOR JUNE 1963

Aerospace Medicine, v. 34, no. 3, March 1963		
71,659	71,660	71,661
71,866	71,884	71,885

American Geophysical Union,
Transactions, v. 44, no. 1, March 1963 $\begin{array}{lll}71,651 & 71,732 & 71,787\end{array}$

Annals of the New York Academy of
Sciences, v. 93, article 10, May 31, 1962
71,888
Artificial Earth Satellites, v. 12,
March 1963

71,657	71,673	71,675
71,676	71,683	71,693
71,694	71,695	71,708
71,709	71,710	71,711
71,729	71,785	71,883
71,895		

Astronautica Acta, v. 9, no. 1, 1963 $\begin{array}{lll}71,863 & 71,982 & \mathbf{7 1 , 9 8 4}\end{array}$ 71,985

Astronautics and Aerospace Engineering, v. 1, no. 3, April 1963

71,678	$\mathbf{7 1 , 7 1 4}$	$\mathbf{7 1 , 8 3 5}$
71,836	$\mathbf{7 1 , 8 3 7}$	$\mathbf{7 1 , 8 3 8}$
$\mathbf{7 1 , 8 3 9}$	$\mathbf{7 1 , 8 4 0}$	$\mathbf{7 1 1 , 8 4 1}$
$\mathbf{7 1 , 8 4 2}$	$\mathbf{7 1 , 8 5 6}$	$\mathbf{7 1 1 8 5 7}$
$\mathbf{7 1 , 9 7 1}$	$\mathbf{7 1 , 9 7 2}$	$\mathbf{7 1 , 9 7 3}$
$\mathbf{7 1 , 9 7 4}$		

Astronomical Institutes of Czechoslovakia, Bulletin of the, v. 14, no. 1, 1963 $\begin{array}{lll}71,789 & 71,831 & 71,930 \\ 71,933 & 71,940 & 71,964\end{array}$
Astronomical Society of the Pacific,
Publications of the, v. 74, no. 441,
December 1962 $\begin{array}{lll}71,689 & 71,925 & 71,961\end{array}$
Astrophysical Journal, The, v. 137, no. 1, January 1963

71,790	71,920	71,921
71,936	71,950	71,956
72,015		

Australian Journal of Physics, v. 16, no. 1, March 1963

71,665	71,791	71,905

Aviation Week \& Space Technology, v. 78, no. 9, March 4, 1963

$$
\begin{array}{lll}
71,860 & 71,918 & 72,004 \\
72,010 & &
\end{array}
$$

Bell Laboratories Record, v. 41, no. 4, April 1063

$$
\begin{array}{lll}
71,652 & 71,653 & 71,721
\end{array}
$$

71,722	71,759	71,764
71,795	71,934	71,965
71,966	71,967	

Canadian Journal of Physics, v. 41, no. 1, January 1963

71,733	71,781	71,976
71,977	71,978	$\mathbf{7 1 , 9 7 9}$

Electronics, v. 36, no. 5, February 1, 1963 71,830
\qquad , v. 36, no. 6, February 8, 1963 71,654 71,953
—__, v. 36, no. 7, February 15, 1963 71,858

Icarus, v. 1, no. 5-6, April 1963

$\mathbf{7 1 , 6 8 1}$	71,744	71,846
71,867	71,868	71,954
$\mathbf{7 2 , 0 0 5}$		

IRE Transactions on Instrumentation,
v. I-11, no. 3 \& 4, December 1962

71,802
ISA Journal, v. 10, no. 3, March 1963
71,691
Journal of Atmospheric and Terrestrial
Physics, v. 25, no. 2, February 1963

71,735	71,739	71,740
71,747	71,748	71,775
71,776		

	v. 25, no. 4, April 1963	
71,736	71,737	71,738
71,777	71,778	

Journal of Geophysical Research,
v. 68, no. 5, March 1, 1963

71,649	71,650	71,743
71,749	71,750	71,751
71,752	71,753	71,754
71,756	71,779	71,843
71,849	71,850	71,851
71,855	71,870	71,901
71,928	71,942	71,994
71,995	72,003	

	v. 68, no. 6, March 15,1963	
71,666	71,704	71,705
71,706	71,755	71,762
71,780	71,923	71,924
72,014		

