GPO PRICE \$	_
CFSTI PRICE(S) \$	
Hard copy (HC) <u>4.00</u>	
Microfiche (MF)	_\`
ff 653 July 65	/
and the second	

0/

ABSTRACTS

REPORTS AND OPEN LITERATURE VOL. VII, NO. 6

ENTRIES, 71,646-72,015

JUNE 1963

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA

<u>166</u>	27241
(AC	CESSION NUMBER)
	_138
	(PAGES)
C.C.	75252
(NASA CR	OR TMX OR AD NUMBER)
	Ú.C.

ASTRONAUTICS INFORMATION ABSTRACTS

REPORTS AND OPEN LITERATURE VOL. VII, NO. 6

ENTRIES 71,646-72,015

Compiled by:

V. S. ANDERSON N. IVES T. P. MACDONALD B. H. NICHOLS E. C. SIDWELL

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA JUNE 1963

ASTRONAUTICS INFORMATION ABSTRACTS

REPORTS AND OPEN LITERATURE

Volume VII, Number 6

Entries 71,646-72,015

Copyright © 1963 Jet Propulsion Laboratory California Institute of Technology

Prepared Under Contract No. NAS 7-100 National Aeronautics & Space Administration

PREFACE

This issue of the JPL Astronautics Information Abstracts-Reports and Open Literature covers the month of June 1963.

As in the past, the Astronautics Information series is selective. Report and open literature citations are restricted to the subject of space flight and to applicable data and techniques. Data and techniques arising from other technologies are reported only if their relationship to astronautics is clear. The intent is to give full coverage to astronautics but to exclude peripheral material.

Except under unusual circumstances, the JPL Library is not able to lend copies of the material cited herein. However, when known, the ASTIA AD numbers are included in the citations. Users should request reports from the originator. Subscribers to most of the periodicals covered are listed in the Union List of Serials published by the H. W. Wilson Company of New York and in the list of periodicals abstracted by the Chemical Abstracts Service of Ohio State University. JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 REPORTS AND OPEN LITERATURE

CONTENTS

Reports and Open Li	tere	atu	re	•	•	•	•	•	•	•		•		•	•	•	•	•	•	237
Author Index	•	•	•	•	•				•			•		•	•	•	•	•	•	291
Subject Index												•					•			305
Source Index	•				•	•					•		•	•	•	•	•	•	•	355
Periodical Citations					•									•						363

ASTRONAUTICS INFORMATION ABSTRACTS

ABLATION

71,646 AN EXPERIMENTAL INVESTIGATION OF SEVERAL ABLATION MATERIALS IN AN ELECTRIC-ARC-HEATED AIR JET Chapman, A. J. April 1963 National Aeronautics and Space Administration, Washington, D.C. TN D-1520

An investigation to determine the ability of several ablation materials to reduce surface heat transfer in an electric-archeated airstream has shown that ammonium chloride has a higher heat of ablation, and thus greater ability to reduce surface heat transfer, at stagnation enthalpy potential below 8500 Btu/lb than teflon, nylon, Avcoat 19, or GE-124. The trend of results indicates that, for stagnation enthalpy potential above 8500 Btu/lb, nylon would have a higher heat of ablation than ammonium chloride because of an increased transpiration effect. Results obtained for a wide range of test stream conditions with subsonic and supersonic flow from the present investigation and several references indicate that the heat of ablation is primarily sensitive to stagnation enthalpy potential.

AIRGLOW

71,647 DYNAMICAL STUDIES OF THE OXYGEN GREEN LINE IN THE AIRGLOW Tohmatsu, T., Nagata, T.

Planetary and Space Science, v. 10, pp. 103–116, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

Variations in intensity of the oxygen green line [OI]5577 Å in the airglow are discussed on the basis of the photochemical excitation theory, with special reference to the dynamical behavior of the oxygen transition region for photodissociation.

71,648 METALLIC EMISSIONS IN THE TWILIGHT AND THEIR BEARING ON ATMOSPHERIC DYNAMICS Jones, A. V.

Planetary and Space Science, v. 10, pp. 117–127, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

The possibilities are reviewed of obtaining information about dynamic processes in the upper atmosphere by observing variations in the concentrations of naturally occurring and artificially introduced metallic atoms detected by their twilight fluorescence. In the case of natural sodium, it is concluded that dynamic effects are probably responsible for the seasonal variation, although the exact processes involved remain obscure. Even less is known in the cases of natural lithium, potassium, and calcium. Theories of the origin and seasonal variation of upper atmospheric sodium are reviewed. The observation of the twilight fluorescence of lithium, after the injection of quantities of the metal into the mesosphere and lower thermosphere, seems to be a promising technique for the study of upper atmospheric dynamics.

71,649 LIGHTNING-ENHANCED N₂⁺ RADIATION IN THE NIGHT AIRGLOW Moore, J. G. Journal of Geophysical Research, v. 68, no. 5, pp. 1335-1337, March 1, 1963

During the night of July 27–28, 1962, a zcnith night airglow photometer recorded intense flashes of the O-0 band of the first negative system of N_2^+ caused by lightning strokes in an electrical storm some 60-km distant. The peak intensity of the brightest flash was about 50 rayleighs above the background of 28 rayleighs for the 3914 Å emission in the airglow above China Lake.

71,650 OBSERVATION OF THE DAY AIRGLOW Wallace, L. Journal of Geophysical Research, v. 68, no. 5, pp. 1559–1560, March 1, 1963

A Littrow spectrograph was flown in a balloon on September 24, 1962 to observe the day airglow. The spectrum in the region 4500 to 7500 Å was photographed in the second order. This spectrum showed a stronger Fraunhofer spectrum than had been expected, and the 6300 Å line of atomic oxygen was present but not prominent.

ANNA 1B

71,651 GEODETIC STUDIES WITH THE ANNA 1B SATELLITE American Geophysical Union, Transactions, v. 44, no. 1, pp. 241–246, March 1963 (Also available in National Academy of Sciences, IGY Bulletin, no. 68, February 1963)

The orbital data, experiments, and instrumentation of the $Anna \ 1B$ are described.

ANTENNAS

71,652 DESIGN AND CONSTRUCTION OF THE HORN ANTENNA Blackmore, R. W. Bell Laboratories Record, v. 41, no. 4, pp. 122–129, April 1963

The design, fabrication technique, and materials for the Andover, Maine, horn antenna are described, and a table of operating parameters is given.

ANTENNAS (Cont'd)

71.653 THE HORN ANTENNA DIRECTION SYSTEM Klahn, R., Byrne, E. R. Bell Laboratories Record, v. 41, no. 4, pp. 130-134, April 1963

The design of the directional control system used on the horn antenna at Andover, Maine, and its operation during a tracking event are described.

APOLLO PROJECT

71.654 PROJECT APOLLO'S MISSION: GET TWO AMERICANS TO THE MOON Reid, M. Electronics, v. 36, no. 6, pp. 18-20, February 8, 1963

A general description of the Apollo project is given, and the electronic equipment to be used is described.

ASTEROIDS

71,655 THE 1963 APPROACH OF MINOR PLANET 1580 BETULIA Hodgson, R. G. Strolling Astronomer, The, v. 17, no. 1-2, p. 1, January-February 1963

An unusual opportunity to observe a minor planet in relatively close proximity is afforded in 1963 when 1580 Betulia approaches to within only 0.157 AU from the Earth. The predicted magnitude is 16.1 on April 21 and June 20. An ephemeris adapted from Harvard Announcement Card 1580 is included in this brief discussion of the asteroid's approach.

ASTRONAUTS

71,656 MEDICAL PROBLEMS OF MANNED SPACE FLIGHT Gazenko, O. G. Space Science Reviews, v. 1, no. 3, pp. 369-398, March 1963

Certain medical problems of human space flight are surveved on the basis of experimental research carried out in the USSR during recent years. Problems considered are (1) the influence of the factors of space flight upon the organism, (2) acceleration, (3) weightlessness, (4) cosmic radiation. and (5) biological telemetry.

71.657 THE STATE OF CERTAIN NATURAL IMMUNITY FACTORS IN DOGS DURING COSMIC FLIGHT Alekseeva, O. G.

Artificial Earth Satellites, v. 12, pp. 69-82, March 1963

71,658 COMMENTS ON THE INCORPORATION OF MAN INTO THE ATTITUDE DYNAMICS OF SPACECRAFT Roberson, R. E. Journal of the Astronautical Sciences, The, v. 10, no. 1, pp. 27-28, Spring 1963

Man is discussed as a source of attitude disturbance within the vehicle.

71,659 ASTROPHYSICAL AND RADIOBIOLOGICAL ASPECTS OF HUMAN SPACE FLIGHT (ASPETTI ASTRO-FISICI E RADIOBIOLOGICI DEL VOLO UMANO NEL COSMO) Pasinetti, A., Pasinetti, L. E. Rivista di Medicina Aeronautica e Spaziale, v. 25, no. 3, pp. 466-499, July-September, 1962 (Abstracted in Aerospace Medicine, v. 34, no. 3, pp. 279-280, March 1963)

The astrophysical characteristics, origin, and distribution of ionizing, solar, cosmic, and Van Allen radiation found in space are discussed. Calculations are given of the dosage for cosmic radiations affecting both the interior and exterior of a space vehicle traveling through the Van Allen belt. Consideration is given to the reduction by biological shielding of the radiation dose and the cutaneous lesions caused by protons and by weak and ultrashort X-photons. Radioprotection of pilots by means of drugs (i.e., sulfhydryl compounds) administered parenterally about half an hour prior to radiation exposure is suggested.

71,660 BIOLOGICAL CONSIDERATIONS ON THE PRESENT STATE OF SPACE FLIGHT (CONSIDERAZIONI **BIOLOGICHE SUI VOLI SPAZIALE ESEGUITI** FINO AD OGGI) Lomonaco, T. Rivista di Medicina Aeronautica e Spaziale, v. 25, no. 3, pp. 431-449, July-September 1962 (Abstracted in Aerospace Medicine, v. 34, no. 3, p. 271, March 1963)

Physiobiological data derived from Russian, American, and French suborbital and orbital flights from 1949 to 1961 utilizing animals and humans are reviewed. During the orbital flights of Gagarin and Titov in 1961, neither Soviet astronaut showed any significant change in cardiovascular or respiratory function during the active phase of the flight. No changes were observed during the period of weightlessness, and no disorders of motion or muscle coordination were recorded. Only Titov suffered from nausea and vertigo for several moments. Telemetered biological parameters showed that in Glenn's 1962 orbital flight his cardiovascular functions in hyper- and zero-gravity corresponded to previously observed data. A reduction of twilight vision was the only change in sensory function. Although the astronaut attempted to elicit labyrinthine disorders by voluntary head movements, none were observed during zero-gravity. During his 1962 flight, Carpenter exhibited tachycardia during weightlessness and great changes in blood pressure.

71,661 ASTRONAUTICS AND MEDICINE (ASTRONAUTICA E MEDICINA)
Warren, J. K.
Rassegna Medica e Culturale, Milano, v. 39, no. 9, pp. 15–18, September 1962
(Abstracted in Aerospace Medicine, v. 34, no. 3, p. 271, March 1963)

Results of recent American and Russian research projects and space missions are reviewed in relation to man in space as affected by magnetic fields, solar radiations, gravitational forces, weightlessness, accelerations, decelerations, and psychological factors. A space environment simulator and gondola used for study of disorientation and of the effects of accelerative forces are pictured.

ASTRONOMICAL UNIT

71,662 THE ASTRONOMICAL UNIT OF LENGTH Mikhailov, A. A. Soviet Astronomy—AJ, v. 6, no. 4, pp. 449–458, January–February 1963

The basic principles and results of the determination of the astronomical unit of length and the solar parallax by the trigonometric, dynamic, spectroscopic, and radar methods are discussed. Some of the sources of uncertainty of these determinations are pointed out and possible errors evaluated. Future possibilities are considered.

ATTITUDE CONTROL SYSTEMS

71,663 SPACECRAFT FLIGHT CONTROL SYSTEMS Walter Kidde & Co., Inc., Kidde Aero Space Div., Belleville, N.J. 0310-700

Technical information on flight control systems for spacecraft attitude control is presented. The various types of reaction are discussed, including cold gas, monopropellant, and bipropellant systems. Information is also provided concerning several types of thrust vector control systems, including secondary injection, nozzle gimballing, and jet vanes.

71,664 INVESTIGATION OF FEASIBILITY OF A POSITIVE DISPLACEMENT INJECTOR FOR ATTITUDE CONTROL PROPULSION January 1963 Curtiss-Wright Corporation, Wright Aeronautical Div., Wood-Ridge, N.J. CTR .00-270

Positive displacement injection is basically a variant of a conventional bipropellant reaction control system which uses solenoid valves to control propellant flow. It differs in that mechanically linked fuel and oxidizer injectors coupled with an actuator replace the propellant solenoid valves. The objective of this feasibility study has been to measure the potential of this device for attitude control propulsion.

AURORAE

71,665 THE DIRECTIONS OF AURORAL RAYS Cole, K. D. Australian Journal of Physics, v. 16, no. 1, pp. 32–39, March 1963

The geometry of the radiation point of an auroral corona is examined. The radiation point of two rays is the antidirection of the point within the Earth at which the rays meet or appear to meet. It is therefore incorrect to identify the radiant point of a corona with local auroral zenith. The difference in direction is commonly 0.5 deg of zenith distance. The importance of rays as magnetic disturbance indicators in the 100to 1000-km height range is stressed, particularly in view of possible deformations of the magnetosphere whose full effects may not be estimated from ground-based observations of the geomagnetic field.

71,666 THE DYNAMICAL MORPHOLOGY OF THE AURORA POLARIS Akasofu, S.-I. Journal of Geophysical Research, v. 68, no. 6, pp. 1667–1673, March 15, 1963

Simultaneous changes of auroral form, brightness, and motion over the whole polar region are studied, using IGY all-sky camera records from widely distributed stations in eastern Siberia, Alaska, Canada, northern United States, and Greenland. Large-scale dynamical features of the auroras, such as the breakup, formation of large loops, and drift motions, are discussed.

71,667 MOTIONS OF THE AURORA AND RADIO-AURORA AND THEIR RELATIONSHIPS TO IONOSPHERIC CURRENTS Cole, K. D. Planetary and Space Science, v. 10, pp. 129–164, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

Observations of magnetic disturbances, aurorae, radioaurorae, and ionospheric movements are reviewed. Correlations between these phenomena are discussed. Distinction is made between aurora which is attributable to the emission of light from particles of the upper atmosphere and radio-aurora which is a feature of upper atmosphere ionization observed by the reflection of radio waves. Some ideas relevant to explanation of the movements are presented. A listing of 160 references is included.

71,668 REFLECTION MECHANISMS FOR RADIO AURORA Forsyth, P. A. Planetary and Space Science, v. 10, pp. 179–186, 1963

(Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

Attempts to derive useful information concerning the degree of ionization in the auroral atmosphere from radio meas-

AURORAE (Cont'd)

urements have been the subject of some controversy. One view is that the radar echoes result from relatively slight variations in the spatial distribution of ionization which cause partial reflection of the radio waves. The alternative view is that the radio waves are totally reflected by isolated strong concentrations of ionization. Recently, the main features of both mechanisms were combined in one treatment by Moorcroft. This treatment seems to be physically reasonable and is consistent with recent radar measurements. It appears that multiplefrequency radio observations can now be used to measure peak electron densities (concentrations) with considerable confidence, and more detailed interpretations involving the spatial distribution of the ionization are a distinct possibility.

71,669 PROTON BOMBARDMENT IN AURORA

Galperin, Y. I.

Planetary and Space Science, v. 10, pp. 187–193, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

Studies are described of a recently discovered type of aurora, the proton aurora, which systematically appears in the auroral zone, often during quiet magnetic conditions, and moves towards the equator with rising magnetic disturbance. The "hydrogen field" is a wide nearly homogeneous band with borders along magnetic parallels. There is no conclusive evidence of the concentration of hydrogen emission in any other distinct auroral form. The magnetic zenith emission profile is nearly constant with only minor variations. The height of the emission in the hydrogen field and the low energy part of the initial proton energy spectrum cannot be found from published data.

The discovery of the proton aurora as a distinct phenomenon completes the picture of particle bombardment and stresses the lack of understanding of the auroral accelerating mechanisms.

71,670 OPTICAL STUDIES OF PARTICLE BOMBARDMENT IN POLAR CAP ABSORPTION EVENTS

Sandford, B. P.

Planetary and Space Science, v. 10, pp. 195–213, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

The intensities of the polar-glow auroral emissions produced by bombarding protons during a polar cap absorption event are calculated. The first negative bands of N_{2}^{+} have a maximum brightness at a height of 65 km. The enhancement of the forbidden atomic oxygen line at 5577 Å is most likely produced by dissociative recombination of O_{2}^{+} . Comparison of the calculated and observed polar-glow intensities indicates that the proton energy spectrum is approximately the same at all geomagnetic latitudes above 60 deg. This implies that there is a terrestrial cutoff at about 1 Mev, even at the geomagnetic pole, or that there are relatively few protons of less than 1-Mev energy emitted from the solar flare. The time variations of the polar-glow indicate that the magnetic field in the plasma cloud produced by the flare may be the main trapping region for the protons. The observations tend to support Parker's blast model for the propagation of solar flare particles through interplanetary space. The origin of the great auroral displays observed during the large magnetic storms is briefly reviewed.

71,671 THE PART PLAYED BY AND SOURCE OF PARTICLES OBSERVED IN THE IONOSPHERE AND AURORAE Ivanov-Kholodny, G. S. Planetary and Space Science, v. 10, pp. 219-232, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

The source and acceleration of electrons which penetrate deep into the atmosphere are discussed. Experimental data on the connection of the radiation belts with the aurorae are presented. The question of the origin of aurorae and radiation belt particles is discussed. A listing of 98 references is included.

71,672 OBSERVATIONS AND EXPERIMENTS PERTINENT TO AURORAL THEORIES Omholt, A.

Planetary and Space Science, v. 10, pp. 247–262, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

Evidence is discussed which supports the conclusion that electrons dominate the energetic particles impinging upon the atmosphere during aurora. Data accumulated by rocket work are included. Available observations and theoretical interpretations of the dynamics of aurora are reviewed. The most recent and important satellite observations of energetic particles and magnetic fields in space are described and discussed.

BIOLOGY

71,673 DOSES OF COSMIC RADIATION Ivanov, V. I., Keirim-Markus, I. B., Kovalev, E. E. Artificial Earth Satellites, v. 12, pp. 40–51, March 1963

In an assessment of the biological effect of radiation, the following aspects are considered: the magnitude of the absorbed tissue dose in rad due to radiation inside the vehicle, and the relative biological effectiveness of the radiation.

The dose rate due to the natural radiation environment in which life has developed on Earth is adopted as a scale for

the assessment of cosmic radiation doses. Hazards from the intense radiation of solar flares, cosmic rays, and the Van Allen belts are discussed.

71,674 BIOLOGICAL EFFECTS OF HIGH ENERGY PROTONS Sondhaus, C. A. (University of California, Donner

Laboratory, Berkeley) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 309–342, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D.C. TID-7652, Paper C-4

At present, laboratory whole body exposure to a proton flux is impractical for large animals. Since exposures in space flight are almost certain to occur under omnidirectional conditions, and since a high but variable ratio of superficial to midline dose is expected to result from solar flare proton energy distributions, a means of irradiating large animals with the proton beam of the 184-in. cyclotron at Berkeley is being developed in such a way as to permit simulation of solar-flare energy and geometry. Apparatus now under construction, which is described, should thus permit direct experimental studies of biological effects, depth dose patterns, and shielding configurations under approximately isotropic flux conditions.

71,675 INVESTIGATION OF THE HIGHER NERVOUS ACTIVITY OF WHITE RATS AFTER FLIGHT IN THE SECOND SATELLITE-SPACESHIP Lukyanova, L. D. Artificial Earth Satellites, v. 12, pp. 56–61, March 1963

Investigations conducted by Soviet scientists on the effects of space flight on white rats are discussed. The preparation and training of the experimental animals are described, and postflight examinations and results are presented.

71,676 FIRST RESULTS OF TESTS CONDUCTED WITH A CHLORELLA CULTURE EXPOSED IN SPACE ON THE SECOND SATELLITE-SPACESHIP Semenenko, V. E., Vladimirova, M. G. Artificial Earth Satellites, v. 12, pp. 62–68, March 1963

An investigation of the radiation effects on unicellular green algae has been conducted as a prelude to the study of complete ecological systems, and in an attempt to solve the problems of air regeneration and food provision for flights of long duration.

A description of the culture and the experimental conditions under which the study was performed is given. Results of an examination of the culture upon its return to Earth are cited. A comparison of the experimental and control cultures of algae in regard to growth kinetics, production of organic matter, morphology, size, and dry weight of the cells, and rate of photosynthetic evolution of oxygen shows that the differences between the experimental and control cultures lay within the range of errors of measurement.

BOOSTER ROCKETS

71,677 LAUNCH VEHICLE PERFORMANCE Amster, W. H. (Aerospace Corp., El Segundo, Calif.) American Rocket Society, Inc., New York, N.Y. (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17–19, 1962)

An analysis is made of launch vehicle size and staging requirements for conducting a manned lunar landing and return mission. Velocities required of rocket stages for each phase of the mission are determined, and the total mission velocity is established. Four types of lunar mission profiles are considered: direct launch, Earth orbit rendezvous, lunar orbit rendezvous, and lunar surface rendezvous. Spacecraft weights for each type of mission are assumed for the purpose of comparing launch vehicle needs.

71,678 HIGH RESOLUTION WIND MEASUREMENTS: A LAUNCH DESIGN PROBLEM Scoggins, J. R. Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 106–107, April 1963

Two systems for measuring high-resolution winds to altitudes above the maximum dynamic pressure region (10-14 km) for use in vehicle design and performance analyses are described. These are (1) the smoke-trail/photographic technique, and (2) the radar/spherical balloon technique. New data revealed by these techniques show features never before measured in detail which are important to the design of vertically rising vehicles.

CELESTIAL MECHANICS

71,679 NEW EXAMPLES OF CAPTURE IN THE THREE-BODY PROBLEM Alekseev, V. M. Soviet Astronomy—AJ, v. 6, no. 4, pp. 565–572, January–February 1963

New examples are given of "capture" phenomena in the problem of three mass points moving under mutual Newtonian attraction. Purely qualitative methods are used, and numerical integration is not employed. The examples are general and contain the maximum number of free parameters.

71,680 AN EMPIRICAL RELATION BETWEEN THE ROTATIONAL AND ORBITAL MOMENTA OF THE MAJOR PLANETS Goloborodko, T. A. Soviet Astronomy-AJ, v. 6, no. 4, pp. 592-593, January-February 1963

It is found that there is an exponential relation between the rotational and orbital angular momenta of the major

CELESTIAL MECHANICS (Cont'd)

planets. Cosmogonically, the relation is consistent with the separation of the planets from a central body.

71,681 ON THE ELLIPTIC CASE OF THE RESTRICTED PROBLEM OF THREE BODIES AND THE REMOTE HISTORY OF THE EARTH-MOON SYSTEM Kopal, Z., Lyttleton, R. A. Icarus, v. 1, no. 5-6, pp. 455-458, April 1963

An attempt is made to show that the Jacobi integral is an entirely special property of the circular three-body problem, and that no equivalent relation, time-dependent or timevarying, exists when orbital eccentricity is present.

71,682 PERIODIC SOLUTIONS OF THE RESTRICTED THREE BODY PROBLEM REPRESENTING ANALYTIC CONTINUATIONS OF KEPLERIAN ELLIPTIC MOTIONS Arenstorf, R. F. May 1963 National Aeronautics and Space Administration, Washington, D.C. TN D-1859

A detailed mathematical proof is given in this report for the following new result: In the restricted three body problem with small mass ratio there exist one-parametric analytic families of synodically closed solution curves, which are near rotating Keplerian ellipses with rational sidereal frequencies and appropriate positive eccentricities.

CHARGED PARTICLES

71,683 SOME RESULTS OF EXPERIMENTS CARRIED OUT BY MEANS OF CHARGED-PARTICLE COLLECTORS CARRIED BY SOVIET SPACE ROCKETS Gringauz, K. I. Artificial Earth Satellites, v. 12, pp. 131–144, March 1963

COATINGS

71,684 PORTABLE INTECRATING SPHERE FOR MONITOR-ING REFLECTANCE OF SPACECRAFT COATINGS Fussell, W. B., Triolo, J. J., Jerozal, F. A. (Continental Technical Service, Inc., Silver Spring, Md.) April 1963 National Aeronautics and Space Administration, Washington, D.C. TN D-1714

In the thermal design of spacecraft, the input term in the radiation balance equation for a space vehicle in free space — removed from significant Earth radiation — is directly proportional to the solar absorptivity of the illuminated portion of the vehicle. For opaque spacecraft coatings, incident solar

radiation which is not absorbed must be reflected; thus, the solar absorptivity of such coatings can be computed from spectrally resolved total reflectance measurements. It is shown that total reflectance data at wavelengths between 0.27 and 1.65 μ enable the solar absorptivities of common spacecraft coatings to be estimated to within approximately \pm 20 percent or better. An integrating sphere is the most convenient device for measuring the total reflectance of opaque coatings of different degrees of curvature, specularity, and diffusivity. A portable, 8-lb, single-beam, 6-in.-D integrating sphere reflectometer has been designed and fabricated at the Goddard Space Flight Center and has been used extensively to detect changes in the solar absorptivity of spacecraft coatings due to environmental testing, aging, or contamination.

71,685 PIGMENTED SURFACE COATINGS FOR USE IN THE SPACE ENVIRONMENT Searle, N. Z., Hirt, R. C., Schmitt, R. G. (American Cyanamid Co., Central Research Div., Stamford, Conn.) January 1963 Aeronautical Systems Division, Directorate of Materials and Processes, Wright-Patterson AFB, Ohio ASD TDR 62-840, Part I

Photochemical stabilities of pigmented surface coatings to ultraviolet radiation and vacuum conditions simulating those present in the upper atmosphere were determined for various systems. The amount of photodegradation incurred was determined from the change in solar absorptivity based on reflectance measurements over the range 0.25 to 2.6 μ .

COMETS

71,686 ON THE PLASMA NATURE OF A COMET'S HEAD Marochnik, L. S. Soviet Astronomy—AJ, v. 6, no. 4, pp. 532–539, January–February 1963

On the basis of all available observational data, it is concluded that in many cases the gas of the cometary head is plasma with a high degree of ionization. Two aspects of the problem are considered—the shape of the comet's head and the origin of the ionization.

71,687 THE STRUCTURE OF ICY COMET NUCLEI Levin, B. Yu. Soviet Astronomy—AJ, v. 6, no. 4, pp. 593–595, January–February 1963

Instead of conventional ideas on the presence of inclusions of stony substances in icy cometary nuclei, a hypothesis is proposed that these substances are present in the form of separate atoms and molecules embedded in the amorphous noncoherent condensate of different volatile substances. In the course of evaporation of outer layers of the icy nucleus the nonvolatile substances form a porous matrix, the pieces and fragments of which are meteoric particles.

71,688 ON THE NATURE AND ORIGIN OF COMETS Fesenkov, V. G. Soviet Astronomy—AJ, v. 6, no. 4, pp. 459–464, January–February 1963

The high instability of cometary nuclei and the frequently observed breakup of the nuclei into discrete parts demonstrate that they must constitute compact agglomerations of fairly unstable particles. The total mass of the comet may be estimated from the brightness of the cometary head and the rate of fall-off of brightness with time, and also from the reaction effects attendant upon the rotation of the head about the comet's axis. The presence of reactive forces imparted to the entire mass of the nucleus demonstrates that the distance between the component parts must be quite short. Such compact clusters of unstable particles capable of producing explosions in response to even moderate illumination could not conceivably originate in volcanic eruptions from the interior of a planet.

71,689 OBJECTIVE-PRISM SPECTROGRAMS OF COMET HUMASON (1961e) Miller, F. D. Astronomical Society of the Pacific, Publications of the, v. 74, no. 441, pp. 528–529, December 1962

Sketches of a CO^+ band of comet Humason (1961 e) are reproduced from spectrograms made on August 7, 1962 with the Curtis Schmidt telescope at a time interval of 2 hr 25 min. Apparent changes in structure during this period are noted and explanations suggested. Photographic equipment used is described.

COMMUNICATION SYSTEMS

71,690 ON COMMUNICATION SYSTEMS FOR SATELLITE TELEMETRY Schwartz, J. W. November 1961 Yale University, Department of Electrical Engineering, New Haven, Conn. Technical Note 1

This research concerns memory systems for use in spacecraft. The study covers the functions performed by memory, component and data storage techniques, and the problems associated with the interfaces between memory and the remainder of the spacecraft telemetry system. Consideration is given to the form in which data must be presented to the modulator, since this places boundaries within which the telemetry system must be designed.

CONTROL SYSTEMS

71,691 REMOTE CONTROL OF SPACE VEHICLES Green, J. S. ISA Journal, v. 10, no. 3, pp. 71–72, March 1963

COSMIC DUST

71,692 INTERPLANETARY MATTER

Ingham, M. F. Space Science Reviews, v. 1, no. 3, pp. 576–588, March 1963 (Paper presented at the European Preparatory Commission for Space Research Symposium on The Interplanetary Medium, Paris, France, June 19, 1962)

Most interplanetary matter is considered to consist mainly of dust particles with a radius of about 0.3 μ which can be detected only indirectly by the sunlight which they scatter. The characteristics of this dust are investigated by a study of the solar corona and the zodiacal light, the dust cloud about the Earth, and the gegenschein. The origin of the dust particles and scattering by small particles in interplanetary space are also considered.

- 71,693 ROCKET AND SATELLITE STUDIES OF METEOR DUST Nazarova, T. N. Artificial Earth Satellites, v. 12, pp. 154–158, March 1963
- 71,694 ON THE ORIGIN OF THE CONDENSATION OF INTERPLANETARY DUST SURROUNDING THE EARTH Ruskol, E. L. Artificial Earth Satellites, v. 12, pp. 159–165, March 1963
- 71,695 ON THE "DUST ENVELOPE" OF THE EARTH Moroz, V. I. Artificial Earth Satellites, v. 12, pp. 166–174, March 1963

COSMIC RAYS

71,696 AN EVALUATION OF THE RADIATION HAZARD DUE TO SOLAR COSMIC RAYS Webber, W. R., Freier, P. S. (University of Minnesota, Minneapolis) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 12–32, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D.C. TID-7652, Paper A-2

The problem of radiation exposure from solar cosmic-ray outbursts is confined to exposure from the few largest events. The total integrated dose from these events may present a problem, the seriousness of which depends on the amount of shielding—as can be seen from the doses due to particles with energies above 30 and 100 Mev. It is quite certain that the appearance of active regions producing major cosmic-ray bursts is not strongly correlated with the maximum in the eleven-year cycle of solar activity. During the recent maximum, 1957–1958, no such major cosmic-ray bursts were recorded, and the yearly integrated solar cosmic-ray intensities at energies greater than 30 and 100 Mev were lower than for

COSMIC RAYS (Cont'd)

adjacent years of lower solar activity. From the limited number of large events available for study, it appears that the bursts are most frequent during periods of increasing and, particularly, decreasing solar activity, with the periods near maximum and minimum relatively free from such events.

71,697 COMPOSITION OF SOLAR COSMIC RAYS Fichtel, C. E. (NASA/Goddard Space Flight Center, Greenbelt, Md.)
In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 33–43, Book 1
Atomic Energy Commission, Division of Technical Information, Washington, D.C. TID-7652, Paper A-3

In the treatment of solar particle composition, and within the scope of present incomplete knowledge, relative abundances of the less plentiful components (i.e., helium nuclei, heavier nuclei, electrons, and γ -rays) are given.

71,698 DETAILS OF INDIVIDUAL SOLAR PARTICLE EVENTS Fichtel, C. E., Guss, D. E., Ogilvie, K. W. (NASA/Goddard Space Flight Center, Greenbelt, Md.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 44–85, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D.C. TID-7652, Paper A-4

A time history is presented of the intensities and energies of solar cosmic-ray particles detected at or near the Earth. The survey begins with the event on February 23, 1956—the first event for which there is an estimate of both the low- and high-energy flux components. From that date to the present all of the largest events and some of the smaller ones for which particularly complete data are available have been selected for examination. All events for which there was a riometer reading in excess of 10 db have been included; any event with a high-energy component sufficiently large to be detected on the neutron monitor has been studied. The various detectors used to study the solar particles are described and the individual events are discussed in order to emphasize the interesting features and the variety of geophysical effects occurring from time to time. A listing of 76 references is included.

71,699 INFORMATION ON SOLAR PROTON EVENTS (PCA'S) DEDUCED FROM RADIO OBSERVATIONS

Bailey, D. K. (National Bureau of Standards, Boulder Labs., Colo.)

In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 86–87, Book 1 (Abstract)

Atomic Energy Commission, Division of Technical Information, Washington, D.C. TID-7652, Paper A-5

In the last decade, use of the probing radio wave has enabled ionospheric workers to contribute a considerable quantity of information concerning the nature and occurrence of solar proton events. Radio observations have been made continuously at fixed positions, whereas observations with particle detectors in balloons, rockets, and satellites are conspicuously lacking in continuity, either in space or time. Ground-based cosmic-ray monitors, while operating continuously, detect less than one-fifth of the events related to the problem of radiation hazards in space.

71,700 SOME SPECIFIC CONSIDERATIONS OF THE POTENTIAL HAZARDS OF HEAVY PRIMARY COSMIC RAYS

Curtis, H. J. (Brookhaven National Lab., Upton, N.Y.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 291–308, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D.C. TID-7652, Paper C-3

The ionization produced by the heavy cosmic-ray particles is almost entirely highly concentrated along single tracks; the microscopic dose in tissue within these tracks may be quite high, but the over-all dose rate from these particles in outer space would be very low. Since these particles cannot be produced in the laboratory, a microbeam of deuterons has been developed which simulates the ionization pattern of these particles. Using this microbeam on mice, it is found that this type of radiation causes very little effect in either the brain or the eye, and presumably also in other vital organs. However, it will cause greying of the hair. It is concluded that this type of radiation will cause no serious hazard for space flight.

71,701 THE EQUATOR OF COSMIC RAYS FROM DATA OF THE THIRD SOVIET SHIP-SATELLITE

Savenko, I. A., Nesterov, V. E., Shavrin, P. I., Pisarenko, N. F. Cleaves, H. F., Translator *Planetary and Space Science*, v. 11, no. 1, pp. 87–91, January 1963 (Translated from *Iskusstvennye Sputnik Zemli*, no. 11, p. 30, 1961)

The latitudinal dependence of the cosmic radiation for each crossing of the equator was measured by *Sputnik* 6. Instruments used were a gas-discharging halogen counter STS-5, a scintillation counter (a crystal of NaJ(Tl)), and a photomultiplier FEU-15. Charts and maps are included.

71,702 ON THE ISOTROPY OF PRIMARY COSMIC RAYS Getmantsev, G. G.

Soviet Astronomy—AJ, v. 6, no. 4, pp. 477–479, January–February 1963 Various mechanisms leading to the isotropy of primary cosmic rays are discussed on the basis of existing ideas concerning the interstellar magnetic field.

71,703 COSMIC RAYS AND SOME ASTROPHYSICAL PHENOMENA St. Kalitsin, N. Soviet Astronomy—AJ, v. 6, no. 4, pp. 591–592, January–February 1963

The existence of extragalactic cosmic rays having fantastically high energies, up to the order of 10^{s_0} ev, is suggested.

71,704 ASYMMETRIES IN THE FORBUSH DECREASES OF THE COSMIC RADIATION

DIFFERENCES IN ONSET TIMES
Lockwood, J. A., Razdan, H.
Journal of Geophysical Research, v. 68, no. 6, pp. 1581–1591, March 15, 1963

The cosmic-ray neutron intensity at 15 stations is analyzed to determine the differences in onset times of the large Forbush decreases occurring from 1957 to 1961. From the directional response characteristics of the neutron detectors, these differences in onset times relate to directions in space beyond the geomagnetic field. Results are explained in terms of the configuration of the solar plasma cloud, and conclusions are drawn about the plasma velocity and the magnitude of the associated magnetic field.

71,705 ASYMMETRIES IN THE FORBUSH DECREASES OF THE COSMIC RADIATION
2. SUPERIMPOSED INTENSITY VARIATIONS DURING A FORBUSH DECREASE Lockwood, J. A., Razdan, H. Journal of Geophysical Research, v. 68, no. 6, pp. 1593-1604, March 15, 1963

A study has been made of superimposed intensity variations during a Forbush decrease, utilizing the neutron monitor data from many stations distributed in latitude and longitude. The anisotropies recorded as decreased intensities occurred from the west of the Earth-Sun line and those recorded as increases occurred from the east. These anisotropies were both long and short lived. The long-lived anisotropies shifted westward as time progressed. Besides the anisotropies, superimposed intensity increases occurred at all stations at the same universal time, and the magnitudes were larger at stations sampling particles from directions east of the Earth-Sun line at the time of the increase. A qualitative explanation of these observed effects is given in terms of the configuration and the possible instabilities of the plasma cloud.

71,706 EXPONENTIAL RIGIDITY SPECTRUMS FOR SOLAR-FLARE COSMIC RAYS Freier, P. S., Webber, W. R. Journal of Geophysical Research, v. 68, no. 6, pp. 1605–1629, March 15, 1963 It is shown how exponential rigidity spectrums fit the data obtained over the energy range from 1 Mev to several Bev. Proton spectrums were derived at 53 different times during 16 different flares. The solar α -particle flux and the proton to α -particle ratio were determined for the flares in which emulsion measurements were made. Using the measured exponential rigidity spectrums, both the riometer and neutron monitor response for the different flares are calculated. The agreement between the predicted and measured responses for these methods of detection is shown.

71,707 ANALYSIS OF BALLOON OBSERVATIONS DURING THE APRIL 1960 SOLAR COSMIC RAY EVENTS Masley, A. J. April 1961 Minnesota, University of, Minneapolis Technical Report CR-35

This article appeared in the Journal of Geophysical Research, v. 67, no. 9, pp. 3243–3269, August 1962, and was abstracted in the Astronautics Information Abstracts, v. 6, no. 5, November 1962. (See Entry #61,310.)

- 71,708 STUDIES OF THE COMPOSITION OF PRIMARY COSMIC RADIATION AT AN ALTITUDE OF 320 km Alekseeva, K. I., Gabuniya, L. L., Zhdanov, G. B., Zamchalova, E. A., Shcherbakova, M. N., Tretyakova, M. I. Artificial Earth Satellites, v. 12, pp. 7–17, March 1963
- 71,709 ENERGY SPECTRA OF VARIOUS GROUPS OF COSMIC RAY NUCLEI WHICH WERE OBTAINED IN MEASUREMENTS BY MEANS OF CERENKOV COUNTERS ON SATELLITE-SPACESHIPS Kurnosova, L. V., Logachev, V. I., Razorenov, L. A., Fradkin, M. I. Artificial Earth Satellites, v. 12, pp. 18–35, March 1963
- 71,710 A CASE OF A SHORT-TERM RISE IN THE INTENSITY OF HEAVY NUCLEI DURING THE FLIGHT OF SATELLITE-SPACESHIP III Kurnosova, L. V., Razorenov, L. A., Fradkin, M. I. Artificial Earth Satellites, v. 12, pp. 36–39, March 1963
- 71,711 THE BIOLOGICAL ACTION OF COSMIC RADIATION Gyurdzhian, A. A. Artificial Earth Satellites, v. 12, pp. 83–113, March 1963

Various methods for studying the biological action of cosmic radiation are discussed. These methods include experiments conducted on the ground and during flight. Some features of ionization of body tissues caused by the particles of cosmic radiation, possible genetic action, and the combined action of cosmic radiation and other factors in flight are considered. A total of 196 references is included.

CRYOGENICS

71,712 LOW TEMPERATURES IN SPACE TECHNOLOGY Fowle, A. A. (Arthur D. Little, Inc., Cambridge, Mass.) January 1962 In "Cryogenics," pp. 12–14 Society of Automotive Engineers, Inc., New York, N.Y. SP-225

Three applications of low temperature engineering to space ventures are discussed: (1) the cold storage of propellants as liquefied gases; (2) the simulation of the low-temperature and high-vacuum characteristics of outer space in environmental test facilities; and (3) the sub-zero refrigeration of electronic components, such as infrared detectors, inertial guidance devices, and optical masers.

71,713 CRYOGENIC SYSTEMS IN MISSILES AND SPACECRAFT Parker, W. F. (North American Aviation, Inc., Downey, Calif.) January 1962 In "Cryogenics," pp. 15–18 Society of Automotive Engineers, Inc., New York, N.Y. SP-225

Several of the various uses of cryogenics in missile and spacecraft systems are discussed briefly; the most widely used applications of liquid rocket propellants are mentioned; and areas of interest to research are brought into focus.

DATA PROCESSING

71,714 DATA STORAGE FOR METEOROLOGICAL SATELLITES Schneebaum, M. I., Stampfl, R. A. Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 48-51, April 1963

The advanced research being conducted by the Goddard Space Flight Center (GSFC) in the field of electronic and magnetic data storage of video information in meteorological satellites is discussed.

EARTH

71,715 AXIS CHANGES IN THE EARTH FROM LARGE METEORITE COLLISIONS Dachille, F. *Nature*, v. 198, no. 4876, p. 176, April 13, 1963

Gallant has evaluated axis change in the Earth caused by collisions of large meteorites. He calculates that a Juno-sized meteorite (about 190-km D) colliding at 20 km/sec would cause an axis displacement of 0° 45'. However, by using the correct criterion of interaction of the Earth's angular momentum with the moment of momentum of the colliding body, the actual displacement would be only about 0° 02'. In fact, a bigger body (e.g., 320-km D) colliding at a maximum pos-

sible velocity of 72 km/sec would produce only 0° 32' axis shift despite an energy 75 times the Juno example. Examples are given of maximum effects of collisions with the Earth and the Moon. The assumptions made are (1) a collision path tangential to a great circle perpendicular to the equator, (2) a density of 3.5, (3) a velocity of 72 km/sec, and (4) a complete rebound caused by a reverse-directed jet of explosion products to approximate as a maximum a twofold momentum exchange.

71,716 A STUDY OF THE FREE OSCILLATIONS OF THE EARTH MacDonald, G. J. F., Ness, N. F. 1962 National Aeronautics and Space Administration, Washington, D.C. TR R-136

Published observations on the toroidal oscillations of the Earth are critically reviewed. A supplementary analysis of the record obtained by the Lamont strain seismometer is presented. Eleven toroidal modes are identified, and it is concluded that the periods are known to within 1 percent. A perturbation scheme involving the ratio of the angular velocity of the Earth to the resonant frequency. Rotation removes a degeneracy and results in a splitting of a spectral peak of order l into 2l+1 peaks. The fractional displacement in frequency for the lowest-order toroidal oscillations is 1/206 and of the same order as the Q of the peak, so that splitting will probably not be observed in the toroidal oscillations. The perturbations of the toroidal oscillations due to core-mantle interaction are treated in detail. Observations on the $_{0}T_{2}$ oscillations lead to an estimate of the toroidal magnetic field in the lower mantle. A calculation of elastic energy in the low-order oscillations suggests a value of 1018 erg/cph for the energy density at low frequencies in the Chilean earthquake. It is shown that the Gutenberg model Earth fits the observations more closely than the Lehmann model and that a slight alteration of the Gutenberg model gives a significantly better fit to the observations. The alteration involves a lower shearwave velocity in the lower mantle while the Gutenberg velocity distribution is maintained in the upper mantle. The results confirm Birch's earlier statement that a temperature gradient in excess of 6 to 7°/km is needed to produce a decrease in velocity. The distribution of thermal conductivity and radioactivity consistent with the low-velocity layer is also considered.

ELECTRICAL PROPULSION SYSTEMS

71,717 FORTSCHRITTE BEI KONTINUIERLICHEN ELEKTROMAGNETISCHEN ANTRIEBSANLAGEN (ADVANCES IN CONTINUOUS ELECTROMAGNETIC PROPULSION SYSTEMS) Au, G. Luftfahrttechnik Raumfahrttechnik, v. 9, no. 3, pp. 88–94, March 1963 The problems involved in a propulsion system composed of a plasma source and an electromagnetic post-accelerator are discussed.

ELECTRONIC EQUIPMENT

71,718 SURFACE EFFECTS OF RADIATION ON

TRANSISTORS Peck, D. S., Blair, R. R., Brown, W. L., Smits, F. M. (Bell Telephone Laboratories, Inc., Murray Hill, N.J.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 136–200, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D.C. TID-7652, Paper B-2

A wide variety of effects of high-energy radiation on semiconductor materials and devices has been recognized and studied for a number of years. The major emphasis in this field has been on effects involving the bulk properties of semiconductors. Radiation effects on semiconductor surfaces have also been observed. This study is concerned with some special aspects of surface phenomena that have recently come to light. A type of measurement program is indicated that has been found appropriate for dealing with devices intended for use in a radiation environment such as that of the Van Allen belts. Included are (1) a brief discussion of the two broad classes of bulk radiation effects, (2) description of the early observations that provoked the present work, (3) a proposed model of the basic process, (4) results of a number of experiments carried out to test the mechanisms of the process, (5) characterization of effects with significant numbers of devices, and (6) the process of testing and selection undertaken for Telstar devices.

71,719 THE EFFECTS OF PROTONS ON SEMI-CONDUCTOR DEVICES Honaker, W. C. (NASA/Langley Research Center, Langley Field, Va.)
In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 220–229, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D.C. TID-7652, Paper B-4

Experimental results are given covering the data obtained from the bombardment of several transistors with 40- and 440-Mev protons. The data indicate a proton energy as well as a transistor frequency dependence on degradation. Figures are presented showing relative degradation of transistors with integrated flux.

71,720 PROTON RADIATION DAMAGE IN SEMI-CONDUCTOR DEVICES Gandolfo, D. A., Arnold, D. M., Parker, J. R., Vollmer, J.

(RCA, Camden, N.J.), Baicker, J. A., Flicker, H., Vilms, J. (RCA, Princeton, N.J.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 230–242, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D.C. TID-7652, Paper B-5

The objective of the study is to interpret observed changes in transistor electrical characteristics in terms of fundamental damage in the semiconductor crystal structure, and, in so doing, to predict the effects of proton bombardment. Proton and neutron displacement production rates are calculated. These rates are used in conjunction with neutron irradiation data and an assumed similarity of defect clusters to determine the effects of protons on transistors. Reasonable agreement with experiment is obtained. The life expectancy of transistors in satellites orbiting in the inner Van Allen belt is given.

71,721 THERMAL DESIGN OF THE ELECTRONICS CANISTER Haury, P. T. Bell Laboratories Record, v. 41, no. 4, pp. 161–166, April 1963

Design, construction, and environmental testing of the *Telstar* electronics package are described.

ENVIRONMENTAL CONTROL SYSTEMS

71,722 SPACE HARDWARE ASPECTS OF THE SATELLITE West, J. W. Bell Laboratories Record, v. 41, no. 4, pp. 167–173, April 1963

An account is given of the design and testing procedures used in development of the environmental and attitude control systems for *Telstar*.

ENVIRONMENTAL SIMULATORS

71,723 SIMULATION OF DEEP SPACE ENVIRONMENTS FOR WORKING VEHICLES Hnilicka, M. P., Geiger, K. A. (National Research Corp., Cambridge, Mass.) Institute of the Aerospace Sciences, Inc., New York, N.Y. Paper 63-56 (Presented at the IAS 31st Annual Meeting, New York, N.Y., January 21–23, 1963)

The second generation of simulators of large size offers realistic simulation of solar thermal effect and, by using LN_2 shield cryoarrays at 20°K, reasonable reliability testing of mechanisms of propulsion and mission support in lower orbit levels up to 700 km. An improved generation of ground simulators will need chilling of containment walls to reduce gas

ENVIRONMENTAL SIMULATORS (Cont'd)

loads from wall materials. Reduction of gas leakage and mass rejection from the tested vehicle will offer high returns in cost of that type of simulator which can establish valid reliability testing of steering, guidance, and communication devices aboard the spacecraft. The efficiency of capturing molecules on walls of the heat sink will need substantial improvement over present cryopumping arrays. Several promising concepts, using cryoadsorption techniques and offering nearly perfect accommodation, even of hydrogen molecules, are described.

71,724 A SURVEY OF LARGE SPACE CHAMBERS Hollingsworth, R. T. April 1963 National Aeronautics and Space Administration, Washington, D. C. TN D-1673

Construction has been authorized for a number of large thermal-vacuum chambers to simulate orbital altitudes in the environmental testing of complete spacecraft. The proposed facilities shall be capable of simulating the low temperatures, solar and Earth radiation, and vacuum of outer space. We have outlined in this report the individual specifications and capabilities of each of the proposed space simulation facilities. Since the field of space simulation is growing rapidly, it is recognized that this survey will be out of date upon issue.

71,725 JPL 25-FOOT SPACE SIMULATOR SOLAR PERFORMANCE AND MARINER TEST RESULTS COMPARED TO FLIGHT DATA Howard, W. R. April 24, 1963 Jet Propulsion Laboratory, California Institute of Technology, Pasadena TM 33-137

The JPL 25-ft space simulator solar simulation system has recently been modified to concentrate all of the available radiant energy in a light beam of sufficient size and intensity to test the *Ranger* and *Mariner*. Solar simulation system characteristics are compared with the solar environment in space, calibration of the system is described, and flight data are compared with ground-test data for the *Mariner* Venus probe. Plans for improving the solar simulation system are outlined.

71,726 JPL ADVANCED SOLAR SIMULATOR, DESIGN TYPE A Barnett, R. M., Thiele, C. April 23, 1963 Jet Propulsion Laboratory, California Institute of Technology, Pasadena TM 33-141

A description of the JPL Advanced Solar Simulator Type A is presented, together with the results of analytical and experi-

mental studies verifying its performance at the subsystem level. A program of subsystem optimization is underway which indicates performance capability far beyond that reported here. A complete full-sized system is currently under construction, and final evaluation at the testing volume will be undertaken as soon as possible. These results, as well as those of the subsystem optimizations, will be published when available. Finally, a program of improvement will be initiated to extract the untapped potential of the system in order to provide large, integrated Sun simulators for use in such applications as the *Voyager* spacecraft.

71,727 NASA SPACE RADIATION EFFECTS LABORATORY Duberg, J., Rind, E. (NASA/Langley Research Center, Langley Field, Va.)
In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 201–219, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper B-3

NASA, Langley Research Center, Virginia has proposed a ground-based Space Radiation Effects Laboratory which will simulate most of the particulate energy spectrum found in space and which can be used in an effective, accelerated, radiation research program to minimize or eliminate deleterious radiation effects. To achieve these results in a minimum time, a 600-Mev proton synchrocyclotron of proven design with variable energy and variable external beam size, and a 1- to 30-Mev electron accelerator with the same capabilities, have been incorporated into the proposed facility. Although these devices will be used as engineering tools, provision has been made to maintain the basic research capabilities of these accelerators.

ESCAPE SYSTEMS

71,728 LE	AP-A ONE-MAN LUNAR ESCAPE AMBULANCE
PA	CK
Car	ton, D. S. (College of Aeronautics, Cranfield,
Ble	tchley, Buckinghamshire, England)
Am	erican Rocket Society, Inc., New York, N. Y.
248	5-62
(Pr	esented at the Lunar Missions Meeting, Cleveland,
Oh	io, July 17–19, 1962)

LEAP is a one-man vehicle intended for operation from the lunar surface in the event of an emergency. The concept involves the launching of the LEAP payload into a trajectory which will place it close to an orbiting space station. A "soft" rendezvous will permit the transfer of the affected crew member into the spacecraft. As presently foreseen, the orbiting space station will be of an *Apollo* type, but with only two men on board. A "normal" *Apollo* and three-man crew will be on the lunar surface for an extended exploration.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 REPORTS AND OPEN LITERATURE

EXOSPHERE

71,729 THE STRUCTURE OF THE IONIZED GASEOUS ENVELOPE OF THE EARTH ACCORDING TO THE DATA OF DIRECT MEASUREMENTS OF LOCAL CHARGED-PARTICLE CONCENTRATIONS CARRIED OUT IN THE USSR Gringauz, K. I.

Artificial Earth Satellites, v. 12, pp. 114-130, March 1963

71,730 DISTRIBUTION OF HYDROGEN IN THE OUTER ATMOSPHERE

Donahue, T. M., Thomas, G. *Planetary and Space Science*, v. 10, pp. 65–72, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

The experiments relating to the Lyman- α radiation observed from rockets in the night sky are reviewed. In part, the radiation appears to be solar Lyman- α transported by the exosphere below 3 Earth radii. However, an important fraction must be attributed also to single scattering in a very extensive envelope of hydrogen moving with the Earth out to 50–100 Earth radii. The amount of hydrogen needed is about 50 times as much as should be present in the escape component of the exosphere required. The principal problem at present is to account for this hydrogen.

71,731 AN ANALYTIC SOLUTION FOR DENSITY DISTRIBUTION IN A PLANETARY EXOSPHERE Shen, C. S. Journal of the Atmospheric Sciences, v. 20, no. 2, pp. 69-72, March 1963

An analytical expression $\rho(r) = N_0[e^{(1-R/r)E} - (1-R^2/r^2)e^{-(rE/r+R)}]$, where E is a temperature dependent parameter and R is the radius of the base of exosphere, is derived for the density distribution in a planetary exosphere. The difference between this distribution and the barometric (Boltzmann) formula is small near the base of the exosphere but becomes significant at large r; at $r = \infty$ the barometric formula gives a finite density where this distribution tends to zero. It is shown that according to a strict collisionless exosphere model the particles in the velocity space are confined in a region bounded by a hyperbola and a quarter circle. Outside this region there are no particles; inside, they are distributed by a Maxwellian law. The physical significance of this difference and its effect on the escape rate are discussed.

EXPLORER 15

71,732 EXPLORER XV ENERGETIC-PARTICLES SATELLITE American Geophysical Union, Transactions, v. 44, no. 1, pp. 252-257, March 1963 (Also available in National Academy of Sciences, IGY Bulletin, no. 68, February 1963) The *Explorer* 15 was launched on October 27, 1962 to study the artificial radiation belt created by the July 9, 1962 high-altitude nuclear test. The satellite and its experiments are described.

F REGION

71,733 THE RELATIONSHIP OF F-LAYER CRITICAL FREQUENCIES TO THE INTENSITY OF THE OUTER VAN ALLEN BELT Muldrew, D. B. Canadian Journal of Physics, v. 41, no. 1, pp. 199–202, January 1963

With the use of the *Alouette*, certain characteristics of the ionosphere between 1000 km and the height of maximum electron density, together with the intensity (counting rate) of high-energy particles at orbital heights, are measured as a function of latitude.

71,734 ÉTUDE DE LA COUCHE F D'APRES L'ÉMISSION DE LA RAIE ROUGE DU CIEL NOCTURNE (STUDY OF THE F LAYER FROM RED LINE EMISSIONS IN THE NIGHT SKY) Barbier, D. Planetary and Space Science, v. 10, pp. 29–35, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

Intertropical arcs and the western sheet show a strong correlation with the electronic recombination in the F layer. These phenomena are described on a world-wide basis.

71,735 OBSERVATION OF MOVEMENT OF PERTURBA-TIONS IN THE F-REGION Heisler, L. H. Journal of Atmospheric and Terrestrial Physics, v. 25, no. 2, pp. 71–86, February 1963

A summary is given of investigations into the phenomenon of traveling ionospheric disturbances in the F region made at the Radio Research Laboratories, University of Sydney, Australia. The results of these investigations are compared with those obtained by other methods, and discrepancies are noted. It is proposed that the Mitra method in particular is not entirely satisfactory and should be supplemented by other techniques.

71,736 THE ELECTRON SCATTERING CROSS-SECTION IN INCOHERENT BACKSCATTER Greenhow, J. S., Sutcliffe, H. K., Watkins, C. D. Journal of Atmospheric and Terrestrial Physics, v. 25, no. 4, pp. 197–207, April 1963

Some measurements of the electron scattering cross section carried out using two 25-m radio telescopes are described. Both the diurnal variations of the cross section and its absolute values are examined.

F REGION (Cont'd)

71,737 TIME OF ONSET OF SPREAD-F IN RELATION TO POST SUNSET h'F VARIATIONS Krishnamurthy, B. V., Ramachandra Rao, B. Journal of Atmospheric and Terrestrial Physics, v. 25, no. 4, pp. 209-210, April 1963

71,738 DRIFT SPEED ESTIMATES FROM LARGE MOVING IRREGULARITIES IN THE F-REGION AT COLLEGE, ALASKA Ansari, Z. A. Journal of Atmospheric and Terrestrial Physics, y. 25, no. 4, pp. 210-212, April 1963

The horizontal component of the speed of the moving irregularities in the F region is presented. Drift speeds for July-September 1960 were estimated.

F₂ LAYER

71,739 GEOMAGNETIC CONTROL OF DIFFUSION IN THE F2 REGION OF THE IONOSPHERE—II NUMER-ICAL RESULTS Kendall, P. C. Journal of Atmospheric and Terrestrial Physics, v. 25, no. 2, pp. 87–91, February 1963

The equation governing electron diffusion in the F_2 region along the lines of force of a geocentric magnetic dipole, whose axis coincides with the Earth's, is solved numerically in the equilibrium case when there is electron production, loss by recombination, but no transport of electrons by electrodynamic drift.

71,740 IONOSPHÈRE—UNE ÉCLIPSE DE SOLEIL PEUT-ELLE MODIFIER L'IONOSPHERE AU POINT MAGNETIQUEMENT CONJUGUÉ? (IONOSPHERE— AN ECLIPSE OF THE SUN. MIGHT IT MODIFY THE IONOSPHERE AT THE MAGNETICALLY CONJUGATE POINT?) Haubert A., Laloë, F. Journal of Atmospheric and Terrestrial Physics, v. 25, no. 2, pp. 105–107, February 1963

Observations at Garcy, France, for August 11, 1961 indicate a variation in the F_2 region during a period of quiet solar activity. At Capetown, South Africa, a point roughly conjugate to Garcy, a solar eclipse was visible at the same time. This same correlation was observed during the eclipse of February 15, 1961, and it is suggested that the phenomenon be analyzed during future eclipses.

GEGENSCHEIN

71,741 THE GEGENSCHEIN AS AN EFFECT PRODUCED BY THE SCATTERING OF LIGHT FROM PARTICLES OF INTERPLANETARY DUST Gindilis, L. M. Soviet Astronomy—AJ, v. 6, no. 4, pp. 540-548, January–February 1963

The optical theory of the gegenschein is considered. It is shown that the scattering of light by particles of interplanetary dust allows an explanation of the main features of the gegenschein: the observed photometric profile and the energy distribution in the gegenschein spectrum.

GEOMAGNETIC DISTURBANCES

71,742 IONOSPHERIC STORMS AND THE MORPHOLOGY OF MAGNETIC DISTURBANCES Rishbeth, H. *Planetary and Space Science*, v. 11, no. 1, pp. 31–43, January 1963

The forms of magnetic changes which accompany ionospheric storms are discussed. Magnetic data from four stations are used to derive SD and Dst variations, for groups of ionospherically "positive" and "negative" storms. The SD variation of the magnetic H element is found to differ for "positive" and "negative" storms at three mid-latitude stations (Washington, U.S.A., Greenwich, England, and Christchurch, New Zealand). The meaning of these differences is discussed. At a lower latitude station (Hawaii), the magnetic SD is the same for both types of ionospheric storms. The magnetic Dstvariations are also essentially similar for both types.

71,743 THE INFLUENCE OF THE MOON ON GEOMAGNETIC DISTURBANCES Bigg, E. K. Journal of Geophysical Research, v. 68, no. 5, pp. 1409–1413, March 1, 1963

It is shown that occurrences of geomagnetic disturbances of various intensities are not uniformly distributed in lunar phase. There is a tendency for storms to occur preferentially near first and third quarters and to avoid dates corresponding to new Moon.

GEOMAGNETIC FIELD

71,744 THE INTERACTION BETWEEN THE GEOMAG-NETIC FIELD AND THE SOLAR CORPUSCULAR RADIATION Blume, R. *Icarus*, v. 1, no. 5-6, pp. 459–488, April 1963

71,745 INTERACTIONS OF SOLAR PLASMA WITH THE GEOMAGNETIC FIELD Dungey, J. W. Planetary and Space Science, v. 10, pp. 233-237, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

The Chapman-Ferraro theory is outlined. The interaction when there is an interplanetary field is considered and leads

to an interpretation of the auroral zones. Early results from *Explorer 12* tend to confirm this model. The motion of the auroral primaries is briefly discussed.

71,746 THE ENERGIZATION OF PLASMA IN THE MAGNETOSPHERE: HYDROMAGNETIC AND PARTICLE-DRIFT APPROACHES Hines, C. O.

Planetary and Space Science, v. 10, pp. 239–246, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

Two approaches to the description of the energy changes experienced by the low-energy plasma and the high-energy particles which exist in the magnetosphere are discussed. It is demonstrated that these two approaches, hydromagnetic and particle-drift, are quite equivalent on the differential scale, and that some degree of equivalence can be maintained on the integral scale.

71,747 LUNAR EFFECT ON THE DIURNAL VARIATION OF THE GEOMAGNETIC HORIZONTAL FIELD NEAR THE MAGNETIC EQUATOR Onwumechilli, A. Journal of Atmospheric and Terrestrial Physics, v. 25, no. 2, pp. 55–70, February 1963

Magnetogram studies at Ibadan, Nigeria during the season of northern winter indicate that the lunar tide accounts for about 11 percent of the daily range of the geomagnetic horizontal field. A new method is presented for separating the lunar effect at certain hours on individual days, and this has shown that the ratio of intensities of lunar to solar daily variation varies from hour to hour on the same day.

71,748 C-F HOLLOWS FOR SOLAR STREAMS PARTIALLY INCIDENT ON THE EARTH Kendall, P. C. Journal of Atmospheric and Terrestrial Physics, v. 25, no. 2, pp. 93-97, February 1963

The shape of the geomagnetic hollow is calculated for a corpuscular flux corresponding to the edge of a unidirectional stream of charged particles which partially surrounds the Earth. The solar stream, only partially incident on the Earth, gives rise to geomagnetic hollows different in shape from the usual. The equatorial cross section of the hollow is considered.

71,749 MOTIONS OF CHARGED PARTICLES TRAPPED IN THE EARTH'S MAGNETOSPHERE Hones, E. W., Jr. Journal of Geophysical Research, v. 68, no. 5, pp. 1209–1219, March 1, 1963

Motions of charged particles trapped in the distorted magnetosphere are computed by using, as a model of the magnetosphere, the field of a weak magnetic dipole in the presence of a strong magnetic dipole. Drift paths through this field are calculated both for particles whose motion is confined to the magnetic equatorial plane and for particles mirroring at low altitudes. The paths of particles of various energies moving in the magnetic equatorial plane under the combined influences of field gradient-induced drift and field rotation are also calculated. It is found that, in the model used, the field rotation energizes trapped particles on the morning side and de-energizes them on the evening side of the Earth. It is suggested that this effect must occur in any realistic model of the distorted magnetosphere, and that it may play a role in the accumulation of the energetic particles that constitute the Van Allen zones.

71,750 THE DISTANT GEOMAGNETIC FIELD 2. MODULATION OF A SPINNING COIL EMF BY MAGNETIC SIGNALS Sonett, C. P. Journal of Geophysical Research, v. 68, no. 5, pp. 1229–1232, March 1, 1963

The modulation of a spinning search coil signal by timevariant magnetic fields is discussed. For typical spacecraft usage, dipolar inhomogeneity produces a trivial signal. The primary contributions to the signal arise from the coil spin and field time variance. Variations in the scalar value of the field produce both amplitude and phase modulation. In a base field like the Earth's with superimposed fluctuations, amplitude modulation from Alfvén waves is usually trivial. The amplitude power spectrum depends on both the spin rate of the spacecraft and the Fourier decomposed frequencies of the fluctuations. Where frequencies near the spin are encountered, spectral inversion can result from what becomes effectively the mixing of two carrier signals. The results described in the previous paper of this series are discussed in relation to these conditions. (Part 1 of this article appeared in the Journal of Geophysical Research, v. 67, no. 4, pp. 1191-1207, April 1962, and was abstracted in the Astronautics Information Abstracts, v. 6, no. 1, July 1962, Entry #60,094.)

71,751 THE DISTANT GEOMAGNETIC FIELD 3. DISORDER AND SHOCKS IN THE MAGNETOPAUSE Sonett, C. P., Abrams, I. J. Journal of Geophysical Research, v. 68, no. 5, pp. 1233-1263, March 1, 1963

The second part of the computer reduction of magnetometer data from the flight of *Pioneer 1* is reported. The data include the analysis of selected swaths and are primarily concerned with hydromagnetic disorder as seen at distances of 12.3-14.6 Earth radii on the sunlit hemisphere of the magnetopause. The vehicle orbit and orientation are reviewed; the instrumentation is discussed as directly applicable to the experiment; data handling are discussed with details of

GEOMAGNETIC FIELD (Cont'd)

the computer program given in appendices; the gross structure of the distant field is described; and numerous power spectrums of both field amplitude and direction are included.

71,752 THE DISTANT GEOMAGNETIC FIELD 4. MICROSTRUCTURE OF A DISORDERED HYDROMAGNETIC MEDIUM IN THE COLLISIONLESS LIMIT Sonett, C. P. Journal of Geophysical Research, v. 68, no. 5, pp. 1265-1294, March 1, 1963

The fine-scale structure of the geomagnetic field data given in a previous paper is examined. Primary concern is given to the microscopic view of the data, with particular concern to fitting it into some pattern having at least qualitative consistency with viewpoints established in the past concerning the behavior pattern both of the geomagnetic termination and of collisionless plasma.

71,753 A NOTE ON THE COMPRESSION OF THE EARTH'S MAGNETIC FIELD AND HYPO-THETICALLY RELATED PHENOMENA Henrich, L. R. Journal of Geophysical Research, v. 68, no. 5, pp. 1295–1302, March 1, 1963

The magnetic field of the Earth is assumed compressed by an incident stream of ionized particles from the Sun. A timedependent magnetic and electric field is propagated as part of this interaction. A simplified model, a mirror dipole moving in space but of constant magnetic moment, is chosen to calculate the manner in which this electric field will compress and possibly accelerate ions already trapped in the Earth's magnetosphere. This model would tend to dump radiation from the terrestrial belts into the atmosphere. For geometrical reasons the effects might be most pronounced in early morning and late evening.

71,754 THE EFFECT OF THE EARTH'S MAGNETIC FIELD ON IRREGULARITIES OF IONIZATION IN THE E LAYER Villars, F., Feshbach, H. Journal of Geophysical Research, v. 68, no. 5, pp. 1303-1320, March 1, 1963

Solutions are investigated of the equation for diffusion and transport of ionization in a weakly ionized turbulent plasma in the presence of a magnetic field. Because of space charge effects, the problem is nonlinear in the ionization density n(x, t). It is shown that in the linearized approximation, the effect of the magnetic field on turbulence does not lead to irregularities of a scale sufficiently small to explain the observed data. Nonlinear effects may play a role and are being investigated. Preliminary results show that they are capable

71,755 THE EFFECT OF A UNIFORM EXTERNAL PRESSURE ON THE BOUNDARY OF THE GEOMAGNETIC FIELD IN A STEADY SOLAR WIND Spreiter, J. R., Hyett, B. J. Journal of Geophysical Research, v. 68, no. 6, pp. 1631-1642, March 15, 1963

Approximate solutions are given for the shape of the boundary separating the geomagnetic field from the interplanetary plasma for a model that assumes the plasma pressure to be composed of two components. One is a dynamic pressure proportional to the normal component of the momentum of the particles of a steady and undisturbed uniform incident stream as is customary in the usual formulation of the steady-state Chapman-Ferraro problem. The other is a static pressure considered over the boundary surface. Results are determined for the traces of the boundary in the equatorial plane and in the meridian plane containing the Sun-Earth line for a complete range of values for the ratio between the two pressure components. Results indicate that the asymmetry between the distances to the boundary of the geomagnetic field on the day and night sides of the Earth may be greatly exaggerated by the results of the usual calculations in which the static pressure is disregarded.

