

Structures and Materials Research
 Department of Civil Engineering

John F. Abel
Graduate Student
E. P. Popov

Faculty Investigator

Report to
National Aeronautics and Spaこe Administration NASA Research Grant No. 1 sG 274 S-3

Structural Engineering Lakoratory
University of Califorria
Berkeley, Californis

ABSTRACT

The finite element technique is extended to the refined analysis of multilayer beams, plates and shells with no restriction placed upon the ratios of the layer thicknesses and properties. The method is applicable to structures wherein shearing deformations are significant, including sandwich-type structures.

Element stiffnesses developed are based on polynomial displacement models and are for the linear elastic analysis of beams, circular plates, and thin, axisymmetric shells of arbitrary meridian. Although stiffnesses derived are for three-layered construction with similar facings, the proposed theory is applicable to any flexural elements and to any arrangement of laminations, provided the total thickness is moderate. Here, doubly-curved elements have been used to represent rotational shells. Computer programs have been written both for static analysis and for free and forced steady-state vibration analysis. Inclusion of rotatory as well as translational inertia allows determination of natural thickness-shear frequencies and mode shapes in addition to flexural vibration characteristics.

Finally, the use of viscoelastic layers for the damping of flexural vibrations is discussed. To determine the effective damping due to such layers, the analysis method is extended by means of the correspondence principle for linear dyramic viscoelasticity.

Several examples are presented to illustrate the efficacy of the method. Listings of the computer programs for axisymmetric shells are given in the appendices.

ACKNOWLEDGMENMS

IThe author wishes to express his deep gratitude to Professor E. P. Popov for his interest and encouragement during the course of this research. His continuing concern for his students has been an inspiration. The writer would also like to express his gratitude to the other member of his dissertation committee, Professors J. L. Sackman and M. C. Williams, for reading the manus ipt and making helpful suggestiors. In addition, the author is also indebted to many faculty members and graduate students at the University of California for their advice and assistance. These individuals include Dr. C. A. Felippa, Dr. M. Khojasteh-Bakht and Messrs. S. Yaghmai, B. Pininey and S. Pawsey .

During the early stages of this research, the author was sponsored by a National Science Foundation Graduate Fellowship. Thereafter, support was provided by the National Aeronautics and Space Administration under Research Grant NsG 274 S-3. Computer facilities and time were provided by the Computer Center of the University of California at Berkeley. All of this support is gratefully acknowledged.

The final report was typed by Mrs. Carmella Bryant and the appendices by Mrs. Arlene Martin. Donna Margaret Wilcox did the drawings.

Finally, the author wishes to express his appreciation to his wife, Lynne. Her patience and encouragement throughout the course of the writer's graduate studies has been invaluable. In addition, she typed most of the draft manuscripts for this dissertation.

TABLE OF CONTENTS

PAGE
ABSTRACT ij
ACKNOWLEDGMENTS iii
TABLE OF CONTENTS iv
NOMENCLATURE vi
I. INTRODUCTION 1
I.1. General Objective 1
I.2. Survey of Previous Work 3
I.3. Outline and Assumptions 15
II. GENERAL THEORY AND THE FINITE ELEMENT METHOD 18
II.1. General Theory 18
II.2. Stiffness Analysis of Elements for the Displacement Method 34
II.3. The Direct Stiffness Method 41
III. STATIC ANATYSIS OF ELASTIC SANDWICH STRUCTURES 45
III.1. Sandwich Beams and Cylindrical Bending of Plates 45
III.2. Axisymmetric Sandwich Plates 54
III. ${ }^{?}$. A Doubly-Curved Axisymmetric Shell Element 59
III.4. Axisymmetric Sandwich She-.ls 63
III.5. Examples of Static Analysis 69
IV. FREE VIBRATION OF ELASTIC SANDWICH STRUCTURES 98
IV.1. Lumped Translatory and Rotatory Inertia 98
IV.2. Formulation of the Eigenvalue Problem 102
IV.3. Vibration Modes 106
IV.4. Examples of Free Vibration Analysis 110
V. DAMPING BY THE INCLUSION OF VISCOELASTIC LAYERS 120
V.l. The Complex Modulus Representation 120
V.2. Correspondence Principle for Linear Dynamic Viscoelasticity 124
V.3. Viscoelastic Properties of Polymers 125
V.4. Measures of Effective Damping 133
V.5. Complex Algebraic Eigenvalue Problems 135
V.6. Damped Response to Steady-State Harmonic Loading 138
V.7. Examples of Damped Vibrations 144
VI. SUMMARY AND CONCLUSIONS 160
REFERENCES 163
APPENDICES 174
A. Matrices for Sandwich Beams 174
B. Matrices for Axisymetric Sandwich Plates 184
C. Matrices for Axisymetric Sandwich Shells 194
D. Computer Program, Static Analysis of Elastic Axisymmetric Shells 208
E. Computer Program, Free Vibrations of Elastic Axisymmetric Shells 227
F. Computer Program, Free Vibrations of Viscoelastic Axisymmetric Shells 248

NOMENCLATHITE

$\{$ \} = column vector
< > = row vector
[] = rectangular matrix
「 〕 = diagonal matrix

* = superscript indicating a complex quantity
$1,2=$ subscripts indicating the principal directions of the shell reference surface; subscripts indicating the real and imaginary parts of a complex quantity, respectively
[A] = transformation matrix relating local nodal displacements to local generalized displacements
$a \quad=$ area of reference surface over which stresses are specified; radius of cylinder or sphere
[B] = matrix relating element strain components to element generalized co-ordinates
b = superscript indicating the bottom (or inside) facing of sandwich construction
$[C]=$ matrix relating total element stresses to total element strains
c = subscript indicating core layer of sandwich construction
$[D]=$ matrix product $[Z]^{T}[C][Z]$; diagonal matrix of pivots resulting from symmetric Gaussian elimination

D = energy dissipated in a single cycle of vibration
$\mathrm{d}=$ thickness distance between middle surfaces of facing layers for symmetric sandwich construction
ds $=$ element of arc length
$\mathrm{E}=$ Young's modulus
$\mathrm{E}^{*}(\omega)=$ complex modulus
$E(t)=$ relaxation modulus
$\left\{e_{i}\right\}=$ vector which has all elements zero except the $i^{\text {th }}$ which is unity
$[F]=$ flexibility matrix of overall assemblage of elements
$\left\{f_{i}\right\}=j .{ }^{\text {th }}$ column of the flexibility matrix [F]

```
    f = suhscript indicating the face layers of sandwich construction
    [G] = matrix of layer bending, extensional and shear stiffness
        (Eq. II.27)
    G = shear modulus
    h = total thickness of sheli
    h
    i = subscript indicating the }\mp@subsup{i}{}{\mathrm{ th }}\mathrm{ node of an element
J*}(\omega)=\mathrm{ complex compliance
J(t) = creep compliance function
    j = subscript indicating the j j
    [K] = stiffness matrix for overall assemblage of elements
    [k] - element stiffness matrix
    k = subscript indicating the }\mp@subsup{k}{}{\mathrm{ th }}\mathrm{ layer
    [L] = lower unit triangular matrix of mult: pliers resulting from
        symmetric Gaussian elimination
    L = total number of layers; span length of beam or cylinder
    \ell = length of beam or plate element; chord length of shell element
    [M] = mass matrix for overall assemblage of elements
    M = moment stress resultant
    N = extensional stress resultant
    {P} = vector of nodal force amplitudes for steady-state forced vibra-
        tions
    {p} = vector of loads
    p
    {Q} = vector of element nodal forces in local co-ordinates
    Q = shear stress resultant
    {q} = vector of element nodal displacements in local co-ordinates
    {R} = vector of element nodal forces in global co-ordinates
    R = principal radius of curvature of shell reference surface
```

```
{r} = vector of element nodal displacements in global vo-ordinates
    r = radial co-ordinate for a circular plate or rotational shell
{s} = vector of layer stress resultants
    s = meridional co-ordinate in curvilinear co-ordinates
[T] = transformation matrix relating local co-ordinates to global
        co-ordinates
[T] = matrix product [A
    T = superscript indicating the transpose of a matrix
T
Tm}=melt temperature of a polymer
    t = time; superscript indicating the top (or outside) facing nf
        sandwich construction
    U = strain energy
{u} = vector of element displacements in local co-ordinates
    u = tengential displacements of the shell
u_,u}\mp@subsup{u}{2}{}=\mathrm{ local translations of substitute shell element
ur 睢 = translations of a rotational shell in cylindrical co-ordinates
{V} = vector of nodal forces fan the overall assembiage of elements
    V = potertial energy of loads
{v} = vector of nodal displacement for the overall assemblage of
        elements
    v = volume of an element
    W = total energy associated with the vibrating structure
{w} = vector of displacement amplitudes for vibretions
    w = normal displacements of the shell
[X] = symmetric matrix for the eigenvalue problem in standard form
{x} = eigenvector of the matrix [X]
    x = generai local co-ordinate (Section II.2); axial co-ordinate of
        a beam (Section III.1)
[z] = matrix relating total element strains to element strain components
```

```
    z = thickness co-ordinate for beam or plate; cylindrical co-ordinate
        for rotational shell
{\alpha} = vector of element generalized co-ordinates
    \alpha = metrics of the shell reference surface
    B = free index; angle indicated in Figure III.5
    \gamma = shear strain
    \delta = index; logarithmic decrement of a damped structure
{\epsilon} = vector of total layer strains for an element
{\varepsilon} = vector of layer strain components for an element
    \varepsilon = extensional strain
    \zeta = ~ c o - o r d i n a t e ~ n o r m a l ~ t o ~ t h e ~ s h e l : ~ s u r f a c e
    \eta = local rectilinear co-ordinate (Figure III.5); loss factor of a
        damped structure
    0 = circumferential co-ordinate; angle by which strain lags behind
        stress (Figure V.l)
    K = change in curvature (Eqs. (II.10)); shear stress correction
        factor (Section II.1.3)
    \lambda = root of eigenvalue problem in standard form
    v = Poisson ratio
    \xi = Gaussian orthogonal curvilinear co-ordinates for the sheil
        surface (Figure II.l); local normalized co-ordinate for q
        particular finite elemen+ (Chap. III)
    \pi = total potential energy of an element
    \rho = density
{\sigma} = vectcr of total layer stresses for an element
    \sigma = extenoional stress
    \tau = shear stress
[\Phi] = matrix relating element displacements to element generalized
        displacements
    \phi = angle indicated in Figures II.5 anz II. }
X = rotation of the tangent to the reference surface (total rota-
        tion)
```

$x_{b}=$ rotation of the normal to the reference surface (bending rotation)
$X_{s}=$ rotation due to shearito deformation nily
$\psi \quad=$ angle indicated in Figure III. 5
$\Omega \quad=$ frequency of steady-state forced vibration
$\omega=$ frequency of free vibration

I.1. General Oojective

Multilayer construction has become an increasingly important form in structural engineering as one means of achieving a beneficial combination of the properties of two or more materials. Perhaps the best known examples of this type are the widespread "sandwich" structures used in the aerospace industry. These combine thin, high-strength facing layers with a thicker, light-weight core. Recently, layered structures have also incorporated laminations of materials selected for their anergy dissipation characteristics or their heat conduction properties. As new materials are being developed and as the technology of composite construction advances, there is a growing variety of versatile, multiply layered configurations available.

The theory of stress analysis of multilayer structures is well established. In general, two classifications of such structures can be identified: (1) "laminates" in which layers of materials with similar properties are bonded together and for which the Kirchhoff-Love hypothesis is applied and (2) "sandwiches" in which some layers may be significantly weaker than others and for which transverse shear deformation is taken into account. Theory for the laminates $[1-6]^{*}$ has been successfully applied to the analysis of general plates and shells using, for example, the approximate methods of finite differences [7] and finite elements [8]. However, despite the availability of sandwich theories of various

[^0]degrees of refinement in the literature, there have been relatively few soiutions published that include the effects of transverse shear. Moreover, these solutions have been restricted to the simpler geometries such as rectangular and circular plates and cylindrical and spherical shells.

The purpose of the present work is to extend the finite element method to the analysis of sandwich plates and shells. Although specific solutions are to be presented here only for axisymmetric cases, the same general approach, using existing standard finite element techniques, will pemit the analysis of arbitrary configurations and boundary conditions. In addition to the study of static and dynamic elastic problems, this paper shall also consider the structural damping due to the inclusion of viscoelastic layers. The damping characteristics can be obtained as a natural adjunct of the ordinary procedures of structural analysis.

I.2. Survey of Previous Norn

This dissertation is based upon material from trree areas of structural engineering, namely, sandwich theory, the finite element methc, and struc+ura damping. These topics are now briefly reviewed.

1 2.1. Sandwick Theory

Extensive rev ${ }^{2} w s$ and bibliographies of the theory of sandwich structures are prescnted in References [9-12], and the reader is referred to these for a more complete survey than the one given here.

The earliest application of sandwich construction was in the Britisis aircraft industry. Consequently, some of the fisst published materials on the topic are the works of Williams, Legget and Hopkins [13, 14]. These authors accounted for shear by assuming that material lines originally straight and noma- to the middle surface remain straight, but do not remain normal. Among the increasing volume of literature published in the postwar period are papers by E. Reissner [15, 16], Hoff and Mautner [17], Hoff [18], and E-ingen [19]. Reissner approximated the sandwich as thin facings acting as membranes and a core with significant stresses only in the transverse direction. The transverse behavior includes both shear and normal deformation. With these simplifications, tre equations of sandwich plates and shells are analogous to those of homogeneous structures for which the transverse effects are taken into account $[15,20]$. Reissner also studied the large deflections of sandwich plates using the same assumptiuns [21]. Hoff's work on plates included the flexural rigidity of the facings in addition to the effects considered by Reissner. Finally Eringen added the influence of the flexural rigidity of the core, neglecting only the shearing of the plate facings.

It has become customary to designate sandwiches described by theories which neglect the flexural and stretching effects of the core (e.g., Reissner [15] and Hoff [18]) as having a "weak" or "soft" core and those which include these effects (Eringen [19]) a "stiff" or "strong" core. An example of a shell theory for weak orthotropic cores is thet developed by Schmidt [22], whereas Grigolyuk and Kiryukhin [23] have derived the shell equations for orthotropic facings and a stiff orthotropic core. Non-linear shell theories for large deflections of sandwiches with dissimilar facings for the case of a weak core have been published by Wempner and Baylor [24], Wempner [25] and Fulton [26]. Schmidt and Wempner included the effect of the transverse normal deformation of the core, but Grigolyuk and Fulton assumed that the transverse displacement of all layers is the same.

Reissner $[16,21]$ showed that the assumption of transverse incompressibility is valid for beams and plates, but that this pinching effect could become important for curved structures under some circumstances, such as uniform bending stress states of soft-core shells. However, Raville's work [27-29] indicated that for some purposes pinching may be neglected, and recently developed sandwich theories have tended to assume an infinite transverse core modulus [12]. Otiner studies on the effects of various approximations in sandwich theories have been conducted by Koch [30] and Cook [31]. These two papers provide quantitative evaluations of several common assumptions, including those of soft cores and membrane facings.

In 1959, Yu [32] presented a new sandwich theory which includes the bending and stretching effects and the transverse shear flexibility of all layers. This theory places no restriction on the ratios of layer thicknesses and material properties and has been extensively applied to
vibration problems of sandwich structures including both shear and rotatory inertia [33-41]. In addition, a similar approach has been used for two-layered plates and shells [42]. Throughout these works the transverse displacements of all layers are assumed to be the same. Free vibrations of various types of sandwich structures have also been studied by Kimel et al. [43], Raville et al. [44], Boiotin [45] and Chu [46]. Bieniek and Fruedenthal [47] have investigated the forced vibrations of cylindrical sandwich panels. Finally, non-linear vibrations have received the attention of $Y u[48,49]$ and Chu [50].

There is not a large body of published solutions for static problems of sandwich shells, although beam and plate problems have been more widely cons idered. Reissner [16] has included some solutions of special cases and has emphasized the similarity between the equations of sandwich theory and those for homogeneous shells with or without transverse effects. Thus closed form and approximate solutions of the types available for ordinary shells are also applicable to sandwiches under the assumptions of Reissner's theory. For instance, Naghdi [51] discussed the metnod of asymptotic integration as applied to homogeneous shells of revolutior including shear. Some examples of more specific problems are those treated by Rossettos [52], who considered shallow sphericai sandwich shells, and Kao [53], who solved multilayer circular cylindrical sandwiches.

I.2.2 The Finite Element Method

The finite element method has developed concurrently with the increasing use of high-speed electronic digital computation and its concommitant emphasis on discretized techniques in structural anaiysis. In brief, this method consists of irealizing the structure as an
assemblage of geometrically simple domains (elements). Simple, but relatively complete, displacement or equilibrium fields are assumed over each domain; and a variational principle of mechanics is employed to obtain a set of influence coefficients for the elemert. A set of linear algebraic equations for the overall assemblage is obtained by combining the coefficients for the individual elements so that continuity of the assumed quantities is preserved at the interconnecting nodes. These equations are modified for the boundary conditions and solved to obtain the response of the structure. If displacement models are assumed, the approach is called the "displacement method," and the resulting stiffness coefficients are an upper bound. Conversely, the "equilibrium method" (assumed equilibrium or stress models) results in a lower bound [64]. A combination of assumed equilibrium and displacement models over each domain is called the "mixed method." The vast majority of work in the finite element method as applied to structural mechanics has employed the displacement method, and the present work also follows this approach. Also, for ease in mathematical manipulations, models are generally of polynomial form and that, too, is the case here.

In general, the finite element method has proved to be a successful tool for the systematic analysis of complex structures aind the approximate solution of difficult problems in continuum mechanics.

A large number of papers has been puilished during the last decade on the finite element method, particularly on its applications to structural mechanics. Comprehensive reviews anc bibliographies, as well as a survey of the basic methods, can be found in References [54-60]. The following review is confined to formative works and to l'terature on the analysis of plates and shells by the displacement method.

A primary stimulus to the development of the finite element analysis of structures was the formalization of the theory of matrix transformation of structures by Argyris [61]. An early statement of the displacement approach was given by Turner et al. [62]; and, in a later paper, Turner [63] further systematized the analysis technique by formulating an efficient assembly process for the direct stiffness method. Finally, the mathematical foundations of the finite element approach were described by Felippa and Clough [60]. This Reference includes a statement of necessary requirements on the displacement model functions in order to obtain convergence to proper stiffness coefficients. These requirements, which are also given in References [65, 57-59], are that the displacement model must provide (l) compatibility between elements and continuity within the element and (2) completeness in the sense that rigid body modes and constant strain states must be included. It should be noted that in some cases useable results may be obtained with element displacement models which do not satisfy these requirements [66, 76]. However, it is known that displacements will not converge to correct values as the mesh size is decreased, if the models fail to fulfill the requirements.

A comprehensive study of early plate bending elements was conducted by Clough and Tocher [60]. They concluded that the best elements then available were their own compatible triangular element [66] and the incompatible rectangular elements derived by Adini and Clough [67] and Melosh [68, 69]. A compatible rectangle [70] was found less favorable mainly because it was lacking in completeness. Since then, improved results have been obtained by Felippa [57, 59] using compatirile and complete triangles and arbitrary quadrilaterals composed of four such triangles. He formalized a procedure for developing triangular elements of various degrees of refinement, i.e., various higher order elements that
not only satisfy the minimum conditions, but also provide extra degrees of freedom which permit a better solution with a coarser mesh. Felippa [59] also developed a bending themein for plates of moderate thichness which accounts for transverse shear in a fashion analogous to Timoshenko beam theory [71, 72] and Mindlin's plate heory [73].

Most finite element analyses of arbitrary shell structures have employed flat triangular elements. In representing a curved surface by an assemblage of flat surfaces, the membrane and bending behavior are uncoupled within the individual elements, but are coupled by the discontinuities of slope at the interelement nodes. Clough and Johnson [74] used a system employing five degrees of freedom at each corner node and achieved satisfactory results except in cases having complex membrane states. Carr [75] developed a refined element with nine degrees of freedom per node, obtaining better results at the expense of a more complicated formulation. Finally, Johnson [76] combined four flat triangles into a non-planar quadrilateral with five degrees of freedom at each corner. This last technique provides superior solutions even for the troublesome cases.

A greater amount of attention has been devoted to the less difficult class of shell problems, the axisymmetric case. The conical frustrum element has been widely used, although recently three axisymmetric types of doubly curved elements have been introduced. Two early approaches by Meyer and Harmon [77] and Popov et al. [78] utilize exact shell theory bending displacements due to edge loading rather than simple displacement models for each conical segment. Consequently, for membrane type problems some rather large inaccuracies are introduced. However, some useful results are obtainable with this approach, particularly for edge effect influence coefficients. Grafton and Strome [79] used conical elements
in a true finite element technique and Percy et al.[80] provided ar important correction to Grafton and Strome's strain energy integration. In addition, Percy et al. extended the application to asymmetric loading cases by use of Fourier expansions in the circumferential directional. Although the results provided by References [79 and 80] are an improvement over previous work, for predominately membrane solutions there are still inaccurate moments introduced through the approximation of a doubly curved structure by singly curved elements, particularly because of the discontinuity of slope at the nodes of the substitute structure. Jones and Strome [81] studied this problem and deve] oped a doubly curved element [82] which matched both the location and slopes of the original shell at the nodal circles, thus avoiding unwanted discontinuities of slope at these locations. Despite a marked improvement of solutions achieved through the use of this new element, the geometric formulation causes some difficulty where the latitude angle of the shell is small. Stricklin et al. [83] also formulated a curved element which duplicates both slope and position at the nodes, but which removes the geometrical difficulties.

Representation of the meridian of the original shell by a series of straight segments or simple curved segments, an approximation first evaluated by Jones and Strome [81], was further investigated by Khojasteh-Bakht. [84]. He compared solutions obtained from two different doubly curved elements satisfying completeness anc compatibility, one which matched position and slopes at the nodes and another which additionally duplicated curvatures at these circles. Although both solutions converged well, remarkably accurate results were obtained with very few elements using the latter approach. For example, with only three elements, near-perfect displacements and stress resultants were
attained for a hemisphere under pure membrane loading. In addition, Khojasteh-Bakht contrasied solutions based on displacement models formulated in both local curvilinear and local rectilinear coordinate systems. The first was unable to accomodate certain constant strain states and thus the second proved to be clearly superior. It should be noted that for arbitrarr shells the use of a local rectilinear system for the displacsment models makes it difficult to satisfy nompatibility at the nodes, but for rotational shells this is not a problem.

The central problem in applying the finite element rethod to dynariic problems is the representation of the inertial properties of the structure. There are two principal approaches, one being the simple lumping of masses at the nodes. Archer [85] has proposed the second, the "consistent mass" matrix which is derived from expressing the kinetic energy in terms of the assumed displacement models. The consistent approach preserves the mass distributi n and the coupling between the various inertial effects, whereas the lumped approach leads to an uncoupled (diagonal) mass matrix. Felippa [59] has compared the two techniques and concluded that the lumped mass system is more prac~ tical since its diagonal form reduces the computational effort and permits rer stion ce the degree of the eigenvalue problem. However, one advantage to the consistent mass is that it gives a true upper bound on the frequencies.

I.2.3 Structural Damping

The prevention of near-resonent fatigue has long been a concern of structural engineers. In addition, vibration control is important in reducing noise transmission or re-rediation, in attenuating oscillations
associated with external turbulence of aircraft, and in preventing malfunctions of components and instruments [91]. With the increasing use of lightweight structures subject to intense excitation, particularly in aerospace applications, damping has been recognized as an important property in the overall performance of the structure. Because many structures are subject to random vibrations over a uroad spectrum, it is no longer sufficient or even possible merely to identify the natural frequencies and attampt to separate them from the exciting frequencies. For example, jet and rocket engines may excite a large proportion of the natural frequencies of the craft. Consequently, it is ajvantagecus to employ materials that have a capacity to dissipate energy and thus to reduce resonant amplitudes. This type of energy dissipation is known as "structural" or "internal" damping.

Since there are few metals (one example, certain magnesium alloys [87]) or other structural materials that possess both sufficient strength and damping capacity, the emphasis in vibration control methods has been on adding dissipative layer. aping trei iments. to the basic structures. These added materials are usually lightweignt polymer plastics which hav' a negligable effect whe strength of the structure. However, when a damping material is used as the core ililer of sandwich-type structures, the dissipative layer is directly involved in the load resisting mechanism as well as in vibration attenuation. Some practical examples of damping due to dissipativ? layers are damping tapes applied to the inside of airplane fusilages, coatings on the inside of automobile hoods [89], and viscoelastic layers inccrporated into ship structures [93]. The same principles have even been applied to vibration control in buildings and large structures [90]. As this dissert,ation is concerned with layered construction, the following
survey of work in the field of structural damping concentrate: on approaches in which dissipative layers are employed.

Lazan [87, 94] and Blanchflower [91] have considered the damping properties of materials. Two categories of mechanical damping are distinguished, that which is amplitude dependent and that which is not. Amplitude-dependent energy dissipation becomes appreciable only in conjunction with large strains and deflections. Hence ior small deflection theories, such as will be used herein, the ampli-tude-independent energy dissipation is of the greatest significance. This type of damping is characteristic of materials which have ratedependent stress-strain laws and ell三ptical hysteresis loops. Therefore, the complex modulus representation of inear viscoelasticity is usuaily a good approximation to the dissipative behavior [94]. Various specific polymers that can be so characterized and that have proved useful for vibration control were described by Ungar and Hatch [95] and by Oberst et al. [56]. In addition, new synthetics for damping applications are steadily keing aeveloped [e.g., 97, 98]. The viscoelastic and dissipative properties of such polymers will be discussed in Chapter V.

Two major structural damping mechanisms of multilsyer composite structures were discussed by Ross et al. [88] and by Kerwin [92]. The first is the "free layer" mechanism in which the riscoelastic material is a surface coating. Thus, during flexural behavior, this damping layer acts primarily in extension. The second mechanism is the "constrained layer" where the dissipative material occurs between two stiffer laminations. This configuration causes the softer layer to defcrm mostly by shearing. Ross et al. [88] pointed out that, on an equal weight basis, damping trestments that deform primarily in shear
are likely to be more effective than those deforming in extension. The earliest investigations into structural damping due to viscoelastic layers were carried out by Oberst [99, 100] and by Liénard [101]. These authors developed expressions for the effective damping of plates due to the addition of a free layer of viscoelastic damping material. Schwarzl [102] considered the coupled and uncoupled bending and extensional vibrations of a two-layered viscoelastic beam. Finally, Hertelendy [89] has used exact elasiicity solutions to study the effect of viscoelastic membrane coatings on plates. In addition, he treated general vibration problems of homogeneous bodies maje of dissipative material.