Journal of Quantitative Spectroscopy and Radiative Transfer, v. 3, no. 2, April-June 1963

71,922	71,943	$\mathbf{7 1 , 9 4 4}$
71,948	71,958	71,959
71,900		

Nature, v. 197, no.	4869, February	23,1963
71,757	71,792	71,832
71,833		

$\begin{aligned} & \text { 76, April } \\ & 71,715 \end{aligned}$	71,848
Operations Research, v. 11, no. 2, March-April 1963	
	71,794
Physics Letters, v. 3, no. 7, February 15, 1963	
	71,891

Planetary and Space Science, v. 10, 1963

$\mathbf{7 1 , 6 4 7}$	71,648	71,667
71,668	71,669	71,670
71,671	71,672	71,730
71,734	71,745	71,746
71,784	71,986	71,987
71,988	71,989	71,990
71,991	71,996	

\ldots, v. 11, no. l, January 1963		
71,701	71,742	71,782
71,783	71,904	71,938
71,951	71,955	71,957

71,869 71,992	72,002
Product Engineering, v. 34, no. 5, March 4, 1963	
	71,761
Progress of Theoretical Physics, v. 27, no. 4, April 1962	
	71,892
Rivista di Medicina Aeronautica e Spaziale, v. 26, no. 1, January-March 1963	
71,864 71,865	72,013

Science, v. 139, no. 3539, March 15, 1963

Soviet Astronomy-AJ, v. 6, no. 4, January-February 1963		
71,662	71,679	71,680
71,686	71,687	71,688
71,702	71,703	71,741
71,844	71,847	71,898
71,916	71,926	71,937
71,941	72,006	72,007

Soviet Physics—Doklady, v. 7, no. 8, February 1963

72,008

Space Science Reviews, v. 1, no. 3, March 1963

71,656	71,692	71,765
71,767	71,768	71,769
71,770	71,771	71,927
71,999		

Strolling Astronomer, The, v. 17, no. 1-2, January-February 1963 $\begin{array}{lll}71,655 & 71,797 & 71,798\end{array}$ $71,799 \quad 71,800 \quad 71,845$ $71,903 \quad 72,000 \quad 72,001$

[^0]: 71,657 THE STATE OF CERTAIN NATURAL IMMUNITY FACTORS IN DOGS DURING COSMIC FLIGHT Alekseeva, O. G.
 Artificial Earth Satellites, v. 12, pp. 69-82, March 1963

[^1]: 71,691 REMOTE CONTROL OF SPACE VEHICLES Green, J. S.
 ISA Journaí, v. iv, n̄̈. 3, pp. 71 72, March 1963

[^2]: 71,699 INFORMATION ON SOLAR PROTON EVENTS (PCA'S) deduced From radio observations
 Bailey, D. K. (National Bureau of Standards, Boulder Labs., Colo.)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 86-87, Book 1 (Abstract)

[^3]: 71,702 ON THE ISOTROPY OF PRIMARY COSMIC RAYS Getmantsev, G. G.
 Soviet Astronomy-AJ, v. 6, no. 4, pp. 477-479,
 January-February 1963

[^4]: 71,706 EXPONENTIAL RIGIDITY SPECTRUMS FOR SOLAR-FLARE COSMIC RAYS
 Freier, P. S., Webber, W. R.
 Journal of Geophysical Research, v. 68, no. 6, pp. 1605-1629, March 15, 1263

[^5]: 71,720 PROTON RADIATION DAMAGE IN SEMICONDUCTOR DEVICES
 Gandolfo, D. A., Arnold, D. M., Parker, J. R., Vollmer, J. (RCA, Camden, N.J.), Baicker, J. A., Flicker, H., Vilms, J. (RCA, Princeton, N.J.)

[^6]: 71,741 THE GEGENSCHEIN AS AN EFFECT PRODUCED BY THE SCATTERING OF LIGHT FROM PARTICLES OF INTERPLANETARY DUST Gindilis, L. M.