GEOMAGNETIC STORMS

71,756 A SUGGESTION FOR IMPROVING FORECASTS OF GEOMAGNETIC STORMS Hakura, Y., Lincoln, J. V. Journal of Geophysical Research, v. 68, no. 5, pp. 1563-1564, March 1, 1963

It is suggested that forecasts of geomagnetic storms may be improved by a technique based on the monitoring of HF transmissions from a station within the north polar cap.

GRAVITATIONAL FIELDS

71,757 EARTH'S GRAVITATIONAL POTENTIAL: EVALUATION OF EVEN ZONAL HARMONICS FROM THE 2nd TO THE 12th King-Hele, D. G., Cook, G. E., Rees, J. M. Nature, v. 197, no. 4869, p. 785, February 23, 1963

A new determination of the even harmonics in the Earth's gravitational potential has been made using the motion of seven satellites. These satellites were chosen with the intention of sampling the gravitational field as thoroughly and evenly as possible; their orbits were inclined to the equator at angles between 28 and 97 deg.

GRAVITY

71,758 GRAVITATIONAL RADIATION
 Pirani, F.A.E. (King's College, London, England)
 May 1962
 Aeronautical Research Laboratories, Wright-Patterson
 AFB, Ohio
 ARL 62-455

A survey is presented of gravitational radiation theory up to the end of 1961. Some technical details, but no calculations, are included.

GROUND SUPPORT EQUIPMENT

71,759 THE GROUND STATION TRANSMITTER AND RECEIVER Schill, J., Perks, A. F. Bell Laboratories Record, v. 41, no. 4, pp. 135–141, April 1963

Solutions are described for the special design problems which arose in connection with construction of adequate transmitter and receiver units for the Andover, Maine, horn antenna. Schematic diagrams describe transmitter and receiver operation.

GUIDANCE SYSTEMS

71,760 MIDCOURSE GUIDANCE USING RADIO TECHNIQUES Gates, C. R., Cutting, E. (Jet Propulsion Laboratory, California Institute of Technology, Pasadena) American Rocket Society, Inc., New York, N. Y. 2462-62

(Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17–19, 1962)

A lunar midcourse guidance system using Earth-based radio tracking and computation is discussed. Primary emphasis is on engineering factors, including requirements placed on spacecraft, tracking stations, and computing facilities. Performance is described, and maneuver size, number of maneuvers, and tracking and guidance accuracy are treated.

71,761 MEASURE DIRECTION BY SPINNING LIGHT RAY Product Engineering, v. 34, no. 5, p. 95, March 4, 1963

A new method for sensing the rotation rate of a vehicle uses coherent light moving in opposite directions around a traveling wave laser, and is based on the physical principle of the constancy of the velocity of light. This method, called a ring laser, may replace the gyroscope as an automatic guidance system as it requires neither bearings nor other moving parts and would be cheaper to produce and more sensitive than present equipment.

HYDROMAGNETIC WAVES

```
71,762 ON THE FREQUENCY CUTOFF OF HYDROMAG-
NETIC WAVES IN THE UPPER ATMOSPHERE
Kahalas, S. L.
Journal of Geophysical Research, v. 68, no. 6,
pp. 1776–1778, March 15, 1963
```

A mechanism is discussed which involves Landau damping of hydromagnetic waves by thermal protons in the exosphere and below.

INFRARED RADIATION

71,763 THE INFRARED HORIZON OF THE PLANET EARTH Hanel, R. A., Bandeen, W. R., Conrath, B. J.

Journal of the Atmospheric Sciences, v. 20, no. 2, pp. 73-86, March 1963

Horizon sensors are essential elements in the orientation systems of many space vehicles and satellites. Their design and an evaluation of their capabilities and limitations require a knowledge of the spectral radiance emitted by the Earth. The discontinuity between the surface, the atmosphere, and outer space for various latitudinal, seasonal, climatic, and meteorological conditions is investigated. Calculations are carried out for the following spectral intervals: (1) the water vapor band from 6.33 to 6.85 μ , (2) the ozone band from 8.9 to 10.1 μ , (3) the atmospheric window from 10.75 to 11.75 μ , (4) the carbon dioxide band from 14 to 16 μ , and (5) the rotational water vapor band from 21 to 125 μ . The superior properties of the carbon dioxide band and the rotational water vapor region for horizon sensor purposes are shown.

INSTRUMENTATION

```
71,764 THE SATELLITE MICROWAVE REPEATER
Hutchison, P. T.
Bell Laboratories Record, v. 41, no. 4, pp. 151–155,
April 1963
```

The electrical features and design considerations peculiar to satellite-borne communication repeaters of the type used in *Telstar* are discussed.

INTERPLANETARY ENVIRONMENT

71,765 REMARKS ON THE LIMITATIONS OF OPTICAL METHODS FOR MEASURING ELECTRON DENSITIES IN THE CORONA AND INTER-PLANETARY SPACE Blackwell, D. E. Space Science Reviews, v. 1, no. 3, pp. 612–614, March 1963 (Paper presented at the European Preparatory Commission for Space Research Symposium on The Interplanetary Medium, at Paris, France, June 19, 1962)

Difficulties in measuring electron densities in the outer corona and interplanetary space are discussed which arise

INTERPLANETARY ENVIRONMENT (Cont'd)

because some of the light of the corona is due to scattering by interplanetary dust.

INTERPLANETARY MAGNETIC FIELDS

71,766 MAGNETIC FIELDS IN INTERPLANETARY SPACE 1961 Air Force Cambridge Research Center, Geophysics Research Directorate, Bedford, Mass. AFCRL-62-225, Final Engineering Report ASTIA AD-272,831

This report concerns (1) a study of existing measurements and theories regarding the magnetic fields in interplanetary space, (2) development of a magnetic field model from the available measurements for refining the magnetic field model, and (3) design of a rocket probe magnetometer instrument package suitable for making the required measurements.

71,767 MAGNETIC FIELD MEASUREMENTS IN SPACE Cahill, L. J., Jr. Space Science Reviews, v. 1, no. 3, pp. 399–414, March 1963

A brief account is given of the general conception of the outer geomagnetic field and of the interplanetary magnetic field prior to satellite magnetometer investigations. An objective account of the important findings of each of the satellite magnetometer experiments, and an interpretation of the effects of these findings on the present status of understanding of the outer geomagnetic field, the boundary region, and interplanetary magnetic field are given.

INTERPLANETARY MATTER

71,768 INTERPLANETARY PLASMA

Lüst, R. Space Science Reviews, v. 1, no. 3, pp. 522–552, March 1963 (Paper presented at the European Preparatory Commission for Space Research Symposium on The Interplanetary Medium, at Paris, France, June 19, 1962)

All available evidence concerning the gaseous component of the interplanetary medium is summarized, and the theoretical picture which has been developed is discussed. The discussion is restricted to the undisturbed conditions in the interplanetary space.

71,769 THE PLASMA TAILS OF COMETS AND THE INTERPLANETARY PLASMA Biermann, L.

Space Science Reviews, v. 1, no. 3, p. 553, March 1963 (Paper presented at the European Preparatory Commission for Space Research Symposium on The Interplanetary Medium, at Paris, France, June 19, 1962) A few of the points discussed in the previous paper ("Interplanetary Plasma", by Dr. Lüst) are considered in greater detail, and the significance of the observations of the comets' plasma tails as natural probes for the interplanetary plasma is reemphasized.

71,770 METEORS AND THE ABUNDANCE OF INTERPLANETARY MATTER Kaiser, T. R. Space Science Reviews, v. 1, no. 3, pp. 554-575, March 1963 (Paper presented at the European Preparatory Commission for Space Research Symposium on The Interplanetary Medium, at Paris, France, June 19, 1962)

Estimates of the spatial density of interplanetary dust are derived from meteor accretion and zodiacal cloud observations. When the most recent data are considered, it is found that there is no longer any serious discrepancy between the extrapolated meteor values and those from the other sources, and a density distribution is obtained which extends from meteoroids capable of producing the brightest optical meteors to particles approaching the limiting size beyond which they are removed from the solar system by solar radiation pressure. Impacts on rocket and satellite vehicles lead to much higher estimates of spatial densities, and it is concluded that these impacts originate from particles in geocentric orbits belonging to a dust cloud encompassing the Earth. The evidence tends to support the view that these particles are captured from the interplanetary dust cloud rather than being produced, as suggested by Whipple, through the impact of meteorites on the Moon. Some suggestions are made for the direction of future rocket and satellite investigations.

71,771 LIGHT SCATTERING BY SMALL PARTICLES AND MODELS OF INTERPLANETARY MATTER DERIVED FROM THE ZODIACAL LIGHT Giese, R. H. Space Science Reviews, v. 1, no. 3, pp. 589-611, March 1963 (Paper presented at the European Preparatory Commission for Space Research Symposium on The Interplanetary Medium, at Paris, France, June 19, 1962)

A model of interplanetary matter having the same optical properties as those observed in the zodiacal light and involving the presence of small particles ($< 0.2 \mu$) is suggested. Methods and results of an analysis of light scattering by single particles and by mixtures of particles are presented in detail.

71,772 INTERPLANETARY MATTER: A BIBLIOGRAPHY, 1962 SUPPLEMENT

Magnolia, L. R. April 1963 Space Technology Laboratories, Inc., Redondo Beach, Calif. 9990-6380-KU-000 Research Bibliography 46

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 REPORTS AND OPEN LITERATURE

This bibliography consists of 567 annotated references on asteroids, comets, meteorites, meteors, micrometeorites, noctilucent clouds, nonterrestrial dust, origin of the solar system, tektites, the zodiacal light, and related subjects. The majority of the references are those published in 1962, and include those released in 1962 by ASTIA and NASA. A few references not listed in the original edition are included.

IONOSPHERE

71,773 ROCKET OBSERVATIONS OF ION DENSITY, ELECTRON DENSITY AND ELECTRON TEMPERATURE IN THE IONOSPHERE Aono, Y., Hirao, K., Miyazaki, S. Journal of the Radio Research Laboratories, v. 9, no. 46, pp. 407–419, November 1962

Ionospheric measurements made by sounding rockets at the Michikawa Rocket Range, Japan, in June and October 1961 are reported. The rockets, carrying various combinations of Langmuir and resonance probes, measured ion density, electron density, and electron temperature in the ionosphere at altitudes between 60 and 200 km. Instrumentation and measurement methods are described.

71,774 A METHOD FOR SIMULTANEOUS RECORDING OF THE ECHO AMPLITUDE WITH h'-f CURVE IN THE IONOSPHERIC SOUNDING AND SOME APPLICATION TO THE MEASUREMENT OF IONOSPHERIC PARAMETERS Wakai, N., Ishizawa, K. Journal of the Radio Research Laboratories, v. 9, no. 46, pp. 421-442, November 1962

A method and apparatus for recording the echo amplitude and h'(f) records on the same film are described. Ten pages of such film records are reproduced and their application discussed.

71,775 IONOSPHERIC EFFECTS OF A HIGH ALTITUDE NUCLEAR EXPLOSION Journal of Atmospheric and Terrestrial Physics, v. 25, no. 2, pp. 99–100, February 1963

Ionospheric stations of the New Zealand network recorded marked effects after the July 9, 1962 thermonuclear event over Johnston Island. Observations are compared with those of the 1958 events, and a correlation between height of explosion and time of onset is noted.

71,776 THE REFRACTIVE INDEX AND THE ABSORPTION INDEX OF THE IONOSPHERE Murty, Y. S. N., Khastgir, S. R. Journal of Atmospheric and Terrestrial Physics, v. 25, no. 2, pp. 102–105, February 1963

Analytical expressions have been obtained for computing the refractive index and the absorption index for various values of electron number density, electron collisional frequency and wave frequency. The derivation of the expressions for the refractive index and the absorption index for radiowave propagation through the ionosphere is given.

71,777 NONUNIFORM LAMINATION ANALYSIS OF IONOSPHERIC h'(f) RECORDS, USING WAVE REFRACTIVE INDEX Unz, H. Journal of Atmospheric and Terrestrial Physics, v. 25, no. 4, pp. 189–196, April 1963

71,778 IONOSPHERIC EFFECTS FOLLOWING DISTANT NUCLEAR DETONATIONS Saha, A. K., Karabin, M., Mahajan, K. K. Journal of Atmospheric and Terrestrial Physics, v. 25, no. 4, pp. 212–218, April 1963

Preliminary results are given of observations made at Delhi of some ionospheric effects following the Russian nuclear detonations during August and September 1962.

71,779 A MODEL OF THE QUIET IONOSPHERE Seddon, J. C. Journal of Geophysical Research, v. 68, no. 5, pp. 1339–1345, March 1, 1963

The electron and ion density results obtained with rockets under quiet ionospheric conditions and reasonably favorable scientific conditions are discussed. A simple model of the quiet ionosphere is obtained which can be expressed in analytical form. The model is used to develop a means of obtaining from ionograms an approximate electron density profile and total electron content. It is also shown how such data used in conjunction with total electron content measurements make possible the determination of the electron density profile above h_{max} F₂.

71,780 EFFECTS OF THE HIGH-ALTITUDE THERMO-NUCLEAR EXPLOSION OF JULY 9, 1962, 0900 UT, OBSERVED AT JAMAICA Armstrong, R. J., Wharton, A. E. B. Journal of Geophysical Research, v. 68, no. 6, pp. 1779–1780, March 15, 1963

Unusual effects observed at Jamaica soon after the highaltitude thermonuclear explosion of July 9, 1962 are discussed.

71,781 SCALE HEIGHTS OF THE UPPER IONOSPHERE FROM TOP-SIDE SOUNDINGS Nelms, G. L. *Canadian Journal of Physics*, v. 41, no. 1, pp. 202–206, January 1963

Data from *Alouette* have been used to calculate electron density profiles of the upper ionosphere.

IONOSPHERE (Cont'd)

71,782 ELECTRIC FIELDS IN THE IONOSPHERE AND THE EXCITATION OF THE RED LINES OF ATOMIC OXYGEN Megill, L. R., Rees, M. H., Droppleman, L. K. Planetary and Space Science, v. 11, no. 1, pp. 45-56, January 1963

A detailed formulation for obtaining the excitation rate of optical emissions by electrons heated by a dc electric field is presented. The energy distribution of the electrons is obtained by solving the Boltzmann equation, including all the inelastic collisions of importance in the region of the atmosphere from which airglow and auroral radiations originate. The consequences are examined of a postulated dc electric field in the ionosphere sufficient to excite the $O(^1D)$ levels from which the airglow and auroral radiation at $\lambda\lambda$ 6300–6364 Å originate.

An electric field of 2×10^{-3} v/cm orthogonal to the geomagnetic field results in an intensity of the red lines of atomic oxygen of about 5 kR, such as is observed in the midlatitude subvisual red arcs, with the height of maximum emission at approximately 400 km.

71,783 SOME RESULTS OF ROCKET MEASUREMENTS OF THE ELECTRON CONCENTRATION IN THE IONOSPHERE UP TO HEIGHTS OF 200 KM MADE IN 1959-1960 Rudakov, V. A. Massey, H. S. H., Translator Planetary and Space Science, v. 11, no. 1, pp. 59-60, January 1963 (Translated from Iskusstvennye Sputniki Zemli, no. 10, p. 102, 1961)

The distributions of $n_e(h)$ —the relationship of the concentration of free electrons in the ionosphere to height—determined in 1959 and 1960 during firings of USSR Academy of Sciences sounding rockets to heights of 200 km are given. A chart is included which shows the values of the function $n_e(h)$ obtained during the firings.

71,784 TURBULENCE IN ATMOSPHERIC MOTIONS BETWEEN 90 AND 130 KM OF ALTITUDE Blamont, J.-E.

Planetary and Space Science, v. 10, pp. 89-101, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

Data on the structure of the field of motion of the atmosphere are reviewed. These include turbulence spectrum, diffusion coefficients, and limit of turbulence.

71,785 VARIATIONS IN THE MEAN MOLECULAR WEIGHT OF NIGHT AIR AT HEIGHTS FROM 100 TO 210 KM SHOWN BY MASS SPECTROMETRY Pokhunkov, A. A. Artificial Earth Satellites, v. 12, pp. 145–153, March 1963 71,786 A METHOD OF DETERMINATION OF IONO-SPHERIC ELECTRON DENSITY PROFILES FROM FARADAY ROTATION OF SATELLITE BORNE RADIO SIGNALS Gonzalez, V. September 1962 Illinois, University of, Electrical Engineering Research Lab., Urbana Ph.D. Thesis, N 63 10168

Faraday rotation records received at a ground station from a transmitting satellite are analyzed in detail. A set of parameters of a Chapman ionosphere model is assumed, and the faraday effect corresponding to a given satellite passage is calculated by means of an electronic computer, using the ray tracing technique. The calculated result is compared with the experimental observations to generate a new set of parameters. The whole calculations are then repeated with the new ionosphere until the differences between the calculated and experimental values have been minimized. Since the ray tracing requires the longest computer time in this selfconsistent approach, it is found that in most cases a secondorder formula is much simpler to use and gives almost equal satisfaction. The phenomenon of one-hop propagation when the satellite moves below the height of maximum electron density, and the occurrence of the minima and maxima in the number of faraday rotations between satellite and station are also examined.

IQSY

71,787 PROVISIONAL PROGRAMME INTERNATIONAL YEARS OF THE QUIET SUN, 1964-1965 American Geophysical Union, Transactions, v. 44, no. 1, pp. 261-275, March 1963 (Also available in National Academy of Sciences, IGY Bulletin, no. 69, March 1963)

71,788 SPACE RESEARCH AND THE IQSY PROPOSED CONTRIBUTIONS OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION American Geophysical Union, Transactions, v. 44, no. 1, pp. 228-235, March 1963 (Also available in National Academy of Sciences, IGY Bulletin, no. 67, January 1963)

JUPITER

71,789 SUR LA POSSIBILITÉ DE LA LUMINESCENCE DES SATELLITES DE JUPITER (ON THE POSSIBILITY OF LUMINESCENCE OF JUPITER'S SATELLITES) Link, F.

Astronomical Institutes of Czechoslovakia, Bulletin of the, v. 14, no. 1, p. 23, 1963

71,790 DYNAMIC SPECTRA OF JUPITER'S DECAMETRIC EMISSION, 1961 Warwick, J. W. Astrophysical Journal, The, v. 137, no. 1, pp. 41–60, January 1963

Observations and a theoretical explanation of Jupiter's lowfrequency radio emission are presented. The explanation leans heavily on recent demonstrations that Jupiter possesses energetic radiation belts similar to the Earth's Van Allen belts.

71,791 THE RADIO EMISSIONS FROM JUPITER AND THE DENSITY OF JOVIAN EXOSPHERE Ellis, G. R. A. Australian Journal of Physics, v. 16, no. 1, pp. 74–81, March 1963

The properties of cyclotron radiation from bunches of electrons trapped in a Jovian exosphere are discussed. It is shown that, if the polar magnetic field intensity is 15 gauss and the magnetic axis is inclined 10 deg to the rotation axis, the calculated properties agree with those observed for the decametric radiation provided Jupiter is surrounded by an extensive exosphere. The electron density of the exosphere varies mainly in proportion to the magnetic field intensity, and at $1.5R_1$ is equal to $10^3/\text{cm}^3$.

71,792 LONG BASELINE INTERFEROMETRY OF JOVIAN DECAMETRIC RADIO BURSTS Slee, O. B., Higgins, C. S. Nature, v. 197, no. 4869, pp. 781-783, February 23, 1963

Exploratory observations of Jupiter made with a long baseline interferometer during the 1962 opposition are reported. The observations were made at 19.7 Mc with a N-S baseline of 32.3 km, equivalent to 1940 λ at the declination of the planet. Information was obtained on the sizes and distribution of the decametric burst sources.

LANDINGS

71,793 DESIGN CONSIDERATIONS OF EARTH LANDING SYSTEMS FOR A MANNED SPACECRAFT Smith, A. M., Hartung, R. M., McMullen, J. C., Burns, T. A. (General Electric Co., Missile and Space Div., Philadelphia, Pa.) American Rocket Society, Inc., New York, N. Y. 2491-62 (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

The problems attendant to the design of a reliable and optimal Earth landing system are among the most critical in achieving mission success. Two limiting requirements tend to emphasize the magnitude of the design problem: (1) from the instant of launch, the Earth landing system must be capable of performing its prescribed function; and (2) in such a role, it must "know" the flight status at all times so that it can react to an infinite number of situations and perform its function within established design bounds. The system must possess a high degree of reliability and contain an adequate sensory control capacity to maintain operation within established constraints. Some system design concepts embodied in these two requirements are described, and the interplay between the total vehicle design problems and those related to the landing system design is discussed. The crew functions in this system are shown to be a major consideration in the achievement of design flexibility and high reliability.

LAUNCHING

```
71,794 DURATION OF A COUNTDOWN WHEN
CONSIDERED AS AN INTERRUPTED SERVICE
PROCESS
Firstman, S. I.
Operations Research, v. 11, no. 2, pp. 210–227,
March-April 1963
```

A countdown could be interrupted by several kinds of problems, and, following each interruption, could continue according to one of several policies; seven such policies are discussed. The problem considered is that of accounting for the randomly occurring problems and the time required to deal with them when estimating the distribution of interrupted countdown durations.

71,795 LAUNCH OPERATIONS AT CAPE CANAVERAL Upthegrove, H. N. Bell Laboratories Record, v. 41, no. 4, pp. 174–180, April 1963

Prelaunch testing procedures and final launch operations for the *Delta-Telstar* combination are described.

LIQUID PROPULSION SYSTEMS

71,796 VARIABLE-THRUST PROPULSION FOR A SOFT-LANDING VEHICLE
Williamson, F., Jr., Yim, E., Jr. (Naval Ordnance Test Station, China Lake, Calif.)
American Rocket Society, Inc., New York, N. Y. 2481-62 (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

One of the engineering problems involved in placing a man on the Moon is the soft-landing of the manned lunar module. In early 1959, the U.S. Naval Ordnance Test Station (NOTS) postulated that a NOTS variable-thrust propulsion system could be used as the retro-propulsion system. In early 1961, NOTS designed, built and flight-tested a vehicle, conclusively demonstrating that a variable-thrust propulsion system could be precisely controlled to soft-land a vertically descending craft.

LUNAR CRATERS

71,797 KLEIN'S "NEW" CRATER—ANOTHER LUNAR PUZZLE Manasek, F. J. Strolling Astronomer, The, v. 17, no. 1-2, p. 18, January-February 1963 (Abstract of paper presented at the Association of Lunar and Planetary Observers Convention, Montreal, Canada, 1962)

Klein's discovery in 1877 of a new crater in the Mare Vaporum near Hyginus is discussed, and although it is concluded that modern observations substantiate the existence of the crater, positive identification is not possible because of insufficient data.

71,798 LUNAR-TYPE TERRESTRIAL VULCANOIDS Moore, P. Strolling Astronomer, The, v. 17, no. 1-2, pp. 23-26, January-February 1963 (Presented at the Association of Lunar and Planetary Observers Convention, Montreal, Canada, 1962)

The resemblance of terrestrial vulcanoids, such as those in French West Africa and the Lake Mývatn area of Iceland, to lunar forms is pointed out. The view is expressed that the form and distribution of lunar features indicate an origin which was neither cataclysmic nor violently explosive, and that a milder uplift-and-subsidence process is much more likely.

71,799 DIMENSIONS OF THE LINNÉ CRATERLET Ashbrook, J. Strolling Astronomer, The, v. 17, no. 1–2, pp. 26–28, January–February 1963

Observations made and techniques used in the investigation of the lunar craterlet located within the Linné white patch are described in detail. These observations are important for extending the empirical diameter-depth and diameter-height relationships to smaller objects.

71,800 A NOTE ON THE DARWIN DOME AS SEEN IN SMALL AND LARGE APERTURES Olivarez, J. Strolling Astronomer, The, v. 17, no. 1-2, pp. 34-35, January-February 1963

An account is given of recent observations (made with a $12\frac{1}{2}$ -in reflector) of the Darwin dome – one of the largest, most rugged, and spectacular domes on the lunar surface.

LUNAR LANDINGS

71,801 LUNAR AND PLANETARY SOFT LANDINGS BY MEANS OF GAS-FILLED BALLOONS Schrader, C. D. (Aerospace Corp., El Segundo, Calif.) American Rocket Society, Inc., New York, N. Y. 2480-62

(Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

NASA has developed a theoretical and experimental concept for achieving lunar and planetary soft landings by means of gas-filled balloons. This paper discusses the application of the method for soft landings of instruments such as the University of California-Aerospace Corporation neutron-gamma experiment for the quantitative chemical analysis of the lunar surface. This geometry-independent scientific payload would be suspended by a net of nylon threads at the center of a spherically shaped balloon. At the moment it lands - when the kinetic energy has been transformed into compressional energy of the inflating gas - the balloon is ripped open to allow the gas to escape and the instrument to fall to the surface. It appears that a 50-lb payload could be landed with an impact of about 200 Earth g's by a 41-lb balloon system. This assumes that a retrorocket similar to that used on Rangers 3, 4, and 5 could slow the package to a velocity of about 300 ft/sec at impact.

LUNAR MAGNETIC FIELD

71,802 LUNAR SURFACE AND SUBSURFACE MAGNETIC SUSCEPTIBILITY INSTRUMENTATION Bollin, E. M. December 1962 Jet Propulsion Laboratory, California Institute of Technology, Pasadena TR 32-343

Multicoil induction measurements of the lunar surface and subsurface magnetic susceptibility are under study. Major considerations are the improvement of the accuracy and logging ability of various probe configurations. Special boundary conditions of high vacuum, extreme ambient temperature variation, restriction to mechanically passive systems, simple electronics, low power and light weight all contribute to degradation of the accuracy of the instrument.

This report also appears in IRE Transactions on Instrumentation, v. I-II, no. 3-4, December 1962.

LUNAR MISSIONS

71,803 THE INDIRECT LUNAR APPROACH SCHEME Straly, W. H. October 17, 1960 George C. Marshall Space Flight Center, Huntsville, Ala. MTP-M-S&M-F-60-2

The advantages of the indirect lunar approach scheme over the direct approach are shown, including: (1) an earlier opportunity to improve astronomical data, (2) improved mission flexibility, (3) increased mission reliability, and (4) development of a more useful method of subsequent exploration. Other advantages inherent to the indirect scheme are that it provides an economical method of conducting seismic experiments; makes possible minute inspection of the surface before landing and viewing the landing operations from short range; and utilizes the superior electronic capabilities of the orbiting vehicle. The described approach is based on large payloads of the *Saturn* family, but can be applied to any size payload.

LUNAR MISSIONS (MANNED)

71,804 LUNAR LOGISTIC SYSTEM, VOLUME III, EARTH-MOON TRANSITS Braud, N. J. March 15, 1963 George C. Marshall Space Flight Center, Huntsville, Ala. MTP-M-63-1, Volume III

Preliminary results are reported of investigations into the problems of Earth-Moon transits, where particular emphasis was placed on the class of trajectories considered for *Apollo* and support vehicle flights. Flight profiles, velocity budgets, and launch windows are among the areas given most attention. One of the primary points of interest is a newly conceived method of establishing a flight mechanical classification of the transits. The classification is made by use of a simplified time invariant coordinate system. The results are empirical and are generated by the integration of the equations of motion by Cowell's method. Impact and flyby transits are treated, and results are extended to three dimensions.

71,805 LUNAR LOCISTIC SYSTEM, VOLUME VI, TRACKING AND MISSION CONTROL March 15, 1963 George C. Marshall Space Flight Center, Huntsville, Ala. MTP-M-63-1, Volume VI

Results of the Lunar Logistic System (LLS) studies in the following related areas are presented: (1) tracking and orbit determination, (2) midcourse maneuver requirements, and (3) mission control. The principal conclusions derived in each area are given.

71,806 LUNAR LOGISTIC SYSTEM, VOLUME VII, TESTING ASPECTS Tidd, J. L., Guyton, B., Yarbrough, L. S. March 15, 1963 George C. Marshall Space Flight Center, Huntsville, Ala. MTP-M-63-1, Volume VII

The underlying philosophy and data resulting from an investigation of Lunar Logistic System test requirements, and the most effective means of satisfying these requirements are presented. Test parameters and methodology are emphasized along with test facility requirements and availability of government and private facilities. Transportation of large hardware items is studied, and boosters are evaluated for flight testing. Recommendations are made for flight modes and test ranges.

71,807 LUNAR LOGISTIC SYSTEM, VOLUME X, PAYLOADS March 15, 1963

George C. Marshall Space Flight Center, Huntsville, Ala. MTP-M-63-1, Volume X

Design criteria for Lunar Logistic System payloads, and conceptual designs for three specific payloads are presented. The design criteria are presented in a narrative and parametric form, with numerous parametric trade-off illustrations. Conceptual designs are presented for the following payloads: (1) four-man shelter, (2) two-man large roving vehicle, and (3) two-man shelter and small roving vehicle. Each of the three payloads is designed for the Saturn 5 Lunar Logistic Vehicle as the carrier, with a lunar soft-landing capability of 25,000 lb. The difference between the 25,000-lb total payload weight and the dry weight of any of the shelters and roving vehicles can be used for expendables, thus permitting long-time missions on the Moon. Several representative missions are described.

71,808 LUNAR LOGISTIC SYSTEM, VOLUME XI, LUNAR TOUCHDOWN Lavender, R. E. March 15, 1963 George C. Marshall Space Flight Center, Huntsville, Ala. MTP-M-63-1, Volume XI

Results are presented of analytical touchdown dynamics investigations conducted to determine the influence of various lunar and configurations design parameters on the touchdown dynamic stability of spacecraft intended to soft-land logistic payloads on the Moon. Parameters used in the analysis include the local lunar slope, coefficient of friction, initial touchdown vertical and horizontal velocity components, vehicle weight and radius of gyration, height of center of gravity, displacement of the center of gravity from the vehicle's longitudinal axis, thrust of stabilization rocket motors, and crushing force of energy absorbing material. The landing-gear spread required to obtain touchdown stability has been determined for various combinations of the investigated parameters for configurations with four extended legs. In addition, some results are presented for configurations with three and five legs.

71,809 LUNAR LOGISTIC SYSTEM PAYLOAD PERFORM-ANCE STUDY, FINAL REPORT, VOLUME I TECHNICAL DIGEST January 1963 Northrop Corp., Northrop Space Labs., Hawthorne, Calif. NSL 63-4, Volume I

The results are presented of an engineering study to aid NASA in the selection of appropriate payloads for the Lunar Logistic System and in the planning of their development. Volume I, which was prepared as a digest of the technical contents of Volume II (cited in the following entry), is organized to present in condensed form the content and scope of the engineering work performed during the study. The sections on Definitions, Study Program, Operations Research, Conclusions, and Recommendations are quoted directly from Volume II without summary or reduction.

LUNAR MISSIONS (MANNED) (Cont'd)

71,810 LUNAR LOGISTIC SYSTEM PAYLOAD PERFORM-ANCE STUDY, FINAL REPORT, VOLUME II TECHNICAL January 1963 Northrop Corp., Northrop Space Labs., Hawthorne, Calif. NSL 63-4, Volume II

Technical results are presented of the study on Lunar Logistic System payload performance. The study program is outlined, study methodology described, payload performance and conceptual designs are presented, conclusions drawn, and recommendations offered. This volume is intended to serve as a source of information for other LLS studies.

71,811 LUNAR LOGISTIC SYSTEM PAYLOAD PERFORM-ANCE STUDY, FINAL REPORT, VOLUME III DEVELOPMENT PROGRAMS, AND ESTIMATED SCHEDULES AND COSTS January 1963 Northrop Corp., Northrop Space Labs., Hawthorne, Calif. NSL 63-4, Volume III

Development programs are presented with estimated development times and estimated development and production costs for a number of the concepts presented in Volume II of the Lunar Logistic System Payload Performance Study, cited in the preceding entry. The development programs for the roving base payload and four typical function units are covered. Since all the designs are conceptual in nature, the approach in planning the development programs has been to explore the critical and pacing factors affecting each development. Estimated development and production costs are also given for an additional twenty-six concepts presented in Volume II.

71,812 LUNAR LOGISTIC SYSTEM PAYLOAD PERFORM-ANCE STUDY, FINAL REPORT, SUMMARY January 1963 Northrop Corp., Northrop Space Labs., Hawthorne, Calif. NSL 63-4, Summary

The work accomplished, conclusions reached, and recommendations offered as a result of completion of the study on Lunar Logistic System payload performance are briefly summarized.

71,813 STUDY OF SPACECRAFT BUS FOR LUNAR LOGISTICS SYSTEM VOLUME I, SUMMARY December 22, 1962 Space Technology Laboratories, Inc., Redondo Beach, Calif. 8689-6007-TU000

The results are presented of a 12-week engineering study of unmanned spacecraft bus concepts for use in a Lunar Logistics System to support the manned lunar landing program. The objective of the LLS is to soft-land a variety of payloads at or near the *Apollo* landing site, both before and following Apollo manned missions. The LLS is being studied by NASA as a means of assuring the highest probability of safe crew return and the maximum benefits from lunar surface operations. Essential characteristics of such a program include (1) minimum system development costs and maximum system reliability by utilizing available state-of-the-art components and subsystems to the greatest extent possible, (2) flexibility in LLS mission capability and schedules, (3) operational capability by earliest practicable dates, and (4) maximum potential for growth in mission capability.

71,814 STUDY OF SPACECRAFT BUS FOR LUNAR LOGISTICS SYSTEM VOLUME IIA, TECHNICAL PLAN (SECTIONS I-IV) December 22, 1962 Space Technology Laboratories, Inc., Redondo Beach, Calif. 8689-6002-TU000

71,815 STUDY OF SPACECRAFT BUS FOR LUNAR LOGISTICS SYSTEM VOLUME III, DEVELOPMENT AND TEST PLAN December 22, 1962 Space Technology Laboratories, Inc., Redondo Beach, Calif. 8689-6006-TU000

71,816 ABORT PROBLEMS OF THE LUNAR LANDING MISSION
Bartos, G., Greenberg, A. (Aerospace Corp., El Segundo, Calif.)
American Rocket Society, Inc., New York, N. Y. 2490-62 (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

The abort problems associated with the manned lunar landing mission are investigated. The purpose of incorporating abort provisions in the vehicle is the same throughout the mission, i.e., to safely return the crew capsule to the vicinity of the Earth; however, the characteristics of the abort maneuvers required for this purpose differ significantly for the various phases of the mission. The phases considered in this study include the Earth-Moon transfer, the lunar landing, and the subsequent ascent from the lunar surface.

71,8	17 THE GEO-SCIENCES APPLIED TO MANNED
	LUNAR EXPLORATION
	Green, J.
	July 5, 1961
	North American Aviation, Inc., Space and Information
	Systems, Div., Downey, Calif.
	SID 61-217

The application of the geo-sciences to manned lunar exploration may be divided into five groups: terrain, rocks, minerals, power, and tools. Understanding the processes which formed certain features on Earth aids in realizing the advantages of impacted and volcaric terrains on the Moon. Volcanic terrains offer more natural protection to man. Volcanic rocks would also be more useful to the lunar astronaut because of the adaptability of certain volcanic materials for insulation and because their water content (approximately 1 percent by weight) is much higher than meteoritic rocks.

LUNAR ROVING VEHICLES

71,818 INSTRUMENTATION AND PAYLOAD DESIGN FOR LUNAR ROVING VEHICLES Walthall, E. R. (RCA, Camden, N. J.) Society of Automotive Engineers, Inc., New York, N. Y. 632H (Presented at the Automotive Engineering Congress, Detroit, Mich., January 14–18, 1963)

Prior to manned landing, unmanned lunar vehicles will explore the Moon's surface. These vehicles, which will be controlled from Earth, will gather data on elevation contours and surface roughness, soil conditions and classification, electromagnetic radiation and micrometeorite conditions, and the substrate makeup and seismic conditions. Considered are lunar environment, radiation hazard, payload design criteria, environmental control, control and guidance systems, communication systems, and scientific instrumentation.

LUNAR TRAJECTORIES

71,819 ABORT CONSIDERATIONS FOR MANNED LUNAR MISSIONS Kelly, T. J., Adornato, R. J., Speiser, K. (Grumman Aircraft Engineering Corp., Bethpage, N. Y.) American Rocket Society, Inc., New York, N. Y. 2478-62 (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17–19, 1962)

Direct and indirect abort trajectory requirements of the lunar orbit and descent phase of a manned lunar mission are considered. Indirect aborts, treated through an intermediate lunar parking orbit, are shown to be possible from any point on the trajectory down to the final touchdown, but regions from which direct aborts can commence are restricted. Velocity increment and time-to-return for several direct and indirect abort sequences are established, with emphasis on how the initial trajectory is shaped to facilitate the abort maneuver.

71,820 TRAJECTORY CONSIDERATIONS FOR THE RETURN TO EARTH PHASE OF LUNAR MISSIONS Gapcynski, J. P., Tolson, R. H. (NASA/Langley Research Center, Langley Field, Va.) American Rocket Society, Inc., New York, N. Y. 2487-62 (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17-19, 1962)

The lunar injection conditions are discussed which are required to establish Earth-return trajectories satisfying specified re-entry conditions. It has been assumed in this analysis that the return trajectory is initiated from either a circular hunar orbit having an arbitrary inclination and nodal position with respect to the Earth-Moon plane, or from an arbitrary position on the lunar surface. In the latter case, it is further assumed that a lunar parking orbit is established prior to injection. No consideration is given to the use of orbital plane changes to ensure proper Earth re-entry.

71,821 PREDICTION OF VELOCITY REQUIREMENTS FOR MINIMUM TIME ABORTS FROM THE MIDCOURSE REGION OF A LUNAR MISSION Merrick, R. B., Callas, G. P. April 1963 National Aeronautics and Space Administration, Washington, D. C. TN D-1655

Abort trajectories were computed at several ranges for various fuel capabilities and impulsive velocity increments on both the outgoing and incoming legs of a typical circumlunar trajectory. A two-body equation was used for determining the direction of the abort rocket thrust in the orbit plane and a modification to this equation is presented which markedly reduces the altitude error, at perigee, due to four-body effects. Errors due to inaccuracy in the knowledge of position and velocity at abort and the inaccuracies in the magnitude and aiming of the abort rocket are considered statistically; the last is found to be by far the most significant.

71,822 DIRECT-ASCENT VS PARKING-ORBIT TRAJECTORY FOR LUNAR-SOFT-LANDING MISSIONS Gautschi, T. F., Clarke, V. C., Jr. December 3, 1962 Jet Propulsion Laboratory, California Institute of Technology, Pasadena TM 33-114

Differences between direct-ascent and parking-orbit modes of transit to the Moon and their effects on a lunar landing mission are studied within the context and constraints of the *Surveyor* project. Constraints considered (at both "current" and "minimum" levels) include lunar lighting, launch-window duration, landing location, launch azimuth, launch vehicle capability, transit time, observability of landing from Earth, launch opportunities per period, and desired mission frequency. A listing of advantages and disadvantages provides some basis for conclusions. Appendices furnish source material and amplification, together with a glossary of terms used.

MARS

71,823 SOME GEOLOGIC PROBLEMS OF MARS Loomis, A. A. March 4, 1963 Jet Propulsion Laboratory, California Institute of Technology, Pasadena TR 32-400

Geological and geophysical knowledge and uncertainties concerning the surface and body of Mars are briefly discussed

MARS (Cont'd)

and evaluated. It is pointed out that accurate values for the figure of the planet and the radii, seismic evidence of internal structure, and measurements of the outward heat flux across the surface are necessary and important in order to achieve a satisfactory description of the body of Mars. Some geological inferences which can be drawn from available photographic and photometric data concerning topography, areas of water accumulation, and biological activity are discussed. The priority of scientific geologic experiments is presented, and some present instrumentation capabilities and deficiencies are listed.

71,824 HEAT BALANCE ON THE SURFACE OF MARS Hattore, A. 1962 Institute of Astrophysics and Kwasan Observatory, University of Kyoto, Japan Contribution 115

The insolations for ($\tau = 0, 0.1, 0.2, \text{ and } 0.3$) and the heat loss on the Martian surface are calculated for various seasons. The heat balance on the surface and the effects of Martian clouds are discussed. The theoretical results are shown to be in fairly good agreement with observations.

MATERIALS

71,825 SPACE ENVIRONMENTAL EFFECTS ON SEALS, GASKETS, ADHESIVES AND OTHER ELASTO-MERIC AND POLYMERIC MATERIALS: AN ANNOTATED BIBLIOGRAPHY Abbott, H. M. September 1961 Lockheed Missiles and Space Co., Sunnyvale, Calif. SB-61-40 ASTIA AD-267,531

This bibliography contains selected references on seals, gaskets, adhesives, sealants and other elastomeric and polymeric materials under space conditions. Any applications of adhesives in fabricating pressurized containers and attaching solar cell plates were included, as were tests conducted on materials used for seals and gaskets in contact with reactive fluids. Materials used for inflatable space vehicles and structures are included as general applications of plastics or polymers.

71,826 COMPOSITE MATERIALS: AN ANNOTATED BIBLIOGRAPHY Abbott, H. M. February 1963 Lockheed Missiles and Space Co., Sunnyvale, Calif. SB-62-58

This annotated bibliography of 190 selected references pertains to composite materials. Material composites are broadly considered as physical combinations of two or more dissimilar materials. Boron carbide impregnated with aluminum (Boral), metal fibers in glass or plastics, or glass fibers in aluminum are some examples of the various combinations being studied. Sandwich materials were not included in the search, although few fabricated articles cannot in some way be referred to as composites.

71,827 THE EFFECT OF HYDROGEN ON ALUMINUM: AN ANNOTATED BIBLIOGRAPHY Gros, C. G. March 1963 Lockheed Missiles and Space Co., Sunnyvale, Calif. SB-62-68

The effect of hydrogen on aluminum is treated, with reference to welding at room temperature and the ultimate reliability in space applications of such aluminum. The period from 1950 through 1962 is covered. A few citations to material on nonferrous metals which might lead to information about aluminum have been included in the 49 annotated references.

71,828 FRICTION MEASUREMENTS ON A LOW EARTH SATELLITE Rittenhouse, J. B., Jaffe, L. D., Nagler, R. G., Martens, H. E. April 15, 1963 Jet Propulsion Laboratory, California Institute of Technology, Pasadena TR 32-402

During the flight of the Ranger 1, the coefficient of sliding friction for a number of materials was measured. Flat disks of materials of interest were rotated at a speed of 8 to 14 in./min while in contact with ¹/₈-in.-D hemispherical riders. Because of the low orbit achieved by Ranger 1, the experiment was exposed to vacuum in the range of 3×10^{-6} to 8×10^{-9} mm Hg. For unlubricated metals sliding on metals, the friction coefficient averaged about 0.5; for some combinations of metals, it occasionally exceeded 1.0. Lower values were observed with lubricants of grease or gold-plate, and for ceramics sliding against metals. The coefficient of friction was very low, averaging 0.04, for metallic pairs lubricated with molybdenum disulfide and for polytetrafluoroethylene sliding against metals and ceramics. Relatively low friction coefficients were found for metallic materials sliding against unlubricated metallic and ceramic materials when at least one member of the pair was of high hardness. The coefficients observed for unlubricated metal pairs were not inconsistent with the hypothesis that high friction tends to correlate with high mutual solid solubility. In general, the coefficients in space and in a laboratory vacuum of 5×10^{-6} mm Hg were not systematically different. For unlubricated metallic materials, friction in vacuum was higher than in air at shorter running times.

71,829 CARBONIZED PLASTICS COMPOSITES FOR HYPERTHERMAL ENVIRONMENTS PART II, SYNTHESIS OF IMPROVED THERMALLY PROTECTIVE PLASTICS AND COMPOSITES Forcht, B. A., Haviland, J. K., McKinney, A. R. (Ling-Temco-Vought, Dallas, Texas) February 1963 Aeronautical Systems Division, Directorate of Materials and Processes, Wright-Patterson AFB, Ohio ASD TDR 62-352, Part II

New and improved compositions and constructions of pyrolyzed plastic composites were prepared for use as either high-temperature structural or ablative-insulative materials. The use of high density precursory plastics and three dimensional reinforcements resulted in high strength pyrolyzed plastics, having a room-temperature flexural strength up to 14,000 psi.

MERCURY PROJECT

71,830 FIRST DETAILS ON MERCURY SPACECRAFT COMMAND RECEIVER Elliott, R. Electronics, v. 36, no. 5, pp. 32–35, February 1, 1963

METEOR TRAILS

71,831 UNUSUAL OBSERVATION OF A METEOR TRAIN Bumba, V.

Astronomical Institutes of Czechoslovakia, Bulletin of the, v. 14, no. 1, pp. 22–23, 1963

An observation of a shadow projected on the solar disk by a shock-wave of a meteor in the terrestrial atmosphere is described.

METEORITES

71,832 ULTRA-VIOLET-ABSORBING COMPOUND(S) REPORTED PRESENT IN THE MURRAY METEORITE Oró, J.

Nature, v. 197, no. 4869, pp. 756-758, February 23, 1963

Investigations reported were undertaken to ascertain whether water-soluble ultraviolet-absorbing compounds detected in meteoritic extracts are indigenous to the meteorite, or are the result of contamination by the analytical technique used. Water extracts from the Murray meteorite were used in the analysis.

71,833 IMPACTS ON THE EARTH AND MOON Hawkins, G. S. *Nature*, v. 197, no. 4869, p. 781, February 23, 1963

The ratio of stony to iron meteorites is examined. The maximum size of an object which has collided with the Earth and Moon in geologic history is estimated.

METEOROIDS

71,834 SPRAY EJECTED FROM THE LUNAR SURFACE BY METEOROID IMPACT Gault, D. E., Shoemaker, E. M., Moore, H. J. April 1963 National Aeronautics and Space Administration,

Washington, D. C. TN D-1767

Fragments ejected from the lunar surface by meteoroid impact are analyzed on the basis of experimental studies of hypervelocity impact in rock and sand. It is shown that the flux of fragments of a given mass which are ejected from the lunar surface is at least 10^3 and probably 10^4 times greater than the flux of interplanetary debris of the same mass. Most of the fragments are ejected at velocities less than lunar escape velocity and contribute to secondary impact events. A small fraction of the ejecta, however, will escape from the gravitational field of the Moon and even from the Earth-Moon system.

METEOROLOGICAL SATELLITES

71,835 NIMBUS DATA IN OPERATIONAL METEOROLOGY Johnson, D. S., Hall, W. F., Bristor, C. L. Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 52–56, April 1963

National Operational Meteorological Satellite System (NOMSS) data processing and data dissemination are described. Approximately one-quarter billion bits of meteorological data will be obtained from each orbit of the early *Nimbus*. The basic computer to be used at the NOMSS Data Processing Center is an IBM 7094. The experimental digitizing and mapping of cloud pictures are discussed and illustrated.

71,836 DATA COLLECTION BY SATELLITES Moody, A. B., Widger, W. K., Jr. Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 57-58, April 1963

The concept of ambient sensors immersed in the atmosphere as an approach to augmenting the data collection capabilities of global weather satellites such as *Tiros* and the forthcoming *Nimbus* is considered. Several methods of implementing such a system are suggested.

71,837 TOWARDS THE SYNCHRONOUS METEORO-LOGICAL SATELLITE Jones, W. W. Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 59–60, April 1963

The initial concept of a synchronous meteorological satellite as the only economically feasible means of continually viewing the Earth's weather processes is discussed.

263

METEOROLOGICAL SATELLITES (Cont'd)

71,838 DIRECT READOUT WEATHER SATELLITES Cowan, L. W., Hubbard, S. H., Singer, S. F. Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 61–66, April 1963

The approaches to an operational direct-readout satellite system are discussed along with testing of the *Nimbus* Automatic Picture Transmission (APT) system to be initiated during the latter part of 1963. The APT system, which takes a picture every 208 sec while the satellite is in daylight, is described and its potential evaluated. The major international aspects of a direct-readout satellite system are also briefly appraised.

71,839 RESEARCH WITH TIROS RADIATION MEASUREMENTS Nordberg, W. Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 76–83, April 1963

Radiometric experiments performed by meteorological satellites are described. The importance of supplementing TV photographs with radiometric observations is emphasized. Measurements discussed resulted from rather simple instruments reflecting the state of satellite radiometry of several years ago.

71,840 PHYSICAL MEASUREMENTS FROM METEORO-LOGICAL SATELLITES Hanel, R. A., Wark, D. Q. Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 85–88, April 1963

Experiments in IR radiation, ozone distribution, cloud top heights, the solar constant, and "sferics" are discussed as part of a possible future effort in meteorological observations from satellites. Instrumentation to carry out the planned experiments is described.

71,841 NON-METEOROLOGICAL OBSERVATIONS FROM WEATHER SATELLITES Singer, S. F., Popham, R. W. Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 89–92, April 1963

Although the primary function of an operational meteorological satellite system will continue to be aimed toward obtaining observations of direct meteorological significance, experience has shown that such a system may well fulfill the needs of scientists in other fields for broad-scale observations on a real-time basis. Studies of ice, snow, forest fires, and locust swarms are discussed as potentials for nonmeteorological applications.

METEOROLOGY

71,842 RESEARCH WITH SATELLITE CLOUD PICTURES Fritz, S.

Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 70–74, April 1963

Types of cloud patterns observed from *Tiros* satellites are compared with laboratory experiment and theory to emphasize the hydrodynamical implications shown by the satellite pictures.

METEORS

71,843 A LUNAR EFFECT ON THE INCOMING METEOR RATE

Bowen, E. G. Journal of Geophysical Research, v. 68, no. 5, pp. 1401-1403, March 1, 1963

Following the recent discovery of a lunar influence on rainfall and on the freezing nucleus count, it is now shown that the radar meteor rate varies in a similar way with lunar phase. The physical mechanism is uncertain, but an electrostatic charge on the Moon could produce an effect on micrometeorites of the right order of magnitude.

71,844 DETERMINATION OF THE HEIGHT OF THE HOMOGENEOUS ATMOSPHERE AND THE EXTRA-ATMOSPHERIC VELOCITY OF A METEOR Katasev, L. A. Soviet Astronomy—AJ, v. 6, no. 5, pp. 583–584, January–February 1963

Formulas are derived for computing, from photographic observations, the extra-atmospheric velocity of a meteoroid and the coefficient entering into the formula for the height of the homogeneous atmosphere. These quantities can be obtained directly from the observations.

MOON

71,845 THEORETICAL ASPECTS OF THE LUNAR METEOR Chalk, K. Strolling Astronomer, The, v. 17, no. 1-2, pp. 19-23, January-February 1963 (Presented at Association of Lunar and Planetary Observers Convention, Montreal, Canada, 1962)

The purpose and theoretical definition of the A.L.P.O. Lunar Meteor Search are detailed. It is pointed out that an indirect aim of the search is to discover the approximate extent of the tenuous lunar atmosphere.

71,846 GRAVITATIONAL HEATING OF THE MOON Kopal, Z. Icarus, v. 1, no. 5–6, pp. 412–421, April 1963

Gravitational heating of the lunar interior is discussed. Numerical calculations to ascertain the actual amount of possible gravitational contribution to the internal temperature of the Moon are presented.

71,847 AN UNSOLVED ASTROMETRICAL PROBLEM Yakovkin, A. A. Soviet Astronomy—AJ, v. 6, no. 4, pp. 573-579, January-February 1963

Attention is drawn to the need for developing methods for computing the coordinates of the Moon's center of mass from observations. Observations at six points are intercompared and yield direct results, depending on no prior hypothesis. A description is given of four models of the Moon used to reduce heliometric observations.

71,848 LUNAR DUST AND TERRESTRIAL ICE NUCLEUS CONCENTRATION Vand, V.

Nature, v. 198, no. 4876, pp. 176-177, April 13, 1963

Bigg demonstrated a relation between summer ice nucleus concentration and lunar phase. Assuming that increase of ice nuclei causes increase in precipitation, relations between precipitation and lunar phase can be accounted for. Predictions of arrival of lunar dust could be improved by using a system of radio telescopes to survey the actual meteor flux coming from the antilunar point. Analysis of the dust at times of maxima might give clues to the chemical composition of the lunar surface. The surface of the Moon may contain appreciable amounts of material which could act as efficient ice nuclei.

71,849 THE INFLUENCE OF THE MOON ON ATMOSPHERIC OZONE Adderley, E. E. Journal of Geophysical Research, v. 68, no. 5, pp. 1405-1408, March 1, 1963

Evidence is presented for a lunar effect on the amount of atmospheric ozone at Arosa, Switzerland, and Canberra, Australia. The amount of ozone increases at the vernal equinox about the first and third lunar quarter and decreases at the same lunar phases at the autumnal equinox. There is no effect at midwinter or midsummer. The explanation of this lunar effect is unknown, and further investigation is needed.

71,850 AN ORIGIN OF THE MOON BY ROTATIONAL FISSION DURING FORMATION OF THE EARTH'S CORE Wise, D. U. Journal of Geophysical Research, v. 68, no. 5, pp. 1547-1554, March 1, 1963

Darwin's hypothesis of lunar origin from a rapidly rotating Earth can be modified in substitution of excessive rotation rate and unstable spin driven by conservation of angular momen-

tum during formation of the Earth's core for Darwin's now discredited tidal resonance mechanism. Criticisms which caused rejection of the older hypothesis are considered in the light of this modification and of subsequent discoveries and ideas; most severe is lack of angular momentum in the present Earth-Moon system, a criticism which is itself open to question in terms of possible magnetic frictions during the early history of the solar system. Other criticisms are (1) observed but presently unexplainable components in rate of change in rotation of the Earth, and (2) possible changes in diameter of the Earth with time. Among the explanations provided by the hypothesis are relatively circular lunar orbit, specific gravity of the Moon, apparent nonhydrostatic figure of the Moon, constant face toward the Earth, and gross sequence of geologic events recorded on the lunar face. Several proposed tests of the hypothesis should soon be possible. Until more data become available, it is suggested that a lunar birth from the Earth be reinstated among our current working hypotheses.

71,851 CHARGING GRAINS OF DUST

Coffman, M. L. Journal of Geophysical Research, v. 68, no. 5, pp. 1565-1566, March 1, 1963

An independent calculation is given of the maximum charge possible for a grain of dust and the bearing this charge has on the erosion of the surface of the Moon.

71,852 BIBLIOGRAPHY OF THE MOON July 1960

Department of the Army, Chief of Engineers, Washington, D. C. Bibliography

Since this bibliography pertains to the Moon as a physical object, no attention was directed to the movement of the Moon as a heavenly body, nor to its effect upon the Earth. Entries were compiled by the U.S. Geological Survey in connection with the preparation of the Engineer Special Study of the Surface of the Moon.

71,853 LUNAR THERMAL EMISSION MEASUREMENTS Castelli, J. P., Ferioli, C. P. September 1962 Air Force Cambridge Research Laboratories, Office of Aerospace Research, Bedford, Mass. AFCRL-62-882

During two lunar eclipses, March 15, 1960 and August 25, 1961, simultaneous records of the lunar thermal emission at 1200 and 3100 Mc were obtained with the 84-ft radio telescope of the USAF Sagamore Hill Radio Observatory. No change in lunar temperature was measured at either frequency during the eclipses. A simple straightforward method is described to convert antenna temperatures to average disk temperatures of the Moon; the latter were found to be 230°K at 1200 Mc and 223°K at 3100 Mc.

NAVIGATION

71,854 AN EMERGENCY MIDCOURSE NAVIGATION PROCEDURE FOR A SPACE VEHICLE RETURNING FROM THE MOON Havill, C. D. March 1963 National Aeronautics and Space Administration, Washington, D. C. TN D-1765

A manual emergency navigation procedure for a vehicle returning from the Moon is presented. The procedure involves photographing the Earth from various positions along the trajectory returning from the Moon and deducing from image measurements the required midcourse corrections. Preliminary tests of the accuracy with which required image measurements can be obtained together with machine computations of the over-all accuracy of the guidance procedure indicate the accuracy could be within the corridor depth of a lifting entry vehicle.

NEUTRONS

71,855 NEUTRON FLUX AND ENERGY SPECTRUM ABOVE THE ATMOSPHERE Bame, S. J., Conner, J. P., Brumley, F. B., Hostetler, R. L., Green, A. C. Journal of Geophysical Research, v. 68, no. 5, pp. 1221-1228, March 1, 1963

Neutron detectors consisting of B¹⁰F₃ proportional counters and Li⁶I(Eu) scintillation counters, surrounded by varying amounts of moderating material, have been flown above the atmosphere in a number of vehicles. The shape of the neutron energy spectrum given by Hess, Canfield, and Lingenfelter has been verified within experimental limitations, and the flux of neutrons at 650-km altitude and 36.5°N geomagnetic latitude has been determined to be 0.28 ± 30 percent neutrons per cm² sec, whereas at 320-km altitude and 8.7° S the flux is 0.12 ± 40 percent neutrons per cm² sec. This flux determination gives an absolute neutron flux a factor of 3 lower than previously reported determinations.

NIMBUS PROJECT

71,856 NIMBUS SPACECRAFT DEVELOPMENT Press, H., Michaels, J. V. Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 42–45, April 1963

Preliminary design of the *Nimbus* spacecraft was completed in 1960. The approach used in the system is described, a brief history of the development is presented, and design achievements to date are assessed in the light of the original design objectives. 71,857 NIMBUS TESTING

Butler, H. I.

Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 46–47, April 1963

The Nimbus test program will determine the ability of the spacecraft design to meet all performance requirements and demonstrate the dependability of the flight hardware. Currently in the prototype phase, the program consists of two levels of environmental tests: prototype and flight acceptance tests. Photographs of design and test models are included.

OGO PROJECT

71,858 INSIDE THE ORBITING GEOPHYSICAL OBSERVATORY Glaser, P. F., Spangler, E. R. *Electronics*, v. 36, no. 7, pp. 61–65, February 15, 1963

ORBITAL OBSERVATORIES

71,859 THE OBSERVATORY GENERATION OF SATELLITES March 1963 National Aeronautics and Space Administration, Office of Scientific and Technical Information, Washington, D. C. SP-30

The American Astronautical Society held its second annual regional meeting as part of the 129th meeting of the American Association for the Advancement of Science in Philadelphia, Pennsylvania, December 1962. Session II of the Special Astronautics Symposium, "Scientific Satellites—Mission and Design," on December 27, 1962, was comprised of the following six papers:

- "The Mission of the Orbiting Geophysical Observatories," Scull, W. E.
- "The Engineering Design of the Orbiting Geophysical Observatories," Gleghorn, G. E.
- "The Mission of the Advanced Orbiting Solar Observatory," Lindsay, J. C.
- "One Approach to the Engineering Design of the Advanced Orbiting Solar Observatory," Cervenka, A. J.
- "The Mission of the Orbiting Astronomical Observatory," Zeimer, R. R., Kupperian, J. E., Jr.
- "The Engineering Design of the Orbiting Astronomical Observatory," Scott, W. H.

71,860 HELIOS TO RELAY MORE ACCURATE SOLAR DATA Wetmore, W. C. Aviation Week & Space Technology, v. 78, no. 9, pp. 48-53, March 4, 1963 Helios, which is an advanced orbiting solar observatory scheduled for launching in 1966, will be designed to have a pointing accuracy of 5 sec of arc and 70-percent over-all system reliability. Phenomena which might be studied by Helios are listed and design objectives are outlined; block diagrams and illustrations are included. Some of the results obtained to date from the OSO-1 are given.

ORBITS

71,861 ORBITS RETURNING FROM THE MOON TO A SPECIFIED GEOGRAPHIC LANDING AREA Cicolani, L. S. April 1963 National Aeronautics and Space Administration, Washington, D. C. TN D-1652

This paper develops a method of computing approximate trajectories returning from the Moon to a fixed landing site. The gravitational field of a spherical Earth is assumed to govern orbital motion and the entry phase of the trajectories is described by a linear relation between entry range and flight time in the atmosphere. As an example, data were computed for trajectories returning to Edwards Air Force Base during the month of February 1966 and an analysis of these data is presented.

71,862 THE CRITICAL INCLINATION PROBLEM IN SATELLITE ORBIT THEORY Mersman, W. A. 1962 National Aeronautics and Space Administration, Washington, D. C. TR R-148

Solutions of the satellite orbit problem are obtained that do not exhibit singularities at the critical inclination angle. Series representations are obtained, their regions of convergence are exhibited, and quantitative measures of their speeds of convergence are provided for use in numerical computations.

71,863 ON THE USE OF INTERPLANETARY PROBE ORBITS OF PERIODS COMMENSURABLE WITH ONE YEAR Roy, A. E. Astronautica Acta, v. 9, no. 1, pp. 31-46, 1963

The problem of placing vehicles into interplanetary orbits of periods that are fractions or multiples of one year is discussed. Two missions—an eccentric orbit in the ecliptic and a circular orbit at an inclination to the ecliptic—are studied. It is shown that such missions are practical using present day rockets and guidance techniques and have a number of advantages over interplanetary orbits of periods noncommensurable with one year.

PHYSIOLOGY

71,864 RECENTI RICERCHE IN ITALIA NEL CAMPO DELLA MEDICINA AERONAUTICA E SPAZIALE (RECENT ADVANCES IN ITALY IN THE FIELD OF AEROSPACE MEDICINE) Lomonaco, T. Rivista di Medicina Aeronautica e Spaziale, v. 26, no. 1, pp. 5-25, January-March 1963

The research being conducted in Italy is surveyed, with special emphasis on experiments carried out at the Aerospace Medical Center in Rome. A bibliography of nearly 120 references is included.

71,865 NUOVE ACQUISIZIONI DI FISIOLOGIA E FISIOPATOLOGIA VESTIBOLARE NEL VOLO SPAZIALE (RECENT ADVANCES IN VESTIBULAR PHYSIOLOGY, AND PHYSIOPATHOLOGY OF SPACE FLIGHT) Mazza, G. Rivista di Medicina Aeronautica e Spaziale, v. 26, no. 1, pp. 99–136, January-March 1963

The several functions of the inner ear are reviewed, and the reactions of this organ to various degrees of acceleration are described. In relation to the effects of weightlessness, the neurovegetative syndrome of disorientation (satellite sickness) is considered, and an explanation of this condition from a physiological standpoint is attempted. The problem of providing an artificial gravity on prolonged flights is briefly discussed.

71,866 PERCEPTION OF MOTION, EQUILIBRIUM, AND ORIENTATION IN CONDITIONS OF ZERO GRAVITY (LA PERCEZIONE DEL MOTO, L'EQUILIBRIO E L'ORIENTAMENTO IN CONDIZION' DI GRAVITATIONE NULLA) Margaria, R., Gualtierotti, T. Rivista di Medicina Aeronautica e Spaziale, v. 25, no. 3, pp. 450-465, July-September 1962 (Abstracted in Aerospace Medicine, v. 34, no. 3, pp. 276-277, March 1963)

The main systems controlling body sensations in space are reviewed, namely, vestibular and visual systems, and cutaneous exteroceptors. These systems all converge at the level of the cerebellar cortex which analyzes accelerations via labyrinthine connections and integrates visual, acoustic, and other data. The mechanism of action of vestibular receptors is discussed in relation to their anatomical position and to the constant stimulus of 1 g. Gravity receptors appear to follow the Weber-Fechner law that for a sensation to increase by equal amounts (arithmetical progression), the stimulus must increase by geometrical progression. An hypothesis is presented that under zero-g conditions responses to a given acceleration will be greater than when sense organs are already subjected to a constant stimulus of 1 g. It is also postulated that the otoliths work as a differential inertia meter. Experimental verification of these hypotheses is suggested by means of comparing-in

PHYSIOLOGY (Cont'd)

the same animal—the response to acceleration on Earth and during orbital flight.

PLANETS

71,867 CONVECTION IN PLANETARY INTERIORS Kopal, Z. Icarus, v. 1, no. 5–6, pp. 391–400, April 1963

An attempt is made to formulate explicitly the linearized equations safeguarding the conservation of mass, energy, and momentum of viscous flow inside a heterogeneous, compressible fluid sphere in which the coefficient of viscosity is an arbitrary function of central distance. The results are compared with those previously obtained by Chandrasekhar. An application of such equations to the problem of convection in lunar or planetary interiors is considered.

71,868 THE EQUILIBRIUM FIGURES OF THE EARTH AND THE MAJOR PLANETS James, R., Kopal, Z. *Icarus*, v. 1, no. 5–6, pp. 442–454, April 1963

The form, exterior potential, and moments of inertia of the terrestrial globe as influenced by its axial rotation are determined correctly to quantities of second order in superficial distortion, assuming the Earth to be in hydrostatic equilibrium, on the basis of both "standard" and "minimum" distribution of density inside the Earth as deduced by Bullen from seismological evidence. A similar study is presented of all consequences of the axial rotation of Jupiter and Saturn, on the basis of their models of internal structure worked out recently by de Marcus.

71,869 RADIO EMISSION FROM THE PLANETS Roberts, J. A. Planetary and Space Science, v. 11, no. 3, pp. 221–259, March 1963

The history and present state of knowledge of the radio emissions from planets are reviewed. The emission from each planet is discussed in order of increasing distance from the Sun. The two types of nonthermal emission received from Jupiter are discussed in detail, and the theories of origin of these emissions are reviewed.

PLASMA

71,870 DENSITY FLUCTUATIONS IN A NONEQUILIBRIUM PLASMA Salpeter, E. E. Journal of Geophysical Research, v. 68, no. 5, pp. 1321-1333, March 1, 1963

A dilute ionized gas is considered for which electron-ion collisions can be neglected and which deviates from thermal equilibrium by having an ion temperature T_i different from the electron temperature T_e . These conditions apply to the ionosphere in the F layer and above. Methods are reviewed for treating statistical mechanics at thermal equilibrium and the Boltzmann equation for general problems. The electronelectron, electron-ion, and ion-ion pair correlation functions are derived for general T_e/T_i and an arbitrary time-independent magnetic field. The total cross section for scattering of an electromagnetic wave from such a gas is derived for general T_e/T_i . The results are shown to agree with the integral of the theoretical frequency spectrum derived previously by a number of authors. For long wavelength and $T_i/T_e << 1$ the cross section is proportional to T_i/T_e . The sources of error for an incorrect result stated by Renau are explained.

PLASMA ACCELERATORS

71,871 ELECTROSTATIC ACCELERATION OF NEUTRAL PLASMA—MOMENTUM TRANSFER THROUGH MAGNETIC FIELDS James, G. S., Dotson, J., Wilson, T. September 1962 Avco Corp., Avco-Everett Research Lab., Everett, Mass. Research Report 150

Electrostatic plasma accelerators which avoid the spacecharge limitations of conventional ion rockets are described. Additional advantages for these devices include moderate requirements on magnetic field strength and on power level. In cylindrical and annular geometries, neutral plasmas can exhibit axial acceleration under the influence of externally applied axial electrostatic fields in the presence of radial magnetic fields. A critical engineering question concerns the effectiveness of the radial magnetic field in inhibiting the upstream diffusion of electrons. This diffusion is an energy loss mechanism. Both classical and anomalous (Bohm type) electron diffusion models are considered. Experiments are described which substantiate the existence of the mechanism for momentum transfer to neutral plasmas. The experiments are in approximate agreement with the anomalous (Bohm type) diffusion model and are in clear disagreement with the classical diffusion model. The engineering significance of this result and possible approaches for dealing with it are considered.

PROPULSION SYSTEMS

71,872 STATUS AND TRENDS—SPACE PROPULSION Tischler, A. O. Mechanical Engineering, v. 85, no. 3, pp. 48–55, March 1963

Some of the engines available and in development for propulsion for space launch vehicles are listed and discussed, including the H-1, the F-1, the A-3, the J-2, and the M-1. The trend toward hydrogen-oxygen as a propellant for upper stages, and its value in the light of the economics of a vehicle system development are noted. Other advantages and disadvantages of hydrogen-oxygen as a propellant are discussed, followed by a similar discussion concerning solid propellants. The propulsion requirements of a typical spacecraft system—the proposed *Apollo*—are examined, including the command, service, and lunar landing modules. Nuclear rockets are described and their advantages cited. Advantages and limitations of electric rockets are discussed. Several charts and illustrations are included.