Much greater attention has been given to the constrained layer mechanisms, particularly in view of the development of "damping tapes" [103]. These tapes are two-layer treatments in which one layer is both adhesive and dissipative and the other is a thin foil which serves as a constraining layer. Ross et al. [88], Ungar and Ross [104] and Kerwin [105] have developed the theory of these tapes and have obtained reasonable verification with experiments. Constrained layer damping in sandwich plates were studied by Plass [106] using a standard solid model for the viscoelastic behavior of the core. The complex modulus representation has been applied to sandwich beams and plates by Ungar [107] and Mead [108]. Among other authors who have also considered the effective damping of flat sandwich structures are DiTaranto and Blasingame [109-112] and Bert et al. [113]. Design considerations were discussed by Ruzicka et al. [114].

Yu has applied his theory for sandwich behavior to the study of dampea vibrations by using the complex modulus approach [115]. An evaluation of the approximations of Yu's theory in this application is
provided by Hertelendy and Goldsmith [118], who compare the approach with an exact extended Rayleigh-Lamb solution. In addition, Yu has considered the damping of sandwich shells [116] and, together with Ren [117], the damping of two-layer plates ana shells. Bieniek and Freudenthal [47] also included structural damping in their study of the forced vibrations of sandwich shells.

Finally, it is interesting to note that vibration experiments with layered specimens are an important means of determining the dynamic viscoelastic properties of materials. Nicholas and Heller [119] employed cantilever sandwich beams with cores made of elastomers in order to determine the complex shear modulus of these polymers. Nashif [120] has advocated the use of specimens with symmetric viscoelastic coatings to ascertain the damping properties of the applied material.

I.3. Outline and Assumptions

As stated previously, the objective of this dissertation is to extend the finite element method of analysis to multilayer beams, plates and shells having layers flexible in transverse shear. A generalized theory analogous to Yu's sandwich theory [32] is adopted for this purpose. In Chapter II it is pointed out how this formulation can be applied to one- and two-dimensional finite element discretizations. However, for the sake of simplicity, specific derivations are carried out only for the case of three-layered construction symmetric about the middle surface and, only for configurations that may be represented by a one-dimensional finite element mesh. Thus, in Chapter III, the stiffness matrices and consistent load vectors for beams, axisymmetric circular plates and rotational shells are derived and applied to the static analysis of elastic structures. For the axisymmetric shells, the doubly curved element due to Khojasteh-Bakht [84] is employed. Throughout this work, assumed polynomial displacement fields and the direct stiffness method are used.

The free vibration analysis of elastic sandwich structures is the subject of Chapter IV. Masses are lumped along a normal to the middle surface in order to represent both the rotatory and translational inertia in uncoupled form. In this manner it is possible to obtain the thickness-shear as well as the flexural natural frequencies. In the former mode, shear deformations predominate over the flexural waves. This type of behavior is important for some types of soft-core sandwiches. The dynamic analysis has not yet been extended to initial value problems because it is felt that the free vibration investigation is a satisfactory test of this approach to discretization. Given the ability to obtain reasonable natural frequencies and mode shapes, it is possible
to apply mode superposition or numerical integration techniques with some confidence.

In Chapter V, damping by the inclusion of viscoelastic layers is studied using the complex modulus representation of linear viscoelasticity. Since polymers are the most widely-used damping materials in composite structures, a discussion of the viscoelastic properties of these materials is included. Special attention is devoted to the temperature and frequency dependence of the properties and an attempt is made to account for frequency dependence in calculating the effective damping of multilayer structures. It should be noted that procedures used in Chapter V are not restricted to layered structures; rather, they can be applied to any finite element representation of a linear viscoelastic continuum subject to steady state oscillations.

The following assumptions apply throughout this paper. Other assumptions of lesser importance will be introduced in the applicable sections.

1. Displacements and strains are sufficiently small so that the linear theories of elasticity and dynamic viscoelasticity apply.
2. Perfect bonding occurs between adjacent layers of the structure.
3. The transverse displacement of all layers is the same at a given location of the middle surface of the structure. In other words, there is no pinching deformation.*
4. Shells are thin in the sense that products of thickness with curvature are much smaller than unity ($\zeta / R \ll 1$).
5. Material lines in each layer originally straight and normal to

[^1]the middle surface renain straight after deformation, but no longer remain normal. The difference in shear strain in the several layers manifests itself in warping of the cross-section at the interfaces.
6. The materials of each layer are linearly elastic and isotropic. However, the procedure can be easily modified for anisotropic behavior by substituting the appropriate matrix of material properties.
7. All layers are "stiff" in that tangential effects are taken into account. However, this assumption can be relaxed for a particular layer by assigning a zero Young's modulus.
8. All layers are flexible in shear (see 5 above) but this assumption can be relaxed for a particular layer by assigning an infinite shear modulus.

CHAPTER II: GENERAL THEORY AND THE FINITE ELEMENT METHOD

II.1. General Theory

Consider an arbitrary multilayered shell with individual laminations of constant thickness. Let a reference surface within the shell be parallel to the layer interfaces and let ξ_{1} and ξ_{2} be Gaussian orthogonal curvilear co-ordinates for the surface. Moreover, let the co-ordinate ines coincide with the lines of principal curvature of the surface and let ζ be a co-ordinate normal to the surface (See Figure II.l). With these assumptions a line element in the space surrounding the reference surface can be expressed in terms of the differentials of the orthogonal curvilinear co-ordinates as follows:

$$
\begin{equation*}
d s^{2}=\alpha_{1}^{2}\left(1-\frac{\zeta}{R_{1}}\right)^{2} d \xi_{1}^{2}+\alpha_{2}^{2}\left(1-\frac{\zeta}{R_{2}}\right)^{2} d \xi_{2}^{2}+d \zeta^{2} \tag{II.1}
\end{equation*}
$$

where α_{1} and α_{2} are the surface metrics and R_{1} and R_{2} are the principal radii of curvature. Displacements of the reference surface corresponding to the co-ordinates ξ_{1}, ξ_{2} and ζ are defined by

$$
\begin{align*}
& u_{1}^{\circ}=u_{1}^{\circ}\left(\xi_{1}, \xi_{2}\right) \\
& u_{2}^{o}=u_{2}^{\circ}\left(\xi_{1}, \xi_{2}\right) \tag{II.2}\\
& w^{o}=w^{\circ}\left(\xi_{1}, \xi_{2}\right)
\end{align*}
$$

respectively. Hereafter, Love's first approximation [121] for thin shells will be adopted. That is, the thickness of the shell is considered small as compared to the radii of curvature and thus

$$
\begin{equation*}
\zeta / R_{B} \ll 1, B=1,2 . \tag{II.3}
\end{equation*}
$$

FIGURE II.I ARBITRARY SHELL REFERENCE SURFACE

FIGURE II. 2 THICKNESS GEOMETRY OF MULTILAYER SHELL

In effect, this means that the variation of curvature through the thickness of the shell is neglected. Finally, the rotations of the tangents to the reference surface are:

$$
\begin{equation*}
x_{\beta}=x_{\beta}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{\alpha_{\beta}} \frac{\partial w^{o}}{\partial \xi_{\beta}}+\frac{u_{\beta}^{0}}{R_{\beta}}, \quad \beta=1,2 . \tag{II.4}
\end{equation*}
$$

In the following, the subscript β may take the values 1 or 2 , and the subscript δ will then take the opposite vaiue. The summation convention does not apply.

II.1.1. Kinematic Assumptions

To represent the behavior of the shell layers, a generalized theory similar to Yu's sandwich theory [32] is adopted. No restriction is placed on the relative layer thicknesses or properties, provided only that the total thickness is sufficiently small so that Equations (II.3) apply. In the following, consider the $k^{\text {th }}$ layer as identified by the subscript k. A normal thickness co-ordinate colinear with ζ, but with its origin at the middle surface of the $k^{\text {th }}$ layer is designated ζ_{k}. In other words, the reference surface is given by $\zeta=0$ and the middle surface of layer k is given by $\zeta_{k}=0$. Displacement quantities at the middle surface of the $k^{\text {th }}$ layer are referenced by the subscript k and the superscript 0 . In addition, the value of ζ at the face of layer k closer to the reference surface is indicated by $\zeta(k)$ (See Figure II.2).

First, it is assumed that the transverse displacements of all layers are the same, i.a., that the transverse Young's moduli of the layers are effectively infinite.

$$
\begin{equation*}
w_{k}=w_{k}^{0}=w^{0} \tag{II.5}
\end{equation*}
$$

Reissner [16] has shown that this assumption can cause appreciable error for certain cases such as the uniform bending-stress states of shells with very soft layers. However, there are several classes of problems for which the hypothesis of Equation(II.5) is admissable. These include (1) beam and plate problems [16], (2) free vibration problems, provided thickness pinching modes are not important, and (3) edge, concentrated, and partial loading problems where pinc ang effects remain localized [16]. In addition, since all layers are assumed "stiff" (Section I.3), it is not unreasonable to accept Equation (II.5) if one is aware of the potential inaccuracies in applying the theory to composite structures with very soft layers $[16,27-29,12]$.

Next, it is assumed that material lines originally straight and normal to the middle surface of each layer remain straight but do not necessarily remain normal to the deformed surface. This implies that the transverse shearing deformation of each layer is independent of the normal co-ordinate. Hence, the shear rotation of the $k^{\text {th }}$ layer is represented by some average value of the shear strain which is a function only of the surface co-ordinates ξ_{1} and ξ_{2} :

$$
\begin{equation*}
\gamma_{B k}=\gamma_{B k}\left(\xi_{1}, \xi_{2}\right) \tag{II.6}
\end{equation*}
$$

Another implication is that the tangential displacements of the $k^{\text {th }}$ layer may be represented by the displacements of the middle surface of the layer and by the rotation of the normals to the middle surface as follows:

$$
\begin{equation*}
u_{B k}=u_{B k}^{\circ}-\zeta_{k}\left(\chi_{\beta}-\gamma_{B k}\right) \tag{II.7}
\end{equation*}
$$

Note that the difference between this formulation and the Kirchhoff-Lcve hypothesis is the fact that the rotation of the normal is no longer equal to the rotation of the tangent to the middle surface. Thus the present theory is analogous to the theories for homogeneous structure; which include the effects of transverse shear $[71-73,59,21]$.

Finally, since perfect bonding between layers is assumed, the tangential displacements must be continuous across the interfaces of the composite shell. This condition leads to the following expressions for the tangential displacements of the middle surface of the $k^{\text {th }}$ layer, where $k \geq 0$. I there be $k-1$ layers between the $k^{\text {th }}$ layer and the 0 -th (zero-th) layer which contains the reference surface.

$$
\begin{gather*}
u_{B k}^{\circ}=u_{B}^{\circ}-\frac{\zeta(k+1)+\zeta(k)}{2} \chi_{B}+\zeta(1) \gamma_{B o}+\sum_{m=1}^{k-1}[\zeta(m+1)-\zeta(m)] \gamma_{B m}+ \\
+\frac{\zeta(k+1)-\zeta(k)}{2} \gamma_{B k}=u_{B k}^{\circ}\left(\xi_{1}, \xi_{2}\right) . \tag{II.8}
\end{gather*}
$$

For $k=0$ or 1 , the summations drop out aild the Equations (II.8) still apply, where $\zeta(1)$ and $\zeta(0)$ are the interfaces of the zero-th layer.

I工.1.2. Strain-Displacement Equations

The strain-displacement equation from classical linear shell theory, (e.g., Reference [122]) are applied. For the $k^{\text {th }}$ layer, the equations are:

$$
\begin{align*}
& \varepsilon_{\beta k}=\frac{1}{\alpha_{\beta}} \frac{\partial u_{\beta k}}{\partial \xi_{\beta}}-\frac{w_{k}}{R_{\beta}}+\frac{u_{\delta \beta}}{\alpha_{\beta} \alpha_{\delta}} \frac{\partial \alpha_{\beta}}{\partial \xi_{\xi}} \\
& \gamma_{12 k}=\frac{u_{2}}{\alpha_{1}} \frac{\partial}{\partial \xi_{1}}\left(\frac{u_{2 k}}{\alpha_{2}}\right)+\frac{\alpha_{1}}{\alpha_{2}} \frac{\partial}{\partial \xi_{2}}\left(\frac{u_{1 k}}{\alpha_{1}}\right) \tag{II.9}\\
& \gamma_{\beta \zeta k}=\frac{1}{\alpha_{\beta}} \frac{\partial w_{k}}{\partial \zeta_{\beta}}+\frac{\partial u_{\beta k}}{\partial \zeta}+\frac{u_{\beta k}}{R_{\beta}}
\end{align*}
$$

The in-surface strains may be written in the following form by substituting Equations (II.5), (II.6) and (II.7) into Equations (II.9):

$$
\begin{align*}
& \varepsilon_{\beta k}=\varepsilon_{\beta k}^{\circ}+\zeta_{k} \kappa_{\beta k} \tag{II.10?}\\
& \gamma_{12 k}=\gamma_{12 k}^{\circ}+\zeta_{k} \kappa_{12 k}
\end{align*}
$$

In these equations the middle surface strains are given by

$$
\begin{gather*}
\varepsilon_{\beta k}^{\circ}=\frac{1}{\alpha_{\beta}} \frac{\partial u_{\beta k}^{\circ}}{\partial \xi_{\beta}}-\frac{w^{\circ}}{R_{\beta}}+\frac{u_{\delta k}^{c}}{\alpha_{\beta} \alpha_{\delta}} \frac{\partial \alpha_{\beta}}{\alpha \xi_{\delta}} \\
\left.\left.\gamma_{12 k}^{\circ}=\frac{\alpha_{2}}{\alpha_{1}} \frac{\partial}{\partial \xi_{1}}\left(\frac{u_{2 k}^{\circ}}{\alpha_{2}}\right)+\frac{\alpha_{1}}{\alpha_{2}} \frac{i u_{1 k}^{\circ}}{\partial \xi_{2}} \right\rvert\, \frac{\alpha_{1}}{\alpha_{1}}\right) \tag{II.10b}
\end{gather*}
$$

and the changes in curvature are giver j

$$
\begin{align*}
& \kappa_{1 k}=\frac{1}{\alpha_{\beta}} \frac{\partial}{\partial \xi_{\beta}}\left(x_{B}-\gamma_{\beta k} ;-\frac{\left(x_{\delta}-\gamma_{\delta k}\right)}{\alpha_{\beta} \alpha_{\delta}} \frac{\partial \alpha_{B}}{\partial \xi_{\delta}}\right. \tag{IT.IOc}\\
& \kappa_{12 k}=-\frac{\alpha_{2}}{\alpha_{1}} \frac{\partial}{\partial \xi_{1}}\left(\frac{x_{2}-\gamma_{2 k}}{\alpha_{2}}\right)-\frac{\alpha_{1}}{\alpha_{2}} \frac{\partial}{\partial \xi_{2}}\left(\frac{x_{1}-\gamma_{1 k}}{\alpha_{1}}\right)
\end{align*}
$$

In order to consider the transverse shear strains, the tangential displacements of the $k^{\text {th }}$ layer must be written in terms of the reference surface displacements. For example, Equations (Ii.7) and (II.8) can be combintd to give

$$
\begin{aligned}
u_{B k}= & u_{B}^{0}-\zeta\left(x_{B}-\gamma_{B}\right)-\frac{\zeta(k+1)+\zeta(k)}{2} \gamma_{B k}+\zeta(1) \gamma_{B o}+ \\
& +\sum_{a=1}^{k-i}[\zeta(m+1)-\zeta(m)] \gamma_{B m}+\frac{\zeta(k+1)-\zeta(k)}{2} \gamma_{B k}
\end{aligned}
$$

Substitution of this and Equations (II.5) and (II.6) into the appropriate equation from (II.9) results in

$$
\begin{aligned}
\gamma_{3 \zeta k}= & \frac{1}{\alpha_{B}} \frac{\partial w^{o}}{\partial \xi_{\beta}}+\frac{u_{\beta}^{o}}{R_{\beta}}-\left(x_{B}-\gamma_{B}\right)-\frac{\zeta}{r_{B}} \cdot\left(x_{\beta}-\gamma_{\beta}\right)+\frac{\zeta(k)}{R_{B}} \gamma_{\beta k}+ \\
& +\frac{\zeta(1)}{R_{\beta}} \gamma_{\beta o}+\sum_{m=1}^{k-1} \frac{[\zeta(m+1)-\zeta(m)]}{R_{B}} \gamma_{\beta m}
\end{aligned}
$$

The last four terms of this equation are negligible in comparison to the first three terms urler the thin shell assumptions of Equations (II.3). Hence, using the Equations (II.4), the transverse shear strains are given by

$$
\begin{equation*}
\gamma_{B \zeta k}=\frac{1}{\alpha_{B}} \frac{\partial w^{o}}{\partial \xi_{B}}+\frac{u^{o}}{R_{B}}-\left(x_{B}-\gamma_{B k}\right)=\gamma_{B k} \tag{II.11}
\end{equation*}
$$

which is consistent with the kinematic assumptions.

II.1.3. Stress-Strain Kelations

Assuming that the in-surface stresses and strains can be represented by a state of generalized plane stress, the stress-strain equations for the $k^{\text {th }}$ layer and an isotropic meterial are given by

$$
\left\{\begin{array}{c}
\sigma_{1 k} \tag{II.12}\\
\sigma_{2 k} \\
\tau_{12 k}
\end{array}\right\}=\left[\begin{array}{ccc}
E_{k} /\left(1-v_{k}^{2}\right) & v_{k} E_{k} /\left(1-v_{k}^{2}\right) & 0 \\
v_{k} E_{k} /\left(1-v_{1}^{2}\right) & E_{k} /\left(1-v_{k}^{2}\right) & 0 \\
0 & 0 & G_{k}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{1 k} \\
\varepsilon_{2 k} \\
\gamma_{12 k}
\end{array}\right\}
$$

For an anisotropic raterial the apg-opriate const:tutive equations would be used in place of Equations (II.12). The $3 \times 3 \mathrm{ma}+\mathrm{rax}$ would deperd upon both the particular constituive law and the orientation of materisl property axes in relation to the co-ordinata lines (lines of principal curvature). For example, where a material is orthotropic within the surface and has axes of orthotropy coincident with the co-ordinate lines, the stress-strain equetions are

$$
\left\{\begin{array}{c}
\sigma_{1 k} \tag{II.13}\\
\sigma_{2 k} \\
\tau_{12 k}
\end{array}\right\}=\left[\begin{array}{ccc}
E_{1 k} /\left(1-v_{1 k} \nu_{2 k}\right) & v_{1 k} E_{2 k} /\left(1-v_{1 k} \nu_{2 k}\right) & 0 \\
v_{2 k} E_{1 k} /\left(1-v_{1 k} v_{2 k}\right) & E_{2 k} /\left(i-v_{1 k} \nu_{2 k}\right) & n \\
0 & 0 & G_{12 k}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{1 k} \\
E_{2 k} \\
\gamma_{12 k}
\end{array}\right\}
$$

where $\nu_{2 k} E_{1 k}=V_{1 k} E_{2 k}$.
Since the transverse shear strain has beer assumed to be constant across the thickness of each layer, the corresponding shear stress is likewise constant and is directly proportional to the shear strain. However, the average shear strain which may provide a good approximation to the shear rotation does not necessarily provide an adequate representation of the transverse shear-stress resultant. Therefore, a shear-stress ccrrection factor is used in conjunction with the transverse stress-strain equations for the $k^{\text {th }}$ layer as follows:

$$
\begin{equation*}
\tau_{B \zeta k}=\kappa_{k} G_{k} Y_{\beta \zeta k} \tag{II.14}
\end{equation*}
$$

The shear-stress correction factor, K_{k}, is snalogous to that used in the theory for homogeneous structures [71-73, 123, 124]. One method of assigning a value to this factor is to compare the approximate theory with exact theory for some aspect of behavior. For example, Mindin [73] has chosen $k=\pi^{2} / \mathrm{l}$, for homogeneous plates so
that the simple thickness-shear frequency from both theories match. Bert et al. [113] have pointed out that one value for a dynamic correction factor may permit good estmates of natural frequencies, whereas a different value may produce better approximations to mode shapes. It is difficult to make a definitive recommendation for a specific value or expression for k_{k} because it is apparent that this factor is dependent upon both the configuration of the multilayer construction (number of layers, ratios of thicknesses and properties) and the specific application (static or dynamic analysis). Additional factors may also influence the selection. For the dynamic analysis of three-layered sandwich construction with thin, heavy facings and a light, weak core, Yu [32, 33] has suggested values very close to unity. Other investigators [113] have derived similar magnitudes; some recommendations range as high as 2.2 [125]. Since most of the applications later in this paper are to three-layered structures with relativeiy thin facings and a relatively flexible core, a value of unity will be used herein.

In discussing the transverse shear stress, it should be noted that the present approximate theory does not provide for continuity of this stress at the interfaces, nor does the shear stress vanish at the free surfaces. However, the assumption of a constant shear strain (And thus a constant shear stress) for each layer is consistent with the philosophy of the finite element method. That is, an approximate simple displacement patiern which satisfies compatibility is hypothesized and then a variational theorem is used to obtain an orcimal

[^2]
II.1.4. Stress Resultants

The stress resultants for the $k^{\text {th }}$ layer can be obtained by integrating the stresses over the thickness.

$$
\begin{gather*}
\left\{\begin{array}{c}
\left(N_{B k}, M_{B k}\right) \\
\left(N_{-}, M_{12 k}\right)
\end{array}\right\}=\int_{-h_{k} / 2}^{h_{k}^{\prime 2}}\left(1, \zeta_{k}\right)\left\{\begin{array}{l}
\sigma_{B k} \\
\tau_{12 k}
\end{array}\right\} d \zeta_{k} \tag{II.15a}\\
Q_{B k}=h_{k} G_{k} K_{k} \gamma_{B \zeta k} \tag{II.15b}
\end{gather*}
$$

where $h_{k}=|\zeta(k+1)-\zeta(k)|$ is the thickness of the layer. By using Equation (II.12), it is possible to express the first set of resultants in terms of the middle surface strains and the changes of curvature of Equations (II.10). Then the integrations can be evaluated in terms of the extensional, bending and shear stiffnesses of the layer.

The total stress resultants for the shell are obtained from the individual resultants of Equations (II.15) by summing with respert to the reference surface. Let L be the total number of layers.

*

During the early stages of this investigation, a finite element was developed for sandwich beams using a quadratic variation of shear through the depth such that the shear strain and stress vanished at the free surfaces. This variation was derived on the basis of a linear variation of bending stresses over the depth. Because of the more complex nature of the warping in this case, the formulation was restricted to beams having a continuous shear diagram. That is, interelement compatitility was maintained for all the layer shears. A linear variation of shear sirain over the length was used. For beams with dimensions and properties typical of sandwich construction, results using this elemer.t were practically indistinguishable from those using a constant shear strain across the thickness. Hence the more complex formulation was discarded in favor of the approximate one.

$$
\begin{gather*}
\left\{\begin{array}{c}
N_{B} \\
N_{12} \\
Q_{B}
\end{array}\right\}=\sum_{k=1}^{L}\left\{\begin{array}{c}
N_{B k} \\
N_{12 k} \\
Q_{B k}
\end{array}\right\} \tag{II.16a}\\
\left\{\begin{array}{c}
M_{B} \\
M_{12}
\end{array}\right\}=\sum_{k=1}^{L}\left(\left\{\begin{array}{l}
M_{B k} \\
M_{12 k}
\end{array}\right\}+\frac{\zeta(k+1)+\zeta(k)}{2}\left\{\begin{array}{c}
N_{B k} \\
N_{12 k}
\end{array}\right\}\right) \tag{II.16b}
\end{gather*}
$$

The sign conventions for these stress resultants are shown in Figure (II.3).

II.1.5. Application to the Finite Element Method

For the theory presented above, the following displacements are necessary to describe completely the behavior of the shell:

1. The normal displacement of the reference surface, w°.
2. The tangential displacements of the reference surface, u_{1}^{o} and u_{2}°.

- 3. The rotations of the tangents to the refererce surface, X_{1} and X_{2}.

4. The shear rotations of each of the layers, $\gamma_{1 k}$ and $\gamma_{2 k}$ for $\mathrm{k}=1,2, \ldots, \mathrm{~L}$.

For one-dimensional cases, such as axisymmetric shells, the number of displacements in 2 through 4 is halved. Another special case is that of symmetry about the reference surface, for which the number of each of the displacements in 4 are reduced by $L / 2$ if L is even, or by $(\mathrm{L}-1) / 2$ if L is odd.

In the finite element method, the deformations of an element are continuous functions in the local co-oráinate system and are expressed in terms of the nodal values of the displacements. In general, for each

FORCES

MOMENTS

FIGURE II. 3 SHELL STRESS RESULTANT SIGN CONVENTIONS

FIGURE II. 4 PLANAR QUADRILATERAL ELEMENT AFTER JOHNSON [76]
primary external node, all of the above displacements are selected as unknowns. Depending upon the level of refinement of the displacement models, some of the displacements may also be chosen as additional degrees of freedom at internal nodes or at secondary external nodes.* As an example, consider the planar quadrilateral assembled from four triangles used by Johnson [76] for the analysis of singly curved shells (See Figure II.4). For such structures, the nodal lines are coincident with lines of principal curvature. The bending is represented by a cubic normal displacement model after Hsieh, Clough and Tocher [66] whereas the membrane behavior is approximated by a quadratic variation of tangential displacements (linear strai: triarieles of Reference [58]) with the external boundaries constrained to deforir ly arly. If the laver shear strains are modeled in the same way as the membrane displacements, a total of $33+18 \mathrm{~L}$ degrees of freedom would be required: (1) at nodes 1 to 5, displacements of type 1,2,3, and 4 contributing $5+2 L$ degrees of freedcm per node: (2) at nodes 6 to 9 , displacements of type 2 and 4 contributing $2+2 L$ degrees of freedom per node.

In assembling the elements into a representation of the overall shell, compatibility usually must be maintained for all the displacement degrees of freedom occurring at the interelement nodes. However, when the transverse shear behavior is included, some continuity conditions must be removed in order to permit the "kinking" associated with discontinuities of the shear stress resultant. These discontinuities occur at transverse line loads. Thus, the necessary ani sufficient requirement for compatibility of the assemblage is interelement continuity on the following nodal displacements:

[^3]A. The normal displacement of the reference surface, w°.
B. The tangential displacements of the reference surface, u_{1}° and u_{2}°.
C. The rotations of the normals to the reference surface (i.e., the rotations associated with bending), $X_{b l}$ and $X_{b 2}$.
D. The shear warping angles at each of the layer interfaces, $\left.\left(\gamma_{1(k+1}\right)-\gamma_{1 k}\right)$ and $\left(\gamma_{2(k+1)}-\gamma_{2 k}\right)$ for $k=1,2, \ldots, L-1$. The reduction of the number of these displacements for the special ases is similar to that for the basic displacements 1 to 4 above.