[^7]: 71,769 THE PLASMA TAILS OF COMETS AND THE INTERPLANETARY PLASMA Biermann, L.
 Space Science Reviews, v. 1, no. 3, p. 553, March 1963
 (Paper presented at the European Preparatory Commission for Space Research Symposium on The Interplanetary Medium, at Paris, France, June 19, 1962)

[^8]: 71,772 INTERPLANETARY MATTER: A BIBLIOGRAPHY, 1962 SUPPLEMENT
 Magnolia, L. R.
 April 1963
 Space Technology Laboratories, Inc., Redondo Beach, Calif.
 9990-6380-KU-000
 Research Bibliography 46

[^9]: 71,785 VARIATIONS IN THE MEAN MOLECULAR WEIGIT OF NIGHT AIR AT HEIGHTS FROM 100 TO 210 KM SHOWN BY MASS SPECTROMETRY Pokhunkov, A. A.
 Artificial Earth Satellites, v. 12, pp. 145-153, March 1963

[^10]: 71,789 SUR LA POSSIBILITE DE LA LUMINESCENCE DES SATELLITES DE JUPITER (ON THE POSSIBILITY OF LUMINESCENCE OF JUPITER'S SATELLITES)
 Link, \mathbf{F}.
 Astronomical Institutes of Czechoslovakia, Bulletin of the, v. 14, no. 1, p. 23, 1963

[^11]: 71,801 LUNAR AND PLANETARY SOFT LANDINGS BY MEANS OF GAS-FILLED BALLOONS
 Schrader, C. D. (Aerospace Corp., El Segundo, Calif.) American Rocket Society, Inc., New York, N. Y. 2480-62

[^12]: 71,807 LUNAR LOGISTIC SYSTEM, VOLUME X, PAYLOADS
 March 15, 1963

[^13]: 71,846 GRAVITATIONAL HEATING OF THE MOON Kopal, \mathbf{Z}.
 Icarus, v. 1, no. 5-6, pp. 412-421, April 1963

[^14]: 71,860 HELIOS TO RELAY MORE ACCURATE SOLAR DATA
 Wetmore, W. C.
 Aviation Week \& Space Technology, v. 78, no. 9, pp. 48-53, March 4, 1963

[^15]: 71,870 DENSITY FLUCTUATIONS IN A NONEQUILIBRIUM PLASMA
 Salpeter, E. E.
 Journal of Geophysical Research, v. 68, no. 5, pp. 1321-1333, March 1, 1963

[^16]: 71,875 RADIATION EFFECTS ON SOLAR CELLS AND GLASS: AN ANNOTATED BIBLIOGRAPHY
 Beltran, A. A., Graziano, E. E.
 October 1961
 Lockheed Missiles and Space Co., Sunnyvale, Calif.
 SB-61-58
 ASTIA AD-271,036

[^17]: 71,883 MEASUREMENT OF RADIATION DOSES ON THE SECOND, FOURTH, AND FIFTH SATELLITESPACESHIPS
 Keirim-Markus, I. B., Kovalev, E. E., Uspenskii, L. N. Artificial Earth Satellites, v. 12, pp. 52-55, March 1963

[^18]: 71,896 LONG LIFE SATELLITE RELIABILITY PROGRAM Walsh, T. M., Heubner, D. F.
 August 1962
 General Electric Co., Missile and Space Div., Philadelphia, Pa.
 Document 62SD4299

[^19]: 71,910 THE PROSPECTS FOR ACTIVE SHIELDING
 Levy, R. H. (Avco Corp., Avco-Everett Research Lab., Everett, Mass.)
 In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 794-807, Book 2
 Atomic Energy Commission, Division of Technical Information, Washington, D. C.
 TID-7652, Paper F-1

[^20]: 71,913 EXPERIMENTAL TECHNIQUES FOR THE MEASUREMENT OF NUCLEAR SECONDARIES FROM THE INTERACTIONS OF PROTONS OF A FEW HUNDRED MEV
 Maienschein, F. C., Blosser, T. V., Brashear, H. R., Burrus, W. R., Glass, F. M., Gibson, W. A., Hill, N. W., Johnson, C. F., Love, T. A., McKay, V. A., Peelle, R. W.,