71,873 SPACECRAFT PROPULSION REQUIREMENTS FOR LUNAR EXPLORATION MISSIONS

Breshears, R. R. (Jet Propulsion Laboratory, California Institute of Technology, Pasadena) Institute of the Aerospace Sciences, Inc., New York, N. Y. Paper 63–76 (Presented at the IAS 31st Annual Meeting, New York, N. Y., January 21–23, 1963)

Some of the spacecraft propulsion system requirements for lunar orbiting and landing missions are presented. Included are requirements imposed by flight path, accelerometer errors, altitude determination errors, and impulse errors. Major consideration was given to determining the effect on the spacecraft system of minimizing the propulsion system requirements. Of particular concern is minimization of the number of maneuvers, number of engines, and throttling requirements.

RADIATION

71,874 SUMMARY OF PRESENT KNOWLEDGE ON SPACE RADIATION Geodeke, A. D. February 1963 Douglas Aircraft Co., Inc., Missile and Space Systems Div., Santa Monica, Calif. Engineering Paper 1567

Present knowledge concerning the nature and properties of interplanetary plasma and of galactic, solar, and trapped radiations is discussed. Particular emphasis is placed upon solar cosmic radiation, solar flares, solar-terrestrial relationships, and time variations. Results of analyses of various events are described in the light of biological dose restrictions. Present research programs on prediction of solar cosmic rays and their time variations are also covered.

71,875 RADIATION EFFECTS ON SOLAR CELLS AND GLASS: AN ANNOTATED BIBLIOGRAPHY Beltran, A. A., Graziano, E. E. October 1961 Lockheed Missiles and Space Co., Sunnyvale, Calif. SB-61-58 ASTIA AD-271,036 A selected list is presented of annotated references to literature regarding ionizing radiation effects on (1) photovoltaic cells, and (2) glasses of various compositions which might be considered for solar battery glass cover slides. The literature search covered the period from January 1948 to August 1961.

71,876 EFFECT OF ELECTRON IRRADIATION ON THE MECHANICAL PROPERTIES OF A COMPOSITE FOIL FOR INFLATABLE SATELLITES James, T. G. (NASA/Langley Research Center, Langley Field, Va.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn.,

November 5–7, 1962," pp. 260–268, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper B-7

The primary effect of electron irradiation on the *Echo 2* skin material is an increased brittleness which leads to an early and brittle failure in both the burst strength and ultimate strength tests. Severe surface damage, which occurs at doses on the order of 10^{17} e/cm², causes mechanical damage to the aluminum foil portion of the skin and may lead to changes in the temperature control characteristics of the surface.

71,877 ACUTE EFFECTS OF RADIATION EXPOSURE IN MAN

Nickson, J. J. (Memorial Hospital & Sloan Kettering Institute, New York, N. Y.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 269–274, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper C-1

The data discussed are derived primarily from observations of radiation exposure in man. The events described take place less than three months after the onset of the exposure. The data arise from three sorts of observation: (1) those on patients who receive total body radiation in an attempt to ameliorate some ailment, (2) accounts of nuclear accidents involving reactors, and (3) the consequences of exposure to the events after the use or testing of nuclear devices.

71,878 EFFECTS OF ACUTE RADIATION EXPOSURE ON HUMAN PERFORMANCE Payne, R. B. (Air Force School of Aerospace Medicine, Austin, Texas) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 343–374, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper C-5

In an effort to ascertain the effects of acute radiation exposure on human performance, three well-known perceptual-

RADIATION (Cont'd)

motor tasks were given to a group of male adult volunteers, from 19 to 76 years of age, who were usually in advanced stages of neoplastic disease not correctible by surgical intervention or localized radiation therapy. Results are given in charts and tables. Except for the curvature aspect of the 10day performance sequence for complex coordination, the two studies show no dependable evidence that exposure to ionizing radiation affected the variables measured. Infra-human primate studies are discussed, and 55 references are included.

71,879 SECONDARY-PARTICLE DOSE CONTRIBUTIONS INDUCED BY SOLAR PROTON RADIATION Wilson, R. K., Miller, R. A. (General Dynamics/Fort Worth, Texas) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 595–607, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper D-5

A study was made to determine the biological hazard due to secondary radiation components produced in bulk shielding by high-energy extraterrestrial protons. An idealized shield system—spherical-shell shield with a differential-volume watertarget at the center—was chosen for the study. A comparison was made of the physical dose due to primary protons penetrating the shield and the secondaries produced in the shield. It was found that (1) shield-target geometry and target model greatly influence the ratio of primary proton-to-secondary component dose, and (2) secondaries may well be important for shield thicknesses greater than about 10 gm/cm² in the case of an aluminum shield and a solar-flare proton spectrum.

71,880 SPACE PROTON DOSES AT POINTS WITHIN THE HUMAN BODY

Dye, D. L. (The Boeing Co., Seattle, Wash.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 633-661, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper D-8

In a man exposed to space radiations, e.g., an astronaut, body self-shielding produces nonuniform dose distributions which depend upon external shielding configurations and the incident radiation parameters. This paper presents the doses at twelve specific points in the body of a seated man exposed to isotropic incident space protons, where the man is inside various thicknesses of external vehicle shell shielding. The body points, selected for their radiobiological interest, are in (or on) sternum, chest skin, femur, spinal column, eye, central gut, and a series at various lateral depths on the waist. The protons reaching these specific points from all directions traverse tissue thicknesses that were determined from scale drawings of a statistically standard man (75-percentile). The proton penetration, secondary radiation generation, and total dose delivered to each specific body point were calculated using an IBM (Fortran) computer code.

71,881 A CALCULATIONAL PROCEDURE FOR ESTIMATING SPACE RADIATION EXPOSURE DURING LUNAR MISSIONS Miller, R. A., Cranford, W. (General Dynamics/Fort Worth, Texas) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 739-759, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper E-7

In the effort to determine shielding requirements for the protection of man from the hazards of space radiation, a space trajectory radiation exposure procedure (STREP) has been developed to estimate the magnitude of this radiation hazard by calculating the time-integrated spectra incident on a vehicle on a simulated trajectory during missions in cislunar space. STREP will calculate the dose received from radiation penetrating a thin shield. The trajectory and radiation computational techniques are briefly described. Some results are given for calculations of the integrated spectra and dose incident on a vehicle subjected to trapped radiation, cosmic radiation, and solar-flare radiation during a lunar mission of about seven days.

71,882 RADIATION DOSAGES FROM ELECTRONS AND BREMSSTRAHLUNG IN THE VAN ALLEN BELTS Russak, S. L. (Martin-Marietta Corp., Baltimore, Md.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 760–772, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper E-8

Radiation dose rates have been calculated for six electron spectra. The decrease in dose rate with shielding was determined, and in each case the electron dose becomes insignificant with 2 to 6 gm/cm² of aluminum. Electron bremsstrahlung dose rates versus absorber thickness were also calculated. Detailed dosage calculations for an *Apollo*-type spacecraft were made and mission dosages for four lunar trajectories are given to show the effects of trajectory selection. These are compared with the dosages from protons and secondary neutrons in the Van Allen belt. Doses as a function of orbital altitude, inclination and absorber thickness are also presented for the latest version of the inner belt.

71,883 MEASUREMENT OF RADIATION DOSES ON THE SECOND, FOURTH, AND FIFTH SATELLITE-SPACESHIPS

Keirim-Markus, I. B., Kovalev, E. E., Uspenskii, L. N. Artificial Earth Satellites, v. 12, pp. 52-55, March 1963

71,884 SPACE FLIGHTS AND THE RADIATION HAZARD (KOSMICHESKIE POLETY I RADIATSIONNAIA OPASTNOST)

Savenko, I. A., Pisarenko, N. F., Shavrin, P. I. *Priroda*, Moskva, no. 2, pp. 40–48, February 1962 (Abstracted in *Aerospace Medicine*, v. 34, no. 3, p. 280, March 1963)

The following topics are discussed: (1) measurement of radiation dosage in rads, (2) cosmic radiation at the Earth's surface and at low altitudes, (3) the effect of solar radiation on primary cosmic radiation, (4) the radiation belts of Earth, (5) radiation from solar flares, and (6) radiation measurements made on board the second and third Soviet satellites in August and December 1960. The maximum permissible dose in the USSR for individuals working with radioactive materials and ionozing radiation sources is 0.1 rem/working week. In 1959, a period of intense solar activity, the magnitude of the flux of primary radiation particles in space was established as 2 particles/cm²/sec behind a 1 g/cm² thick shield, resulting in 15 mrad/24 hr. A third radiation belt was discovered approximately 50,000 to 60,000 km from the Earth's center, but because of the low energy of its particles (a few hundred ev) it does not constitute a radiation hazard. Shielding provides sufficient protection from the outer radiation belt, but is not adequate for protection from the inner radiation belt; therefore, this zone should be avoided. The main radiation hazard, however, is from the infrequent solar flares. A special well-shielded cabin should be provided for retreat during a flare, or it should be possible to terminate the space flight in time to avoid the flare.

71,885 SPACE RADIATION GUIDE

Saylor, W. P., Winer, D. E., Eiwen, C. J., Carriker, A. W. (American Machine and Foundry Co., Alexandria, Va.) August 1962 Aerospace Medical Research Labs. (6570th), Aerospace Medical Div., Wright-Patterson AFB, Ohio AMRL-TDR-62-86 (Abstracted in Aerospace Medicine, v. 34, no. 3, p. 279, March 1963)

The Space Radiation Guide is intended to be a reliable, easily understood handbook that will provide sufficient knowledge of the nature of space radiations to permit comprehension of the total space radiation problem as it pertains to the hazards of manned space flight. The guide is not intended to provide answers to all problems, but to present much of the factual data currently known and to indicate areas where information is sketchy and inconclusive. The radiations considered are cosmic rays, solar radiation, and the geomagnetically trapped (Van Allen) radiations. Included are chapters on instruments used for measuring these radiations, on shielding techniques, and on biological effects. A total of 34 references is included.

RADIATION BELTS

71,886 RADIO MEASUREMENTS OF A MANMADE RADIATION BELT National Bureau of Standards, Technical News Bulletin, v. 47, no. 3, pp. 38–39, March 1963

In cooperation with the Geophysical Institute of Peru, the NBS Observatory at Jicamarca has made a series of measurements of the synchrotron radiation emitted by the man-made belt of high energy electrons formed by a high altitude nuclear detonation. From these measurements, made at 30 to 50 Mc, the number, energy spectrum, and decay rate of the electron have been derived.

RADIO ASTRONOMY

71,887 BIBLIOGRAPHY ON ATMOSPHERIC ASPECTS OF RADIO ASTRONOMY INCLUDING SELECTED REFERENCES TO RELATED FIELDS Nupen, W. May 1, 1963 National Bureau of Standards, Boulder Labs., Colo. Technical Note 171

This bibliography contains over a thousand abstracts or titles from literature published between 1900 and 1961, inclusive; however, the bulk of the literature follows the discovery (Jansky, 1932) of radio-frequency radiation from the Sun, and especially the building of radio telescopes since World War II. Subject matter is confined to (1) the effects of the Earth's atmosphere on radio-frequency radiation from the Sun, planets, stars, the galaxies and intergalactic space, or (2) knowledge of atmospheric or ionospheric structure, composition, or physics.

RADIO TELESCOPES

71,888 RADIO TELESCOPE STRUCTURES Feld, J. Annals of the New York Academy of Sciences, v. 93, Article 10, pp. 351–456, May 31, 1962

The new radio astronomy technique, its purposes, and some of the announced results are explained as a background to discussion of the radio telescope itself. Loading criteria which must be taken as the basis of structural design are discussed, and differences in approach from normal structural design are noted. Feasibility studies of large telescopes are reported, and the design procedure for a 600-ft parabaloid dish is given. Actual constructions in England, The Netherlands, Germany, USSR, and Australia are described. Comparative studies and design of the 140-ft telescope of the Associated Universities, Inc., are reported, and fixed-shell radio telescopes now in use in the U.S. are described. Forty-six pages of illustrations and diagrams are included.

RE-ENTRY TRAJECTORIES

71,889 BIOSATELLITE RECOVERY FROM CIRCULAR ORBITS Swet, C. J. October 1962 Johns Hopkins University, Applied Physics Lab., Silver Spring, Md. CM-1026

This report is a primer for the nonballistician who is concerned with the design or selection of biospace experiments, and provides him with some feeling for the ballistics of biosatellite recovery. Some results of a recent parametric study of a wide variety of likely descent trajectories from near-Earth orbits are presented in nonspecialized terms. Although computed by approximate methods, these results are believed to be sufficiently accurate for most planning purposes. No attempt is made to describe the computational methods or the underlying physics.

RE-ENTRY VEHICLES

71,890 OPTIMIZATION OF LIFTING RE-ENTRY VEHICLES Hankey, W. L., Jr. March 1963 Aeronautical Systems Division, Wright-Patterson AFB, Ohio ASD TDR-62-1102

Acrodynamic lift is used during re-entry to provide range maneuverability so that a precise site can be selected and a horizontal landing capability provided. Maximum maneuverability may be achieved by modulating the hypersonic lift-todrag ratio (L/D). In this study the lifting re-entry configuration was optimized to maximize hypersonic L/D within the heating, stability, and landing constraints. A flat bottom surface, clipped delta planform with a 0.32 taper ratio, dorsal delta fins, and elliptical (2:1) nose and leading edges were ascertained to produce maximum hypersonic L/D for the prescribed constraints.

RELATIVITY THEORY

- 71,891 GRAVITATIONAL ENERGY RADIATION Møller, C. Physics Letters, v. 3, no. 7, pp. 329–331, February 15, 1963
- 71,892 ON THE INVARIANT SPATIAL DISTANCE IN A CURVED SPACE-TIME WITH SPHERICAL SYMMETRY. II—THE PROBLEM OF THE ALLOWABLE MEAN VALUE FOR THE DISTANCES AMONG SEVERAL OBSERVERS Nariai, H., Ueno, Y. Progress of Theoretical Physics, v. 27, no. 4, pp. 707–731, April 1962

An attempt is made to study in detail the problem of the allowable mean value for the invariant spatial distances among several observers in a certain class of the space-time with spherical symmetry. It is found that, except in a few cases, a simultaneous determination can be made of the functional form of the allowable mean value and the metric tensor for the space time under consideration. The results thus obtained are applied to various space-times present in cosmology.

RENDEZVOUS ORBITS

71,893 A PARAMETRIC INVESTIGATION OF THE LUNAR-ORBIT-RENDEZVOUS SCHEME Thomas, D. F., Bird, J. D. April 1963 National Aeronautics and Space Administration, Washington, D. C. TN D-1623

This study was made for various crew sizes, transported weights, lunar-orbit altitudes, types of lunar orbits, and fuels. The results indicate a substantial saving in initial vehicle weight for the lunar-orbital-rendezvous mission as compared with the direct lunar mission for all conditions studied. Also, entry into an elliptic lunar orbit at perilune presents a saving in initial vehicle weight when compared with circular lunar orbits and elliptic lunar orbits entered at apolune with each of the three orbits having the same maximum altitude.

SATELLITES

```
71,894 SCIENTIFIC SATELLITES, AN ASTIA REPORT
BIBLIOGRAPHY
Bjorge, S.
December 1962
Armed Services Technical Information Agency,
Arlington, Va.
ASTIA AD-290,800
```

This select bibliography covers the design and instrumentation of scientific satellites, properties of the ionosphere derived from satellite research, and meteorological satellites. It was prepared for members attending the Scientific Satellite Symposia sponsored by the American Astronautical Society on December 27, 1962.

```
71,895 BRIEF DATA ON SOVIET ARTIFICIAL EARTH
SATELLITES, SATELLITE-SPACESHIPS, AND
SPACE ROCKETS
Artificial Earth Satellites, v. 12, pp. 3–6, March 1963
```

71,896 LONG LIFE SATELLITE RELIABILITY PROGRAM Walsh, T. M., Heubner, D. F. August 1962 General Electric Co., Missile and Space Div., Philadelphia, Pa. Document 62SD4299

As a portion of the Advent Communications Satellite Program, the General Electric Co.'s Missile and Space Division has developed an approach for assuring long life to nonmaintainable space vehicles, which is based on strength degradation theories and the utilization of design standards, part specifications, and design data sheets. Particular emphasis is placed on methods for evaluating long-life capabilities and the development of screening tests. Analysis of results of tests completed on commercial and MIL specification resistors, capacitors, and semiconductors indicates that (1) physical laws exist in nature which quantitatively define irreversible strength degradation processes for electronic parts; (2) a mathematical relation exists between progressive stress and constant stress test results on like parts; (3) the application of selected screening tests such as current noise, thermal resistance, X-ray, proof tests, etc., on a 100-percent basis will identify and eliminate potentially short-lived parts; and (4) the theoretical failure distribution which best fits life data, specifically capacitors, is the Weibull with a shape parameter, β , less than 1. Data from tests and investigations of materials and electromechanical parts normally found in spacecraft design are also discussed.

71,897 SATELLITE SITUATION REPORT, VOLUME 3, NO. 6 March 13, 1963 National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Md. X-533-63-1

Tables of data on the status of satellites which were computed and compiled by the Goddard Space Flight Center, Norad, and the Smithsonian Astrophysical Observatory are given.

SATURN

71,898 ON THE OBSERVATION OF THE OCCULTATION OF STARS BY SATURN'S RINGS Bobrov, M. S. Soviet Astronomy—AJ, v. 6, no. 4, pp. 525–531, January–February 1963

Observations of the occultation of stars by Saturn's rings can be used to obtain the following important parameters and data: (1) the optical thickness τ_0 of the rings as a function of the distance to the center of the planet; (2) the dimensions of the rings; (3) the position, width, and optical thickness of the divisions; (4) the influence of ring matter on the diffraction pattern and the spectra of the occulted stars; (5) the presence or absence of rarefied matter beyond the visible region of the rings; and (6) the variations of the parameters and structure with time. Available observations of occultations are discussed, and recommendations for future observations made.

SATURN PROJECT

71,899 RESULTS OF NASA-LVO SOUND PRESSURE LEVEL MEASUREMENTS DURING SA-3 LAUNCH Byrne, F., Crowell, J. March 7, 1963 George C. Marshall Space Flight Center, Huntsville, Ala. MTP-LVO-63-4

Sound pressure level data recorded during the launch and flight of the Saturn 3 on November 16, 1962 are presented. The instrumentation systems, measurement locations, systems calibration, and the data reduction system utilized in the recording and/or reduction of the acoustic data are described. The acoustic data presented were reduced primarily from the thirty measurements taken by the Launch Vehicle Operations Division, Marshall Space Flight Center, Cape Canaveral, Florida, and represent the Division's contribution to the Saturn Environmental Measurement Program. This program is a combined effort by several groups to define the induced environment experienced by the vehicle, the ground support equipment and facilities, and the neighboring populated areas during the launch and flight of Saturn vehicles. The acoustic data are shown in both tabular and graphical forms.

71,900 SATURN ASCENDING PHASE GUIDANCE AND CONTROL TECHNIQUES
Moore, F. B., Brooks, M. (NASA/George C. Marshall Space Flight Center, Huntsville, Ala.)
American Rocket Society, Inc., New York, N. Y. 2458-62 (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17–19, 1962)

The Saturn guidance and control concept must be sufficiently broad to accommodate a variety of vehicle configurations and engine specifications, coupled with a large assortment of mission objectives and flight paths. The Adaptive Guidance Mode, the guidance concept under development at the Marshall Space Flight Center, meets these requirements. This mode functions by accepting the present vehicle flight variables and engine parameters as initial conditions and defining the optimum path ahead which meets the mission requirements. This information is supplied in the form of attitude and cutoff commands.

SELENOCENTRIC ORBITS

71,901 ON A MODIFICATION OF HANSEN'S LUNAR THEORY Musen, P. Journal of Geophysical Research, v. 68, no. 5, pp. 1439–1456, March 1, 1963

A modification of Hansen's lunar theory is given in a form that permits a purely numerical treatment of solar perturbations of planetary satellites or of perturbations caused by the

SELENOCENTRIC ORBITS (Cont'd)

Earth in the motion of hypothetical lunar satellites. The development of the coordinates and of the velocities of a satellite is obtained in the form of a trigonometric series in four arguments with numerical coefficients. Hansen's basic W function is not used at the earlier stages of the computation. Rather than compute W, two characteristic features of Hansen's theory—the fictitious mean anomaly and the replacement "bar" operation—are used to set up a process of iteration in a convenient form. The preference given to the method of iteration was motivated by the circumstance that an input information must not necessarily be limited to the choice of the rotating ellipse as an intermediary orbit. A systematic investigation of the orbital stability of lunar satellites can be based on the development given in this article.

71,902 GEOMETRICAL CHARACTERISTICS OF LUNAR ORBITS ESTABLISHED FROM EARTH-MOON TRAJECTORIES Tolson, R. H. April 1963 National Aeronautics and Space Administration, Washington, D. C. TN D-1780

An iterated two-body or patched-conic technique was used to relate the transfer-trajectory injection conditions to the selenocentric orbital parameters through a set of simultaneous transcendental equations. Solutions to these equations are presented for typical sets of injection conditions. These solutions suggest a further approximation which leads to some approximate, simple relationships between the lunar orbital parameters and the transfer-trajectory characteristics.

SELENOGRAPHY

71,903 PITON—A LUNAR PROTEUS Bartlett, J. C., Jr. Strolling Astronomer, The, v. 17, no. 1–2, pp. 3–12, January–February 1963

The apparent protean transformations of the lunar mountain Piton during a series of systematic observations, beginning in April 1961 and ending in October of the same year, are discussed in detail. The cause of high-Sun darkenings in the semicircular area immediately east of Piton is explored.

71,904 TOPOGRAPHY AND TECTONICS OF THE LUNAR STRAIGHT WALL Fielder, G. Planetary and Space Science, v. 11, no. 1, pp. 23–30, January 1963

The Straight Wall region of the Moon is surveyed, and the Wall is found to be a dip-slip fault with the upthrow dipping gently away from the fault. Data are drawn from (1) measurement of sunrise shadows, (2) measurement of the width of the face of the Straight Wall at sunset, (3) photometric measurements of the slope of the country in the immediate vicinity of the Wall, and (4) photographic and visual observations. Igneous activity undoubtedly caused the dominant tectonic forces in the region.

SELENOLOGY

71,905 PROPERTIES OF THE LUNAR SURFACE AS REVEALED BY THERMAL RADIATION Muncey, R. W. Australian Journal of Physics, v. 16, no. 1, pp. 24–31, March 1963

On the assumption that the thermal properties are proportional to the temperature, the uniform lunar surface corresponding to the observed optical values is calculated. Possible mixed surfaces are also evaluated. These are examined to estimate the likely variation in microwave radiation, and by comparison with observed results it is shown that the most probable surface consists (1) partly of rock or gravel overlaid by a thin layer of fine dust, and (2) partly of areas with dust extending to beyond the depth from which the microwave radiation emanates.

SHIELDING

71,906 TECHNIQUES USED IN SHIELDING CALCULATIONS FOR HIGH-ENERGY ACCELERATORS: APPLICATIONS TO SPACE SHIELDING Wallace, R., Sondhaus, C. (University of California, Lawrence Radiation Lab., Berkeley) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 829-851, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper F-4

The secondary neutron spectrum produced inside of a thick shield is predicted. The multiplicity of cascade and evaporation secondaries, as well as subsequent moderation of the secondary spectrum, is described quantitatively. Experimental thick-target neutron yields and Monte Carlo cascade data are the bases for these estimates.

71,907 LONO	G RANGE NASA SHIELDING REQUIREMENTS
Keller	, J. W. (National Aeronautics and Space
Admi	nistration, Washington, D. C.)
In "Pi	oceedings of the Symposium on the Protection
Again	st Radiation Hazards in Space, Gatlinburg, Tenn.,
Nover	nber 5–7, 1962," pp. 662–681, Book 2
Atomi	ic Energy Commission, Division of Technical
Inform	nation, Washington, D. C.
TID-7	(652, Paper E-1

In many cases future missions will present much more severe shielding problems than those encountered in Apollo,

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 REPORTS AND OPEN LITERATURE

primarily because of their longer duration in affected regions in space. Several types of future missions are discussed to establish the magnitude of the shielding problems that may exist. Available on-board mass in the form of equipment, fuel, etc., must be utilized as shielding where possible. However, high effectiveness in the utilization of such mass may be difficult. The importance of accurate determination of such effectiveness is cited, and an effort is made to outline a general approach to the space vehicle shielding problem.

71,908 MEASUREMENTS OF SECONDARY SPECTRA FROM HIGH-ENERGY NUCLEAR REACTIONS Strauch, K. (Harvard University, Cambridge, Mass.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5 7, 1962," pp. 409–432, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper D-2

The mechanism of the interaction of a high-energy nucleon with a complex nucleus is discussed, and the various types of reaction are described. The available experimental data on secondary particles are summarized, with emphasis on those secondaries that might be important for shielding considerations.

71,909 SYNTHESIS OF MINIMUM WEIGHT PROTON SHIELDS

Krumbein, A. D., Mittelman, P. S., Troubetzkoy, E. S., Nakache, F., Celnik, J. (United Nuclear Corp., Development Div., White Plains, N. Y.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 773–793, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper E-9

A shield optimization technique originally developed for reactor shields has been applied to proton shields. The cases of both spherical and nonspherical shields have been studied, and the effects of certain special constraints and of secondary neutrons have been included in the analysis. The method indicates the materials which should go into making up the minimum weight shield as well as the order and the thickness of each material. The amount of weight saved is found to be a function of the radius of the shielded void and of the specified attenuation required.

71,910 THE PROSPECTS FOR ACTIVE SHIELDING Levy, R. H. (Avco Corp., Avco-Everett Research Lab.,

Everett, Mass.)

In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 794–807, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper F-1 Various methods of shielding are discussed which might be used instead of the standard method of interposing a substantial amount of matter between the astronaut and the radiation. The importance of such methods is directly related to the weight involved in bulk shielding. Only the radiation hazard due to high-energy protons is considered since it appears at present that such protons constitute the most important natural source of danger to the astronaut. Shielding methods discussed are electrostatic and magnetic.

71,911 COMPARISON OF MONTE CARLO AND IONIZATION CALCULATIONS FOR SPACECRAFT SHIELDING More, K. A., Tiffany, O. L. (The Bendix Corp., Bendix

Systems Div., Ann Arbor, Mich.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 682–697, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper E-2

Various methods have been used to calculate shield designs for manned space vehicles. The methods differ in the approximations used to describe the spacecraft geometry and the physical interactions of the space particles in the vehicle shield. Since calculation time is least for the methods with the most approximations, it is desirable to know what degree of approximation is permissible in designing shields. Results of shield calculations using the Monte Carlo method are compared with those obtained using the more approximate ionization loss method.

71,912 THE COMBINATION OF ACTIVE AND PASSIVE SHIELDING

Norwood, J. M. (General Dynamics/Fort Worth, Texas) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 819–828, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper F-3

It is conceivable that improved shielding of space vehicles against high-energy charged-particle radiation can be obtained by combining active and passive shielding. Methods of shielding calculations and some preliminary observations pertaining to active-passive shielding are given. An analysis based upon the field of a magnetic dipole indicates that weight savings in bulk shielding can be accomplished.

71,913 EXPERIMENTAL TECHNIQUES FOR THE MEASUREMENT OF NUCLEAR SECONDARIES FROM THE INTERACTIONS OF PROTONS OF A FEW HUNDRED MEV Maienschein, F. C., Blosser, T. V., Brashear, H. R., Burrus, W. R., Glass, F. M., Gibson, W. A., Hill, N. W., Johnson, C. F., Love, T. A., McKay, V. A., Peelle, R. W.,

SHIELDING (Cont'd)

Santoro, R. T., Scroggs, R. J., Sliski, T. F., Stripling, H. J., Zobel, W. (Oak Ridge National Lab., Tenn.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 523–594, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper D-4

Preparations are described for a set of experiments designed to check space shielding calculations. Since the experiments are at an early stage, all information must be considered as preliminary. The approximate calculations of Alsmiller have been used to estimate that spectral measurements are most important for secondary neutrons, protons, and gamma rays arising from the interactions of incident protons in the energy range from 20 to 600 Mev. Both "thin" and "thick" targets are needed to check the two pertinent types of calculations—those for the prediction of cross sections and secondary spectra for intranuclear cascades, and those for transport through shields. Previous measurements exist only for thin targets, all of which are limited in energy resolution or in the range of energies and angles covered.

71,914 SHIELDING OF SPACE VEHICLES BY MAGNETIC FIELDS Edmonson, N., Verwers, C. D., Gibbons, F. L. (General Dynamics/Fort Worth, Texas) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 808-818, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper F-2

Protons emitted by solar flares represent a significant radiation hazard to crew members of an interplanetary space vehicle. Shielding the vehicle from charged particles by the use of magnetic fields is an obvious possibility. Reduction of secondary radiation otherwise produced in bulk shielding is an added incentive for study of magnetic shielding. In a program initiated to study various aspects of this shielding, a procedure has been formulated and coded for the IBM 7090 computer for rapidly computing the field of an optimized superconducting solenoid.

SNAP PROJECT

71,915 AUXILIARY POWER SOURCES IN SPACE: TECHNICAL DOCUMENTATION VOLUME II OF III (SNAP) July 30, 1962 North American Aviation, Inc., Space and Information Systems Div., Downey, Calif. SID 62-708, Volume II This bibliographic search surveys the literature on Systems for Nuclear Auxiliary Power (SNAP) from 1957 to July 1962, with special emphasis on space applications of these devices.

SOLAR ACTIVITY

71,916 AN ANALYSIS OF PERIODIC SOLAR ACTIVITY Gudzenko, L. I., Chertoprud, V. E. Soviet Astronomy—AJ, v. 6, no. 4, pp. 590–591, January–February 1963

A preliminary study, reported in a brief communication, has yielded empirical equations for the variations in solar activity. The equations may be useful for predicting activity and for studying physical processes on the Sun.

SOLAR CELLS

71,917 SOLAR CELL DEGRADATION BY PROTONS IN SPACE Madey, R. (Republic Aviation Corp., Farmingdale, N. Y.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5-7, 1962," pp. 243-259, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper B-6

An analytical expression for the decrease in efficiency of a solar cell behind a protective cover glass exposed to a spectral distribution of protons is formulated on the basis that the time rate of decrease in output power is proportional to the proton dose rate absorbed at the surface of the solar cell.

71,918 N-ON-P SOLAR CELLS GAINING WIDER USE Miller, B. Aviation Week & Space Technology, v. 78, no. 9, pp. 88–91, March 4, 1963

Recent tests conducted by NASA indicate that productiontype n-on-p silicon solar cells of seven different solar-cell manufacturers show a factor of 10 improvement in their ability to resist degradation of 1-Mev electrons compared with conventional p-on-n cells.

71,919 RADIATION DAMAGE TO SOLAR CELLS Baicker, J. A., Rappaport, P. (Radio Corporation of America, RCA Labs., Princeton, N. J.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 118–135, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper B-1

The construction, operation, and performance characteristics of solar cells are described. The radiation damage process is discussed, and proton and electron damage to silicon cells detailed. The degradation of the photovoltaic current-voltage characteristics and the spectral response is shown, and a comparison made of various types of solar cells, including silicon, gallium arsenide and cadmium sulfide. Differences between p/n and n/p silicon cells are discussed and explained in terms of basic properties of the radiation defects.

SOLAR CORONA

71,920 CORONAL TEMPERATURE GRADIENT AND THE SOLAR WIND
Billings, D. E., Lilliequist, C. G.
Astrophysical Journal, The, v. 137, no. 1, pp. 16-20, January 1963

An extremely detailed study of λ 5303 in one portion of the corona—from 20°N to 20°S of the equator on the west limb on October 13, 1959—has resulted in evidence for a negative temperature gradient in the inner corona. The significance of such a temperature gradient to solar wind theories is discussed.

71,921 CORONAL IONIZATION BY TWO-STEP COLLISION PROCESSES Athay, R. G., Hyder, C. L. Astrophysical Journal, The, v. 137, no. 1, pp. 21–25, January 1963

It is suggested that ionization by electron impact for some coronal ions may take place via the double process of collisional excitation to metastable levels, thence collisional ionization from these excited levels rather than by direct ionization from the ground state. The relative efficiency of this double-collision process depends primarily on the mean decay lifetimes for the excited levels. A specific computation based on estimated upper limits to the mean lifetimes of excited levels in the Fe x–Fe xv sequence shows a flatter spectrum of ion densities and a somewhat lower ionization temperature than is obtained from direct collisional ionization from the ground state, assuming that the abundance of Fe x equals that of Fe xIV. The two-step collision mechanism permits the possibility of a density dependence in the ionization equilibrium.

71,922 RADIATION TRANSFER PROBLEMS IN THE ROCKET ULTRA-VIOLET LINES Pecker, C., Thomas, R. N. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 3, no. 2, pp. 163–165, April–June 1963 (Paper presented at the Third Colloquium on the Theory of Stellar Atmospheres, England, August 15–16, 1962)

An investigation of the radiative transfer problem in the solar corona and its effect upon the excitation state of coronal ions is summarized. This investigation is one phase of a systematic treatment of the influence of ionic configuration and physical environment upon the excitation state of an ion. A high-temperature plasma, $T_e \sim 10^5 - 10^6$, is treated, with interest lying in the radiation from an impurity in the plasma. A two-level-atom representation of the actual ionic configuration is used.

71,923 DISCUSSION OF PAPER BY L. M. NOBLE AND F. L. SCARF, "HYDRODYNAMIC MODELS OF THE SOLAR CORONA" Parker, E. N. Journal of Geophysical Research, v. 68, no. 6, p. 1769, March 15, 1963

Physical interpretations associated with Noble and Scarf's theoretical calculations of the solar corona are discussed. The original paper appeared in the *Journal of Geophysical Research*, v. 67, no. 12, pp. 4577–4584, November 1962, and was abstracted in the *Astronautics Information Abstracts*, v. 7, no. 2, February 1963. (See Entry #70,550.)

71,924 AUTHORS' REPLY TO PRECEDING DISCUSSION Noble, L. M., Scarf, F. L. Journal of Geophysical Research, v. 68, no. 6, pp. 1770–1772, March 15, 1963

71,925 SOME ASSOCIATIONS BETWEEN RISING PROMINENCES AND THE SOLAR CORONA Kleczek, J., Hansen, R. T. Astronomical Society of the Pacific, Publications of the, v. 74, no. 441, pp. 507-510, December 1962

Coronal spectrograms made during the past ten years at the High Altitude Observatory of Climax, Colorado and the Sacramento Peak Observatory were studied in an attempt to find the time-dependent association between a specific kind of prominence—that rising upward from the Sun—and the corona. Photographs of three documented cases are reproduced and are discussed separately.

71,926 ON THE SPATIAL STRUCTURE OF THE SOLAR CORONA. PART II. Mustel, E. R. Soviet Astronomy—AJ, v. 6, no. 4, pp. 488–496, January–February 1963

The physical and geometrical properties of R-rays (coronal rays above active regions) are considered. From a large number of investigations, it is concluded that these R-rays are very long, stretching beyond the Earth's orbit, and approximately radial. Deviations from radiality are discussed. The geometrical and physical properties of streamers and R-rays are compared and shown to differ radically with respect to their most important properties. Coronal rays in the belt of active regions, but not above the active regions themselves, are considered. It is pointed out that these rays should be similar to R-rays but have a smaller gas density, and that they

SOLAR CORONA (Cont'd)

therefore cannot produce appreciable geometric disturbances. (Part I of this paper was abstracted in Astronautics Information Abstracts, v. 7, no. 3, March 1963, Entry #70,849.)

SOLAR CORPUSCULAR RADIATION

71,927 THE SUN AS A SOURCE OF INTERPLANETARY GAS de Jager, C.
Space Science Reviews, v. 1, no. 3, pp. 487-521, March 1963
(Paper presented at European Preparatory Commission for Space Research Symposium on The Interplanetary Medium, at Paris, France, June 19, 1962)

The quasi-stationary streaming, emerging from the solar activity region, and the flare-associated bursts of particles are discussed. The paper is divided into the following sections: the solar activity centers and the magnetic chromospheric network, quasi-stationary gas flow from the solar active regions, comparison with observations, solar flares, acceleration of particles near a flare acceleration of electrons, solar proton streams with $v \approx 1500$ km/sec, relativistic particles accelerated in connection with flares, and a summary model of flare events.

71,928 SOME CONSEQUENCES OF NONUNIFORMITY OF SOLAR WIND VELOCITY Sarabhai, V. Journal of Geophysical Research, v. 68, no. 5, pp. 1555–1557, March 1, 1963

Conditions in interplanetary space along the solar equatorial plane are examined that are likely to arise when the radial velocity of the solar wind is a function of solar longitude. Some broad consequences of the growth and decay of regions of activity and enhanced wind velocity as a function of time are also examined. It is shown that the resulting two-dimensional model has attractive features relevant to the interpretation of several observed cosmic-ray time variations.

SOLAR FLARES

71,929 COMPARISON OF PRIMARY PROTON DOSE WITH THE DOSE FROM GAMMA RAYS PRODUCED BY INELASTIC SCATTERING OF SOLAR FLARE PROTONS

Alsmiller, F. S., Alsmiller, R. G., Jr., Trubey, D. K. (Oak Ridge National Lab., Tenn.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 718–724, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper E-5

The primary proton dose resulting from solar-flare (May 10, 1969) protons incident on an aluminum shield is compared

with the dose from gamma rays produced by inelastic collisions of the primary protons. Both spherical shell and slab shields are considered.

71,930 RECORDING THE IONISING EMISSION OF FLARES AND ERUPTIVE PROMINENCES BY THE ATMOSPHERIC RECEIVER AT THE ONDREJOV OBSERVATORY Krivský, L., Salava, T., Šnejdárek, I.

Astronomical Institutes of Czechoslovakia, Bulletin of the, v. 14, no. 1, pp. 5–9, 1963

71,931 STATISTICAL PREDICTION OF SOLAR PROTON EVENTS Weddell, J. B. (North American Aviation, Inc., Downey,

Calif.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 88–95, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper A-6

A method of correlating solar flares in time with several indices of activity of solar regions is described. The method determines (1) the probability of occurrence of a flare if each of two indices exceeded given limits, and (2) the average time between measurement of these indices and the outbreak of the flare. Significant correlations are listed; the most important is the tendency for major flares to occur in the second passage across the solar disk of regions exceeding 2000 millionths of the solar hemisphere in area which during their first passage gave rise to small flares. These criteria permit prediction of 69 percent of Class III flares at least 14 days in advance. Flare positions have been correlated with the magnetic field in active regions. The field near the sites of flares tends to be frozen into the solar atmosphere to a greater extent than other portions of the field.

71,932 COMMENTS ON THE PRODUCTION OF SOLAR HIGH ENERGY PARTICLES

Chapman, M. C., Fortney, R. E., Morrison, M. R. (Northrop Corp., Northrop Space Labs., Hawthorne, Calif.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 96–117, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper A-7

A general qualitative model for the production of solar high-energy particles which can explain several observed flare phenomena is used in the analysis of a specific flare event. The model explains the occurrence of solar radio emission, the initial anisotropic and later isotropic distribution of flare particles, Forbush decreases in cosmic-ray intensity, decreases in cosmic radio noise, and fluctuations in the Earth's magnetic field due to solar flare particles. Also explained qualitatively are phenomena such as the occurrence of shock waves during flare events, observed surges in the active region, and movement of magnetic "bumps" before the start of the flare.

SOLAR MAGNETIC FIELDS

71,933 RELATION BETWEEN MOTIONS AND LOCAL MAGNETIC FIELDS IN THE PHOTOSPHERE Bumba, V. Astronomical Institutes of Czechoslovakia, Bulletin of the, v. 14, no. 1, pp. 1-5, 1963

An attempt is made to show that the photospheric plasma moves approximately along the lines of force of the intense local field; i.e., that the organization of the radial motions of the photospheric plasma is largely subordinated to the configuration of the local field of the sunspot group.

SOLAR POWER SUPPLIES

71,934 THE SATELLITE POWER SYSTEM Anderson, R. E. D., Meszaros, G. W., Ciccolella, D. F. Bell Laboratories Record, v. 41, no. 4, pp. 142–150, April 1963

The development of the solar power supply used in *Telstar* is described. Selection of the individual type of solar cell and its integration into the complete system are covered. Highand low-power regulators, and storage batteries are also discussed along with the methods of testing the complete system.

SOLAR PROBES

71,935 VEHICLE TECHNOLOGY CONSIDERATIONS FOR A SOLAR PROBE Foschetti, J. A. April 1963 National Aeronautics and Space Administration, Washington, D. C. TN D-1747

This report demonstrates that solar probes are feasible from the viewpoint of presently planned vehicle technology. For the early attempts the Saturn C-1 is considered to be the most likely vehicle to place the final stage or stages into a circular orbit. If two slightly modified but identical Centaur, Jr., vehicles are used for the upper stages, then this four-stage configuration will be capable of placing from 400 to 2500 lb at perihelion distances of 0.120 to 0.245 AU. A more reliable three-stage configuration, using one *Centaur*, Jr., for the upper stage but requiring greater modification in the original design of the vehicle, would place payloads of 400 to 2500 lb at perihelion distances of 0.185 to 0.290 AU. Analysis of the upper stages was based on the payload value obtained for the Saturn vehicle by using the "Generalized Powered Flight Trajectory Program." At burnout there would be a payload of 24,612 lb in a 100-nm parking orbit.

SOLAR PROMINENCES

71,936 PHYSICAL CONDITIONS IN LIMB FLARES AND ACTIVE PROMINENCES VI. SELECTIVE EXCITATION CONDITIONS Tandberg-Hanssen, E. Astrophysical Journal, The, v. 137, no. 1, pp. 26-37, January 1963

The complex surge prominence of November 18, 1960 is studied spectroscopically. It is shown that the surge consists of different regions where the physical conditions (temperature and/or internal motions) differ from one region to another. The metal and helium regions are shot out from an underlying flare in different directions. The emission from Fe II is considerably fainter than that from Ti II or Ba II.

A finer spectroscopic classification of flares and prominences than that previously introduced is discussed. It is found, as a general rule, that while Ti II lines are stronger than Fe II lines in prominences, the reverse holds true in flares. As a new classification criterion, the line-intensity ratio M = [I(Fe II, 4584)/I(Ti II, 4572)] is introduced.

71,937 HYDROGEN LINES IN THE SPECTRA OF PROMINENCES Sobolev, V. V. Soviet Astronomy—AJ, v. 6, no. 4, pp. 497–503, January–February 1963

Equations which simultaneously determine the intensities and profiles of the Balmer emission lines are obtained. The prominence is assumed to be a homogeneous sphere, the optical radius of which in the Balmer lines can be greater than unity. The equations are solved numerically for two particular cases and the relative intensities and profiles of the H_{α} , H_{β} , and H_{γ} lines are found. It is shown that the theory is in satisfactory agreement with observations. From a comparison of the theory with the observations of one prominence, its optical radius (of the order of 10) and the mean velocity of random motions of hydrogen atoms (about 11 km/sec) are determined.

SOLAR RADIATION

71,938 THE MEASUREMENT OF FAR ULTRAVIOLET HELIUM RADIATION ON THE SUN Bruns, A. V., Prokofev, V. K. Matthews, R., Translator *Planetary and Space Science*, v. 11, no. 1, pp. 73–80, January 1963 (Translated from Iskusstvennye Sputniki Zemli, no. 11, p. 15, 1961)

Measurements of the solar radiation in the He^{II} λ 303.8 Å line are presented which were carried out on December 1 and 2, 1960 employing a photoelectric diffraction spectrometer installed on *Sputnik* 6. These measurements were carried out only in the range of visibility of the Sun, and the

SOLAR RADIATION (Cont'd)

resulting data stored in the memory and later transmitted to Earth. The analysis of these measurements is described. Charts and tables are included.

SOLAR RADIO EMISSION

71,939 SOLAR DECIMETRE RADIO BURSTS Mullaly, R. F., Krishnan, T. Australian Journal of Physics, v. 16, no. 1, pp. 8–23, March 1963

Results are presented of observations at 1420 Mc of about 50 burst events made during 1958–1961 using the Christiansen grating interferometer which operated, on most occasions, to provide a fan beam with 2' of are resolution to half-power points in the E-W direction. The aim of the study is to determine typical physical characteristics of the decimeter burst sources—their sizes, positions, brightness temperatures, and movements. These results have bearing on both the physical nature of the burst sources and on questions of the possible classification of microwave bursts into distinct types.

71,940 UNUSUAL DECREASE OF SOLAR RADIO EMISSION ON 56 cm WAVELENGTH DURING FLARE ON MAY 13, 1960 Tlamicha, A. Astronomical Institutes of Czechoslovakia, Bulletin of the, v. 14, no. 1, p. 24, 1963

71,941 OBSERVATIONS OF THE SOLAR EMISSION ON METER WAVELENGTHS DURING THE TOTAL SOLAR ECLIPSE OF FEBRUARY 15, 1961 Alekseev, Yu. I., Babii, V. I., Vitkevich, V. V., Gorelova, M. V., Sukhovei, A. G. Soviet Astronomy—AJ, v. 6, no. 4, pp. 504-510, January-February 1963

The multichannel radio spectrograph of the Crimean Research station has been recently modified and its wavelength range extended to cover a 40- to 150-Mc range which is divided into four subranges. Results of observations of solar radio emission in the 1.5- to 4-m range during the total solar eclipse of February 15, 1961 for the frequencies 70 to 207 Mc, and data on residual intensities, effective radio diameters, and solar intensity on the day of observations are given.

71,942 CATALOG OF TYPE II (SLOW-DRIFT) AND TYPE IV (CONTINUUM) SOLAR RADIO BURSTS Maxwell, A., Hughes, M. P., Thompson, A. R. Journal of Geophysical Research, v. 68, no. 5, pp. 1347-1354, March 1, 1963

Complete lists are given of solar radio bursts of spectral types II (slow-drift) and IV (continuum) recorded at Fort Davis, Texas, over a five-year period beginning January 1, 1957. These radio bursts are generally accompanied by flares of considerable importance and often precede large-scale geophysical phenomena.

SOLAR SPECTRUM

71,943 INFLUENCE DES ECARTS A L'EQUILIBRE THERMODYNAMIQUE LOCAL DE L'HYDROGENE SUR LE SPECTRE CONTINU DU SOLEIL ET DES ETOILES (INFLUENCE OF VARIATIONS IN THE LOCAL THERMODYNAMIC EQUILIBRIUM OF HYDROGEN ON THE CONTINUOUS SPECTRA OF THE SUN AND STARS) Journal of Quantitative Spectroscopy and Radiative Transfer, v. 3, no. 2, pp. 129–132, April–June 1963 (Paper presented at the Third Colloquium on the Theory of Stellar Atmospheres, England, August 15–16, 1962)

71,944 FIRST RESULTS OBTAINED WITH THE DOUBLE PASS SOLAR SPECTROGRAPH AT THE JUNGFRAUJOCH, SWITZERLAND Delbouille, L., Neven, L., Roland, G. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 3, no. 2, pp. 189–193, April–June 1963 (Paper presented at the Third Colloquium on the Theory of Stellar Atmospheres, England, August 15–16, 1962)

SPACE SUITS

71,945 A THERMAL PROTECTION SYSTEM FOR EXTRA-VEHICULAR SPACE SUITS Whisenhunt, G. B., Knezek, R. A. (Chance Vought Corp., Dallas, Texas) American Rocket Society, Inc., New York, N. Y. 2472-62 (Presented at the Lunar Missions Meeting, Cleveland, Ohio, July 17–19, 1962)

A pressure suit system is described that will provide (1) thermal protection for a worker performing tasks outside a space vehicle, and (2) emergency pressurization within the vehicle.

SPACE VEHICLES

71,946 PROBLEMS IN THE DESIGN OF UNMANNED SPACECRAFT FOR PLANETARY AND INTER-PLANETARY EXPLORATION Miles, J. R., Sr. (National Aeronautics and Space Administration, Washington, D. C.) Institute of the Aerospace Sciences, Inc., New York, N. Y. Paper 63-36 (Presented at the IAS 31st Annual Meeting, New York, N. Y., January 21-23, 1963)

Problems are discussed that will be encountered in the design of spacecraft hardware for unmanned planetary and interplanetary missions for gathering scientific information about planets, other deep space bodies, and the interplanetary medium. Topics mentioned include: biological sterilization and its effects upon spacecraft hardware; midcourse maneuvers; capsule ejection; entry, landing, and deployment; power requirements; thermal control; and communications.

71,947 THEORETICAL STABILITY ANALYSIS OF SKID-ROCKER LANDINGS OF SPACE VEHICLES Fralich, R. W., Kruszewski, E. T. April 1963 National Aeronautics and Space Administration, Washington, D. C. TN D-1625

The governing equations for an arbitrary rigid body sliding on a landing surface are used to derive a stability criterion which relates the critical values of initial velocities to the coefficient of friction, center-of-gravity location, and initial angle of contact. A numerical application of the stability criterion is made for a vehicle used in an experimental investigation.

SPECTRAL ANALYSIS

71,948 INTENSITIES OF WEAK LINES AT THE SOLAR LIMB Houtgast, J., Koelbloed, D. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 3, no. 2, pp. 173–179, April–June 1963 (Paper presented at the Third Colloquium on the Theory of Stellar Atmospheres, England, August 15–16, 1962)

A spectral analysis of the intensities of weak lines in the Fraunhofer spectrum of the Sun's limb and in the emission spectrum of the low chromosphere is discussed. The absolute intensities presented are integrated ones, as observed with a slitless spectrograph, and refer to the radiation from a slice of 1-cm width, through photosphere and chromosphere, parallel to the dispersion in the spectrum, extending outward from the level where the Moon's limb is projected, expressed in 10^{14} erg/sec/ster/Å.

71,949 PHASE CURVES AND ALBEDOS OF TERRESTRIAL PLANETS de Vaucouleurs, G. June 1961 Geophysics Corp. of America, Bedford, Mass. GCA TR-61-26-A ASTIA AD-261,165

This study was undertaken as part of an investigation of navigation within the solar system by optical means. The objective of the investigations was to evaluate the suitability of various physical phenomena as sources of navigational information and to estimate the accuracy of navigational information obtained by various techniques. Ten figures and seven tables are included.

71,950 COMMENT ON EMPIRICAL INFERENCE OF DOPPLER WIDTHS Thomas, R. N. Astrophysical Journal, The, v. 137, no. 1, pp. 38–40, January 1963

The region of validity of Athay's suggested method for isolating the effect of a wholly random, microscopic, depthindependent velocity field in strong Fraunhofer lines is investigated. The applicability of this method to several classes of solar lines is presented.

SPECTROSCOPES

71,951 A SPECTROMETER FOR THE MEASUREMENT OF SOLAR RADIATION IN THE REMOTE ULTRAVIOLET Bruns, A. V., Prokofev, V. K. Cleaves, H. F., Translator *Planetary and Space Science*, v. 11, no. 1, pp. 81–86, January 1963 (Translated from *Iskusstvennye Sputniki Zemli*, no. 11, p. 23, 1961)

The two-channel diffraction spectrometer (installed on Sputnik 6) which was used to carry out investigations in the region of the remote ultraviolet radiation of the Sun outside the atmosphere is described. Several illustrations and charts are included.

71,952 A ROCKET-BORNE HELIUM MASS SPECTROMETER Sauermann, G., Herzog, R. November 1961 Geophysics Corp. of America, Bedford, Mass. GCA TR-61-8-N

The special design, construction, and test performance of a prototype rocket-borne mass spectrometer capable of measuring the helium-partial-density profile in the Earth's atmosphere up to satellite heights are described in detail. To check the possibility of detecting the helium in normal air, a feasibility study was first carried out on a workbench test model. The results of these experiments which led to the design of the rocket-borne prototype are given.

STRATOSCOPE 2

71,953 AIMING A 3-TON TELESCOPE HANGING FROM BALLOON Schlesinger, E. R. *Electronics*, v. 36, no. 6, pp. 47–51, February 8, 1963

The guidance command and the telemetry subsystems for the *Stratoscope 2* are described in detail.

SUN

71,954 THE EARLY EVOLUTION OF THE SUN Ezer, D., Cameron, A. G. W. *Icarus*, v. 1, no. 5–6, pp. 422–441, April 1963

Hayashi has predicted that the early contracting Sun should be highly luminous and fully convective if a correct choice of the photospheric boundary condition is made in constructing solar models in the contracting stages. These predictions are investigated. The results presented are preliminary in the sense that isolated solar models have been calculated rather than evolutionary sequences of models. No nuclear energy generation has been included, so that the luminosity derives entirely from the release of gravitational potential energy. An assumption is made regarding the distribution of this energy source. All models are assumed to be in homologous contraction so that the relative structure would not change in an infinitesimal contraction.

71,955 INVESTIGATIONS OF THE SUN'S X-RADIATION II MEASUREMENTS WITH SPACE SATELLITES Mandelshtam, S. L., Tindo, I. P., Voronko, Yu. K., Vasilyev, B. N., Shurygin, A. I. Daisley, R. E., Translator Planetary and Space Science, v. 11, no. 1, pp. 61–71, January 1963 (Translated from Iskusstvennye Sputniki Zemli, no. 11, p. 3, 1961)

The results are reported of measurements of the Sun's Xradiation intensity at wavelengths less than 10 Å on August 19 and 20 and December I and 2, 1960 during the flights of the second and third USSR satellites. The purpose of the measurements was to study the intensity of radiation over an extended period. A number of charts, maps, and drawings are included. (Part I of this article was abstracted in Astronautics Information Abstracts, v. 7, no. 3, March 1963, Entry #70,929.)

71,956 SOLAR NEUTRINO FLUX Bahcall, J. N., Fowler, W. A., Iben, I., Jr., Sears, R. L. Astrophysical Journal, The, v. 137, no. 1, pp. 344–345, January 1963

A detailed calculation of the expected B^8 solar neutrino flux has been made, using recently obtained accurate values for the Be⁷ electron-capture cross section and the Be⁷ formation cross section.

SUN TRACKING SYSTEMS

71,957 A SOLAR TRACKING HEAD
Vasilev, I. G., Shapov, A. I.
Cornish, J., Translator
Planetary and Space Science, v. 11, no. 1, pp. 93–98,
January 1963
(Translated from Iskusstvennye Sputniki Zemli, no. 11,
p. 87, 1961)

The tracking head described is intended to work in combination with a diffraction spectrometer for measuring solar radiation in the far ultraviolet. The task of this head is to direct the beam of solar rays reflected by a mirror into the slit of the spectrometer when the spectrometer is in various positions. Diagrams and a photograph of the tracking head are included.

SUNSPOTS

71,958 ENERGY TRANSPORT IN A SUNSPOT de Jager, C. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 3, no. 2, pp. 181–184, April–June 1963 (Paper presented at the Third Colloquium on the Theory of Stellar Atmospheres, England, August 15–16, 1962)

The process of the inhibition of the convective energy transport which may cause the darkness in sunspots is discussed.

71,959 DIRECT OBSERVATIONAL EVIDENCE FOR A SMALL VALUE OF THE TURBULENCE IN SUNSPOT UMBRAE Elste, G. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 3, no. 2, p. 185, April-June 1963 (Paper presented at the Third Colloquium on the Theory of Stellar Atmospheres, England, August 15-16, 1962)

71,960 DIFFICULTIES IN THE EXPLANATION OF THE WINGS OF THE BALMER LINES IN SUNSPOT UMBRAE Elste, G.

Journal of Quantitative Spectroscopy and Radiative Transfer, v. 3, no. 2, pp. 187–188, April–June 1963 (Paper presented at the Third Colloquium on the Theory of Stellar Atmospheres, England, August 15–16, 1962)

71,961 THE ACTIVATION OF A DARK FILAMENT Venugopal, V. R., Alvi, H. Astronomical Society of the Pacific, Publications of the, v. 74, no. 441, pp. 529–532, December 1962

Spectrohelioscopic observation from November 12 to 16, 1957, of the solar disk at Nizamiah Observatory, India, reveals the activation and movement of a quiescent dark filament which originated in the vicinity of a group of sunspots and, having moved across the solar disk, was last observed on the limb as a prominence. A connection between spot groups and the disintegration of filaments is noted.

71,962 THE SUNSPOT AREAS AND THE WOLF NUMBERS. A STUDY OF THE ANALYTICAL RELATIONS GIVEN BY J. XANTHAKIS AND J. MERGENTALER Xanthakis, J., Banos, C. 1962 Academy of Athens, Research and Computing Center, Greece Series I (Astronomy) No. 9 New analytical relations between the sunspot areas and the corresponding Wolf numbers have recently been given by J. Xanthakis and J. Mergentaler. A comparative study of these relations is reported, and an effort is made to explain the great differences arising in some years between the ratio resulting from observational data and the relations given by Xanthakis.

TEKTITES

71,963 RARE-EARTH ELEMENTS IN TEKTITES Haskin, L., Gehl, M. A. Science, v. 139, no. 3539, pp. 1056–1058, March 15, 1963

The rare-earth element content of three tektites has been determined by neutron activation analysis. The relative abundance patterns are all nearly alike and are identical to the pattern characteristic of well-differentiated terrestrial sediments. Possible consequences of finding this pattern in truly extraterrestrial matter are considered.

TELEMETRY SYSTEMS

71,965 SATELLITE COMMAND AND TELEMETRY SYSTEM Moore, E. P., Maybach, W. J. Bell Laboratories Record, v. 41, no. 4, pp. 156–160, April 1963

A description is given of the *Telstar* VHF system, including command and telemetry circuits.

TELSTAR PROJECT

71,966 PROJECT TELSTAR—ITS AIMS AND PURPOSES Dickieson, A. C. Bell Laboratories Record, v. 41, no. 4, pp. 116–121, April 1963

The early history of the *Telstar* project is described, including (1) antenna sites and equipment, (2) frequency band selection, and (3) orbital path limitations.

TELSTAR 2

71,967 TELSTAR II SATELLITE LAUNCHED Bell Laboratories Record, v. 41, no. 4, p. 181, April 1963

Orbital data, operational characteristics, and equipment changes (based on *Telstar 1* data) are considered.

TEMPERATURE CONTROL

71,968 SIMILITUDE IN THERMAL MODELS OF SPACECRAFT Katzoff, S. April 1963 National Aeronautics and Space Administration, Washington, D. C.

TN D-1631

Scaling criteria for the design and testing of thermal models of spacecraft are discussed. Four dimensionless similitude parameters are derived concerning radiation, internal heat generation, thermal conductivities of materials, and heat capacities of materials. Difficulties in achieving accurate simulation are pointed out and methods of effecting compromises without seriously affecting the validity of the data are suggested.

THERMOELECTRIC CONVERTERS

71,969 THERMOELECTRIC GENERATORS AND MATERIALS: RADIATION EFFECTS, RELIABILITY, LIFETIME, AND FAILURE. AN ANNOTATED BIBLIOGRAPHY Graziano, E. January 1962 Lockheed Missiles and Space Co., Sunnyvale, Calif. SB-61-60 ASTIA AD-273,953

This literature search was conducted as part of research on the problems of using thermoelectric generators which would directly convert heat from nuclear sources into electricity. The purpose of the search was to bring to light any information regarding reliability, lifetime, and mean time of failure of thermoelectric generators and materials due to oxidation, cracking, galvanic action, short circuits, radiation effects, and sublimation.

THRUST VECTOR CONTROL

71,970 A STUDY OF THRUST VECTOR CONTROL BY LIQUID INJECTION INTO ROCKET NOZZLES Sehgal, R., Wu, J. M. May 1, 1963 Jet Propulsion Laboratory, California Institute of Technology, Pasadena TM 33-138

Analytical studies are presented of thrust vector control by the injection of a volatile liquid into the expansion cone of a rocket motor. An analytical model is constructed to represent the interaction between the injected liquid and the supersonic stream by considering the mechanism of atomization, the rate of evaporation, and the motion of droplets, based on the injectant and gas properties. The injectant liquid considered has a higher vapor pressure relative to the pressures

^{71,964} THE MORAVIAN MOLDAVITES AND THEIR BEARING ON THE TEKTITE PROBLEM Simon, R. Astronomical Institutes of Czechoslovakia, Bulletin of the, v. 14, no. 1, pp. 24–25, 1963

THRUST VECTOR CONTROL (Cont'd)

it encounters during the injection process, thus eliminating the phenomenon of flash evaporation. The body shape due to the generated vapor is calculated from basic drag equations. A method for calculating reasonable values of drag coefficient other than Stokes flow is presented.

TIROS PROJECT

71,971 TIROS ACHIEVEMENTS Rados, R. M. Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 28–29, April 1963

The record of success of the *Tiros* satellites is summarized. The significance of each component—spacecraft, launch vehicle, data-acquisition facilities and data-utilization areas—is evaluated in terms of the over-all success of the *Tiros* project.

71,972 TIROS OPERATIONS Powers, E. F. Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 29–31, April 1963

The Technical Control Center (TCC) at NASA Goddard Space Flight Center exercises operational control for the *Tiros* satellites. TCC is responsible for the monitoring and operational evaluation of both spacecraft performance and Command and Data Acquisition station performance, and for the direction and coordination of the operational phase of the *Tiros* mission. The manner in which these functions are performed is explained briefly.

71,973 TIROS METEOROLOGICAL OPERATIONS Jones, J. B., Mace, L. M. Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 32–36, April 1963

The development of the *Tiros* meteorological data-utilization experiment through exploratory, evolutionary, and interim operational phases is discussed. *Tiros* storm surveillance capability from data-sparse regions is described and illustrated.

71,974 TOSS: TIROS OPERATIONAL SATELLITE SYSTEM Glaser, A. H., Christensen, F. E. Astronautics and Aerospace Engineering, v. 1, no. 3, pp. 38-41, April 1963

TOSS, an interim system based on existing proved components and techniques using two *Tiros* satellites in orbits in phase opposition, is described as a step toward (1) implementation of the eventual National Operational Meteorological Satellite System (NOMSS), and (2) making possible picture coverage of much of the Earth's surface on a programmed basis each day.

TIROS 3

```
71,975 A RADIATION VIEW OF HURRICANE ANNA
FROM THE TIROS III METEOROLOGICAL
SATELLITE
Bandeen, W. R., Conrath, B. J., Nordberg, W.,
Thompson, H. P.
April 1963
National Aeronautics and Space Administration,
Washington, D. C.
TN D-1713
```

The Tiros 3 meteorological satellite (1961 ρ 1), containing two television cameras and a family of electromagnetic radiation experiments, was launched on July 12, 1961. Nine days later, the satellite passed directly over Hurricane Anna, the first hurricane of the 1961 Atlantic season. Data gathered by a five-channel medium resolution radiometer during one pass over the hurricane are presented in the form of maps; and certain implications of the data are discussed. Supporting television pictures are also given. The design and calibration of the medium resolution radiometer are briefly described.

TOPSIDE SOUNDER PROJECT

71,976 PERTURBATION OF THE LOCAL ELECTRON DENSITY BY ALOUETTE SATELLITE Warren, E. Canadian Journal of Physics, v. 41, no. 1, pp. 188–189, January 1963

Data obtained during the first two weeks of *Alouette* operation have been examined. Top-side sounder ionograms are presented which give some information concerning the effects produced by a satellite upon its environment.

71,977 TOP-SIDE SPREAD ECHOES Petrie, L. E. Canadian Journal of Physics, v. 41, no. 1, pp. 194–195, January 1963

Top-side ionograms from *Alouette*, recorded from September 29 to October 4, 1962, have been examined for spread echoes. The geographic area covered was 25 to 70° N, and 50 to 105° W, between 1030 to 1230 and 2015 to 2215 hr local time.

71,978 PLASMA AND CYCLOTRON SPIKE PHENOMENA OBSERVED IN TOP-SIDE IONOGRAMS Lockwood, G. E. K. *Canadian Journal of Physics*, v. 41, no. 1, pp. 190–194, January 1963

The existence of the plasma that surrounds the satellite transmitter gives rise to certain phenomena—the Z-wave pulse propagation, the plasma spike, and the cyclotron spike—which can be used to calculate the electron density of the medium as well as the magnitude and direction of the Earth's magnetic field at the satellite.

71,979 A PRELIMINARY STUDY OF THE ELECTRON DENSITY AT 1000 KILOMETERS Hagg, E. L. Canadian Journal of Physics, v. 41, no. 1, pp. 195–199, January 1963

Top-side ionograms from *Alouette* for September 29 to October 3, 1962 have been analyzed to determine the electron density near the height of the satellite. Ordinary-wave reflections from the ionosphere near the satellite are not observed on the ionograms; consequently, the plasma frequency was obtained from the frequency at which the extraordinary-wave trace approached the satellite height. Gyrofrequencies were calculated from the magnetic field intensities at the surface of the Earth, using the inverse-cube law.

TRACKING SYSTEMS

71,980 GODDARD RANGE AND RANGE RATE SYSTEM DESIGN EVALUATION REPORT November 23, 1962, Revised Motorola, Inc., Scottsdale, Ariz. Report W2719-2-1, Revision 1

Results are reported of the Range and Range Rate System design evaluation performed by Motorola under contract with the NASA Goddard Space Flight Center. A technical discussion of the system's operational configuration is presented along with an analysis of performance based upon that system in order to establish performance limits and an optimum design. A sound analytic basis is established for ensuring that all specified performance characteristics will be realized with a reasonable margin of safety.

TRAJECTORIES

71,981 EFFECT OF LIFT ON SEPARATION DISTANCE AND LOADS FOR AN ABORTING VEHICLE AT MAXIMUM DYNAMIC PRESSURE OF A LUNAR MISSION Janos, J. J., Unangst, J. R. April 1963 National Aeronautics and Space Administration, Washington, D. C. TN D-1775

This investigation considers some of the effects of using lifting trajectories for abort of a lunar mission during the early part of the launch phase. Particular emphasis is placed on determining the effects of lifting abort trajectories on the possibility of a collision of the launch vehicle and spacecraft if abort is initiated at maximum dynamic pressure of the launch trajectory. Abort trajectories are computed with a range of constant values of lift-drag ratio from -1.0 to 1.0 and thrust levels of 83,450 and 151,300 lb.

71,982 ON THE ACCURACY OF APPROXIMATE THRUST STEERING SCHEDULES IN OPTIMAL CORREC-TIONAL MANEUVERS Moskowitz, S. E. Astronautica Acta, v. 9, no. 1, pp. 20–30, 1963

For a correctional maneuver, standards of approximation are developed by which the extent of proximity to true or exact values can be ascertained numerically for the dependent variables and the burning time. The degree of relevancy of the linear program as opposed to the more general bilinear program is indicated. A numerical verification is given by examination of a typical example and comparison of the results with the exact solution obtained by numerical integration.

71,983 A METHOD FOR DETERMINING APPROXIMATE INITIAL CONDITIONS FOR INTERPLANETARY TRAJECTORIES Rowell, L. N. Journal of the Astronautical Sciences, The, v. 10, no. 1, pp. 1-7, Spring 1963

A method to determine an approximate set of the required cutoff conditions for any interplanetary trajectory is described. The method employs a patched conic technique and requires a repeated solution of the two-body problem. The trajectory considered is assumed to consist of two parts: (1) a geocentric hyperbolic orbit, which starts at the cutoff point and ends at the Earth's sphere of influence; and (2) a heliocentric elliptical orbit, based on massless planets, which ends at the destination planet. Elliptical and noncoplanar planetary orbits are used and planetary perturbations ignored.

TRANSFER ORBITS

71,984 AN ANALYTIC PROOF THAT THE HOHMANN-TYPE TRANSFER IS THE TRUE MINIMUM TWO-IMPULSE TRANSFER Barrar, R. B. Astronautica Acta, v. 9, no. 1, pp. 1–11, 1963

71,985 MINIMUM TIME TRANSFER BETWEEN COPLANAR, CIRCULAR ORBITS BY TWO IMPULSES AND THE PROPULSION REQUIREMENTS Wang, K.