Comparing displacements A to D with 1 to 4 , it is appe ent that, in addition to modifying the character of some of the quantities, the total number of displacements per node has been reduced by two. That is, the number of continuity conditions has been decreased by two. The extra displacement in each of the two directions is any one of the layer shear rotations which may now be considered as an internal degree of freedom for the elemcrit. If these extra displacements and the shear warping angles (D) are known, all the layer shear rotations are recoverable. Furthermore, the rotations of the normals to the reference surface may be written as

$$
\begin{equation*}
x_{b \beta}=x_{\beta \beta}-x_{s \beta} \tag{II.17}
\end{equation*}
$$

where the subscripts b and s represent bending and shearing respectively. The rotations due to shearing may be expressed in terms of the shear rotations and layer thicknesses

$$
\begin{equation*}
\chi_{s \beta}=\chi_{s \beta}\left(h_{k}, \gamma_{\beta k}\right) \tag{II.18}
\end{equation*}
$$

Hence the rotations X_{β} are also recoverable. A specific version of

Equation (II.18) will be derived in Section III.I.
At each interelement node there are $5+2(\mathrm{~L}-1)$ degrees of freedom and thus the total number of equations necessary for the overall discretized structure is the product of this quantity and the total number of nodes. The additional internal degrees of freedom are not directly involved in these equations; rather, the element stiffness matrix is condensed with respect to the lnads on these internal nodes [62]. This process, called static condensation, is described in Section II.2.6. For example, in the Johnson-type quadrilateral discussed above, the total number of internal degrees of freedom is $2 J+10 L:(1) 2+2 L$ contributed from each oi the internal nodes 6 to 9 ; (2) $5+2 \mathrm{~L}$ contributed from the internal node 5; (3) 2 contributed from each of the nodes 1 to 4, corresponding to the nodal displacements for which continuity is not enforced. As a result, the size of the stiffness matrix for this element after condensation would be $(12+8 L)$ by $(12+8 L)$.

It should be emphasized that the generalized theory in this chapter is formulated only in terms of co-ordinates which are coincident with the lines of principal curvature. Thus, when applying the theory to finite elements with curved surfases, the displacements and their du-ivatives must be taken in the principal directions. For axisymmetric shells, the application involves no difficulties since the principal co-ordinates are the natural choice. Furthermore, arbitrary shells are usually represented by planar elements [74-76] for which the bending and stretching are uncoupled. Hence the choice of the "principal" directions of the substitute structure is open.
II.1.6. Boundary Conditions

In the previous section, it has been shown that the external nodal displacements at any node are

$$
w, u_{\beta}, \chi_{\beta},\left(r_{3(k+1)}-\gamma_{\beta k}\right), \quad k=1,2, \ldots, L
$$

Hence, at the boundary of a structure, kinematic constraints can be applied by specifying any or all of the above displacements. In practice, if a displacement quantity is specified to be zero, all the elements of the corresponding row and column of the overall stiffness matrix are set to zero with the exception of the lement on the principal diagonal, which is set to one. In addition, the load corresponding to the restrained displacement is set to zero. Elastic constraints and skewed boundaries are also admissable, and their treatment is covered in the literature on matrix analysis and the finite element method [56].

For this particular formulation, it is possible to provide for a support fixed against rotation in uwo ways. Either bending rotation alone may be prevented or both bending rotation and warping may be constrained. The latter is probably a more accurate representation of a classical "fixed edge," although both possibilities have applications. In either case, rotation of the tangent to the middle surface due to shearing, X_{s}, must occur at fixed supports, and this is true for the above formulation.
II.2. Siniffness Analysis of Elements for the Displacement Method

Following is a brief summary of the standard stiffness analysis [126, l27] which will be applied to three different elements later in this chapter. This derivation is the key step in the direct stiffness method outlined in Section II.3. Let $N=n+m$ be the total number of degrees of freedom for a single element, where n and m are the numbers of external and internal degrees of freedom, respectively. Also, let a local co-ordinate system for the element be designated by x.

II.2.1. Displacement Models

The displacements cuer the domain of the element are expressed in terms of generalized displacements as follows:

$$
\begin{equation*}
\{u(x)\}=[\Phi(x)]\{\alpha\} \tag{II.19}
\end{equation*}
$$

Here $[\Phi(x)]$ is the matrix of polynomial displacement models and $\{\alpha\}$ is the $\mathrm{N} \times \mathrm{l}$ vector of generalized displacements. $\{\alpha\}$ can be considered to be the amplitudes of the displacement shapes [$\Phi(x)$] . Note that if $[\Phi(x)]$ is expressed directly in terms of the interpolation polynomials for the particular element, $\{\alpha\}$ is replaced by the vector of nodal displacement, \{q\}. The displacement models are simple, but relatively complete, fields chosen to satisfy, if possible, the requirements of completeness and compatibility (Section I.2.2). In addition, for an arbitrary two-dimensional structure, the models must provide a stiffness which is invariant with respect to the relative orientation of the local and global co-ordinate systems.

II.2.2. Element Strains

Using the strain-displacement equations and tine displacements of Equation (II.19), the element strains may be written in terms of the generalized co-ordinat s.

$$
\begin{equation*}
\{\varepsilon(x)\}=[B(x)]\{\alpha\} \tag{II..U}
\end{equation*}
$$

In this dissertation, the strain vector $\{\varepsilon\}$ shall be comprised of the middle surface strains and the changes of curvature as given in Equations (II.10b and c) and the transverse shears of Equation (iI.Il). The total strains may be found from Equation, (II.10a) and may be writ,ten as

$$
\begin{equation*}
\{\epsilon(x, \zeta)\}=[z(\zeta)]\{\varepsilon(x)\} \tag{II.EI}
\end{equation*}
$$

II.2.3. Stress-Strain Relations

Employirg submatrices of the type given in Equation (II.12), the total stresses may be expressed in terms of the totel itrains by

$$
\begin{equation*}
\{\sigma(x, \zeta)\}=[C]\{(x, \zeta)\} \tag{II.22}
\end{equation*}
$$

II.2.4. Applicat: on the Principle of Minimum Potential Energy

In the absence of body forces, the totnl potential [128] of an element is given by

$$
\begin{equation*}
\left.\pi=U-V=\frac{1}{2} \int_{V}\{\epsilon\}^{T}\{\sigma\} d v-\int_{a}\{u\}^{T_{\{ }} \bar{v}_{i}\right\} d a \tag{II.23}
\end{equation*}
$$

Here the barred quantities se prescribed and the following definitions spply:
$v=$ volume of the element
$a=$ erea of reference surface of the element over which stresses necified
$\left\{\bar{p}_{u}\right\}=$ vector of loads correspunding to the displacements $\{u\}$ and distributed over the surface of the element.

Sutstituting Equations (I2.19-22) into (II.23) gives

$$
\pi=\{\alpha\}^{T}\left(\frac{1}{2} \int_{v}[B]^{T}[\Sigma]^{T}[C][z][B] d v\{\alpha\}-\int_{a}[\Phi]^{T}\left\{\bar{p}_{u}\right\} d a\right)(I I .24)
$$

Application of the variational principle [128] to Equation (II.24)
results ir rariation of the generalized co-ordinates only to give

$$
\begin{equation*}
\delta \pi=\{\delta \alpha\}^{T}\left(\int_{V}[B]^{T}[D][B] \operatorname{av}\{\alpha\}-\int_{a}[\Phi]^{T}\left\{\bar{p}_{u}\right\} d a\right)=0 \tag{II.25}
\end{equation*}
$$

where the matrix 1 has veen defined as

$$
\begin{equation*}
[\mathrm{D}]=\mathrm{L}(r)=[\mathrm{Z}(\zeta)]^{\mathrm{T}}\left[\mathrm{C}^{\prime}\right][\mathrm{z}(\zeta)] \tag{II.26}
\end{equation*}
$$

The integral of [D] over the thickness of the shell is given by

$$
\begin{equation*}
[G]=\int_{-h / 2}^{h / 2}[D] d \zeta \tag{II.27}
\end{equation*}
$$

The equilibrium equatios which result from Equation (II.25) are

$$
\begin{equation*}
\left\{Q_{\alpha}\right\}=\left[k_{\alpha}\right]\{\alpha\} \tag{II.28}
\end{equation*}
$$

where

$$
\begin{align*}
& {\left[k_{\alpha}\right]=\int_{v}[B]^{T}[G][B] d v} \\
& \left\{Q_{\alpha}\right\}=\int_{a}[\Phi]^{T}\left\{\bar{p}_{u}\right\} d a \tag{II.29}
\end{align*}
$$

are the element stiffness and consistent generalized loads respectively.

II.2.5. Transformation to Global Co-ordinates

The nodal displacements in local co-ordinates can be obtained in terms of the generalized displacenents by evaluating Equation (II.19) at the nodes of the element.

$$
\begin{gathered}
\{q\} \\
\mathrm{NxI}
\end{gathered}=\left[\begin{array}{c}
\Phi(\text { node } 1) \\
\Phi(\text { node } 2) \\
\text { etc. }
\end{array}\right]\{\alpha\}=\left[\begin{array}{cc}
{[\mathrm{A}]} & \{\alpha\} \\
\mathrm{NxN} & \mathrm{Nx}]
\end{array}\right.
$$

This system of equations can be inverted to obtain

$$
\begin{equation*}
\{\alpha\}=\left[A^{-1}\right]\{q\} \tag{II.30}
\end{equation*}
$$

Had [Φ] originally been chosen as interpolation functions, then $\{\alpha\}$ and \{q\} would be synonomous and this step would be unnecessary.

Let $\{r\}$ be the vector of nodal displacements in global co-ordinates. Then the relation between $\{q\}$ and $\{r\}$ is given by

$$
\begin{equation*}
\{q\}=[T]\{r\} \tag{II.31}
\end{equation*}
$$

where the matrix [T] is a simple transfcrmation matrix relating the two co-ordinate systems.

Equations (II.30) and (II.31) may be combined to give

$$
\begin{equation*}
\{\alpha\}=\left[A^{-1}\right][T]\{r\}=[\underline{T}]\{r\} \tag{II.32}
\end{equation*}
$$

Using the transformation matrix of Equation (II.32), it is apparent from Equation (II.24) that the element stiffness and consistent load vector in global co-ordinates are

$$
\begin{align*}
& [K]=T T]^{T}\left\{k_{\alpha}\right\}[T] \\
& \{R\}=[T]^{T}\left\{Q_{\alpha}\right\} \tag{II.33}
\end{align*}
$$

II.2.6. Static Condensation

The equilibrium equations for the element in global co-ordinates

$$
\begin{align*}
& \{\mathrm{R}\}=[\mathrm{k}]\{\mathbf{r}\} \tag{II.34}\\
& \text { NxI NxN NxI }
\end{align*}
$$

can be partitioned to distinguish the external and internal degrees of freedom as follows:

$$
\begin{align*}
& \left\{\begin{array}{l}
R_{1} \\
\hdashline R_{2}
\end{array}\right\}=\left[\begin{array}{lll}
k_{11} & k_{12} \\
\hdashline k_{21} & k_{22}
\end{array}\right]\left\{\begin{array}{l}
r_{1} \\
-r_{2}
\end{array}\right\} \tag{II.35a}\\
& n \times 1 \quad n \times n \quad n \times m \quad n \times l
\end{align*}
$$

Equations (II.35a) can also be written

$$
\begin{align*}
& \left\{\mathrm{k}_{1}\right\}=\left[\mathrm{k}_{11}\right]\left\{\mathrm{r}_{1}\right\}+\left[\mathrm{k}_{12}\right]\left\{\mathrm{r}_{2}\right\} \\
& \left\{\mathrm{R}_{1}\right\}=\left[\mathrm{k}_{21}\right]\left\{\mathrm{r}_{1}\right\}+\left[\mathrm{k}_{22}\right]\left\{\mathrm{r}_{2}\right\} \tag{II.35b}
\end{align*}
$$

by solving the second of these equations foi $\left\{r_{2}\right\}$

$$
\left\{r_{2}\right\}=\left[k_{22}\right]^{-1}\left\{R_{2}\right\}-\left[k_{22}\right]^{-1}\left[k_{21}\right]\left\{r_{1}\right\}
$$

and by substituting this result into the first of Equations (II.35b), there is obtaine'. upon regrouping

$$
\begin{aligned}
& \{\mathrm{R}\}=[\underline{k}]\left\{r_{1}\right\}=\left[\begin{array}{ll}
\underline{k}] \\
n \bar{x} \bar{x} \bar{n} & \{r \bar{x}\}
\end{array}\right]
\end{aligned}
$$

(II. 36a)
where

$$
\begin{align*}
& \{\underline{R}\}=\left\{R_{1}\right\}-\left[k_{12}\right]\left[k_{22}\right]^{-1}\left[R_{2}\right\} \\
& {[\underline{k}]=\left[k_{11}\right]-\left[k_{12}\right]\left[k_{22}\right]^{-1}\left[k_{21}\right]} \tag{II.36b}
\end{align*}
$$

In practice, the condensation is carried out by a symmetric backward Gaussian elimination process [58]. The matrices of Equations (II.36) are in suitable form for employment of the direct stiffness assembly procedure (See Section II. 3 below).

II.2.7 Element Stress Resultants

Stress resultants of the type given in Equations (II.15) can be expressed in terms of the nodal displacements of the element. By using Equations (II.20-22) and (II.32), the element stresses may be written

$$
\begin{equation*}
\{\sigma(x, \zeta)\}=[C][z(\zeta)][B(x)][T]\{r\} \tag{II.37}
\end{equation*}
$$

Moreover, the complete set of Equations (II.15) may be written in natrix form as

$$
\begin{equation*}
\{S(x)\}=\int_{-h / 2}^{h / 2}[z(\zeta)]^{\tau}\{\sigma(x, \zeta)\} d \zeta . \tag{II.38}
\end{equation*}
$$

where $\{S\}$ is the vector of all layer stress resultants. Upon combining Equations (II.37) and (II.38) and using the definition given by Equation (II'.27), the element streas resultants at any location within the element are jiven by

$$
\begin{equation*}
\{S(x)\}=[G j[B][\underline{T}]\{r\} . \tag{II.39}
\end{equation*}
$$

It is a simple matter to assemble the total stress resultants according to Equations (II.16) once $\{\mathrm{S}\}$ has been determined at a particular point on the reference surface.

II.3. The Direct Stiffness Method

The direct stiffness method is the most efficient and systematic approach to the stiffness analysis of structures [63]. It has oecome the basic technique of the finite element metho: nd is described in se.eral of the References, e.g., [126, 127]. The following sequence of steps sumarizes the direct stiffness method as applied to the displacement method of solution:

1. Discretization of the structure.
2. Discretization of the displacements and selection of displacement models.
3. Derivation of the element stiffnesses.
4. Assembly of the element stiffnesses into the stiffness of the complete structure.
5. Solution for the displacement amplitudes.
6. Com_utation of the stress resultants.

Steps 2, 3, and 6 are discussed in Section II. 2 above and the remaining steps are briefly described below.

When discretizing the structure, there are certain natural locations for interelement nodes. Line loads and discontinuities in geometric or material properties are examples of such locations. Beyond this, consíderable judgment must be exercized in selecting a nodal mesh. In general, a finer grid is required whe re there are steeper gradients of behavior. For two-dimensional structures, attention should also be devoted to choosing a systematic mesh pattern so that the final equations can be ordered to gj : a ninimum band width.
r: ement stiffness has been derived and transformed to a 1\%. Fristem (global co-ordinates), the interelement
compatibility conditions can be applied to assemble the structure stiffness. The element nodes can be identified with nodes of the overall structure. The element influence coefficients are merely added to their proper locations in the overall stiffness, using the cross-identifiこation of nodes. The element consistent loads are similarly assembled into the structure load vector. Another way of interpreting the direct stiffness assembly process is to consider the variational theorem of Equation (II.25) as being applied to the entire structure. Because the displacement fields are separately assumed over each element, the integral over the structure can be taken as the sum of the integrals over the elements. Hence, the $n x n$ element stiffness can be considered a compact form of an $M \times M$ contirsbution to the structure stiffness, where M is the total number of degrees of freedom of the structure.

The equilibrium equations for the overall structure are

$$
\frac{\{\mathrm{V}\}}{\mathrm{Mxl}}=\begin{aligned}
& {[\mathrm{K}]\{\mathrm{V}\}} \\
& \mathrm{MxM} \mathrm{Mxl}
\end{aligned}
$$

and may be partitioned according to the structure nodes as

$$
\left\{\begin{array}{c}
v_{1} \\
v_{2} \\
\cdot \\
\cdot
\end{array}\right\}=\left[\begin{array}{llll}
K_{11} & K_{12} & \cdots & \cdots \\
K_{21} & K_{22} & \\
& & &
\end{array}\right]\left\{\begin{array}{l}
v_{1} \\
v_{2} \\
\cdot \\
\cdot
\end{array}\right\}
$$

(II.40b)

If all of the equations of type (II.36a) are partitioned on the same basis as (II.40b), then the compatibility equations for the p-th node are given by

$$
\begin{equation*}
\left\{v_{p}\right\}=\{\underline{p}\}_{p}^{(1)}=\underset{\underline{p}}{\{\underset{p}{(2)}}=\ldots=\{\underset{p}{(E)}(E) \tag{II.41}
\end{equation*}
$$

Here the subscript indicates the node; the superscript, the $\epsilon_{\text {: }}$ nent; and there are E elements adjacent to the p-th node. The assembly process is then given by

$$
\begin{align*}
& \left.\left\{V_{p}\right\}=\sum_{i=p}^{E} \underline{\{R\}}\right\}_{p}^{(i)} \\
& \left.\left[K_{p p}\right]=\sum_{i=1}^{E}[k]\right]_{p p}^{(i)} \tag{II.42}\\
& {\left[K_{p q}\right]=\sum_{j=1}^{F}[k] \underset{p q}{ }(j)}
\end{align*}
$$

where F is 2 for two-dimensional meshes and 1 for one-dimensional grids. The final step in the assembly process is to modify the stru=ture equilibrium equations for the geometric boundary conditions, i.e., the kinematic constraints.

The resulting stiffness matrix is symmetric and sparse. With the proper ordering of equations, it is also narrowly banded about the principal diagonal and thus can be efficiently stored. Provided the boundary conditions are sufficient to prevent rigid body motion, the matrix is positive-definite and well-conditioned. In practice, only the upper half of, the banded symnetric matrix is stored in the computer, and a symmetric Gaussian composition is used [60].

$$
\begin{equation*}
[K]=[L][D][L]^{T} \tag{II.43}
\end{equation*}
$$

where [L] is a lower uni triangular matrix of multipliers and [D] is a diagonal matrix of pivots. Without pivoting, the banced nature of the staffness is maintained in the decomposition and [D][L] may be overwritten on the upper band of $[\mathrm{K}]$.

When the stress resultants are computed as suggested in Section II.2.7, some discontinuities in stress occur at the element interfaces. These arise from (1) the approximation of the true displacements by the superposition of the simple displacements assumed over each element and (2) the fact that interelement continuity is not maintained on deformation gradients. An averaging process is carried out to obtain a single value for the stress resultants at the nodes. It should be noted that as the mesh is refined and the solution converges monotonically, these nodal stress discontinuities decrease in magnitude.

CHAPTER III: STATIC ANALYSIS OF ELASTIC SANDWICH STRUCTURES

III.1. Sandwich Beams and Cylindrical Beicing of Sandwich Plates

For the one-dimensional case of beam analysis, the parameters used in Section II.l take the following values:

$$
\begin{align*}
& R_{1}=R_{2}=\infty, \xi_{1}=x, \alpha_{1}=1, \zeta=2 \\
& u_{1}^{\circ}=u^{\circ}, w^{\circ}=w, x_{1}=x=\frac{d w}{d x}, \gamma_{1 k}=\gamma_{k} \tag{III.I}\\
& \varepsilon_{1 k}=\varepsilon_{x k}, \gamma_{1 \zeta k}=\gamma_{x z k}
\end{align*}
$$

The remaining parameters $\left(\xi_{2}, \alpha_{2}, u_{2}^{\rho}, x_{2}, \gamma_{2 k}, \gamma_{12 k}, \gamma_{2 \zeta k}\right)$ vanish from the formulation. Furthermore, attention is restricted to threelayer sandwich beams with facings of equal thickness and composed of the same material (Figure III.1). Hence the bending and stretching is uncoupled and only the flexural behavior is considered:

$$
\begin{equation*}
u^{\circ}=0 . \tag{III.2}
\end{equation*}
$$

The thickness of the core layer is tai on to be h_{c} and that of the facings h_{f}. The t, stal thickness is h and the distance between the middle surfaces of the facings is designated d. The reference surface is selected to be identical with the core middle surface and a normslized co-ordinate is defined

$$
\begin{equation*}
\xi=\left(x-x_{i}\right) /\left(x_{j}-x_{i}\right)=\left(x-x_{i}\right) / \ell \tag{III.3}
\end{equation*}
$$

where the subscripts identify the i-th and j-th nodes of the beam element of length ℓ (Figure III.l). In all cases, the width of the beam section is taken to be unity. Sign conventions are indicated in Figures III.I and III.2.

FIGURE III.I TYPICAL BEAM ELEMENT

FIGURE III. 2 BEAM ELEMENT SIGN CONVENTIONS
III.l.l. Slope 'ue to Iransverse Shear

In equations (II.17) and (II.18) it was indicated that ser.arate components of the slope, X, could be identif.d. The eapression for the contribution due to shear is cerived in this section. Figure JIT.? shows a differential element deforming urder pure shearing of the core and the facings. With this type of loading, there is no net extensicn of the layers so the tangential iisplacement of each middle surface is zero. The tangential displacement of the interface muist be the same when computel with reference to + .e middle surface of either the face or core: For the case of cunstant shear carried entirely by the core, this conditicn gives

$$
u\left(z=h_{c} / 2\right)=\left(\gamma_{c}-x_{s c}\right) h_{c} / 2=x_{s c} h_{f} / 2
$$

and for the case of face shearing it gives

$$
u\left(z=-h_{c} / 2\right)=\left(\gamma_{f}-x_{s f}\right) h_{f^{\prime}} 2=x_{s f} h_{c} / 2
$$

\therefore Aijug the two equations and using $d=h_{c}+i_{f}$, one obtains

$$
\begin{equation*}
\therefore_{s}=\chi_{s c}+\chi_{s f}=\gamma_{c} h_{c} / d+\gamma_{f} h_{f} / d \tag{TII.4}
\end{equation*}
$$

$X_{s c}$ and $X_{s f}$ are defined in Figure III.3.
III.1.2. Stress-Strain Equations

The constitut:.ve matrix is diagon for ti.e beqms and the strussstrain equations a.e given by

CORE SHEARING

FACE SHEARING

FIGURE III. 3 SLOPE DUE TO SHEARING

FIG. III. 4 AXISYMMETRIC PLATE STRESS RESULTANTS

$$
\left\{\begin{array}{l}
\sigma_{x c} \tag{III.5a}\\
\tau_{x z c} \\
\sigma_{x f} \\
\tau_{x z f}
\end{array}\right\}=\left[\begin{array}{cccc}
E_{c} & 0 & 0 & 0 \\
0 & k_{c}{ }^{G} c & 0 & 0 \\
0 & 0 & E_{f} & 0 \\
0 & 0 & 0 & k_{f} G_{f}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x c} \\
\gamma_{x z c} \\
\varepsilon_{x f} \\
\gamma_{x z f}
\end{array}\right\}
$$

To modify this for the cylindrical bending of plates, the lateral constraint is taken into account to give

$$
\left\{\begin{array}{c}
\sigma_{x c} \\
\tau_{x z c} \\
\sigma_{x f} \\
\tau_{x z f}
\end{array}\right\}=\left[\begin{array}{cccc}
E_{c} /\left(1-\nu_{c}^{2}\right) & 0 & 0 & 0 \\
0 & \kappa_{c} G_{c} & 0 & 0 \\
0 & 0 & E_{f} /\left(1-v_{f}^{2}\right) & 0 \\
0 & 0 & 0 & \kappa_{f} G_{f}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x c} \\
\gamma_{x z c} \\
\varepsilon_{x f} \\
\gamma_{x z f}
\end{array}\right\}(I I I .5 b)
$$

As usual, there is a complete analogy between the two problems.

III.1.3. Stiffness Matrix for Beam Elements

The beam element stiffness matrix is derived in this section following the procedures outlined in Section II.2. A cubic transverse displacement field and a linear variation of shear rotation are assumed. Moreover, interpolation functions are used in order to express the displacement models directly in terms of the nodal displacements. Hence Equation (II.19) may be written

$$
\begin{equation*}
\{u(\xi)\}=[\Phi(\xi)]\{q\}, \quad 0 \leq \xi \leq 1 \tag{II.19}
\end{equation*}
$$

Here the vectors are chosen as

$$
\begin{align*}
& \{u\}^{T}=\left\langle w \times \gamma_{c} \gamma_{f}\right\rangle \\
& \{q\}^{T}=\langle u(0) \tag{III.6}
\end{align*}
$$

The matrix $[\Phi(\xi)]$ is given in Appendix A.1.l.