[^21]: 72,008 RADAR OBSERVATIONS OF THE PLANET VENUS Kotelnikov, V. A., Dubrovin, V. M., Kislik, M. D., Korenberg, E. B., Minashin, V. P., Morozov, V. A., Nikit-skii, N. I., Petrov, G. M., Rzhiga, O. N., Shakhovskoi, A. M. Soviet Physics—Doklady, v. 7, no. 8, pp. 728-731, February 1963

[^22]: 72,009 A SEARCH FOR WATER VAPOR AND TRACE CONSTITUENTS IN THE VENUS ATMOSPHERE Spinrad, H.
 October 1, 1962
 Jet Propulsion Laboratory, California Institute of Technology, Pasadena
 TR 32-256

[^23]: 72,013 GLI EFFETTI DELLA SUBGRAVITA' E I METODI PER RIPRODURLA A TERRA E IN VOLO (SUBGRAVITY EFFECTS AND SIMULATION METHODS IN LABORATORY SITUATIONS AND IN FLIGHT)
 Meineri, G.
 Rivista di Medicina Aeronautica e Spaziale, v. 26, no. 1, pp. 80-98, January-March 1963

[^24]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^25]: ${ }^{\bullet}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^26]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^27]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^28]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entizies 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^29]: ${ }^{\circ}$ Entries $70,001-70,344$, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^30]: ${ }^{*}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71.239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^31]: ${ }^{6}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^32]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entrics 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^33]: ${ }^{\circ}$ Entries $70,001-70,344$, Vol. VII, No. 1; Entries $70,345-70,608$, Vol. VII, No. 2; Entries $70,609-70,930$, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^34]: ${ }^{0}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^35]: ${ }^{6}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^36]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^37]: ${ }^{\bullet}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^38]: ${ }^{5}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^39]: ${ }^{\circ}$ Entrics 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^40]: ${ }^{*}$ Entries 70,001-70,344, Vol. VII, No. I; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^41]: ${ }^{\circ}$ Entries $70,001-70,344$, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^42]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Estries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^43]: Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6. Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^44]: ${ }^{9}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^45]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. V1I, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^46]: *Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^47]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^48]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^49]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entrie's 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^50]: ${ }^{*}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^51]: ${ }^{\bullet}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^52]: ${ }^{2}$ Entries $70,001-70,344$, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^53]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entric's 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entrics 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^54]: ${ }^{*}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^55]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entrics 71,646-72,015, Vol. VII, No. 6.

[^56]: ${ }^{*}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3 ;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^57]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entrics 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^58]: ${ }^{\bullet}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^59]: ${ }^{\circ}$ Entrics $70,001-70,344$, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^60]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Eutries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^61]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^62]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^63]: ${ }^{\bullet}$ Entries 70,001-70,344, Vol. VII, No. 1; Eutries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^64]: ${ }^{2}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^65]: ${ }^{\bullet}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^66]: ${ }^{*}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^67]: ${ }^{\circ}$ Entries 70,(0)1-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^68]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^69]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^70]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Fntries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^71]: ${ }^{\circ}$ Entries $70,001-70,344$, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^72]: ${ }^{\circ}$ Entries $70,001-70,344$, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^73]: "Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^74]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^75]: ${ }^{\circ}$ Entrics 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^76]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^77]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^78]: ${ }^{\circ}$ Entries $70,001-70,344$, Vol. VII, No. 1; Entries $70,345-70,608$, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^79]: ${ }^{\circ}$ Entries $70,001-70,344$, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^80]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6

[^81]: ${ }^{6}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^82]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. I; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^83]: ${ }^{\circ}$ Entries $70,001-70,344$, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^84]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Fntries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^85]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^86]: ${ }^{\text {a }}$ Entries $70,001-70,344$, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70.931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^87]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^88]: ${ }^{\bullet}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,931-71,239, Voì. Viil, ìvu. 4, Entrices 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^89]: ${ }^{\text {a }}$ Entries $70,001-70,344$, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^90]: ${ }^{\circ}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Euiuies 70,031-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^91]: ${ }^{6}$ Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

[^92]: ${ }^{\circ}$ Entries $70,001-70,344$, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3;
 Entries 70,48i-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