Astronautica Acta, v. 9, no. 1, pp. 12-19, 1963

The problem of minimum time transfer between coplanar circular orbits by two impulses is studied and an approximate solution obtained. A convenient procedure is also presented for the determination of the propulsion requirements for twoimpulse rendezvous between satellites in circular orbits.

UPPER ATMOSPHERE

71,986 HYDROXYL EMISSION IN THE UPPER ATMOSPHERE Krassovsky, V. I.
Massey, H. S. H., Translator Planetary and Space Science, v. 10, pp. 7–17, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

The main factual data which have become available on upper atmospheric emissions since the recent accumulation of observational material in the USSR are surveyed. The mechanisms causing these emissions and their variations are analyzed.

71,987 VIBRATIONALLY EXCITED MOLECULES IN ATMOSPHERIC REACTIONS Dalgarno, A.

Planetary and Space Science, v. 10, pp. 19–28, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

The production in the atmosphere of vibrationally excited molecules in the ground electronic states by collisional processes is discussed, and it is estimated that the corresponding yield of vibrationally excited oxygen, O_2° , is of the order of 10^{12} cm⁻² sec⁻¹; of vibrationally excited nitric oxide, NO°, is of the order of 10^{11} cm⁻² sec⁻¹; and of vibrationally excited nitrogen, N_2° , is of the order of 10^{10} cm⁻² sec⁻¹. It is pointed out that the fundamental vibration bands of NO and possibly of NO⁺ should appear in emission with sufficient intensity to be detectable by balloon or rocket observations, especially during periods of auroral activity.

71,988 THE PRODUCTION OF N2⁺ IN THE ATMOSPHERE Hunten, D. M. Planetary and Space Science, v. 10, pp. 37-45, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25-29, 1962)

Studies of the emission of the first negative bands of N_2^+ in aurora (normal and sunlit) and twilight are reviewed. Ion densities of 10³ ions/cm³ are deduced for sunlit aurora. A very rapid loss process appears to limit the ion density below 150 km, and reactions of charge-transfer or ion-atom interchange are suggested. The normal twilight must therefore occur in the F region, the ions being produced by solar extreme ultraviolet (EUV). It is suggested that this effect may be observable only near sunspot maximum, when the EUV flux is largest and perhaps the N₂ concentration in the F region is unusually large. Quantitative difficulties in accounting for the

71,989 UPPER ATMOSPHERIC DISTURBANCES DUE TO HIGH ALTITUDE NUCLEAR EXPLOSIONS Obayashi, T.

Planetary and Space Science, v. 10, pp. 47–63, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

The geophysical effects due to high-altitude nuclear explosions are reviewed. The sources of information are mainly from the high-altitude detonations of August–September 1958 in the Pacific and in the South Atlantic. The October 1961 nuclear tests at Novaya Zemlya are also included. Various upper atmospheric phenomena, such as ionospheric and geomagnetic storms, airglows, trapped particles and blast waves are identified as a consequence of nuclear explosions. Disturbance effects are explained, and the significance of controlled experiment in the upper atmosphere is discussed.

71,990 HELIUM IN THE UPPER ATMOSPHERE

Shefov, N. N. *Planetary and Space Science*, v. 10, pp. 73–77, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

During a study of the problem of upper atmosphere emissions, displays of twilight enhancement of λ 10830 Å helium and λ 8446 Å oxygen were discovered. Recordings of λ 10830 Å were made during the solar eclipse of February 15, 1961, and a twilight enhancement of λ 10830 Å of HeI in the absence of aurora was observed with a spectrograph and a Fabry-Perot étalon. Emission of λ 10830 Å is observed only in the sunlit atmosphere and appears to be due to fluorescence. The excitation of the helium emission, λ 10830 Å, essentially depends on ultraviolet solar radiation with $\lambda < 304$ Å and λ 584 Å. The variations of this radiation are examined.

71,991 TEMPERATURE AND CORPUSCULAR HEATING IN THE AURORAL ZONE

Mulyarchik, T. M., Shcheglov, P. V. Planetary and Space Science, v. 10, pp. 215–218, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

Results of observations of the polar atmosphere temperature are discussed. Several heating mechanisms—ultraviolet radiation of the Sun, corpuscular streams, and hydromagnetic waves—are examined.

71,992 IMPROVED FORMULAE FOR DETERMINING UPPER ATMOSPHERE DENSITY FROM THE CHANGE IN A SATELLITE'S ORBITAL PERIOD King-Hele, D. G. Planetary and Space Science, v. 11, no. 3, pp. 261–268, March 1963

Improved formulas are derived for determining the air density at a specified height above the perigee of a satellite's orbit from the decrease in orbital period, when due allowance is made for atmospheric rotation and oblateness, and the variation of scale height with altitude. The density is evaluated at a height chosen so that the formulas are insensitive to errors in the value used for scale height H_n at perigee.

71,993 NOTE ON THE THICKNESS OF THE HELIUM ION LAYER Bauer, S. J. March 1963 National Aeronautics and Space Administration, Washington, D. C. TN D-1686

On the basis of recent experimental results as well as theoretical considerations of the temperature dependence of the light constituents (hydrogen and helium) in the upper atmosphere, a model of the helium ion belt—the "heliosphere" —is constructed. The thickness of the helium ion layer varies significantly with atmospheric temperature: about 2000 km at 1600° K and only about 200 km at 600° K. Correspondingly charged particle profiles in the topside ionosphere may show a slope corresponding to He⁺ at high temperature, but not at low temperatures when the thickness of the helium ion layer is comparable to or less than the scale height of helium ions.

VAN ALLEN RADIATION BELTS

71,994 INTENSITY OF ELECTRONS IN THE EARTH'S INNER RADIATION ZONE Frank, L. A., Van Allen, J. A. Journal of Geophysical Research, v. 68, no. 5, pp. 1203-1207, March 1, 1963

The intensities of electrons as measured with Injun 1 during its deepest penetrations into the Earth's inner radiation zone are reported for the period July 16 to August 10, 1961. The basic detector was a collimated Anton-type 213 endwindowed Geiger-Müller tube. The unidirectional intensity of electrons of energy greater than 40 kev was 5×10^6 electrons/cm² sec ster in a direction perpendicular to **B** at L = 1.22 in the magnetic equatorial plane. The corresponding omnidirectional intensity is estimated to be 1×10^7 /cm² sec. No temporal variations greater than the experimental uncertainty of 30 percent were found in this region during the period of observation. 71,995 ABSOLUTE INTENSITIES OF GEOMAGNETICALLY TRAPPED PARTICLES WITH EXPLORER 14 Frank, L. A., Van Allen, J. A., Whelpley, W. A., Craven, J. D. Journal of Geophysical Research, v. 68, no. 6, pp. 1573–1579, March 15, 1963

This is the initial report on a new series of observations on the absolute intensities of geomagnetically trapped protons and electrons in the Earth's outer radiation zone and on the nature of the outer boundary of the magnetosphere. The equipment was carried on *Explorer 14*, which was launched on October 2, 1962 into an eccentric orbit whose apogee was initially at 16.5 Earth radii from the center of the Earth on a line at 71 deg to the line from the center of the Earth to the Sun. Sample omnidirectional intensities of electrons at a geocentric radial distance of 39,000 km and of electrons and protons at a geocentric radial distance of 20,000 km were taken on October 5, 1962. There are large fluctuations from day to day.

71,996 AURORAL X-RAYS, ELECTRON BOMBARDMENT AND TRAPPED RADIATION Kellogg, P. J. Planetary and Space Science, v. 10, pp. 165–178, 1963 (Paper presented at the International Astronomical Union Symposium No. 18 on Theoretical Interpretation of Upper Atmosphere Emissions, Paris, France, June 25–29, 1962)

Recent measurements of the characteristics of energetic particles incident on the top of the atmosphere and presumably precipitated from the Earth's trapped radiation are discussed. The incident flux varies widely, from 10^8 to 10^{10} particles/cm² sec for electrons. Other characteristics of the flux also vary from event to event, independent of the flux and of each other. During the most intense events—those which correspond to aurorae—the lifetime of an electron in the trapping region is only a few seconds. Clearly, violent processes take place during such events—so violent as to destroy the effectiveness of the trap. Several mechanisms are examined, and it is concluded that no one process accounts for all observations.

71,997 BRIEF NOTE ON THE RADIATION BELTS OF THE EARTH Van Allen, J. A. (State University of Iowa, Iowa City) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 1–11, Book 1 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper A-1

A brief graphical summary is presented of one of the aspects of the Earth's radiation belts, namely, the positional dependence of the absolute intensity of several selected components of the trapped particle population.

VAN ALLEN RADIATION BELTS (Cont'd)

71,998 PROTON FLUXES ALONG TRAJECTORIES THROUGH THE INNER VAN ALLEN BELT Perry, F. C. (The Boeing Co., Seattle, Wash.) In "Proceedings of the Symposium on the Protection Against Radiation Hazards in Space, Gatlinburg, Tenn., November 5–7, 1962," pp. 725–738, Book 2 Atomic Energy Commission, Division of Technical Information, Washington, D. C. TID-7652, Paper E-6

A method is formulated to calculate, by means of highspeed digital computing equipment, the total time-integrated proton flux for an arbitrary trajectory through the inner Van Allen belt. To this end, a map of the inner belt proton flux has been prepared in the (B,L) coordinate system, where *B* is computed from the 48-term spherical harmonic expansion of the Earth's magnetic potential due to Finch and Leaton, and *L* is the McIlwain parameter. This map is feasible since the high-energy trapped proton component is generally quite stable with respect to geomagnetic activity.

71,999 REVIEW OF STUDIES OF TRAPPED RADIATION WITH SATELLITE-BORNE APPARATUS O'Brien, B. J. Space Science Reviews, v. 1, no. 3, pp. 415–484, March 1963

A comprehensive review of studies of trapped radiation in both the Van Allen radiation belts and the artificial radiation belts is given. The aim is to provide for experimentalists a comprehensive set of references and very brief descriptions of experiments concerning radiation zone studies, and to provide for theoreticians a review of some measurements which have been misinterpreted. Parameters involved in studies of the geomagnetically trapped radiation are discussed. An historical outline of studies with a tabulation of relevant experiments from 1957 to 1961 is given. The current experimental knowledge of the radiation zones is presented, and a separate discussion of the artificial radiation belt included. Revised interpretations of data are listed, proceeding chronologically from satellite to satellite. Information from groundbased observations is also included. A few of the requirements for an ideal experimental study of the radiation zones are given. A total of 147 references is included.

VENUS

72,000 ON THE VENUS CUSP EFFECT REPORTED BY BRINTON AND MOORE Cruikshank, D. P. Strolling Astronomer, The, v. 17, no. 1–2, pp. 1–2, January–February 1963

Filar micrometer measurements of Venus both in visual light and with color filters indicate that the reported cusp anomaly is due entirely to contrast. The view is also expressed that low magnification and consequent high contrast logically explain many "phenomena" of Venus. 72,001 A NOTE ON PHASE ANOMALIES OF VENUS Hartmann, W. K. Strolling Astronomer, The, v. 17, no. 1–2, pp. 2–3, January–February 1963

It is concluded that no real evidence has been given to show that any of the phase anomalies associated with Venus are due to anything more unusual than contrast effects and the rapid decrease in brightness near the terminator.

72,002 VERTICAL DISTRIBUTION OF NEUTRAL GASES ON VENUS Shimizu, M. Planetary and Space Science, v. 11, no. 3, pp. 269–273, March 1963

The vertical distribution of neutral CO₂, O₂, CO and O gases on Venus is calculated, photochemical equilibrium being assumed. Kaplan's model of the atmospheric structure is adopted, and the spectral distribution of solar ultraviolet radiations in the wavelengths from 1250 to 1950 Å is described as that of a 5000°K black body, taking into account the superposition of the Fraunhofer lines on the photospheric emission. An investigation of the photo dissociation process in the cytherean upper atmosphere is attempted.

72,003 CARBON DIOXIDE ABSORPTION FOR PATH LENGTHS APPLICABLE TO THE ATMOSPHERE OF VENUS Plass, G. N., Stull, V. R. Journal of Geophysical Research, v. 68, no. 5, pp. 1355–1363, March 1, 1963

Calculations of the spectral transmittance of CO_2 from 500 to 9500 cm⁻¹ have been extended to pressures of 31 atm and CO_2 amounts of 2.34×10^7 atm cm. From the tables and figures presented, it is possible to obtain the transmittance of the atmosphere of Venus for a wide range of assumed conditions. It is possible that the high surface temperature of Venus can be explained as a CO_2 greenhouse effect if the amount of CO_2 is of the order of 2×10^7 atm cm or the surface pressure is 60 atm. If the amount of CO_2 is 10⁶ atm cm and the surface pressure is 20 atm, the addition of 10 g cm⁻² of H₂O to the atmosphere may be sufficient to explain the surface temperature.

72,004 MARINER REVEALS 800F VENUS TEMPERATURE Kolcum, E. H. Aviation Week & Space Technology, v. 78, no. 9, pp. 30-31, March 4, 1963

According to measurements made by the Mariner 2 payload, Venus has a uniform surface temperature of 800° F and is surrounded by a dense cloud layer, 17 miles thick, which has a base temperature of 200° F and a top temperature of -65° F.

72,005 THE ELECTRICAL CHARACTERISTICS OF THE ATMOSPHERE AND SURFACE OF VENUS FROM RADAR OBSERVATIONS Muhleman, D. O. *Icarus*, v. 1, no. 5–6, pp. 401–411, April 1963

Radar observations of Venus were made at wavelengths of 12.5 and 68 cm during several months surrounding the 1961 inferior conjunction. These observations are quantitatively compared for possible dispersion effects caused by the atmosphere of Venus and the interplanetary medium. The fundamental results of these observations, pertinent to the investigation of the atmosphere and surface electrical characteristics of Venus, are summarized.

72,006 ON THE RADIUS OF VENUS. II Martynov, D. Ya. Soviet Astronomy—AJ, v. 6, no. 4, pp. 511–517, January–February 1963

A new determination of Venus' radius has been carried out on the basis of occultations of Regulus by the planet, incorporating hitherto unknown observations. Auwers' value of the radius, 8".41 \approx 6100 \pm 30 km, was confirmed. The possibility of a gap in the cloud layer of Venus is discussed, as well as the diurnal variations of the height of the cloud layer.

72,007 OBSERVATIONS OF RADIO EMISSION FROM VENUS AND JUPITER AT 8 MM WAVELENGTH Kuzmin, A. D., Salomonovich, A. E. Soviet Astronomy—AJ, v. 6, no. 4, pp. 518–524, January–February 1963

Results of observations of radio emission from Venus at 8 mm on the 22-m radio telescope of the Lebedev Physics Institute during the period March through May 1961 are cited. The minimum disk-average brightness temperature near inferior conjunction was determined. Confirmation is forthcoming for the phase dependence of the disk-average brightness temperature. Some 8-mm wavelength observations of radio emission from Jupiter are also reported.

72,008 RADAR OBSERVATIONS OF THE PLANET VENUS Kotelnikov, V. A., Dubrovin, V. M., Kislik, M. D., Korenberg, E. B., Minashin, V. P., Morozov, V. A., Nikit-skii, N. I., Petrov, G. M., Rzhiga, O. N., Shakhovskoi, A. M. Soviet Physics—Doklady, v. 7, no. 8, pp. 728–731, February 1963

72,009 A SEARCH FOR WATER VAPOR AND TRACE CONSTITUENTS IN THE VENUS ATMOSPHERE Spinrad, H. October 1, 1962 Jet Propulsion Laboratory, California Institute of Technology, Pasadena TR 32-256 This article appeared in *Icarus*, v. 1, no. 3, pp. 266–270, October 1962, and was abstracted in the Astronautics Information Abstracts, v. 6, no. 6, December 1962. (See Entry #61,879.)

VENUS MISSIONS

72,010 MANNED VENUS-MARS FLY-BY IN 1970 STUDIED Alibrando, A. P.
Aviation Week & Space Technology, v. 78, no. 9, p. 56, March 4, 1963

Interplanetary flights in which three-man spacecraft would fly by both Venus and Mars on missions launched in 1970 or 1972 have been suggested. Trip times would vary from about 460 to about 680 days if launched during opportunities in the 1970–1972 period. Re-entry techniques, spacecraft weights, and life support allotments are discussed.

VENUS TRAJECTORIES

72,011 EARTH-VENUS TRAJECTORIES, 1964 Clarke, V. C., Jr., Roth, R. Y., Bollman, W. E., Hamilton, T. W., Pfeiffer, C. G. March 15, 1963 Jet Propulsion Laboratory, California Institute of Technology, Pasadena TM 33-99, Volume 1C

This volume is one of five giving key characteristics of Earth-to-Venus trajectories during the period 1964–1970. See Astronautics Information Abstracts, v. 7, no. 3, March 1963, Entry #70,927, for abstract.

72,012 EARTH-VENUS TRAJECTORIES, 1965–66
Clarke, V. C., Jr., Roth, R. Y., Bollman, W. E., Hamilton, T. W., Pfeiffer, C. G.
April 15, 1963
Jet Propulsion Laboratory, California Institute of Technology, Pasadena
TM 33-99, Volume 2A

See Astronautics Information Abstracts, v. 7, no. 3, March 1963, Entry #70,927.

WEIGHTLESSNESS

72,013 GLI EFFETTI DELLA SUBGRAVITA' E I METODI PER RIPRODURLA A TERRA E IN VOLO (SUBGRAVITY EFFECTS AND SIMULATION METHODS IN LABORATORY SITUATIONS AND IN FLIGHT) Meineri, G. Rivista di Medicina Aeronautica e Spaziale, v. 26, no. 1, pp. 80–98, January-March 1963

WHISTLERS

72,014 WHISTLER EVIDENCE OF A "KNEE" IN THE MAGNETOSPHERIC IONIZATION DENSITY PROFILE Carpenter, D. L. Journal of Geophysical Research, v. 68, no. 6, pp. 1675-1682, March 15, 1963

Study of a new whistler phenomenon shows that the magnetospheric ionization profile often exhibits a "knee", i.e., a region at several Earth radii in which the ionization density drops rapidly from a relatively normal level to a substantially depressed one. The new whistler phenomenon (called the "knee whistler") is compared with ordinary whistlers and is illustrated by a number of examples recorded at middle- and high-latitude stations. It is suggested that the knee exists at all times in the magnetosphere, and that its position varies, moving inward with increasing magnetic activity. There are indications that conditions of whistler-mode propagation may be unusually favorable on the low-latitude side of the knee, and that the region on the high-latitude side may be favorable for the production of triggered ionospheric noise. It is pointed out that the knee whistlers account for a substantial number of the observations of deep density depressions during magnetic storms. Several questions of interpretation are raised, and future investigation is indicated.

X-RAYS

72,015 INTERPRETATION OF X-RAY PHOTOGRAPH OF THE SUN Blake, R. L., Chubb, T. A., Friedman, H., Unzicker, A. E. Astrophysical Journal, The, v. 137, no. 1, pp. 3-15, January 1963

An X-ray picture of the Sun was obtained on April 19, 1960, using a pinhole-camera flown in an *Aerobee-Hi* rocket. Photometric analysis of the picture has shown that at least 75 percent of the X-radiation passed by the pinhole window material emanated from condensations in the lower corona localized above CaK plages. The solar X-ray flux at the Earth was estimated. A detailed quantitative evaluation of the intensities and geometries of localized X-ray sources and their relationship to plage formations is given. A second set of exposures was obtained in several different wavelength bands, up to 90 Å, from a rocket flight on June 21, 1961.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 AUTHOR INDEX

AUTHOR INDEX*

Author	Entry	Author	Entry	Author	Entry	Author	Entry
Aarons, J.		Anderson, R.E.D	70,309	Bagby, J. P		Barth, C. A	70,618
Abbott, H. M			71,934	Bahcall, J. N		Barth, V. D	
	71,599	Anderton, D. A.		Baicker, J. A		Bartlett, E. P	
	71,825 71,826		70,453		71,720	Bartlett, J. C., Jr	
Abrams, I. J.		Andrew, J. D Andrews, E. P		Bailey, D. K	71,919 71,699	Bartoe, O. E	71,903 70 7 95
Abrams, S		Anger, C. D		Bailey, R. N.		Bartos, G	
Abzug, M. J		Annenskii, F. D		24.69, 24.11	70,560	Bartz, D. R	
Adachi, S		Ansari, Z. A		Bailie, A. E		Basel, D. R	
Adam, M. G		Ansley, S. P., Jr		Baker, C. A		Basler, R. P.	
Adams, J. J.		Anthony, F. M			71,108	Bastin, J. A	
Adams, M. C		Anthony, M. L.		Baker, R. C	70,416	Basu, D	71,179
Adderley, E. E Adornato, R. J		• •	70,794	Baker, R. M. L., Jr	71,098	Bates, D. R.	70,907
Akasofu, SI.		Antipov, V. V	70,023		71,497	Battin, R. H	70,474
	71,018	Aoki, M	70,947	Bakke, J. C	-		70,785
	71,272	Aoki, S		Ballif, J. R		Battle, C. T	
	71,365	Aono, Y		D 1 17	71,241		70,648
	71,367	Apelt, A. O		Balser, M		Batutis, E. F	-
	71,666	Appleton, E. \dots		Bame, S. J	71,855	Bauer, S. J	71,993
Albright, G. A.		Apt, C. M		Bandeen, W. R		Baum, S. J	•
Alekseev, V. M Alekseev, Yu. I		Menut, 1. K	71,404	Dundeen, *** 10	71,975	Baumann, H. A.	
Alekseeva, K. I.			71,524	Bandyopadhay, P	,	Bazer, J	
Alekseeva, O. G		Arenstorf, R. F		Banos, G	71,962	Bean, E. E	
Alexander, G.			70,965	Bappu, M. K. V		Beard, D. B	
Alexander, J. K., Jr			71,682	Barabashov, N. P	70,535		70,554
Alexander, W. M		Arman, A			70,759	Beasley, G. P.	71,540
Alfvén, H		Armstrong, J. M			70,832	Bech, A. I	
	70,869	Armstrong, R. C Armstrong, R. J			70,840	Bechberger, P. F.	
Alibrardo A D	71,477	Arnold, D. M		Baradell, D. L	71,479	Beck, A. J	
Alibrando, A. P Allcock, G. McK		Arnold, J. R		Baranne, A		Beckers, J. M.	
Allen, S. J			70,514	Barasch, M. L.		Beckmann, P.	
Aller, L. H		Arnoldy, R. L	70,603	Duruben, nr 21 11111	71,476	Beehler, C. C	
Alley, V. L., Jr.		Arp, H. C		Barath, F. T		Beers, L. S.	
	71,279	Arseneva, M. A.		Barbee, B. H		Beheim, M. A	
Alouette, G. A.	70,258	Ashbrook, J.		Barber, D. R		Behring, W. E Bekker, M. G	
Alsmiller, F. S		Ashburn, E. V	71,799	Barber, R. E		Derkei, M. G	71,046
Alsmiller, R. G., Jr		Ashour, A. A	•	Barbier, D		Beletskii, V. V	
Altman, C		Askwyth, W. H.		Barcus, J. R Barnes, F. L			71,586
Altman, S. P Alvi, H		Athay, R. G		Dames, F. L.	71,053	Belfi, C	
Aly, M. K.			71,921	Barnes, S		Beller, W.	
Ambrosio, A.		Au, G	71,717	Barnes, W. S			70,608
Amster, W. H		Au, G. F		Barnett, R. M			70,902
Anders, E		Auger, P	70,568	Baron, R. C		Beltran, A. A.	71,490 71,875
	71,068			Barrar, R. B	71,216	Bender, D. F	
Andersen, F.	70,697	Babb, C. D	70,242		71,984	Benedict, T. R.	,
Anderson, E. C.		Babii, V. I		Barrett, A. H		Benediktov, E. A.	
	70,514	Babineaux, T. L.		1	71,633	Benfield, W. A	
Anderson, J. R.		Back, K. C		Barricelli, N. A.		Bennett, G.	
Anderson, K. A.	•	Bader, M		Barrington, R. E		Benoit, R	
Anderson, R. E	70,784	Badhwar, G. D.	70,978	Barrow, C. H	71,412	Berg, O. E	70,977

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6-

Author	Entry	Author	Entry	Author	Entry	Author	Entry
Bergan, R. A.	.71,024	Bobrov, M. S	.71,898	Brinton, H.	70,923	Butler, H. I	71,857
Berger, R. T	.71,542	Boehm, B. W	.70,375	Brissenden, P.	.70,636	Butler, S. T	.71,620
Bergh, H. W	.70,086	Bollhagen, H	.70,440		70,802	Butz, J. S., Jr	.71,014
Berglund, R. A		Bollin, E. M	.71,802	Brissenden, R. F	. 70,200	Buwalda, P	
Berkhuijsen, E. M	. 70,436	Bollman, W. E	.70,460		71,541	Byerly, P. E.	
Berman, L. J			70,927	Bristor, C. L	.70,652	Byrne, E. R	.71,653
Bernados, J. E			71,053		71,835	Byrne, F	.71,899
Bernett, E. C			71,232	Britton, J. E		Byrne, R. W	.70,815
Berry, C. A			71,442	Brodsky, R. F.		Bystrov, N. F.	.70,778
	71,455		72,011	Broglio, L.	-		
Best, G. T			72,012	N 1 , N 4	70,816	Cahill, J. E	70 408
	70,905	Bologna, J. M		Bronshten, V. A.		Cahill, L. J., Jr	
Betchov, R		Boltz, F. W			70,771	Cain, J. C	
Beyer, M		Bonavito, N. L	.70,196	Brooks, M.		Calli, J. C	70,693
Beynon, W. J. G		Bond, D. S	.70,645	Brooks, R. D	-		71,367
Bhatnagar, A			70,895	Brouw, W. N Brouwer, D		Calamai, G	
Bibl, K	•	Bonnet, R. M	. 70,492	Brown, D. J			.71,821
Biblarz, O		Bono, P	.71,287	Brown, G. A		Cameron, A. G. W	
Bickler, D. B.		Booker, H. G	. 70,226	Brown, H			70,577
Biermann, L			70,811	Diowii, II	71,575		70,578
Bigg, E. K		Booton, W. D	.70,860	Brown, R. R			70,579
Billik, B	•	Borchers, R. V.	.71,101	210001, 10 10 100000	71,270		70,667
	70,821	Bosch, M. C	.71,032	Brown, W. L			70,983
Billik, B. H		Bostrom, C. O	.70,853	··· , ··· · · · · · · · · · ·	71,718		71,330
Billings, D. E			71,569	Brownlow, C.	.70,355		71,623
	71,568 71,920	Both, E. E	.70,756	Brueckmann, H	.71,244		71,954
Bird, J. D		Bowen, E. G	.71,843	Brumley, F. B.		Cameron, R. E	.71,076
		Bowhill, S. A.	.70,131	Bruns, A. V		Campbell, C. E	.70,747
Bird, R. M		Bowles, K. L			71,951	Canright, R. B	.70,956
Birney, D. S			71,133	Bryant, D. A	. 70,854	Capen, C. F	
Biswas, S		Bowman, G. G	.70,686	Bryden, J. N		Caputo, M	
Bitoun, J.		Boyer, K		Bryson, A. E., Jr		Cardullo, M. W	
Bittman, L. R.		Boyer, R. H			70,648	Carlson, D. D	
Bjelland, B		Brady, B. P		Buck, K. E		Carmichael, H.	
Bjerklie, J. W		Bramley, E. N		Buckley, D. H		Carpenter, D. L	
Bjorge, S		Brandt, J. C		Buckner, J. K.		Carpenter, F. D	
Blackman, V. H		Branigan, C. K.		Budden, K. G		Carpenter, M. S	
Blackmon, J. B		Branson, L. K		Buginas, S. J		Carpenter, R. L.	
Blackmore, R. W Blackwell, D. E		Brashear, H. R.	•	Bulban, E. J	71,642	Carr, T. D Carriker, A. W	
Blair, R. R		Braud, N. J		Bullock, E. K		Carroll, J. F.	
Blake, F. A	•	Braude, S. Ya		Bumba, V		Carru, H	
Blake, R. L		Bray, R. J		Dumou, V	71,831	Carstens, J. P.	
Blamont, J. E		Brayshaw, J. M., Jr.			71,933	Carter, R. E	
Blanchard, U. J.		Breakwell, J. V.		Bunk, A. P		Carton, D. S	
Bland, W. M., Jr		Breido, I. I		Burchfield, H. P		Castelli, J. P	
Bliss, P. H				Burhans, R. W.		, y · · · · · · · · · ·	71,853
Blitzer, L.		Brenner, J. L Breshears, R. R		Burkard, O		Catherine, J. J	
Block, N		Briggs, M. H.		Burns, E. A		Cavoti, C. R.	
Bloom, M. H		DIIRB9, MI. 11	70,267	Burns, T. A		Celnik, J	
Blosser, T. V.			70,772	Burroughs, J. L.		Chadwick, W. B	
Blume, R			71,008	Burrus, W. R		Chaffee, J. W	
Blumle, L. J			71,463	Burton, G. T		Chalk, K	
Blumrich, J. F			71,464	Bushong, R. M		Chamberlin, J. A.	
Boardman, W. P., Jr			71,465	Bussard, R. W.		Chan, S. P	
Bobbitt, P. J.		Briggs, R. E.	-	Butler, G., Jr		Chandra, S	
				· · · ·		···, -· · · · · · · · · · · ·	

*Entrics 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 AUTHOR INDEX

Author	Entry	Author
Chandrasekhar, S		Cole, K. D
Chapman, A. J.	. 71,646	
Chapman, C. R.	70,754	Cole, P. T
Chapman, H. D	71,386	Cole, R. W
Chapman, M. C.		Coleman, P. J., J
Chapman, S		
- /	71,018	Collins, D. F., Jr
	71,367	Collins, W. E
Charvin, P.		Colombo, G
,,	71,317	Colyer, D. B
Chase, H. B		Compton, D. L.
Chase, J. W		Conklin, J. E
Chase, S. C		Conner, J. A
Chazen, M. L		Conner, J. P
Chen, SY. \ldots		Conrath, B. J
Cheng, H. K		-
Cheng, SI.		Cook, G. E
Cherecwich, P.		
Chertoprud, V. E		Cooper, R. S
Chevalier, H. L		Cooper, T. D
Childs, C. B		Copeland, J
Chistyakov, V. F		Coppinger, L. L
Christensen, F. E		Corbett, H. H
Christiansen, W. N	71,525	Corbett, L
Christophe-Glaume, J.		Corcoran, D. M.
Chubb, T. A		Corcuff, Y
Ciccolella, D. F	71,934	Cord, J. M
Cicolani, L. S		Cordero, J
Cigich, E. B		Corliss, C. H
Cladis, J. B		Corliss, W. R.
Clarke, V. C., Jr		
	71,232	Cornille, H. J., Jı
	71,442	Cornish, J
	71,822	Cory, H
	72,011	Courtès, G
	72,012	Covington, A. E.
Claus, A. J		Cowan, L. W
Clauss, F. J		Cox, H. L
Claxton, B. H		Coyle, G. G.
Cleaves, H. F		Coyne, G. V
·····,· • • • • • • • • • • • • • • • • • •	71,701	-
Clemence, G. M		Craig, A. J.
,,,,, _, , , , , ,	71,055	Cramblit, D. C.
Clemens, P. L		Cranford, W
Click, H. F		Crary, J. H
Cline, T. L		Craven, J. D
Clinger, E. C		Creasey, F. E.
Clough, N		Crocker, A. R.
Cockett, A. T. K		Croome, A
Coe, C. S		Crouch, W. H.,
Coenraads, C	70,804	Crouchley, J
Coffman, M. L.		Crowell, J.
Cohen, A. D		Crowther, D. L.
Cohen, H. W		Cruikshank, D. 1
Cohen, W		Cuerou, T. R.
Cole, D. M		Cummings, C. I.
		Jummings, U. I.

٠

uthor	Entry
ole, K. D	.71,665
	71,667
ole, P. T	.70,118
ole, P. T	.71,306
oleman, P. I., Ir	.70.694
ollins, D. F., Jr	71,634
ollins, D. F., Jr	.71,415
ollins, W. E	.70,199
01011100, G	. 10,020
olyer, D. B ompton, D. L	.70,211
ompton, D. L	.71,240
onklin, J. E	
onner, J. A	. 70,397
onner, J. P	.71,227
	71,855
onrath, B. J	.71,763
1.0.7	71,975
ook, G. E	.71,498
	71,757
ooper, R. S	.70,028
ooper, T. D	.71,447
opeland, J	.71,633
oppinger, L. L	. / 1,5/0
orbett, H. H	71 200
orbett, L	
orcoran, D. M orcuff, Y	71 924
ord, J. M	70 440
ordero, J	
Corliss, C. H	70 461
Corlies W B	70 181
	70,206
ornille, H. J., Jr	.71.262
ornish, J	.71,957
ory, H	.71,407
Courtès, G	.70,492
Covington, A. E	.70,285
Lowan, L. W	.71,838
lox, H. L	.71,285
Coyle, G. G	.70,296
Coyne, G. V	.70,534
	71,552
Craig, A. J	.70,515
ramblit, D. C	.71,040
Cranford, W	.71,881
Crary, J. H	.70,557
Craven, J. D	.71,995
Creasey, F. E	.70,209
Crocker, A. R	.70,428
Croome, A	.71,139
Crouch, W. H., Jr	.70,385
Crouchley, J.	.71,643
Crowell, J.	.71,899
Crowther, D. L Cruikshank, D. P	.71,562
ruikshank, D. P	.72,000
Cuerou, T. R	. 70,185
Cummings, C. I	.70,144

Author	Entry
Cummings, R. L.	.70.209
Cunningham, F. G	.71.177
Curkendall, D. W	.70,460
	71.053
Curtis, H. J	.71,700
Cutteridge, O. P. D	.70,489
Cutting, E	.71,760
Cutting, E Cuttitta, F	.71,594
Cybulski, R. J.	.70,124
Czamanske, G. K	.70,891
Czarnecki, E. G	.70,465
Dachille, F	71 715
Dale, S. H	70 773
Dalgarno, A	.71.987
Dalkey, N. C	
Dalton, C. C	.70.876
Daniel, R. R	.70,978
Daniels, F. B.	.70,837
Daniels, F. B Danielson, R. E Danileiko, V. I	.70,582
Danileiko, V. I	.70,935
Danilov, A. D.	.70,909
Danner, J	.70,856
Das Gupta, M. K	.71,179
Davenport, P. B	.71,087
David, H. M	
	70,447
Davidson, J. R.	
Davidson, M. C., Jr	.70,965
Davidson, W	
Derries U	71,536
Davies, H Davies, J. G	70 671
Davies, J. G	70 498
Davies, W. O	71 437
Davis, D. B	
Davis, G	
Davis, H. L	.71.082
	71,510
Davis, I., Jr	
Davis. I	.71.457
Davis, J Davis, J. P	.71.086
Davis, L., Jr	.70.283
Davis, L. R	
	71,368
Davison, W. R	. 70,669
Dawe, J. A	70,292
Day, R. E	71,256
Daye, G. T	70,058
Dayman, B., Jr	71,259
Dean, C. F	71,001
Dearnaley, G	70,988
Debus, K. H	71,416
Decker, J. L Decker, R. S	70,026
Decker, R. S	70,480
de Feiter, L. D	70,642

Author	Entry
Dehnew, H	.70,666
de Jager, C	.71,927
	71,958
Delbouille, L	.71,944
Del Duca, M. G.	.70,390
Delie, A	.71,291
	71,293
De Mastry, J. A Demetriades, S. T	.71,451
Demetriades, S. T	.70,386
Demin, V. G de Mocskonyi, E. S	.70,790
Demoret, R. B	70.878
Demshki, R. J	71 589
Denholm, A. S	
DeNike, J.	
Denny, J. M	.70.548
Deprit, A	.71,291
• ,	71,292
	71,293
	71,294
	71,295
Derblom, H	.70,627
Desai, U. D	
DeSanto, G.	.70,155
Dessler, A. J Deutsch, R. W	.70,553
Deutsch, R. W	.71,483
Devadas, P Devanathan, C	.70,744
Devanathan, C	.71,375
de Vaucouleurs, G	.71,949
Devereaux, H. L	
Dews, E	
DeZur, R. S	
Dicke, R. H	
Dickieson A C	70,981
Dickieson, A. C Diederich, F. W	71 600
Diedrich, J. H	70 001
Dierssen, G. H.	70 979
Dietz, R. S	
Dillaway, R. B	
Dirac, P. A. M	
Dittman, B. F Divita, E. L	70 567
Divita, E. L	71 1/8
Dixon, T. P. \ldots	71 099
Dizer, M Dluzhnevskaya, O. V	70 750
Dobson W F	70 633
Dobson, W. F Doerr, F	71 613
Dolder F P	70 705
Dolder, F. P Dolginov, Sh. Sh	71 499
Domitz S	71 403
Domitz, S Donahue, T. M	70 610
- Jimmury 1. 141	71,730
Donn, B	.70.373
,	71,304
	,001

[•]Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6

Author	Entry	Author	Entry	Author
Dorman, B. L	70,421	Eichelberger, R.	J:70,115	Faughnan, B. W
Dorman, L. L	71,322	Eimer, M.		Faulders, C. R.
Dorosheski, G.		Elford, W. G.		Faulkner, A. H.
Doshay, I.		Elliot, D. G		Faulkner, D. J.
Dotson, J		Elliott, D. D		Fay, J. A
Douglas, J. N		Elliott, R		Federline, M. F.
Douglas, W. K.		Ellis, G. R. A.		Fedor, J. V
Dowden, R. L		,	71,791	Fedorov, E. K.
Downhower, W. J		Ellison, M. A		Feibelman, F. H
Downing, R. G	70,548	Elste, G		Feitknecht, J.
Dragt, A. J	70,724		71,960	Feld, J
Drinkwater, F. J., III		Engel, K		Feldman, D
Droppleman, L. K		England, W. A.		Felix, B. R
Duane, J. T		Epstein, A		Fellows, W. S.
Duberg, J		Epstein, S		Ferguson, E. E.
Dubin, M		Erdmann, R. C.		Ferioli, C. P
	70,977	Ergott, H. L		Fernandez, M.
Dubrovein, V. M		Erickson, W. C.	70,636	Ferrara, J. P
	72,008		70,802	Ferraro, A. J.
Dufay, J			71,525	Ferraro, V. C. A
Duff, K. J		Ermatinger, C. I	E 70,348	Ferri, A
DuFresne, E. R			71,158	Ferris, G. A. J.
Dukes, W. H		Esten, H		Ferro, J
Dungey, J. W		Etkin, B		Fesenkov, V. G.
Dunham, T., Jr			71,296	Feshback, H
Dunkelman, L		Etter, J. E		Feucht, R. E
Dunlan A K	71,105			Feuerstein, E.
Dunlap, A. K				Fichtel, C. E.
Dusek, H. M DuVall, B. W		,	71,270	,
Dvoryashin, A. S		Evans, H. E		
Dyce, R. B				
<i>D</i> ycc, I (. <i>D</i> ,	71,123		70,836	Field, E. C
Dye, D. L	,		71,077	Field, G. B
Бус, Б. Д	71,880		71,079	Fielder, G
Dzilvelis, A. A		Evans, J. W	70,867	
	,			
Early, L. B			71,378	
Eastman, F. J., Jr		Evans, W. J		Filipovich, O. H
Eckard, L. D., Jr				Fimple, W. R.
Eckel, K.				rimple, w. it.
Eckman, P. K				Endou I W
Edelberg, S			70,578	Finday, J. W.
Edelen, D. G. B			70,579	Findley, R
Edmond, J. J.			71,954	Finger, H. B.
Edmonson, N				
Edwards, D. K		F	50.140	Fink, D. E. \dots
Efimov, O. N		Faget, M. A		Finke, R. C
	70,863		71,401	Finkelman, E.
Efremov, A. I.				Fireman, E. L.
Englants 7 M	70,863			Firstman, S. I.
Eggleston, J. M				Fischbeck, K. F
Egorova, A. V				Fischell, R. E.
Ehmann, W. D		Farley, D. T., Ji	r 70,685	n:1 n +
Ehmert, A.		E. d. E. E. Y	71,133	Fish, R. A
Ehricke, K. A	71,440	rarthing, E. D.		Fisher, D

Author	Entry	Author	Entry
Faughnan, B. W	.70,549	Fisher, D. E	.71,067
Faulders, C. R	.71,217	Fisher, P. C.	.70,991
Faulkner, A. H	.70,656	Fitch, F. W.	.71,009
Faulkner, D. J	.70,845	Flatley, T. W.	.70,870
Fay, J. A	.70,114	Flicker, H	.71,720
Federline, M. F		Florenskii, K. P	.71,466
Fedor, J. V		Fogarty, L. E	.70,237
Fedorov, E. K		Fonseca, E.	.71,538
Feibelman, F. E		Fontenot, L. L	.71,283
Feitknecht, J		Forbes, E.	.70,563
Feld, J		Forcht, B. A.	.71,829
Feldman, D		Forlini, J. B	.70,178
Felix, B. R		Forsyth, P. A.	.71,015
Fellows, W. S			71,668
Ferguson, E. E		Fortier, R. E.	.71,508
Ferioli, C. P		Fortney, R. E.	.71,932
Fernandez, M		Forward, R. L.	
Ferrara, J. P	.70,175	Foschetti, J. A.	.71,935
Ferraro, A. J.	.71,331	Fosdick, G. E	. 70,488
Ferraro, V. C. A.	. 70,435		70,794
Ferri, A		Foudriat, E. C.	
Ferris, G. A. J.		Fowle, A. A.	71,513
Ferro, J			71,712
Fesenkov, V. G.		Fowler, W. A.	
Feshback, H.		Foy, W. H., Jr	
Feucht, R. E.		Fradkin, M. I	70,634
Feuerstein, E			71,709
Fichtel, C. E.			71,710
	70,980	Fralich, R. W	
	71,697	Francis, R. N	
	71,698	Francis, W. E	
Field, E. C	71,366	Frank, H. A	
Field, G. B		Frank, L. A	
Fielder, G			71,125
	70,833		71,127
	70,834		71,631
	71,039		71,994 71,995
	71,904	Frankel, M	
Filipovich, O. P	70,325	Frank-Kamenetskii,	
Fimple, W. R	70,594	D. A	70 982
	71,617	Fraser, B. J	
Finday, J. W.		Freden, S. C	
Findley, R.	70,897	Fredendall, G. L	
Finger, H. B	70,478	Fredriksson, K.	
	71,484	,	71,459
Fink, D. E	70,363	Freeman, D. J.	
Finke, R. C	70,125	Freeman, R. S.	
Finkelman, E. M		Freier, P. S.	71,696
Fireman, E. L	70,552		71,706
Firstman, S. I.	71,794	Friedland, S. S.	
Fischbeck, K. H	70,644	Friedlander, A. L	
Fischell, R. E.		Friedlander, M. W	
	71,173	Friedman, H	71,106
Fish, R. A			72,015
Fisher, D.		Frink, A. M., Jr	70,501

^eEntries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 AUTHOR INDEX

Author	Entry	Author
Fritz, S	.71.842	Giacconi, R.
Frost, K. J		Gibbons, F. L
Fuhs, A. E		Gibbons, J. H
Fuller, D. E		Gibson, J. E.
		0103011, J. H.
Fussell, W. B.		Gibson, W. A.
	71,303	Gicca, F. A.
	71,684	Giese, R. H.
		Giffen, C. H.
Gabbe, J. D	71.225	Ginen, C. H. Gignoux, D.
Gabuniya, L. L		
Gade, D. W		Gilkey, K. J.
Gaertner, W. W.		Gilruth, R. R.
		Gilvarry, J. J.
Gaizauskas, V		Gindilis, L. M
Callagher, H. E		Ginzburg, M.
Gallant, R. L. C		Ginzburg, V.
Gallet, R. M		a : a
Galperin, Y. I		Giumarro, C.
Gandolfo, D. A		Glaser, A. H.
Gapcynski, J. P		Glaser, P. F
Garazha, V. I	70,840	Glaser, P. R.
Garber, A. M	71,450	Glass, F. M
Gardner, L. B		Glassburn, C.
Garrick, I. E		Glasser, S. P.
Garriott, O. K.		Gledhill, J. A.
Garstang, R. H		Gliddon, J. E.
Gary, B. L		
Gast, P. W		
Gates, C. R		Godbey, T. V
Gault, D. E		Goedeke, A. l
Gaumer, R. E		Gökdogan, N
Gautschi, T. F		Gold, T
Gay, A. C		
Gazenko, O. G		Goldberg, L.
	70,021	Goldburg, A.
	71,656	Goldstein, H.
Gear, A. E		
Gebel, R. K. H		Goldstein, R.
Gebhart, B		
Gehl, M. A		Goles, G. G.
Gehring, J. W		Goloborodko,
Geiger, K. A.		Golton, E
Geiss, J		
Geissler, E. D		Gonzalez, V.
Genin, A. M		
Gentile, R. G		Goodell, R. S
Germain, C		
Gerson, N. C		Goodman, J.
Gersten, R. H		Gopal Rao, N
Gervais, R. L.		Gorchakov, Y
,	71,482	
Getler, M		Gorchyakov,
Getmantsev, G. G		Gordon, F.
-	71,522	Gordon, R. V
	71,702	Gordon, T. J
Gex, R. C	71,509	Gorelova, M.

Author	Entry
Giacconi, R.	.71,238
Gibbons, F. L.	.71,914
Gibbons, J. H	.70,984
Gibson, J. E	.71,637
	T 2 2 2 2 2
Gibson, W. A	.71.913
Gicca, F. A	70.586
Giese, R. H	
Giffen, C. H	
Gignoux, D	.70.210
Gilkey, K. J	
Gilruth, R. R	.70.142
Gilvarry, I. I.	.71.043
Gilvarry, J. J Gindilis, L. M	.71.741
Ginzburg, M. A.	.70.528
Ginzburg, V. L.	71,522
0,	70,634
Giumarro, C	
Glaser, A. H	.71,974
Glaser, P. F	.71,858
Glaser, P. R	.70,730
Glass, F. M	
Glassburn, C. W	.70,319
Glasser, S. P	.71,314
Gledhill, J. A	.71,032
Gliddon, J. E. C	.70.687
	70,688
	71,348
Godbey, T. W	.70,422
Goedeke, A. D	
Gökdogan, N	.70,566
Gold, T	.70,448
	70,705
Goldberg, L	.70,882
Goldburg, A	.70,114
Goldstein, H. S.	.70,331
	71,085
Goldstein, R. M	.70,607
	71,635
Goles, G. G Goloborodko, T. A	.70,172
Goloborodko, T. A	.71,680
Golton, E	.70,674
	71,160
Gonzalez, V	
	11,100
Goodell, R. S.	70,647
Goodman, J. W	70,896
Gopal Rao, M. S. V.	70 811
Gorchakov, Ye. V	70 913
Guidiakuv, 10, V	70,914
Gorchyakov, E. V	
Gordon, F	.70,644
Gordon, R. W	70.894
Gordon T I	71 550
Gordon, T. J Gorelova, M. V	

Author	Entry
Gorman, H. A.	.70,954
Gossard, U. H	.70,340
Gould, R. G	
	70,045
Gouse, S. W., Jr.	.70.110
Gowdy, R	71.458
Graham, K. W. T	.70.696
Granan, J. R.	.70.047
Grant, C. R	.71,638
Grashchenko, S. M	.70,892
Graveline, D. E	.70,335
·	71,639
Gray, W	. 70,499
Graybiel, A	.70,167
	70,198
	70,199
Graziano, E Graziano, E. E	.71,969
Graziano, E. E	.71,385
	71,390
	71,875
Grebenikov, E. A	.70,630
Greco, R. V	.71,263
Green, A. C	.71,855
Green, C. J.	.71,606
Green, J	.71,817
Green, J. S. \ldots	.71,691
Green, P. E., Jr.	. 70,809
Greenberg, A Greenhow, J. S	.71,816
Greenhow, J. S	.71,736
Greenland, L	.71,592
Greenland, L. P	.71,201
Greenshields, D. H	.71,601
Grench, H. A	.70,991
Grether, W. F	.70,216
Gretz, R. W.	.71,214
Griffin, T. A Grigorov, N. L	. 70,272
Grigorov, N. L	71 506
Grimm, F Gringauz, K. I	71 790
Grodzovsky, G. L	70 311
Gros, C. G	71 897
Gruber, G. M	71.032
Grunzke M E	71 253
Grunzke, M. E Gualtierotti, T	71 866
Gudzenko, L. I.	71,916
Guedry, F. E	
	70,199
Guerin, P.	
Gummel, H. K	
Gurney, R. D	.70,425
Gurovskii, N. N	
Gursky, H	
Gurzi, F	70,656
Guss, D. E	70,979
	71,698
Guyton, B.	
Gyurdzhian, A. A	

Author	Entry
Haave, C. R	.71,136
,	71,137
Hablanian, M. H	
Hackman, R. J	.70,838
Haddock, F. T	
Hagen, K. G	
Hagg, E. L	.71.979
Haig, C. R., Jr	.71,439
Hake, E. A	.70,309
Hakura, Y	.71.756
Halajian, J. D	.71,165
Hales, A. L	
Hall, C. N	
Hall, F. F., Jr	
Hall, J. E	
Hall, W. F	.71.835
Halpern, L. A.	
Hamer H. A	71.089
Hamer, H. A Hamilton, A. F Hamilton, T. W	70 874
Hamilton T W	70,927
	71,232
	72,011
	72,012
Hamza, V	.70,063
Hanel, R. A	
	71,840
Hankey, W. L., Jr	.71,890
Hannah, M. E.	.71,089
Hansen, C. F.	.70,931
Hansen, R. T.	.71,925
Hanson, H	.70,426
Hapke, B. W	.70,266
	71,556
Happ, W. W	
Harang, L	.71,406
Harmon, W. L.	
Harrington, V. L	
Harris, I	70.050
Harrison, E. F	70.963
Hart, E. M	70.065
Hart E M	70 065
Hart, E. M	.70.922
	71,229
	72,001
Hartung, R. M.	
Hartz, T. R	70,091
Haskin, L	71,963
Haslam, C. G. T	70,671
Hastings, E. C., Jr.	71,349
Hattore, A.	71,824
Haubert, A	71,740
Haury, P. T	71,721
Haviland, J. K	71,829
Haviland, R. P	70,601
	71,299

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6

Author	Entry	Author	Entry	Author	Entry	Author	Entry
Havill, C. D.	71,854	Hills, H. K	.71,631	Howard, W. R	.71,725	Iuganov, E. M	70,336
Hawkes, R	70,622	Hilton, J. L.		Howe, R. M	.70,237	Ivanov, Iu. N	
Hawkins, G. S		Hinds, G.		Hower, G. L.	.70,968	Ivanov, M. A	
	71,833	Hines, C. O	.71,746	Hoyle, F		Ivanov, V. I	
Hayakawa, S		Hintenberger, H.			70,719	Ivanov-Kholodny, G. S	
Hayes, R. J		Hinteregger, H. E		Hritzay, D.		Izsak, I. G	71,503
Hayre, H. S			70,904	Hrušková, F			
Heacock, R. L Headrick, R. E		Hirao, K.	71,178	Hrycak, P		Jacchia, L. G.	
Heartz, R. A		Hirt, R. C		Hsi, HK Huang, SS		Jack, J. R	
Heath, A. R., Jr		init, it. 0	71,685	mang, 55	71,290	Jackson, C. D.	
1100000, 121 200, 511 11111	70,278	Hnilicka, M. P		Hubach, R. A.		Jackson, H. T., Jr.	
Hédervári, P		Hodge, J. D		Hubbard, S. H.		Jackson, J. E	
Hedgepeth, J.		Hodge, P. W		Hudson, R. G		Jaffe, L	71,410
Hegarty, D. M	71,480	Hodgson, R. G	.70,824	Huebner, D. F	.71,896		.71,057
Heisler, L. H	70,405		71,655	Huff, V. N		June, H , D	71,587
	71,735	Hoffman, D. H		Hughes, E. L.			71,828
Heizman, C.		Hoffman, E. L.		Hughes, M. P		Jaffe, P	
Helliwell, R. A.		Hoffman, R. A.		Hughes, V. A		Jakubski, Z	
Hellman, A			70,855	Huie, J. A.			71,466
Helvey, W. M Hendel, F. J		Hogbom, J. A.	71,368	Hull, N. T Hultqvist, B		James, R	
Henderson, W. P		Hogg, H. S		Hunsucker, R. D		James, T. G	
Hengeveld, D. H		Hohmann, B. A		Hunt, D. C		Janes, G. S.	
Hennigan, T. J.		Hohmann, R. E		Hunten, D. M		Janos, J. J	
Henninger, J. H		Holahan, J.		,,	71,988	Jansen, W	
Henrich, L. R.			70,379	Hunter, M. W., Jr.	.71,190	Jarrett, A. H Jean, A. G	
	71,753	·	70,945	Hurlburt, H. M	.70,823	Jenkins, A. W., Jr	
Henry, J. C		Holdstein, H. S	70,762	Hurley, J.	.71,052	Jenkins, E. B	
Heppner, J. P		Holland, J. W		Hurwicz, H.		Jerozal, F. A.	
//	71,006	Hollingsworth, R. T			71,600	,	71,684
Heroux, L	71,583	Hollister, W. L		Hurwitz, L		Johnson, B. A	.71,337
Herriman, A. G	70,798	Holly, F. E.		Huse, P. C		Johnson, C. F.	.71,913
	71,504	Holmes, D. G.		Huston, W. B.		Johnson, D. R	
Herring, A. K		Holt, O		Hutchison, P. T Hyder, C. L		Johnson, D. S	
	70,740	Honaker, W. C		Hyett, B. J			71,835
	71,421	Hones, E. W., Jr		Hynek, D. P		Johnson, F. S.	•
Herzog, R		Hönl, H	71,749	, ,	· · · · , · _ ·	Johnson, G. W Johnson, H. I	
Herzog, R. F. K Hess, W. H		Hook, J. L		Iakubov, B. A	70 336	Johnson, L	
Hess, W. N		1100k, J. L	70,675	Iazdovskii, V. I.		Johnson, P. G	
11035, 11.111.1.1.1.1.1.1	70,918	Hooper, J. W.		Iben, I., Jr		Journson, 1. O	70,479
	70,967	Hopkinson, E. C		Idlis, G. M			70,788
	70,970	Hopko, R. N		,	71,624	Johnson, R. L	
	71,131	Hord, R. A	•	Ilina, S. S		Johnson, R. W	
	71,132	Horowitz, N. H		Imhof, W. L.		Jolley, C. E	
	71,520	Horowitz, S.			71,126	Jones, A. V	
	71,625	Hoshizaki, H		Inada, T	70,984	Jones, D. E	.71,633
Hey, J. S	71,328	Hostetler, R. L		Ingham, M. F		Jones, E. S. O	.70,433
Hibberd, F. H		Hotinli, M			70,612	Jones, E. W	
Hidalgo, H		Houbolt, J. C	71,424		71,692	Jones, F. S	
Higgins, C. S.	70,440	House, C. M		Ingrao, H. C	71,258	Jones, J. B	
••	71,792	House, L. L	71,565	Irwin, K	71,360	Jones, R. T.	
Hill, H. H		Houtgast, J	70,605	Ishizaki, M	70,933	Jones, W. B	
Hill, N. W			71,948		70,934	Jones, W. W	
Hill, P. R	70,957	Howard, W. E., III	70,763	Ishizawa, K	71,774	Jonsson, V. K.	.70,220

[°]Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 AUTHOR INDEX

Author	Entry
Jordan, H. W	.70.058
Joseph, R. D	.70.655
Judge, D. L	70 694
Judge, D. D	.10,001
Kadanoff, L. P	.70.932
Kahalas, S. L	
Kaiser, T. R	.71.770
Kakinuma, T	.70.862
Kaliszewski, T	70 767
iuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	71,518
Kallmann-Bijl, H. K	70 328
Kalter, S. S	
Kamiyama, H	70,612
Kane, J. A	70 427
Kang, G	71 019
Kaplan, L. D	
Kaprielyan, S. P.	
Karabin, M.	
Karplus, R.	.70.724
Karzas, W. J	.70.420
Kash, S. W	
Kasian, I. I	.70,336
Kassner, R. R	.70.351
Kasten, D. F	.71,254
	71,539
Katasev, L. A.	.71,844
Kato, S	.70,910
Katz, L	71,118
Katzenstein, H. S.	70,989
Katzoff, S	
Kaufmann, R	70,695
Kaufmann, R. L Kaula, W. M	
Kaye, J	
Keenan, R. K	70 037
Keirim-Markus, I. B.	71 673
	71.883
Keith, J. E	70,388
Kelble, J. M.	71,448
Keller, J. W.	70,546
	71,907
Kelley, H. J	70,102
Kellogg, P. J	71,996
Kelly, T. J	71,819
Kemp, R. F	70,721
Kendall, P. C.	
	70,688
	71,739 71,748
Keonjian, E	
Keppler, E.	
Keralla, J. A.	70,805
Kerfoot, H. P	70,066
Kern, J. W	71,050
Kerr, F. J	70,308

Author	Entry
Kerzon, W. J.	.71,001
Kerzon, W. J Khabakov, A. V	.70,835
Khastgir, S. R.	.71,776
Kibby, B. G	.70,048
Kiess, C. C	.70,461
	71,183
Kiess, H. K.	.70,461
Kiinzel, H.	.70,887
Kimura, T.	.70,097
King, J. W	.71,609
King-Hele, D. G	.71,622
	71,757
	71,992
Kipp, E. W	.70,498
Kislik, M. D	
	72,008
Kislyakov, A. G	
Klahn, R	.71,653
Klass, P. J	
Kleczek, J.	.71,925
Kleiger, L. B	.70,672
Kloster, R. L.	.71,122
Klozenberg, J. P	.70,677
Knapp, D. G	.70,699
Knecht, R. W	.71,410
	71,610
Knezek, R. A.	.71,945
Kniffen, D. A.	. 70,980
Knight, D. C	.70,649
Knighton, D.	71,512
Knollman, G. C.	.71,614
Knox, F. B	.70,678
Knox, R., Jr	71,460
Kochanski, A.	70,987
Koelbloed, D.	71,948
Koelbloed, D	70,570
Koerner, W.	70,136
Kolcum, E. H	70,151
	70,326
	70,569
	72,004
Kolder, H	70,007
Kolyer, R. C.	70,024
Kondratyev, K. Ya	
Kondratyeva, M. A	70,621
Kondurar', V. T	70,629
Konecci, E. B	
	70,364
König, H Konovalov, A. I	71,064
Konovalov, A. I	70,336
Kopal, Z	
	71,681
	71,846
	71,867
	71,868

Author	Entry	Auth
Kopecký, M	70,543	Kuro
	70,887	
Kordylewski, K	70,825	Kurt,
Korenberg, E. B		Kurz
	72,008	Kuvs
Kork, J	70,259	
Korkan, K. D		Kuzn
Koskela, P. E	70,290	V
Kosmo, J. J	70,000	Kuzn
	71,354	
Kotanchik, J. N	71 601	Lacy
Rotanenik, j. 10	71,602	Lady
Kotelnikov, V. A.	70.333	LaGo
	71,630	Laid
	72,008	Laire
Kotnik, J. T		Lalo
Kovacik, V. P.	70,282	Lam
Koval, I. K	70,759	Lam
Kovalev, E. E	71,673	Lanc
	71.883	Land
Kovalevsky, J.	70,793	Lang
Kovit, B	71,391	Lang Lang
	71.418	Lang
Kozai, Y	.70,193	Lanz
	70,353	Larg
_	71,091	Lars
Krassner, G.	.70,004	Lars
	70,043	Latt
	70,044	Latt
Maria Maria	70,093	Latv
Krassovsky, V. I	. 70,010	Lau
	71,986	Laut
Kraus, J. D	.70,256	Laut
Krebs, R. P.	70,223	Laux
Kreiselmaier, K. W		Lave
Krieger, F. J.	.71,155	Lave
Krishnamurthy, B. V		Lave
Krishnan, T	.71,939	Law
Křivský, L	.71,930	Law
Krotikov, V. D		Law
Krstansky, J. J.		Ŧ
Krumbein, A. D		Law
Kruszewski, E. T		Lead
Kueser, P. E		Lead
Kuhne, C		Lea
Kuiper, G.		
Kuleshova, K. F.		Leal
Kulkarni, P. V		Lea
Kumagai, T. T		Leb
Kumpitsch, R. C		Leb
Kundt, W		Leb
Kundu, M. R		Leb
Kurnosova, L. V		Lec
	71,709	Led
	71,710	Led

Author	Entry
Kuroda, P. K.	.70,384
	70,385
Kurt, V. G	
Kurzhals, P. R.	.71.267
Kurt, V. G Kurzhals, P. R Kuvshinoff, B. W	71.231
Ravonnion , D	71,522
Kuzmin, A. D	.70,925
Ruzinin, A. D	72,007
Kuzmin, A. I	
K uzinini, A. 1	. 11,022
Lacy, L	.70,546
Lady, L. I LaGow, H. E Laidlaw, W. R	.70.807
LaGow. H. E.	.71.470
Laidlaw, W. R.	.71.581
Laird, M. J	71.016
Laloë, F	
Lambert, P. V	71.311
Lamorte, M. F	70.974
Lander, J. J	70.001
Landmark, B	70 561
Lang, R Langenecker, B	71.050
Langenecker, B	. 71,059
Langfeld, P. G.	.70,357
Langley, R. A.	
Lanza, G	.71,028
Large, M. I	.70,671
Larsen, S. H. H	.70,628
Larson, T. J.	
Latter, R	.70,420
Latto, W. T., Jr	.71,545
Latva, J. D	.71,449
Laughlin, C. D	.70,602
Lauter, E. A.	.70,857
Lautman, D. A.	.70,525
Lauxen, C.	.71,002
Lavelle, J.	.70,804
Lavender, R. E	.71,808
Lavery, 1	.70.191
Lawrence, H. R	.70,144
Lawrence, J. D., Jr	.70,810
Lawrence, L., Jr.	.71,048
	71.429
Lawrie, J. A	.71,371
Leach, R	.70.593
Leach, R. F	71 135
Leadbetter, S. A.	70 736
Leaubetter, 5. A.	71,279
L . l. XIV D	
Leak, W. R Leatherman, B	
Leatherman, B.	71,028
Lebeau, A.	71,222
Lebedev, A. A.	70,716
Lebedinskii, A. I	70,758
Lebovitz, N. R	70,710
Lecar, M	70,327
Lederberg, J.	70.156
Lederer, S.	
	1,010

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6_____

Author	Entry	Author	Entry	Author	Entry	Author	Entry
Lee, H. S	71,331	Link, F	71,789	Maeda, H	.70,703	Maxwell, A	71,942
Lee, J. B		Lipskii, Yu. N	70,780		71,175	May, B. R	
Lee, J. P	70,418	Lockwood, D. L	70,063	Maeda, K	.70,952	May, J	
Lefferts, E. J.			70,124	Maehlum, B		May, J. R	
Legalley, D. P		Lockwood, G. E. K	71,978	Magnolia, L. R		Maybach, W. J	
Lehner, F. E		Lockwood, J. A		Mahajan, K. K		Maynard, O. E	
	70,513		71,705	Maiden, C. J.		Mayo, A. P	
Lehr, P. E		Lodi, E. A	71,562	Maienschein, F. C	,	Mazza, G.	
Leinbach, H		Loeffler, I. J		Malitson, H. H		McArthur, G. L	
	71,026	Logachev, V. I.	70,634	Malville, J. M		McCabe, W. M	
Leiphart, J. P			71,709	Mamikunian, G		McCall, G. J. H	
Leitmann, G		Loh, W. H. T		Managh E I	71,463	McCally, M	71,420 70,335
Leitz, F. B		Lokanadham, B	71,063	Manasek, F. J	71,797	McCany, M	71,639
Leondes, C. T		Lomonaco, T.	71,251	Mandelshtam, C. L	,	McCalmont, A. M	· ·
Leovic, W. J	70,948 70 314		71,660	Mandelshtam, S. L		McCartney, J. F.	
Lessor, A. E			71,864	Mandelstam, S		McClain, E. F.	
Lesson, A. E		Longden, G. B	71,499	Mann, D. J		McClelland, D. H	
Lett, P. W		Loomis, A. A		Mannex, H. R		McClure, R. B	
Lett, 1	71,429	Louderback, A. L		Manson, J. E		McCormick, H. B	
Levene, M. L.		Loughhead, R. E		Manson, L.	,	McCormick, J. C	
Levin, A. D		Love, T. A		Manuel, O. K		McCoy, F	
Levin, B		Lovering, J. F		Margaria, R		McCracken, K. G	70,662
Levin, B. Yu			71,592	Markelova, A. A		McCrosky, R. E	
Levin, G. V	70,154	Low, C. A., Jr		Markov, A. B.	.71,473	McCullough, F., Jr	71,606
Levin, L	71,598	Lowe, R. E		Markov, A. V	.70,831	McDaniel, E. W	70,969
Levitskii, L. S		Lowry, R. D		Markow, E. G.	.71,045	McDonald, F. B	-
Levy, C	70,679	Lubin, B			71,428	McDonald, P. F	
Levy, G	70,395	Ludford, G. S. S Ludwig, G. H		Markus, G		McDowell, E. P	
Levy, R. H	70,113	Ludwig, G. H		Marmo, F. F		McElhoe, B. A.	
	71,910	Lundquist, C. A.		Marochnik, L. S		McFadden, N. M	
Lewis, C. T	71,271	Lüst, R		Marshall, R. R		McGillem, C. D	
Lewis, P	70,135	Lutz, S. G		X . XX 13	71,467	McGinn, J. H.	
Lianis, G	71,283	2a2, 51 61 111111	70,039	Martens, H. E		McGuire, F. G.	
Lichnerowicz, A	70,246		70,975	Marke D.W	71,828		70,539
Lichtenberg, D. B	70,516	Lvova, T. S	70,023	Martin, D. W		McGuire, J. B.	
Lidov, M. L	70,792	Lyle, J. P., Jr	70,293			McIntosh, B. A.	
Lieber, R	70,475	Lyman, R		Martin, J. P Martin, L. R		McIntosh, P. S	
Lieberman, S. I	70,015	Lynden-Bell, D		Martinek, F.			70,743
Lieblein, S	70,221	Lyon, R. J. P	70,177	Martnex, T			71,197
	70,222		70,473	Martynov, D. Ya		McKay, V. A	
	70,223		71,585	Marvin, U. B		McKee, H. C	
Liemohn, H. B	70,339	Lyttleton, R. A.		Marx, J		McKenna, S. M. P	
Lienesch, J. H			71,681	Marye, R. B		McKinney, A. R	
Lietzke, A. F	70,188			Mascola, R. E		McKinnon, R. A	
Liller, W.	71,157	MacDonald, G. J. F	71.716	Mash, D. R		McManamon, P. M	
Lillestrand, R. L	71,090	MacDonald, W. M.		Masley, A. J		McMillan, J. A	
Lilley, A. E	71,633	,	70,919	Massey, H. S. H		McMullen, J. C	
Lilliequist, C. G	71,920		70,920		71,986	McNally, D ,	
Lin, W. C	71,365	Mace, L. M		Mast, L. T		McNerney, J. D	
Lincoln, J. V	70,087	MacKay, J. S	70,761	Mathews, C. W		Megill, L. R	
	71,756		71,612	Matthew, R. E		Megla, G. K	70,734
Lindsay, J. C		Mackey, R. J., Jr	70,377	Matthews, R		Meinel, A. B	70,623
Lineberry, E. C., Jr		Macklin, R. L		Mattig, W		Meineri, G	
Ling, S. C		MacNaughton, J. D.	,	Mattoni, R. H		Meisel, D. D	70,640
Linhardt, H. D	70,239	Madey, R	71,917	Mawardi, O. K	71,112		70,641

[•]Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 AUTHOR INDEX

Author	Entry	Author	Entry	Author	Entry	Author	Entry
Meisenholder, G. W	70,495	Minnett, H. C.	70,307	Mullaney, J. E	.70,560	Newman, D. B.	70,505
Melbourne, W. G	70,214	Mitchell, C. A.	71,580	Mullikin, T. W		Newman, J. B	
	71,153	Mittelman, P. S.	71,909	Mullin, C. R		Ney, E. P	
	71,443	Mityakov, N. A	71,301	Mullins, P. L		Nicholls, R. W	
Men, A. V	70,865	Mixsell, S. A.		Mulyarchik, T. M		Nichols, J. H.	
Menzel, D. H	70,289	Mixson, J. S.	70,829	Muncey, R. W		Nichols, K. E.	
	71,258	Miyazaki, S		Münch, G		Nichols, R. T.	
Mercure, R. C., Jr		Modesitt, G. E		Munick, H		Nicholson, S. B.	
Merrick, R. B		Moe, K	70,404	Munick, R. J.		Nickson, J. J.	
Merrihue, C. M			70,491	Murakami, T		Nicoll, H. E., Jr	
Merrill, P. S		Molitor, J. H		Murphy, C. G. \dots		Niemi, N. J Nikiforov, V. N	
Merris, D. K		Møller, C		Murray, B. C		Nikitskii, N. I	
Mersman, W. A.			71,891	Murray, S. F Murthy, V. R		INIKI(SKII, IV, I	72,008
Meszaros, G. W		Molmud, P		Murty, Y. S. N		Nininger, H. H	
Metzger, A. E	70,298	Monaghan, R		Murty, 1. S. N		Nisbet, J. S.	
	70,238	Monroe, J. E., Jr		Musen, P		Nixon, C. W	
Metzger, S.		Monson, D. S		Mushiake, Y.		Noble, L. M	
Meyer, A. J		Moody, A. B		Mustel, E. R		,	71,924
Meyer, P		Moore, E. P		, · · · · · · ·	70,849	Nobles, R. A.	70,991
Meyer, R. X		Moore, F. B			71,926	Noeske, H. O	
Meyerott, A. J.		Moore, H. J		Myers, T. E	70,366	Nordberg, W	71,839
Michaels, J. V.		Moore, J. G		•			71,975
Michelson, I		Moore, P		Nagamatsu, H. T	70 458	Norling, R. A.	71,147
,	70,944		70,463	Nagata, T.		Norman, C. F	
	71,260		70,742	Nagler, R. G		Norman, H. L	70,369
	71,549		70,923	Nakache, F.		Norwood, J. M	
Michie, R. W			71,230	Nakada, M. P		Notni, P	
Mickelsen, W. R			71,420	Nakada, P		Novosad, R. S.	
	71,339		71,798	Namazov, S. A.		Noxon, J. F	
Mihalov, J. D		More, K. A		Namikawa, T	70,681	Nupen, W.	
Mikami, K		Morgan, H. G		Naraghi, M		Nussle, R. C	
	70,648	Morgan, N. E		Nariai, H	70,097	Nyman, A	10,304
Mikhailov, A. A Mikhailov, A. A		Moroz, V. I			71,892		Z 1 001
Mikk, G Miles, J. R., Sr		Morozov, V. A		Narlikar, J. V		Obashev, S. O	
Miller, A. C		Marrie V D In	72,008	Nash, D. B		Obayashi, T	
Miller, B		Morris, V. B., Jr Morrison, M. R		Naumann, R. J		Obery, L. J	71,989
	70,538	Morrison, R.		Nazarova, T. N		O'Brien, B. J	
	71,918	Morse, J. G		Neff, S. H		O Difen, D. J	70,853
Miller, B. P	70,445	Monse, j. et tittett	71,511	Negro, A. G			71,125
Miller, C. E		Moskowitz, S. E		Nelms, G. L			71,527
Miller, D. E	70,038	Motz, H. T	71,130	Nelson, D. A			71,626
Miller, F. D		Mountjoy, J. C		Nelson, J. H			71,999
Miller, G. B		Mowlem, A. R	70,359	Nelson, T. M.		Ochs, G. R	71,133
Miller, J.		Mozer, F. S		Nesmyanovich, A. T		Odencrantz, F. K	
Miller, R. A.		Mrazek, W. A.		Ness, N. F		Oeschger, H	
	71,879	Mueller, D. D		N	71,716	Ogilvie, K. W	
	71,881	Mueller, G.		Nesterov, V. E.			71,698
Miller, W.		Mueller, G. E		Nesterov, V. Ye		Ohring, G	
Millman, P. M		Mueller, M. W.		N	70,915		71,436
Mills, R. F. N		Mueller, R. F.		Neuffer, B. H		Okano, F	
Minashin, V. P		Mugglestone, D		Neugebauer, G		O'Keefe, J. A	
	72,008			Neupert, W. M		O'Keefe, J. A., III Okuda, H	
Miner, W. E		Muijtjens, M. J.		Neuts, M. F		Okuzawa, T	
Minnaert, M				Neven, L		Okuzawa, 1 Ol, A. I	
Minneman, M. J	70,104	Mullaly, R. F		110WCII, 11. E		01, 11, 1,	

ţ

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6-AUTHOR INDEX

Author	Entry	Author
Olivarez, J	.71,800	Payne, R.
Olivier, J. R		Peabody,
Olling, E. H		Peabody,
Olson, E. C		Peake, H.
Omholt, A	.71.672	Peattie, C
Ondoh, T	70 690	Peck, D.
,	70,703	Pecker, C
	71,175	Pecker, J.
Onwumechilli, A		Peebles, I
Opfel, J. B	70 881	Peelle, R.
Orlova, N. N	70,001	Penndorf,
Oró, J	71 839	
Orr, W. I		Penner, S
		Penningto
Orrall, F. Q	. 70,007	Penzo, P.
Ortner, J	. 70,091	Perkel, H
	70,700	Perks, A.
Osborne, R. S		Perry, F.
Osgood, C	. 70,517	Peters, G
Oster, L Otten, K. W	.70,559	Peterson,
		Peterson,
Otto, E. W		Petit, M.
	70,930	Petrash, I
	71,061	
Owren, L	.70,060	
	70,675	Petrie, L.
Ozkaptan, H	.71,310	Petrov, G
Ozsváth, I		
,	,	Petrov, V
~ P I	F O 000	Petrovich
Page, R. J	.70,393	Petrukhir
Paghis, I	.70,291	Petschek,
Pan, W. Y	.70,896	Petschek,
Pankratov, A. K.	. 70,859	
Paolini, F. R.	.71,238	Pettengill
Papell, S. S	. 70,108	
Pardoe, G. K. C.	.70,365	Pfeiffer, (
Parker, E. N		
,	71,923	
Parker, J. R	,	
Parker, S. G	70 413	Pfotzer, C
Parker, W. F	71 713	Philip, K.
Parsons, W. D		Phipps, 7
Parvin, R. H		Picking,
Pasinetti, A.		Piddingto
Pasinetti, L. E		_
Patapoff, M.	70,618	Pieper, G
Patterson, T. N. L.		
	70,905	
	70,907	
Patterson, W., Jr.	70,027	
Patton, R. M.		Pierce, D
Paul, B		Pierce, D
Paul, E. W		Pilkingto
Paulíkas, G. A		Pinckerne
Pawlik, E. V		Pineo, V.
L		
	71,403	Pirani, F.