The kinemaric assumptions of Section II.l.l as applied to the beam are

$$
\begin{align*}
u_{c} & =-z_{c}\left(x-\gamma_{c}\right) \\
u^{t, b} & =-z_{f}\left(x-\gamma_{f}\right) \pm \frac{d}{2} x+\frac{h_{c}}{2} \gamma_{c} \mp \frac{h_{f}}{2} \gamma_{f} \tag{III.7}\\
w_{c} & =w_{f}^{t}=w_{f}^{b}=w
\end{align*}
$$

where the superscripts t and b indicate the top and bottom facings respectively. From Equations (II.9) it is then clear that the strain components of Equation (II.10) ar: given by

$$
\begin{align*}
\varepsilon_{x c}^{0} & =0 \\
\varepsilon_{x f}^{o t, b} & = \pm \frac{d}{2} \frac{d x}{d x} \mp \frac{h}{2} \frac{d y^{\prime}}{d x} c \mp \frac{h}{2} f \frac{d y_{f}}{d x} \tag{III.8}\\
k_{x c} & =-\frac{d x}{d x}+\frac{d y^{\prime}}{d x} c \\
k_{x f}^{t, b} & =-\frac{d x}{d x}+\frac{d y_{f}}{d x}
\end{align*}
$$

By applying Equations (III.8) to Equations (II.19) and (III.6), the strains may be expressed in terms of the nodal displacements.

$$
\begin{equation*}
\{\varepsilon i \xi)\}=[B(\xi)]\{q\} \tag{II.20}
\end{equation*}
$$

When the strain-component vector is defined

$$
\{\varepsilon\}^{T}=\left\langle\kappa_{x c} \gamma_{x z c} \varepsilon_{x f}^{o^{t}} \kappa_{x f}^{t} \gamma_{x z f}^{t} \varepsilon_{x f}^{o^{b}} \kappa_{x f}^{b} \gamma_{x z f}^{b}\right\rangle
$$

then the matrix B is as given in Appendix A.1. Note that

$$
\frac{d}{d x}=\frac{d}{d \bar{\xi}} \frac{d \xi}{d x}=\frac{1}{\ell} \frac{d}{d \xi}
$$

Also given in Appendix A.l are the matrices [Z], [C] and [F] from Equations (II.21), (II.22) and (II.27), consistent with the definitions

$$
\begin{aligned}
& \{\in\}^{T}=\left\langle\varepsilon_{x c} \gamma_{x z c} \varepsilon_{x f}^{t} \gamma_{x z f}^{t} \varepsilon_{x f}^{b} \gamma_{x z f}^{b}\right\rangle \\
& \{\sigma\}=\left\langle\sigma_{x c} \tau_{x z c} \sigma_{x f}^{t} \tau_{x z f}^{t} \sigma_{x f}^{b} \tau_{x z f}^{b}\right\rangle
\end{aligned}
$$

When the principle of minimum potential energy is applied as in Equations (II.25-29), it is possible to identify the separate contributions to the element stiffnss due to shear, bending and axial force:

$$
\begin{equation*}
\left[k_{8 q_{x}}\right]=\left[k_{c}^{Q}\right]+\left[k_{c}^{M}\right]+\left[k_{f}^{Q}\right]+\left[k_{f}^{M}\right]+\left[k_{f}^{N}\right] \tag{III.9}
\end{equation*}
$$

The integrations have been carried out in closed form and the stiffness contributions are given in Appendix A.1. The distinction between the various components proves useful in obtaining quantitative evaluations of various approximations; e.g., the effect of neglecting the bending of the facings about their own middle surfaces can be ascertained by omitting $\left[k_{f}^{M}\right]$ (See example in Section III.5.6).

Although the global and local co-ordinate systems are identical, the stiffness $\left[k_{q}\right]$ still must be transformed so that it is expressed in terms of the following nodal displacements

$$
\{r\}^{T}=\left\langle w_{i} \chi_{b i} \gamma_{i} w_{j} \chi_{b j} \gamma_{j} \gamma_{f i} \gamma_{f j}\right\rangle
$$

These co-ordinates were not the original choice because the use of $\{q\}$ as given in Equation (III.6a) allowed a much simpler closed-form integration for the stiffness matrix. The transformation [T] is quite simple and can be constructed from the definitions

$$
\begin{align*}
\gamma & =\gamma_{c}-\gamma_{f} \tag{III.10}\\
x_{b} & =\chi-h_{c} \gamma_{c} / d-h_{f} \gamma_{f} / d
\end{align*}
$$

The latter is obtained from Equation (III.4). The matrix is given in Appendix A. 1.
III.1.4. Consistent Load Vector for Un:form Loads

By substituting the matrix [Φ] from Equation (II.19) into
Equation (II.29) and using the load vector

$$
\left\{\bar{p}_{u}\right\}^{\bar{i}}=\left\langle p_{z}(\xi) 000\right\rangle
$$

where $p_{z}(\xi)=p_{z}$ is a uniform transverse load, the consistent loads are found to be

$$
\{Q\}^{T}=\frac{p_{z} \ell}{2}<1 \frac{\ell}{6} 0 \quad 0 \quad 1-\frac{\ell}{6} 00>
$$

These can be transformed to correspond to the $\{r\}$ displacements. The result is

$$
\{R\}^{T}=\frac{p_{z}^{\ell}}{2}<1 \frac{\ell}{6} \frac{h_{c}^{\ell}}{6 d} 1-\frac{\ell}{6}-\frac{h_{c}^{\ell}}{6 d} \overline{6}-\frac{\ell}{6}>
$$

III.1.5 Element stiffness for Quadratic Variation of Shear Strain

An element stiffness may be derived for a quadratic variation of shear strain by utilizing an internal nodal point at $\xi=\frac{1}{2}$. If this node is designated by the subscript 0 , the interpolation functions for the shear strains are

$$
\begin{equation*}
\gamma_{k}=\left(1-3 \xi+2 \xi^{2}\right) \gamma_{1}+4 \xi(1-\xi) \gamma_{0}+\xi(2 \xi-1) \gamma_{j} \tag{III.11}
\end{equation*}
$$

where $k=c, f$. The details of the derivation are the same as for the linear variation of shear and will not be carried out here. The relevant matrices are given in Appendix A.2, including the contributions to the 10×10 stiffness.

III. 2 Axisymmetric Sandwich Plates

For the cylindrical co-ordinates used to describe this case, the narameters in Section II. 1 take the following forms:

$$
\begin{align*}
& R_{1}=R_{2}=\infty, \zeta=z \\
& \xi_{1}=r, \alpha_{1}=1 ; \xi_{2}=\vartheta, \alpha_{2}=r \tag{III.12a}
\end{align*}
$$

In a dition, since only axisymmetric loading is considered:

$$
\begin{gather*}
u_{1}^{\circ}=u^{\circ}, u_{2}^{\circ}=u_{2}=0, w^{\circ}=w \\
x_{1}=x=\frac{d w}{d r}, \gamma_{1 k}=\gamma_{k} \tag{III...2b}\\
\varepsilon_{1 k}=\varepsilon_{r k}, \varepsilon_{2 k}=\varepsilon_{\theta k}, \gamma_{1 \zeta k}=\gamma_{r z k} \\
\gamma_{2 k}=\gamma_{2 \zeta k}=x_{2}=\gamma_{12 k}=0
\end{gather*}
$$

Attention is again restricted to three-layered construction symetric about the middle surface of the core. As a consequence, the uncoupled stretching may be neglected in the flexural problem:

$$
\begin{equation*}
u^{0}=0 . \tag{III.2}
\end{equation*}
$$

The geometry and terminology will be completely analogous to that for the beam (Figure III.l). Here the normalized co-ordinate in the radial direction is defined as

$$
\begin{equation*}
\xi=\left(r-r_{i}\right) /\left(r_{j}-r_{i}\right)=\left(r-r_{i}\right) / \ell \tag{III.13}
\end{equation*}
$$

Sign conventions for the stress resultants are indicated in Figure III.4. The slope due to shearing is also the same as for the beam and the expression is repeated here.

$$
\begin{equation*}
x_{s}=x-x_{b}=\gamma_{c} h_{c} / d+\gamma_{f} h_{f} / d \tag{III.4}
\end{equation*}
$$

The limitation of axisymratric loading allows a one-dimensional finite element representation wnich is more complicated than the beam problem that circumferential stresses and strains are present.
III.2.1. Stiffness Matrix for Annular Plate Elements

The first step in deriving the stiffness matrix is the selection of the assumed displacem nt field. A cubic transverse displacement model (linear curvatures) is again assumed. In terms of generalized co-ordinates, this field is given by

$$
\begin{equation*}
w(\xi)=\alpha_{1}+\alpha_{2} \xi+\alpha_{3} \xi^{2}+\alpha_{4} \xi^{3}, \quad 0 \leq \xi \leq 1 \tag{III.14}
\end{equation*}
$$

The basic shear strain model is a linear field as follows:

$$
\begin{align*}
& \gamma_{c}(\xi)=\alpha_{5}+\alpha_{6} \xi \tag{III.15a}\\
& \gamma_{f}(\xi)=\alpha_{7}+\alpha_{8} \xi . \quad 0 \leq \xi \leq 1
\end{align*}
$$

In addition, a more refined element with respect to shear may be obtained by using a quadratic shear strain field

$$
\begin{align*}
& \gamma_{c}(\xi)=\alpha_{5}+\alpha_{6} \xi+\alpha_{9} \xi^{2} \tag{III.15b}\\
& \gamma_{f}(\xi)=\alpha_{7}+\alpha_{e} \xi+\alpha_{10} \xi^{2} \quad 0 \leq \xi \leq 1
\end{align*}
$$

The kinematic assumptions applied to the axisymmetric plate are the same as those for the beam:

$$
\begin{align*}
u_{c} & =-z_{c}\left(x-\gamma_{c}\right) \\
u_{f}^{t}, b & =-z_{f}\left(\ddot{\sim}-\gamma_{f}\right) \pm \frac{d}{2} x \mp \frac{h_{c}}{2} \gamma_{c} \mp \frac{h_{f}}{2} \gamma_{f} \tag{III.T}
\end{align*}
$$

However, now there are non-zero strain components in both the radial and circumferential directions. The components are

$$
\begin{align*}
& \varepsilon_{r c}^{o}=\varepsilon_{\theta c}^{0}=0 \\
& \kappa_{r-}=-\frac{d x}{d r}+\frac{d \gamma_{c}}{d r} \\
& \kappa_{\theta c}=-\frac{\left(\gamma-\gamma_{c}\right)}{r} \\
& \varepsilon_{r f}^{o t, b}= \pm \frac{d}{2} \frac{d x}{d r}-\frac{h_{c}}{2} \frac{d \gamma_{c}}{d r} \mp \frac{h_{f}}{2} \frac{d \gamma_{f}}{d r} \tag{III.16}\\
& \varepsilon_{\theta}^{o t, b}= \pm \frac{1}{r}\left(\frac{d}{2} x-\frac{h_{c}}{2} \gamma_{c} \frac{h_{f}}{2} \gamma_{f}\right) \\
& \kappa_{r f}^{t, b}=-\frac{d}{d r}+\frac{d \gamma_{f}}{d r} \\
& \kappa_{\theta f}^{t, b}=-\frac{\left(x-\gamma_{f}\right)}{r}
\end{align*}
$$

These may be applied to the assumed displacement fields in terms of the generalized co-ordinates by using

$$
\frac{d}{d r}=\frac{d}{d \xi} \frac{d \xi}{d r}=\frac{1}{l} \frac{d}{d \xi}
$$

The stiffness analysis is a straightforward application of the techniques outlined in Section II.2. The matrices that result are given in Appendices B. 1 and B. 2 for the linear and quadratic shear models, respectively. However, the integration to obtain the stiffness matrix is not carried out in closed form. Rather numerical integration using Gauss's formula [131] is incorporated into the computer program for the integral

$$
\begin{equation*}
\left[k_{\alpha}\right]=2 \pi l \int_{0}^{1}[B(\xi)]^{T}[G][B(\xi)] r d \xi \tag{III.17}
\end{equation*}
$$

Finally, with the selection of the vector $\{q\}=\{r\}$ as given in the Appendices, the global and local co-ordinates do not differ and the total transformation matrix is given by $[T]=\left[A^{-1}\right]$.

II.5.2. Stiffness Matrix for Disc Elements

In the limiting case $r_{i}=0$ the annular plate elements described in the previous section and in Appendices B.1 and B. 2 become discs. Because the center of the disc occurs on the axis, there are certain constraints that must be introduced to maintain axial symmetry. From the outset, concentrated loads at the center of the plate are excluded in order to avoid the corresponding singularicy. Hence the symmetry requirements result in the followirg "interne" boundary conditions" [84]:

$$
\begin{equation*}
x=\gamma_{c}=i_{f}=0 \quad \text { at } \quad r=0 \tag{III.18}
\end{equation*}
$$

These conditions, in effect, remove three generalized co-ordinates and the assumed displacement fields become

$$
\begin{align*}
& w(\xi)=\bar{\alpha}_{4}+\bar{\alpha}_{5} \xi^{2}+\bar{\alpha}_{6} \xi^{3} \\
& \gamma_{c}(\xi)=\bar{\alpha}_{7} \xi \tag{III.19a}\\
& \gamma_{f}(\xi)=\bar{\alpha}_{8} \xi \quad 0 \leq \xi \leq 1
\end{align*}
$$

for linear shear strains and

$$
\begin{align*}
& w(\xi)=\bar{\alpha}_{4}+\bar{\alpha}_{5} \xi^{2}+\bar{\alpha}_{6} \xi^{3} \\
& \gamma_{c}(\xi)=\bar{\alpha}_{7} \xi+\bar{\alpha}_{9} \xi^{2} \tag{III.19b}\\
& \gamma_{f}(\xi)=\bar{\alpha}_{8} \xi+\bar{\alpha}_{10} \xi^{2} \quad 0 \leq \xi \leq 1
\end{align*}
$$

for quadratic shear strains. The kinematic assumptions and the straindisplacement equetions for annular elements also apply to the disc as long as the new displacement fields are used. In Appendices B. 3 and B. 4 the matrices arising from th stiffness analysis of disc elements
with linear and quadratic shears are given.. These matrices are derived in the same dimensional format as those for the annular element so that they need no special treatment in the assembly procedure.

III.2.3. Consistent Generalized Load Vector

If the distributed loads are assumed to be linearly varying along the radius, it is an easy matter to perform the integration to obtain the generalized loads, $\left\{Q_{\alpha}\right\}$, of Equation (II.29). Given the transverse load intensity at the nodes, linearly varying loads may be expressed using the interpolation equation

$$
\begin{equation*}
p_{z}=p_{z i}+\xi\left(p_{z j}-p_{z i}\right) \tag{III.20}
\end{equation*}
$$

Then the generalized loads are obtained from

$$
\begin{equation*}
\left\{Q_{\alpha}\right\}=2 \pi \ell \int_{0}^{1}[\Phi]^{T}\{p\}\left(r_{i}+\ell \xi\right) d \xi \tag{III.21}
\end{equation*}
$$

The results of this integration and of the subsequent transformation to global co-ordinates are given in Appendix B. It should be noted that, in the discretized representation, load distributions of an order higher than linear can be approximated by a linear variation over each individual element.
III.3. A Doubly Curved Axisymmetric Shell Element

Various doubly curved elements and local co-ordinate systems for axisymmetric shells were studied by Khojasteh-Bakht [84]. Of the possibilities he considered, he was able to obtain best results from (1) an element which matched the position, slope and curvature of the shell meridian at the nodes and (2) a represent: ion of the element geometry and displacements ir local rectilinear co-ordinates. This formulation, which Khojasteh-Bakht designated $\operatorname{FDR}(2)$, results in an element which satisfics the completeness and compatibility conditions given in Section I.2.2. It is adopted for use in this paper.

Let the iocal rectilinear co-ordinate system be $\xi-\eta$ and the displacements in the corresponding directicis be u_{1} and u_{2}. Choose the meridional and radial displacements of the shell reference surface to be u and w and the radius of meridional curvature to be R_{1}. Then he geometry shown in Figure III. 5 is substituted for that of an arbitrary rotational shell. The angles are positive as shown in the figure and the following relation applies

$$
\begin{equation*}
\phi+\psi+\beta=\pi / 2 . \tag{III.22}
\end{equation*}
$$

Note that ξ is a normalized co-ordinate which takes the values 0 and 1 at nodes $: \quad$ and j, respectively. The meridian of the substitute element is given by

$$
\begin{equation*}
\eta=\xi(1-\xi)\left(a_{1}+a_{2} \xi+a_{3} \xi^{2}+a_{4} r^{3}\right) \tag{IIJ.23a}
\end{equation*}
$$

where Khojastch-Bakht has shown that the constants are given by

FIGURE III. 5 DOUBLLY CURVED ELEMENT AFTER KHOJASTEH [84]

$$
\begin{align*}
& a_{1}=\tan \beta_{i} \\
& a_{2}=\tan \beta_{i}+\eta_{i}^{\prime \prime} / 2 \\
& a_{4}=3\left(\tan \beta_{i}+\tan \beta_{j}\right)-\left(\eta_{j}^{\prime \prime}-\eta_{i}^{\prime \prime}\right) / 2 \tag{III.23b}\\
& a_{3}=-\left(5 \tan \beta_{i}+4 \tan \beta_{j}\right)+\left(\eta_{j}^{\prime \prime} / 2-\eta_{i}^{\prime}\right) \\
& \eta^{\prime \prime}=\frac{d^{2} \eta}{d \xi^{2}}=-\frac{\ell}{R_{1} \cos ^{3} \beta} \\
& \tan \beta=\eta^{\prime}=\frac{d \eta}{d \xi}
\end{align*}
$$

The parameters in Equations (III.23) are obtained from

$$
\begin{gather*}
\Delta r=r_{j}-r_{i}, \Delta z=z_{j}-z_{i} \\
\Delta s=\left[{\left.\overline{\Delta \vec{r}^{2}}+\overline{\Delta z}^{2}\right]^{\frac{1}{2}}}_{\sin \psi=\Delta r / \Delta s, \cos \psi=\Delta z / \Delta s}\right. \\
\sin \beta_{n}=\cos \phi_{n} \cos \psi-\sin \phi_{r} \sin \psi \tag{III.24}\\
\cos \beta_{n}=\sin \phi_{n} \cos \psi+\cos \ddagger \sin \psi
\end{gather*}
$$

In order to apply a stiffness analysis to this substitute element, the following additional relationshifs are needed:

$$
\begin{gather*}
r=r_{i}+\ell(\xi \sin \psi+\cos \psi) \\
\frac{d \xi}{d s}=\frac{\cos \beta}{\ell}, \frac{d \beta}{d \xi}=-\frac{\ell}{R_{1} \cos }=\eta^{\prime \prime} \cos ^{2} \beta \\
\cos \phi=\cos \beta(\tan \beta \cos \psi+\sin \psi) \tag{III.25}\\
\sin \phi=\cos \beta(\cos \psi-\tan \beta \sin \psi) \\
\cos \beta=\frac{1}{\left(1+\tan ^{2} B\right)^{\frac{1}{2}}}
\end{gather*}
$$

The displacement transformation equations are also necessary:

$$
\begin{align*}
& u=u_{1} \cos \beta+u_{2} \sin \beta \tag{III.26}\\
& w=u_{1} \sin \beta-u_{2} \cos \beta
\end{align*}
$$

In the next section, this doubly curved element is applied to arbitrary rotational sandwich shells. The assumed translational displacement fields are expressed in terms of the local displacements u_{1} and u_{2} and the local co-ordinate ξ.

III.4. Axisymmetric Sandwich Shells

The geometry of the shell reference surface is described in terms of the following definitions for the parameters in Section II.l:

$$
\begin{align*}
& \xi_{1}=s, \alpha_{1}=1 ; \xi_{2}=\theta, \alpha_{2}=r \tag{III.27a}\\
& R_{2}=r / \sin \phi
\end{align*}
$$

where R_{1} and ζ remain unchanged. Onlv axisymmetric loading is considered; therefore, the following apply:

$$
\begin{gather*}
u_{1}^{\circ}=u, u_{2}^{\circ}=u_{2}=0, w^{\circ}=w \\
x_{1}=x=\frac{d w}{d s}+\frac{u}{R_{1}}, \gamma_{1 k}=\gamma_{k} \tag{III.27b}\\
\varepsilon_{1 k}=\varepsilon_{s k}, \varepsilon_{2 k}=\varepsilon_{\theta k}, \gamma_{1 \zeta k}=\gamma_{s \zeta k} \\
\gamma_{2 k}=\gamma_{2 \zeta k}=x_{2}=\gamma_{12 k}=0
\end{gather*}
$$

See Figures III.5, III. 6 and II. 3 for the geometry and sign conventions. Like the beam and plate analyses above, only the three-layered case symmetric about the reference surface is considered in detail here.
III.4.1. Kinematic Assumptions and Strain-Displacement Equations

The rotation of the shell meridian due to shear remains the same as for the beam and plate

$$
\begin{equation*}
x_{s}=\frac{d w}{d s}{ }^{s}=x-\nu_{b}=\gamma_{c} h_{c} / d+\gamma_{f} h_{f} / d \tag{III.4}
\end{equation*}
$$

The kinematic assumptions are taken from Section II.1.1 and modified in light of Equations (III.27) to obtain

$$
\begin{align*}
u_{c} & =u-\zeta_{c}\left(x-\gamma_{c}\right) \\
u_{f}^{t, b} & =u-\zeta_{f}\left(x-\gamma_{f}\right) \pm \frac{d}{2} x \mp \frac{h_{c}}{2} \gamma_{c} \mp \frac{h_{f}}{2} \gamma_{f} \tag{III.28}\\
w_{c} & =w_{f}^{t}=w_{f}^{b}=w
\end{align*}
$$

Furthermore, the strain components of Equations (II.10) for the present notation and loading case are given by:

$$
\begin{aligned}
& \varepsilon_{s c}^{0}=\frac{d u}{d s}-\frac{w}{R_{I}} \\
& \varepsilon_{\theta c}^{\circ}=\frac{l}{r}(u \cos \phi-w \sin \phi) \\
& \kappa_{s c}=-\frac{d x}{d s}+\frac{d y}{d s} c \\
& \kappa_{\theta c}=-\frac{\cos \phi}{r}\left(\chi-\gamma_{c}\right) \\
& \varepsilon_{s f}^{o t, b}=\frac{d u}{d s}-\frac{w}{R_{1}} \pm \frac{d}{2} \frac{d x}{d s} \mp \frac{h}{2} \cdot \frac{\gamma_{c}}{d s} \mp \frac{h_{f}}{2} \frac{d \gamma_{f}}{d s} \\
& \varepsilon_{s f}^{o^{t, b}}=\frac{l}{r}(u \cos \phi-w \sin \phi)+\frac{\cos \phi}{r}\left|\frac{\alpha}{2} \chi-\frac{h_{c}}{2} \gamma_{c}-\frac{h_{f}}{2} \gamma_{f}\right| \\
& k_{s f}^{t, b}=-\frac{d \chi}{d s}+\frac{d \gamma_{f}}{d s} \\
& \kappa_{\theta f}^{t, b}=-\frac{\cos \phi}{r}\left(x-\gamma_{f}\right)
\end{aligned}
$$

However, in order to employ the substitute element described in Section III.3, the strains must be expressed in terms of the displacements in local rectilinear co-ordinates. By substituting the transformation of Equations (III.26) into Equations (III.29) and by using
the relationships given in Equations (III.25), one obtains

$$
\begin{aligned}
& x=\frac{\cos ^{2} \beta}{\ell}\left(\frac{d u_{1}}{d \xi} \tan \beta-\frac{d u_{2}}{d \xi}\right) \\
& \varepsilon_{s c}^{\circ}=\frac{\cos ^{2} \beta}{\ell}\left(\frac{d u_{1}}{d \xi}+\frac{d u_{2}}{d \xi} \tan \beta\right) \\
& \varepsilon_{\theta c}^{\circ}=\frac{l}{r}\left(u_{1} \sin \psi+u_{2} \cos \psi\right) \\
& k_{s c}=-\frac{\cos ^{3} \beta}{\ell^{2}}\left[\frac{d u_{1}}{d \xi} n^{\prime \prime} \cos ^{2} \beta\left(1-\tan ^{2} \beta\right)+\frac{d^{2} u_{1}}{d \xi^{2}} \tan \beta+\right. \\
& \left.+2 \frac{d u_{2}}{d \xi} \eta^{\prime \prime} \tan \beta \cos ^{2} \beta-\frac{d^{2} u_{2}}{d \xi^{2}}\right]+\frac{\cos \beta}{\ell} \frac{d \gamma_{c}}{d \xi}= \\
& =\kappa_{s c}^{(1)}+\kappa_{s c}^{(2)} \\
& \kappa_{\theta c}=-\frac{1}{r}\left[\frac{\cos ^{3} \beta}{\ell}\left(\frac{d u_{1}}{d \xi} \tan \beta-\frac{d u_{2}}{d \xi}\right)-\gamma_{c} \cos \beta\right](\sin \psi+ \\
& +\cos \psi \tan \beta)=\kappa_{\theta c}^{(1)}+\kappa_{\theta c}^{(2)} \\
& \varepsilon_{s f}^{o^{t, b}}=\varepsilon_{s c}^{0} \pm \frac{d}{2} \kappa_{s c}^{(1)} \mp \frac{\cos \beta}{l}\left(\frac{h_{c}}{2} \frac{d \gamma_{c}}{d \xi}+\frac{h_{f}}{2} \frac{d \gamma_{f}}{d \xi}\right) \\
& \varepsilon_{\theta f}^{o^{+, b}}=\varepsilon_{\theta c}^{o} \pm \frac{d}{2} \kappa_{\theta c}^{(1)} \mp \frac{\cos \beta}{r}\left(\frac{h_{c}}{2}, \gamma_{c}+\frac{h_{f}}{2} \gamma_{f}\right)(\sin \psi+\cos \psi \tan \beta) \\
& \kappa_{s f}^{t, b}=\kappa_{s c}^{(1)}+\frac{\cos \beta}{l} \frac{d \gamma_{f}}{d \xi} \\
& k_{\theta f}^{t, b}=\kappa_{\theta c}^{(.1)}+\gamma_{f} \frac{\cos \beta}{r}(\sin \psi+\cos \psi \tan \beta)
\end{aligned}
$$

where terms with the superscript 1 involve only the terms with derivatives of u_{1} and u_{2} and those with superscript 2 involve only the γ_{c} terms.
III.4.2. Stiffness Matrix for Fruitrum Elements

For a linear variation of shsar strain, the assumed local displacements in the rectilinear co-ordinate system are

$$
\begin{align*}
& u_{1}=\iota_{1}+\alpha_{2} \xi \\
& u_{2}=\alpha_{3}+\alpha_{4} \xi+\alpha_{5} \xi^{2}+\alpha_{6} \xi^{3} \\
& \gamma_{c}=\alpha_{7}+\alpha_{8} \xi \tag{III.3la}\\
& \gamma_{f}=\alpha_{9}+\alpha_{10} \xi \quad 0 \leq \xi \leq 1
\end{align*}
$$

Only the last two equations change for the quadratic variaticn of shear strain

$$
\begin{align*}
& \gamma_{c}=\alpha_{7}+\alpha_{8} \xi+\alpha_{11} \xi^{2} \\
& \gamma_{f}=\alpha_{9}+\alpha_{10} \xi+\alpha_{12} \xi^{2} \tag{III.31b}
\end{align*}
$$

The stiffness analysis follows directly from Equations (III.30) and (III. 31). The resulting matrices for the linear and quadratic shear strann models are given in Appendices C.1 and C. 2 respectively. Since the integrals for the stiffness matrix and generalized loads,

$$
\begin{aligned}
& {\left[k_{\alpha}\right]=2 \pi \ell \int_{0}^{1}[B]^{T}[G][B] \frac{r(\xi)}{\cos \beta} d \xi} \\
& \left\{Q_{\alpha}\right\}=2 \pi \ell \int_{0}^{1}[\Phi]^{T}\left\{\bar{p}_{u}\right\} \frac{r(\xi)}{\cos \beta} d \xi,
\end{aligned}
$$

(III.32)
cannot be readily solved in closed form, numerical integration is necessary to evaluate these quantities. Gauss's formula [131] is used in this case, just as for the plate elements.
III.4.3. Stiffness Matrix for Cap Elements

The case in which $r_{i}=0$ is analogous to the disc specialization for the plate elements (Section III.2.2). A cap element is shown in Figure III.7. The internal boundary conditions in this case are

$$
\begin{equation*}
u_{r}=x=\gamma_{c}=\gamma_{f}=0 \quad \text { at } \quad r=0 \tag{III.33}
\end{equation*}
$$

where the case of a concentrated load at the apex has been ex uded. The first two of the parameters can be froressed in terms of the local displacements and co-ordinates as follows:

$$
\begin{align*}
& u_{r}=u_{1} \sin \psi+u_{2} \cos \psi \\
& x=\frac{\cos ^{2} \beta}{\ell}\left(\frac{d u_{1}}{d \xi} \tan \beta-\frac{d u_{2}}{d \xi}\right) \tag{III.34}
\end{align*}
$$

Hence to be consistent, the assumed displacement fields must take the form [84]

$$
\begin{aligned}
& u_{1}=-\bar{\alpha}_{5} \cos \psi+\bar{\alpha}_{6} \xi \\
& u_{2}=\bar{\alpha}_{5} \sin \psi+\bar{\alpha}_{6} \tan \beta_{i} \xi+\bar{\alpha}_{7} \xi^{2}+\bar{\alpha}_{8} \xi^{3} \\
& \gamma_{c}=\bar{\alpha}_{9} \xi \\
& \gamma_{f}=\bar{\alpha}_{10} \xi \quad c \leq \xi \leq 1
\end{aligned}
$$

(III.35.a)
for inear shear strain. For quadratic shear strain, the last two of the equations become

$$
\begin{align*}
& \gamma_{c}=\bar{\alpha}_{9} \xi+\bar{\alpha}_{11} \xi^{2} \tag{III.35b}\\
& \gamma_{f}=\bar{\alpha}_{10} \xi+\bar{\alpha}_{12} \xi^{2}
\end{align*}
$$

FIGURE III. 7 - GAP ELEMENT AFTER KHOJASTEH [84]

The matrices for the cap element for linear and quadratic shear are given in Appendices C. 3 and C. 4 respectively.
III.4.4. Choice of Global Co-Ordinates for the Shell

There are at least two possible global co-ordinate systems in which to express the displacements of the axisymmetric shell. These are curvilinear surface co-ordinates (s, θ, ζ) and cylindrical co-ordinates (r, θ, z). In shell theory, the former co-ordinate sjstem is usually favored. However, it is possible to apply the finite element method to shells with discontinuities of meridional slope. At the locations of such discontinuities, the "radial" and "meridional" directions are no longer uniquely defined. Hence it is not possible to use surface co-ordinates in the assembly process for these shells. In Appendix C, transformation matrices [T] are given for both curvilinear and cylindrical global co-ordinate systems. The proper transformst on is selected according to the nature of the shell meridian.
III.5. Examples of Statin Analysis

The above finite eleme. formulation has been applied to various sandwich beam, plate and shell problems and the results compared to solutions from other methods and sandwich theories. A sampling of these problems is presented in this section to demonstrate the efficacy of tise method. In general, both the displacement and stress resultants from the finite element method compare favorably to corresponding quantities obtained by established theories. Among the references from which theories were adapted in order to verify the finite element solutions were Yu [32], Plantema [12], March [120], Reissner [16], Kao [53] and Rossettr; [52].