.

Author	Entry
Payne, R. B	.71,878
Payne, R. B	.70,421
Peabody, P. R	.70,403
Peake, H. J	
Peattie, C. G.	.70,413
Peck, D. S	.71,718
Pecker, C.	.71,922
Pecker, JC	.70,566
Peebles, P. J.	.70,981
Peelle, R. W.	
Penndorf, R	.70,406
Penner, S. S	.70,424
Pennington, J. E	.71,541
Penzo, P. A	
Perkel, H	
Perks, A. F	
Perry, F. C	.71,998
Peters, G. A	.71,580
Peterson, A. M.	
Peterson, M. B	
Petit, M	. 10,808
Petrash, D. A	
	70,930 71,061
Potrio I F	71,001
Petrie, L. E	70.333
1600V, O. M	72,008
Petrov, V.	.71.481
Petrovich, G.	.71.577
Petrukhin, V. G.	.70.023
Petschek, A. G.	70,992
Petschek, H. E.	70,113
	70,203
Pettengill, G. H.	
	70,836
Pfeiffer, C. G.	70,927
	71,232
	72,011
	72,012
Pfotzer, G.	70,700
Philip, K. W.	
Phipps, T. E., Jr.	70,516
Picking, J. W.	
Piddington, J. H	70,706
	70,707
Pieper, G. F.	70,853
	71,124
	71,127
	71,129
	71,569
Pierce, D.	70,192
Pierce, D. A	70,520
Pilkington, W	70,585
Pinckernell, H	70,426
Pineo, V. C	70,727
Pirani, F. A. E	71,758

Author	Entry	A
Pisarenko, N. F.	70,661	R
	70,915	P
	70,916	F
	71,321	P
	71,701	F
	71,884	P
Pisharoty, P. R.		F
Pistiner, J. S		F
Pitteway, M. L. V		F
Plass, G. N	72.003	
Plattner, C. M	70,300	F
Tiatther, C. M	70,960	F
	70,300 71,056	F
Distin C		F
Plotkin, S Podmoshenskii, A. L	70710	F
Podmosnenskii, A. L	70,000	F
	70,863	F
Pohle, F. V	.70,825	F
Poirier, J. A.	.71,625	F
Pokhunkov, A. A	.71,785	F
Pollack, J. L.		Ĩ
Poole, H. G		1
Poor, J. G	.71,148	
Pope, J. H	.71,233]
Popham, R. W		j
Portsevskiy, K.		1
Potter, A. E., Jr.		i
Potter, J. A	.70,055	1
Potter, N. S	.71,308	-
Potter, R. A	.70,546]
Pounder, E	.70,143	
Power, W. H]
Powers, E. F.	.71,972]
Press, H	.71,856	J
Prew, H. E		
Price, A. T]
	70,434]
Price, J. F]
	71,275	
	71.444	
Priester, W.	.70,541	
	70,599	
Prokofev, V. K.		
, · · · · · · · · · · · · · · · · ·	71,951	
Psochenrieder, W. P	.71.192	
Punetha, L. M.	70.286	
Purcell, E. W	.71.146	
Purdy, D. L	.70.163	
	70,317	
Purser, P. E.		
Pushkov N V	71.422	
Pushkov, N. V Pyron, B. O	71 614	
- y- on, D, O,	,017	
Quimby, F. H	70,299	
Quinn, T. P.	71,352	

Author Entry Radhakrishnan, V.71,523 Radnofsky, M. I.71,144 71,093 Ramachandra Rao, B. . . .71,737 Ramanathan, A. S.71,591 Ramke, W. G.71,449 Rand, S.71,030 Rapoport, V. O.71,301 71,357 Rathert, G. A., Jr. 70,451 71,705 71,710 71,120 71,782 71,033 Reynolds, H. H.71,253

[•]Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 AUTHOR INDEX

Author	Entry	Author
Rich, J. C	70,301	Rossa, L
Rich, J. C Richards, P. B	70,962	
Riddell, F. R	70,230	Rosser, V
Rieder, R. A		Rossi, B.
Riedesel, R. G.		Roth, R.
Rind, E	71,727	
Ringnes, T. S		
Ringwood, A. E Rishbeth, H	71 355	
Iusnocui, II	71,742	Rothe, E
Rittenhouse, J. B		Rothenbe
Roach, F. E		Rothwell
Roberson, R. E	70,112	Rousseau
	70,943	Row, R.
	70,947	Rowe, R
	70,948	Rowell, I
	71,658	Rowen, 1
Roberts, J. A.	71,869	Rowland
Roberts, J. E		Roy, A. I
Roberts, T Robertson, J. E	70 390	Rozareno
Robinette, W. C	71 949	Rozenbe
Robinson, L. J.		Rubin, S
Roble, R. G	70,207	Rudakov
	70,502	Rudy, J.
Robley, R	71,239	Ruhstrat Ruskol, I
Roddick, R. D.	70,224	Russak,
Roeder, A. W		Russak,
Roels, J		Russell,
Roemer, M.	70,541	Rzhiga,
Rogers, S. C.	70,996	0,
Rogers, T. A.		
Rohles, F. H.	71,253	Sachs, R
Rohrbach, E. J.		····, ·
	70,762 71,085	Safronov
Rohrback, G. H		Sagalyn,
Roig, R. W		Sagan, (
Roland, G		
Rolls, L. S.	70,748	Saha, A.
Rom, F. E	70,188	Saheki,
		Saito, I.
	70,888	Columni
Romagnoli, R. J		Sakurai, Salava, '
Romaine, O Romanchuk, P. R	70.885	Salava, Salisbur
Romer, E. M	70 597	Salmon,
Roper, R. G	71.405	Salomor
Rose, D. C		04101101
Rose, H. E		
Rose, W. K	71,161	Salova,
Rosen, M. W	71,284	Salpeter
Rosenbaum, R		Salter, I
Rosenblatt, A.		Salvinsk
Rosenzweig, W		Sama, E
Ross, F. W		Samuel,
Ross, S	71,400	Sandage

uthor	Entry
lossa, L. G	.70.761
····, ····	71.612
losser, W. G. V	.70.602
lossi. B. B	.71.238
lossi, B. B	.70.927
,	71,232
	71,442
	72,011
	72,012
lothe. E. D	
Nothe, E. D	.70.349
lothwell, P.	.71.027
lousseau. I.	.70.680
lousseau, J	.70.056
lowe, R. D	.71.345
lowell, L. N	.71.983
Rowen, B	70.342
Rowland, J. H	71 121
Roy, A. E	
Rozarenov, L. A	70.634
Rozenberg, D. P	.70.651
Subin. S.	.71.627
Rubin, S	.71.783
Rudv. I. A	.70.302
Rudy, J. A	.70.426
Ruskol, E. L	.71.694
Russak, S	
Russak, S. L	.71,882
Russell, S	
Rzhiga, O. N	.70,333
	72,008
Sachs, R. K	.70,709
Safronov, V. S	71,152
Safronov, V. S	.70,663
agaiyii, n. c	1 .,010
Sagan, C	.70,156
• •	70,201
Saha, A. K	.71,778
Saneki, 1	. 10,151
Saito, I	
	70,934
Sakurai, K	71 020
Salava, T Salisbury, J. W	
Salmon, W. A.	
Salomonovich, A. E	.70.864
	70,925
	72,007
Salova, G. I	.70,758
Salpeter, E. E	71,870
Salter, R. G	.70,459
Salter, R. G Salvinski, R. J	71,393
Sama, D. A	70,081
Samuel, A. H	
Sandage, C	71,188

Author	Entry
Sanders, N. D	.71,543
Sandford, B. P	
Sandorff, P. E	
,	70,877
	71,282
Sano, Y	
Santoro, R. T	.71.913
Sarabhai, V.	
Sartwell, F.	.70.812
Sato, T	.70 783
Satyendra, K. N	
Sauer, C. G., Jr	
	71,153
	71,298
	71,443
Sauer, H. H	
Saucrmann, C	71 959
Savenko, I. A	
Savenko, I. A	
	70,661
	70,915
	70,916
	71,321
	71,701
	71,884
Savet, P. H	
Sawochka, S. G.	
Sayers, J.	
Scala, E	
Scala, S. M	
	71,507
Scarf, F. L	70,339
	70,550
	71,228
	71,924
Scearce, C. S.	71,006
Schaefer, E. J.	71,621
Schaffer, A. B.	70,232
Schanz, J. L.	70,411
Schanzle, A.	70,371
Schechter, H. B.	70,595
,	71,049
Schiff, D	
Schill, J	
Schlesinger, E. R	71 953
Schlotter, W. J.	
Schlüter, H.	
Schmalberger, D. C Schmelovsky, K. H	
Schmidt, R Schmidt-Kaler, T	70 219
Schmut-Kaler, I	70 500
Schmied, L. Schmitt, R. A. Schmitt, R. A. Schmitt, R. G.	
Schmitt, R. A.	71,074
Schmitt, R. G	70,971
	71,685
Schneebaum, M. I	
Schnetzler, C. C	70,891

Author	Entry
Schoen, A. H.	.70.973
Scholey, W. J.	71 442
Schrader, C. D	70 123
	71,801
Schreiner, W.	
Schrello, D. M.	70 012
Schrenk, G. L.	.71.313
Schroeder, R. L	.70.240
Schröter, E. H	.70.890
Schubert, G.	.70.007
	.70,666
Schuller, M	
Schulman, F Schulte, H. A., Jr	.70,183
Schulte, H. A., Jr	.70,502
Schwartz, I. R.	.70,394
Schwartz, J. W	.71,690
Schwartz, S	.71,454
Schwartz, U	.70,768
Schwarzbein, Z. E	
Schwartzman, L	
Scott, W. G	
Scott, W. R	.70,390
Scroggins, J. R	.71,469
	71,678
Scroggs, R. J.	.71,913
Scull, W. E	.70,482
Scully, C. N.	
Scully, E. J.	
Seale, L. M	.70,449
Searle, N. Z.	. (1,085
Sears, R. L	70 646
Secretan, L	70.002
Seuton, J. C	71,025
	71,025
Sohral B	71,779
Sehgal, R	70 806
Selig, E. T	71 945
Sellen, J. M., Jr	70 701
Semenenko, V. E	71.676
Semenenko, v. E	71 504
Senftle, F. E	70 664
Sen Gupta, r	71 004
Sentman, L. H.	70 574
Serbin, H.	
Setser, J. L.	
Severnyi, A. B.	71.007
Seybold, P. G	70 600
Shaffer, A	000,011.
Shair, R. C Shakhovskoi, A. M	70,499
Snaknovskoi, A. M	
	72,008
Shapiro, G.	
Shapiro, I. R	
Shapov, A. I.	
Sharonov, V. V	70,759

[•]Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

Author	Entry	Author	Entry	Author	Entry	Author	Entry
Shats, M. M	70,892	Singh, M. P	70.148	Sobouti, Y	.71.506	Stevenson, C. G.	.70.314
Shavrin, P. I		Singleton, D. G.	•	Sodin, L. G		Steverding, B	
Shurin, 21 21 11111	70,915		70,074	Soicher, H		Stinnett, G. W	
	70,916		70,075	Sokoloff, A.		Stitt, L. E	
	71,321		70,076	Sokolsky, S	•	St. Kalitsin, N.	,
	71,701		71,353	Sola, F. L	-	St. Kalitzin, N	
	71,884	Sirotkin, I. A.	,	Solarski, A. H		Stoffregen, W	
Shaw, B. W		Sisakian, N. M.		Sondhaus, C		Stolarik, J. D	
51140, 2	71,137	, - · · · · · · · · · · · · · · ·	70,020	Sondhaus, C. A.		Stolwyk, C. F.	
Shaw, R. H		Sissenwine, N		Sonett, C. P		Stone, I	
Shcheglov, P. V		Sitler, J.		bonett, C. I	71,750	Stoner, W. A	•
Shchegolev, D. Ye		Sivo, J. N	•		71,751	Strack, W. C.	
Shenegolev, D. Te	71,473	Sjoberg, S. A			71,752	Strahle, W. C	
Shcherbakova, M. N				Sonnerup, B. U. Ö		Straile, W. E	
Shchigolev, B. M		Skerritt, J. W		Sorokin, O. M		Straka, R. M	
		Skillman, T. L		Soules, S. D		Straly, W. H	
Shea, J. F		Sklar, S. J.		Spangenberg, W. W		Strass, H. K	
Shearin, J. G Shearman, E. D. R		Skripin, G. V.		Spangler, E. R		Strauch, K	
•		Skuta, E. B		Sparks, O. L		Strauss, H. S	
Sheer, R. E., Jr		Slade, M		Sparrow, E. M		Strayhorn, T. R	
Shelov, N. N	71,990	Slater, A. E		Sparrow, G. W		Striebel, C. T	
Shelton, R. D		Slee, O. B				Stripling, H. J.	
Shen, C. S		Slifkin, L. M		Spear, R. C		Strome, W. M	
Shen, S. P	-	Sliski, T. F		Speed, R. C		Strong, J	
Shepherd, G. G		Sloan, J. E		Speiser, K		5110112, j	71,636
Sherman, A.		Sloanaker, R. M		Speiser, R. C		Stroup, E. R	
Onerman, 11, 111111	71,051	Slocum, R. E		Spencer, C. L		Strughold, H.	
Sherrell, F. G	,	Slowey, J.		Spiegel, J. M		Struve, O.	
Shimazaki, T.		Smiddy, M		Spinrad, H		Stubbs, P	
Shimizu, M.		Smith, A. G	•		72,009	011003, 1	71,318
Shirland, F. A		Smith, A. M		Spreiter, J. R.		Stuhlinger, E	
Shoemaker, E. M		Smith, D. E		Sprenger, K.		Stullinger, D	70,394
Shore, B. W		Smith, D. S		Spring, C. T		Stull, V. R	
Shrode, R. R	70,068	Smith, E. J		Srirama Rao, M		Stumpff, K	
Shroyer, G. J.	71,080	Smith, E. v. P		Srp, O. O		Stampil, in the test	70,632
Shteins, K. A.		Smith, F. H		Staley, R. M.			71,288
Shuba, Yu. A		Smith, F. T. \ldots		Stambler, I			71,289
Shucker, S.		Smith, H. J			70,190	Sture, S. Ya	
Shulman, Y		Cartal II D Ta	70,860		70,430	Sturman, J. C	
Shurygin, A. I	70,929	Smith, H. P., Jr Smith, J. O			71,088	Subotowicz, M.	
	71,955	Smith, J. O			71,247	Suddath, J. H	
Shute, B. E	71,593	Smith, R		Stampfl, R. A		Sugiura, M.	
Siegel, S. M.		Smith, R. V			71,714	Sukhovei, A. G.	
Siegried, W. H		5mmm, n. v	71,120	Stankiewicz, N		Sullivan, G. H.	
Silber, R.			71,121	Stanley, C. V		Sullivan, J.	
Sill, C. W	-	Smith, T. D		Stanyukovich, K. P		Sullivan, R.	
Silverman, S. M		Smith, W. B		Starik, I. Ye		Sulzmann, K. G. P	
Silvern, D. H	•	omien,	71,629	Stark, K. W		Sunderland, R. J	
Simmons, P. L.		Smits, F. M		Stecher, T. P		Sussman, M.	
Simon, G. W.			71,561	Steedman, W. C.		Sutcliffe, H. K.	
Simon, R.			71,718	Stabling V P	71,108	Svestka, Z	
Simon, R		Snejdárek, I		Stehling, K. R Stein, W. A		Swalley, F. E	
Simon, W. E		Snyder, N. W		,	•	Swarup, G	
Simons, J. C		Soberman, R. K.		Steinberg, M Stelzriede, M. E		Swet, C. J	
Singer, S. F		Sobolev, V. V		Stephenson, W. B		Swift, D. W	
omgei, o. r	71,841	Sobotovich, E. V		Stephenson, w. b Stern, D		Switzky, H	
	11,041	0000000000, E. V		otern, D		GWILLRY, 11	

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6

AUTHOR INDEX

Entry

Author	Entry	Author
Synge, J. L	70,094	Titus, R. R
Sytinskaya, N. N	70,759	Tiuri, M. E
Szebehely, V. G	70,367	Tlamicha, A
	71,099	Tohmatsu, T
		Tokarev, V. V.
Tamers, M. A.	71.072	Tokuda, H
Tandberg-Hanssen, E.		Tolefson, H. B.
- and org Transson, E.	70,564	Tolson, R. H
	71,936	1013011, 10.11
Tang, W		Tompkins, D
Tao, K		Tonnelat, MA.
Taplin, L. B		
Tarter, J. H		Tooper, R. F
	70,502	Tousey, \mathbb{R}
Taub, A. H		Tow, S
Tauch, F. G		Towner, R. J.
Taulbee, C. D		Trachtenberg, I
Taylor, G. E		Trafton, L. M
Taylor, H		Trautman, A.
Taylor, H. P., Jr.		Treble, F. C
Taylor, S. R		Tremant, R. A
Taylor, W. B		Trent, C. H
Tempelman, W. H.		Tretyakova, M. I.
Tenenbaum, D. M		Triolo, J. J.
Tepper, F.		111010, J. J
Thiele, C		
Thigpen, M. H.		m b b b c
Thomas, A. A.		Troitskiy, V. S
Thomas, D. F		Trotter, D. E
Thomas, G	71 720	Troubetzkoy, E. S.
Thomas, J. O		Truax, R. C.
Thomas, R. N		Trubey, D. K
. nonnas, 10. 14	71,922	Truittse, Yu. L
Thomas, T. Y		Turkevich, A. L
Thompson, A. R.		Turner, R.
Thompson, G. E.	70 900	Turner, W. R
Thompson, H. P.		Twombly, J. W
Thompson, R. A.		
		Tyler, J. S
Thorman, H. C		Tyler, R. D
Thornton, T. H., Jr.		Tyson, M. R
	71,053	Tyutikov, A. M
Thorpe, A. N.		
Thouret, W. E		Ueno, Y
Thrane, E. V.		Uguccini, O. W
Thun, R. E		
Tichler, V. A.		Ullock, M. H
Tidd, J. L	71,806	Unangst, J. R
Tiffany, O. L.	71,911	Underwood, J. F
Tikhov, G. A		Unsöld, A
Tilley, R.		Unterberger, R. R.
Tindo, I. P		Unz, H
,	71,955	Unzicker, A. E
Tinling, B. E		Upthegrove, H. N.
Tinnan, L. M		Urey, H. C
Tischer, R. G.		Usher, P. D
Tischler, A. O		Uspenskii, L. N
		озренаки, п. 14

Liki j	4
ıs, R. R	
ri, M. E	
micha, A	
matsu, T	
arev, V. V	
uda, H	
efson, H. B	
son, R. H. $\dots \dots \dots$	
71,902	,
npkins, D	
nelat, MA71,373	
per, R. F	. `
sey, R	, , ,
v, S70,644	
vner, R. J	
chtenberg, I 70,413	
fton, L. M	
utman, A) 1
ble, F. C	; ,
mant, R. A	. '
nt, C. H	; '
tyakova, M. I 71,708	
olo, J. J	2
71,303	5
71,684	
itskiy, V. S71,475	
tter, D. E	r I
ubetzkoy, E. S71,909	,)
	, ·
ax, R. C	
bey, D. K	,
ittse, Yu. L	, 2
kevich, A. L	,
ner, R)
ner, W. R	
ombly, J. W	,
er, J. S70,055	5,
er, R. D	
on, M. R	Ł,
ıtikov, A. M	
no, Y71,892 uccini, O. W71,000	s
1000000000000000000000000000000000000)
ock, M. H	
angst, J. R	
derwood, J. F71,245	
söld, A)
terberger, R. R70,417	7
z, H	7
zicker, A. E	
thegrove, H. N 71,798	5
ey, H. C)
ner, P. D	
penskii, L. N	3

Entry

Author	Entry	Author
Vaeth, J. E	70,018	Waak,]
Vaglio-Laurin, R		Waddel
о ,	71,387	Wade,
Vampola, A. L	71,128	Wager,
Van Allen, J. A		Waggo
	71,125	Waggo
	71,631	Waggo
	71,994	Wait, J.
	71,995	Wakai,
	71,997	Wakefie
Van Biesbroeck, G		Walend
Vand, V	71,848	Walker,
van de Kamp, P	70,029	Walker,
Van Dilla, M. A		Wallace
	70,514	Wallace
van Lint, V. A. J		Wallace
van Sluiters, A.		Waller,
Van Zandt, T. E		Walsh,
van Zijl, J. S. V		Walt, N
Vasilev, B. N		Walt, h
Vasilev, I. G.	71,957	
Vasilyev, B. N Vaughan, V. L., Jr	70.028	
Vaughan, W. W	71 460	Waltha
Venkatesan, D		Wang,
Venkateswaran, S. V.		Wänke,
venkateswaran, o. v.	71,241	Ward,
Venugopal, V. R		Ward,
Verniani, F.		Ward, S
Vernov, S. N		Wark, I
	70,916	
Verwers, C. D.		Warneo
Vestine, E. H		
,	71,950	Warner
Viglione, S. S	70,361	Warnoo
	70,655	Warren
Vijayalakshmi, B	70,978	Warren
Vilenskiy, I. M	71,528	Warren
Villars, F.	71,754	Warwie Warwie
Vilms, J	71,720	Warwk Wasel,
Vitkevich, V. V		Wasel, Washb
Vladimirova, M. G	71,676	vv asino
Voas, R. B	70,765	Wasko,
Vogler, F. H		Wasko,
Vogler, L. E		Watern
Vogt, R		Watkin
Volland, H		Watson
Vollmer, J.		Weavir
von Tiesenhausen, G. F		Webb,
Voorhees, B. G		Webb,
Voronko, Yu. K		Webbe
	71,955	Webbe
Vruggink, J. E	70,293	
Vsekhsvyatskii, S. K	70,732	Weber,

ggoner, C. E.71,640 kefield, R. M.71,240 lendziewicz, E. T. . .70,659 71,650 70,692 70,919 70,920 71,840 71,110 rnock, L. F., Jr. 70,105 rren, E. S.71,608 rwick, C. S.71,395 rwick, J. W. 71,790 shburn, H. W.70,798 71,504 terman, A. T.71,031 71,706

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entrics 71,646-72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6______

Author	Entry	Author	Entry	Author	Entry	Author	Entry
Weber, H. E.	.71,344	Whatley, E. M.	.70,387	Wilson, R. K.	.71,122	Yamamoto, M.	.71,175
Weber, J.	.71,151	Wheeler, R. J.		,	71,168	Yang, L	70,313
Weddell, J. B.	.71,931	Whelpley, W. A	.71,995		71,879	Yarbrough, L. S.	71,806
Weed, D. S	.70,653	Whipple, F. L		Wilson, T.	.71,871	Yarin, V. I	70,616
Wegener, P. P.	.70,924	Whisenhunt, G. B	.71,945	Wilson, T. G.	.70,050	Yeh, K. C	.70,132
Wegner, G.	.70,842	Whitaker, R. O	.71,313	Winch, D. M	.70,223	Yeroshenko, E. G	.71,422
Weich, R. F.	.70,451	White, A. F		Winchester, J. W	.70,891	Yim, E., Jr	71,796
Weide, D. L	.71,166	White, A. W	.70,413	Winckler, J. R	.70,284	Youmans, A. H.	.71,024
Weil, H	.70,472	White, C. E	.70,537		70,603	Yuan, S. W	.71,389
	71,476	White, J. A	.70,139	Winfield, D. H			
Weil, J. A	.70,458		70,711	Winkler, H. B		Zahn, S	.70.146
Weill, G		White, O. R	.70,275	Winovich, W.		Zajac, E. E	
Weiman, I		White, R. M	.70,342	Winters, C. W		Dujue, D. D	71.264
Weinberg, A. F.		Whitehead, J. D		Wise, D. U		Zambelli, E. D	
Weiner, S. D		Whitham, K		Wise, J. F.		Zamchalova, E. A.	
Weinstock, R.		Whitman, M. J	.70,186	Wisnia, J.		Zee, CH.	
Weis, W. G		Wiant, R		Witt, E. O Witte, W. G			71.615
Weisbrod, S.		Wickramasinghe, N. C		Witten, L		Zeiberg, S. L.	,
Weiss, E. H		Widger, W. K., Jr.		Wolf, H. F		Zeldovich, Ya. B.	
Weiss, M		Widmayer, E., Jr		won, n. r	70,655	Zenger, J. H	
Weiss, R. J		Wikner, E. G		Wolff, J. R			
Weiss, W. L		Wilcox, J. M.		Wolff, W. M		Zetkov, G	
·····, ·····,	70,990	Wilde, A. F		Wolman, W.		Zhdanov, G. B	
Welber, I.	.70.587	Wilder, L. B		Wood, H. L		Zhuravlev, D. A	
Welch, J. A., Jr	,	Wilkes, L.		Woodbridge, D. D		Zhuzgov, L. N.	
Welles, O. W		Wilkinson, K. J. R		Wray, D		Ziauddin, S	
Wells, D. L	-	Willard, C. F.		Wright, F. W.	.70,912	Ziemba, F. P	
Welsh, H. W		Williams, D. J.		Wright, J. W	.70,728	Zimmerman, A. V	•
Wescott, L. R.		Williamson, F., Jr Williamson, J. M		Wright, M. D	.70,072	Zirin, H	
West, J. W		winnamson, j. w	71,368	Wright, W. V	.70,273	Zmuda, A. J	
Westerman, C. W	,	Willingham, D. E		Wu, J. M	.71,970		71,136
Westerman, H. R.		Winnighani, D. D	71.504	Wulf, O. R	.70,414		71,137
Westfall, J. E		Willis, C. P.	,	Wykes, J. H	.71,581		71,569
Wetmore, W. C		Wills, A., Jr				Zobel, W	.71,913
······, ······	71,860	Wilson, A. G		Xanthakis, J	.70.581	Zonov, Y. V	.71,586
Wexler, H.	,	Wilson, A. T			71,962	Zotkin, I. T	.70,733
,	70,903	· , ·· -· · · · · · · · · · · · · · · ·	70,141		., _		71,466
Whale, H. A.		Wilson, E. L		Yagerhofer, F. C.	70.005	Zoutendyk, J. A	.70,547
, , , , , , , , , , , , , , , , , , , ,	70,620	Wilson, J. N		Yagoda, H.		Zumbrun, S. H. N	
Whalen, R. J	,	Wilson, L. D	•	Yakovkin, A. A		Zvara, J	
Wharton, A. E. B.	•	Wilson, P. R		Yamamoto, G.		Zwick, H. H	
	,	, *** ••••••	,			····,· ••• • • • • • • • • • • •	,

^{*}Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

SUBJECT INDEX*

Subject

Entry Ablation ablative plastic materials......71,448 blunt body, free-flight investi-comparison with radiation effects of mass flow on turbulent materials, experimental investigation in electric-arc-heated air jet71,646 nonlinear thermal problems. of glassy materials, comparison between theory and flight data 70,932 of teflon and polyethylene, at radiation from models, laboratory transient phenomena and viscosity variation effects on melting and Abort considerations, manned lunar problems, lunar landing missions.71,816

Acceleration

biological and physiological
effects, USSR data71,656
disturbances, effects on liquid-vapor
interface in baffled tank during
weightlessness
effect of load on respiratory
function
effects of change in direction on
human center of gravity70,345
effects on brain function as evaluated
by flicker test
effects on chimpanzee per-
formance
effects on inner ear
effects on space orientation70,007
physiological and psychological
effects, bibliography71,274
prolonged transversal, physiological
reaction of small animals70,935
daptive Control Systems

pulsed rocket control techniques. .70,609

Advanced Propulsion Systems

colloid ionization, isotope engines,	
and controlled-fusion power sup-	
plies; possibilities	1

Subject	Entry
Advanced Propulsion Systems (Cont'o	1)
current sheets in plasmas,	
measurements	71.112
glow discharge device, description.	
motion of body with constant thrus	
and variable mass in gravitationa	
	11,210
optimum power programming,	71 010
mathematical analysis	71,212
Airglow	
Jan. 30–31, 1960 observations	70,614
$\lambda\lambda$ 6300–6364 Å, consequences	
of de ionospheric electric field.	71,782
anomalous intensity rise at λ 5577 Å	
observation	
correlation between OH and Na	,
emissions of the night sky	70 610
day and twilight, observation of	10,010
(0,0) band of $({}^{1}\Delta g - {}^{3}\Sigma \overline{g})$	
system of oxygen	70.002
night, high dispersion spectrum	70 611
night, intensity relation to magnetic	
activity night, lightning-enhanced	10,015
N_2^+ radiation	71 640
night, luminosity observed from	71,049
	70 240
Mercury capsule	10,340
night, Lyman- α excitation	70.010
experiments	70,019
night, Lyman-α radiation	71,730
night, oxygen green line, excitation mechanism	-
	71,987
night, oxygen red line intensity	
variations	70,613
night, sodium D lines, excitation	
mechanism	
night spectrum, $H\alpha$ radiation	70,612
oxygen green line, intensity	
variations	71,647
oxygen red line, correlation with	۱ ــــــــ
recombination in F layer	
spectral analysis UV oxygen	70,618
spectrographic observations in	
4500–7500 Å region	71,650
spectrum atlas, 3000-12400 Å	
synoptic and photometric studies.	70,880
temporal variations of OH	
nightglow	71.241

	Entry

Subject Entry Airglow (Cont'd) twilight intensity, fluctuation Alouette (see Topside Sounder Project) Amplifiers electrometer; drift-free, solid-Anna 1B Antennas (see also Radio Antennas) control system for satellite design and construction of An-directivity, for preservation of satellite interference margin70,376 electrically short, excitation of Goonhilly Downs, description....71,243 high-gain, for communication horn-reflectors for Telstar71,966 impedance probe measurements . . 70,620 large steerable, gear equipment. .71,242 noise temperature, effect on S/N pattern measurement by retro-directive, for satellite data space, flexible foam for erecting mechanism and supporting wide-angle circularly polarized, spacecraft design requirements. 70,348 Antigravity machine, theoretical design70,101 Antimatter search for presence in cosmic rays and outer space by Sputnik 2 . . 70.621 **Apollo Project**

basic objectives and lunar logistic	
system plans, brief summary	.71,426
electronic equipment to be used,	
description	.71,654

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

twilight, measurements of

twilight, observations of alkali

metals emissions71,648

Subject	Entry
Apollo Project (Cont'd) launch vehicle system, use for lunar exploration mission life support, application and adap-	71,048
tation of <i>Mercury</i> system lunar excursion module, description	
objectives and mission capa- bilities	
postflight re-entry test vehicle, de- sign and flight characteristics Saturn launch facilities	
simulation and training facilities, proposed space suits and portable life-suppo	ort
systems systems checkout trajectories for Earth-Moon transits	71,245
U.S. Space Science Program, Apr. 1961–Apr. 1962	
Arc Jet Propulsion Systems application analysis arc engine concept, capabilities for	;
solar system exploration bipropellant, analytical investigation	70,351
bipropellant, nozzle design description design, state of the art	71,246
developmental progress and com- parison with resistojet for attitude control and orbit	.70,393
adjustment requirements and potential applications	
Ariel 1 artificial radiation belt formed by July 9, 1962 nuclear event, data	
power supply; rechargeable, nicke cadmium, 6-amp-hr secondary battery solar power system, design parameters	.70,352
Asteroids 1580 Betulia, 1963 approach annotated bibliography capture missions and astronautic applications ephemeris equation of motion solved by quadrature with high inclination and eccentri ity, secular perturbations	.71,655 .71,772 .71,248 .71,297 .70,353 c-

Subject

Astronauts
animal, effects of simulated launch
and re-entry on chimpanzee
performance71,253
attitude, physical, and psychologic
selection requirements
body fluid distribution study70,335
celestial recognition training
program
chronological report of Glenn's
flight
conference on flight hazards70,355
disorientation and nystagmus,
tests
dogs, factors of natural immunity
during flight
effects of changes in direction of
acceleration on human center
of gravity
effects of physiological functions on
attitude control of vehicle71,658
effects of reduced gravity on
efficiency
effects of space environment,
review of U.S. and Soviet
research and missions
effects of space flight
feeding console for 14-day mission,
description
surface vehicle, requirements71,047
human rendezvous capability in
short orbital transfer
inflatable components of personal
equipment for survival at sea,
development and fabrication71,144
injured on lunar exploration, emer-
gency vehicle for return71,728
man and animal, review of physio-
biological data from suborbital
and orbital flights, 1949–61 71,660
man-rating environmental simula-
tors, medical, engineering, and
operational considerations70,400
man's role in space
medical problems of space flight,
USSR data71,656
perception of motion, equilibrium,
and orientation in zero-g 71,866
physiological and psychological
responses, Mercury data71,455
physiological problems of
re-entry
physiological reaction to rotation,
disorientation and nystagmus70,198
pilot studies in simulated lunar landing vehicle
minung venicie

Entry Entry Subject Astronauts (Cont'd) preparation for MA-6 flight, chronological description71,255 psychological problems in space radiation exposure, permissible radiation hazard, biological shielding and protection by drugs...71,659 radiation hazard from solar flares.70,556 reactions to weightlessness, Soviet safety program, Mercury project . .71,456 D. sanitation and hygiene during Schirra's MA-8 flight, complete report of mission results 70,766 S

*Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

Entry

Subject

Astronomical Unit (Cont'd)
JPL published value, from position-
velocity ephemerides of Venus
and Earth-Moon system70,403
methods of determination70,009
variations, correlation with solar
20-cm flux
Venus radar determinations70,009

Astronomy

(see also Radio Astronomy)

1963 graphic ephemeris71,347 effects of observational conditions on viewing solar system70,783 handbook, data for 196370,939 high-altitude balloon observations, proposed programs for IR studies of planetary atmospheres71,257 instrumentation, recent major IR, techniques to obtain thermal meridian, use of photography....70,030 programs, present and future70,030 Stratoscope project, balloon-borne 300-ft effective focal length

Atmosphere

(see Upper -; for other planets, see Planetary Atmospheres)

1

Atmosphere Sampling of microorganisms, electrostatic
bacterial air sampler70,471
Atmospheric Entry (for Earth, see Re-entry)
analytical solutions for entire region of entry into any planet70,010 ecological and cryogenic fuel
requirements70,358 heating problems at supercircular
velocities
craft
requirements
tainties on vehicle design70,462 Mars and Venus, aerothermodynamic
analysis of vehicle requirements . 70,358 Mars and Venus, importance of
vehicle shape
tal approach trajectories71,508 retrorocket attitude control, heat
transfer effects

Subject

Entry

Atmospheric Entry (Cont'd)
Venus, atmospheric simulation to
determine heat transfer rates
during entry
Z-function solutions for motion and
heating during entry from equa-
torial orbits of rotating planet 70,940
Attitude Control
astronaut as attitude disturbance,
analysis71,658
equations of motion, selection of
base point
equilibrium orientations of gravity-
gradient satellites
inertia sphere to damp angular
motions, theoretical study70,624
librational dynamic-response limits of gravity-gradient satellites70,944
of near-Earth satellite in eccentric
orbit
of satellite in highly eccentric
orbit
reference frame established by
horizon scanner
Tiros satellites, IR sensor data70,359
to minimize perturbations on
satellite motion
two-body schemes, for communi-
cation satellites
Attitude Control Systems
Attitude Control Systems (see also Thrust Vector Control)
(see also Thrust Vector Control)
(see also Thrust Vector Control) analysis and synthesis
(see also Thrust Vector Control) analysis and synthesis70,947 70,948
(see also Thrust Vector Control) analysis and synthesis
(see also Thrust Vector Control) analysis and synthesis
(see also Thrust Vector Control) analysis and synthesis
(see also Thrust Vector Control) analysis and synthesis
(see also Thrust Vector Control) analysis and synthesis
(see also Thrust Vector Control) analysis and synthesis
(see also Thrust Vector Control) analysis and synthesis
(see also Thrust Vector Control) analysis and synthesis
(see also Thrust Vector Control) analysis and synthesis
 (see also Thrust Vector Control) analysis and synthesis
 (see also Thrust Vector Control) analysis and synthesis
 (see also Thrust Vector Control) analysis and synthesis
 (see also Thrust Vector Control) analysis and synthesis
 (see also Thrust Vector Control) analysis and synthesis
 (see also Thrust Vector Control) analysis and synthesis
 (see also Thrust Vector Control) analysis and synthesis
 (see also Thrust Vector Control) analysis and synthesis
 (see also Thrust Vector Control) analysis and synthesis
(see also Thrust Vector Control) analysis and synthesis
(see also Thrust Vector Control) analysis and synthesis70,947 70,948 arc plasma-jet thruster, design71,263 automatic and manual subsystems, description
(see also Thrust Vector Control) analysis and synthesis

Subject	Entry
Attitude Control Systems (Cont'd)
low-thrust vapor jets	
Mercury capsule, description .	
natural energy source possibili	
and advanced actuator	
characteristics	70.945
nonlinear analysis and design te	
niques, annotated bibliograp	
OAO, development of mathema	
model for solution of problem	
propulsion, feasibility of positiv	
displacement injector	71,664
pulsed rocket control technique	s70,609
reaction and thrust vector, tecl	
cal data	
Relay project, system analysis.	
reliability through redundancy	
retrorocket, heat transfer effect	
from gases and free stream	
rigid yo-yo system, to control sp	
rate of rotating spacecraft	
satellite, ½-lb hypergolic engin	
sensor requirements, state of th	
art	70,537
spin control, simulator study.	
star field recognition for inter-	
planetary missions	
state of the art	
state of the art, annotated	71,265
bibliography	71.969
stretch yo-yo for satellite de-sp	
analytical theory	71 261
<i>Telstar</i> , design and preflight	
testing	71 729
two-systems integration, feasib	
and advantages	
Aurorae	
5577 Å emission, photometric	F1 0F1
observations	
5577 Å excitation by geomagne	
tube, hypothesis	71,269
5577 Å excitation by trapped	#1.000
electrons	

 $\lambda\lambda$ 6300–6364 Å, consequences of

activity index and magnetic

arc position, method of

dc ionospheric electric field71,782 activity, correlation with radio star

antarctic zone, contraction observed during geomagnetic storms71,273

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Subject	Entry
Aurorae (Cont'd)	
artificial, photometric observations	
on July 9, 1962	70 626
auroral absorption of radio waves.	
auroral zone X-ray pulsations,	11,021
observations	71.970
	11,270
corona, geometry of radiation	F1 005
point	
dynamical morphology over polar	
region	71,666
echo indices to study relation	
between chorus and geo-	
magnetic conditions	70,689
electron concentration and ioniza-	
tion distribution	71,668
formation, influence of Van Allen	
particles	
hydrogen emission related to charg	
separation in magnetosphere	70,627
hydromagnetic theory	70,706
influence of solar flares and	
prominences	70,705
interferometric measurements of	
5200/02 Å [NI]-doublet	70,628
molecular oxygen dissociation, pola	
mesosphere heating contri-	
bution	.70,952
motions, relationships to iono-	
spheric currents	71,667
N_2^+ ion density	
N ₂ ⁺ rotational temperature, photo-	
metric measurements	
observations during X-ray event,	,
100-sec periodicity	.70.625
origin theories, observational and	
experimental evidence	
polar-glow emissions, calculated	,
and observed intensities	71.670
precipitation of trapped particles.	
proton, hydrogen emission,	1,000
theory	71 669
proton bombardment	
radio aurora, reflection	. 11,000
mechanisms	71 668
radio aurora, relationship of motio	
to ionospheric currents	
ray structure	
rays, directions	
source and acceleration of particle	. 11,000
radiation belt theory	5, 71.071
synoptic and photometric studies.	70,000
temperature and corpuscular	. 70,880
	71.001
heating variations in electron flux, relation	. 71,991
to peaks in X-ray intensity	. 70,625
X-rays, observations	.71,996

-

Subject

Aurorae (Cont'd) zones, effect of solar plasma and interplanetary field interaction.71,745

Bibliography

ibliography
active thermal control of spacecraft
surfaces
annotated, composite materials71,826
annotated, effect of hydrogen on
aluminum
annotated, interplanetary matter 71,772
annotated, space environmental ef-
fects on elastomeric and poly-
meric materials
atmospheric sciences, cumulative
list of foreign literature
translations
attitude control systems
biological effects of weight-
lessness
electrochemical fuel cells
71,362
error propagation in aerospace
systems
high-vacuum effects on electronic
parts, materials; related
problems
hypersonic flow
lasers for space communications71,414
masers and lasers
meteorological satellites, design
and instrumentation
methods of measuring magnetic
fields
Moon and its characteristics70,178
nonlinear analysis and design tech-
niques for space vehicle attitude
control systems71,266
of the Moon as a physical object71,852
physiological and psychological
effects of space flight; accelera-
tion, deceleration, and impact71,274
physiological and psychological
effects of space flight, weight-
lessness and subgravity
plasma propulsion
radar astronomy, theoretical articles,
experimental data, and descrip-
tion of equipment; 1946–6270,809
radiation effects on solar cells and
glass
radiation effects on spacecraft elec-
tronics systems, components, and
materials
radio astronomy, atmospheric
aspects71,887

Subject

Entry

Bibliography (Cont'd)	
radio telemetry to survive high	
accelerations	,203
satellite communications71	,309
selenological measurements and	
observations	,166
SNAP, 1957–July 6271	
thermoelectric generators and	
materials71	,969

Entry

Bioinstrumentation

air sampler for microorganism
detection in upper atmosphere.70,471
development, use of animal tests70,954
gas chromatograph for analyzing and
monitoring space cabin air71,187
radio telemetry techniques for
monitoring
state of the art
state of the art, 1962
techniques and equipment for
MA-6 flight, description71,255
used in MA-8 flight, brief
description
USSR, description
USSR, state of the art70,021
•

Biology

^eEntries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

Entry

bject

Lintry Lintry
Biology (Cont'd)
human simulator for testing life
support systems
Italian research and environmental
studies
life support during planetary
missions
microorganisms in floor dust of
spacecraft assembly facility,
study
natural immunity in dogs during
space flight, Soviet investi-
gations
potential hazards of heavy primary
cosmic rays
and development
problems associated with galactic,
solar, and trapped radiation;
dose restrictions
radiation dose rates, Soviet
studies
simulating effects of cosmic rays71,277
space environment effects on flour
beetle eggs
space flight effects, U.S. and
USSR research
stability of viruses on Discoverers
29 and 30 flights
transversal acceleration tolerance
in small animals
unicellular green algae, effects of
radiation
use of fungus as radiation detector .71,117
USSR, space biology conference70,021

Blue Streak

description and mission potential. 70,365

Booster Rockets

base heating, wind tunnel
studies
clustered boosters, analysis of
vibrations
clustered solid, advantages and
disadvantages70,024
drag effect during boost70,025
finned, roll control during
launch
high-resolution wind measurement
for design analysis71,678
landing and recovery research
and technology
large, design objectives71,287

Subject

Entry

Booster Rockets (Cont'd)
materials and structures, design
considerations
multicell configurations
multistage, cost optimization
multistage, optimum number70,028
multistage, prediction and measure-
ment of natural vibrations71,279
nonrecoverable, state of the art70,956
Nova-class, solid system feasi-
bility study
recoverable and sea launched, eco-
nomic feasibility considerations.70,958
recovery by inflatable drag cones71,550
research history and future
development plans
response problems, wind profile
data
reusable, design studies
reusable, for Saturn-class payloads. 70,959
reusable, retrieval system concept
for recovery
role of meteorology in develop-
ment
Saturn C-1 and Centaur, Jr., as launch
vehicles for solar probes
size and staging requirements,
analysis
solid-propellant, requirements and
potentialities
solid-propellant, state of the art70,366
structural factors as function in
optimization analyses
structures considerations in
design
71,282
technology, state of the art71,543
transient vibrations, method of
analysis and determination71,285
U.S., thrust data
USSR, size estimate
Celestial Mechanics
application to <i>Mercury</i> project70,369
asymptotic stability in restricted
three-body problem
azimuth in southern hemisphere,
determination

Subject	Entry
Celestial Mechanics (Cont'd)	
conference, Moscow, Nov. 20-25	
1961	
equinox and equator,	
determination	70,030
evolution of orbits under gravita	
tional perturbations of external	I
bodies	
galactic system, alternating	
density model	70,030
geocentric orbit determination .	70,031
Hansen's lunar theory,	
modification	71,901
Hill's lunar theory, remarks	71,288
	71,289
Kepler's 3rd law for elliptical	
orbits	70,966
Lagrange problem of equal	
masses	71,295
least density of spherical swarm	
particles orbiting at L ₅	
libration points for circular	
orhits	70.029

.70,825 *n*-body problems, solution using orbital prediction errors due to drag fluctuations, stochastic models. .70,491 periodic orbits for Moon probes, restricted three-body problem . . 70,484 71,290 periodic orbits in plane-restricted Earth-Moon problem, perturbations in rotational motion of bodies caused by oblateness. .70,629 perturbations of hyperbolic orbit perturbations of satellite orbits by tesseral harmonics in Earth's planar three-body problem, planar three-body problem, curvature of Riemann metric71,293 planetary ephemerides, calculation planetary position-velocity ophemerides obtained by special restricted three-body problem, restricted three-body problem, 71,682 restricted three-body problem,

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

calculation of orbits of natural

completed theory of motion of

compound satellite systems, analysis of rotational and relative

Entry

Subject

Celestial Mechanics (Cont'd)
rotation and figure of celestial
bodies, mathematical analysis 70,631
rotational and orbital momenta of
major planets, empirical
relation
satellite motion, influence of Sun
and Moon
stability of synchronous orbits of
sphere and ellipsoid in orbital
plane
state of the art, 1962
three-body problem, capture
examples
three-body problem, modern mathe-
matical expression of Lagrange's
theory
three-body problem, planar move-
ment in coordinate systems71,291
three-body problem, theories
and results
three-body problem, two fixed
centers
three-body refinements of prelim-
inary orbit methods
two-body case, dynamic orbital
element form
two-body equations of motion,
approximate solution
two-body orbital parameters for
nearly circular orbits
velocity and timing charts for orbit
determination
Celestial Navigation Systems
for manual operation by human

ior manaa	operation	 man	
observer		 	71,299

Centaur Project

DX priority possibility, shift to Lewis Research Center70,032

Cesium

ionization potentials, comparison with argon and mercury70,722

Charged Particles

associated with Venus, Mariner 2
measurements; preliminary
report
atomic collisions, relevance to atmos-
pheric and space physics70,969
directional flux densities and
mirror-point distributions in
Van Allen belts
effects on geomagnetic field,
model dipole calculations70,089

Subject

Changed Deutislas (Cautid)
Charged Particles (Cont'd) effects on photovoltaic cells70,548
effects on silicon photovoltaic
cells
flux measurement by Sputniks 2
and 370,634
heavy cosmic rays and products of
nuclear collisions, delineation of tracks71,300
high-energy trapped electrons,
synchrotron radiation
initial stage of acceleration
interaction with geomagnetic field,
hollows from partially incident
streams
local concentration of electrons and
ions in exosphere, Soviet meas-
urements
magnetosphere, Fermi
acceleration
nuclear emulsion detector
studies
proton fluxes along trajectories in
inner Van Allen belt,
inner Van Allen belt, calculation
inner Van Allen belt, calculation
inner Van Allen belt, calculation
inner Van Allen belt, calculation71,998 protons and alphas, damage to silicon junction detectors70,988 semiconductor detectors for space
inner Van Allen belt, calculation71,998 protons and alphas, damage to silicon junction detectors70,988 semiconductor detectors for space spectrometry70,989
inner Van Allen belt, calculation
inner Van Allen belt, calculation71,998 protons and alphas, damage to silicon junction detectors70,988 semiconductor detectors for space spectrometry70,989
inner Van Allen belt, calculation

(see Solar Chromosphere)

Cislunar Environment

effects of charged particle bombard-
ment on photovoltaic cells70,548
effects on design of space train-
ing simulator, survey70,065
gamma-radiation measurements by
Ranger 3, preliminary results70,514
parameters, effects on space
travel
Cislunar Trajectories

Subject

Entry

Entry

Communication Satellites

Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6. Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

Subject

Subject	Entry
Communication Satellites (Cont'd)	
as relay link for nuclear space	
vehicle	71,307
comparison of active, passive, and	70.070
synchronous	
continuous coverage, optimum net-	
work arrangement coverage probability calculations.	
for intercontinental TV trans-	10,010
mission	71.305
for lunar surface communi-	. 1,000
cations	70,175
geostationary, guidance and	
control	71,306
ground receivers for TV system,	
design considerations	70,896
high-gain antennas for blanket	
coverage	
launching and orbiting requiremen	
vehicle design considerations	70,644
operational reliability, require- ments	70.035
orbit attainment problems	
orbit calculation method	
orbital constraints on channel	10,100
sharing	70.038
radio signals, variations of radio	,
horizon	
references and source guides	
Relay, design details	70,251
Relay, Syncom, Telstar; detailed	
description	
Relay project, communications and	
systems integration relays and ground transmitters,	. 10,511
means of satisfying standards	
and requirements	70.895
SNAP-8 power supply, develop-	,
ment	71,082
state of the art, 1962	
Syncom, general description	
technological and economic proble	ms
related to practicability study .	.70,643
Telstar, Relay, Syncom, Advent;	
general description	.70,897
tracking, telemetering, and iono- spheric influence on signals	70 649
two-body schemes for attitude	. 10,042
control reliability	70 942
	, 2
Communication Systems	
co-channel, interference	
	.70,038
combined optical and RF using	
Earth satellite relay link to	71 007
nuclear space vehicle	. 11,307

Subject

Communication Systems (Cont'd)
deep space, effects of electrical
properties of planetary
atmospheres
for space vehicles, design
considerations
frequency sharing with fixed
microwave systems
lunar reflection, study
Mariner, description of flight and
ground support equipment 70,974
Mariner 2, integrated design
approach
Nimbus spacecraft, description 71,081
on lunar surface, power requirements
and ground conductivities71,078
PCM/PM, application to manned
space vehicles
references and source guides71,309
RFI prediction and control70,036
satellite receiver and transmitter,
ground receiver and transmit-
ter, electrical characteristics 70,645
wide band, for <i>Relay</i>
- · ·

. .

Communications

Earth-space, state-of-the-art
survey
electromagnetic propagation through
ionized air around re-entry
vehicle
frequency sharing between satellite
communication and surface
microwave relay systems70,975
intra-lunar, application of West
Ford project proposed70,338
laser applications
laser systems for deep space, advan-
tages and limitations
lunar, between roving vehicle
and base
lunar, summary of parameters and
results of Moon-bounce voice
trials70,646
memory systems for spacecraft,
research
on lunar surface, using satellites70,175
optical frequencies, possibilities
for spacecraft application70,042
references and source guides71,309
satellite-Earth, radio horizon
seasonal variation
state of the art, survey70,040
sweeper interference
transmission and reception,
formulae

Entry	Subject Entry	
	Communications (Cont'd)	
	transmission delay times for dis-	
	tances to 10 ⁹ sm	
71,437	transmitter programming for mini-	
	mal energy consumption, deep	
70,037	space to Earth	
	TV broadcasting to home receivers	
70,039	via satellites, feasibility70,045	
70,784	use of lasers, bibliography71,414	
70,974	Computer Programs	
10,014	7090, conversions and computations	
70,379	for survey and trajectory work,	
71,081	formulae and methods70,649	ļ
ts	7090, for initial velocity determi-	
71,078	nation of interplanetary	
11,010	trajectories)
70,378	7090, for interplanetary trajectory	
71,309	program, operational	
70,036	procedure	•
10,000	7090, modular redundancy simula-	
	tion, for evaluating digital	
70,645	structures	
70,517	7090 solution for thrust direction,	
10,011	duration, and starting instant	
	of transfer orbits	,
	analog, orbital conditions and	
70,041	vehicle dynamics for coplanar rendezvous71,539	•
gh	analog simulation of satellite elec-	'
	tric system, feasibility study70,050	
70,813	data handling and control for	
e	Mariner program, designs	
	for two systems)
70,975	digital, for high-speed analyses of	
	performance, preliminary design,	
70,338	and optimization of solid-rocket	
70,734	vehicles	3
-	equations for evaluation of	
71,413	satellite perturbations	\$
	for numerical solutions of continuity	
71,429	equation for nighttime F region . 70,077	1
	hypersonic laminar and turbulent	
	heating rates, equations pro-	
70,646	grammed for 1401 and 7090 71,384	ł
	manipulation of propellant distribu-	
71,690	tion parameters for multistage	
70,175	vehicles	2

parametric studies of Moon-to-

perspective locator grids for

system dynamics simulation,

"statistical" human transfer

theory of games applied to prob-

Earth trajectories70,454

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Subject

Conferences (Cont'd)

Control Systems

Second National Conference on the

Sferics Measurements From

Peaceful Uses of Space, 1962 . . 70,879

Subject	Entry
Computer Programs (Cont'd)	
three-dimensional trajectory opti-	
mization study, optimum pro-	
gramming formulation	70,647
three-dimensional trajectory opti-	
mization study, program and	
user's manual	70,648
tissue doses from space proton	
fluxes	70,271
Computers	
automatic checkout equipment to	
monitor spacecraft systems	70 046
Burroughs D210, for stress enviror	10,010)-
ment applications	70.659
digital, state of the art	
general purpose, digital L-90;	. 0, 120
applications	71.312
IBM 7090, use in lunar midcourse	,-
guidance	71,760
MAGIC, special-purpose, program	
mable, digital; for spaceborne	
guidance systems	70,656
microminiaturized, design and fab-	
rication of film circuit panel	
micropower transistor logic circuits	
state of the art	70,976
on-board, functional and environ-	
mental requirements	70,654
parallel logic distributed memory	
and self-organizing systems,	
application to navigation	.70,655
resolver chains for navigation	
computations	.70,179
serial binary stored program, space	
applications	. 70,658
subminiature general purpose dig-	
ital, for inertial navigation	.70,657
Conferences	
11th International Astrophysical Colloquium, July 1962, Liége,	
Belgium	70 201
Deigium	70,201
17th Annual ARS, Los Angeles	
ARS meeting on lunar missions.	
Basic Environmental Problems of	,
Man in Space, International	

Symposium, Paris, France70,355

space science and technology. .70,569

71,154

General and Applied Problems of

Theoretical Astronomy, Mos-

NASA-Industry Program Plans

NASA-University conference on

(see also Adaptive —, Attitude —, Environmental —, Servomechanisms)	
active, simulator study for a	
spinning body	
biaxial, for orientation of append-	
ages to vehicles	
finned rocket vehicles, roll	
control problems	į
high-temperature hydraulic, for	
re-entry	
hydraulic, pneumatic, or electrical	
power; comparison	;
integrated hot gas systems,	
evaluation	Ì
lateral range for re-entry vehicles, banked attitude technique70,243	,
lat./long. sensing technique for	,
Earth satellites	,
remote, state of the art71,691	
state of the art	
Syncom, description)
and advantages71,314	1
using liquid metal NaK-77 as	t
hydraulic fluid	7
X-15, operational characteristics,	
1958–62	1
1000 02	
Converters	
(see also Magnetohydrodynamic —,	
Nuclear —, Solar —, Thermionic —, Thermoelectric —)	
ac-dc or dc-ac, operating from	n
low voltage, design problems70,050	J
dynamic, discussion of seven basic	^
types	
electrostatic, use of electrets71,318	2
electrostatic disk-type generators,	
design considerations	t
engines, state of the art70,28	0
state of the art70,20	
51,31	
thermoelectric, in radionuclide	J
SNAP generators	1
	-

SNAP generators71,511 turboelectric, thermionic, and liquid MHD; comparison70,676

Subject	Entry
Converters (Cont'd)	
waste heat rejection, thermal radia	-

tion characteristics of surfaces. .70,224

Cooling Systems

(see Temperature Control)

Coronameters

Paris Observatory instrument, description and test results71,317

Cosmic Dust

(see also Interplanetary Matter)

(see also interplanetary sization)
calculation of maximum charge71,851 cloud orbiting Earth at L₅70,824 70,825
particles, investigation of
properties
showers, direct measurements70,977
spherical swarm, least constant
density
surrounding Earth, origin theory71,694
surrounding Earth, Soviet and U.S.
observations
surrounding Earth, Soviet measure-
ments
Cosmic Radio Noise
absorption accompanying SC
1 1 7 0
of 71 storms
explanation by qualitative model71,932
increase of ionospheric absorption
during nuclear event
Cosmic Ray Showers
measurements
Cosmic Rays
Apr. 1960 balloon observations71,707
Sept. 26, 1960 event, data
Sept. 28, 1961 observations by
Explorer 12
α-particle energy spectrum71,320
albedo, neutron decay formation of
high-energy electrons71,226
as major neutron source near
planets
asymmetries in Forbush decreases .71,705
•
biological and physiological effects,
USSR data

,315	biological and physiological effects,
	USSR data71,656
,804	biological effects, assessment 71,673
	biological effects, Soviet studies71,711
,282	chemical composition of nuclear
,497	component
,316	composition, Soviet studies71,708
	cutoff rigidity computation
,511	method
	diffusion in interstellar magnetic
,676	fields71,319

[•]Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6

Entry

UB	JE	ĊТ	IN	iD	Ε	X
----	----	----	----	----	---	---

C'	L
Su	Dject

Entry Cosmic Rays (Cont'd) diurnal variation, calculations70,662 diurnal variation, study by asymp-effects on equipment and energy spectra of nuclei, Cerenkov counter measurements71,709 exponential rigidity spectrums...71,706 Forbush decrease, superimposed free electron production in D layer galactic, intensity and energy spectrum of electrons, galactic, novae as possible sources. 70,660 geographical position of minimum heavy primary, potential biological heavy primary flux measurement, history recorded by spallation intensity, continuous data registration on ground and underground $\dots 71,\!322$ intensity of heavy nuclei, Cerenkov counter measurements71,710 intensity variations in high latitudes, association with solar activity and geomagnetic disturbances. .71,323 interaction with geomagnetic field, latitudinal dependence, Sputnik 6 measurements, hazards to manned flight; handbook.....71,885 measurements by Sputnik 271,321 neutron intensity measurements to determine onset times of Forbush nuclear instrument study70,120 nuclei/hydrogen collisions, produc-observations of helium nuclei70,917 origin, discussion71,318 origin of primary protons, investigation of energy spectrum in primary, deflection by magnetic field and creation of sporadic E71,028 primary, properties and origin ... 70,917 search for presence of antimatter. .70,621 simulation of effects on tissue71,277

Subject

Cosmic Rays (Cont'd)
solar, Nov. 12, 1960 event, study of
hydrogen, helium, and heavy
nuclei
solar, July 1961 satellite
observations
solar, composition
solar, evaluation of radiation
hazard71,696
solar particles, time history of in-
tensities and energies
solar proton events, deductions
from radio observations71,699
spectrometers, recent develop-
ments
temporary entrapment and insertion
into Van Allen belt
theory of origin, problems70,917
time variations, investigation71,322
ultrahigh energy, theory 71,703
variations during IGY, LF power
spectrum
vehicle shielding70,269
_ ,
Cosmology

annotated bibliography
application of results of curved
space-time studies
chronology of formation of solar
system
chronology of formation of solar
system by Earth's atmospheric
content of radiogenic Xe ¹²⁹ 70,384
collapse phase theory of solar
evolution
contributions of radio astronomy71,328
creation of matter, Mach's
theory
distribution of matter in universe,
possible effect on Earth70,061
early contracting phase of solar
evolution
early solar and stellar evolution,
time-dependent energy and
mass-flow equations
Earth-Moon system, origin
theory
effects of high-luminosity stages of
contraction on solar nebulae70,578
elliptic case of restricted three-body
problem and history of Earth-
Moon system
evolution of galaxies
finite universe and Mach's
principle
formation of solar nebula

Subject	Entry
Cosmology (Cont'd)	
formation of solar system elements	
theory	70,984
from Earth, theory of origin of	
Moon rotational fission	71,850
gravitational collapse of cold,	
rotating gas cloud	
implications of samarium, europiur	n,
and gadolinium in solar system	
history	71,074
multiple creation of nucleon pairs	
by thermal photons, theoretical	
analysis	
origin of atmospheric xenon	70,667
protoplanetary cloud, dust com-	
ponent temperature	
pulsating universe	70,664
radio background as criterion	
for models	70,053
relation of principles of	
relativity	71,327
satellites and planets, theory	70,668
star produced graphite grains in	70 710
interstellar space theories, radioactive decay ages of	.70,719 c
rocks and meteorites	70.091
time interval between nucleosyn-	10,901
thesis and formation of Earth,	
calculation method	70.284
	70,385
	10,000
Cryogenic Propellants	
evaluation of space storability	70,669
for liquid rocket and nuclear	
engines	71,713
integration with vehicle cooling	
system, effects	.70,310
Conservation Shares and	
Cryogenic Storage	
fabricating operations and suit- able materials	70.150
hydrogen-bonded propellants, radi	
ation damage estimates hydrogen storage and delivery	10,900
subsystem	70.054
in space vehicle, hydrogen and	10,004
oxygen for direct energy	
conversion	70.055
nonvented propellant tank, weight	:
analysis	
of propellants as liquefied gases	
on lunar surface and in orbit	70,669
problems of containment during	
flight and on planet surface	.70,358
propellant tank surface temperatur	
analysis	
1 (() 1) 1 .	

propulsive fluid accumulator

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Subject I	Entry	Subject
Cryogenic Storage (Cont'd)		Detectors
vented, nonvented, and refrigerated		(see als
systems; comparative analysis70) ,6 69	Anton 3
Companying		absor
Cryogenics		charged
application to space simulation test	1 000	Venu
cell design and fabrication7 chemical dynamic power system	1,003	for auro
compared to fuel cells and solar		measu
cells, analysis	502	for low-
in missiles and spacecraft		exper
space applications; propellant stor-	1,110	gas-fille
age, environmental simulation,		photo
refrigeration	1719	Geiger
testing of cryogenic components70		efficio
testing of cryogenic components	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Geiger o
		tatior
D Region		neutron
electromagnetic resonant fre-		tion o
quencies),056	nuclear
electron densities, diurnal and		studie
seasonal variations	0,986	scintilla
electron density, phase interaction		electi
measurement technique7	1,331	radia
free electron production by cosmic		semicor
rays and resultant radio wave		space shielded
absorption	0,670	electi
thermal structure and wind flow,		silicon j
70–100 km70	0,987	by ch
Data Processing		silicon 1
automation of checkout GSE,		vacu
feasibility	1.377	silicon 1
Explorers 1 and 3, transmission and	_,	testin
recording techniques	0.585	use of f
for continuous orbital guidance	,	withi
system	0.422	UV pho
method for digital reduction of	.,	D'
radio telescope data	0,671	Discovere use for
method for position-reduction using		
discrete measurements of		irreg
trajectories	0.593	Discovere
methods of archiving and re-	,	catalog
trieving Tiros data	0.057	vatio
planned flight operations	-,	induced
facilities	1.376	proto
storage system for Nimbus7		solar pr
systems for OGO and "universal"	-,	class
concept satellites, design		
considerations	0.672	Discovere
use of high-speed computers at	,-,-	catalog
NOMSS Data Processing		vatio
Center	1,835	Discovere
		stability
Deceleration		•

so Inf

Anton 302 Geiger counter, fission β
absorption
charged particle, on <i>Mariner</i> 2 for
Venus measurements
for auroral electron spectra
measurement
for low-energy γ -ray astronomy
experiments71,584 gas-filled proportional counters for
photon detection
Geiger counter in <i>Injun 1</i> ,
efficiency
Geiger counter in <i>Injun</i> 1, interpre-
tation of counter rates
neutron, proportional and scintilla-
tion counters
nuclear emulsion, for radiation
studies
scintillation, neutron phoswich,
electron spectrometric; for
radiation measurements
semiconductor for charged particle
space spectrometry
shielded solid-state, for proton and
electron flux measurement71,128
silicon junction, radiation damage
by charged particles
silicon radiation, effects of long term
vacuum70,387 silicon radiation, environmental
testing
use of fungus to detect radiation
within spacecraft
UV photodetectors, description 71,105
- protococcos, description 11,100

er Project

r study of E-region

rer 17 g of precisely reduced obser-ed radioactivity by solar-flare proton bombardment during s 3⁺ flare70,388

rer 18

g of precisely reduced obser-

rer 29 ty of viruses`on flight.....70,058

Discoverer 30 stability of viruses on flight.....70,058

f rared —) Geiger counter, fission β n71,130	Display Systems for X-20 guidance and landing70,608 human factors criteria and requirements, study70,059
ticle, on <i>Mariner 2</i> for asurements	Doppler Effect inference of doppler widths71,950
γ -ray astronomy <td< td=""><td>Doppler Shift determination of satellite orbit70,195 gross, in coronal lines71,568 technique, for measurement of ionospheric drifts70,438</td></td<>	Doppler Shift determination of satellite orbit70,195 gross, in coronal lines71,568 technique, for measurement of ionospheric drifts70,438
ter in <i>Injun 1</i> , interpre- counter rates70,992 oportional and scintilla- ters71,855	Doppler Tracking Systems calculation methods of doppler shift

Subject

Entry

DSIF

large steerable	e antennas, gear	
equipment		.71,242

Entry

Dynasoar

(see X-20)

E Region

E	s ionization at auroral latitudes 70,060
ef	fect of solar radiation intensity
	variations
g	comagnetic field effects on ioniza-
	tion irregularities
ic	onization, N/S hemisphere
	variations
ir	regularities deduced from satellite
	radio signal scintillations70,675
р	roduction of equatorial
-	sporadic-E, theory
tv	wilight fluorescence of alkali metal
	atoms, observations

Earth

axis changes from large meteorite
collisions
Earth-Moon planetary system,
theory
effects from distribution of matter
in universe
form, exterior potential, and mo-
ments of inertia; influence of
axial rotation
illuminance, theoretical value70,495
internal structure, influence of axial
rotation
IR flux and surface temperature
measurements by Tiros 270,901
IR spectral radiance, investigation.71,763

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

physiological and psychological

effects, bibliography71,274

Subject Entry	y
Earth (Cont'd) orbital eccentricity, effect on solar radiation intensity in ionosphere	4
toroidal oscillations, study71,710	6
 Echo 1 catalog of precisely reduced observations of positions orbit perturbations by extraterrestrial gravitation Echo 2 skin material, primary effect of electron irradiation 71,876 	1
Ecological Systems air contaminants, gas chromatograph for analysis and monitoring71,18' algae suspension, fiber method of illumination	6 0 8 1 97 5 46 4
Electrical Propulsion Systems (see also Arc Jet—, Ion—, Plasma—)	

advances in continuous electro-
magnetic systems
annular-beam ion engines,
advantages
application of nuclear-thermionic
power, conceptual design70,062
application to space missions71,340
are jet and resistojet systems, compari-
son of various configurations70,393
capabilities for lunar exploration71,338
conceptual design of nuclear reactor
as power source

Subject

Electrical Propulsion Systems (Cont'd)
constant magnitude and direction of
acceleration, mathematical
model
electrostatic, space-charge-flow
theory and electrode design70,063
electrothermal, electrostatic, electro-
magnetic, heavy-particle; state-
of-the-art review
heavy-particle electrostatic
thrustors, research
mass/power ratios, optimization70,392
microwave exhaust characteristics
of engines
optimum thrust programming, for
Earth escape
role in future space programs, solar
system exploration
state of the art and future
development
71,872

Electromagnetic Waves

(see also Radio Waves)

energy equipartition during prop-
agation in uniform magnetic
field
guidance in magnetosphere70,226
propagation in horizontally strati-
fied ionosphere
propagation in plasma with constant
collision frequency and variable
plasma density71,028
reflection from moving boundary
between two independently
moving ionized media

Electronic Equipment

cryogenic testing of components70,399
effects of Van Allen and artificial
belt radiation on circuits70,996
endless-loop magnetic tape recorder
for space applications
manned lunar mission support
system
microelectronic function blocks,
description and space
applications
nuclear radiation effects
part failure rates in space
environments
semiconductor devices, effects of
proton bombardment71,719
71,720
semiconductor devices, surface
effects of radiation

Entry	Subject Entry
)	Electronic Equipment (Cont'd)
f	space radiation resistors,
	evaluation
70,485	thermal design of <i>Telstar</i> package.71,721
	transistors, effect of atomic radiation
70,063	on reliability
)-	Environmental Conditions
70,391	cumulative radiation doses inside
10,001	vehicle, measurements
71,339	lunar, as related to lunar roving
70,392	vehicles
	lunar, effects on long duration
70,395	manned mission
	Environmental Control Systems
71,217	for monitoring space cabin atmosphere;
•	miniaturized chromatograph71,394
70,394	requirements for manned
	vehicles
70,676	Telstar, design and preflight
71,872	testing
	two-systems integration, feasibility

vehicle atmospheric control proc-within lunar surface vehicle, habit-

able requirements for astronauts.71,047

Environmental Simulation

engineering model atmosphere of
Mars
evaluation of planned experimental
tests
Nimbus satellites, test program71,857
of biological effects of cosmic
rays
of lunar conditions for penetration
studies of simulated dust71,345
of solar flare energy and geometry .71,674
requirements for interplanetary
space vehicle tests
solar system, design effects on
space training simulator70,065
types, methods, costs
using cryogenics

Environmental Simulators

apparatus for simulating reduced
gravity
deep space, for working vehicles;
state of the art and promising
concepts
for crew training in maintenance
and repair in space
for high-temperature flight71,601
high-vacuum conditions, pumping
system

^eEntries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Entry

Subject

Environmental Simulators (Cont'd)
IR radiators, reflector surface
contamination
JPL 25-ft space simulator solar
performance
large space chambers, survey71,724
lunar surface operations, for
command operations training70,067
Manned Spacecraft Center facilities,
description
man-rating considerations; medical,
engineering, and operational70,400
Mark I solar, instrumentation and
control devices
MARS, to simulate all biological
environments of orbit
planned and operational, listing70,402
proposed NASA Space Radiation Effects Lab., description 71,727
requirements and possible solution
for lubrication of bearings and
gears
solar, 28-kw high-intensity carbon-
arc, design concepts and oper-
ational evaluation
solar, JPL advanced design type71,726
solar radiation, continuously operat-
ing carbon-arc lamp
71,002
solar radiation, design and technol-
ogy of high-wattage xenon and
mercury compact arc lamps70,998
space test cell, cryogenics applied
to design and fabrication 71,003
sunlight, calibration utilizing abso-
lute spectral units
tandem Gerdien arc, for high-
energy gas flow
to determine design requirements
of equipment used outside
spacecraft
Environmental Testing

advantages and disadvantages of
using flour beetles
effects of space flight on flour
beetles
hard vacuum, penetration studies of
simulated lunar dust71,345
large space chambers, survey71,724
materials and components, techniques
and results
of Project Fire vehicle for static
stability characteristics70,242
of Ranger impact limiter system and
materials performance at
74 to -15° F
,

Subject		
Environmental	Testing (Co	nťd)

of silicon radiation detectors70,990
propulsion and mission support
mechanisms, reliability71,723
vibration shock and temperature
effects on Fresnel solar
reflector
Ephemerides

Entry

1963 graphic timetable	
approximate calculation method71,297	
computation from two-body para-	
metric equations	ł
planetary, calculation from initial	
values	ł
planetary position-velocity, obtained	
by special perturbations70,403	ł

Escape Systems

ASIS for <i>Mercury</i> capsule71,456
design considerations, effects of
changes in angle of acceleration
on human center of gravity70,345
emergency ambulance for returning
injured astronauts from lunar
surface
for three types of Earth orbital
manned vehicles

Exosphere

distribution of hydrogen71,730
distribution of ions
electron density and temperature
profiles, measured by incoherent-
scatter technique71,005
hydromagnetic wave frequency
cutoff
hydromagnetic wave
propagation
isotropic hydromagnetic waves
propagation
neutron flux and energy spectrum.71,855
planetary, analytic solution for
density distribution
vertical distribution of free elec-
tron concentration, Soviet
measurements71,729
VLF emission

Explorer 1

instrumentation and data processing techniques70,585

Explorer 3

instrumentation	and data processing
techniques .	

Subject	Entry
Explorer 6	
instrumentation LF hydromagnetic wave	.70,694
observations	.70,694
orbit, for model atmosphere testing	.70,404
Explorer 7	
antenna pattern measurement	.71,244
micrometeorite penetration experi ment, results	.71,470
Explorer 10	
measurements of magnetic field an geomagnetic cavity	d .71,006
Explorer 11	70 206
gamma-ray telescope	. 70,500
Explorer 12	
Sept. 28, 1961 solar cosmic-ray observations	.70,854
Sept. 30, 1961 low-energy proton	, .
and electron observations	
cosmic-ray detectors	
electron detector observations of p and electron flux, September	roton
1961 SC	.71.368
geomagnetic field boundary	
observations	.70,691
low-energy proton observations .	.70,691
power supply, secondary sealed silver cadmium battery	70 500
preliminary results on spatial stru	
ture of radiation belts	.70,602
SUI detectors, characteristics	
Fullen 14	

Explorer 14

data on electron and proton intensi-
ties in Van Allen belts
radiation data and experiments70,071

Explorer 15

Explorer 16

micrometeoroid penetration experiments, Mar. 2, 1963 status71,349

Extraterrestrial Life

bibliography, evidence of
existence
current speculations and proposed
experiments
experiments for investigation,
description
indirect evidence of existence71,008
investigations and experimental data
by Tesla, Marconi, and Todd70,683

^eEntries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

.

Extraterrestrial Life (Cont'd)
Mariner 2 data on Venus
environment
Mars, probability
microenvironments on Mars70,156
microorganism detection on Mars
by Gulliver experiment70,154
on planets; experimental results,
opinion and speculation71,350
possibility of organic matter in carbo-
naceous meteorites, microstructure
analysis
possible forms and conditions70,020
70,021
search in carbonaceous chondrites. 71,009
Venus, probability70,153
· - · ·

F Region

Region
Burkard's ionization model, study.70,410
continuity equation for electron
density, analog studies71,355
critical frequencies, relation to Van
Allen belt intensities
data from <i>Alouette</i>
daytime, ion density distribution
measurement
diurnal variations of temperature.70,408
drift speed estimates from moving
irregularities
electron density perturbations71,735
electron scattering cross section in
incoherent backscatter
wave propagation theory70,726
feasibility of artificially heating
electrons by radio waves70,685
formation of $F_{11/2}$ layer
irregularities, hydromagnetic
waves effects
N_2^+ concentration
nighttime, numerical solutions of
continuity equation for
electrons
nighttime, recombination coefficient
calculations
nighttime traveling disturbances 💦 🭦
at Rarotonga70,072
onset of spread-F, relation to sun-
set h' F variations
photoionization, data on rate70,409
position of spread-F equator71,353
recombination, correlation with red
line emission in night sky71,734
relationship between occurrences
of F scatter and spread F70,684
spread F, effects of solar-cycle
variations

Subject

Entry

F Region (Cont'd)
spread F and F-layer electron
density
spread F and F-layer height70,074
spread F and F-layer parameters,
causative mechanisms70,076
spread F and F-layer parameters,
theory
spread F and F-layer vertical
movement
spread F associated with nuclear
explosions
spread F at high latitudes, occur-
rence probability70,407
spread F in polar regions70,406
thermal balance, investigation of
atmospheric temperature and
density
traveling disturbances, summary of
investigations
upper, electron density
distribution
F ₂ Layer
behavior during solar eclipses70,688
critical frequency, lunar perturba-
tions
critical frequency and K-indices,

tions
critical frequency and K-indices,
relation
disturbances caused by Aug. 1, 1958
nuclear explosion
effects of geomagnetic storm70,090
effects of solar eclipse
electron density, height of
maximum
electron density and frequency
spreading
electron distribution under middle
latitude conditions
geomagnetic control of diffusion,
numerical results
ionization decay
ionization displacement, effect
of diffusion and divergence
of geomagnetic field70,078
mathematical model of
ionization
midday critical frequencies, lunar
semi-diurnal variations70,079
peak electron density variations asso-
ciated with nuclear explosions70,433
vertical movements
virtual height analysis

Fire Project

re-entry model configurations, static stability characteristics. .70,242

Entry

Subject	Entry
Fire Project (Cont'd) vehicle configuration forward portion scale model, pressure distribution tests	1
Flight Simulation active control system analysis for a spinning body of lifting re-entry vehicles at para- bolic velocities of manned landings, flight evalua- tion using VTOL aircraft of pilot controlled lunar landings. return from lunar landing abort to orbit, analysis	71,148 70,748 70,447
Flight Simulators Gemini and Apollo flight trainers, proposed Manned Spacecraft Center facility, description to reproduce all mission phases vertical accelerator, to simulate vib tion and buffeting	71,602 71,013 ra-
Free Molecular Flow aerodynamic force coefficients and equilibrium surface tempera- tures in Earth's atmosphere, effects on satellite	71,360
Fuel Cells 15-w battery using soluble fuels and oxidants biocells, survey of status biochemical, potentialities as auxil power unit and chemical conver for closed ecological system comparison with solar cells and cryogenic chemical dynamic systems	70,080 iary ter 70,390
electrically regenerative hydrogen oxygen, developmental status. electrochemical, annotated bibliography	.70,412
electrochemical; annotated bibliog raphy, late 1961–Sept. 62 energy conversion systems, referen handbook	g- .71,362 nce . 70,504
tages for space power source hydrogen-oxygen, ion-exchange	

membrane cell for *Gemini*....70,411 Hydrox hydrogen-oxygen system, integration into optimum powerplant70,503

^{*}Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Subject Entry	
Galactic Radio Emission spectrum, calculation70,051	
Gegenschein	
investigation of interplanetary dust	
properties	
optical theory	
photoelectric observations71,239	
Gemini Project	
configuration; environmental,	
guidance, and control systems70,083	
design philosophy	
injection, orbital transfer, rendez-	
vous, and re-entry analysis70,083	
interferometer techniques for	
rendezvous radar	
mission profile	
power supply, ion-exchange mem-	
brane hydrogen-oxygen fuel	
cell	
primary objectives, comparison	
with <i>Mercury</i>	
simulation and training facilities,	
proposed	
U.S. Space Science Program,	
Apr. 1961–Apr. 1962	
Generators	
(see Converters)	
Geomagnetic Disturbances July 9, 1962, observations after	
nuclear explosion	
auroral rays as indicators	
correlation with radio star	
scintillation	
diurnal variation of K-indices,	
1949–57	
effects on variation of cosmic-ray	
intensity in high latitudes71,323 fluctuations due to passage of	
mattering due to passage of	
meteors	
explosion	
70,417	
70,418	

71,989
local, relation to auroral activity70,060
lunar influence on occurrence71,743
micropulsations from high-altitude
nuclear explosions
relation between chorus and
geomagnetic condition70,689
relation between chorus indices
increase and geomagnetic
pulsations at auroral zone70,690

Subject	Entry
Geomagnetic Disturbances (Cont'd)	
variations of SD and Dst in iono-	
spheric positive and negative	
storms	71,742
Geomagnetic Field	
Sept. 27–Oct. 4, 1961 Explorer 12	
observations	70 691
Sept. 30, 1961 SC observations'	70 855
acceleration mechanisms	
ancient, intensity during	,
reversal	70,696
anomaly at Alert, Canada	70,697
as basis for studying planetary	
fields	71,050
as caused by magnetic storms,	
theory	70,092
boundary, effect of uniform pres-	
sure of interplanetary plasma' boundary phenomenon with	71,755
interplanetary matter	70 601
charge separation, related to	10,091
auroral hydrogen emission	70.627
charged particles, acceleration	
mechanisms	70.695
charged particles, Fermi accelera-	,
tion experimental tests	70,695
compression by ionized particles,	
model dipole calculations	70,089
compression by solar particles,	
effects	71,753
cosmic-ray cutoff rigidity computa-	
tion method	71,326
data from satellite magnetometer	71 707
experiments	71,767
external stress	70 704
differential equations for field lines	10,104
in space, numerical solution	70 698
diffusion and divergence effects on	
F_2 -ionization displacement	
distant, disorder and shocks meas-	, ,
ured by <i>Pioneer</i> 1	71,751
distant, effects on spinning coil	
EMF	71,750
distant, hydromagnetic wave	
observations	70,694
distant, microstructure of disordere	d
medium distortion produced by proton	71,752
belt	71.007
diurnal variation, lunar effects	71,307
dynamics	11,147 71 017
effects of variations on Van Allen	11,017
belts	70.603
effects on E-layer ionization	. 0,000
irregularities	71,754

Subject

Entry Geomagnetic Field (Cont'd) effects on solar corpuscular electron diffusion, high altitude electron diffusion, low altitude fluctuations, after high-altitude gas interchange instability71,016 guidance of electromagnetic waves high altitude nuclear detonation, intensity measurements, Sputnik 3 interaction with atmospheric nuclear interaction with partially incident solar streams, shape of hollow. .71,748 interaction with solar plasma70,283 70.553 71,744 71,745 interaction with solar plasma, cor-ionization density profile, investigation from evidence of new-lines of flux, as paths of radio and hydromagnetic waves 70,226 magnetic moment of ring current, measurements by Explorer 10....71,006 outer portion, measurements70,598 principal storms, Apr.-June 1962 rotation and drift, effects on trapped charged particles.....71,749 scalar proton magnetometer observations of Sept.-Dec. 195970,693 secular change, transient variations, origin, magnetic surveys, and sounding rocket observations70,692

stability of interface between solar

time lag between magnetic and

wind and magnetosphere70,553 steady-state measurements70,455 synchrotron radiation from trapped

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

0 1		
Sul	biect	

Entry

Bubjeet	11111
Geomagnetic Field (Cont'd)	
trajectories of lines of force, calcu-	
lation and effects from solar	
wind	
transfer impedance, discussion	71,017
* <i>i</i>	,
Geomagnetic Storms	
Feb. 11, 1958, effect on F ₂ layer	70.090
July 1961, association with solar	,
	70 050
activity	
Sept. 30, 1961, fluxes of low-energy	
protons and electrons	71,368
Sept. 30, 1961 SC observations	70,855
Oct. and Dec. 1961, effects on radia	
tion belt boundary	
Feb. 2–7, 1962, observations	
	11,009
caused by field deformation	
mechanisms	70,704
correlation between northern and	
southern hemisphere using	
IGY data	70.703
cosmic noise absorption accom-	,
panying SC of 71 storms	70.001
dispersion of whistlers	71,234
DS fields, equivalent current	
systems	70,701
DS variation as function of storm	
time	70,702
effect on intensity of green ray	
of oxygen	71.369
effects on geomagnetic field	
forecasts, suggestions for	
	71 750
improvement	
hydromagnetic theory	
	70,706
	70,707
influence of solar flares and	
prominences	70 705
Injun 1 observations	
	. 11,000
Kiruna, Sweden, balloon	
observations	.70,700
main phase development	.71,018
radiation intensity increase	
coincident with SC	.70,700
relation to solar filaments	
relation to solar flares and radio	,
	71 175
emission	. 11,175
SC, horizontal disturbance	
vectors	.70,701
SC, morphological studies during	
IGY	.70,701
spatial distribution of fluctua-	
tions	.71,371
	,
Geostationary Orhits	

coverage compared to random	
orbit satellite	35

Subject

Subject Entry
Geostationary Orbits (Cont'd) of sphere and ellipsoid, stability in orbital plane
Geostationary Satellites guidance and control71,306 meteorological, for continuous weather observation71,837 operational reliability and cov- erage compared to random- orbit satellites
Gravispheres solar, conditions for capture of small absorbing particles70,708
Gravitational Fields (see also Gravity, Relativity Theory)
calculation using systematic approx- imation methods
Gravity (see also Low —, Zero —, Weightlessness)
electromagnetic theory analogy70,101

Entry

71,758
•
.70,981
.70,098
70,099

Ground Support Equipment

automatic checkout equipment to
monitor spacecraft systems70,046
feasibility of automated checkout
equipment
for Mariner 2, description70,974
launch deflector, design criteria71,378
Mission Control Center, Mercury
project
portable trailer-housed single-station
doppler-interferometer rocket
tracking technique
state of the art
Telstar antennas
Telstar transmitter and receiver71,759

Ground Support Operations

flight monitoring and control for
Mercury project
procedures for check-out and launch
of manned flights
systems checkout for Apollo71,245
TCC operational control71,972

Guidance

and control techniques, Saturn
ascending phase71,900
effect of deadband about desired
perigee, vehicle approaching
Earth
emergency midcourse procedure,
using Earth photographs 71,854
free-fall guidance control problem
in N-body space
optimum steering program for
landing on airless body,
numerical examination70,746
optimum steering program for
rendezvous using proportional
navigation
perturbations of low-thrust Mars
orbiter using SNAP-8 power
system70,157
rendezvous and lunar landings,
radar sensor requirements70,505
state of the art
theory and extremal fields70,012

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

extraterrestrial, perturbations on

Mach's theory and creation of

Newtonian; superpotentials,

satellite orbit70,791 instability of rotating mass71,375

Subject Entr	У
Guidance Systems (see also Inertial —)	
 (see also Inertial —) automatic, for control of rendez- vous terminal phase70,81 automatic lat./long. sensing tech- nique for Earth satellites70,25 closed-circuit laser as gyroscope replacement	57 51 52 53 53 50
Syncom, description	6

Gyroscopes

drift minimization in magnetic-
induction gyro70,104
inertial, need for uniformity in
performance evaluation70,105

Haystack Project antenna, detailed description 71,020

Heat Transfer
annular finned radiators, effec-
tiveness
considerations, structural design
criteria for space vehicles 70,874
convective, at super-orbital
speeds
core dimension solution for heat
exchanger
effects from interaction of retro-
rocket gases and free stream70,109
effects of diffusion field on
laminar boundary layer70,110
from ionized boundary layer in
planetary atmospheres70,111
hypersonic, in arbitrary planetary
atmospheres
in chemically fueled MHD gen- erators, channel flow analysis70,149
in re-entry vehicles at meteor
velocities
injection of helium, nitrogen, and
argon in supersonic flow70,110
nonlinear thermal problems in re-
entry vehicles

Subject

Heat Transfer (Cont'd)
radiative, super-satellite speeds at
high and low altitudes70,106
radiative cooling by contour heat
rejection fins
stagnation point velocity gradient
in hypersonic flow
total heat input during re-entry,
effects of shape
turbulent and laminar, equations for
axisymmetric re-entry vehicle71,384
two-phase, for subcooled water
flowing under conditions of
zero-g, instability effect70,108
two-phase, using alkali metal
working fluids, investigation70,107
Helium
He ⁺ ion layer in upper

atmosphere	70,907
metastable, concentration in	
upper atmosphere	70,908
presence of ion belt in upper	
atmosphere	71,223
ligh Vacuum	

High Vacuum

chamber pumping system, perform-	-
ance parameters	70,423
effects on electronic parts, materials	;
related problems	71,385
long-term, effects on silicon radia-	
tion detectors	70,387
soil testing, description	71,048

Horizon Sensors

attitude reference, determination 70,112
current and projected applications
of IR systems
description

Hybrid Propellants

Hydrogen

distribution in upper atmosphere	e.71,730
liquid, as nuclear rocket propella	nt,
problems	70,523
liquid, fuel capabilities for large	
space vehicles	
liquid, storage and delivery sub-	
system, design objectives	.70,054
solar prominence spectra	
investigations	71,937
Hydromagnetic Waves	
omission from surged to the	70 500

emission from sunspot umbras...70,582 frequency cutoff in upper atmosphere71,762

Entry Subject

Hydromagnetic Waves (Cont'd)
heating mechanism of auroral zone,
theory
isotropic, propagation in
exosphere
reflection and refraction under uni-
form magnetic field, application
to propagation in exosphere70,681
two-dimensional wave fronts near
equatorial plane, description70,682
Hydroponics
basic requirements for soilless culture
and food requirements of man71,386
Hypersonic Flow
external, current problems and
methods of analysis
MHD supported shock layer,
analysis70,113
research, state of the art71,388
turbulent and laminar, equations for
axisymmetric re-entry vehicle71,384
unsteady, wake behind spheres70,114
wakes and trails, <i>Mercury</i> and

Entry

IGY

ta,
.70,529
.71,326
. 71,325

Impact Studies

hypervelocity, characteristics of
crater formation
hypervelocity theory, new
approach
hypothetical meteoroid impact on
lunar surface
optical measuring70,116
soft landings by means of gas-filled
balloons
techniques, survey article70,116

Inertial Guidance Systems

error propagation in aerospace
systems, bibliography71,390
MAGIC special purpose digital
computer, application70,656
propagation of position and
velocity errors with time,
analysis

Inertial Navigation Systems initial alignment techniques, description and comparison.....70,714

* Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Entry

Subject

Entry Subject

Instrumentation (Cont'd)

Inertial Navigation Systems (Cont'd)
magnetic-induction gyros for
drift minimization
subminiature general purpose dig-
ital computer, application70,657
Infrared Detectors
(see also Horizon Sensors)
20-in. aperture radiometer for satel-
lite emission
current and projected applications.71,391
for attitude determination of <i>Tiros</i>
satellites
Infrared Radiation
background measurements for day-
time, twilight, and night sky
conditions
for spectrophotometric analysis
of lunar soil
from satellites, detection with 20-in.
aperture radiometer
from Venus, preliminary report of
measurements by Mariner 271,632
of Earth, investigation71,763
radiators for space simulators, reflec-
tor surface contamination71,392
Injun 1
July 1961, solar proton
observations
Feb. 1962 data71,569

(see also Bioinstrumentation, and specific type of instrument) acoustic, for near- and far-field measurements of sound pressure levels during rocket launches...71,899

and payload design, lunar roving

balloon-borne and orbiting telescopes, major technological

charged-particle collectors,

Instrumentation

conductivity meter for measuring
ionized air during re-entry70,232
dosimeters for measuring radiation
inside vehicles71,883
effect of part failure rates on operator
activity and equipment design. 70,450
electromechanical devices, relia-
bility through redundancy70,119
Explorer 12 solar cosmic-ray
detectors
Explorers 1 and 3, telemetry and
data processing systems70,585
filter apparatus for solar radio
emission observations
for geomagnetic measurements,
description
for lunar roving vehicles, power
system selection
for measuring lunar surface and sub-
surface magnetic susceptibility .71,802
for measuring rock and soil strength
properties at lunar surface,
review
for Nimbus project
for nuclear analysis of lunar
surface
for radiation measurement,
handbook
for recording echo amplitude in
ionosphere
for recording ionizing emission of
flares and prominences71,930
for rocket observations of iono-
sphere
for S-17
for space radiation measurements.71,121
Gulliver, for detection of micro-
organisms on Mars
Injun 1 solar proton detector 70,853
IR radiometer, <i>Mariner</i> 2 70,753
lat./long. sensing technique for
Earth satellites
low field helium magnetometer 71,023
low-energy proton analyzer70,691
magnetometer, aspect indicator, and
scintillation detector flown on
Explorer 6
Explorer 6
magnetometer flown on
magnetometer flown on Explorer 10
magnetometer flown on Explorer 10
magnetometer flown on <i>Explorer 10</i> 71,006 magnetometer package for inter- planetary magnetic field
magnetometer flown on <i>Explorer 10</i> 71,006 magnetometer package for inter- planetary magnetic field measurements71,766
magnetometer flown on <i>Explorer 10</i> 71,006 magnetometer package for inter- planetary magnetic field measurements71,766 magnetometers, used in satellite
magnetometer flown on <i>Explorer 10</i> 71,006 magnetometer package for inter- planetary magnetic field measurements71,766

Subject	Entry
Instrumentation (Cont'd)	
miniaturized chromatograph to mo	onitor
space cabin atmosphere	.71,394
multichannel analyzers, minia-	
turization	.70,122
neutron– γ -ray, for lunar surface	
analysis	.70,123
nuclear, for space missions	
nuclear, role in space studies	.70,120
performance and reliability,	
state of the art	.70,428
photocathodes for solar SW	
emission investigations	
pressure-type airspeed-altitude sys	3-
tems for $X-15$, calibrations and	
comparisons	.71,237
radar, for geodetic measurements.	
radiation monitoring system RF impedance probe for iono-	.70,218
spheric measurements	70 407
satellite, for heavy primary cosmi	. 10,421
ray flux measurement	
satellite and space probe, capa-	.10,420
bility survey, 1957–62	70 117
scalar proton magnetometer on	,
Vanguard 3	.70.693
scintillation spectrometer for proto	
measurements in Van Allen belts	
search coil magnetometer carried	1
on Pioneer 1, description	
seismograph for Ranger project	.70,425
self-orienting magnetometer,	
Sputnik 3	
solar X-ray measurements	
space exploration problems	
spectrometers, electrostatic probe	s,
and neutral pressure gages for	
atmospheric study	
spectrometry studies in space	.70,120
spinning search coil, modulation	
by magnetic signals	.71,750
standardized nuclear power	
supplies	.70,181
SUI detectors on Explorer 12,	
characteristics	.70,602
tape recorders for satellites,	70 110
modularization concept	.70,118
Telstar on-board transmitter and	71 704
receiverUSSR, solar short-wave radiation	
measurements	. 10,110
advanced technology	.71 393

Interplanetary Environment effects of charged particle bombardment on photovoltaic cells....70,548

* Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Subject Entry
Interplanetary Environment (Cont'd)
effects on design of space train-
ing simulator, survey70,065
effects on lubricants for bearing
systems
electron density measurement, limi-
tations on optical methods71,765
parameters, effects on space
travel
protection for manned vehicles70,429
search for presence of antimatter70,621
solar wind, parameters near Earth
orbit and inner corona70,852
Interplanetary Magnetic Fields
data from satellite magnetometer
experiments71,767
determining factor of auroral
zones
existing measurements and theories,
study and development of
model
influence of Sun; study using
models

Interplanetary Matter

(see also Cosmic Dust)

annotated bibliography71,772 boundary phenomenon with geomagnetic field70,691
density estimates from meteor data
and zodiacal cloud observations.71,770
evidence for geocentric dust
cloud
gaseous component, summary 71,768
light scattering by small particles, analysis71,771
model for steady-state space dis-
tribution of meteoric particles70,470 models derived from zodiacal
light data
nuclear instrument study70,120
observations of comet tails as
natural probes
scattering of light to produce
gegenschein

Interplanetary Missions

approximate propulsion cutoff
conditions for trajectories71,983
attitude control by star field
recognition
development; from Mercury, Gemini
and Apollo technology71,401
future programs, discussion71,401
manned Venus-Mars flyby in
1970, study

Subject	Entry
Interplanetary Missions (Cont'd) Mars; capabilities of electrical, nuclear, and chemical propul- sion systems, comparison	70.213
nonstop round trip, general survey	
optimum thrust programs for power limited systems	r- .71,153
one year propulsion requirements for soft landing in extraterrestrial	71,863
environments	71,397 71,398
stopover, analysis and optimization	71,399
transversality relation for flyby and rendczvous	
Interplanetary Missions (Manned) debilitating effects of prolonged weightlessness and radiation . one-way concept evaluation	
Interstellar Matter graphite particles, theory	
Ion Propulsion Systems	. 70,719
annular-beam engines, advan- tages attitude control and station keepin system, preliminary engine	g
design contact ionization and electron bombardment types, capabilitie for solar system exploration	s
electrometer amplifier, efflux detector measuring system electron bombardment engine,	
beam neutralization tests of flight model	.70,721
cesium expellant, character- istics engine research, beam current	.70,722
measuring device feasibility of applying field-ion emission	
methods of neutralizing ion beam comparisonoperation with ac supplies,	s,
analysis surface and volume ionization,	
comparative design analysis theoretical plane-diode engine using porous-tungsten ionizer,	.70,723
performance test results	.70,124

Entry Ionosphere (see also D, E, and F Regions, \mathbf{F}_2 Layer) 80-400 km region, wind flow May 9-10, 1961 observations of incoherent backscatter absorption anomalies during solar Alouette data, preliminary results . .71,608 antennas for study of random attenuation of hydromagnetic currents, relationship to auroral de electric fields sufficiently heated to excite the O('D)disturbances due to Oct. 1961 diurnal variations at magnetic equator, satellite observations. .70,437 drift at high latitude, determined from radio star scintillations71,406 drifts, measurement by doppler echo amplitude, h'(f) simultaneous effects of Feb. 15, 1961 solar effects of high-altitude explosions.71,780 71,989effects of nuclear detonations71,778 effects of Sept. 28, 1961 solar effects of solar flares and electromagnetic waves, propagation in horizontally stratified electron concentration, determination by polarization fading in electron content, new method electron content measurement....71,404 electron content measurement with

single satellite frequency.....71,029

Subject

* Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240--71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Entry

0 1	• •
Su	biect.

Subject	Entry
Ionosphere (Cont'd)	
electron density, possibility of	
measurement by plasma wave	
radiation	71,301
electron density and temperature,	
sounding rocket measurements.	71,773
electron density and temperature	
profiles, measured by incoherent	-
scatter technique	71,005
electron density at 1000 km, study	
by Alouette	
electron density measurements	71,210
electron density measurements by	
RF impedance probe	
electron density profiles, determina	
from satellite radio signals	
electron density profiles, determina	1-
tion from faraday rotation of satellite radio signals	71 786
electron density variations,	11,100
Oct. 1959	70 728
electron density variations association	
with nuclear explosions	
electron distribution, behavior	,
pattern	.70,131
elongated irregularities of F region	
radio wave propagation theory.	
excitation of red lines of atomic	
oxygen	.71,782
experiments planned for July 20,	
1963 eclipse	.70,127
first topside soundings	.71,410
free electron concentration to	
200 km, data from USSR	F1 F 00
sounding rockets	.71,783
h'(f) records, nonuniform lam-	71 777
ination analysis	
HF oblique transmissions, amplitus statistics measurements	
high altitude nuclear explosion	.10,012
effects	71 775
induction of electric currents in	,
uniform anisotropic ionosphere	.70,435
interaction of radio waves,	
analysis	.71,528
ion density, sounding rocket	
measurements	
ionization density, effect of high	
altitude nuclear event	
joule heating effects	
lower, high-latitude ionization ass	
ciated with high-altitude nuclea	
burst	
lower, investigation of magnetohy	
dynamic interaction and mecha	
nism for sporadic-E production	1.71,028

Subject

Ionosphere (Cont'd)
magneto-ionic equations, validity of
Q.L. and Q.T. approximations.70,129
measurement of motion by meteor
trail observations
methods of investigation
negative and positive disturbances,
relation to geomagnetic
variations
numerical maps of characteristics,
methods of use
optical emissions of electrons
heated by dc electric field71,782
penetration by VLF radio signals71,407
perturbations of electron density
by <i>Alouette</i>
plasma, energization
plasma and cyclotron spike phenom-
ena, observed by Alouette71,978
polar cap absorption effects70,725
propagation of spherical waves
through anisotropic
irregularities
properties, data from scientific
satellites
quiet, simple model71,779
quiet, simple model from analysis of
electron and ion density
measurements71,025
refractive and absorption index,
derivation of expressions71,776
resonance property due to
anisotropic conductivity70,434
satellite-related ionization effects.70,256
scale heights, data from Alouette71,781
spread echoes, study by Alouette71,977
structure of field of motion71,784
upper, density fluctuations71,870
use of f_{min} data to study solar
X-ray emission
variations in mean molecular
weight of night air71,785
variations of oxygen red line in
night airglow
VLF radio propagation,
mathematical description70,511
winds, data showing existence in
lower areas
IOSY
description and objective of all-sky

description and objective of all-sky	7
photometer	.70,797
planned experiments and related	
instrumentation	.70,326

Subject	Entry
IQSY (Cont'd) program objectives	.71,031 71,787
proposed NASA contributions to program	.71,788

Juno 2

S-46 design and construction,
summary project report70,255
Jupiter
1959-61 decameter noise storms,
statistical analysis
1961 radio observations at
decameter wavelengths70,440
1963 predicted occultations and
appulses
38-Mc radiation measurements71,412
atmospheric properties, recent ob- servational results71,111
belts, two-decade cycle70,202
comet-meteorite ring, criticism
of theory
comet-meteorite ring, theory70,732
cyclotron radiation possible cause
of radio emissions
decameter radiation bursts, observa-
tions and theories of origin71,869
decameter radio emissions,
longitude effects
decameter radio emissions, probably
from cyclotron radiation of
trapped electrons
decametric emissions, dynamic
spectra
decametric radio bursts, inter-
ferometric observations71,792
decimeter radiation, measurements. 70,444
decimeter-wave emission
variations
illuminance, theoretical value70,495
internal structure, influence of
axial rotation
luminescence of satellites71,789
microwave radiation, observations
and theories of origin
origin, structure, and chemical
evolution
1962
physical characteristics71,183 radiation belts as source of deca-
metric emissions, theory71,790
radio emission at 8-mm
wavelength
radio emissions and exospheric
density

* Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

Entry

Subject

Jupiter (Cont'd)
radio observations, 1962
resolving surface using inferential
approaches
results of transit observations during
1961–62 apparition
satellite system, agreement with
Bode's Law
satellites, two-parameter formula
to determine orbit radii70,489
south equatorial belt disturbance70,731
spectroscopic investigation.
CH_4 and NH_3 lines $\dots \dots 70,494$
stability of volatile ices on satellite
surfaces
steady-state magnetic field
measurements
theory of upheavals

Kiwi-B1

performance	analysis		.70,133
-------------	----------	--	---------

Landings

(see also Lunar —, Planetary —, and specific planets)
Earth, design considerations of
systems for manned spacecraft 71,793
impact and slideout tests for
winged re-entry vehicle70,241
Lasers
annotated bibliography to
Apr. 1962
application to communications70,734
closed-circuit, for automatic guid-
ance of space vehicles
for optical tracking systems70,787
for space communication, bibliog-
raphy
high-powered, continuously operable for relay satellite
limitations for deep-space communi-
cation systems
Launching
(see also Lunar —, Orbital —)
countdown duration, affected by
interruption
<i>Delta-Telstar</i> , prelaunch
preparation
finned boosters, roll control
systems
high-resolution wind measure-
ments for vehicle design and
performance analysis71,678

Subject

Launching (Cont'd)
lifting abort trajectories, possible
collision hazards
multistage vehicles, prediction and
measurement of natural
vibrations
ocean-based, of very large booster
vehicles
optimization for injecton into
space-fixed circular orbit70,487
single-stage, large preassembled
orbital stations
sound pressure levels, S-3
measurements
techniques for obtaining wind
profile data
-

Launching Facilities

for Saturn-Apollo mission71,416 water launch facilities, feasibility. .71,417

LEM Project

description and timetable71,418

Liquid Propellants

98-percent H ₂ O ₂ , performance and
characteristics
advanced, development of zero-g ex-
pulsion and orientation systems.71,034
evaluation of space storability70,669
mass measurement system for zero-g
environment
state of the art70,424

Liquid Propulsion Systems

advanced, development of zero-g ex-
pulsion and orientation systems.71,034
alloys for thrust chambers, evalu-
tion
catalytic hydrogen-oxygen
reaction chambers
for attitude control of satellites
and space vehicles, study70,737
low-thrust, for vehicle orientation
or maneuvering, design
considerations
NOTS variable-thrust for manned
lunar soft landing
rocket motors, thermal protection 71,546
Lofti 1
•
interim results, discussion71,407

Low Gravity effects on efficiency of astronauts.70,008 physiological and psychological effects, bibliography71,275

Entry Subject

Entry

Lubrication
and bearing materials for nuclear
control systems, analysis70,136
boundary, gallium-rich films in air
and in vacuum to 10-9 mm Hg,
experiments
for bearing systems operating in
space environment, evaluation 70,135
for bearings and gears in space simu-
lator, requirements and possible
solution
small ball bearings, vacuum
conditions
state of the art
system for space vehicles,
problems
Lunar Cartography
by lunar satellite
mapping of single crater,
Eratosthenes
reverse side of Moon, map70,830
standard crater outline as
observation aid70,739
Lunar Craters
association with white
formations
bright-banded, theory of origin71,038
correlation with Earth craters71,043
Darwin, dome in north part,
observation
deltoid areas, theory of origin70,138
diameter-depth relations and
origin
Eratosthenes, relief map
geophysical theory of formation70,841
impact hypothesis, discussion71,420
Klein's 1877 discovery
Linné, dimensions
Lubiniezky, description71,421
Messier and W. H. Pickering,
observations
origin, discussion
origin, volcano-tectonic
undation theory
Plato, chart of floor details70,740
relative ages, determination by albedo
and polarization measurements.71,039
standard outlines as observation
aid
statistical data on size
distribution
terraced, characteristics
theory of origin
Tycho, association with enhance-
ment of radar reflectivity70,446
Wallace, description

^e Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Subject	Entry
Lunar Landings	
behavior of jet exhaust, problems. dynamic loads on legged landing	
vehicle estimate of surface roughness for	70,147
hazard determination guidance, radar sensor	70,445
requirements interaction of highly underexpande	70,505
exhaust jets with surface	71,545
propulsion considerations rough landing capsule for <i>Rangers</i>	
4, and 5; development program. soft, direct-ascent vs. parking-	71,143
orbit trajectory	71,822
on radar and altimeter systems.	70,507
soft, numerical results for optimum trajectories	
soft, of instruments by means of	
gas-filled balloons	71,801
Lunar Landings (Manned) abort and return to rendezvous	
orbit, simulation studies	70,139
abort problems	71,816
crew requirements	70,447
descents from lunar orbit, analog	
study	70,747
feasibility using parking orbit flight evaluation of trajectories	70,140
using VTOL aircraft	70,748
landing, abort, and takeoff pro-	
cedures; analysis	71,424
optimum techniques, analysis	71,424
using NOTS variable-thrust	
propulsion system visual requirements during all	71,796
phases	71,042
Lunar Launching	
behavior of jet exhaust, problems	71 940
interaction of highly underexpande	
exhaust jets with surface	
LEAP, one-man lunar escape	
ambulance pack	71,728
Lunar Magnetic Field	
interaction with solar plasma	70,448
measurements by Lunik 2	
surface and subsurface magnetic	
susceptibility instrumentation	71,802
Lunar Maria	

Subject

Lunar Maria (Cont'd)
photometric model, to develop light-
ing parameters for Ranger TV
experiment
71,504
predominance on near side,
hypothetical explanation71,423
resemblance to terrestrial ocean
basins, theory
Lunar Missions
calculational procedure for estimat-
ing radiation exposure
computation of trajectories for
return to specified Earth site71,861
indirect approach scheme, advan-
tages and comparison to
direct approach
lunar orbit rendezvous, parametric
investigation
orbiting and landing, propulsion
system requirements
requirements affected by precession
of Earth rendezvous orbits70,253
surface operations simulator, for
command operations training70,067
Surveyor project, payload and
flight procedure
trajectories and landing
schemes
T
Lunar Missions (Manned)
abort problems
Apollo and lunar logistic system
plans, brief summary
automatic checkout systems71,245
direct and indirect abort trajec-
tory requirements
effect of part failure rates on oper-
ator activity and equipment
design
electrical propulsion capabilities 71.339

design
electrical propulsion capabilities71,338
electronic support system70,064
exploration, basic profile
geo-sciences applied to exploration
and man's survival
launch vehicle size and staging
requirements, analysis71,677
LLS for Apollo, unmanned space-
craft bus concepts
71,814
71,815
logistic system, payload design
criteria
logistic system flight profiles, for
impact and flyby Earth-Moon
transits

Entry	Subject Entry
	Lunar Missions (Manned) (Cont'd)
t-	logistic system payload performance study; development programs,
70,798	estimated schedules and costs71,811
71,504	logistic system payload performance study, summary
71,423	logistic system payload performance

logistic system payload performance
study, technical digest
logistic system payload performance
study, technical results71,810
logistic system testing aspects
and methodology71,806
logistic system tracking and
mission control
logistic vehicle, analytical investiga-
tion of touchdown dynamics71,808
lunar surface rendezvous
technique
one-way concept, evaluation70,449
rendezvous and landing techniques,
analysis
requirements, value of Mercury
data, and basic approach70,142
Saturn-Apollo launch facilities71,416
space habitability study for
two-man crew70,451
static and dynamic power systems,
analysis
technical aspects reviewed70,144
thrust requirements, discussion 71,425

Lunar Roving Vehicles

control and communication
systems
delivery system and performance
requirements71,044
instrumentation and payload design
criteria
instrumentation for nuclear analysis
of surface
metalastic wheels, advantages71,428
performance calculations for
various terrains
power supply, design and selection
requirement
power systems for propulsion, ther-
mal control and instrumentation. 70,145
regenerative liquid hydrogen power
system for manned vehicle70,749
70,750
state of the art
using elastic wheel system, per-
formance studies
wheeled, tracked, screw-propelled,
and walking; comparative
analysis
,

* Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 _ subject index

Subject	Entry
Lunar Roving Vehicles (Manned) concepts, using Apollo launch vehic system configurations, including design parameters and subsystem	
development design, propulsion, auxiliary power and steering systems interior environment required by astronauts	, 71,429
state of the art Lunar Satellite Orbits (see Selenocentric Orbits)	71,427
Lunar Satellites configuration data transmission system,	
requirements guidance and orientation considerations orbital stability, investigation	70,751
Lunar Stations assembly and placement of shelters, methods	70,453
LEM project, description and timetable	71,418
nauts, requirements	
permanent manned bases, possibil- ities requirements for one-way	-
role of <i>Rift</i> in establishment and maintenance, study	

Lunar Trajectories

(see also Selenocentric Orbits)
circumlunar, minimum time aborts
from midcourse region
direct and indirect abort
requirements
direct-ascent vs. parking orbit for
soft-landing missions
for coplanar and three-dimensional
Earth-Moon transits for Apollo
and logistic vehicles
Moon-to-Earth, analytic model and
computer program study70,454
optimum navigation procedure70,474
return to Earth phase,
considerations

Sub	ject
U GL	Jeec

Entry

Lunar Vehicles

high area/mass ratio, capture
by the Moon
interaction of hot exhaust jets with
lunar surface, effect on vehicle71,545
internal temperature control of
lunar surface capsule
landing gear analysis
logistic, analysis of touchdown
dynamic stability and land-
ing gear parameters71,808
one-way mission, design
characteristics
unmanned spacecraft bus concepts
for LLS Apollo support71,813
71,814
71,815

Magnetic Fields

(see also Geomagnetic—, Lunar Magnetic—, Solar Magnetic—)
effects on motion of sphere
through conducting fluid70,148
interstellar, cosmic-ray isotropy
theory

menterial, comie ray isotropy
theory
interstellar, diffusion of cosmic
rays
Jupiter, trapped electrons as pos-
sible cause of radio emissions 70,729
lunar and planetary, estimated
measurements
magnetometer for space measure-
ments
mapping in vicinity of current
sheets
methods of measuring,
bibliography
of a model Earth radiation belt,
distribution
of planets, inferences and rough

Subject	Entry
Magnetic Fields (Cont'd) Venus, preliminary report on <i>Mariner 2</i> measurements	71.634
<i>Marmer 2</i> measurements	. 11,034
Magnetohydrodynamic Converters chemically fueled, channel	
flow analysis	.70,149
electron release using magnetic	70 450
field within	. 70,450
reference handbook	.70,504
state of the art	
Magnetohydrodynamics	
crossed field devices and Hall acce	el-
erators, description	. 71,051
interaction in lower ionosphere,	
mechanism for production of	
sporadic E	
interaction of hypersonic flow wit	
magnetic field, analysis nonlinear electrical conductivity	.70,113
of plasma for power genera-	
tion, investigation	70 458
over-all theory, review	,
propulsion, comprehensive review	
pulsed electrodeless device, exper	
mental work	
time-harmonic wave motion	
Mariner Project	
communications system, design c	on-
siderations and operation	
data handling and control, design	
for two systems	70,650

look-angle problem, design
solution
reliability assessment and
test facilities

Mariner 2

charged particle measurements
preliminary report
data concerning life on Venus71,230
data from five experiments,
initial report
deep-space communications70,379
description of experiments and early
data from Venus flyby
71,434
design and experimental results70,752
measurements of Venus IR radiation,
preliminary report
measurements of Venus magnetic
fields, preliminary report71,634
measurements of Venus radio emission,
preliminary report
results

[•] Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

Entry

Subject Entry
Mariner 2 (Cont'd)
temperature control problems and
trajectory calculation
trajectory analysis
71,053
Venus surface temperature
measurements
Mariner B
to test for life on Mars70,152
Mars
1956 and 1960–61 opposition,
spectrographic observations70,461
1958 occultation of a star70,757
1962–63 impending apparition70,756
1963 predicted occultations of stars,
appulses, time of radio source70,755
apparition, methods of
observation
atmosphere, electrical properties of
shock waves
atmosphere, new mass spectrometer
for analysis
atmosphere, nitrogen dioxide
content
atmosphere, spectral analysis70,800
atmosphere, supplement to Soviet
research review
atmospheric characteristics70,463
atmospheric parameters, effects
on entry vehicle design70,462
atmospheric properties, recent ob-
servational results
biological investigations,
methods70,156 blue haze phenomenon,
hypotheses
completed theory of motion71,055
experimental cultivation of life forms
in synthetic environment70,955
exploration by colonization, feas-
ibility study
exploration problems
fast manned flights, mission
analysis
geological and geophysical data,
evaluation and need for
accurate values
Gulliver experiment for evidence
of life
heat balance on surface,
calculations
illuminance, theoretical value70,495
manned surface missions, using
circumsolar rendezvous
techniques

Subject

Mars (Cont'd)
map of surface details
measurements of radio emission 71,869
microbe life detection, Mariner B
experiment
model atmosphere
nonstop round trip, survey and
analysis
physical characteristics
71,183
physical conditions and probability
of life, review and analysis70,153
reflectivity curve correction in
light region
results of observations during
1956 opposition
search for decametric radiation70,802
steady-state magnetic field
measurements
surface temperature, theoretical
estimates
temperature profile of atmosphere,
theoretical estimate
terrain and soil, deductive
reasoning
topography, size, and atmosphere
study
water available in free state,
estimate of amount

Mars 1

configuration	and	early	data,	
description	• • •	• • • • •	•••••	.70,464

Mars Missions

requirements, discussion	71,401
manned, using circumsolar	
rendezvous	71,538
manned Venus-Mars flyby in	
1970, study	72,010
Mars Trajectories	

ballistic, 1962–77, characteristics
in graphical form71,442
calculation using optimum thrust
programs
low thrust, guidance perturbations. 70,157
optimum low-acceleration
transfer study
optimum midcourse plane
changes
optimum round-trip71,443
stopover mission optimization as
example of trip selection70,718

Mars Vehicles

description of first USSR probe ...70,464 transmission delay time70,043

Subject	Entry
Mars Vehicles (Manned)	
ecological and cryogenic fuel requ	
ments during atmospheric entry	y. 7 0,358
Masers	
annotated bibliography to	
Apr. 1962	71,444
Materials	
(see also Coatings, Lubrication)	
ablation, experimental investigati	
in electric-arc-heated air jet .	71,646
adaptation and testing for high	
re-entry speed	
alkali metals as working fluids for	
space power, characteristics. alloys for liquid engine thrust	70,107
chambers, evaluation	71 453
and components, environmental	1,100
testing	71,346
bearing, and lubricants for	
nuclear control systems	70,136
char-forming ablation,	
developments	
coefficient of sliding friction, me	
ured during <i>Ranger 1</i> flight composite, annotated	/ 1,020
bibliography	
effect of hydrogen on aluminum,	
annotated bibliography	71,827
elastomeric and polymeric, space	1
environmental effects;	
bibliography	
epoxy adhesive for Sunflower pe fabrication	
erosion prevention during	11,000
plasma jet operation	70.496
existing heat-shield, modifica-	,
tions	70,161
exposure to sonic and ultrasonic	
radiation, effects	
fabrication effects on toughness	70,159
fabrication methods, state	
of the art	70,465
for booster vehicle design	71.000
considerations	
for cryogenic storage tanks for Fresnel solar reflectors,	70,159
environmental tests	70 944
for radiator coatings, emittance	
testing	
for radiators, thermal radiation	
characteristics	70.224
for solar absorber surfaces,	
analysis of effectiveness	70,279
for space powerplant radiator	

^eEntries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

Subject Entry
Materials (Cont'd)
for thermoelectric generators, radia-
tion effects and reliability;
bibliography
fusible, for high temperature energy storage
glassy, comparison between theory
and flight ablation data70,932
graphite, applications in space
technology
high temperature nonmetallic,
review
liquid metals for direct fluid heat exchange Rankine cycles,
analysis
melting ablation in stagnation
region
metals, tungsten as coating70,158
molybdenum and silver as seals for
extreme environments, testing and evaluation
NaK-77 as hydraulic fluid in
control systems
new fuels developed for nuclear
power systems, review70,186
nitrile-phenolic adhesive bonding for
X-21 wing surface assemblies,
development $\dots \dots \dots$
coatings $\dots \dots \dots$
plastic structures, fabrication in
space
pyrolytic, effects on re-entry
vehicle performance
pyrolytic, for thermal protection systems
pyrolytic graphite and pyrolitic
boron nitride, characteristics70,160
pyrolyzed plastic composites,
improved compositions and
constructions
refractory ceramics and intermetallic
compounds, review71,449
refractory metals, advantages and
limitations for nuclear
applications
refractory metals, present usability and future requirements71,452
refractory metals, properties71,447
simulated lunar, thermal properties
in air and vacuum
teflon, free-flight investigation of
ablation characteristics
low heating rates

Subject

Materials (Cont'd)
teflon and Zelux, laboratory study of
radiation from ablation models.70,931
teflon resins, survey of behavior in
space environment
tissue depth-dose for various
shielding thicknesses
wire cloth for use as flexible radiating
structure at 1200°F for blunt
re-entry vehicle
re entry venicle
Mercury
Nov. 1960 transit, black drop
observations
atmospheric properties
illuminance, theoretical value70,495
manmance, meorencar value70,495
measurements of radio emission 71,869
microwave radiation measure-
ments
search for decametric radiation 70,802
size and surface erosion
steady-state magnetic field
measurements
subsolar point temperature70,763
subsolar point temperature10,105
Mercury Project
abort techniques and procedures.70,168
application of celestial mechanics 70,369
atmospheric density determination
from capsule orbit
attitude control system,
description
capsule escape mechanism, role of
animal tests
check-out and launch, reliability
tests
command receiver, design details.71,830
comparison with Gemini
flight monitoring and control71,380
history of biomedical findings71,455
MA-6, chronological description of
astronaut preparation71,255
MA-6, chronological report of
Glenn's flight
MA-6, re-entry experiments70,814
MA-7, effects of acceleration on
liquid-vapor interface in baffled
tank during weightlessness71,061
MA-8, 24-hr orbit fuel and weight
requirements
MA-8, bioinstrumentation, dosim-
MA-0, Domstrumentation, dosim-
eters, and biomed tests of
weightlessness effects
MA-8, complete report of mission
results
MA-8, quantitative data on oper-
ation and performance

Entry Subj

Subject	Entry
Mercury Project (Cont'd)	
Mission Control Center, planned	
expansion	71,376
nightglow observations during	
MA-6 and 7 flights	70,346
physiological parameters for life	
support system	
pilot safety program	
reliability design, for <i>Atlas</i>	
reliability model and analysis	
U.S. Navy participation U.S. Space Science Program,	10,107
Jan. 1960–Mar. 1961	70 571
U.S. Space Science Program,	10,011
Apr. 1961–Apr. 1962	70.572
utilization of animal test results'	
value of experience to Apollo	
project	70.142
£,	, - ,
Meteor Showers	
1833 Leonid shower, description'	71,062
1962 Perseid, amateur observa-	
tions	
Leonid, spectrum	71,063
Meteor Trails	
low density, radio scatter	
luminosity and ionization, relation.	71,457
observation against background of	
solar disk'	
observational survey	
scattering effects on radio waves	
scattering of radar echoes	71,518
Meteorites	
ambient xenon as key to history	70,172
annotated bibliography	71,772
beryllium content, determination	
black magnetic spherules, electron	
microprobe analysis	
Brewster, magnetic properties	
Bruderheim, xenon composition in	

madement, xeion composition in
chondrules
Carbo iron, identification of
cristobalite content
carbonaceous, as source of
petroleum constituents70,174
carbonaceous, interpretation of
microstructures71,070
carbonaceous chondrites, catalog
of microphotographs
carbonaceous chondrites, chemical
evolution
carbonaceous chondrites, content
of high molecular weight hydro-
carbons

[•]Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

į.

Ì.