III.5.1. End-Loaded Cantilever Beam

A cantilever sandwich heam of unit width with a unit load at the free end illustrates the effect of a constraint on the warping. The dimensions and properties are selected as follows:

$$
\begin{gathered}
h_{c}=0.5^{\prime \prime}, h_{f}=0.04^{\prime \prime}, h=0.58^{\prime \prime} \\
E_{f}=10^{7} \mathrm{psi}, G_{f}=4 \times 10^{6} p s i, k_{f}=1 \\
E_{c}=2 \times 10^{4} \mathrm{psi}, G_{c}=10^{4} \mathrm{psi}, k_{c}=1 \\
\quad \operatorname{span} L=10^{\prime \prime}, \text { load } P=1.0 \mathrm{lb}
\end{gathered}
$$

Evenly spaced meshes of 5 and 10 elements as well as uneven meshes are used for both linear shear strain (L elements) and quadratic shear strain (Q elements).

The displacement solution for 5-L elements is shown in Figure III.8; the displacements from a $s-Q$ analysis fall about midway between the $5-L$ result and the solucion of zefe ; j. For all meshes and elements used, the overall stress res . : . \quad correct to about five significant
figures, so these results are not shown graphically. Of interest, however, is the distribution of shear force between the facings and core. The fraction of the shear assumed by the core is shown in Figure III.9. The theory from Secion 1.2 of Reference [12] does nut take into account either the warping behavior or the bending stiffness of the facings; it assumes that all shear is taken by the core. The refinement to take into account the restraint on warping and the consequent flexure of the facings about their own middle surfaces is given in Section 1.3 of that Reference. This formulation is due to van der Neut. Finally, Yu's theory [32] considers both the warping and the shearing of the facings and thus gives the distribution of shear among the various layers. Figure III. 9 demonstrates that with a proper mesh refinement, the finite element method gives an adequate representation of this phenomenon. Moreover, the quadratic shear-strain elements enable a satisfactory representation with fewer elements. The constraint against warping causes most of the shear to be carried by the facings. The approximate mechanism of this redistribution is shown in Figures III.10b and III.10c. In these figures, the shear force carried by each layer is the area under the stress diagram.

Failures have been found to occur in the facings near fixed supports of aerospace sandwich structures. For this reason, the facing layers are usually doubled in thickness in these regions. The above results give an insight into the shear redistribution which necessitates the use of such doubler plates. In fact, the finite element method is suited for design of doubler plates since the computer prigram is readily modified to account for elements with differing face thicknesses. Hence it is possible to include these reinforcing layers in the analysis. As an alternative, it is possible to assume that doubler plates
efiectively create a section at their cut-off point which is very stiff with respect to bending rotation, but which is free to warp. Hence one could assume that the boundary of the structure occurs at the cut-off point of the plates and could apply boundary conditions that prevent bending rotation but not warping.

(a) NAVIER - KIRCHHOFF THEORY

(b) PRESENT APPROXIMATE THEORY - SECTION FREE TO WARP

(c) PRESENT APPROXIMATE THEORY - UNWARPED SECTION

FIGURE III. 10 APPROXIMATE SHEAR STRAIN AND STRESS DISTRIBUTIONS ($G_{c} \ll G_{f}$)
III.5.2 Uniformly Loaded Clamped Circular Plate

A circular plate with a relatively large ratio of the thickness to the radius is chosen so that the effect of shearing on the deflections is substantial. When the dimensions and properties of the plate are taken to be

$$
\begin{gathered}
h_{c}=0.75^{\prime \prime}, h_{f}=0.025^{\prime \prime}, h=0.8^{\prime \prime} \\
E_{f}=10^{7} \mathrm{psi}, v_{f}=0.3, G_{f}=3.85 \times 10^{6} p \mathrm{psi}, \kappa_{f}=1 \\
E_{c}=2.6 \times 10^{4} \mathrm{psi}, v_{c}=0.3, G_{c}=10^{4} \mathrm{psi}, \kappa_{c}=1 \\
\text { radius } a=5^{\prime \prime}, \text { load } p_{z}=1.0 \text { psi }
\end{gathered}
$$

the shear flexibilit; accounts for about 85% of the center deflection. The solution used for a comparison is a superposition of shear deflections after Plantema [12] and bending deflections after Timoshenko [132]. This solution does not take into account prevention of warping at the fixed circumference.

Finite element results are obtained using even meshes of 5,10 , and 20 elements with both linear (L) and quadratic (Q) shear models. Each representation is solved using the two possible fixed-edge boundary conditions, i.e., with warping prevented (U) and with warping allowed (W). In all cases, the shear stress resultants are correct to nine significant figures, so they are not shown graphically. This accuracy is to be expected since the true shear distribution is linear and thus can be represented exactiy by either shear model. The bending moments do not differ significantly for the two representations of the boundary conditions or for tie two shear models. However, there is some difference in the deflections for the various cases. When warping is prevented, the Q elements converge more rapidly to a final value than do the L elements. Figure III. 11 shows that this value is within about 2% of
the deflections for the unwarped case. Thus linear-shear elements with boundary conditions that permit warping are probably sufficient to obtain the gross behavior. However, if one wishes to consider the distribution of the shear jetween core and facings, one must include the restraint on warping. In this case, the refined Q elements give more rapid convergence for displacements and shears (see Figures III. 9 and III.1I).

The radial moments for the clamped plate are shown in Figure III.12. Results of about the same quality, or slightly better, are obtained for the circumferential moments.

FIGURE III. 12 RADIAL BENDING MOMENTS OF A CLAMPED CIRCULAR PLATE
III.5.3. Hemispherical Shell Under Membrane Load

In order to check the effectiveness of the basic element and of the computer program for shells, the membrane states of both cylindrical and spherical shells have been investigated. Generally, the results are satisfactory in that both deflections and stress resultants agree with theoretical values. A typical example is presented here. The sandwich hemisphere has the following properties:

$$
\begin{gathered}
h_{c}=0.5^{\prime \prime}, h_{f}=0.04^{\prime \prime} \\
E_{f}=10^{7} \mathrm{psi}, \nu_{f}=0.3, G_{f}=3.85 \times 10^{i} \mathrm{psi}, k_{f}=1.0 \\
E_{c}=2.6 \times 10^{4} \mathrm{psi}, \nu_{c}=0.3, G_{c}=10^{4} \mathrm{psi}, k_{c}=1.0 \\
\text { radius } a=100^{\prime \prime}, \text { load } p_{z}=-1.0 \mathrm{psi}
\end{gathered}
$$

Three- and nine-element representations are used with both linear shear and quadratic shear. Results are essentially the same for the two shear-strain models, so only the solution using the less refined model is presented here.

When roler supports that restrict only the meridional displacements at the free edges are used, the theoretical solution [132, 133] is given by

$$
\begin{gathered}
w=(1-v) \frac{p_{z} a^{2}}{2(E)_{e f f}} \cdot: \cdot u=0 \\
N_{s}=N_{\theta}=-\frac{p_{z}}{2}, M_{s}=M_{\theta}=0, Q_{s}=0 \\
\\
(E \dot{h})_{e f f}:=E_{c} h_{c}+2 E_{f} h_{f}
\end{gathered}
$$

Substituting the proper values, one obtains

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{s}}=\mathrm{N}_{\theta}=50 \mathrm{Ib} . / \mathrm{in} . \\
& \mathrm{w}=-0.004305^{\prime \prime}
\end{aligned}
$$

The finite element solution for three elements is shown in Figure III.I3.
It is seen that the results agree very closely with the theoretical answers. The nine-element solution is even better, and is not shown since it does not differ significantly from the exact solution.

figure III. 13 hemispherical shell under membrane load (three elements)

III.5.4. Edge-Loaded Cylindrical Shell

A sandwich cylinder with the following properties is examined next:

$$
\begin{gathered}
h_{c}=0.5^{\prime \prime}, h_{f}=0.04^{\prime \prime}, h=0.58^{\prime \prime} \\
E_{f}=10^{7} \mathrm{psi}, v_{f}=0.3, G_{c}=10^{4} \mathrm{psi}, K_{c}=1 \\
\text { radius } a=20^{\prime \prime}
\end{gathered}
$$

end shear $=1.0 \mathrm{lb} . / \mathrm{in}$. , end moment $=1.0 \mathrm{in}-\mathrm{lb} . / \mathrm{in}$.

The core bending and extension and the face shearing are neglected by taking

$$
E_{c}=0, G_{f}=10^{20} \mathrm{psi}, K_{f}=1
$$

These effects have been omitted in order to compare the results to Reissner's solution for a semi-infinite cylinder [16].

In approximating a semi-infinite cylinder by a finite one, two different types of boundary conditions at the unlcaded edge are possible. Constraint on both meridional translation and bending rotation at this edge provides a better approximation than constraint on meridional translation alone. The cylinder is represented by even meshes of 10 and 20 elements with element lengths of one in'h and one-half inch. Linear shear-strain elements are used. Results are shown in Figures III. 14 through III.17. It is seen that the total length of the finite element representation is an important consideration. Despite a fine mesh, the representation using $1 C$ one-nalf inch elements for a total length-radius ratio of $1 / 4$ is inadequate. Satisfactory results are obtained with 10 one-inch elements and the other two meshes provide further refinement.

FIGURE III. 14 DEFLEGTIONS OF AN EDGE LOADED CYLINDER

FIGURE III. 15 CIRCUMFERENTIAL STRESS RESULTANT OF AN EDGE LOADED CYLINDER
($\mathrm{N} / / 87)^{\theta_{N}}$

FIGURE III. 16 SHEAR STRESS RESULTANT OF AN EDGE LOADED CYLINDER

III.5.5. Shallow Spherical Cap with Partial Distributed Loading

The final shell problem presented here is a simply supported shallow sfherical cap subject to distributed loading over a portion of its surface. The closed-form solution for this problem in terms of Thomson functions has been given by Rossettos [52]. He neglects the shearing of the facings and the bending and extension of the core, so the following properties are selected:

$$
\begin{gathered}
h_{c}=0.95^{\prime \prime}, h_{f}=0.025^{\prime \prime}, h=l^{\prime \prime} \\
E_{f}=10^{7} \mathrm{psi}, v_{f}=0.3, G_{f}=10^{20} \mathrm{psi}, K_{f}=1 \\
E_{c}=0, G_{c}=10^{5} \mathrm{psi}, k_{c}=1 \\
\text { radius } a=20^{\prime \prime}, \text { supported edge at } \phi=15^{\circ}
\end{gathered}
$$

A uniform load of 1 psi is applied in the axial direction over that portion of the surface given by $0 \leq \phi \leq 3^{\circ}$.

The cap is analyzed using 5 and 10 linear-shear elements. Deflection results are presented in Figures III. 18 and III.19, and stress resultants are plotted in Figures III. 20 to III.22. In general, satisfactory results are obtained from the 5-element representation. The small difference between the 5- and l0-element results indicates that the finite element solution has effectively converged.

FIGURE III. 19 MERIDIONAL DISPLACEMENT OF A SHALLOW SPHERE

FIGURE III. 20 tangential stress resultants of a shallow sphere

FIGURE III. 21 SHEAR STRESS RESULTANT OF A SHALLOW SPHERE

III.5.6. Effect of Varivus Contributions to Beam Stiffness Matrix

Various approximations are possible in analyzing sandwich structures. Any one or combinations of the following may be neglected: (I) shearing of the facings, (2) bending of the facilys about their own middle surface, (3) bending of the core about its middle surrace and stretcing of the core, and (4) shearing of the core. Generally, the stretching of the facings is not neglected. In addition, approximation (4) would not be valid for sandwish construction with the typical properties used in the preceding examples. However, since the present theory places no restriction on the ratios of layer thicknesses and properties, the approximation may be applied to other configurations. Ths effect of each of these approximations can be evaluated with the finite element method by choosing an appropriate value of the modulus when computing a contri ution to the stiffness matrix. For approximations (1) and (4) the shear modulus of the corresponding layer is set to a very large value ie.g., $10^{20} \mathrm{psi}$) and for approximations (2) and (3) the Young's modulus of the proper layers is set to zero. The resulting solutions are compared to the case for which none of wae effects in question are neglected.

This process is now applied to a simply supported beam subject to a uniformly distributed load and represented by ten linear thear elements. The basic beam has a unit width and depth, a face modulus of $\mathrm{E}_{\mathrm{f}}=10^{7} \mathrm{psi}$ and a Pcision ratio of $1 / 3$ for both face and core. It is assumed that the shear stress correction factors are unity. Various vaiues of the following ratios are selected in order to vary the parawiters that affect the solution:

$$
\begin{aligned}
& r_{h}=h_{f} / h_{c} \\
& r_{L}=h / L \\
& r_{g}=G_{f} / G_{c}=E_{f} / E_{c}
\end{aligned}
$$

where L is the span length and the other parameters have been defined previously. A sst of curves for fixed values of r_{h} and r_{L} and a variation of r_{g} is shown in Figure III.23. The ordinates, which are Fercent errors, are based upon the average value of the ratio of the displacements for the approximate and "exact" cases. Families of such curres could be generated if desired. Koch [30] has already published several such curves for beams and plates using certain simplifying assimptions.

Although the errors due to approximations for different specific configurations (e.g., simply supported beams vs. cantilever) may be sonewhat different, the trend is the same; and some generalizations may te made from curves for simple structures. For example, in Figure IIT.23, increasing values of r_{g} correspond to cores which are Encreasingly weak with respect to the facings. As the curves indicate, large errors may be expected from neglecting the bending of a strong core or the shearing of the weak core. A further interesting conclusion is that the bending of the facings about their own midale surface is significant for very weak cores, despite the fact that the facings themselves are very thin. This may be explained by the fact that for high Yarues of r_{g}, the bending stiffness of the recings plays an important role in causing the core to jeform in shear. Hence the face bending is significant because of its effect on another mechanism of the flexural aetion.

III.5.7. Discussion of Examples
'Ihe above results demonstrate the potential of the finite element method of analysis for sandwich structures. Although no examples are presented for closed shells which are not shallow, the computer program is capable of solving them. The reason such examples are not included is the absence of published solutions with which to compare them. The main purpose the examples has been to demonstrate that the finite element anaiysis crnverges to knowr solutions.

Insofar as the warping phenomenon due to shear is approximated, the finite element results are superior to those from some approximate sandwich theories which neglect this effect. In particular, the shearing stiffness of the facings becomes important at fixed supports where warping is prevented and at concentrated transverse loads. A common assumption for sandwich construction is that all the shearing is taken by the core [12]. Hence the facings are assumed to be infinitely stiff in shear. However, if the core carries all of the shear at a section where warping is prevented, the facings must be considered infinitely flexible at such sections. Unless this incorsistency is eliminated by recognizing that the facings must carry a significant portion of the shear at thes a locations, the resulting deflections will be too large. This difficulty has been recognized by Plantema [12]. (The corresponding phenomenon for homogeneous beams is discussed by Timoshenho [129]). The present finite element formulation permits determination of the distribution of shear between the facings and the core. This is illustrated by the first two eramples above.

The relative advantages of linear and quadratic shear models are also illustrated in the examples. For the one-dimensional problems considered here, the use of quadratic shear introduces two extra equations in the
static condensation for each element. The advantage of the refinement is that, where there is a rapid variation of shear, the quadratic shear representation will produce satisfactory results with a coarser mesh. On the other hand, the moments may only vary linearly along the length when a cubic transverse displacement and a quadratic shear strain are used. With this limitation on the variation of the moments, it is perhaps inconsistent to have a more refined model for the shear because a relatively fine mesh may be needed to obtain accurate moments. However, for structures which cannot warp freely in shear, the variation of the distribution of shear between core and facings is very rapid near restrained sections. Indeed, this variation is exponential [12] and is usually more pronounced than the variation of moment over the same length. Thus for sone problems the refined shear model seems justified. The deflection of nomogeneous beams including the effect of shear was studied by using the same properties for facings and core and by making the facing thickness very small in relation to the core thickness. Then with the value of $k_{c}=2 / 3$, which is appropriate for rectangular cross-sections, the deflections are identical with those given by Timoshenko [129].

When the shear is neglected by setting the shear modulus to an extremely large value, the finite element solutions for homogeneous structures (same material properties for core and facings) reduce to the classical solutions. For rotational shells, this means the results become exactly the same as those obtained by Khojasteh-Bakht's finite element analysis for elastic problems [84]. For beams and circular plates, the solutions closely approximate those of elementary theory [129, 132].

IV.1. Lumped Translational and Rotatory Inertia

The mass of the structure is concentrated at the nodal points so that the inertial properties can be represented by a diagonal mass matrix. Felippa $[57,59]$ has demonstrated that this lumped mass procedure provides satisfactory fundamental frequencies and mode shapes with less computational effort than the consistent (or distributed) mass approach. For the same number of nodal points, the former method results in fewer equations for the eigenvalue problem. When meshes are arranged so there are the same number of eigenproblem equations for both techniques, Felippa's results for homogeneous plates indicate that the lumped mass approach produces the more accurate frequencies. The consistent mass method is less efficient than the lumped mass scheme for two main reasons. First, static condensation (Section ${ }^{\prime}$ I. 2.6) cannot be applied to consistent mass systems. Second, additional condensation can be carried out for the lumped mass representation on the external degrees of freedom which do not correspond to concentrated masses. This process is pyescribed in Section IV. 2

IV.l.l. Arrangement of Lumped Masses

Rotatory inertia has been shown to be a more important factor in the vibration of sandwich plates [34] than in the dynamics of homogeneous plates [72]. The effects of this type of inertia is discussed in Section IV.3. In this section a physical interpretation of the lumping process is given.

(a) LUMPED MASS FOR TRANSLATIONS

(b) LUMPED MASS FOR ROTATION

FIGURE II. I ARRANGEMENT OF LUMPED MASSES

For translational displacements it is sufficient to idealize the lumped mass as a point on the reference surface (Figure IV.la). However, for rotatory effects, the distribution of the mass through the depth of the beam must be maintained. This is esrecially true for sandwich structures where the outer-most layers, the facings, mey be much denser than the core. .Hence, one can visualize the mass as being lumped along the material line originally normal to the reference surface, with no concentration of the mass across the deptil (Figure IV.l.b). In effect, this is the same as multiplying the mass moment of inertia of the cross section by the tributary area.

It should be noted that the rotatory inertia is associated with the rotation of the normal to the reference surface, i.e., X_{b}. This displacement is chosen as an external degree of freedom at each node (Section II.1.5). The lumped rotatory inertia thus corresponds to this degree of freedom in assembling the equations of motion.

IV.1.2. Determination of Tributary Area

For beams the determination of the tributary area is elementary. It is merely the product of the width and the length of half of each of the adjacent elements (Figure IV.1). For rotational shells of arbitrary meridian, the calculation is more difficult. A logical procedure would be to divide the area of each element at a circumference which is equivalent to the centroid of the area. However, the determination of this centroid would require more information than is needed to construct the substitute element (Section III.3). Hence the tributary area for each node is taken as that area of the two adjacent substitute elements between the node and the points on the meridian where the local co-ordinates ξ are $\frac{1}{2}$. This representation will be
most accurate for shells approaching a cylindrical configuration and least accurate for very flat shells and circular plates. Nevertheless, as the mesh is refined, the difference between the centroid and the point $\xi=\frac{1}{2}$ diminishes. Therefore, this approximate approach is consistent with the other approximations in geometry that are used for the finite element method.

The element of area of the shell reference surface is given by

$$
\mathrm{da}=2 \pi r(\xi) \mathrm{d} s=2 \pi \ell \frac{\mathrm{r}(\xi)}{\cos \beta} \mathrm{d} \xi
$$

This is integrated over the appropriate range of ξ using Gauss' integration formula simultaneously with the similar numerical'integrations for the element stiffness. Whereas a ten-point integration is used for the stiffness for $0 \leq \xi \leq 1$, five-point summation is employed for each of the areas $0 \leq \xi \leq \frac{1}{2}$ and $\frac{1}{2} \leq \xi \leq 1$.

IV.2. Formulation of the Eigenvalue Problem

In the absence of velocity-dependent damping, the equations of motion in matrix form may be written

$$
\begin{equation*}
[M]\{\ddot{\mathrm{v}}(\mathrm{t}: \because+[\mathrm{K}]\{\ddot{\mathrm{v}}(\mathrm{t})\}=\{\mathrm{V}(\mathrm{t})\} \tag{IV.1}
\end{equation*}
$$

where $\{V(t)\}$ are the nodal forces, $\{v(t)\}$ are the nodal displacements, [M] is the mass matrix and $[K]$ is the stiffness matrix for the overall structure. Following the usual procedure for free vibrations, the displacements of the unloaded structure are assumed to be harmonic with frequency ω

$$
\begin{aligned}
& \{v(t)\}=\{w\} \cos \omega t \\
& \{v(t)\}=\{0\}
\end{aligned}
$$

where $\{w\}$ is the vector of displacement amplitudes. As a result, the accelerations are proportional to the displacements

$$
\{\ddot{v}(t)\}=-\omega^{2}\{v(t)\}=-\omega^{2}\{w\} \cos \omega t
$$

and the eigenvalue problem is stated as

$$
\begin{equation*}
[K]\left\{w_{i}\right\}=\omega_{1}^{2}[M]\left\{w_{i}\right\} \tag{IV.2}
\end{equation*}
$$

However, standard computer subprograms for determining eigenvalues and eigenvectors of a symmetric matrix areibased upon: the formulation

$$
\begin{equation*}
[X]\left\{x_{i}\right\}=\lambda_{i}\left\{x_{i}\right\} . \tag{IV.3}
\end{equation*}
$$

Therefore, the vibration problem of Equation (IV.2) must be reduced to the standard form (IV.3)

Felippa [57, 59] adrocates a technique which simultaneously transforms the equations to standard form and condenses the degree of the problem. This method is efficient in that it gives numerically accurate results and also uses and preserves the banded nature of [K] . Felippa's approach is adopted here and is now described.