Entry

Subject	Entry
Meteorites (Cont'd)	
carbonaceous chrondrites, high-te	em-
perature minerals composition.	
carbonaceous chondrites, origin	
theory	.71,462
chondritic, study of micro-	
structures	.71,460
collisions with Earth, axis	M1 M1M
changes comet-meteorite ring around	.71,715
Jupiter, theory	70 729
evidence of extraterrestrial life	71 350
evidence of possible life, review .	
helium and neon content	
impacts, effects on Earth's polar a	
of rotation, theory	
iron, K^{40} -Ar ⁴⁰ ages, calculation .	
iron, low concentration of tritium	
isotope abundances of rare-Earth	
elements	
isotopic composition of organic	,
matter	.71.464
maximum size impacting Earth	
and Moon, estimate	.71.833
microstructures, photographs	
Orgueil, search for life forms	
oxidative equilibria, comparison	
terrestrial rocks	
particles found in southern Calif.	· · · - ,
desert, electron microprobe	
analysis	71,458
presence of UV-absorbing com-	
pounds, investigation	71,832
primitive lead content, isotopic	
analyses	71,467
radiation ages, as aid in study of	
cosmic-ray history	
radioactive decay ages, relation t	
gravitational interaction	70,981
re-entry data for heat transfer	TO 200
and mass loss determination.	
Sikhote Alin, potassium-argon ag calculation	
stone, age and isotopic composi-	
tion of strontium	
stone, zirconium and hafnium	10,115
abundances	71.066
stone/iron ratio	
tests for possible biological origin	
of materials	
Tunguska, results from new	
explorations	71,466
Tunguska, velocity and energy	,
estimates	
with unique structure, discovery	

Subject

Meteoroids

concentration near Earth observed
from satellites
damage effects to radiators, design
considerations
effects of impact on space
vehicles
hazard to space vehicles in Earth
orbit, design considerations70,876
impact effect on space vehicles70,115
70.116
interplanetary particles, model for
steady-state space distribution70,470
penetration of space vehicles,
estimates
spray ejected from lunar surface by
impact, analysis
······································
Meteorological Satellites
data acquisition, suggestion for
improved systems
data storage of video information
for <i>Nimbus</i>
direct readout system,

Tiros data-utilization experiment.71,973

Meteorology

high-resolution wind measurement
for launch vehicle design
analysis
radiation view of hurricane Anna
from <i>Tiros</i> 3
role in development of booster
vehicles
Tiros cloud pictures, hydrody-
namical implications

Meteors

accretion and satellite impact data,	
to estimate interplanetary matter	
density	71,770
annotated bibliography	71,772
artificial iron, luminosity	
coefficient	70,775
correlation between mass and	
number of fragments	
daily rates, lunar effects	71,843

Subject	Entry
Meteors (Cont'd) density calculations effects of passage on surface mag- netic phenomena	.70,777
head radar echoes, study of amplitude	.71,844
re-entry data for heat transfer and mass loss determination	.70,230
Micrometeorites annotated bibliography penetration experiment aboard <i>Explorer 7</i> , results	
Micrometeoroids	
as hazards to space vehicle crew. penetration experiment aboard	
Explorer 16, Mar. 1963 status .	.71,349
Microorganisms Gulliver detection experiment in soil of harsh terrestrial enviror ments, studies in anticipation of	1-
extraterrestrial findings in upper atmosphere, electrostatic bacterial air sampler	.71,076
Moon	
(see also Selenography, Selenolog and specific lunar headings)	у,
1963 graphic ephemeris artificial ionosphere for intra-luna	r
communications, proposal as a physical object, bibliography atmosphere, discussion	.71,852
atmosphere, planned research atmosphere and surface, Soviet	
research review	
atmosphere and surface, supplem to Soviet research review atmospheric composition and tem	.71,438
perature measurements, methods	
axis changes from large meteorit collisions	e
center of mass, determination from	n
observations center of mass, photographic	.71,847
determination	.70,778
characteristics, bibliography	.70,178
communications, summary of	
parameters and results of Moon- bounce voice trials	
communications on surface, using	
satellites	

[•]Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

Subject

Subject	Entry
Moon (Cont'd)	
effect of internal heat flow on radio	
temperature measurements	71,475
effect on diurnal variation of geo- magnetic field	71 747
effect on incoming terrestrial	(1,(4)
meteor rate	71.843
environmental conditions, effects	,
on long duration manned	
mission	70,449
far side photography and	
selenographic analysis	
gamma-radiation experiment by	71,479
Ranger 3, preliminary results.	70 514
general data from astronomical	10,011
observations, Soviet review	71,471
gravitational heat production in	
interior	71,846
Hansen's lunar theory,	
modifications	71,901
hypothetical observations from	71 470
Venusilluminance, theoretical value	
influence on atmospheric ozone	
influence on geomagnetic	. 1,0 10
disturbances	71,743
internal constitution	70,781
ionospheric model, formation	
mechanism	
lunar dust and terrestrial ice nucleu	
concentration, relation	
lunar reflection communication	10,144
system, study	70.784
lunar thermal emission	
measurements	71,853
meteor impact search, theoretical	
aspects	
observational data to aid in geodeti	
studies	71,478
occultation of Saturn, Sept. 1962	70 176
	70,828
origin by rotational fission from	10,020
Earth, theory	71,850
originally a planet, theory	71,477
perturbations on critical frequency	
of F ₂ layer	71,357
photographic methods for amateurs	70 700
photography from space vehicles,	10,102
problems	71,104
physical characteristics	
planetary theory	

Moon (Cont'd)
point-to-point communication sys-
tems, preliminary study
radar observations at 68-cm
wavelength
radio emission on 9.6 cm, precision
measurement
radio wave scattering from surface,
diffraction theory
Ranger γ -ray spectrometer
studies
reverse side, detection of genuine
objects from first photographs70,830
reverse side, photographs70,832
reverse side, USSR photographs70,780
scattering behavior at radio wave-
lengths, theory71,077
simulated surface materials, thermal
properties in air and vacuum71,057
spectrophotometry of selected
areas
steady-state magnetic field
measurements
surface operations simulator, for
command operations training70,067
temperature control of lunar
surface capsule
theoretical ionosphere, mechanism
for computation
tidal oscillation effects on twi-
light intensity
visual observations, effects of
atmospheric conditions
Navigation
concept of self containment70,180
display systems, human factors
criteria and requirements70,059
amorganou midoourse procedure

Entry

display systems, numan factors
criteria and requirements70,059
emergency midcourse procedure,
using Earth photographs71,854
error propagation in aerospace
systems, bibliography
proportional, for rendezvous
control
resolver chains for computations,
description
sextant-type measurements, sighting
problems
statistical optimizing procedure70,474
70,785
Novigation Systems

Navigation Systems (see also Celestial —, Inertial —, Optical —, Star Tracking Systems) COGS, characteristics, operation

Subject	Entry
Navigation Systems (Cont'd)	
cosmic, for interplanetary flight,	
Soviet developments	71,481
on-board optical trackers,	
description	
open and closed loop	.70,180
parallel logic distributed memory	
and self-organizing systems,	
applications	.70,655
satellite transmissions and ground	
equipment, design require-	
ments	.70,475
self-contained, description	.70,180
sensor requirements, state	
of the art	.70,537
Neptune	70 407
illuminance, theoretical value	. 70,495
steady-state magnetic field	70 455
measurements	. 10,455
Nerva Project	
pumping system, controls and	
destructor; design goals	.70,476
Neutrons	
flux and energy spectrum above	
atmosphere	
sources in solar system	.70,970
Nimbus Project	
assessment of development and de	:-
sign achievements	
automatic picture transmission	,
system	.71,838
command clock system, descrip-	
tion	.70,893

experiments
dissemination
spacecraft and communication system as of Sept. 1961, description71,081
test program
Nitrogen
molecular, presence in upper atmosphere
Nova Project

data storage system71,714

instrumentation for future

possible	configuration for first	
		70,786

Nuclear Converters

open- and closed-cycle dynamic engines, state of the art.....70,282 radioisotopic, for electrostatic propulsion70,392

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Subject

Entry

	Entry
Nuclear Power Supplies	
1-Mw turbogenerator system7	0.212
application to electric propulsion,	•,
conceptual design	0.062
fuel form systems for thermionic	•,•••=
elements, development7	0.182
NASA program, objectives7	0 183
new fuel materials, review7	0.186
nuclear-electric, vehicle design	-,
considerations	70.807
power and efficiency loss from	.,
unequal heat inputs to diodes7	0315
radionuclide heat sources,	0,010
characteristics	70 540
Rankine heat exchange cycle, study	0,010
of insolubility of working	
fluid in coolant	0 185
SNAP generators, description7	70 540
SNAP-8, feasibility for satellite TV	0,010
broadcasting system	71 082
space probe limitations,	1,002
interfaces	70 184
suggestion for standardized,	0,101
on-the-shelf units	70 181
	0,101
Nuclear Propulsion Systems	
advantages, cost and per-	
advantages, cost and per- formance7	71,485
formance	
formance	
formance7 applications to space missions7 7	70 ,47 9 71,340
formance	70 ,479 71,340 71,083
formance	70,479 71,340 71,083 70,188
formance	70,479 71,340 71,083 70,188 70,523
formance	70,479 71,340 71,083 70,188 70,523 ier,
formance	70,479 71,340 71,083 70,188 70,523 ier,
formance	70,479 71,340 71,083 70,188 70,523 ier, 71,482
formance	70,479 71,340 71,083 70,188 70,523 ier, 71,482
formance	70,479 71,340 71,083 70,188 70,523 ier, 71,482 70,189
formance	70,479 71,340 71,083 70,188 70,523 ier, 71,482 70,189
formance	70,479 71,340 71,083 70,188 70,523 ier, 71,482 70,189 70,190
formance	70,479 71,340 71,083 70,188 70,523 ier, 71,482 70,189 70,190
formance	70,479 71,340 71,083 70,188 70,523 ier, 71,482 70,189 70,190 71,487
formance	70,479 71,340 71,083 70,188 70,523 ier, 71,482 70,189 70,190 71,487
formance	70,479 71,340 71,083 70,188 70,523 ier, 71,482 70,189 70,190 71,487 71,486
formance	70,479 71,340 71,083 70,188 70,523 ier, 71,482 70,189 70,190 71,487 71,486 70,788
formance	70,479 71,340 71,083 70,188 70,523 ier, 71,482 70,189 70,190 71,487 71,486 70,788
formance	70,479 71,340 71,083 70,188 70,523 ier, 71,482 70,189 70,190 71,487 71,486 70,788 71,485
formance	70,479 71,340 71,083 70,188 70,523 ier, 71,482 70,189 70,190 71,487 71,486 70,788 71,485

destructor; design goals70,476

design methods70,187

pumping system, controls and

radiation heat damage reduction,

Subject

Nuclear Propulsion Systems (Cont'd)
Rankine heat exchange cycle,
study of insolubility of working
fluid in coolant
reactor design analysis
reactors; homogeneous-thermal,
fast, heterogeneous-thermal,
characteristics
<i>Rift</i> vehicle, study
rockets, review of current status
and aims
safety considerations
single-stage, gas-core reactor
concept, feasibility
state of the art
state of the art,potentials, and
future development71,872
thermonuclear fusion reactor, plasma
and engineering parameters 71,084
velocity increments, requirements
for interplanetary missions70,188
Nuclear Radiation
effects on electronic components71,085
effects on transistor reliability70,396
enects on transistor reliability 70,390

enects on electronic components 71,065
effects on transistor reliability 70,396
heat damage reduction, design
methods
heating, temperature rise in mate-
rials surrounding reactor71,488
high-energy nuclear reactions,
measurements of secondary
spectra
nuclear secondaries, techniques for
measurements

Nuclear Reactors

fission, as direct heat exchangers71,487
for electric propulsion application,
conceptual design
for rockets, design analysis71,483
fuel form systems for thermionic
elements, development70,182
gas-cooled solid-core, for rocket
propulsion; thermal design
limitations
gas-core, performance estimates
as spacecraft powerplants70,190
gas-core, state of the art70,190
homogeneous-thermal, fast, hetero-
geneous-thermal; character-
istics
power-producing shield71,558
thermionic, cesium diode perform-
ance characteristics
thermionic cathodes, selection
and experimental results70,313

ťd)	Nuclear Reactors (Cont'd)
	unshielded operation in space,
ing	effects on intensity of
70,185	Van Allen belts
71,483	
,	Nutrition
	algae as nutrient source, feasi-
70,188	bility study
71,544	basic requirements for man and
, ,	hydroponic cultures
71,484	feeding console for 3-man,
70,480	14-day mission
71,190	OAO Project
70,478	electric power supply, hermetically
,	sealed nickel-cadmium
71,872	batteries
asma	Goddard Experimental Package
71,084	PCM telemetry systems,
nts	description
70,188	satellite orientation and control,
···· ,	
	mathematical analysis
s71,085	structural diagram70,481
70,396	OGO Project
	box structure concept, design and
70,187	special problems
te-	communication system,
71,488	description
	data handling system design70,672
	experimental objectives
71,908	experimental objectives
for	Optical Navigation Systems

Earth-based simulation, feasibility. 71,090
simultaneous on-board measure-
ments, equations for position in
cislunar space

Optical Telescopes

4-, 12-, and proposed 50-in., for
high-altitude balloon studies71,257
balloon-borne, 300-ft effective focal
length for high-altitude photos.70,300
balloon-borne and orbiting,
technological advances70,623
filters to reduce diffraction, sec-
ondary spectrum, glare, and
atmospheric effects
Goddard Experimental Package
for OAO71,490
Optical Tracking Systems
application of lasers
Orbital Docking
techniques for supply transport

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Entry

Subject

Subject	Entry	Subject	Entry
Orbital Ferries design concepts based on existing spacecraft configurations	71,495	Orbits (Cont'd) analytical solution of Musen's theory for orbit computation	
Orbital Launching design approach and requirements for launch stations	71,492 71,491	artificial satellites, numerical results derived by dynamical methods. calculation methods, for com- munication satellites catalog of precisely reduced obser- vations of satellite positions catalog of precisely reduced obser- vations of Sputnik 3, Vanguards	71,091 70,790 71,503
Orbital Observatories geophysical, primary objective geophysical, solar, and astronomical; missions and engineering design	71,859 71,157	2 and 3 positions changing inclination of satellite circular, atmospheric density determination by short arc circular, effect of lift on decay circular, libration points circular, three-dimensional pulse optimization for disorbiting maneuvers	71,499 70,327 71,092 70,029
Orbital Stations accidental single-impulse launch of astronaut while outside vehicle	71,492 71,496 1, 70,400 71,493 71,494 71,495 70,483 71,267	 communication satellite, determination from angular data only critical inclination problem decay characteristics due to drag, calculation determination, modifications of classical methods determination by doppler shift eccentric, accurate drag determinations for eight artificial satellites effect of atmospheric drag elliptical, analysis of satellite lifetimes elliptical, demonstration of Kepler 3rd law elliptical, satellite lifetime calculations elliptical, satellite lifetime calculations elliptical, satellite lifetime calculations elliptical, satellite lifetime calculations 	.70,486 .71,862 .71,097 .70,793 .70,195 .71,094 .71,096 .70,821 s .70,966 .70,259 .71,102
Orbital Transfer (see Transfer Orbits)		optimization for disorbiting vehicles equatorial, formula for near-Eart	
Orbits (see also Geostationary —, Lunar Satellite —, Parking —, Rendezvo Selenocentric —, Transfer —) acceleration by solar radiation,	ous —,	satellite motion errors in prediction due to air dra stochastic models and calculations evolution under gravitational per	.70,194 g, .70,491

from lunar observatories71,497

accurate intermediary, computa-

tional procedure for Vinti's

aerodynamic and radiation disturb-

acquisition and determination

evolution under gravitational perturbations of external bodies...70,792 Explorer 6, for testing model geocentric circular, percentage eclipsed by Earth, determina-heliocentric elliptical, deter-

Orbits (Cont'd)
interplanetary, influence of plan-
etary mass uncertainty71,098
interplanetary, periods commensur-
ate to one year; advantages 71,863
Izsak's second-order solution of
Vinti's dynamical problem,
computation program71,101
lunar and solar influence
natural satellites of Jupiter,
Saturn, Uranus
near-Earth, equations of
secular motion
nearly circular, two-body
orbital parameters
periodic, for Moon probes, search
within restricted three-body
problem
71,290
periodic, in plane-restricted
Earth-Moon problem
perturbation analysis and com-
puter program equations70,013
perturbation by extraterrestrial
gravitation
perturbational variations,
oblateness effect
perturbations by tesseral harmonics
in Earth's gravitational
potential
perturbations of Earth-escape
hyperbola and of interplanetary
probe by oblate planet71,298
prediction techniques71,022
rapid computation method71,100
regression, effects on satellite
motion
returning from Moon to specified area,
trajectory computation
satellite lifetimes, survey
of equations
second- and third-order perturba-
-
secular perturbations of asteroids
with high inclination and
eccentricity
single revolution, satellite coverage
probability, calculations70,375
solar radiation pressure effects,
theory
space-fixed circular, launch
window determination70,487
three-body problem, capture
examples

two-body system, determination. .70,031

Entry

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Entry

Subject Entry
Orbits (Cont'd) velocity and timing charts for determination
Oscar 3 description71,103
OSO Project acceleration by solar radiation, mathematical model70,485 S-17, instrumentation71,157 spacecraft, instrumentation, ex- periments, and performance in orbit70,795
Paragliders for space vehicle recovery70,297 Gemini recovery system71,363 inflatable micrometeoroid, re-entry test objectives
Parking Orbits elliptical, optimum disorbiting maneuvers
Photographic Equipment 125-mm Schmidt camera for photo- graphing satellites
Photography cloud, <i>Tiros</i> 5 and 6; Oct. 1962 catalog71,607 of far side of Moon, analysis70,535 71,479 of Jupiter, methods and results70,730 of Moon from space vehicles, problems71,104
Photometers all-sky, description of use during IQSY

,

Subject

Photometry

effects of lunar tidal oscillations 70,779
functions for lunar surface,
theoretical model
lunar surface, preflight analysis70,798
71,504
lunar surface, to determine light
scattering factors70,266
photoelectric observations from
rockets
photoelectric spectrophotometry of
solar extreme UV
photometric properties of Moon, re-
lation to photography problems.71,104
Physiology
acute effects of radiation exposure.71,877
astronaut selection requirements 70,356
biomedical data from Mercury
project
data from Russian, American, and
French suborbital and orbital
flights, 1949–61; review71,660
direct visual sensing in rendezvous
operations
disorientation and nystagmus
due to rotation
70,199
effects of acceleration, deceleration,
and impact; bibliography71,274
effects of acceleration on brain
function
effects of rotating environment70,199
effects of space flight, USSR
data
effects of space flight conditions
on inner ear
effects of weightlessness and sub-
gravity; bibliography71,275 factors adversely affecting living
organisms
Italian research and environmental
studies
Italian research on subgravity
effects
man-rating environmental simulators;
medical, engineering, and oper-
ational considerations
perception of motion, equilibrium,
and orientation in zero gravity71,866
respiratory function, effects of
acceleration
space flight effects, U.S. and
USSR research
space flight effects on astronauts70,799

Subject	Entry
Physiology (Cont'd)	
space proton doses at points	
within human body	71,880
two-man crew in small capsule,	
efficiency study	70,451
urolithiasis hazard during	
prolonged flights	71,252
visual capability in rendezvous and docking maneuvers	71 541
visual detection of angular motion,	1,041
testing for pilot controlled	
rendezvous	70.200
visual perception, requirements for	
lunar landings	
visual perception during accelera-	
tion	70,007
visual skills required for manned	
vehicle operation	
	71,108
weightlessness, effects on body	70.005
fluid distribution	70,335
weightlessness, effects on sensory reaction and voluntary motion,	
USSR studies	70.336
	10,000
Pioneer 1	
magnetometer data	71,751
Planetary Atmospheres	
(see also Atmosphere Sampling, and specific planet)	
Chandrasekhar's X and Y functions	s,
scattered and transmitted	
radiations Chandrasekhar's X and Y functions	.71,506
	5
for homogeneous atmospheres, method of computation	70 801
exosphere, analytic solution for	. 10,001
density distribution	71 731
general hypersonic heat transfer	1,101
problem	71.507
heat transfer at super-satellite	
speeds	.70.111
Jovian exosphere, density	-
Jupiter and Saturn, spectro-	ŕ
scopic investigations	.70,494
light scattering and molecular	
escape	.70,201
	70,202
Mars, effects of uncertainties on	-
entry vehicle design	.70,462
Mars, electrical properties of	71 497
shock waves Mars, engineering model	
Mars, engineering model Mars; photographic, photometric,	. 11,000
and colorimetric observations	
during 1956 opposition	.70,759

*Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

Entry

Subject

Subject

Planetary Atmospheres (Cont'd)
Mars, theoretical estimate of
temperature profile
Mars, Venus, Jupiter; properties71,111
microwave powered hydrogen lamp
for vacuum UV photochemistry .71,109
molecular spectral analysis, critical
review of past experiments70,800
photochemistry of sulfur-oxygen
systems
physical properties, Soviet research
review
proposed IR studies using high-
altitude balloon observations71,257
refraction as seen from space,
estimate
Venus, electrical characteristics,
radar observations
Venus, ionosphere-solar wind inter-
action
Venus, transmittance for wide
range of conditions
Venus, vertical distribution of
neutral gases
Venus model, thermodynamic
properties and shock-wave
characteristics
Planetary Landings
from hyperorbital approach
trajectories
Mars, mission analysis
soft, of instruments by means of
gas-filled balloons71,801
Planetary Roving Vehicles
performance calculations for

performance calcu	lations for
various terrains	

Planets

Planets
(see also Surface Sampling, and specific planet)
1963 graphic ephemeris
convection in interiors
ephemeris calculation from
initial values
free modes of layered oblate
spheroids
illuminance, theoretical value70,495
internal structure
internal structure, influence of
axial rotation71,868
mass, distribution in solar system 70,869
phase curves and albedos, evalua-
tion of optical navigation
possibilities
physical characteristics

Planets (Cont'd)
protoplanetary cloud hydrogen dis-
tribution, chemical composition,
and dust cloud temperature 70,663
radio emissions, present state
of knowledge
rotational and orbital momenta,
empirical relation
search for decametric radiation70,802
surface characteristics, effects of
meteorite-born organic matter70,174
theory of origin
translational-rotational motion,
perturbations caused by
oblateness
visual observations, effects of
observational conditions70,783
Plasma
current sheets, dynamics
dissipation under high-temperature
conditions, turbulence
energization in magnetosphere,
hydromagnetic and particle-
drift approaches
neutral, electrostatic acceleration
and momentum transfer
mechanism
nonequilibrium, density
fluctuations
Plasma Accelerators
continuous flow, current status71,051
crossed-field, experimental
performance results
electrostatic, description71,871
Plasma Propulsion Systems
continuous flow accelerators, current
status
MHD continuous flow and pulsed
flow engine concepts for solar
system exploration
review and experimental work,
annotated bibliography71,509
Pluto
1963 predicted appulses
illuminance, theoretical value70,495
Power Supplies
(see also Nuclear —, Solar —, Converters, Fuel Cells, Solar Cells)
1-Mw Rankine electrical power
generating system, radiator
weight and pressure drop70,223
15-w fuel cell battery using
soluble fuels and oxidants70,081

Entry

Subject	Entry
Power Supplies (Cont'd)	
active-shield concept for	
nuclear reactors	.71,558
advanced, analytical study	.71,113
alkali metal two-phase heat tran	s-
fer, present status ASTEC 15-kw advanced turbo-	.70,107
electric concept, development.	
batteries, hermetically sealed silve	
oxide-zinc for satellite	-
applications	70,805
batteries; specific types for re-ent	try,
satellite, and recovery vehicle.	70,498
catalytic hydrogen-oxygen reacti	
chambers constant oblique field electro-	. 70,204
static generator, analysis	70 210
cryogenic hydrogen-fueled recip	-
rocating, for manned lunar	
	70,208
cryogenic propellants, effects of	
integration with cooling	
system	
dynamic energy conversion sys- tems, state of the art	70.989
dynamic mercury Rankine cycle,	
complete self-contained	70.209
electric, for X-20 glider	70,343
electric, hermetically sealed nick	
cadmium batteries for OAO.	
electrostatic disk-type generators	
design considerations energy conversion systems,	70,804
	70,504
Explorer 12, secondary sealed	
silver cadmium battery	70,500
for lunar roving vehicles, power	
supply sources	70,145
for manned lunar roving vehicle	
for mobile lunar vehicles, para-	
metric analysis for space missions, 1962–76	70 908
fuel cell, solar cell, and cryogeni	10,200 ic
chemical dynamic systems;	.c
comparative analysis	70,502
hermetically sealed rechargeable	
battery systems for satellite	
energy storage	
hydraulic, pneumatic, or electric	al
for control, comparison Hydrox fuel cell integration into	
optimum powerplant	
Hydrox internal combustion eng	
development and advantages	
inflatable, foam-rigidized solar	,
concentrators; fabrication and	
testing techniques	70,277

[•]Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

Entry

Subject En	try
Power Supplies (Cont'd)	
ion-exchange membrane, hydrogen-	
oxygen fuel cell for Gemini70,4	411
isotope costs and availability,	
review and projections71,	510
MHD, investigation of nonlinear	
electrical conductivity of	150
plasma	158
nuclear turbogenerator 1-Mw system	010
Pu ²³⁸ -fueled thermoelectric genera-	512
tor, preliminary operational	
safety report	512
radiators for powerplants, ma-	
terial considerations	221
radioisotope generators; fuels,	
conversion systems, and	
applications71,	511
rechargeable, nickel-cadmium,	
6-amp-hr secondary battery	050
for Ariel 1	
re-entry turbines, analysis70,5 requirements, 1962–7670,5	
SNAP, bibliography from 1957–	200
July 1962	915
solar concentrator calibration	
program	276
state of the art	
static and dynamic systems, compari-	
son for manned lunar missions70,	208
Stirling closed-cycle external-	
combustion engine71,	115
Sunflower project, thermo-	
dynamic system70,	302
system using Cryhocycle prin- ciple, description70,	011
thermoelectric generators,	211
bibliography71,	080
two-systems integration, feasibility	000
and advantages	314
vibratory power transmission, ana-	
lytical and experimental	
investigation	114
weight saving, with electron-	
bombardment ion rocket70,	125
Powerplants	
lunar, for processing water to	
liquid hydrogen and oxygen $\dots 71$,	513
Propellants	
(see also Cryogenic — Hybrid —	
Liquid —, Solid —)	
advantages of OF₂ combined with	
MMH or B_2H_6	515
for lunar landing vehicles, require-	
ments and comparisons71,	,041

Subject

Propellants (Cont'd)
orientation in zero-g with
electric fields
storage, studies of liquid-vapor
interface configuration in
weightlessness
Propulsion Systems
(see also Advanced —, Arc Jet —, Elastrical Ion Liquid
(see also Advanced —, Arc Jet —, Electrical —, Ion —, Liquid —, Nuclear —, Plasma —, Solid —)
chemical, nuclear, and electric; state
of the art and future
development
comparison of chemical and nuclear
rockets
comprehensive survey
electrical, nuclear, and chemical;
for Mars missions, capabilities70,213
for lunar orbiting and landing mis-
sions, requirements
power-limited, optimum thrust
programs
power-limited, optimum thrust pro-
grams for interplanetary
rendezvous
requirements and systems
investigations, analyses71,517
requirements for attitude control
and trajectory correction
maneuvers
space maintenance tasks
survey of costs, R&D, future
plans
thrust requirements for lunar
manned mission
Psychology
contribution to space flight,
summary70,216
disorientation during space
flight, problems
effects of acceleration, deceleration,
and impact; bibliography71,274

Radar Antennas (see Radio Antennas)

Radar Astronomy (see Radio Astronomy)

Subject	Entry
Radar Echoes (Cont'd)	
exploration of Venus	70,607
lunar observations at 68-cm	
wavelength	
meteor-head, study of amplitude	71,075
scattering characteristics of lunar	
surface	70,836
scattering from meteor trails,	
asymmetric model	71,518
to measure electron densities	
in aurorae	
USSR location of Venus, Apr.1961	.70,333
Radar Systems	
for geodetic measurements with	
passive corner reflective	
satellite	.70,506
for rendezvous, docking, and plan-	-
etary landings; description	71,116
Gemini project rendezvous, inter-	
ferometer techniques	70,082
interference effects of vernier	
exhaust during lunar landings.	70,507

Radar Telescopes

(see Radio Telescopes)

Radiation

(see also Infrared ---, Nuclear ---, Solar Corpuscular ---, Solar ---, Thermal -, Ultraviolet -, Cosmic Rays) acute exposure, effects on human as hazard to space vehicle crew. .70,429 auroral zone balloon observations, Chandrasekhar's X and Y functions for homogeneous atmospheres, method of computation70,801 composition near Earth70,978 computer code for tissue doses correlation of types with effects...71,119 damage, effect of 1-Mev electron bombardment on solar cells71,561 damage resistance of silicon p-njunction solar cell70,273 damage to hydrogen-bonded propellants during orbital storage, damage to semiconductor devices from proton bombardment71,719 data from *Explorer* 1470,071 detection within spacecraft by

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Entry

Subject

Radiation (Cont'd) dosages from electrons and brems-
strahlung in Van Allen belts, calculations71,882
dose calculation as function of
shielding thickness
effects or damage in solar cells70,640 effects on metals and plastics70,762
effects on resistors
effects on solar cells and glass,
annotated bibliography71,875 effects on spacecraft electronic
systems, components, materials;
annotated bibliography71,519
effects on unicellular green algae,
Soviet studies
Echo 2 skin material
electron dctection during nuclear detonation by sounding
rockets
excitation of Lyman- α in
night sky
exposure, acute effects in man 71,877
exposure, calculational procedure
for estimating during lunar missions71,881
galactic, solar, and trapped; sum-
mary of present knowledge71,874
galactic cosmic rays, potential
hazards of particles
hazard due to solar cosmic rays,
evaluation
hazard from solar proton fluxes71,674 hazard to astronauts
hazard to crew during re-entry70,355
hazards to manned flight,
handbook
instrumentation for detection and
measurement
instrumentation for electron flux
and energy distribution
measurements
ionizing, solar, cosmic, and Van Allen; astrophysical character-
istics, origin, and distribution71,659
measurement of doses inside space
vehicles
measurements, hazards to space
flight71,884
neutron dosage produced in vehicle
by geomagnetically trapped protons71,118
nuclear emulsion detector
studies

Subject

Subject	Linuy
Radiation (Cont'd)	
overshoots caused by temperature	
decreases in re-entry vehicle	
wakes	
permissible dose for humans	70,217
primary and secondary	70,567
proton damage, semiconductor	
devices	
proton hazards from Van Allen belt	
and major solar flares	71,122
scattering and transmission from	
planetary atmospheres, optical	
depth and albedo	71,506
shielding, comparison of require-	
ments for neutrons and protons.	71,118
solar proton, secondary-particle	-
dose contributions	
space proton doses at points within	
human bodyspaceborne monitoring system	
sudden intensity increase coinci-	10,210
dent with SC	70 700
surface effects on semiconductor	. 10,100
devices	71 718
synchrotron, measurements during	
high-altitude nuclear event	
synchrotron, observations after	1,120
high-altitude nuclear event	71 133
<i>Tiros</i> measurements, analysis	
Radiation Belts	. .
(see also Van Allen Radiation Bel	ts)
artificial, caused by July 9, 1962	
nuclear explosion, symposium.	
artificial, characteristics determine	
from satellite detectors	
artificial, combined data from fou	
satellites	
artificial, data from Injun, TRAAC	
Telstar, and Ariel	.71,132
artificial, data from series of	#1 1 4 5
observations	.71,125
artificial, effects on solar cells	.71,172
artificial, effects on solar power	

of protons and electrons......71,128

artificial, flux and energy spectra

artificial, formed by July 9, 1962

artificial, omnidirectional electron

artificial, prediction of time decay

Entry Subject

Radiation Belts (Cont'd) artificial, radio measurements of electron number, energy spectrum, and decay rate.....71,886 artificial, studies by Explorer 15. .71,732 artificial, studies with fission β artificial, trapped relativistic electrons, observation71,123 effects on satellite electronic electron dumping, effects on radio injection of electrons by highaltitude nuclear detonations....70,692 model Earth, magnetic field second artificial; spatial characteristics, origin, and time history. .71,129

Entry

Radiators

haulators
(see also Temperature Control)
annular finned, effectiveness70,220
coatings, testing of emittance of
suitable materials
contour heat rejection fins for
radiative cooling
core dimension determination70,588
design considerations, nuclear-
electric spacecraft
energy conversion systems,
reference handbook
finned vs. unfinned, relative
effectiveness70,220
for nuclear-electric power sup-
plies, interfaces70,184
irradiation between elements70,220
meteoroid impact damage pro-
tection, weight problems70,223
meteoroid protection require-
ments, design considerations70,222
nonredundant direct condensing
finned-tube, for 1-Mw Rankine
electrical power system70,223
thermal radiation characteristics
of surfaces for heat rejection
by radiation70,224
thermionic system, feasibility
study
tubular and nonfluid, materials for powerplants
for powerplants
Radio Antennas
comet scanning instrument,

comet scanning instrument, description70,636

Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 ž

Entry

Subject Entry
Radio Antennas (Cont'd)
for ionospheric random diffusion
studies
Goonhilly Downs, aerial control
system
D. 1. A.
Radio Astronomy
8-mm wavelength observations of Venus and Jupiter radio
emission
210-ft telescope, Parkes, Australia,
first results
bibliography, atmospheric aspects.71,887
bibliography, theoretical articles,
experimental data and descrip-
tion of equipment: 1946–6270,809
contributions to cosmology71,328
data obtained with fully steerable
telescope
effect of internal heat flow on lunar
temperature measurements71,475
investigations with artificial satel- lites and cosmic rockets71,522
Jovian decameter radio emission
observations
lunar emission on 9.6 cm,
precision measurement71,474
measurements to estimate Venus
rotation period
observations of Venus at inferior
conjunction
radio signals method for determin-
ing exponent in distribution of peak values
solar system, nature of radio
emanations
star scintillations, correlation with
auroral and magnetic activity71,015
Radio Noise
prediction and control, mathe- matical model
synchrotron, observations after
high-altitude nuclear event71,133
Radio Signals
backscattered from F region,
characteristics
edge focusing of signal received
in ionosphere from space70,509
from satellites, scintillation from ionospheric irregularities70,810
propagation, bandpass character-
istics
propagation, effects of satellite
free body motion
radio horizon variation,
observations

Radio Signals (Cont'd)
satellite-borne, determination of
ionospheric electron density
profiles from faraday rotation 71,786
study to ascertain E-region irregu-
larities
VLF phase perturbations associated
with nuclear bursts
VLF propagation, mode theory71,134
VLF transmissions, perturbations
by high-altitude nuclear burst71,137
Radio Telescopes
210-ft. Parkes. Australia.
description
210-ft, Parkes, Australia,
first results
Australia, description and operating
experience
Benelux, design revision
German, for Telstar participation.71,138
Green Bank, detailed description 71,140
measurement of lunar thermal
emission
optical link for antenna
positioning
radio-transit, steerable in azimuth.71,141
structures; feasibility studies, design
criteria and procedures71,888
-
Radio Tracking Systems
for lunar midcourse guidance71,760
Radio Waves
auroral absorption, relationship
to dumped electron fluxes71,527
effects of solar eclipse
electron scattering cross section in
incoherent backscatter from
F region
extragalactic radio sources related
to cosmological models
extraterrestrial, absorption by free
electrons in D layer

for artificially heating electrons in
F region
guidance in magnetosphere70,226
guided propagation along magnetic
field lines
HF, oblique transmission, amplitude
statistics measurements70,512
interaction in ionosphere, analysis.71,528
low and medium frequency propa-
gation, solar eclipse effects 70,857
propagation by elongated irregu-
larities in ionosphere

propagation through ionosphere, refractive and absorption index...71,776

Subject Entry
Radio Waves (Cont'd)
radio-echo lunar observations at
68-cm wavelength
resonant frequencies in
D region70,056 scattering by meteor trails, ampli-
tude distribution
scattering from low density meteor
trails
scattering from lunar surface,
diffraction theory
VLF, propagation in ionosphere70,511
Radiometers
IR, on Mariner 2 for Venus
measurements
<i>Tiros</i> instruments, description71,839 two-channel microwave, on
Mariner 2 for Venus
measurements
Ranger Project future plans70,812
impact limiter system and materials
performance, evaluation tests71,004
lunar orbiter capsule study,
final report
71,431
lunar rough landing capsule, devel- opment program71,143
photometric model of lunar mare
surface for TV experiment70,798
71,504
Rangers 6–9, reliability study71,142
seismograph, description70,425
seismology experiment70,513
Ranger 1
coefficient of sliding friction for
materials during flight71,828
Ranger 3
gamma-radiation experiment,
preliminary results
Ranger 4
gamma-ray spectrometer, descrip-
tion
Reactors
(see Nuclear Reactors)
Receivers command, for <i>Mercury</i> space-
craft
ground-based, for <i>Telstar</i> project71,759
micro-mod, design requirements

micro-mod, design requirements
for satellite navigation system70,475
Telstar on-board unit,
description

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Entry

Subject	Su	bie	ct
---------	----	-----	----

Recovery

(see also Paragliders)

(800 0.00 2 0.0000)
booster, ocean-based launch-
recovery concept
booster, paraglider methods71,529
comparison of Mercury and
Gemini systems
ground control center, functions70,240
inflatable components of astronaut
equipment for survival at sea,
development and fabrication 71,144
research and technological de-
velopment
Re-entry
(for other planets, see Atmospheric Entry)
aerophysical aspects of slender
body configurations
analytical solutions for entire region
of entry into any planet70,010
burn-up characteristics of nuclear
power package, investigation 70,539
effects of banking on lateral and
longitudinal ranges, study71,145
effects of shape at hyperbolic
velocities
electromagnetic propagation
through ionized air around
vehicle
elimination of radio blackout70,228
field experiments compared with
theoretical and laboratory
studies
from lunar missions, trajectory
considerations71,820
guidance and control systems 70,240
heat transfer and mass loss,
comparison to meteorites70,230
high-temperature hydraulic con-
trol system
hypersonic laminar and turbulent
heating rates for axisymmetric
vehicle, equations71,384
hypersonic trails, investigations71,387
inflatable micrometeoroid para-
glider, test objectives
influences on structural design
criteria for space vehicles70,874
ionized air, electrical conductivity
measurement
lateral range control by banked
attitude
lifting, thermal stress levels70,941
low-angle, ablating heat-shield
materials

Subject

546/000
Re-entry (Cont'd) MA-6 and Trailblazer, radar data
interpretation
materials for thermal-protection, modification and testing70,161
passive, optimum aft body con- figuration70,236
spinning sphere temperature dis- tribution70,229
structures and materials, test facilities71,600
super-orbital speeds, heat-transfer problem70,106
unsteady pressures and scale effects on <i>Titan B</i> models70,320
Re-entry Trajectories
axis system for computation of
orbital flight and re-entry70,237
criticism of previous calculations 71,146
for biosatellites, parametric
study
for reducing danger of Van Allen
belts70,332 guidance and landing accuracy
requirements
minimum impulse for specified
descent
optimum, for disorbiting from elliptical orbits
problems of descent to lateral
range
Re-entry Vehicles
banked attitude for lateral
range control
blunt, wire cloth for use as flexible
radiating structure at 1200°F71,445
computation of trajectory and orientation, axis system70,237
configuration for post-Apollo
flight tests
evaluation of shielding charac-
teristics
glide; radiation and radiation-ablation systems, thermal protection and
material performance study71,598
ground and on-board control,
functions
impact point displacement by offset center of gravity, estimate 71,149
improving performances with
pyrolitic materials
kinetic heating, origin and control. 70,515
lifting, dynamic and aeroelastic
problems
parabolic velocities, simulation.71,148

Entry Subject

Re-entry Vehicles (Cont'd)
lifting, investigation of viscous
and inviscid hypersonic flow
about leading edges
lifting, thermal protection71,531
lifting optimization
maneuverability
melting and vaporizing ablation
for glassy materials
nonlinear thermal problems,
solution method
optimum aft configuration for
passive entry
oscillating, wake analysis70,235
Project Fire, static longitudinal
stability characteristics70,242
radiation overshoots caused by
temperature decrease in wake70,508
shapes and L/D ratios70,240
slowly tumbling, altitude of
stabilization
structural concepts for aerothermo-
elastic considerations
turbines for secondary power
systems
unsteady hypersonic wakes70,114
winged, landing-impact and
1:1
sudeout tests
slideout tests70,241
Reflectors
Reflectors (see also Solar Collectors)
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construc-
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construc- tion techniques70,244 Relativity Theory
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construc- tion techniques
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construc- tion techniques70,244 Relativity Theory application of general principles to cosmology
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construc- tion techniques70,244 Relativity Theory application of general principles to cosmology
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construc- tion techniques70,244 Relativity Theory application of general principles to cosmology
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques tion techniques application of general principles to cosmology tional formalism of gravitational field, in expanding universe
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques tion techniques application of general principles to cosmology tional formalism of gravitational field, in expanding universe
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques tion techniques application of general principles to cosmology tional formalism of gravitational field, in expanding universe
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques tion techniques application of general principles to cosmology tional formalism of gravitational field, in expanding universe
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques tion techniques application of general principles to cosmology tional field, in expanding universe universe
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques tion techniques application of general principles to cosmology tional field, in expanding universe universe
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques tion techniques application of general principles to cosmology tional field, in expanding universe universe
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques tion techniques application of general principles to cosmology tional field, in expanding universe universe
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques tion techniques application of general principles to cosmology tornalism of gravita- tional field, in expanding universe Clock paradox, analysis conformal coordinates associated with space-like motions with space-like motions tions, analysis T1,524 Foundations of continuum mechanics, basic research corrections to planetary
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques tion techniques application of general principles to cosmology tornalism of gravita- tional field, in expanding universe clock paradox, analysis clock paradox, denial conformal coordinates associated with space-like motions with space-like motions tions, analysis tions of continuum mechanics, basic research basic research vorrections to planetary distances
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques tion techniques application of general principles to cosmology toral formalism of gravita- tional field, in expanding universe clock paradox, analysis clock paradox, denial conformal coordinates associated with space-like motions with space-like motions tions, analysis cloudations of continuum mechanics, basic research vistances vistances </td
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques tion techniques application of general principles to cosmology to cosmology universe feldtivity Theory application of general principles to cosmology to cosmology universe to cold formalism of gravita- tional field, in expanding universe universe
Reflectors (see also Solar Collectors) Fresnel, efficiency improvement70,245 Fresnel, materials and construction techniques tion techniques application of general principles to cosmology toral formalism of gravita- tional field, in expanding universe clock paradox, analysis clock paradox, denial conformal coordinates associated with space-like motions with space-like motions tions, analysis cloudations of continuum mechanics, basic research vistances vistances </td

Entry

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Entry

Sul	bject	
-----	-------	--

Relativity Theory (Cont'd)
Hamiltonian theory, to study inter-
action of photons and gravitons.71,151
interaction between gravitational
field and particles of finite
size, theory
invariant spatial distance in curved
space-time with spherical
symmetry
Lorentz-invariant linear equa-
tions, analytic solution
new experimental tests employ-
ing masers
observational tests, results70,249
propagators and commutators70,246
recent laboratory measurements
of red shift
red shift of solar lines
relativistic effect of light deflection,
verification possibilities70,817
special, re-entrant motion, discus-
sion and criticism
twist-free pure radiation fields,
equation solutions
equation solutions
Belay Project

Relay Project

communications and system integra-
tion, descriptive analysis70,517
description
satellite design details, antenna
and highpower traveling-wave
tubes

Reliability

Atlas modifications for
Mercury project
check-out and launch operations,
Mercury project
program for long-life satellites71,896
systems checkout for Apollo71,245

Rendezvous

Subject

Entry

Rendezvous (Cont'd)
LOR and EOR comparison71,424
lunar-orbit, feasibility study70,519
lunar surface technique
one-man escape vehicle with space
station, lunar orbit
optimum steering program using
proportional navigation70,252
pilot control tests, visual detec-
tion of angular motion70,200
radar, interferometer techniques
for Gemini project
radar system, description71,116
simulated short orbital transfer,
human performance
71,539
space vehicle attachment and
connection
techniques for Gemini, analysis70,083
techniques for space station
operations
terminal guidance system71,383
terminal phase between spacecraft
and commanded module;
simulation study71,540
two impulse, propulsion require-
ments between satellites in
circular orbits71,985
vehicle maneuvers relative to a
satellite, analytical equations70,518
visual skills required for manned
vehicle operations
71,108

Rendezvous Orbits

Earth, precession effects on lunar
mission requirements
lunar, parametric investigation71,893
synchronous, determination of
best location
terminal, solution for continuous
thrust and impulse correction70,521
Research
booster and spacecraft technology,
state of the art
NASA-University orientation

NASA-University orientation
conference
need for laboratory astrophysics
programs
past, present, and future space
research in USSR71,155
satellite reliability study, results70,822
Research Facilities

Aerospace Medical Center, Rome; description71,864 JPL, background and current programs70,752

Subject Entry
Retrorockets exhaust effects on radar and altimeter systems
Rift Project program development, description . 70,522 role in establishing Moon base, study
Rocket Motors for X-15, design and development.71,547 highly underexpanded exhaust jets, interaction with simulated lunar surface
Rover Project Kiwi reactors, developmental testing problems70,523
S-17 (see OSO Project)
S-27 (see Topside Sounder Project)
S-46 design and construction, summary project report
S-51 (see Ariel 1)
Sampling (see Atmosphere —, Surface —)
Satellites (see also Communication —, Geostationary —, Lunar —, Satellites (Natural))
1962 launchings, data
of various configurations70,012 analog solutions of orbital flight, examples
orbit70,014 attitude disturbance, wind and radi- ation flux components71,095
attitude equations of motion70,943 automatic lat./long. sensing technique
catalog of launch data, Sept. 1962.70,533 charge-up in Van Allen region,
theory
computations of trajectory and orientation, simulation problems

[°]Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

Subject	Entry
Satellites (Cont'd)	
continuous orbital guidance sys-	
tem, self-contained	70.103
currently orbiting, complete list	70.532
currently orbiting, data	70.531
carrently orbitality, auto recently	71,897
de-spin, analytical theory of	,
stretch yo-yo	71.261
Earth-Moon, lunar capture	,
process	70,525
eclipsed by Earth; transit into	,
shadow, and duration analysis.	71,158
effect of plasma surrounding	,
transmitter	71,978
equations of secular motion, solu-	
tion for case of small	
eccentricity	.70,524
experiments from 1957–61 on	
trapped radiation	.71,999
Explorer 7, measurement of	
antenna pattern	.71,244
extensible dumbbell, planar	
librations	.71,548
external surfaces, transient	F 1 010
temperatures	
flexible design concept	. 10,811
free body motions and associated radio effects	71 160
gravity-gradient, equilibrium	. / 1,100
orientations	71 960
gravity-gradient motions,	
coupling effects	.70.526
hermetically sealed rechargeable	··· ,
battery systems for energy	
storage	.70,501
IGY World Data Center A, data	
catalog, July 1, 1957-	
Dec. 31, 1961	.70,529
in librational motion, orbit	
resonance	.71,549
inertia-wheel attitude control,	
perturbation analysis in ellip-	
tical orbits	.70,017
inflatable, effect of electron irradi	a-
tion on skin material	.71,876
infrared emission, detection and	#1 000
measurements	
instrumentation capability survey	
1957-62	
instrumentation for heavy primary cosmic-ray flux measurements.	
lifetime, calculations	
metine, calculations	71,097
lifetime, survey of equations	
lifetime equations, elliptical orbits	
lifetimes in elliptical orbits,	. 11,102
analysis	70 821

Subject Satellites (Cont'd) long-life, reliability program.....71,896 magnetometer experiments, measurements of flux from artificial meteorological experiments, modularization concept for tape motion, effects of gravitational motion, effects of perturbations ...70,527 motion, for determining Earth's motion, in equatorial orbit.....70,194 motion, lunisolar perturbations...71,501 motion about center of mass, naturally charged, idealized orbiting, development of reliability passive corner reflective, for geodetic measurements with payload vs. orbital altitude and photography with 125-mm Schmidt planetary, solar perturbations71,901 position and velocity, computational procedure for Vinti's equations. 70,196 position determination, by calcula-radio signal scintillation from ionospheric irregularities70,810 related ionospheric-ionization rendezvous, analytical equations for relative vehicle maneuvers. .70,518 satellite assisted tracking system for trajectory determination70,591 scientific, report bibliography71,894 spin and precession motions, surface electrical layer formed in survey of costs, R&D, future temperature fluctuations in walls as function of rate of spin71,159 tesseral harmonics of gravitational field and geodetic datum thermal radiation incident on, predictive equations70,312

Entry Subject

Entry

Satellites (Cont'd)
two-body gravitationally oriented,
limits on damping71,264
U.S. Space Science Program,
Jan. 1960–Mar. 1961 70,571
U.S. Space Science Program,
Apr. 1961–Apr. 196270,572
USSR, 1952–60 data
Satellites (Natural)
cloud orbiting Earth at $L_5 \dots 70,824$
70,825
Jupiter, possibility of lumines-
cence
Jupiter, Saturn, and Uranus; appli-
cation of Bode's Law
Jupiter, two-parameter formula to
determine orbit radii
Jupiter and Saturn, stability of
volatile ices on surfaces
mass, distribution in planetary
systems
Saturn, two-parameter formula to
determine orbit radii
theory of origin
translational-rotational motion, perturbations caused by
oblateness
Uranus, two-parameter formula to determine orbit radii
determine orbit radii
Saturn
atmospheric disturbances,
observation
Dollfus white spot, origin and
development
illuminance, theoretical value70,495
internal heat flux and rings,
study
internal structure, influence of
axial rotation
linearly polarized decimeter
radiation
observation of rings, July 23,
1962
occultation by Moon, Sept. 196270,176
70,828
occultation of BD-19°5925,
July 23, 1962
rings, occultation of stars,
observations
rotation period, new value70,262
satellite system, agreement with
Bode's Law
satellites, two-parameter formula
to determine orbit radii
spectroscopic investigations,
H_2 and CH_4 lines
Π_2 and $\Box\Pi_4$ lines

Entry

Subject Entry
Saturn (Cont'd) stability of volatile ices in rings71,575 steady-state magnetic field
measurements
Saturn Project comparison of booster configura- tions for unmanned LLS
spacecraft bus
71,815 design, construction, and operation
of test facilities
Atlas-Centaur
ascending phase
PCM telemetry station for conver- sion of launch vehicle data71,204
S-1, lateral vibration character- istics of ½-scale model70,829 S-3, sound pressure level measure-
ments during launch
Saturn C-1 launch deflector configuration and performance
Saturn C-5 for logistic lunar vehicle, evaluation
design criteria
Scout Project static stability characteristics, wind tunnel tests
Selenocentric Orbits circumlunar parking for manned
landings70,140 determination from range-rate data71,551
Earth perturbations
Earth-Moon trajectories71,902 LEM, uncoupled from Apollo71,418 perturbation effects of Earth and
Sun71,049 rendezvous mission, parametric
investigation71,893 return from lunar landing abort, simulation studies70,139
Selenography
bright-banded craters, theory of
origin71,038 corrugated model for surface71,162

Subject

Subject

E. .

· · · · · · · · ·	•
Selenography (Cont'd)	
current theories and photographs	
of far side of Moon	70,535
	71,479
geo-sciences applied to man's	
survival	71,817
laboratory studies to determine	
light scattering characteristics	70.266
lunar altitude measurements,	,
shadow length estimation	70 833
	10,000
lunar altitude measurements,	
Straight Wall shadows	70,834
mapping of single formation,	
Eratosthenes	71,037
method for height computation of	
mountains	71,163
origin of formations, theory	
Piton, area of high-Sun darkening	• 1,100
explored	71 002
	11,903
Piton, observations Apr.–Oct.	-
1961	71,903
radar determination of surface	
slope	70,837
radar scattering characteristics	
of surface	70,836
reverse side of Moon, comparison	
of characteristics	70.835
reverse side of Moon, detection of	,
details from first photographs.	70 830
	10,000
reverse side of Moon, first	
photographs	70,780
reverse side of Moon, structural	
details	70,831
reverse side of Moon, surface	
structure, photographs	70,832
spectrophotometric study of	
selected surface areas	70.534
	71,552
state of the art and brief survey of	. 1,002
lunar features	71 553
statistical model of large-scale	11,000
irregularities	70.064
	10,204
Straight Wall region, analysis of	-
measurements	71,904
structural details and characteris-	
tics, Soviet description	71,471
surface configuration of far side,	
photometric analysis	71,473
surface erosion, relation to charged	
dust grains	
surface roughness estimated from	_,
crater statistics	70 445
surface roughness estimated from	,110
	70 007
radar scattering cross sections.	10,265
surface studies by radar scattering	
techniques	70,836

Subject	Entry
Selenology	
chemical evolution, theory	70,267
colorimetric and spectroscopic observations	70 842
comparison to Earth surface	-
features	.71,071
dust layer and bare rock, radar and IR observations	71.557
effect of meteoroid impact on lunar	
surface, experimental studies	
geologic map and sections of Keple	
region of Moon geo-sciences applied to man's	70,838
survival	71.817
indications of thermal inertia,	. 1,011
radar and IR observations	
internal constitution	70,781
lunar dust and terrestrial ice nu-	- 1 0.40
cleus concentration, relation lunar rocks as source of oxygen,	71,848
possibilities	71 554
measurements and observations,	
bibliography	71,166
nuclear techniques for surface	
analysis	71,024
penetration studies of simulated lunar dust	71 245
photometric function for lunar	11,040
surface, theoretical model	71,556
plasticity zones around lunar	
craters	70,138
probable mineral composition, similarity to Earth	70 849
Ranger seismometer experiment.	70.513
simulated surface material, therma	1
properties	
soil, IR spectrophotometry for	
compositional analysis	
Soviet research review	71,585
surface analysis by neutron	11,412
bombardment	70,123
surface material, characteristics	
surface microstructure, photo-	
metric properties	
surface patterns, mode of origin.	70,536
surface properties from thermal radiation data	71 00F
techniques for measuring rock and	
soil strength properties at lunar	
surface, review	
temperature measurements and	
compositional assignments,	
methods	.70,473
theory of ring-mountain	FO 04 5
formation	71 105
venicle-son mechanics	. 11,105

Subject Entry
Selenology (Cont'd) water in lunar materials, possibilities
Sensors (see also Horizon Sensors)
fluxgate magnetometer, general characteristics and capabilities .70,268 for navigation and attitude control systems, state of the art70,537 optical, for navigation, testing by Earth-based simulation71,090 radar system requirements for ren- dezvous and lunar landings70,505 spherical electrostatic analyzer, ion density measurements71,010
Servomechanisms for Andover, Maine, horn antenna steering
SFOF (Space Flight Operations Facility) functions and instrumentation, description70,538
Shielding ablating materials for low-angle re-entry
as source of disturbance torque, effects on orbit
energy accelerators
for nuclear-electric spacecraft, influence on configuration70,807 from inelastic nuclear inter- actions

Subject	Entry
Shielding (Cont'd)	
long range NASA requirements materials testing and develop-	
ment program methods of reducing meteoroid	
damage to space vehicles of re-entry vehicles from cosmic	70,774
rays of space vehicles by magnetic	70,270
fields	71,914
weight	71,909
proton dose rate estimates for shielding thickness calculations.	71,118
spherical-shell for manned space missions	71,168
techniques, handbook thicknesses necessary for crew	
protection	71,122
materials	70,271
weight optimization for manned vehicles	70,429
SNAP Project	
bibliography, 1957–July 62 flight safety tests, description	
generators, specifications and oper ational characteristics	
radioisotope-fueled generator sys- tems, in use or planned	
SNAP-8	
development for satellite TV broadcasting	.71,082
Solar Activity July 1961 satellite observations	70.853
80-yr period, physical	
association with the magnetic	.70,543
chromospheric network correlation between AU value	
and 20-cm flux dark filament activation, sunspot	
associationdistribution during present solar	.71,961
cycle effect on time lag between mag-	.70,844
netic and ionospheric changes. effects of various levels on	.70,086
upper atmosphere effects on variation of cosmic-ray	.70,599
intensity in high latitudes	
empirical equations for determinin variation, preliminary study	.71,916
geophysical data, compilations monthly index	.71,169

Subject	Entry
Solar Activity (Cont'd)	
prediction, for astronaut	
	70,542
	71,560
Solar Atmosphere	
absorption produced by	
quasi-H₂ molecule	70 545
abundance of oxygen, determined	. 0,0 10
by medium-strong line theory	70.845
deviations from local thermody-	
namic balance	71.170
deviations in LTE, effects	,
on iron lines	70.566
photosphere, depth dependence	
of turbulence	70,544
study of profile shapes of emission	
in λ 10830 Å line	70,564
	•
Solar Cells	
and glass, radiation effects;	
annotated bibliography	71,875
battery protection devices, circuit	-
breaker	70,050
CdS front wall film cell, spectral	70 070
performance curves	
degradation by protons in space degradation under 1-Mev electron	11,917
bombardment	71 561
degradation under Van Allen	11,001
radiation	71 171
effects of artificial radiation belt	,
on performance	71.173
effects of charged particle bombar	
ment on photovoltaic cells	70,548
effects of high-energy electron	•
radiation	71,172
effects of low-energy protons on	
several types	71,562
effects of radiation damage	70,846
for operation in inner region of	
solar system, design consider-	
ations	70,274
investigation of optical coatings.	.71,572
<i>n</i> -on- <i>p</i> , tests showing radiation	
resistance superiority	
photovoltaic power generator, de-	
sign and component selection .	.70,281
progress in research and utilization	,
survey	
radiation damage	.71,919
radiation damage resistance,	
research status	.71,564
radiation damage study	.70,546
silicon, for <i>Telstar</i> power	#0.000
system	. 70,309
silicon, radiation-induced	HO H · · ·
changes	.70,549

Entry

Subject	Entry
Solar Cells (Cont'd) silicon and gallium arsenide, pro-	
ton bombardment tests \dots silicon $p-n$ junction, radiation	70,846
damage resistance spectral correction factors, deter-	70,273
mination by balloon flight measurements	70 547
<i>Telstar</i> , development and integratiinto total power system	on
Solar Chromosphere	
above sunspots, pressure distribu-	T O 000
tion calculations chromospheric Mg I, analysis	
Evershed velocitics, studies from	71,000
filtergrams	70,847
flow of chromospheric matter into	
sunspots	70,847
$H\alpha$, $H\beta$, $H\gamma$; limb-darkening, observations	70 975
intensities of weak lines in	10,210
emission	71,948
Solar Collectors	
15-kw solar dynamic power sys-	
tem, development	70,288
absorber surfaces, analysis of effectiveness	70 970
efficiency improvement for	10,210
Fresnel reflectors	70,245
for power systems, calibration	
program	70,276
Fresnel reflectors, materials and	50.044
construction technique inflatable, foam-rigidized; fabrica-	
tion and testing techniques	
status report	70,278
Sunflower petals, fabrication	
technique	71,566
Sunflower project, development	70.302
status thermionic concentrators, fabrica-	70,302
tion and optical performance	
tests	70,280
with thermionic generator, per-	
formance test	.70,314
Solar Converters	
15-kw advanced solar turbo-	
electric concept, develop-	
ment biaxial control system	70,288
energy conversion systems,	.,010
reference handbook	.70,504
open- and closed-cycle dynamic	
engines, state of the art	70,282

.

•

Solar Converters (Cont'd)	
photovoltaic power generator, design and component	
solar collector-thermionic generato	70,281
performance test	
weight analysis for 1- to 25-kw power range	70,560
Solar Corona	
electron density measurement, limi tations on optical methods EUV spectrum rocket and ground-	71,765
based observations, results	70,851
expansion in interplanetary enviror ment	
hydrodynamic models hydrodynamic models,	70,550
controversy	
ionization by two-step collision	71,924
processes	71,921
loss of solar mass by gaseous	
emission negative temperature gradient, re-	/1,007
lation to solar wind observations with Paris Observator	71,920 V
coronameter	
optical observations, comparison with radio and polarimetric	F 0.040
data photometric study of continuum	70,849
and 17 emission lines radiative transfer, effect on exci-	70,867
tation state of coronal ions spatial structure, study of coronal	71,922
rays above active regions	
spatial structure, study of problem related to corpuscular streams	
spectrographic observations during	
total eclipse of Feb. 15, 1961	
spectroscopic observations spectrum of coherent electron	71,568
waves	.70,551
structure, observations on Feb. 15, 1961	
study to investigate properties of	
interplanetary dust time-dependent association with	71,692
rising prominences	.71,925
Solar Corpuscular Radiation	
1959–61 high-energy solar- particle events	.70,861
Sept. 30, 1961, low energy proton	
and electron observations Feb. 2–7, 1962 proton	. 10,855
observations	.71,569

Subject

Subject	Entry
Solar Corpuscular Radiation (Cont'd) association with July 20, 1961	
flare surge	70 285
coronal streamers, properties	70 849
coronal temperature gradient, anal-	-
ysis of influence	
creation of geomagnetic cavity,	
hypothesis	71.222
density estimate from interaction	
with solar cosmic rays	70.552
effect of proton bombardment on	
lunar rocks and minerals	
effects of uniform pressure on sha	
of geomagnetic field boundary	
effects on geomagnetic field	
following flare of Sept. 28, 1961,	
observations	
formation of lunar ionosphere from	n
interaction with lunar surface.	70,472
heating mechanism of auroral	
zone, theory	71,991
hollow created by geomagnetic	
field	
Injun 1 proton observations	71,569
interaction with geomagnetic	-
field	
	70,553 71,744
	71,745
	71,753
interaction with geomagnetic field	
correction to calculations	70,554
interaction with lunar magnetic	
field	.70,448
near orbit of Earth, connection	
with inner corona	.70,852
nonuniform velocity, conse-	
quences	71,928
partially incident streams, inter-	
action with geomagnetic	71 740
field particle bombardment in PCA,	. 11,140
optical studies	71 670
physics of streams, influence on	1,010
Earth's upper atmosphere	.70.856
prediction, as safeguard during	,
manned space flight	.70,542
protons, July 1961 satellite	
observations	.70,853
protons, bombardment of	
Discoverer 17	.70,388
protons, trajectory distortion by	
ring current	.71,365
quasi-stationary streaming and	
flare-associated streams	.71,927

Subject	Entry
Solar Corpuscular Radiation (Cont'd) screening effect of Venus')
magnetic field	70,605
wind and magnetosphere	70,553
velocity and magnitude of asso- ciated magnetic field	71,704
Solar Eclipses Oct. 2, 1959, radio measurements.	71,174
Feb. 15, 1961, investigation of spectrum of solar corona	70,850
Feb. 15, 1961, ionospheric effects	70,439
Feb. 15, 1961, observations of solar corona	70,848
Feb. 15, 1961, radio emission on meter wavelengths, obser-	
vations Feb. 15, 1961, radio measurements .	71,941 71,174
Aug. 11, 1961, effects on ionosphere	
July 20, 1963, ionospheric meas- urements to be made	
effects in low and medium frequency propagation	
Solar Flares	
May 13, 1960, effect on solar radio emissions	71,940
Sept. 2, 1960, spectrum Sept. 26, 1960, with short Type IV	
burst; relation to cosmic-ray event	70,980
Nov. 12–14, 1960, induced radio- activity in <i>Discoverer</i> 17	70,388
July 20, 1961 surge, radio and corpuscular emission	
July 1961, association with cosmic	
rays Sept. 28, 1961, observations by	
Explorer 12 Sept. 28, 1961, VLF phase observe	70,854 a-
tions on ionospheric effects Sept 28, 1961, X-ray observation	
as source of thermonuclear neutrons	.70,970
assessment of biological effect chromospheric, relation to magneti	
fields of sunspot groups	
ation effects on equipment and	.71,176
components \ldots effects on H α striation pattern	.70,331
emitted plasma, estimate of	
density	.70,552

Subject

Solar Flares (Cont'd)
energetic particle fluxes, hazard
potential
excitation of metal lines
filament disappearances, flare
sprays, and loop prominences;
tabulation and details
high-energy particles, qualitative
model for production71,932
hydromagnetic behavior theory 70,861
interaction with magnetic fields,
photoelectric measurements 70,287
ionizing emission, recording with
atmospherics receiver
ionospherica officita 71,000
ionospheric effects
mass loss processes
monthly index
physical conditions, selective exci-
tation conditions
physiological hazards
prediction, as safeguard during
manned space flight
proton fluxes, evaluation of dose
received in typical spacecraft70,567
proton dose compared with γ -ray
dose produced by inelastic
scattering
radio emission and geomagnetic
storms, correlation
relation to moustaches
spectroscopic classification
Stark broadening in Balmer lines70,558
statistical prediction
synchrotron radiation spectrum71,176
theoretical discussion of
phenomenon
X-ray emission, observations from
rockets and satellites
X-ray emission, study using
ionospheric data
Solar Magnetic Fields
in active regions of solar disk,
photoelectric measurements70,287
influence on organization of plasma
motion in photosphere
of sunspots, changes during
80-yr period

Entry

Subject

Solar Power Supplies

Entry

(see also Solar Converters)
1–25 kw power range, design
considerations
Ariel system, design parameters 70,005
cells, investigation of optical
coatings
cesium thermionic converters,
design requirements
comparison with fuel cells and
cryogenic chemical dynamic
systems, analysis70,502
flat-plate thermoelectric generator,
research and concept
operations
foldable solar panels, research
status
instantaneous Earth-radiated power
incident upon cell panels71,177
lithium hydride as heat storage
method for conversion systems during shade-time operation70,580
R&D survey
simulation using analog computer,
feasibility study
solar-cell panel testing, Table
Mountain, Calif
state of the art
Telstar; development, fabrication,
operational characteristics71,934
thermionic concentrators, fabrica-
tion and optical performance
tests
thermionic generator, solar test
and results
thermoelectric converters, energy
storage and orientation70,561
Solar Probes
launch vehicle technology
considerations
G. L. D
Solar Prominences 1944-54 observations
effects on aurorae and geomagnetic
activity
emission lines, intensity

millence on organization of plasma
motion in photosphere71,933
of sunspots, changes during
80-yr period
of sunspots, new model of
configuration proposed71,590
possible relationship with intensity
distribution of sunspots
relation between motions and local
fields in photosphere
structure in outer atmosphere70,559
variation in structure, relation to
solar emission

Entry

Subject

Subject	Entry
Solar Radiation	
cosmic-ray observations	71,707
extreme UV and soft X-ray fluxes,	
photoelectric spectrophotometric	
measurements	71,178
$He^2 \lambda 303.8$ Å, measurements by	
Sputnik 6	71,938
history, revealed by isotopic	
changes in meteorites	70,768
instrumentation for measurement	
of far UV	1,957
intense pulse, producing decay of	70 607
ionization in \mathbf{F}_2 layer intensity in ionosphere, variation du	
to Earth's orbital eccentricity	.e 71 222
measurements, hazards to manned	11,000
flight; handbook	71 885
nuclear instrument study	
pressure effects, on Earth satellite	. 0,120
orbit	70.290
transfer in media exhibiting large	,
horizontal variations	70,883
UV, new filter designed for	,
study	70,492
UV, X-rays and γ rays, survey	
of measurements	71,573
Solar Radio Emission	
1958–60 observations, multi-	
frequency 23–13 Mc	70,562
Feb. 15, 1961 solar eclipse	
observations	
8-mm wavelength observations	70,864
association with July 20, 1961	
flare surge	70,285
association with PCA events	
continuum radiation in 500–1000 M	
range, spectral characteristics' correlation with geomagnetic	71,574
storms	71 175
data analysis for mass loss	11,110
mechanism information	71.567
data analysis for study of solar	. 1,001
X-ray emission	70,859
decimeter burst events, obser-	
vations at 1420 Mc	71,939
effect of May 13, 1960 flare	71,940
effects of magnetic field structure	
on origin and motion	70,559
explanation by qualitative model	71,932
filter apparatus for observations,	70.000
description	
flux density spectrum investigation by photocathodes	
slowly varying component	
slowly varying component, model	1,173
for sources	70,862

Solar Radio Emission (Cont'd)
spectra of outbursts in 10–25 Mc
region
Type II and IV bursts, catalog71,942
Type III burst spectrum
USSR, short-wave radiation
measurements
measurements
Solar Sails
thrust vector control for optimum
orbital transfer, numerical
solutions
501410115
Solar Spectrum
abundances of some metals,
revised data
Balmer lines in flares, Stark broad-
ening effect
continuum radiation in 500–1000 Mc
range, spectral characteristics71,574
corona, investigation during total
eclipse
coronal line λ 5303, measurements
of intensity gradient71,180
EUV, rocket and ground-based
coronal observations, results70,851
first results obtained with double
pass spectrograph
hydrogen lines in prominence
spectra
influence of variations in local
thermodynamic equilibrium
of hydrogen
IR oxygen triplet, profile
IR oxygen triplet, profile
asymmetries
IR triplet line λ 10830 Å,
emission
iron lines, analysis for some
multiplets
neutral iron lines, profile asym-
metries
neutral silicon lines
observations with soft X-ray
spectrometer
photometric study of 17 emission
lines and continuum in inner
solar corona
radio, outbursts in 10–25 Mc
region
red shifts of 14 selected lines
near 6100 Å
sodium D lines, analysis of
center-to-limb observations71,181
spectroheliograph studies of
solar flare effect on Ha
striation pattern
turbulence regions in photosphere.70,544

Solar System
1963 graphic ephemeris71,347
chronology of formation70,384
70,385
Earth-Moon system, history70,869
formation of elements, theory70,984
mass distribution, variations70,869
moment of momentum distribution,
Kent-Laplace's theory70,631
Moon, Venus, Mars, Jupiter;
physical characteristics71,183
planetary distances according
to general relativity70,604
stability of ices of common
volatiles
theory of origin of satellites and
planets
Solar Wind
(see Solar Corpuscular Radiation)
Solid Propellants
state of the art
use of aluminum powders,
survey
Solid Propulsion Systems
applicability of present motors
to space operations
applicability to space, study
appendices
feasibility study for Nova-class
booster
research and development
trends
technology advancements for
improved space applicability71,184
71,185
,
Space Cabins
air contaminants, gas chromato-
graph for analysis and
monitoring
size requirements, two-man crew
efficiency study70,451
tolerance criteria to trace
contaminants
Space Environment
(see also Cislunar —, Interplanetary —)
design considerations for solar cell
operation
effects on astronauts, review of
U.S. and Soviet research
and missions

effects on electronic part failure. .70,397

Entry

Subject	Entry
Space Environment (Cont'd) effects on mechanical elements,	
design considerations and test results	70.870
effects on structural design criteria for space vehicles	L
flexible design concept for vehicles	,
systems, hardware hazards from radiation belts, solar	
and cosmic radiation radiation levels, evaluation of dose	s
received in typical spacecraft space-erected plastic structures	
Space Flight	
biological effects, Soviet white	
rats studies	71,675
effects, bibliography	71,274 71,275
sanitation and personal hygiene	
facilities during missions Second National Conference on th	
Peaceful Uses of Space, 1962.	
Soviet development, brief review.	71,577
Soviet preparatory efforts	71,576
Space Projects (see also specific project)	
based on Blue Streak launching	
vehicle	.70.365
current status, data	
France, description	70,568
launchings of scientific payloads,	
Oct. 1957–Dec. 62; table	
NASA 10-yr program NASA Communications Satellite	. 10,573
Program	.70.879
NASA long-range timetable,	,
1962–80	.70,569
NASA missions and future trends	.71,579
NASA nuclear electric power	70 192
program, objectives NASA program through 1980	.70,183
nurses for space evacuation	
projectspast achievements and future	.70,295
trends	
space science and satellite applica	
tions programs, state of the art. survey of costs, R&D, future	
plansU.S. Navy Medical Dept.,	
contributions U.S. Space Science Program,	.70,167
Jan. 1960–Mar. 1961 U.S. Space Science Program,	.70,571
Apr. 1961–Apr. 1962	.70,572

Subject

Space Suits
design study for space maintenance
tasks
extra-vehicular, thermal
protection system
for Apollo project
Space Vehicles
(see also Lunar —, Mars —, Venus —)
atmospheric control processes,
analytical studies
attitude control, advanced
actuators and natural energy sources70,945
attitude control systems using chem-
ical rocket engines
catalog of launch data,
Sept. 1962
current status, Nov. 1962
design, for propulsive fluid
accumulator system
digital TV equipment, bit-rate
and weight problems70,586
flexible design concept
1957–62
interplanetary, for scientific obser-
vation; hardware design
problems
landing and recovery, research
and technology
limitations on nuclear-electric
power supplies, interfaces70,184
look-angle problem, design
solution
low thrust propulsion systems for vehicle orientation or maneu-
vering
lubrication system, problems71,036
mathematical model, bang-bang
attitude control
meteoroid hazard in Earth orbit,
design considerations
minimum weight structural com-
ponents, design techniques70,875
motion of body with constant
thrust and variable mass in
gravitational field
multistage, prediction and meas-
urement of natural vibrations70,736
multistage, propellant distribution techniques71,582
potential aerothermoelastic
problems
power requirements, 1962–76 70,206

Entry	Subject

Entry

Space Vehicles (Cont'd)
single-stage, gas-core reactor
concept, feasibility71,190
skid-rocker landings, theoretical
stability analysis71,947
structural design, reliability
concepts
structural design criteria
survey of costs, R&D, future
plans
technology, state of the art71,543
typical configuration and design
requirements
USSR, 1952–60 data
Space Vehicles (Manned)
abort procedures and tech-
niques
cryogenic propellant storage sys-
tems, for direct energy con-
version
guidance during landing70,011
human factors criteria for display
of space navigation informa-
tion
long-range NASA shielding
requirements
magnetic shielding, by super-
conducting solenoid coils71,167
nuclear, operational hazards70,480
PCM/PM communication system,
parametric analysis
radiation hazards, evaluation of
primary and secondary doses received on typical mission70,567
reliability, relation of airplane study
to vehicle design
shielding, weight optimization70,429
spherical-shell shield for radiation
protection
survey of costs, R&D, future
plans
temperature problems during re-
entry deceleration
thermal and atmospheric control
systems
Spectral Analysis
(see also Solar Spectrum)
Athay's method71,950
intensities of weak lines at solar
limb71,948
molecular spectra, IBM 701
analysis

multistage image amplifying

Subject

Entry

Subject Entry
Spectral Analysis (Cont'd)
observations of solar corona71,568
of airglow, 3000–12400 Å
of distant comet tails
of Leonid meteor showers71,063
of limb flares and active
prominences
of reflected signals from Venus,
narrow- and broad-band
components
planetary atmospheres, critical
review of past experiments70,800
planetary phase curves and
albedos71,949
Spectroscopes
airglow spectrum atlas, 3000–
12400 Å
at Jungfraujoch, Switzerland,
description
cosmic-ray, recent developments70,052
description, for aurorae and airglow
studies
for low-energy γ -ray astronomy
experiments
for measurement of variation in
mean molecular weight of night
air at 100–210 km
for observation of (0,0) band
of $({}^{1}\Delta g - {}^{3}\Sigma \overline{g})$ system of
oxygen in day and twilight
airglow
gamma-ray, on Rangers 3 and 470,298
gratings for study of far UV
radiation
instrumentation for high-altitude
balloon observations and
planetary atmosphere studies 71,257 IR spectrophotometer for analysis
of lunar and planetary soils70,177
or runar and planetary solls 70,177

multichannel radio spectrograph

multistage image amplifying

neutral and ion Mars spec-

new mass spectrometer using

normal-incidence grating, grazing-

incidence, high-resolution;

planetary atmospheres, molecular

proportional counter, for measuring

for radio emission observation

hetero-energetic ion source71,192

71.585

Entry Subject Spectroscopes (Cont'd) rocket-borne helium mass spectrometer, design and con-

struction
scintillation crystal, description71,128
soft X-ray, for solar observations71,182
spectrohelioscope sunspot/filament
studies
Sun tracking head for use with
diffraction spectrometer71,957
two-channel diffraction, used on
Sputnik 6
,
Spectroscopy
photographic techniques71,193
Sputnik 2
biology experiment
catalog of precisely reduced
observations of positions71,503
charged particle flux, measure-
ments
cosmic-ray measurements71,709
data on inner radiation belt at 320
km over South Atlantic magnetic
anomaly
data on intensity distribution of
Van Allen belt at 320 km70,915
determination of geographical
position of minimum intensity
line of cosmic radiation70,661
dosimetric measurements of
absorbed radiation
measurements of cosmic rays and
t

photoemulsion studies of primary search for antimatter in cosmic

Sputnik 3 atmospheric density determina-catalog of precisely reduced observations of positions71,502 Cerenkov counter, description ...71,710 charged particle flux, measure-cosmic-ray measurements71,709 71.710 experimental results of inner Van Allen boundary determination. .70,914 measurements of inner Van Allen self-orienting magnetometer for measuring geomagnetic field

Sputnik 4 fragments, metallurgical analysis. .71,194 Sputnik 5 chlorella cultures on board radiation effects71,676 X-radiation intensity measure-Sputnik 6 cosmic-ray latitudinal dependence diffraction spectrometer for UV solar far UV helium radiation X-radiation intensity measure-**Star Tracking Systems** Stars early evolution, time-dependent energy and mass-flow equa-variations in local thermodynamic equilibrium of hydrogen influence on continuous spectra. .71,943 Sterilization ethylene oxide, effects of floor dust of all landing vehicles, review71,351 of unmanned planetary and of unmanned spacecraft, effects spacecraft, NASA Bioscience

Stratoscope Project balloon-borne 300-ft effective focal length telescope for high Stratoscope 2 equipment and control systems, Structures and materials, booster design considerations71,060 considerations in design of 71,282 design reliability, confidence

*Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6. Entry

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6-

Subject

Subject	Entry
Structures (Cont'd) folding, designed by variable-	
geometry concepts	71.196
freeze forming process, description	
and applications high temperature, state of	
the art	.70.465
integration with material tech-	
nology in design application minimum weight components of	.70,465
space vehicles, design tech-	
niques	.70,875
self-erecting flexible foam, for	70.000
space antennas structural plastics and adhesives,	.70,938
analysis	.71,448
unfurlable, applications	.71,588
winged re-entry vehicles, aero-	71 500
thermoelastic considerations	.71,532
Sun	
abundance of He^3 , theoretical	T O 000
calculationabundance of metals, revised	.70,882
data	.70.565
as source of interplanetary gas	.71,927
B [*] neutrino flux, calculation	
capture of small absorbing particle by radiation field	es 70 709
contracting phases, new models.	
early contracting phase of	,011
evolution	.71,954
early evolution, Hayashi's theory.	.70,579
early evolution, time-dependent energy and mass-flow equa-	
tions	.70.301
geomagnetic and solar data	.70,087
high luminosity, fully convective	
contracting; properties high luminosity, fully convective	.70,578
contracting; theory	.71.954
high luminosity in early contract-	
ing phases	.70,577
intensity variations across photo- spheric granules	70 992
measurement of X-radiation to	. 10,000
study intensity	.71,955
X-ray photographs	.72,015
X-radiation intensities, USSR studies	71 055
studies	. 71,955
Sun Tracking Systems	
head, for use with diffraction spectrometer	71.057
	. 11,957
Sunflower Project	
epoxy adhesive for petal fabrication	71 566

Sunflower Project (Cont'd) lithium hydride storage unit, design and fabrication tests
Sunspots
Jan. 1961-July 1962, effective
numbers
annual values of groups, study70,581
association with filament
activation
boundary determination, shape,
and inclination of axes of 165
spots
comparison with solar promi-
nences
distribution in heliographic
longitude
distribution of chromospheric
matter
distribution of magnetic fields and
radial velocities in groups 71,933
emission of hydromagnetic waves
from umbras
energy transport
Evershed-type lines, investiga-
tion
formation zones, observations70,884
geophysical data on 11 centers of
activity, compilations71,169 heliographic distribution of
groups70,887 influence of magnetic field on
granulation
intensity distribution in umbrae and
penumbrae, photometric maps71,590
magnetic fields, changes during
80-yr period
magnetic fields of groups, relation
to chromospheric flares
monthly index
numbers of groups originating
during rotation, study70,581
observed depths, based on Wilson's
effect
pressure distribution in chromo-
sphere above spot
radio emission from total sunspot
area
relation between sunspot areas and
corresponding Wolf numbers71,962
relation between zone-width of
occurrence and relative
number
short-lived, secular variations71,589

Entry

Subject Entry
Sunspots (Cont'd)
statistical techniques for estima-
tion of depth
structure of penumbrae
turbulence velocity in umbrae71,959
visibility conditions of 165 spots70,885
visual observations with
catadioptric telescope
wings of Balmer lines in umbrae71,960
Surface Sampling
lunar rock and soil, review of
techniques
of soils in terrestrial and simulated
extraterrestrial environments71,076
Surveyor Project
payload and flight procedure70,303
Syncom Project
Jyncom Lloject

description70,377 70,584 guidance and control71,306

Teflon

behavior under space conditions, survey71,199
Tektites
annotated bibliography71,772
cometary origin, theory of forma-
tion by accretion process71,595
evolution, elemental volatilization
determined by spectrophotom-
etry and spectrography71,592
ferrous and total iron, investigation
by chemical and magnetic
susceptibility techniques71,594
La, Eu, and Dy contents,
determination
Moravian Moldavites, description.71,964
origin, assessment of various
theories
71,593
origin, cometary collision
hypothesis
origin, oxygen isotope studies70,305
origin, theories
origin by meteoritic splash,
hypothesis
possible origin, mathematical
analysis of data on uranium
and lead in samples
rare-earth element content, deter-
mination by neutron activation
analysis
selective volatilization

[•]Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

solution of radiative transfer.....70,883

Subject

Test Facilities

aerothermodynamic, for re-entry

for handling liquid hydrogen; design, construction, and opera-

for Mercury, reliability model

structures and materials71,600

tion70,712 for high-temperature flight environment simulation71,601

Entry

	y
Telemetry signals, effects of electrical proper- ties of planetary atmospheres71,437 to survive high accelerations, bibliography71,203	
Telemetry Systems bioinstrumentation for space research	
Telstar command and telemetry system	5
(see also Radio —, Optical —) gamma-ray, on <i>Explorer 11</i> 70,306	6
Television Equipment digital, solution for excessive bit-rates	6 5
Telstar Project antenna, Andover, Maine, description command and telemetry system description main and telemetry system description main and telemetry system antenna, Andover, Maine, description description main and attelemetry system antenna, Andover, Maine, description antenna, Andover, Maine, description antenna, Andover, Maine, description antenna, Andover, Maine, antenna, Andover, Maine, description systems and attitude control systems systems and attitude control systems systems and attitude control systems antenna, and attitude control systems antenna, a	576 2779

Subject

		-	,	
operational	characteristics.		71.	764

Subject

Fatan

Telstar Project (Cont'd)
power system, silicon solar cell70,309 prelaunch preparation and
checkout
solar power supply
thermal design of electronics
package
Telstar 1
artificial radiation belt formed by
July 9, 1962 nuclear event,
data
detection of electron distribution
in Van Allen belts
equipment and operational
procedure
radiation damage on solar cells,
data71,171
Telstar 2
orbital data71,967
Temperature Control
(see also Ablation, Heat Transfer,
Radiators)
ablation cooling vs. radiation
cooling
active, spacecraft surfaces;
annotated bibliography71,599
by power system, using Cryho-
cycle principle
contour heat rejection fins for
radiative cooling
effects of cooling system on low-
thrust vehicle design
for lunar roving vehicles, power
system selection
heat exchangers, solution for core
dimensions
integration with cryogenic power
system, effects
internal, evaporative cooling systems
for lunar surface capsule70,898
of glide re-entry vehicles, study of
radiation and radiation-ablation
cooling systems
of unmanned re-entry vehicles,
methods
satellite mean temperatures, rapid computation71,218
system concepts for lifting
re-entry vehicles
systems using pyrolytic materials71,450
thermal models of spacecraft,
scaling criteria for design and testing

Manned Spacecraft Center, present and future, description...70,421 **Thermal Radiation** characteristics of surfaces for incident energy on Earth satellite, predictive equations70,312 upper atmosphere, research and **Thermionic Converters** advanced energy conversion, application to electric propulsion, conceptual design70,062 cavity vapor generator, thermal and electrical performance....70,317 cesium, for solar power systems. .70,316 70,318 cesium diodes, operation in series and parallel circuits, perform-combined with nuclear heat sources, radiator system, feasibility study. .70,225 solar concentrators, fabrication and optical performance tests. .70,280 thermal energy storage materials, thermionic cathodes for reactor application, selection and with solar concentrator, per-**Thermoelectric Converters** energy conversion systems, flat-plate solar generator, research and concept operations70,319

^{*}Entries 70,001-70,344, Vol. VII, No. 1; Entries 70,345-70,608, Vol. VII, No. 2; Entries 70,609-70,930, Vol. VII, No. 3; Entries 70,931-71,239, Vol. VII, No. 4; Entries 71,240-71,645, Vol. VII, No. 5; Entries 71,646-72,015, Vol. VII, No. 6.