With the lumped mass procedure, the mass matrix is diagonal and is thus designsted [ivi] . Moreover, non-zero elements occur on the diagonal only in positions corresponding to degrees of freedom which are associated with concentrated masses. For the problem under consideration, these degrees of freedom are the translations and, if rotatory inertia is included, the rotations due to bending. Ionversely, there are no masses associated with the warping. Only the equations that involve the non-zero elements need be retained in the eigenvalue problem. If the total nuber of equations is N and the nrmber of lumped masses is $N_{r}<N$, the following sets of equations are solved

$$
\begin{equation*}
[K]\left\{f_{i}\right\}=\left\{e_{i}\right\}, i=1, \ldots, N_{r} \tag{IV.4}
\end{equation*}
$$

The stiffness [K] has already been triangularized by the method given in Section II.3, so the solutions (IV.4) are efficiently achieved. The vector $\left\{e_{i}\right\}$ is a unit vector with zercs at all locations except the one corresponding to the $i^{\text {th }}$ lumped mass. As a result, $\left\{f_{i}\right\}$ is the column of the flexibility matrix

$$
[F]=[K]^{-1}
$$

and, specifically, is the column associated with the $i^{\text {th }}$ lumped-mass degree of freedom. It is possible to select the N_{r} elements of each of the $\left\{f_{i}\right\}$ vectors which correspond only the concentrated masses and thus to construct the $N_{r} \times N_{r}$ flexibility $[\bar{F}]$. In effect, the $N^{\text {th }}$ degree eigenvalue problem o.: Equation (IV.2) has now been reduced to
the $N_{r}^{\text {th }}$ degrec eige value problem

$$
\begin{equation*}
[\bar{F}][\bar{M}]\left\{\bar{w}_{i}\right\}=\frac{1}{\omega_{i}^{2}}\left\{\bar{w}_{i}\right\}, i=1, \ldots, N_{r} \tag{TV.5}
\end{equation*}
$$

This equation is readily transformed to standard form (IV.3) by premultiplying by $\left[\bar{M} \sqrt{\frac{1}{2}}\right.$, the diagonal matrix whose elements are the square root of those if $[\bar{M}]$. Hence

$$
\begin{equation*}
[x]\left\{x_{i}\right\}=\lambda_{i}\left\{x_{i}\right\}, i=1, \ldots, N_{r} \tag{IV.3}
\end{equation*}
$$

where

$$
\begin{align*}
{[\mathrm{X}] } & =[\bar{M}\} \frac{1}{2}\{\overline{\mathrm{~F}}][\overline{\mathrm{M}}]^{\frac{1}{2}} \\
\left\{\mathrm{x}_{i}\right\} & =[\overline{\mathrm{M}}] \frac{1}{2}\left\{\bar{W}_{i}\right\} \tag{IV.6}\\
\lambda_{i} & =I / \omega_{i}^{2}
\end{align*}
$$

An advantage of this formulation of the problem is that the smairest frequencies u_{i} correspond to the largest eigenvalues λ_{i}. Decause eigenvalue programs generally compute roots to within an absclute tolerance, the largest λ_{i} will have the smaliesti relative error. * In the computer progrem, the flexibility matrix $[\bar{F}]$ is not separately computed in its entirety. As each column of $[\overline{\mathrm{F}}]$ is obtained from

[^4]Equations (IV.4), it is modified using Equation (IV.6a) to construct the ra. .. ding portion of [X$]$.

Ora wie eigenvectors \{ j have been found for the standard form, the complete mocie shapes can be recovered using the triangularized stiffness matrix. Inertial loads of the form

$$
\begin{equation*}
\left.\underset{N_{r}}{\left\{\bar{f}_{1}\right\}}\right\}=\omega_{i}^{2}[\bar{M}]\left\{\bar{w}_{i}\right\}=\omega_{i}^{2}[\bar{M}] \frac{1}{2}\left\{x_{i}\right\} \tag{IV.7}
\end{equation*}
$$

are expanded to $N \times I$ by the addition cf zero elements corresponding to the condensed degrees of freedom. When these are applied to the structure using

$$
\begin{equation*}
\{K]\left\{w_{i}\right\}=\left\{p_{i}\right\} \tag{IV.8}
\end{equation*}
$$

the solution of the equations gives the desired mode shape.

IV.3. Vibration Modes

Like the dynamic analysis of homogeneous shells and plates, the study of the free vibrations of sandwich structures is primarily concerned with the most findamental modes of deformation. These modes correspond to the lowest branches of the frequency equation for threedimensional theory. However, the relative importance of the various types of behavior is different for homogeneous and sandwich structures. In particular, the thickness shearing modes are of lesser importance for the homogeneous case since they occur at extremely high frequencies in relation to the pure flexural deformations. This is not necessar.lly true for sandwiches because they are more flexible in skear. Depending upon the nature of the vibration environment and upon the properties and configuration of the sandwich structure, the thicknessshear modes may be quite significant.

Thickness-shear deformations are those in which the shearing across the depth of the structure is predominant. Thus, for the three-layered construction used in the examples of this dissertation, the mode is characterized by a tangential displacement of one facing relative to the other. In terms of the displacement parameters of the finite element method, for thickness-shear behavior the slope due to bending, X_{b}, and that due to shear, X_{s}, are of opposite sign at any location on the reference surfase. Because the shearing deformation is so closely related to the rotation of the structure cross-sections, it is necessary to include the rotatory inertia. Otherwise the moüe wiil not appear in the free vibration analysis.

The importance of thickness-shearing modes has been discussed by Yu [33, 34, 37] and Chu [46]. It. will be further emphasiced in the
examples of Section IV. 4 below. However, a brief qualitative review of the relationship of the various vibration modes is now given. Figures IV. 2 and IV. 3 demonstra ie this relationship. It should be emphasized that these two Figures are merf $\perp \mathrm{y}$ qualitative sketches to illustrate the modal behavior. They do not represent results calculated for a particular structure. Moreover, the use of continuous curves for each mode implies an infinity of possible wave lengths and hence a structure of infinite length. For a simply supported, finite-length structure, the wave lengths must be integer fractions of the structure length. Hence a finite structure would be represented only by points on the modal curves corresponding to admissible abscissas.

Figure IV. 2 shows the two primary modes of a one-dimensional, flat sandwich structure, i.e., a beam or an axisvmmetric plate. Point A is known as the "thickness-shear cut-off frequency" or the "simple thickness-shear mode." It corresronds to an infinite wave length and thus represents pure shearing deformation. If the ordinate 0 A is sufficiently small, the shearing mode becomes significant in anaiysis and design. For example, if the points F_{1} and F_{2} indicate the two lowest flexural frequencies, the thickness-shear cut-off becomes the second lowest natural frequency of the structure.

For the axisymmetric vibrations of a sandwich cylinder, the three lowest branches of the frequency equation are shown in Figure IV.3. Here, point A has the same significance as for the plate. Moreover, for an isotropic cylinder the simple thickness-shear frequencies are the same for the longitudinal and circumferential direction, so some

[^5]

FIGURE II. 2 VIBRATION MODES OF A BEAM OR PLATE

FIGURE IV. 3 AXISYMMETRIC VIBRATION MODES OF A CYLINDRICAL SHELL
insight is gained for the asymmetric behavior. Point B corresponds to a pure radial expansion or "breathing" mode. The radial and thick-ness-shear curves are close together for nearly all sandwich cylinders. In fact, Yu [37] has shown that their relative positions are interchanged for sufficiently low ratios of raiius to thickness. Since the radial mode is significant, the determination of the thickness-shear frequencies is also essential in the dynamic analysis of cylindrical sandwich structures.

In both Figure IV. 2 and Figure IV.3, the point 0 represents rigid bcdy translation of the structure as a whole, a motion which is characterized by a zero natural frequency.

IV.4. Examples of Free Vibretion Analysis

The finite element analysis has been used to obtain the fundamental frequencies and mode shapes for several beams. plates, and shells. Where results from other sandwich theories are available for comparison, the approximate method provides reasonable agreement for the iower frequencies computed. In this section, three examples are presented: a slender beam, a short beam, and a cylindrical shell. Other configurations, including rotational shells of arbitrary meridian, can be analyzed by the present finite element method. However, it should be re-emphasized that the theory only considers the axisymmetric modes of" such structures.

IV.4.1. Simply Supported Slender Beam

Kimel et al. [43] have reported the results of experiments to determine the natural frequencies of a long, slender sandwich beam which is simply supported. They also developed a theory to predict this behavicr. The finite element method has been applied to one of their specimels and the results compared to the $=$ periment and theory. The beam has the following properties:

$$
\begin{aligned}
& \text { s. } h_{c}=0.25, h_{f}=0.016, \ldots=0.282 \\
& E_{f}=10.3 \times 10^{4} \mathrm{psi}, G_{f}=3.87 \times 10^{6} \mathrm{psi}, k_{f}=1 \\
& E_{c}= 2.34 \times 10^{4} \mathrm{psi}, G_{c}=1.17 \times 10^{4} \mathrm{psi}, k_{c}=1 \\
& \operatorname{span}, L=120 \prime, \rho_{f}=0.0975 \mathrm{lb} . / \mathrm{in} .^{3}, \rho_{c}=0.00442 \mathrm{Ib} . / \mathrm{in} .^{3}
\end{aligned}
$$

The effect of lateral constraint is neglected, i.e., the beam stress-

The result of calculations is presented in Table IV.1. The theories from References [34] and [43], although somewhat different in concept, agree closely in results. The linear-shear finite element solution matches both theories well. Furthermore, all three theoretical methods provide frequencies within a few percent of the experimental values, better correlation being obtained for lower frequencies.

It is apparent that the inclusion of rotatory inertia has negligible effect on the flexural frequencies for this problem. This is to be expected on the basis of the relatively small effect of rotatory inertia on the flexural vibrations of homogeneous plates [73]. Morecver, by lumping the masses to produce a diagonal mas's matrix, the inertial effects have been uncoupled. However, the use of lumped rotatory inertia does provide estimates to the thickness-shear frequency, although for the ten- and twenty- element representations in Table IV.l, the approximations of the thickness-shear cut-off are poor. It is found that the ratio of beam thickness to element length is an important factor in the accuracy of the finite element solutions for thickness shear behavior. Since the thickness-shear cut-off occurs at infinite wave length, it is independent of the span length of the beam. Hence it is possible to estimate the simple thickness-shear frequency by analyzing a simply supported beam of arbitrary length, provided rotatory inertia is included. Figure IV. 4 indicates the effect of the thickness tc. . agth ratio on the accuracy of the finite element thick-ness-shear cut-off. The standard of comparison is Yu's determination of this frequency $[33,34]$. The results shown are independent of the number of elements used. Hence, the finite element analysis can be used to obtain the simple thickness-shear frequency with a sufficiently short one-element representation. This quick and easy calculation
provides an indication of the necessity for incliding rotatory inertia in the complete analysis. If the cut-off is high with respect to the flexural frequencies, rotatory inertia need not be taken into account.
TABLE IV.I--NATURAL FREEQUENCIES OF A SIMPLY SUPPOR'IED SANDWICH BEAM (CPS)
(ops

Mode	Finite Element, Lumped Masses					Yu [34] Eq. 2.5 $v=0$	Kimel et al [43]	
	Trans. Inertia Onily		Rot. \& Trans. Inertia				Theory	
	10 elements	20 elements	10	elements	2.0 elements		$\nu=0$	Experiment
1	2.5	2.5		2.5	2.5	2.7	2.5	
2	10.1	10.1		10.1	10.1	10.2	10.1	
3	22.6	22.6		22.6	22.6	22.6	22.6	
4	39.9	40.0		39.9	40.0	40.0	39.9	40
5	61.8	62.2		61.8	62.2	62.2	62.1	61
6	87.7	88.7		87.7	88.9	89.0	88.8	90
7	116.3	120.1		116.3	120.1	120.2	120.0	114
8	144.9	155.5		144.9	155.5	155.7	155.4	178
9	167.8	194.8		167.8	194.8	195.2	194.8	201
10		237.8			237.8	238.4	238.0	254
11		284.3			284.2	285.3	284.8	335
12		334.0			333.9	335.4	334.9	353
13		2025.7			386.5	388.7	388.1	423
14		441.9			441.7	444.8	444.1	479
15		498.9			498.7	503.4	502.8	532
16		556.3			556.2	564.5	563.8	
17		611.3			611.1	627.7	627.1	
18		658.8			658.6	692.9	692.3	
19		691.8			691.8	759.9	759.3	
TSCO				5100	10200	22900		

TSCO $=$ Thickness-shear cut-off frequency

FIGURE II. 4 ACCURACY OF THICKNESS-SHEAR CUT--OFF FREQUENCY FOR A BEAM
IV.4.1 Simply Supported Short Beam

In order to illustrate a structure for which thickness-shearing modes are important, a short, thick beam is selected with the following properties:

$$
\begin{gathered}
h_{c}=1.0^{\prime \prime}, h_{f}=0.05^{\prime \prime}, h=1 " \\
E_{f}=10^{7} \mathrm{psi}, G_{f}=3.84 \times 10^{6} \mathrm{psi}, K_{f}=1 \\
E_{c}=4.26 \times 10^{5} \mathrm{psi}, G_{c}=1.565 \times 10^{5} \mathrm{psi}, K_{c}=1 \\
\operatorname{span}, r_{2}=5.5^{\prime \prime}, f_{f}=0.0975 \mathrm{lb} . / \mathrm{in}^{3}, \rho_{c}=0.0469 \mathrm{ib} . / \mathrm{in} .^{3}
\end{gathered}
$$

The beam is represented by 4, 10 , and 20 linear-shear finite elements both with and without rotatory inertia; again the results are compared to the theories of References [34] and [43].

The various solutions are given in Tabla IV.2. The finite element results compare ravorably with the theoretical for both flexural and thickness-shear modes. For the various meshes, about 70% of the finite element flexural frequencies ure in good agreement with the frequency equation rocts. For the higher mode, only about 45% agree with the theoretical solution. That the approximate method will be more accurate for the lower modal branch is not surprising; the finite element displacement models are better able to represent less complex modes of deformation. It should be emphasized that the element mesh is extremely f. ir this particular example. In normal application with a нess refined mesh, a smaller proportion of the frequencies for each mode would be accurate to a given tolerance.
TABLE TV.2--NATURAL FREQUENCIES OF A SIMPLY SUPPOK: ED SANDWJCH BEAM ($\left.10^{5} \mathrm{RA}^{\top} . / \mathrm{SEC}.\right)$ Mode

 $\mathrm{F}=$ r'leyural, $\mathrm{TSCO}=$ Thickness-Shear Cut-Off, TS $=$ Thickness-Shear

IV.4.3. Simply Supported Cylindrical Shell

The one type of shell for which solutions for natural frequencies are readily available is the cylinder. Yu [37] has derived a threebranched frequency equation for an infinite cylinder in an extension of his theory for anäwich plates [32, 24]. This equation is also applicable to a simply supported shell of finite length. A cylinder with the follewing properties is now analyzed.

$$
\begin{gathered}
h_{c}=0.5^{\prime \prime}, h_{f}=0.025^{\prime \prime}, h=0.55^{\prime \prime} \\
E_{f}=10^{7} \mathrm{psi}, \nu_{f}=0.3, G_{f}=3.85 \times 10^{6} \mathrm{psi}, \kappa_{f}=1 \\
E_{c}=2.6 \times 10^{4} \mathrm{psi}, \nu_{c}=0.3, G_{c}=10^{4} \mathrm{psi}, \kappa_{c}=1 \\
\rho_{f}=0.1 \mathrm{lb} . / i n .^{3}, \rho_{c}=0.005 \mathrm{lb} . / \mathrm{in} .^{3} \\
\text { radius, } a=20^{\prime \prime}, \text { span, } L=10^{\prime \prime}
\end{gathered}
$$

As in the preceding examples, these properties are typical of sandwich construction.

The natural frequencies computed by both methods are presented in Table IV.3. Rotatory inertia is included in all cases and quadraticshear elements are used. Many more frequencies than would be of practical interest are shown in the table in order to evaluate better the overall effectiveness of the finite element approach. It is noteworthy that the lowest frequencies of each of the three modes are approximated regardless of the number of elements used. The number of frequencies given by the finite element method for each mode depends on the number of degrees of freedom available of the type that are necessary to characterize the particular mode.

For shell structures there is usually more than one branch of the frequency equation that is of engineering importance. Careful study

Of the finite element mode shapes must be undertaken in order to identify the frequencies with the appropriate branch. This is especially true in preliminary analyses wherein the frequencies have not yet converged to a predictable pattern.

In the present example, simple supports which preclude translation in any direction are used. Hence the breathing mode or fundamental radial expansion mode is prevented. However, the example has been recomputed with supports that restrain only longitudinal displacements in order to obtain an estimate of the cut-off frequency of this radial mode. Yu's solution [37] for this frequency is 8520 sadians/second. The finite element approximations for five, $t \geqslant n$, and twenty elements are 8360,8500 and 8520 radians/second, respectively.

TABLE IV.3--NAMURAL FREQUENCIES OF A SIMPLY SUPPORTED
SANDWICH CYLINDER (RAD./SEC.)

MODE	TYPE	Yu [34]	Finite Element Method		
		Eq. 29	5 elems.	10 elems.	20 elems.
1	LI	8740	9040	9080	9080
2	L2	11900	11900	12100	12200
3	L3	16300	15500	16700	16800
4	L4	21000	18000	21500	21900
5	L5	25900		26000	27000
6	L6	30800		30000	32300
7	L7	35700		33400	37500
8	L8	40700		35900	42700
9	L9	45700		37400	47700
10	Ll0	50700			52700
11	RI	53600	5260	53300	53500
12	LII	55700			57400
13	L12	60700			61900
14	Ll3	65800			66000
15	TSCO	69800	71500	72800	73100
16	L14	70800			69800
17	L15	75800			73100
18	Li6	80800			75900
19	L17	85900			78100
20	Ll8	90900			79700
21	TS1	92500	91200	94100	94900
22	L19	95900			80700
23	L20	101000			
24	L21	106000			
25	R2	107000	99800	105000	107000
32	TS2	140000	128000	138000	141000
37	R3	161000	137000	155000	159000
47	TS3	195000		187000	194000
	R4	214000		200000	211000
	TS4	252000		235000	249000
	R5	268000		241000	261000
	TS5	311000		278000	303000
	R6	321000		275000	309000
	TS7	370000			356000
	R7	375000			356000

CHAPTER V: DAMPING BY THE INCLUSION OF VISCOELASTIC LAYERS

V.1. The Complex Modulus Representation

For oscillatory displacements in linear viscoelasticity, the stresses and strains may be related by a complex modulus [135, 136]. This representation of constitutive theory is adopted for the present damping studies. Most of the material in this chapter is therefore formulated in complex algebra. Throughout the chapter, the superscript * indicates a complex quantity and the subscripts 1 and 2 designate the real and imaginary parts of a complex quantity, respectively.

Let a volume of viscoelastic material small enough to neglect spatial variations of stress be subjected to a sinusoidally oscillating stress frequency ω :

$$
\begin{equation*}
\sigma_{i j}=\operatorname{Re}\left(\sigma_{i j}^{*} e^{i \omega t}\right) \tag{V.la}
\end{equation*}
$$

After a time sufficiently long for the effect of initial conditions to be negligible, the steady-state strain response is

$$
\begin{equation*}
\varepsilon_{i j}=\operatorname{Re}\left(\varepsilon_{i j}^{*} e^{i \omega t}\right) \tag{V.Ib}
\end{equation*}
$$

This formulation presumes that strains are small so that non-linear effects are absent. Then if ε^{*} corresponding to σ^{*} can be considered to represent either a deviatoric component or the dilation, the ratio $\sigma^{*} / \varepsilon^{*}$ is the "complex modulus"

$$
\begin{equation*}
E^{*}(\omega)=\sigma^{*} / \varepsilon^{*} \tag{V.2a}
\end{equation*}
$$

and its reciprocal is the "complex compliance"

$$
\begin{equation*}
J^{*}(\omega)=\varepsilon^{*} / \sigma^{*} . \tag{V.2b}
\end{equation*}
$$

These quantities are related by integral transforms to the familiar relaxation modulus $E(t)$ and creep compliance $J(t)$ functions used in quasi-static viscoelasticity. * It should be noted that E is used as a generalized symbol in this section. It can be considered to represent any of the usual moduli (Young's, shear, bulk), depending upon the nature of the "test" in Equations (V.1) and (V.2).

The complex modulus may be written

$$
E^{*}=E_{1}+i E_{2}
$$

where i is the square root of $-1, E_{1}$ is the modulus of strain which is in phase with the stress and E_{2} is the modulus of strain which is 90° out of phase with the stress. Hence, E_{1} can be associated with an elastic phenomenon in which energy is stored in a recoverable form and is called the "storage modulus"; conversely, E_{2} is associated with viscous behavior in which energy is dissipated and is called the "loss modulus." It is convenient to visualize the stress and strain as a pari of vectors rotating at frequency ω about the origin of the complex plane (Figure V.1). The stresses and strains of Equations (V.1) are the projections of these vectors onto the real axis. Because of the viscous effects, the cyclic strain vector lags behind the cyclic stress vector by an angle θ during the steady state vibration. This angle is between 0° and 90° and is given by
*In "quasi-static" viscoelasticity, inertial effects are neglected. The relaxation modulus is obtained from a test at constant strain: $E(t)=\sigma(t) / \varepsilon$. Conversely, the creep compliance is ascertained from a constant-stress test: $J(t)=\varepsilon(t) / \sigma_{0}$.

$$
\tan \theta=E_{2} / E_{1}
$$

$\tan \theta$ is called the "loss tangent" or "loss factor" of the material since it is a measure of the proportion of energy dissipated in a cycle.

The complex modulus is a function of both temperature and frequency. The nature of this dependence is discussed further in Section V.3. It is assumed in this dissertation that all problems are isothermal; i.e., there are no external thermal effects and the heat generated per unit volume in the damping process either is sufficiently small or is dissipated quickly enough so as not to affect appreciably the material properties. This is a customary approximation in the analysis of structural damping $[86,87]$. Often, it is also assumed that the complex material properties are independent of frequency [47]. This is a reasonable assumption for many cases, especially in view of the continual development of new damping materials with favorable damping characteristics over a wide frequency range [97]. However, in Section V. 6 a method is proposed wherein the fre-quency-dependent nature of dissipative materials is taken into account.

FIGURE Z.I REPRESENTATION OF STRESS AND STRAIN IN THE COMPLEX PLANE

FIGURE ¥. 2 REGIONS OF POLYMER BEHAVIOR

V.2. Correspondence Princip.e for Linear Dynamic Viscoelasticity

For the case of sinusoidal osciliation problems, Bland [135, p. 67] has statea the following elastic-viscoelastic correspondence principle:

Abstract

If the elastic solution for any lependent variable in a particular problem is of the form $f=\operatorname{Re}\left(f_{E}^{*} e^{i \omega t}\right)$ and if the elastic moduli in f_{E}^{*} are replaced by the corresponding complex moduli to give f_{VE} then the viscoelastic solution for that variable in the corresponding problem is given by $f=\operatorname{Re}\left(f_{V E}^{*} e^{i \omega t}\right)$. By "corresponding problem" is meant the identical problem except that the body concerned is viscoelastic instead of elastic. The principle can only be used if (1) the elastic solution is known, (2) no operation in obtaining the elastic solution would have a corresponding operation in the viscoelastic solution which would involve separating the complex moduli into real and imaginary parts, with the exception of the final determination of f from f^{*} and (3). the boundary conditions for the two cases are identical.

This principle is the basis for the damping studies in this dissertation. The oscillatory problems to which it is applied are the free vibration and the stea ${ }^{7} y$-state fixed vibration of the substitute structure composed of an assemblage of finite elements. In this connection, it should be noted that the "elastic solution" mentioned in the principle need not be an exact solucion of three-dimensional elasticity. It is valid to apply the principle to an approximate
theory of elasticity as well $[86,135,136]$.

V.3. Viscoelastic Properties of Polymers

Because the rost common materials used to provide damping are polymers, their dynamic viscoelastic properiies are now discussed. Only a summary is given in order to provide a perspective on the assumptions used in this dissertation and in other investigations of structural damping. The mechanical properties of polymers is a broad subject and, indeed, several thorough studies have been published [137-144]. References [140] and [142] are, in fact, specificelly intended for the design engineer.

Polymers are materials composed of extremely long, chain-like molecules. The basic units of these chains are monomers which are usually organic substances. There is not only a great variety of such substances which can be used as constituents, but there is also a multitude of chemical and physical processes which can influence the formation of the final product. Hence, there is effectively an infinite number of possible plastics with widely varying properties and applications. Attempts to describe so diverse a class of materials can be confusing. However, this variability of properties is one of the main advantages of polymers because it permits the technologist to design a material with characteristics suitable for a particular application. Fortunately, some generalizations can be made about the behavior of these substances because such behavior is related to the chain-like molecular structure peculiar to all members of the class.

Elastomers are the polymers of primary interest to engineers concerned with damping. These by definition are materials which exhibit rubber-like behavior in the frequency and temperature rasges of their application and which must be mostly amorphous in the sense that the
molecules are arranged randomly. (However, it should be noted that in some cases there is a small degree of crystallinity, the effect of which is to tie the amorphous regions together.) Like all high polymers, the elastomers possess vissoelastic properties which exhibit a marked dependence upon time and temperature.

V.3.1. Temperature Dependence

The basic behavior of polymers can be ascertained by measuring the viscoelastic properties over a broad range .i temperature. Any one of several parameters may be chosen as represt ${ }^{\text {t, ative, e.g., the }}$ viscosity, creep compliance, relaxation muiuius, Etc. The same qualitative trends of behavior are detectable from any one of the experiments, although the specific results will depend upon the time (or frequency) of measurement and the method. Figure V. 2 shows a schematic plot of the storage modu?us of a linear amorphous polymer as a function of temperature. Five regions of viscoelastic behavior are identifiable [137]. Starting at the lowest temperatures, the first is the glassy region in which the polymer is hard and brittle. In this range of temperatures, the molecules are "frozen" in relatively fixed but irregular positions. There is some vibration about this fixed position, but there is essentially no diffusional motion. The second region in which the modulus rapialy changes value is called transition and polymers in this stage are often characterized as leathery. It is theorized that segments (i.e., fractional lengths of the molecules) undergo short-range diffusional motion at these temperatures, although the molecules as a whole are not mobile. The third type of behavior, best described as rubbery, may extend over a fairly broad range of temperatures without much change in modulus (e.g., from $-20^{\circ} \mathrm{C}$. to $+180^{\circ} \mathrm{C}$. for sulfur-cured natural rubber
[137]). This region represents behavior most typical of elastomers. Here segmental motion is quite rapid, but the entanglement of the chains retards overall movement of the molecules. If the molecules are linked together, these "entanglements" are permanent. As the temperature is further increased to the region of rubbery flow, the uncrosslinked polymer is still elastic to a degree; but the motion of molecules as a whole becores important, and actual flow occurs as the chains slip. Crosslinked materials do not exhibit this high-temperature creep, but retain much of this elasticity. Finally, at the highest temperatures, long-range configurational chances of the unlinked molecules occur very rapidly. In this liquid flow region, elastic recovery becomes negligible.

The transition stages and the iemperatures at which they occur affect practically all of the mechanical properties of the polymers [240]. In particular, the dynamic mechanical dispersion will be discussed in Section V.3.3. Insofar as elastomeric behavior is concerned, the most significant transition is the glass transition. The rubbery flow transition or melt temperature is also important since iv indicates the onset of flow. In addition, there are various less important transitions, for example, those associated with the motion of side branches to the main molecules. Only the first two phenomena are described here. The glass transition occurs over a narrow temperature range (about $10^{\circ} \mathrm{C}$) and can be determined by measuring the specific volume as a function of temperature. In Figure V.3, this ansition is indicated by T_{g} and is associated with a discontinuity in the coefficient of thermal expansion. The crystalline transition temperature, T_{m}, is less well defined since it does not characterize an abrupt, ideal melting. With increasing temperature, this transition corresponds to a

FIGURE Z. 3 TRANSITION TEMPERATURES OF POLYMERS AFTER NELSON [140]

FIGURE Y. 4 DYNAMIC MECHANICAL DISPERSION
change from a partially crystalline configuration to a completely amorphous one.