Entry

Subject	Entry
Thermoelectric Converters (Cont'd) for solar power supply system, energy storage and orientation generators and materials; radiation effects, reliability, lifetime, and failure; annotated bibliography. present state of the art, weight and power capability SNAP generators, description static nuclear-powered, description using nuclear heat, description	71,969 71,603 70,540 71,603
Thrust Vector Control (see also Attitude Control)	
by liquid injection into rocket nozzles, study for optimum solar sail orbital transfer, numerical solutions liquid injection, technique and results secondary injection, nozzle gim- balling, and jet vanes state of the art and advanced systems, brief report with gas injection, theoretical model	70,589 71,606 71,663 71,604
Tiros Project attitude determination by IR sensor data endless-loop magnetic tape recorder experiment results interpretation of cloud pictures. launch data and summary of performance meteorological data, processing methods meteorological data-utilization perspective locator grids for pic- tures, computer studies storm surveillance capability TCC operational control TOSS, interim Tiros operational satellite system	70,995 70,900 71,842 71,971 70,057 71,973 70,652 71,839 71,973 71,972
Tiros 2 estimation of IR flux and surface temperature of Earth	70.901

Tiros 3

radiation view of Hurricane Anna .71,975 *Tiros 5*

cloud photography, catalog for	
Oct. 1962	.71,607

Subj	ect
------	-----

Tiros 6
cloud photography, catalog for
Oct. 1962

Titan 2

Titan 2
possible use with Centaur, other
applications
Tools
design problems
· · · · · · · · · · · · · · · · · · ·
design requirements, environmental
simulation studies
design study for space maintenance
tasks71,580
Topside Sounder Project
Alouette, analysis of spread echoes
from topside ionograms71,977
Alouette, description
Alouette, effects on ionospheric
electron density
Alouette, electron density studies
at 1000 km
Alouette, ionosphere measure-
ments
Alouette, launch and orbital data,
description of spacecraft and
experiments
Alouette, measurement of
ionospheric characteristics and
Van Allen particle intensities71,733
Alouette, measurement of upper
ionospheric scale heights71,781
Alouette, topside ionogram
analysis
Alouette data, analysis
Alouette data, early results71,610
Alouette piggyback experiment,
description
first radio-pulse soundings
preliminary results of data
S-27 flight, early performance70,254
TRAAC

TRAAC

artificial radiation belt formed by
July 9, 1962 nuclear event,
data
omnidirectional electron flux
measurements of artificial
radiation belt
second artificial radiation belt,
data
uata

Entry	Subject	Entry
71,607	Tracking orbit determination for communi- cation satellites from angular data only	.70,486
s 70,320	Tracking Stations for <i>Telstar</i> , description of Andove Earth Station Sohio off-duty, description	.70,587
70,032	Tracking Systems (see also Doppler —, Optical —)	
70,590	closed circuit TV light amplifier, applications	.71,211
1 70,401	delay-lock discriminator for vehicle rendezvous <i>Mariner 2</i> , integration with com-	.70,592
71,580	mand and telemetry systems position-prediction systems, evalu tion of quality of prediction range and range rate, design	a-
71,977	evaluation	
71,608	satellite assisted, for accurate	
71,976	trajectory determination state of the art	
71,979	<i>Irailblazer</i> Project re-entry experiments	.70,814
71,609	<i>Trailblazer 1</i> artificial meteor experiment, meas ment of luminous efficiency	ure-
71,209	Trajectories (see also Cislunar —, Lunar —, N Venus —)	Aars —,
71,733	abort, study of effects of lift arbitrary, through inner Van Aller	
71,781	belt; method for calculating time-integrated proton flux	
71,978	calculations, after single-impulse	
71,210	launch by astronauts outside	
71,610	orbiting vehicle disorbiting three-dimensional	
70,902	pulse optimization	. 70,794
71,410	dynamics of separating bodies, theoretical analysis	71 613
71,608	Earth-Mars, optimum inter-	71,015
70,254	planetary rendezvous	
-	Earth-Mars, optimum low-accele	
	ation transfer study	
	error propagation in aerospace	
	systems, bibliography	71,390

for soft landing on airless body,

hyperorbital approach, planetary

interplanetary, IBM 7090 program

numerical examination70,746

for initial velocity determination 70,380

Subject Entry
Trajectories (Cont'd)
interplanetary, method for deter-
mining approximate propulsion
cutoff conditions
interplanetary, operational proce-
dure for IBM 7090 program70,381
interplanetary ballistics, optimum
midcourse plane changes70,594
interplanetary guidance, minimum
effort control71,616
interplanetary round-trip, variational
method for optimization71,612
motion of body with constant
thrust and variable mass in
gravitational field
optimum correction maneuvers, ac-
curacy of approximate thrust
steering schedules
optimum midcourse plane
changes
optimum power programming for
low-thrust systems
optimum three-dimensional, for
injection into space-fixed
circular orbit
optimum thrust vector in hori-
zontal plane
position-prediction systems, evalua-
tion of quality of prediction70,593
powered flight, under oriented
constant thrust
relative, ejected object and
parent satellite
returning from Moon to specified
area, method of computing71,861
three-dimensional, optimization
study
70,648
Z-function solutions for atmos-
pheric entry from equatorial
orbits of rotating planet70,940
Transfer Orbits

(see also Trajectories)

bi-elliptic, changing the inclination
of a satellite
circular and coplanar
circular to hyperbolic, optimum70,596
cotangential and 180-deg transfer,
mathematical description70,322
deviations introduced by impulse
error, analysis
effect of finite thrusting time71,215
end of transfer, relation to start71,214
minimum time transfer between
coplanar, circular orbits by
two impulses71,985

Subject

Transfer Orbits (Cont'd)
minimum two-impulse, Hohmann-
type
non-coplanar elliptical, optimum
transfer
optimum coplanar two-impulse
transfer
optimum midcourse plane
changes
optimum thrust program for
Earth escape
thrust direction, duration, and start-
ing instant; computer solution71,619
thrust vector control, numerical
solutions
two- and three-dimensional ballistic
interplanetary, method of solu-
tion for chosen launch data70,595
two-impulse coplanar, minimum
velocity increment solution71,618
two-impulse co-planar tangential,
velocity requirements,
computation
two-impulse vs. one-impulse,
analytic theory71,216
Transmitters

ground-based, for Telstar project.71,759 Telstar on-board unit, description.71,764

Transit Project 1A-3B experimental satellites. thermal engineering problems Transit 4B

solar panel performance, artificial

Ultraviolet Radiation

as heating mechanism of auroral band-head wavelengths of C2, CH, CN, CO, NH, NO, O₂, OH70,324 band-pass filter for solar UV study. 70,492 effects on upper atmosphere70,598 extreme, photoelectric spectrophotometric measurements71,178 neutral silicon in solar spectrum. .70,292 photodetectors, characteristics71,105 solar $He^{11}\,\lambda$ 303.8 Å, measurements by Sputnik 671,938 spectroscopic theory, and data variation, effect on helium excitation in upper atmosphere71,990

Entry Subject Entry Upper Atmosphere (see also specific region) atomic collisions, relevance to auroral zone, heating mechanisms.71,991 calculation of number of radio-composition, temperature, density, pressure, and radiation data from rockets, satellites, and

density; relation to solar activity, solar zenith angle, and epoch. .70,906 density and temperature derived by numerical integration of drag equation using model71,094 density determination by density determination from change in satellite orbital period.....71,992 density determination from change in satellite orbital period, density determination from short density variations with time and diurnal magnetic activity and effects from solar wind71,222 dust particles in range 50,000 to 90,000 ft, space density and effects of high altitude explosions.71,989 effects of solar corpuscular energetic particles and nature of EUV region, solar absorption spec-excitation of helium71,990 foreign literature, cumulative list of He³ and He⁴ electrostatic escape He⁺ belt, experimental evidence. .71,223 homogeneous atmosphere height determination from photographic observations71,844 hydroxyl emission, analysis of metastable helium atom concentra-microorganism detection, electrostatic bacterial air sampler70,471

Subject

Entry

Upper Atmosphere (Cont'd) nuclear explosions, effects on origin and size distribution of oxygen dissociation studies, using ozone content, lunar influence....71.849 presence of molecular nitrogen70,909 production of vibrationally excited properties, variations with time radio measurements of man-made single species assumption in free molecule theory71,220 sodium D lines in twilight glow, steady state of He⁺ ion layer 70,907 temperature determination from temperature profile from auroral N2⁺ photometric measurements.70,953 theoretical models for solar-thermal state, research and thickness of helium ion layer.....71,993 twilight enhancement of helium. .71,990 U.S. Standard Atmosphere, 1962, variations in properties during Xe¹²⁹/Xe¹³⁶ formation interval,

Uranus

Subject

illuminance, theoretical value70,495
satellite system, agreement with
Bode's Law
satellites, two-parameter formula to
determine orbit radii70,489
search for decametric radiation70,302
steady-state magnetic field
measurements
,

Vacuum

(see High Vacuum)

```
Van Allen Radiation Belts
(see also Radiation Belts)
```

as source	of auroral particles,	
theory		.71,671

	-
Van Allen Radiation Belts (Cont'd)	
assessment of biological effect71,	673
behavior of trapped electrons,	
diffusion equation	600
captured electrons, relativistic	
effect in light scattering71,	224
cosmic radiation, calculation dose	
affecting vehicle	659
directional particle flux densities,	
investigation using Explorer 4	220
data70. diurnal variation of trapped	,330
particles	898
effects on equipment and com-	,020
ponents	331
effects on satellite charge-up70	530
effects on solar cells	
electron diffusion, Fokker-Planck	
equation	,919
electron diffusion, Fokker-Planck	
equation, solution for distribution	
of mirror points	920
electron distribution, July 1962,	
<i>Telstar</i> data	
electron fluxes, measurements70	,598
geomagnetic tube hypothesis of	• • •
auroral 5577 Å excitation71	,269
high-energy electron birth	200
spectra	,226
inner, boundary determination	,913
from Sputnik 3	014
inner, detected at 320 km over	,914
South Atlantic magnetic	
anomaly	916
inner, electron intensity measure-	,010
ment by <i>Injun</i> 1	.994
inner, energetic particles	
inner, method for calculating time-	,010
integrated proton flux for arbi-	
trary trajectory	,998
inner boundary, Sputnik 3 data71	
intensities, relation to F-region	
critical frequencies71	,733
intensity distribution, investigation	
by Sputniks 2 and 370	,634
intensity increase from unshielded	
nuclear devices in space70	,601
measurements, hazards to manned	
flight; handbook71	,885
measurements by Sputnik 271	,321
mirror-point distributions of	
trapped particles	,330
neutron production within	
vehicle	,118
outer, effects of hydromagnetic	oc :
disturbances	,694

Entry Sub

Subject

Van Allen Radiation Belts (Cont'd)
outer, energy spectrum of
electrons
outer, intensity distribution at
320 km
outer zone proton measurements71,227
particle accumulation, role of geo-
magnetic field rotation
positional dependence of absolute
intensity, brief summary71,997
precipitation of trapped particles71,996
primary cosmic radiation, properties
and origin
properties of outer region, variations
with magnetic activity70,603
proton dosage calculations71,118
proton energy and flux, nature of
hazard71,559
proton level, evaluation of dose
received on typical mission70,567
protons and electrons, intensities in
outer zone
radiation damage to solar cells,
study
radiation dosages from electrons
and bremsstrahlung,
calculations
radiation level reduction by
injection of matter
satellite studies, review
spatial structure, preliminary results
from <i>Explorer</i> 12
trapped radiation data, review71,999
traversing, in re-entry or takeoff70,332

Entry

Vanguard 2

catalog of precisely reduced obser-	
vations of positions	,503
third stage, catalog of precisely	
reduced observations of	
positions71	,502

Vanguard 3

catalog of precisely reduced obser	-
vations of positions	.71,502
	71,503
geomagnetic field observations	. 70,693

Venus

1963 predicted appulses, time of
radio source
4-mm radio emission
4.3-mm radiation, measurements.71,638
800°F surface temperature re-
vealed by Mariner
aerodynamic flight regimes and
atmospheric composition,
estimates

Entry

Subject	Entry
Venus (Cont'd)	
atmosphere, spectral analysis	70,800
atmosphere, supplement to Soviet	
research review	
atmosphere, theory	70,921
atmosphere, transmittance for a	F A 000
wide range of conditions atmosphere, water vapor and trace	72,003
constituents	
atmospheric properties, recent	12,009
observational results	71 111
atmospheric simulation, to deter-	,
mine heat-transfer rates during	
superorbital entry	70,111
brightness temperature, estimate	70,925
brightness temperature at 8.6 mm.	71,637
charged particle measurement by	
Mariner 2, preliminary report	71,631
cloud layer, diurnal variations in	FO 000
height cusp effect	72,006
data to be obtained by	72,000
Mariner 2	70 151
eastern apparition, 1960–61;	10,101
observations	70,922
electrical characteristics of atmos-	
phere and surface, radar	
observations	
exploration by radar echoes	70,607
fast manned flights, mission analysis	71 440
illuminance, theoretical value	
interpretation of radar echoes for	10,100
AU determination	70.604
ionosphere-solar wind interaction.	
IR radiation measurements by	, .
Mariner 2, preliminary report	71,632
magnetic field and rotation period	,
theoretical evaluation	71,231
magnetic field measurements by	
Mariner 2, preliminary report	71,634
magnetic field strength, estimate	70,605
Mariner 2 data concerning existence of life	71.000
Mariner 2 results	70,759
marmer 2 results	70,753
microwave brightness tempera-	10,100
tures, theory	71,228
microwave radiation, present state	
of knowledge	71,869
model atmosphere, thermodynami	с
properties and shock-wave	70 000
characteristics nonstop round trip, survey and	. 10,000
analysis	71.400
phase anomalies	72,001
physical characteristics	.71,183

Subject	Entry
Venus (Cont'd)	
physical conditions and proba-	
bility of life, review and	
analysis	70.153
physical properties	70,926
radar observations, 1959 and 61.	
radar observations, analysis of	11,020
narrow- and broad-band	
components of spectrum	71.630
radar observations at 440 Mc	
radio emission at 8-mm	10,011
wavelength	72.007
radio emission measurements by	12,001
Mariner 2, preliminary report	71 600
radius determination from occulta-	
tions of Regulus	
recent observations, new effect	70,923
rotation period estimated from	
radar measurements	.71,635
Schröter dichotomy effect,	
observations	
screening effect on solar wind	
search for decametric radiation.	
Soviet radar observations	.72,008
steady-state magnetic field	
measurements	
surface temperature, explanation.	.72,003
temperature, pressure, and chem-	
ical analysis	
two limiting atmospheric models.	.70,924
upper atmosphere water vapor	
measurements with Strato-Lab	
USSR radio location, Apr. 1961.	
vertical distribution of neutral gase	
in upper atmosphere	.72,002
Venus Missions	
manned Venus-Mars fly-by in	
1970, study	72 010
	,
Venus Trajectories	
ballistic, 1962-70, characteristics	
in graphical form	.71,442
machine computations of three-	
dimensional ballistic trajectories	
for 1964, characteristics	-
	71,232
	72,011
machine computations of three-	
dimensional ballistic trajectorie	
for 1965-66, characteristics	
Mariner 2, analysis	
	71,053
Venus Vehicles	
transmission delay time	.70,043

Subject	Entry
Venus Vehicles (Manned) ecological and cryogenic fuel req ments during atmospheric entry	
Weightlessness and acceleration disturbances, effects on liquid-vapor	
interface	
biological and physiological effect USSR data	s, 71,656
biological effects, annotated bibliography	
debilitating effects of prolonged state	
effects on astronauts, Soviet studies	70,021
effects on human factors in sub- orbital, orbital, Earth-Moon	
flights effects on inner ear	
effects on sensory reaction and voluntary motion, Soviet	-
studies experimental techniques and faci	li-
ties in Italy liquid-vapor interface configura-	
tion studies physiological and psychological	
effects, bibliography prolonged, two new tests con-	
ducted on MA-8 flight random convection in space device	es,
effect on transport rates simulation, body fluid distribu-	
tion study simulation by immersion and	
recumbence sleep during, electroencephalo- graphic and electrooculograph	
recordingsspeech production and reception	71,639
evaluation	
West Ford Project for intra-lunar communications,	
suggested application	70,338
Whistlers attenuation by electrons with	
F-2.5 distribution	70 330

attenuation by electrons with	
E-2.5 distribution	70,339
chorus, high-latitude investi-	
gation	71,233
chorus bursts and preceding geo-	
magnetic disturbances	70,689
chorus increase, relation to geo-	
magnetic pulsations	70,690

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6______

Subject	Entry
Whistlers (Cont'd)	
dispersion during geomagnetic	
storms	71,234
dispersion measurements	71,643
effects of solar eclipse	70,439
evidence of new type, to aid in-	
vestigation of magnetospheric	
ionization density profile	72,014
"knee," comparison with ordinary	
whistlers	72,014
measurement of electron energies	
from spectrograms	71,644
measurements from satellites,	
conference transcript	71,236
occurrence at time of high-altitude	
nuclear event	
propagation, degree and nature	70,598
propagation in ionosphere,	
mathematical description	70,511
sweepers associated with solar	
activity	
sweepers, description	70,340

X-15

aerothermoelastic considerations71,532
control system, operational
characteristics 1958–62
final version scale model, stability
and control characteristics71,645
flight description70,928

Subject	Entry
X-15 (Cont'd)	
pressure-type airspeed-altitude	
systems, calibrations and	
comparisons	71,237
XLR99-RM-1 engine, design and	
development	71,547
X-20	
display system for guidance	
and landing	70,608
electric power system, descrip-	
tion	70,343
test pilot selection requirements	70,342
to supply orbital space stations,	
feasibility study	
training methods for pilots	70,342
X-21	
laminar flow control, adhesive	
bonding for wing surface	
assemblies	71,058
X-rays	
emission and decimeter wave emis-	•
sion, correlation between distri-	-
bution of sources	72,015
evidence for origin outside solar	
system	71,238
geophysical rocket measure-	
ments	70,929
intensity, periodic variations during	g
intense electron bombardment	
of ionosphere	70 625

Subject	Entry
X-rays (Cont'd)	
localized sources, intensiti	es and
geometries	
solar, auroral zone pulsati	ons,
observations	71,270
solar, measurement by pro	
counter spectrometer	
solar, producing fluoresce	
X-rays on lunar surface	
solar soft X-ray spectrum,	
observations	71,182
Zero Gravity	
effects on liquid-vapor int	erface
configuration	
environment, liquid prope	ellant
mass measurement syst	em71,035
instability effect on two-p	
transfer for subcooled	water 70,108
perception of motion, equ	ilibrium,
and orientation	71,866
Zodiacal Light	
annotated bibliography	71,772
observations, to estimate i	nter-
planetary matter densi	ty71,770
observations, to study cor	nposition
and density of interplar	netary
matter	
photoelectric observations	

Source	Report No.	Entry	Source	Report No.	Entry
Academy of Athens, Greece	Series I (Astronomy) No. 9	71,962	Air Force Cambridge Research Laboratories	AFCRL-215 AFCRL-472 (IV),	71,022
Aerojet-General Corp.	Demont 0296 Mal I	71 104		GRD Research Note 58	70,860
Aerojet-General Corp.	Report 2386, Vol. I Report 2386, Vol. III	71,184 71,185		AFCRL-953	71,028
	Report 2386, Vol. III Report 2386, Vol. IV	71,185		AFCRL-62-225	71,766
	Report 2360, vol. 1v	71,100		AFCRL-62-300(I),	
Aeronautical Research	ARL 62-416	70,387		Final Report, Part I	70,784
Laboratory	ARL 62-455	71,758		AFCRL-62-803	70,775
				AFCRL-62-852	71,174
Aeronautical Systems	ASD TD 61-743	71,359		AFCRL-62-882	71,853
Division	ASD TDR 62-42,			AFCRL-62-890	71,197
	Final Report	70,081		AFCRL-62-1105	71,583
	ASD TDR 62-208,	F1 000		AFCRL-TN-60-666	71,183
	Vol. IV	71,266	Air Force Office of	AFOSR 109	71,613
	ASD TDR 62-295,	TO 01	Scientific Research	AFOSR 519	70,746
	Part I	70,647			
	ASD TDR 62-295,	70 649	Air Force Special	AFSWC-TN-61-29,	
	Part II ASD TDR 62-352,	70,648	Weapons Center	Part I	70,301
	Part II	71,829	American Astronautical	Papar	71 948
	ASD TDR 62-641	70,874	Society, Inc.	Paper Paper	71,248 71,259
	ASD TDR 62-668	70,805	Society, inc.	Paper	71,205
	ASD TDR 62-763	70,875		Paper	71,299
	ASD TDR 62-840.	10,010		Paper	71,307
	Part I	71,685		Paper	71,350
	ASD TDR 62-860	71,619		Paper	71,360
	ASD TDR 62-950	71,542		Paper	71,400
	ASD TDR 62-1102	71,890		Paper	71,439
	ASD TR 61-162,	-		Paper	71,440
	Part II	70,680		Paper	71,441
	ASD TR 61-201	70,065		Paper	71,468
	ASD TR 61-240,			Paper	71,485
	Part II, Vol. I	71,341		Paper	71,496
	ASD TR 61-368,			Paper	71,523
	Vol. I	71,113		Paper	71,588
	ASD TR 61-368,			Preprint 63-02	71,287
	Vol. II	71,114		Preprint 63-03	71,529
	WADD TR 60-502, Part II	50.000		Preprint 63-15 Preprint 63-16	71,530
	WADD TR 60-502,	70,380		Preprint 63-22	71,508
	Part II	70,381		Preprint 63-25	71,336 71,443
	WADD TR 60-699,	70,381		Preprint 63-26	71,443 71,538
	Vol. I–XI	70,504		Preprint 63-30	71,389
		10,004		Preprint 63-33	71,395
Aerospace Corp.	TN-594-1105-1	70,821		F	
Agrospage Madical	AMPL TOD CO 90	71 000	American Meteorological		70,911
Aerospace Medical Research Labs.	AMRL-TDR 62-83	71,639	Society		
Acocarch Laus.	AMRL-TDR-62-86 AMRL-TDR-62-103	71,885	American Rocket	2423-62	70,736
	AMRL-TDR-62-103 AMRL-TDR-62-138	71,250 71,539	Society, Inc.	2425-62	71,677
	MRL-TDR-62-45	71,539	, , , ~ , ~ _ , ~ ~ _ , ~ ~ _ , ~ ~ _ , ~ ~ _ , ~ ~ _ , ~ ~ _ , ~ ~ _ , ~ ~ _ , ~ ~ _ , ~ ~ _ , ~ ~ _ , ~ ~ _ , ~ ~ _ , ~ ~ , ~ ~ _ , ~ ~ _ , ~ ~ ~ ~ , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2458-62	71,900
	MRL-TDR-62-68	71,249		2462-62	71,760
		,=		2464-62	70,142
Air Force Cambridge	T-RC-13+	70,856		2472-62	71,945
Research Center				2478-62	71,819

SOURCE INDEX*

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 ______ source index

Source	Report No.	Entry	Source	Report No.	Entry
American Rocket	2480-62	71,801	American Rocket	2561-62	70,411
Society, Inc. (Cont'd)	2481-62	71,796	Society, Inc. (Cont'd)	2562-62	70,390
Society, me. (Com u)	2485-62	71,728		2563-62	70,412
	2487-62	71,820		2565-62	70,413
	2490-62	71,816		2566-62	70,272
	2491-62	71,793		2567-62	70,273
	2497-62	70,281		2568-62	70,274
	2498-62	70,005		2569-62	70,560
	2501-62	70,288		2570-62	70,315
	2502-62	70,302		2571-62	70,316
	2502-62	70,302		2572-62	70,317
	2503-02	70,547		2573-62	70,319
	2505-62	70,163		2574	70,561
	2507-62	70,498		2575-62	70,580
	2508-62	70,499		2577-62	70,477
	2509-6 2	70,500		2578A-62	70,225
	2510-62	70,352		2586-62, Part II	70,507
	2511-62	70,501		2598-62	70,354
	2513-62	70,054		2602-62	70,403
	2513-62	70,337			70,484
	2514-02	70,055		2603-62	
	2516-62	70,204		2604-62	70,368
	2517-62	70,310		2606-62	70,454
	2519-62	70,205		2609-62	70,520
	2520-62	70,206		2610-62	70,485 70,600
	2521-62	70,182		2614-62	
	2522-62	70,183		2617-62	70,377
	2523-62	70,145		2618-62	70,587 70,584
	2524-62	70,502		2619-62	70,517
	2525-62	70,207		2620-62	70,317
	2526-62	70,208		2622-62 2623-62	70,369
	2527-62	70,184		2624-62	70,486
	2528-62	70,276		2625-62	70,370
	2529-62	70,277		2626-62	70,487
	2531-62	70,278		2627-62	70,589
	2532-62	70,244		2628-62	70,594
	2533-62	70,279		2629-62	70,488
	2534-62	70,280		2630-62	70,597
	2535-62	70,221		2632-62	70,458
	2536-62	70,548		2633-62	70,496
	2537-62	70,185		2636-62	70,399
	2538-62	70,033		2638-62	70,347
	2541-62	70,209		2644-62	70,451
	2542-62	70,186		2645-62	70,400
	2543-62	70,222		2647-62	70,356
	2545-62	70,223		2649-62	70,393
	2546-62	70,224		2649-62	70,393
	2547-62	70,107		2654-62	70,394
	2548-62	70,108		2659-62	70,467
	2550-62	70,313		2661-62	70,814
	2551-62	70,062		2663-62	70,721
	2552-62	70,343		2664-62	70,722
	2554-62	70,314		2666-62	70,720
	2555-62	70,804		2674-62	70,815
	2556-62	70,210		2678-62	70,903
	2558 62	70,149		2679-62	70,851
	2560-62	70,503		2682-62	70,713

Source	Report No.	Entry	Source	Report No.	Entry
American Rocket Society, Inc. (Cont'd)	2701-62 2702-62 2704-62 2705-62 2711-62 2716-62 2717-62 2722B-62 2722C-62 2722C-62 2722E-62 2722E-62 2723-62 2724-62 2725-62 2730-62 Paper	70,737 70,738 70,609 70,899 70,870 70,878 70,645 70,645 70,645 70,645 70,645 70,895 70,896 70,669 70,718 70,683 70,106	Atomic Energy Commission (Cont'd)	TID-7652, Paper C-1 TID-7652, Paper C-3 TID-7652, Paper C-3 TID-7652, Paper C-5 TID-7652, Paper D-2 TID-7652, Paper D-4 TID-7652, Paper D-5 TID-7652, Paper D-8 TID-7652, Paper E-1 TID-7652, Paper E-2 TID-7652, Paper E-5 TID-7652, Paper E-6 TID-7652, Paper E-7 TID-7652, Paper E-8 TID-7652, Paper E-9 TID-7652, Paper F-1	71,877 71,700 71,674 71,878 71,908 71,913 71,879 71,880 71,907 71,911 71,929 71,998 71,881 71,882 71,909 71,910
American Society of Lubrication Engineers	62 LC-1 62 LC-4	70,134 70,135		TID-7652, Paper F-2 TID-7652, Paper F-3 TID-7652, Paper F-4	71,914 71,912 71,906
American Society of Mechanical Engineers	62-WA-208 62-WA-215 62-WA-240 62-WA-241 62-WA-301 62-WA-331	70,997 70,998 70,999 71,000 71,001 71,002	Avco Corp.	AMP 93 RR 123 RR 139 RR 140 RR 150	70,203 71,445 70,114 70,113 71,871
ARINC Research Corp.	Publication 173-5-280	70,822	Bell Aerosystems Co.	SSD-TDR-62-172	71,034
Armed Services Technical Information Agency	ASTIA AD-290,800	71,894	Boeing Scientific Research Labs.	Translation R15	71,323
Armour Research Foundation		71,345	British Astronomical Association	Handbook	70,939
Army Engineer Research and Development Laboratories	LTIS Bibliography 15	70,178	Brown Engineering Co., Inc.	TN R-13	71,384
Arnold Engineering Development Center	AEDC-TDR-62-178 AEDC-TDR-62-191 AEDC-TDR-62-201 AEDC-TDR-62-209 AEDC-TDR-62-233 AEDC-TDR-63-36	70,320 71,343 71,003 70,717 71,392 71,203	California, University of Cornell University Curtiss-Wright Corp.,	Final Report CRSR 124 CRSR 127 CRSR 138 TR 2 CTR .00-270	70,471 70,268 70,266 71,556 70,148 71,664
Astronomical Observatory, Republica Argentina		70,030	Aeronautical Div. Department of the Army	Bibliography	71,852
Atomic Energy Commission	TID-7652, Paper A-1 TID-7652, Paper A-2 TID-7652, Paper A-3 TID-7652, Paper A-4 TID-7652, Paper A-5	71,997 71,696 71,697 71,698 71,699	Douglas Aircraft Co., Inc.	Engineering Paper 1384 Engineering Paper 1567 SM-41506 SM-42582	70,017 71,874 70,926 71,166
	TID-7652, Paper A-6	71,931	Duke University		70,050
	TID-7652, Paper A-7 TID-7652, Paper B-1	71,932 71,919	Dunlap and Associates, Inc.	Report	70,059
	TID-7652, Paper B-2	71,718	Dynamic Science Corp.	Report R-2 of SN-27-1	70,881
	TID-7652, Paper B-3 TID-7652, Paper B-4	71,727 71,719	Electro-Optical Systems, Inc.	EOS 1890-A, Part I	70,117
	TID-7652, Paper B-5 TID-7652, Paper B-6	71,720 71,917	Fairchild Stratos Corp.	Final Report SSE63-1400-102	71,142
	TID-7652, Paper B-7	71,876	Ford Motor Co.	LC(b)-417	71,004

٦

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 ______

Source	Report No.	Entry
Ford Motor Co., Aeronutronic Div.	U-1230 U-2007	70,898 71,143
Fuel Cell Corporation		70,080
General Dynamics/ Astronautics	AE62-0814	70,508
General Dynamics/ Fort Worth	FZK-144	71,122
General Electric Co.	Document 62SD4299 R61SD176 R63SD5	71,896 70,941 71,051
General Motors Corp.	TR62-209H	70,931
Geophysics Corp. of America	GCA TR-61-8-N GCA TR-61-13-N GCA TR-61-17-N GCA TR-61-26-A GCA TR-62-17-G	71,952 71,109 71,110 71,949 71,192
George C. Marshall Space Flight Center	MTP-LVO-63-4 MTP-M-63-1, Vol. III MTP-M-63-1, Vol. VI MTP-M-63-1, Vol. VII MTP-M-63-1, Vol. X MTP-M-63-1, Vol. XI MTP-M-63-1, Vol. XI	71,899 71,804 71,805 71,806 71,807 71,808 71,803
Georgetown College Observatory	Monograph 15	71,183
Hughes Aircraft Co.		70,376
Hughes Research Labs.	Report 2	70,975
Illinois, University of	Ph.D. Thesis, N 63 10168	71,786
Institute for Defense Analyses	TN 62-2	71,573
Institute of Astrophysics and Kwasan Observatory, Japan	Contribution 115	71,824
Institute of Radio Engineers, Inc.		$\begin{array}{c} 70,348\\ 70,349\\ 70,359\\ 70,360\\ 70,361\\ 70,378\\ 70,395\\ 70,422\\ 70,475\\ 70,505\\ 70,506\\ 70,518\\ 70,591\\ 70,592\\ 70,650\\ 70,651\\ 70,654\\ 70,654\\ 70,654\\ \end{array}$

Source	Report No.	Entry
Institute of Radio		70,656
Engineers, Inc. (Cont'd)		70,657
		70,658
		70,659
		70,672
		70,679
		70,893
		70,396
		70,397
		70,398 70,450
Institute of the Aerospace		70,426
Sciences, Inc.		70,585
		71,310
		71,514
		71,582
		71,598
	D 00 100	71,605
	Paper 62-120	70,213
	Paper 62-135	71-428 71,559
	Paper 63-12 Paper 63-19	71,339
	Paper 63-32	71,333
	Paper 63-36	71,946
	Paper 63-56	71,723
	Paper 63-58	71,346
	Paper 63-68	71,483
	Paper 63-76	71,873
	Paper 63-80	71,616
	Paper 63-99	71,484
	Report	70,735
ITT Federal Laboratories	Scientific Report 1	71,022
Jet Propulsion Laboratory		71,596
	AI/Seminar Proceedings	71,386
	AI/Seminar Proceedings	71,426
	AI/Seminar Proceedings	71,427
	AI/Seminar Proceedings	71,432
	AI/Seminar Proceedings AI/Seminar Proceedings	71,513 71,554
	AI/Seminar Proceedings	71,555
	TM 33-99, Vol. 1A	70,927
	TM 33-99, Vol. 1B	71,232
	TM 33-99, Vol. 1C	72,011
	TM 33-99, Vol. 2A	72,012
	TM 33-114	71,822
	TM 33-126	71,242
	TM 33-137	71,725
	TM 33-138	71,970
	TM 33-141	71,726
	TR 32-77 TR 32-131	71,442
	TR 32-131 TR 32-217	71,298 70,189
	TR 32-256	70,189
	TR 32-280	70,607
	TR 32-311	70,296
		,

*Entries 70,001–70,344, Vol. VII, No. 1; Entries 70,345–70,608, Vol. VII, No. 2; Entries 70,609–70,930, Vol. VII, No. 3; Entries 70,931–71,239, Vol. VII, No. 4; Entries 71,240–71,645, Vol. VII, No. 5; Entries 71,646–72,015, Vol. VII, No. 6.

70,655

_JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6

SOURCE INDEX

Source	Report No.	Entry	Source	Report No.	Entry
Jet Propulsion Laboratory (Cont'd)	TR 32-325, Rev. TR 32-343	71,587 71,802	Minnesota, University of	Technical Report CR-35	71,707
(cont d)	TR 32-347	71,104	Motorola, Inc.	Report W2719-2-1,	
	TR 32-356	71,595		Revision 1	71,980
	TR 32-361	70,495	National Academy of Sciences		70,529
	TR 32-368	71,057	Hational Headenly of Belences		70,571
	TR 32-371	71,467			70,572
	TR 32-374	70,839			10,012
	TR 32-377	70,974	National Aeronautics and		70,297
	TR 32-384	70,798	Space Administration	F-12-62	71,209
	TR 32-384, Rev.	71,504		Report	70,873
	TR 32-385	71,086		SP-8	70,879
	TR 32-395	71,053		SP-11, Vols. I and II	71,154
	TR 32-398	70,772		SP-12	70,766
	TR 32-399	71,076		SP-13-SP-28	71,154
	TR 32-400 TR 32-402	71,823		SP-29	71,579
	TR 32-402	71,828 71,631		SP-30	71,859
	TR 32-429	71,632		TM X-758	71,645
	TR 32-429	71,632		TM X-789	70,876
	TR 32-429	71,634		TM X-824	71,349
				TN D-608	70, 25 5
Johns Hopkins University	CM-1001	71,218		TN D-1083	71,144
	CM-1026	71,889		TN D-1275	71,378
	Report	71,257		TN D-1321	70,124
Johns Hopkins University,	TG 230-T278	71,522		TN D-1344	70,993
Applied Physics Lab.	TG 230-T304	71,231		TN D-1357	70,299
Johns Hopkins University,		71,258		TN D-1387	71,221
Laboratory of Astrophysics		71,636		TN D-1402	70,341
and Physical Meteorology		11,000		TN D-1415	70,069
				TN D-1417	70,632
Kitt Peak National	Contribution 11	70,623		TN D-1422	70,081
Observatory	Contribution 19	71,181		TN D-1433	70,157
Library of Congress	AID Report 62-24	71,472		TN D-1445	70,196
	AID Report 62-33	71,624		TN D-1447	70,088
	AID Report 62-87	71,505		TN D-1451 TN D-1455	70,118
Lockheed Missiles and	SB-61-40	71,825		TN D-1455 TN D-1456	70,633 70, 76 1
Space Co.	SB-61-58	71,875		TN D-1450	70,101
Space 60.	SB-61-60	71,969		TN D-1461	70,125
	SB-62-15	71,385		TN D-1461 TN D-1462	70,005 70,976
	SB-62-20	71,509		TN D-1468	70,789
	SB-62-26	71,268		TN D-1400	70,774
	SB-62-30	71,599		TN D-1496	70,241
	SB-62-46	71,519		TN D-1497	70,242
	SB-62-50	71,390		TN D-1498	70,200
	SB-62-51	71,362		TN D-1500	70,001
	SB-62-53	71,642		TN D-1508	70,263
	SB-62-58	71,826		TN D-1511	70,243
	SB-62-68	71,827		TN D-1512	70,253
	SRB-62-2	71,361		TN D-1512	70,139
Martin-Marietta Corp.	MND-P-2356			TN D-1515	70,049
-		71,512		TN D-1520	71,646
Massachusetts Institute of	R-341	70,785		TN D-1524	70,312
Technology				TN D-1526	71,040
Massachusetts Institute of	30G-0011	70,646		TN D-1520	70,747
Technology, Lincoln	Bibliography	70,809		TN D-1535	70,109
Laboratory	TR 272	71,079		TN D-1538	71,410
· · · · · · · · · · · · · · · · · · ·					,

.

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6______

Source	Report No.	Entry	Source	Report No.	Entry
National Aeronautics	TN D-1539	71,101	National Aeronautics	TN D-1767	71,834
and Space Admin-	TN D-1540	71,288	and Space Admin-	TN D-1775	71,981
istration (Cont'd)	TN D-1541	71,289	istration (Cont'd)	TN D-1780	71,902
1044400 (2000 -)	TN D-1542	70,995		TN D-1825	71,187
	TN D-1544	70,977		TN D-1859	71,682
	TN D-1545	71,177		TN D-1871	71,585
	TN D-1547	71,300		TR R-128	70,819
	TN D-1555	70,940		TR R-136	71,716
	TN D-1558	70,170		TR R-137	70,624
	TN D-1563	70,723		TR R-140	70,788
	TN D-1571	71,035		TR R-148	71,862
	TN D-1573	71,411		TT F-89	70,771
	TN D-1577	71,061		TT F-93	70,759
	TN D-1578	71,491		TT F-103	70,325
	TN D-1582	70,930		TT F-113	70,892
	TN D-1593	70,829		X-533-63-1	71,897
	TN D-1604	71,089	Notice of December of Standards		71,011
	TN D-1607	70,711	National Bureau of Standards	TN 162	71,887
	TN D-1608	70,950		TN 171	11,007
	TN D-1610	70,938		Abstracted from CRPL-f,	71,169
	TN D-1612	71,012		Part B	
	TN D-1613	71,540	National Bureau of Standards,	TN 40-8	70,728
	TN D-1617	71,145	Central Radio Propagation		
	TN D-1623	71,893	Lab.		
	TN D-1625	71,947	National Research Council		70,571
	TN D-1631	71,968	Hutohar Resource Counce		70,572
	TN D-1649	70,748	· · · · · · · ·		
	TN D-1652	71,861	North American Aviation Inc.	SID 61-217	71,817
	TN D-1653	71,480		SID 62-708, Vol. II	71,915
	TN D-1655	71,821	North Atlantic Treaty	AGARD Report 384	70,642
	TN D-1660	71,612	Organization	_	
	TN D-1668	71,087	-	NEL 62 4 Vol I	71,809
	TN D-1670	71,025	Northrop Corp.	NSL 63-4, Vol. I NSL 62-4 Vol. I	71,805
	TN D-1671	71,304		NSL 63-4, Vol. II NSL 63-4, Vol. III	71,810
	TN D-1673	71,724		NSL 63-4, Vol. 111 NSL 63-4, Summary	71,811
	TN D-1674	71,367		, .	
	TN D-1675	70,980	Planning Research Corp.	PRC R-293	70,459
	TN D-1676	71,261	Quartermaster Food and	Library Bulletin 1	70,191
	TN D-1682	70,983	Container Institute for the	2	
	TN D-1684	71,325	Armed Forces		
	TN D-1685	70,667			F1 400
	TN D-1686	71,993	Radio Corporation of America	AED 1542	71,430
	TN D-1687	71,520		AED 1762	71,431
	TN D-1693	71,584	Rand Corp.	P-1593	70,760
	TN D-1696	70,970	-	P-1702	71,155
	TN D-1700	71,368		RM-2826-PR	70,606
	TN D-1701	71,290		RM-2946-PR	70,924
	TN D-1713	71,975		RM-3096-PR	70,530
	TN D-1714	71,684		RM-3140-NASA	70,455
	TN D-1716	71,303		RM-3178-PR	71,007
	TN D-1717 TN D-1799	71,625 71,470		RM-3277-NASA	70,089
	TN D-1722	71,470		RM-3297-PR	70,375
	TN D-1723	71,041		RM-3329-PR	70,818
	TN D-1724	71,237		RM-3353-NASA	70,698
	TN D-1747	71,935		RM-3376-JPL	70,801
	TN D-1751	71,356		RM-3487-RC	70,643
	TN D-1765	71,854		RM-3523-NASA	71,050

Source	Report No.	Entry	Source	Report No.	Entry
Rocketdyne	Final Report R-3923, Vol. 2 Final Report R-3923,	71,516	U. S. Department of Commerce, Coast and Geodetic Survey	Publication 40-1	70,699
	Vol. 4	71,517	U.S. Department of Com-	OTS: 61-23,461	71,471
	Final Report R-5061, Vol. I Final Report R-5061,	71,396	merce, Office of Technical Services	OTS: 61-28,637 OTS: 62-13,403	70,287 70,917
	Vol. IIA	71,397		OTS: 62-24,342 OTS: 62-24,481	$71,\!481$ $71,\!472$
	Final Report R-5061, Vol. IIB	71,398		OTS: 62-24,486	71,473
	Final Report R-5061,	-		OTS: 62-24,492 OTS: 62-32,103	$71,\!624$ $71,\!438$
	Vol. III ROM-2181-1004	71,399 71,580		OTS: 62-32,232	71,570
Royal Aircraft Establishment,	TN Space 20	71,499		OTS: 62-32,233 OTS: 62-33,452	71,505 71,301
Great Britain	TN Space 20 TN Space 19	71,499		OTS: 62-33,452	71,301
	TN Space 21	71,622		OTS: 62-33,452	71,474
Scientific Translation Service		70,535		OTS: 62-33,452	71,475
				OTS: 62-33,452	71,528
Smithsonian Institution		70,912		OTS: 63-13,076 OTS: 63-13,554	71,577 71,630
	Special Report 91 Special Report 92	71,502 71,503		OTS: N62-15,186	70,795
	Special Report 100	71,003		OTS: N62-17,072	71,302
	Special Report 101	71,091		OTS: N63-10,168	71,409
Society of Aerospace Material and Process Engineers		71,058	U.S. Department of Commerce, Weather	Report 13	71,236
Society of Automotive	632A	71,164	Bureau		
Engineers, Inc.	632B	71,165	U. S. Department of	Report 11	70,652
	632C 632E	70,839 71,036	Commerce, Weather		
	632F	71,030	Bureau, Meteorological		
	632G	71,047	Satellite Laboratory		
	632H	71,818	U.S. Department of	Paper	71,607
	632J	71,045	Commerce, Weather		
	632K 632L	71,046 71,048	Bureau, National Weather Satellite Center		
	SP-225	71,712			
Space Technology Labora-	SP-225 8689-6002-TU000	71,713	U. S. Department of the Interior, Geological Survey	MAP-I-355	70,838
tories, Inc.	8689-6006-TU000	71,814 71,815	U.S. Naval Observatory	Astronomical Papers,	
	8689-6007-TU000	71,813		Vol. XVI, Part II	71,055
	9990-6302-KU-000 9990-6339-KU-000	71,274 71,275	USSR Academy of Sciences	Scientific Report	70,333
	9990-6345-KU-000	71,311	Walter Kidde & Co., Inc.	0310-700	71,663
	9990-6346-KU-000	71,466	Weapons Research Establish-	TRD 63	70,649
	9990-6369-KU-000 9990-6380-KU-000	71,444	ment, South Australia		10,010
	Final Report	71,772	Wisconsin, University of,	MRC Technical Summary	
	8651-6016-RU-000	71,393	Mathematics Research Center	Report 351	70,825
Space-Craft, Inc.	62-402	70,067			
Spectrolab	Final Report 2004	71,572	Wright Air Development Division		
Stanford Research Institute	Final Report, NASr-49(04)	70,177	(see Aeronautical Systems Division)		
Toronto, University of, Canada	UTIA Report 89	71,296	Yale University	Technical Note 1	71,690

_ JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6 PERIODICAL CITATIONS

PERIODICAL CITATIONS FOR JUNE 1963

Aerospace Medicine, March 1963	v. 34, no. 3,	
71,659 71,866	71,660 71,884	71,661 71,885
American Geophysica Transactions, v. 44		1963
71,651 71,788	71,732	71,787
Annals of the New Yo	ork Academu (of
Sciences, v. 93, arti		
Artificial Earth Satell March 1963	ites, v. 12,	
71,657	71,673	71,675
71,676	71,683	71,693
71,694	71,695	71,708
71,709	71,710	71,711
71,729	71,785	71,883
71,895	,	,
Astronautica Acta, v.	9, no. 1, 1963	
71,863	71,982	71,984
71,985		
Astronautics and Aero	ospace Engine	ering,
v. 1, no. 3, April 19		
71,678	71,714	71,835
71,836	71,837	71,838
71,839	71,840	71,841
71,842	71,856	71,857
71,971	71,972	71,973
71,974		
Astronomical Institut	es of Czechosi	lovakia,
Bulletin of the, v. 1		
71,789	71,831	71,930
71,933	71,940	71,964
Astronomical Society Publications of the December 1962	of the Pacific , v. 74, no. 44	, 1,
71,689	71,925	71,961
Astrophysical Journal January 1963	l, The, v. 137,	no. 1,
71,790	71,920	71,921
71,936	71,950	71,956
72,015	11,000	11,000
Australian Journal of March 1963	Physics, v. 16	3, no. 1,
71,665	71,791	71,905
71,939		
Aviation Week & Spa	ice Technolog	y,
v. 78, no. 9, March	4, 1963	
71,860	71,918	72,004
72,010	-	
Bell Laboratories Red April 1963	co rd, v. 41, no	. 4,
71,652	71,653	71,721

71,722		
(1.(44	71,759	71,764
71,795	71,934	71,965
71,966		11,505
71,900	71,967	
Canadian Journal of		1
	rnysics, v. 4	1, no. 1,
January 1963		
71,733	71,781	71,976
71,977	71,978	71,979
Electronics, v. 36, no	. 5, Februar	y 1, 1963
		71,830
		,
, v. 36, no. 6,	February 8	. 1963
, , - · · ·	71,654	71,953
	11,001	11,000
, v. 36, no. 7,	February I	5 1963
, v. 50, no. 1,	rebluary 1	
		71,858
I	. 11000	
Icarus, v. 1, no. 5-6,		
71,681	71,744	71,846
71,867	71,868	71,954
72,005		
IRE Transactions on	Instrumente	ution.
v. I-11, no. 3 & 4, 1		
······································	Jeeember 1	71,802
		71,002
ISA Journal, v. 10, no	2 March	1062
15A Journal, V. 10, 10	J. S, March	
		71,691
Journal of Atmospher		
<i>Physics</i> , v. 25, no.	2, February	1963
71,735	71,739	71,740
71,747	71,748	71,775
71,776	,	,
11,110		
v 95 no 4	April 1062	
, v. 25, no. 4,		51 50 0
71,736	71,737	71,738
		71,738
71,736 71,777	- 71,737 71,778	
71,736	- 71,737 71,778	
71,736 71,777 Journal of Geophysic	71,737 71,778 al Research	
71,736 71,777 Journal of Geophysic v. 68, no. 5, March	71,737 71,778 al Research 1, 1963	,
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649	71,737 71,778 al Research 1, 1963 71,650	, 71,743
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749	71,737 71,778 al Research 1, 1963 71,650 71,750	, 71,743 71,751
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753	, 71,743 71,751 71,754
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756	71,737 71,778 al Research 1, 1963 71,650 71,750	, 71,743 71,751
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753	, 71,743 71,751 71,754 71,843
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850	, 71,743 71,751 71,754 71,843 71,851
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870	, 71,743 71,751 71,754 71,843 71,851 71,901
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,942	, 71,743 71,751 71,754 71,843 71,851
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870	, 71,743 71,751 71,754 71,843 71,851 71,901
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928 71,995	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,870 71,942 72,003	, 71,743 71,751 71,754 71,843 71,851 71,901 71,994
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928 71,995 , v. 68, no. 6,	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,870 71,942 72,003 March 15,	, 71,743 71,751 71,754 71,843 71,851 71,901 71,994 1963
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928 71,995 , v. 68, no. 6, 71,666	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,942 72,003 March 15, 71,704	, 71,743 71,751 71,754 71,843 71,851 71,901 71,994 1963 71,705
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928 71,995 , v. 68, no. 6,	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,870 71,942 72,003 March 15,	, 71,743 71,751 71,754 71,843 71,851 71,901 71,994 1963 71,705
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928 71,995 , v. 68, no. 6, 71,666 71,706	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,942 72,003 March 15, 71,704 71,755	, 71,743 71,751 71,754 71,843 71,851 71,901 71,994 1963 71,705 71,705
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928 71,995 , v. 68, no. 6, 71,666 71,706 71,780	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,942 72,003 March 15, 71,704	, 71,743 71,751 71,754 71,843 71,851 71,901 71,994 1963 71,705
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928 71,995 , v. 68, no. 6, 71,666 71,706	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,942 72,003 March 15, 71,704 71,755	, 71,743 71,751 71,754 71,843 71,851 71,901 71,994 1963 71,705 71,705
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928 71,995 	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,942 72,003 March 15, 71,704 71,755 71,923	71,743 71,751 71,754 71,843 71,851 71,901 71,994 1963 71,705 71,762 71,924
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928 71,995 , v. 68, no. 6, 71,666 71,706 71,760 72,014 Journal of Quantitati	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,942 72,003 March 15, 71,704 71,755 71,923 ve Spectros	71,743 71,751 71,754 71,843 71,851 71,901 71,994 1963 71,705 71,762 71,924
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928 71,995 	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,942 72,003 March 15, 71,704 71,755 71,923 ve Spectros	71,743 71,751 71,754 71,843 71,851 71,901 71,994 1963 71,705 71,762 71,924
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928 71,995 , v. 68, no. 6, 71,666 71,706 71,760 72,014 Journal of Quantitati and Radiative Tran April-June 1963	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,942 72,003 March 15, 71,704 71,755 71,923 ve Spectros nsfer, v. 3, 1	71,743 71,751 71,754 71,843 71,851 71,901 71,994 1963 71,705 71,762 71,924
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928 71,995 	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,942 72,003 March 15, 71,704 71,755 71,923 ve Spectros	71,743 71,751 71,754 71,843 71,851 71,901 71,994 1963 71,705 71,762 71,924
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928 71,995 , v. 68, no. 6, 71,666 71,706 71,760 72,014 Journal of Quantitati and Radiative Tran April-June 1963	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,942 72,003 March 15, 71,704 71,755 71,923 ve Spectros nsfer, v. 3, 1	71,743 71,751 71,754 71,843 71,851 71,901 71,994 1963 71,705 71,762 71,924
71,736 71,777 Journal of Geophysic v. 68, no. 5, March 71,649 71,749 71,752 71,756 71,849 71,855 71,928 71,995 , v. 68, no. 6, 71,666 71,706 71,760 72,014 Journal of Quantitati and Radiative Trat April–June 1963 71,922	71,737 71,778 al Research 1, 1963 71,650 71,750 71,753 71,779 71,850 71,870 71,942 72,003 March 15, 71,704 71,755 71,923 ve Spectros nsfer, v. 3, 1 71,943	71,743 71,751 71,754 71,843 71,851 71,901 71,994 1963 71,705 71,762 71,924

Journal of the Astron		ices,				
<i>The</i> , v. 10, no. 1, S						
	71,658	71,983				
Journal of the Atmospheric Sciences,						
v. 20, no. 2, March	1963					
	71,731	71,763				
Journal of the Radio Laboratories, v. 9, November 1962						
November 1902	71,773	71,774				
Luftfahrttechnik Rai	mfahrttachr	.:L				
v. 9, no. 3, March		····,				
, , -		71,717				
Mechanical Engineer	ring, v . 85, n	o. 3,				
March 1963		·				
		71,872				
National Academy of	f Sciences.					
IGY Bulletin, no. 6		.963				
		71,788				
, no. 68, Feb	ruary 1963					
, ,	71,651	71,732				
00.14	1 1000					
, no. 69, Mar	ch 1963	71,787				
		11,101				
National Bureau of S						
Technical News B	ulletin, v. 47	,				
no 3 March 1062						
no. 3, March 1963		71,886				
	260 F.1	71,886				
no. 3, March 1963 Nature, v. 197, no. 46 71,757 71,833	869, Februar 71,792					
Nature, v. 197, no. 44 71,757 71,833	71,792	y 23, 1963 71,832				
Nature, v. 197, no. 44 71,757	71,792	y 23, 1963 71,832				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4	71,792 4876, April 1 71,715	y 23, 1963 71,832 3, 1963 71,848				
Nature, v. 197, no. 44 71,757 71,833	71,792 4876, April 1 71,715 , v. 11, no. 2	y 23, 1963 71,832 3, 1963 71,848				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4 Operations Research	71,792 4876, April 1 71,715 , v. 11, no. 2	y 23, 1963 71,832 3, 1963 71,848				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4 Operations Research March-April 1963	71,792 4876, April 1 71,715 , v. 11, no. 2	y 23, 1963 71,832 3, 1963 71,848				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4 Operations Research March-April 1963 Physics Letters, v. 3	71,792 4876, April 1 71,715 , v. 11, no. 2 , no. 7,	y 23, 1963 71,832 3, 1963 71,848				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4 Operations Research March-April 1963	71,792 4876, April 1 71,715 , v. 11, no. 2 , no. 7,	y 23, 1963 71,832 3, 1963 71,848				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4 Operations Research March-April 1963 Physics Letters, v. 3 February 15, 1963	71,792 4876, April 1 71,715 , v. 11, no. 2 , no. 7,	y 23, 1963 71,832 3, 1963 71,848 , 71,794 71,891				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4 Operations Research March-April 1963 Physics Letters, v. 3	71,792 4876, April 1 71,715 , v. 11, no. 2 , no. 7,	y 23, 1963 71,832 3, 1963 71,848 , 71,794 71,891				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4 Operations Research March-April 1963 Physics Letters, v. 3 February 15, 1963 Planetary and Space 71,647 71,668	71,792 4876, April 1 71,715 , v. 11, no. 2 , no. 7, 3 <i>Science</i> , v. 7 71,648 71,669	y 23, 1963 71,832 3, 1963 71,848 , 71,794 71,891 10, 1963 71,667 71,670				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4 Operations Research March-April 1963 Physics Letters, v. 3 February 15, 1963 Planetary and Space 71,647 71,668 71,671	71,792 4876, April 1 71,715 , v. 11, no. 2 , no. 7, 3 <i>Science</i> , v. 2 71,648 71,669 71,672	y 23, 1963 71,832 3, 1963 71,848 , 71,794 71,891 10, 1963 71,667 71,670 71,730				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4 Operations Research March-April 1963 Physics Letters, v. 3 February 15, 1963 Planetary and Space 71,647 71,668 71,671 71,734	71,792 4876, April 1 71,715 , v. 11, no. 2 , no. 7, 3 <i>Science</i> , v. 2 71,648 71,669 71,672 71,745	y 23, 1963 71,832 3, 1963 71,848 , 71,794 71,891 10, 1963 71,667 71,670 71,730 71,746				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4 Operations Research March-April 1963 Physics Letters, v. 3 February 15, 1963 Planetary and Space 71,647 71,668 71,671 71,734 71,784	71,792 4876, April 1 71,715 , v. 11, no. 2 , no. 7, 3 <i>Science</i> , v. 2 71,648 71,669 71,672 71,745 71,986	y 23, 1963 71,832 3, 1963 71,848 , 71,794 71,891 10, 1963 71,667 71,670 71,730 71,746 71,987				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4 Operations Research March-April 1963 Physics Letters, v. 3 February 15, 1963 Planetary and Space 71,647 71,668 71,671 71,734	71,792 4876, April 1 71,715 , v. 11, no. 2 , no. 7, 3 <i>Science</i> , v. 2 71,648 71,669 71,672 71,745	y 23, 1963 71,832 3, 1963 71,848 , 71,794 71,891 10, 1963 71,667 71,670 71,730 71,746				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4 Operations Research March-April 1963 Physics Letters, v. 3 February 15, 1963 Planetary and Space 71,647 71,668 71,671 71,734 71,784 71,988 71,991	71,792 4876, April 1 71,715 , v. 11, no. 2 , no. 7, 3 Science, v. 2 71,648 71,669 71,672 71,745 71,986 71,989 71,996	y 23, 1963 71,832 3, 1963 71,848 , 71,794 71,794 10, 1963 71,667 71,670 71,730 71,746 71,987 71,990				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4 Operations Research March-April 1963 Physics Letters, v. 3 February 15, 1963 Planetary and Space 71,647 71,668 71,671 71,734 71,784 71,988 71,991 , v. 11, no. 1	71,792 4876, April 1 71,715 , v. 11, no. 2 , no. 7, 3 <i>Science</i> , v. 1 71,648 71,669 71,672 71,745 71,986 71,989 71,996 , January 196	y 23, 1963 71,832 3, 1963 71,848 , 71,794 71,891 10, 1963 71,667 71,670 71,730 71,730 71,746 71,987 71,990				
Nature, v. 197, no. 44 71,757 71,833 , v. 198, no. 4 Operations Research March-April 1963 Physics Letters, v. 3 February 15, 1963 Planetary and Space 71,647 71,668 71,671 71,734 71,784 71,988 71,991	71,792 4876, April 1 71,715 , v. 11, no. 2 , no. 7, 3 Science, v. 2 71,648 71,669 71,672 71,745 71,986 71,989 71,996	y 23, 1963 71,832 3, 1963 71,848 , 71,794 71,794 10, 1963 71,667 71,670 71,730 71,746 71,987 71,990				

JPL ASTRONAUTICS INFORMATION ABSTRACTS, VOL. VII, NO. 6_____

, v. 11, no. 3, March 1963 71,869 71,992	72,002	Science, v. 139, no. 3539, March 15, 1963 Space Science Reviews, v. 1, no. 3, 71,963 March 1963					3,
Product Engineering, v. 34, no. 5	,	Soviet Astronomy-AJ, v. 6, no. 4,		71,656	71,692	71,765 71.769	
March 4, 1963	I, 1963 January–February 1963			71,767	71,768	,	
	71,761	71,662	71,679	71,680	71,770	71,771	71,927
Progress of Theoretical Physics, v. 27, no. 4, April 1962 71,892	71,686	71,687	71,688	71,999			
		71,702	71,703	71,741			
		71,844	71,847	71,898			
	71,916	71,926	71,937	Strolling Astronomer, The, v. 17, no. 1-2,			
Rivista di Medicina Aeronautica e		71,941	72,006	72,007	January–February 1963		
Spaziale, v. 26, no. 1,	6	Soviet Physics—Do	kladu v 7 m		71,655	71,797	71,798
January–March 1963		February 1963	<i>killing</i> , <i>v</i> . <i>i</i> , in	5. 0,	71,799	71,800	71,845
71,864 71,865	72,013	1 0.1.1.1.1 1 1000		72,008	71,903	72,000	72,001