V.3.2. Temperature-Frequency Interdependence

Since the dehavior of polymers is dependent upon both time and temperature, a complete knowledge of the mechanical properties of a plastic can be obtained from tests conducted at many different temperatures and frequencies. Fortunately, such thorough investigations indicate that there is some analogy between the effects of temperature change and those of frequency change. Hence it has been possible to develop approximate reduction principles which relate these effects. The principles use data obtained at a variety of temperatures and a given frequency to deduce properties at a different frequency and vice versa. These methods are applicable for amorphous polymers and appear to be valid in the temperature range from the glass transition region to the liquid flow region [140]. No details of the reduction principles are given here. For the present purposes, it is sufficient to note that the effect of increasing the temperature or decreasing the frequency is qualitatively the same. Hence, for example, Figure V.a may be interpreted as a schematic plot in which the abscissa is the inverse of the frequency rather than the temperature.

V.3.3. Dynamic Mechanical Dispersion

The most important effect of a transition insofar as damping is soncerned is the mechanical dispersion which occurs near the transition temperatures, especially near T_{g}. This phenomenon is analogous to optical or dielectric dispersion. The features of the mechanical dispersion associated with the glass transition for an amorphous polymer
are schematically shown in Figure V.4. It is seen that the storage modulus changes from a lower to a higher value over this region while the loss modulus and loss tangent pass through a maximum [144]. As pointed out in Section V.3.2, the molecular mechanism of the damping during this transition is the coiling and uncoiling of chain segments. When maximum damping is required, materials are employed which undergo glass transition in the relevant frequency and temperature range. Highly amorphous polymers are preferred since crystallinity tends to decrease the intensity of the phenomenon. One example of the development of damping compounds with high loss factors over a wide range of temperatures is given in Reference [98]. There several polymers with different glass transition temperatures are mixed to give a blend with more than one T_{g} and hence a broader range of the favorable damping associated with the dispersion phenomenon. When temperature insensitivity of damping is desired with a single polymer, its elastomeric behavior between T_{g} and T_{m} is employed [144] (See Figure V.2). If T_{m} is approached and if strength is alsu a concern, polymers with a degree of cross-linking between molecular chains may be used.

V.3.4. Additional Factors Influencing Behavior

Although frequency and temperature a e the primary factors affecting the viscoelastic behavior of polyners, there are other physical and chamical effects that must be considered. Crystallinity and crosslinking have already been mentioned. The properties of the final product may also be affected by copolymerizaticn, polyblending, and the addition of plasticizers and fillers [138, 139, 35, 97].

Copolymerization is the formation of polymer ${ }^{m}$.lecules from more than one type of monomer. When the constituents occur randomly along
the chains, a new polymer is produced which is unlike any of the polymers composed of the separate monomers. Another type of copolymer occurs when chains made of different monomers are attached either to make one chain (block copolymers) or to make branching mclecules (graft co-polymers). These nonuniform or heterogeneous polymers exhibit multiphase properties similar to mechanical mixtures. Each component will retain its own glass transition, so the resulting copolymer will have more than one T_{g} [139].

Polyblends are merely mechanical mixtures of two or more polymers. The effect of this blending was discussed in the preceding section [98] and the preceding paragraph. In brief, the result of such mixtures is a product whose properties are intermediate to those of the constituents.

A plasticizer is an organic liquid used to dilute the polymer. This dilution increases the chain mobility and lowers the glass transition temperature. Hence, plasticization can be used to adjust the optimal damping to the desired temperature or frequency range [97].

Fillers are inert materials added to the polymer. Because there is no chemical interaction with the plastic, there is usually not a significant influence on the temperature and frequency characteristics [95]. However, for some types of fillers there is sufficient mechanical interaction between the filler particles and the polymer molecules to increase damping efficiency and to broaden the operable temperature and frequency range of the useable damping [97].

In brief, it is apparent that there are several techniques by which polymer technologists can design materials for a specific application. However, despite the ability to adjust the glass transition temperature, it is not always possible to obtain efficient damping from a given polymer. For example, crystaliine polymers are nearly always
impractical for damping applications.

V.3.5. Summary

The strong dependence of the viscoelastic properties of polymers on temperature and frequency has been pointed out. As a result, it is seen that the common approximations of temperature- and frequencyindependence of structural damping can lead to rather large inaccuracies. However, when applied with care over appro ;ate ranges of frequency and temnerature for a particular damping material, these assumptions can also provide useful results. Finally, there is some justification for the oversimplification of material behavior when real possibilities of designing materials to fit the assumptions exist.

V.4. Measures of Effective Damping

Of the many ways to express the damping of a vibrating structure [87, 94], two primary measures are used here. These are the loss factor, η, and the logarithmic decrement, δ. Damped oscillatory motion of the discretized structure can be written in the following form

$$
\begin{equation*}
\{v(t)\}=\operatorname{Re}\left(\{w\} e^{i \omega_{1} t} e^{-\omega_{2} t}\right)=\operatorname{Re}\{w\} e^{i \omega^{*} t} \tag{v.3}
\end{equation*}
$$

where $\{v(t)\}$ is the vector of nodal displacements, $\{w\}$ is the vector of displacement amplitudes, ω_{1} is the frequency and ω_{2} is the decay constant. The latter two parameters are combined into a complex modulus, ω^{*} :

$$
\begin{equation*}
\omega^{*}=\omega_{1}+i \omega_{2} \tag{V.4}
\end{equation*}
$$

Then the logarithmic decrement is given by [115]

$$
\begin{equation*}
\delta=2 \pi \omega_{2} / \omega_{1} \tag{v.5}
\end{equation*}
$$

and the loss factor by [118]

$$
\begin{equation*}
\eta=\operatorname{Im}\left(\omega^{* 2}\right) / \operatorname{Re}\left(\omega^{* 2}\right) \tag{v.6}
\end{equation*}
$$

Since both measures are expressed in terms of the same parameter, they can in turn be related by

$$
\begin{align*}
& \eta=\frac{\delta / \pi}{\left(1-\delta^{2} / 4 \pi^{2}\right)} \\
& \delta=\frac{2 \pi}{\eta}(\sqrt{1+r}-1) \tag{v.7}
\end{align*}
$$

An alternate, but equivalent definition of the loss factor is useful for
dealing with forced vibrations. In terms of the energy of the vibrating system, it is possible to write

$$
\begin{equation*}
n=\frac{D}{2 \pi W} \tag{v.8}
\end{equation*}
$$

where D is the energy dissipated per cycle and W is the total energy associated with the vibration [94, 145].

V.5. Complex Algebraic Eigenvalue Froblems

The information and principles given in the preceding sections are now applied to the damping studies of freely vibrating layered structures using the finite element method. Apparently, the present work is the first such application of the method to structural damping problems. The techniques that are used in this section and the next are not limited to the particular formulation given in Chapters II and III. Rather, the approach can be used for any finite element discretization. However, since an efficient and widely utilized damping mechanism is the shearing of constrained layers [88], the theory developed in this dissertation is particularly appropriate.

For frequency-independent material properties, the elasticViscoelastic correspondence principle can be applied to the free vibration problem of Equation (IV.2) to give

$$
\begin{equation*}
\left[K^{*}\right]\left\{w_{i}^{*}\right\}=w_{i}^{* 2}[M]\left\{w_{i}^{*}\right\} \tag{v.9}
\end{equation*}
$$

Here the complex moduli corresponding to a specific representative frequency are substituted for their real counterparts in the stiffness, and the complex frequency replaces the real frequency. The lumped masses remain real; but since the eigenvalue problem is now complex, the mode shapes may also be complex. Equations (V.9) are reduced to standard form in a manner exactly parallel to that presented in Section IV. 2 except that the algebra is no longer real. The computer programs are readily adapted for this change if the particular computer used is capable of accomodating complex arithmetic. Moreover, standard routines are available for the complex algebraic eigenvalue problem.*

[^6]As is evident from Equations (V.4) to (V.6), tile eigenvalues give both the natural frequency of vibration of the damped system and the effective viscoelastic damping at each natural frequency. The eigenvectors correspond to the decaying mode shapes, and there is no special significance to the fact that these vectors may be complex. The shapes may be obtained from the real parts. Hence, both the free vibration characteristics and the damping behavior are obtained in a s."gle analysis. It should be noted that the computational time is greater than that for the purely elastic free vibration problem. Complex algebra essentially doubles the number of equations, and arithmetic operation ${ }^{*}$ counts are therefore increased by a factor of two to eight, depending upon the procedure being carried out. For example, the solution of simultaneous linear equations has an operation co'int proportional to the square of the number of equations; for this process, therefore, the number of operations is quadrupled.

Because the frequencies are unknowns in a free vibration problem, it is difficult to account for the frequency-dependence of the complex moduli. An additional complication is that the properties corresponding to only one frequency can be used as input, but several different frequencies are obtained in the solution. If the viscoelastic behavior is relatively insensitive to frequency over the range of the lowest natural frequencies, as is the case for polymers in the rubbery plateau region, it is reasonable to use representative values of the moduli and to assume that these values are frequency-independent. For materials with highly variable properties, the free vibration approach is less satisfactory. When the damping at only a few of the natural
*An operation consists of one addition/subtraction and one multiplication/ division.
frequencies is of interest, a series of different trial solutions may be worthwhile. The first of these trial solutions would be the elastic case. Since relatively light damping has but slight effect on the natural frequencies, the viscoelastic material properties corresponding to the elastic natural frequencies san be used in subsequent solutions. These procedures can be time-consuming because a separate solution of the entire complex eigenvalut problem is required to obtain an accurate estimate of the damping at each natural frequency of interest (i.e., $\left.\left[K^{*}\right]=\left[K^{*}\left(u_{j}\right)\right], j=1,2, \ldots\right)$.

V.6. Damped Response to Steady-State Harmonic Loading

The steady-state forced vibration problem for a linear viscoelastic structure is now investigated. The solution to such a problem provides both the displacement response and the effective damping for any desired frequency eld loading amplitude. An important advantage to this approach is that it takes the frequency dependence of the viscoelastic material properties into account. Because the frequency of the sinusoidal loading is an input to the problem, it is possible to employ correct material properties with respect to frequency in formulating the problem. It should be noted that a similar application of the finite element method to the vibrations of linear viscoeiastic solids has been developed simultaneously, but independently, by Murray [146]. However, Murray's work is primarily concernea with the displacement response and does not consider the effective damping of the system,
v.6.1. Formulation of the Problem

If the loads and displacements oscillate at frequency Ω

$$
\begin{align*}
& \{v(t)\}=\{P\} e^{i \Omega t} \\
& \{v(t)\}=\{w\} e^{i \Omega t} \tag{v.10}
\end{align*}
$$

the correspondence principle given in Section V. 2 can re applied to Equation (IV.1) to give

$$
\begin{equation*}
\left[\left[\mathrm{K}^{*}\right]-\Omega^{2}[\mathrm{M}]\right]\left\{\mathrm{w}^{*}\right\}=\{\mathrm{P}\} \tag{v.11}
\end{equation*}
$$

Here the frequency Ω is real since there is 30 decay of the response. Moreover, the vector of load amplitudes $\{P\}$ is real. This vector can be visualized as being directed along the real axis of a complex
co-ordinate system which rotates at constant angular frequency Ω. Then the displacenent ampli de vector $\left\{w^{*}\right\}$ must be complex since it lags behind the loads due to the dissipation of energy. This load-displacement relationship is analogous to the stress-strain relationship discussed in Section V.l and shown in Figure V.l. In the present section, however, the co-orainate system is assumed to rotate. [K^{*}] in Equation (V.ll) is the stiffness matrix wherein the complex moduli associated with frequency Ω are substituted for the corresponding real moduli.

Bieniek and Freudenthal [47] have utilized an approach similar to the abo \equiv to study the forced vibrations of cylindrical sandwich panels. However, their appliretion is to a Fourier solution of the closed-form equations rather than to a general discretized system.

The solution of Equations (V.11) presents no difficulty when the appropriate computer programs are transformed to the complex mode. As Frointed out in Section V.5, the computational time is about four times greater than for an equivalent real system.

V.6.2. Interpretation of Results

In contrast to the corresponding elastic forced vibration equations which are

$$
\begin{equation*}
[K]-\Omega^{2}[\mathrm{M} \lambda]\{\mathrm{W}\}=\{\mathrm{P}\} \tag{v.12}
\end{equation*}
$$

Equations (V.ll) cannot become singular at the natural frequencies of the structure. In other words, although det ($\left.[K]-\Omega^{2}[\mathrm{M}]\right)$ may vanish at some values of Ω, det $\left(\left[K^{*}\right]-\Omega^{2}[M J)\right.$ is always non-zero, provided the frequency is real and , e s. is some non-zero imaginary parts. This lack of singule . \therefore out the effect of energy
dissipation. As a resilt of the damping, the magnitude of $\left\{w^{*}\right\}$, unlike the magnitude of $\{\mathrm{W}\}$, carnot grow without bound at resonance. In fact, the effect of viscoelasticity is to reduce the amplitude of the response at all frequencies.

The actual response of the structure can be determined by taking the absolute value of the elements of $\left\{w^{*}\right\}$. Each such magnitude is then given the sign of the corresponding real part of $\left\{w^{*}\right\}$. In frequency regions near the natural frequency of the structure, it is noted that the sign of the response changes without the displacements becoming zero. This jump i.: sign is associated with the change in sign which occurs for the real part of $\operatorname{det}\left(\left[K^{*}\right]-\Omega^{2}[M J)\right.$ near the natural frequency. Hence, if the response is obtained for a series of frequencies, an estimate of the natural frequencies within this range can be obtained by studying (1) the sign changes of the response and (2) the magnitude of the response. The latter will tend to go through maxima near the natural frequencies.

V.6.3. Determination of Effective Damping

The individual components of the response do not lag behind the load by the same phase angle. Therefore, the most convenient way to compute the effective damping is on the basis of the energies of the vibrating system. The definition of the loss factor given in Equation (V.8) is used for this purpose.

$$
\begin{equation*}
\eta=\frac{D}{2 \pi W} \tag{V.8}
\end{equation*}
$$

Here W is taken as the maximum strain energy achieved during any cycle.

In order to compute the various energies, the complex notation that has been used must be discarded. This notation represents the simultaneous treatment of two oscillations which are 90° out of phase [136]. A complex "work" quantity would be meaningless, however, so the method of accomodating the phase difference must be modified. Consider the displacements and associated nolal forces which are harmonic at frequency Ω :

$$
\begin{align*}
& \left\{v^{*}(t)\right\}=\left\{v_{0}^{*}\right\} e^{i \Omega t}=\left\{v_{0}^{*}\right\}(\cos \Omega t+i \sin \Omega t) \\
& \left\{v^{*}(t)\right\}=\left\{v_{0}^{*}\right\} e^{i \Omega t}=\left\{v_{0}^{*}\right\}(\cos \Omega t+i \sin \Omega t) \tag{v.13}
\end{align*}
$$

These forces and displacements are related by the stiffness equation

$$
\left\{\mathrm{v}_{\mathrm{o}}^{*}\right\}=\left[\mathrm{K}^{*}\right]\left\{\mathrm{v}_{\mathrm{o}}^{*}\right\}
$$

which may also be written

$$
\begin{equation*}
\left\{v_{1}+i v_{2}\right\}=\left[K_{1}+i K_{2}\right]\left\{v_{1}+i v_{2}\right\} \tag{v.14b}
\end{equation*}
$$

Hence the real and imajinary parts of the force vector $\left\{\mathrm{v}_{0}^{*}\right\}$ are given by :

$$
\begin{align*}
& \left\{v_{1}\right\}=\left[k_{1}\right]\left\{v_{1}\right\}-\left[K_{2}\right]\left\{v_{2}\right\} \tag{v.15}\\
& \left\{v_{2}\right\} \quad\left[K_{1}\right]\left\{v_{2}\right\}+\left[k_{2}\right]\left\{v_{1}\right\}
\end{align*}
$$

However, tne real parts of the two vectors can also be obtained from Equations (v.13):

$$
\begin{align*}
& \{\mathrm{v}\}=\operatorname{Re}\left\{\mathrm{v}^{*}\right\}=\left\{\mathrm{v}_{1}\right\} \cos \Omega \mathrm{t}-\left\{\mathrm{v}_{2}\right\} \sin \Omega \mathrm{t} \tag{v.16}\\
& \{\mathrm{v}\}=\operatorname{Re}\left\{\mathrm{v}^{*}\right\}=\left\{\mathrm{v}_{1}\right\} \cos \Omega \mathrm{t}-\left\{\mathrm{v}_{2}\right\} \sin \Omega \mathrm{t}
\end{align*}
$$

Now, given the real osrillatory displacements

$$
\begin{align*}
\{v\} & =\left\{w_{0}\right\} \cos \text { Sit }, \tag{V.17a}\\
\text { i.e., }\left\{v_{1}\right\} & =\left\{w_{0}\right\} \text { and }\left\{v_{2}\right\}=\{0\},
\end{align*}
$$

quations (V.15) and (V.16) can be used to obtain the associated real forces

$$
\begin{equation*}
\{v\}=\left[\left[K_{1}\right] \cos \Omega t-\left[K_{2}\right] \sin \Omega t\right]\left\{w_{0}\right\} \tag{V.1Tb}
\end{equation*}
$$

Here $\left\{w_{0}\right\}$ is tine vector of displacement magnitudes (with appropriate signs) obtained from $\left\{w^{*}\right\}$, the solution of Equations (V.11).

The energy dissipated during a complets pariod is given by

$$
\begin{equation*}
D=\int_{0}^{2 \pi / \Omega}\{\dot{v}\}^{T}\{v\} d t \tag{v.18a}
\end{equation*}
$$

where

$$
\begin{equation*}
\{\dot{v}\}=-\Omega\left\{w_{0}\right\} \sin \Omega t \tag{v.18b}
\end{equation*}
$$

Substituting Equation (V.17b) into (V.18), the result is

$$
\begin{gather*}
D=-\Omega\left\{w_{0}\right\}^{T}\left[\left[K_{1}\right]\left\{w_{0}\right\} \int_{0}^{2 \pi / \Omega} \sin \Omega t \cos \Omega t d t+\right. \\
\left.-\left[K_{2}\right]\left\{w_{0}\right\} \int_{0}^{2 \pi / \Omega} \operatorname{sinis}^{2} \Omega t d t\right] \tag{V.19}
\end{gather*}
$$

The first integral of equation (V.19) vanishes and is therefore associated with energy stored in a recoverable form. Hence the maximum value of the strain energy achieved during any cycle is given by

$$
\begin{equation*}
W=\frac{1}{2}\left\{w_{0}\right\}^{T}\left[K_{1}\right]\left\{w_{0}\right\} \tag{v.20}
\end{equation*}
$$

The second integral of Equation (V.19) equals π / Ω so the energy dissipated can be written

$$
\begin{equation*}
D=\pi\left\{w_{0}\right\}^{T}\left[K_{2}\right]\left\{w_{0}\right\} \tag{V.21}
\end{equation*}
$$

Equations (V.20) and (V.21) are now substituted into Equation (V.8) to obtain the following expression for the effective loss factor of the structure:

$$
\begin{equation*}
\eta=\frac{\left\{w_{0}\right\}^{T}\left[K_{2}\right]\left\{w_{0}\right\}}{\left\{w_{0}\right\}^{T}\left[K_{1}\right]\left\{w_{0}\right\}} \tag{v.22}
\end{equation*}
$$

This expression is identical to one derived by Ungar and Kerwin [145] for a lumped-mass system using a different approach. Equation (v.22) is readily incorporated into a computer program. The calcuiation of the loss factor is particularly efficient if the banded nature of the stiffness matrix is utilized.

V.7. E:amples of Damped Vibrations

As in the preceding chapters, the examples in this section are limited by the lack of solutions available for comparison with finite element solutions. Therefore, although the discretized method can be applied to any configuration, the structures analyzed here are of simple shape. In the first example, the free vibrations of two beams are considered. The second problem undertaken is the free vibration of a simply supported cylinder. Finally, the forced vibrations of a beam under three different steady-state harmonic loads is presented.

V.7.1. Damped Free Vibrations of Two Beams

The beams considered in the examples of Sections IV.4.1. and IV.4.2. have been re-alalyzed with viscoelastic properties assumed for the core. For each beam, the loss tangent of the core moduli is taken to be 0.1. This is a representative value for moderately efficient damping compounds, although some polymers have loss tangents up to 2.0 for limited ranges of frequency and temperature. All properties are the same as the elastic , roblem with the exception of the material properties, which are now complex. For the long beam, the moduli are

$$
\begin{gathered}
E_{f}=\left(E_{f 1}, E_{f 2}\right)=\left(10.3 \times 10^{6}, 0.0\right) \mathrm{psi}, \\
G_{f}=\left(3.87 \times 10^{6}, 0.0\right) \mathrm{psi} \\
E_{c}=\left(2.34 \times 10^{4}, 2.34 \times 10^{3}\right) \mathrm{psi} \\
G_{c}=\left(1.17 \times 10^{4}, 1.17 \times 10^{3}\right) \mathrm{psi}
\end{gathered}
$$

and the viscoelastic results are presented in Table V.l. For the short beam, the moduli are

$$
\begin{gathered}
E_{f}=\left(10^{7}, 0.0\right) \mathrm{psi}, G_{f}=\left(3.8 \cdot: 10^{6}, 0.0\right) \mathrm{psi} \\
E_{c}=\left(4.26 \times 10^{5}, 4.26 \times 10^{4}\right) \mathrm{psi} \\
G_{c}=\left(1.565 \times 10^{5}, 1.565 \times 10^{4}\right) \mathrm{psi}
\end{gathered}
$$

and the frequencies and loss factors are given in Table V.2.
Comparison with a solution adopted from Yu [115, 34] shows that there is good agreement between the methods, particularly for the lower modes. This is to be expected because the discretized approach cannot accurately approximate the displacement shapes of the higher modes. The tables indicate that a greater proportion of the natural frequencies computed by the finite element method compare favorably with the theoretical values than do the loss factors. A possible explanation for this observation is that the frequencies are less sensitive to the approximations of the mode shape which are inherent in the lumped mass approach. By concentrating the inertia at the nodes, a certain amount of shear "kinking" is introduced at these locations.

By comparing Tables V.1 and V. 2 r-th Tables IV. 1 and IV.2, it is evident that the relatively light damping has but slight effect on the natural frequencies.
*The real parts of the above complex moduli are the same as the real moduli used in the elastic examples. It should also be noted that the light density for the core of the long beam is realistic for a foamed plastic; kowever, the core moduli chosen may be atypically high for such a material.
SIMPLY SUPPORTED SANDWICH BEAM

	 Nึ～0 OMO ベッロのーロー

V.7.2. Damped Free Vibrations of a Cylindrical Shell

This example is also a recasting of a previously used elastic vibration example so that the effect of viscoelasticity on the natural frequencies can be illustrated. In this case, the simply supportea cylinder studied in Section IV. 4.3 is re-analyzed with two different sets of core properties. For the first set, a light-damping core with a loss tangent of 0.1 is assumed. Hence the material properties are

$$
\begin{gathered}
E_{f}=\left(10^{7}, 0.0\right) \mathrm{psi}, \nu_{f}=0.3, G_{f}=\left(3.85 \times 10^{6}, 0.0\right) \mathrm{psi} \\
E_{c}=\left(2.6 \times 10^{4}, 2.6 \times 10^{3}\right) \mathrm{psi}, \nu_{c}=0.3, G_{c}=\left(10^{4}: 10^{3}\right) \mathrm{psi}
\end{gathered}
$$

and the results are presented in Table V.3. The second set of material properties includes a more effective dissipative core with a loss tangent of 0.5 . The material properties are therefore

$$
\begin{gathered}
E_{f}=\left(10^{7}, 0.0\right) \mathrm{psi}, \nu_{f}=0.3, G_{f}=\left(3.85 \times 10^{6}, 0.0\right) \mathrm{psi} \\
E_{c}=\left(2.6 \times 10^{4}, 1.3 \times 10^{4}\right) \mathrm{psi}, \nu_{c}=0.3 \\
G_{c}=\left(10^{4}, 5 \times 10^{3}\right) \mathrm{psi}
\end{gathered}
$$

and the solution is given in Table V.4. All other properties and dimensions are the same as were used in Section IV.4.3.*

The natura? frequencies and loss factors are contrasted to those obtained by Yu's theory [37, 116]. In general, solutions from the two methods compare well. The quality of the finite element results for the shell is similar to that for the beams given in Section V.7.1 above, and the observations of that example also remain applicable in the present case. In addition, the effect of increasing the dissipative capabilities of the core material can be ascertained by comparing

[^7]Table V. 4 with Tables V. 3 and IV.3. Not only does the core with the higher loss tangent provide more effective damping as expected; but it also has the effect of stiffening the structure somewhat, particularly in the longitudinal or shell flexural modes. Hence, the natural frequencies are higher for the heavily damped case, although the increase is slight (less than 5%). It is interesting to note that an increase in the core loss tangent by a factor of 5 results in approximately five-fold increase in the loss factor at all frequencies.
畏思造豆 ｜－
$\mathrm{L}=$ Longitudinal， $\mathrm{R}=$ Radial， $\mathbb{T}=$ Thickness Shear

V.7.3. Steady-State Forced Response of a Beam

In order to illustrate the method proposed in Section V.6, the steady-state forced vibrations of a simply supported beam are now investigated. The short beam used in Examples IV.4.2 and V.7.1 is used with a viscoelastic core. The effect of frequency dependence of the material properties is demonstrated by contrasting the solutions for frequencydependent and frequency-independent cases. The keam is represented by both four and ten linear shear-strain elements. In general, the results for the two representations are quite simlar, indicating a sufficiently fine mesh to obtain convergence. Therefore, to keep the graphs uncluttered, only the ten-element results are shown in the accompanying figures. Rotatory inertia is included.

There are no readily available theoretical solutions with which to compare the results of the present problem. Hence, the frequencyindependent properties are taken to be the same as in the viscoelastic free-vibration example of Section V.7.1. It is then possible to have a limited comparison between the free and forced vibration problems. The compiex moduli are assumed to be

$$
\begin{aligned}
E_{f}= & \left(10^{7}, 0.0\right) \mathrm{psi}, G_{f}=\left(3.84 \times 10^{6}, 0.0\right) \mathrm{psi} \\
& E_{c}=\left(4.26 \times 10^{5}, 4.26 \times 10^{4}\right) \mathrm{psi} \\
& G_{c}=\left(1.565 \times 10^{5}, 1.565 \times 10^{4}\right) \mathrm{psi}
\end{aligned}
$$

The frequency-dependent core properties are shown in Figure V.5. Although these do not represent actual properties of a specific material, their variation is typical of elastomers near the glass transition temperature $[88,95,144]$. In addition, their magnitude is selected so that the frequency-independent properties are a reasonable approximation
of the variable properties. In particular, the moduli for the two cases are the same at $\Omega=10,000$ radius/second. It is assumed that the Poisson ratio is real and frequency independent.

The response and damping for three different load cases are shown in Figures V. 6 to V. 8 for a range of frequencies of the beam. In each case the frequency-dependent and -independent solutions are snown together for ready comparison. The X's in the figures represent the free-vibration solutions for the loss factor (Table V.2). The three different load cases are (1) concentrated loads at all nodes selected to match the inertial loads corresponding to the first fundamental mode, (2) same as case one except chosen t.c match the second fundamental mode, and (3) a uniformly distributed load of unit magnitude. The displacement response for each of the load cases is given by the magnitude of some characteristic displacement. For the first two load cases, this characteristic displacement is chosen as the transverse displacement at the unit concentrated loads. The mid-point deflection is selected for the third load case.

The loss factors for constant properties in the first two load cases compare favorably with the free vibration loss factors of the respective modes. It is seen from Figures V. 6 and V. 7 that, for constant material properties, the loss factor varies very little over the frequency range. The first load case causes deformation typical of the first mode at all frequencies; and, similarly, the second load case creates priuarily second-mode displacements. Hence it can be concluded that the loss factor depends largily upon the deformation pattern. In fact, when rotatory inertia is neglected, the loss factors for the two cases under consideration are invariant with respect to the forcing grequency. The third load case, in contrast, is not a
"modal" load and thus excites displacements corresponding to various natural modes, particularly the symmetric shapes. Hence, although the response curve in Figure V. 8 does not show a noticeable resonance corresponding to the second mode (which is antisymmetric), the loss factor curve does indicate a change in the basic deformation pattern for frequencies in the neighborhood of this mode. Moreover, at the first fundamental frequency, the loss factor matches the free vibration result since the symmetric loading readily excites the related mode shape. It should be noted that the curves for the loss factors in Figures V. 6 to V. 8 are smoothed near the natural frequencies of the structure. Using the approximate method of computing loss factors on the basis of energy (Section V.6.3), there are apparently some numerical instabilities in a small neighborhood of frequencies near resonance. This smoothing has been accompl 1 shed by discarding at most one data point in such a neighborhood. Since small frequency increments are employed in these regions, it is felt that this procedure is justifiable.

The displacement response curves in Figures V. 6 through V. 8 are reasonable representations of the behavior that might be expected for a lightly damped structure [47]. If a more effective damping compound were employed, the resonance peaks would be less pronounced. This is evident from the amplitude reduction resulting from the variable material properties, which give greater dissipation at the first Jundamental frequency (Figure V.6).

The extent of the possible effects of frequency depen'sence of the material properties is evident from a comparison between the pairs of curves. It should be granted, however, that the extreme variability of the properties near the glass transition temperature presents a
particularly severe situation. If the frequency range of interest were to correspond to the rubbery plateau of Figure V.2, the properties would be more slowly varying functions of the frequency. Nonetheless, the proposed method of accomodating the variation of properties appears useful for obtaining both the steady-state response and damping of an harmonically loaded viscoelastic structure.

FIGURE Z. 6 RESPONSE AND DAMPING OF A SANDWICH BEAM FOR LOAD CASE I

FIGURE ¥. 7 RESPONSE AND DAMPING OF A SANDWICH BEAM FOR LOAD CASE 2

FIGURE 耳. 8 RESPONSE AND DAMPING OF A SANDWICH BEAM FOR LOAD CASE 3

CHAPTER VI: SUMMARY AND CONCLUSIONS

The finite element method har been extended to the refined analysis of muitilayer beams, plates and shells. In the theory employed no restriction is placed upon the ratios of the layer thicknesses and properties. The method is applicable to structures wherein shearing deformations are significant, including sandwich construction.

Specific element stiffnesses based on polynomial $\begin{gathered}\text { isplacement }\end{gathered}$ models have been developed for the linear elastic analysis of beams, circular plates and thin, axisymmetric shells with arbitrary meridians. In each case only the specialized configuration of three-layered construction symmetric about the reference surface has been studied. However, general procedures have also been outlined for developing other types of one- and two-dimensional finite elements.

The method has been applied to the elastic analysis of several beam, plate and shell structures with properties typical of sandwich construction. Examples have been presented for both static and free vibration analysis and the finite element results compare favorably with solutions from other theories and approaches. Generally, the other techniques can only be used for the analysis of sandwich structures with the simplest of configurations. Hence there is a great potential for the application of the finite element method to the solution of sandwiches of arbitrary shape.

One of the features of the formulation developed in this dissertation is the capability of approximating the warping phenomenon. Hence the distribution of the shearing force among the various layers can be determined. Another feature is the use of lumped rotatory
inertia in dynamic analyses. This type of inertia is a prerequisite for the inclusion of the thickness-shear modes of behavior, which are important for some soft-core sandwich structires. A third aspect of the present work is the possibility of neglecting either the shearing, extension or bending of any individual layer. By use of this capability, the effect of various approximations can be evaluated for different geometrical or material properties.

In addition to the elastic analyses, vibration studies for linear viscoelastic materials have been formulated using the complex modulus representation and an elastic-viscoelastic correspondence principle. The effective damping for free vibration and steady-state forced vibration can be obtained as adjuncts of the usual analysis procedures by means of the complex algebra. Apparently, this application of the finite element method is new.

For the viscoelastic free-vibration problem, the material properties are assumed to be independent of both frequency and temperature. A discussion of the characteristics of the most common damping materials, polymers, indicates that these assumptions are often invalid. In the forced-vibration problem, the frequencydependence of the viscoelastic behavior can be taken into account. However, no attempt has been made to include the thermal effects because of the inherent difficulties of this non-linear, coupled problem. It should be noted that the temperature effects may be important in damped vibrating structures since the energy lissipated into heat disperses very slowly in polymers due to their low thermal conductivity.

The viscoelastic analyses in this dissertation have been carried out on the most elementery level. A logical extensicr of this research wculd be the study of initial value problems using a Gurtintype variational principle for linear ajnamic viscoelasticity [147] to formulate directly the stiffness of the structure. An analogous approach has already been used for heat conduction [148], coupled thermoelasticity [:49] and quasi-static viscoelastic problems :150] using the finite element method.

REFERENCES

1. Dong, S. B., Matthiesen, R. B., Pister, K. S. and Taylor, R. L., "Analysis of structural laminates," USAF Aeronautical Research Laboratory Report 74, Wright-Patterson AFB, Ohio, Sept. 1961.
2. Taylor, R. L. and Fister, K. S., "Structurai laminates literature survey," USAF Aeronautical Research Laboratory Report 75, WrightPatterson AFB, Ohio, Sept. 1961.
3. Dong, S. B., Pister, K. S. and Taylor, R. L., "On the theory of laminated anisotropic shells and plates," J. Aero.Sci., Vol. 29, No. 8, Aug. 1962, pp. 969-975.
4. Dong, S. B., "Elastic bending of laminated anisotropic shells," Proc. World Conf. on Shell Structures, San Francisco, California, Oct 1952.
5. Ambartsumyan, S. A., "Theory of anisotropic shells," U.S. NASA TT F-118, Washington, D. C., May 1964.
6. Habip, L. M., "A review of recent wori on multilayered structures," Int.J.Mech.Sci., Vol. 7, No. 8, Aug. 1965, pp. 589-593.
7. Radkowski, P. P., "Thermal stress anaiysis of orthotropic thin multi-layered shells of revolution," AJAA Structures Meeting, april 1963.
8. Dong, S. B., "Analysis of laminated shells of revolution," J.Eng.Mechs.Div., Proc. ASCE, Vol. 92, No. EM6, Dec. 1966, pp. 135-155.
9. Foss, J. I., "For the space age: A bibliography of sandwich plates and shells," Douglas Report SM-42883, Dec. 1962, 98 pages.
10. Habin, L. M., "A review of recent Russian work on sandwich structures," Int.J.Mech.Sci., Voi. 6, No. 6, 1964, pp. 483-487.
11. Habip, I. M., "A survey of modern developments in the analysis of sandwich structures," App.Mech.Reviews, Vol. 18, No. 2, Feb. 19€う, pp. 93-98.
12. Plantema, F. J., Sandwich Construction: The Bending and Buckling of Sandwich Beams, plates and Shells, John Wiley \& Sons, New York, 1966, $2^{1 / 6}$ pages.
13. Williams, D., Leggett, D. M. A. and Hopkins, H. G., "Flat sandwich panels under compressive end loads," Reports and Memoranda 1987, Aeronautical Research Council, United Kingdom, 1941.
14. Leggett, D. M. A. and Hopkins, H. G., "Sardwich panels and cylinders under compressive end loads," Foyal Aircraft Establishment Report SMe' 320., Farrborough, United Kingdom, 1942.
15. Reissner, E., "On bending of elastic piates," Quart.Apr.Math., Vol. 5, No. 1, April 1947, pp. 55-68.
16. Reissner, E., "Small vending and stretching of sandwich-type shells," U. S. NACA TN 2832 , March 1949,89 pages.
17. Hoff, $\%$. J. and Mautner, S. E., "Bending and buckling of sandwich bears," J.iero.Sci., Vol. 15, No. 12, Dec. 1948, pp. 707-720.
18. rioff, N. J., "Bending and buckling of rectangular sandwich plates," U. S. NACA TN2225, 1950.
19. Eringen, A. C., "Bending and buckling of rectangular sandwich Flates," Proe.First, Nat.Cons.App.Mech., ASME, New York, 1952 Fp. 381-390.
20. Keissner, E., "Stress-strain relations in the theory of thin elastic shells," J.Math.Physics, Vol. 31, No. 2, July 1952, pp. 109-11c.
21. Reissner, E., "Finite deflections of sandwich plates," J.Aero.Sci., Vol. 15, No. 7, July 1948, pp. 435-440 (Erratum in Vol. 17, No. 2, Fec. 1950, p. 125).
22. Schmidt, R., "Sandwich shells of arbitrary shape," J.App.Mech., Vol. 31, No. 2, June 1964, pp. 239-244.
23. Grigolyuk, E. I. and Kiryukhin, Y. P., "Linear theory of threelayered shells with a stiff core," AIAA J., Vol. 1, No. lO, Oct. 2963, pp. 2438-2455.
24. Wempner, G. A. and Baylor, J. L., "A theory of sandwich sheils," Developments in Mechanics, Vol. 2, Part 2, Pioc. Eighth Midwestern Mechanics Conference, edited by S. Ostrach and R. H. Scanlan, Pergamon Press, 1965, pp. 172-298.
25. Wempner, G. A., "Theory for moderately large deflections of thin sandwich sheils," J.App.Mech., Vol. 32, No. 1, March 1965, pp. 76-80.
26. Fulton, R. E., "Non-linear equations for a shallow, unsymmetrical sandwich shell of double curvature," Developments in Mecianics, Vol. 1, 1961, pp. 365-380.
27. Raville, M. E., "Analysis of long cylinders of sandwich construction under uniform external lateral pressure," Forest Product Laboratory Report 1844, USDA Forest Service, Madison, Wisc., Nov. 1954, 28 pages.
28. Raviile, M. E., "Analysis of long cylinders of sandv"ch construction. under uniform external lateral pressure. Supplemen*: Facings of moderate and unequal thickness," Forest Products Ladoratory Feport 1844-A, USDA Forest Service, Madison: Wisc., Feb. 1955, 30 pages.
29. Reville, M. E., "Bucikling of sandwich cyiinders of finite length under uniform external lateral pressure," Forest Products Laboratory Report $1844-B$, USDA Forest Service, Madison, Wisc.: May 1955, 45 pages.
30. Koch, J. E., "Plane-stràin bending of sandwich plates," Developments in Mechanics, Vol. $1,1961, ~ p p .307-324$.
31. Cook, R. D., "On certain approximations in sandwich plate analysis," J.App.Mech., Vol. 33, No. 1, March 1966, pp. 39-44.
32. Yu, Y. Y., "A new theory of elastic sandwich plates--one-dimensional case," J.App.Mech., Vol. 26, No. 3, Sept. 1959, pp. 415-421.
33. Yu, Y. Y., "Simple thickness-shear modes of vibration of infinite sandwich plates," J.App.Mech., Vol. 26, No. 4, Dec. 1959, pp. 679-681.
34. Yu, Y. Y., "Flexurai vibrations of elastic sanāwich plates," J.Aero.Sci., Vol. 27, No. 4, April 1960, pp. 272-283.
35. Yu, Y. Y., "Simplified vibration analysis of elastic sandwich plates," J.Aero.Sci., Vol. 27, No. 12, Dec. 1960, pp. 894-900.
36. Yu, Y. Y., "Forced fiexural vib:ations of sandwich plates in plane strain," J.Ape.Mech., Vol. 27, No. 3, Sept. 1960, pp. 535-540.
37. Yu, Y. Y., "Vibrations of elastic sandwich cylindrical shells," J.App.Mech., Vol. 27, No. 4, Dec. 1960, pp. 653-662.
38. Yu, Y. Y., "Extensional vibrations of elastic sandwich plates," Proc.Fourth U.S.Nat.Cong.App.Mech., ASME, 1962, pp. 441-447.
39. Koplik, B. and Yu, Y. Y., "Axisymmetric vibrations of homogeneous and sandwich spherical caps," J.App.Mech., Vol. 34, No. 3, Sept. 1967, pp. 667-673.
40. Koplik, B. and Yu, Y. Y., "Approximate soluticns for frequencies of axisymmetric vibrations of spherical caps," J.App.Mech., Vol. 34, No. 3, Sept. 1967, pp. 785-787.
41. Yu, Y. Y. and Koplik, B., 'Torsional vibrations of homogeneous and sandwich spherical caps and circular plates," J.App.Mech., Vol. 34, No. 3, Sept. 1967, pp. 787-789.
42. Fen, N. and Yu, Y. Y., "Vibrations of two-layered plates," U.S. Air Force Office of Scientific Research AFOSR 65-1423, June 1965, 28 pages.
43. Kimel, W. R., Raville, M. E., Kirmser, P. G. and Patel, M. P., "Natural frequencies of vioration of simply-supported sandwich beams," Proc.Fourth Midwest Conf. on Fluid and Solid Mechs., University of Texas Press, Austin, Texas, Sept. 1959, pp. 441-456.
44. Raville, M. E., Ueng, E. S. añ Lei, M. M., "Natural frequencies of vibration of fixed-fixed sanäwich beams," J.App.Mech., Vol. 28, No. 3, Sept. 1961, pp. 367-372.
45. Bolotin, V. V., "Vibration of layered elastic plates," Proc. Vibration Problems, (Polska Akad, Naik, Inst. Podstawowych, Problemov Tech.), Vol. 4, No. $4,1963, \mathrm{pp} .331-346$.
46. Chu, H. N., "Vibrations of honeycomb sandwich cylinders," J.Aero.Sci., Vol. 28, No. 12, Dec. 1961, pp. 930-939, 944.
47. Bieniek, M. P. and Freudenthal, A. M., "Forced vibrations of cylindrical sandwich shells," J.Aero.Sci., Vol. 29, No. 2, Feb. 1962, pp. 180-184.
48. Yu, Y. Y., "Non-linear flexural vibrations of sandwich plates," J.Acous.Soc Amer ${ }_{\text {© }}$, Vol. 34 , No. 9, Sept. 1962, pp. 1176-1183.
49. Yu, Y. " , smin ication of variational equation of motion to the non-linear vibr tion analysis of homogeneous and layered plates and shells," J.App.Mech., Vol. 30, No. 1, March 1963, pp. 79-86.
50. Chu, H. N., "Influence of transrerse shear on non-linear vibrations of sandwich beams with honeycomb cores," J.Aero. Sci., Voi. 28, No. 5, May 1961, pp. 405-410.
51. Naghdi, P. M., "The effect of transverse shear deformation on the bending of elastic shells of revolution," Quart.App.Math., Vol. 15, No. 1 , April 1957, pp 41-52.
52. Rossettos, J. N., "Deflection of shallow spherical sandwich shell under local loading," U. S. NASA TN D-3855, Feb. 1967, 45 pages.
53. Kao, J. S., "Axisymmetric deformation of multilayer circular cylindrical sandwich shells," J.Frank.Inst., Vol. 282, No. 1, July 1966, pp. 31-41.
54. Zienkiewicz, O. C. and Holister, G. S. (editors), Stress Analysis: Recent Developments in Numerical and Experiment 1 Methods, John Wiley \& Sons, New York, 1965, 469 pages.
55. Zienkiewicz, O. C. and Cheung, Y. K., The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, London, 1967, 272 pages.
56. Przemieniecki, J. S., The Theory of Matrix Structural Analysis, McGraw-Hill, New York, 1968, 468 pages.
57. Felippa, C. A., "Refined finite element analysis of linear and nonlinear two-dimensional structures," Ph.D. Dissertation, University of California, Berkeley, Celifornia, 1966.
58. Felippa, C. A., "Refined finite element analysis of iinear and nonlinear two-dimensional structures," SESM Report 66-22, Department of Civil Engineering, University of California, Berkeley, California, Oct. 1966.
59. Felippa, C. A., "Analysis of plate bending problems by the finite slement method," SESM Report 68-4, Department of Civil Engineering, University of California, Berkeley, California, 1968.
60. Felippa, C. A. and Clough, R. W., "The finite elemert method in solid mechanics," Symposium on Numerical Solutions of Field Problems in Continuum Mechanics, American Mathematical Society, Durham, N.C., April 5-6, 1968.
61. Argyris, J. H., Energy Theorems and Structural Analysis, Butterworth's, London, 1960 (reprinted from Aircraft Engineering, 19541955).
62. Turner, M. J., Clough, R. W., Martin, H. C. and Topp, L. J., "Stiffness and deflection analysis of complex structures," J.Aero.Sci., Vol. 23, No. 9, Sept. 1956, pp. 805-823.
63. Turner, M. J., "The direct stiffness method of structural analysis," AGARD Meeting, Aachen, Germany, 1959.
64. Fraeijs de Veubeke, B., "Upper and lower bounds in matrix structural analysis," in Matrix Methods of Structural Analysis, AGARDograph 72 , edited by B. Fraeijs de Veubeke, MacMillan, 1964,343 pages.
65. Irons, B. H. R. and Draper, K. J., "Inajequacy of nodal connections in a stiffness solution for plate bending," AIAA J., Vol. 3, No. 5, May 1965, p. 961.
66. Clough, R. W. and Tocher, J. L., "Finite element stiffness matrices for analysis of plate bending," Proc.Conf.on Matrix Methods in Structural Mechanics, AFIT, Wright-Patterson AFB, Ohio, 1965, pp. 515-541.
67. Adini, A. and Clough, R. W., "Analysis of plate bending by the finite element method," NSF Report, Grant G7337, 1960.
68. Melosh, R. J., "Basis for derivation of matrices for the direct stiffness method," AIAA J., Vol. 1, No. 7, July 1963, pp. 1631-1637.
69. Melosh, R. J., "A stiffness matrix for the analysis of thin plates in bending," J.Aero.Sci., Vol. 28, No. 1, Jan. 1961, pp. 34-42.
70. Papenfuss, S. W., "Lateral plate deflection by stiffness matrix methods with application to a marquee," M.S. Dissertation, Department of Civil Engineering, University of Washington, Seattle, 1959.
71. Timoshenko, S. F., "On the correction for shear of differential equation for transverse vibrations of prismatic oars,' Philosophical Mag., Vol. 41, Series 6, 1921, pp. 744-746.
72. Timoshenko, S. P., "On the transverse vibration of bars of uniform cross-section," Philosophical Mag., Vol. 42, Series 6, 1922, pp. 125-131.
73. Mindlin, R. D., "Influence of rotatory inertia on shear and flexura: motions of isotropic elastic plates," J.App.Mech., Vol. 18, No. l, March 1951, pp. 31-38.
74. Clough, R. W. and Johnson, C. P., "A finite element approximation for the analysis of thin shells," Int'l.J. Solids Structures, Vol. 4, No. 1, Jan. 1968, pp. 43-60.
75. Carr, A. J., "A refined finite element analysis of thin shells including dynamic loads," Ph.D. Dissertation, Department of Civil Engineering, University of California, Berkeley, California, 1967 (also published as SESM Report 67-9).
76. Johnson, C. P., "The analysis of thin shells by a finite element procedure," Ph.D. Dissertation, Department of Civil Engineering, University of California, Berkeley, California, 1967 (also published as SESM Report 67-22).
77. Meyer, R. R. and Harmon, M. B., "Conical segment method for analyzing open crown shells of revolution for edge loading," AIAA J., Vol. 1, No. 4, April 1963, pp. 886-891.
78. Popov, E. P., Penzien, J., and Lu, Z. A., "Finite element solution for axisymetric shells," J.ố Eng.Mechs.Div., Proc. ASCE, Vol. 90, No. EM5, Oct. 1964, pp. 110-145.
79. Grafton, P. E. and Strome, D. R., "Analysis of axisymmetrical shells by the direct stiffness method," AIAA J., Vol. 1, No. 10 , Oct. 1963, pp. 2342-2347.
80. Percy, J. H., Fian, T. H. H., Klein, S. and Navaratna, D. R., "Application of matrix displacement method to linear elastic analysis of shells of revolution," AIAA J., Vol. 3, Nc. Il, Nov. 1965, pp. 2138-2145.
81. Jones, R. E. and Strome, D. R., "A survey of the analysis of shells by the displacement method," Proc.Conf. on Matriz Methods in Structural Mechanics, AFIT, Wright-Pattersin AFB, Ohio, 1965, pp. 205-229.
82. Jones, R. E. and Strome, D. R., "Direct stiffness method analysis of shells of revolution utilizing curved elements," AIAA I., Vol. 4, No. 9, Sept. 1966, pp. 1519-1525.
83. Striklin, J. A., Navaratna, D. R, and Pian, T. H. H., "Improvements on the analysis of shells of revolution by the matrix displacement method," AIAA J., Vol. 4, No. 11 , Nov. 1966, pp. 2069-2072.
84. Khojasteh-Bakht, M., "Analysis of elastic-plastic shells of revolution under axisymmetric loading by the finite element method," Ph.D. Dissertation, Department of Civil Engineering, University of California, Berkeley, California, 1967 (also published as SESM Report 67-8).
85. Archer, J. S., "Consistent matrix formulations for structural analysis using finite element techniques," AIAA J., Vol. 3, No. 10, Oct. 1965, pp. 1910-1918.
86. Ruzicka, J. E., (editor), Structural Damping, ASME, Niew York, 1959.
87. Lazan, B. J., "Energy dissipation mechanisms in structures, with particular reference to material damping," pp. l-34 of Reference 86.
88. Ross, D., Ungar, E. E. and Kerwin, E. M. Jr., "Damping of plate flexural vit ations by means of viscoelastic laminae," pp. 49-87 of Reference 86 .
89. Hertelendy, P., "Eigenvalue approxinations for elastic bodies and the effect of damping due to internal dissipation or to a surface membrane coating," Ph.D. Dissertation, Department of Mechanical Engineering, University of California, Berkeley, California, 1965.
90. Nelson, F. C., "The use of vis', elastic material to damp vibration in buildings and large struct: as," ATSC Engineering Journal, April 1968, pp. 72-78.
91. Blanchflower, R., "Damping properties of engineeriñ and viscoelastic materials," Environmental Engineering, No. 19, March 1966, pp. 19-25,
92. Kerwin, E. M. Jr., "Macromechanisms of damping in composite structures," Internal Friction, Damping and Cyclic Plasticity, ASTM STP-378, Philadelpł ia, Pennsylvania, 1964, pp. 125-147.
93. James, R. R., "Reduction of ships' noise by viscoelastic damping," (abstract) J.Acous.Soc.Amer., Vol. 37, No. 6, June 1965, p. 1207.
94. Lazan, B. J., "Damping properties of material and material composites," App.Mechs.Rev., Vol. 15, No. 2, Feb. 1962, pp. 81-88.
95. Ungar, E. E. and Hatch, D. K., "Your selection guide to high damping materials," Prod.Eng., Vol. 32, No. 16, April 17, 1961, pp. 44-56.
96. Oberst, H., Bohn, L. and Linhardt, F., "Schwingungdaympfende Kunststoffe in der Lelrmbekłmpfung," Kunststoffe, Vol. 51, No. 9, Sept. 1961, pp. 495-502.
97. Ball, G. L. III and Salyer, I. O., "Development of a viscoelastic composition having superior vibration-damping capability," J.Acous. Soc.Amer., Vol. 39, No. 4, April 1966, pp. 653-673.
98. Owens, F. S., "Elastomers for damping over wide tempsrature ranges," NRL Shock and Vibration Bull., No. 36, Part 4, Jan. 1967, pp. 25-35.
99. Oberst, H. and Frankenfeld, K., "thber die Dalmpfung der Biegeschwingungen dunner Bleche durch fest haftendé Beil甘ge--I," Acustica, Akustische Beihefte, Vol. 2, No. 4, 1952, pp. ABl8l-AB194.
100. Oberst, H. and Becker, G. W., "Über die DHmpfung der Biegeschwingungen dunner Bleche durch fest haftende Beil.月ge--II," Acustica, Vol. 4, No. 1, 1954, pp. 433-444.
101. Liénard, P., "Etude d'une méthode de mesure du frottement intérieur de revetements plastiques travaillant en flexion," La Recherche Aéronautique, No. 20, March-April 1951, pp. 11-22.
102. Schwarzl, F., "Forced bending and extensional vibrations of a twolayered compound linear viscoelastic beam," Acustica, "ol. 8, No. 3, 1958, pp. 164-172.
103. Un 3 ar, E. E., "Damping tapes for vibration control," Prod.Eng., Vol. 31, No. 4, Jan. 25, 1960, pp. 57-62.
104. Ungar, E. E. and Ross, D., "Damping of flexural vibrations by alternate viscoelastic and elastic layers," Proc. Fourth Midwestern Conf. on Fluid and Solid Mech. 2 University of Texas Press, Austin, Texas, 1959, pp. 468-487.
105. Kerwin, E. M. Jr., "Damping of flexural waves by a constrained viscoelastic layer," J.Acous.Soc.Amer., Vol. 31, No. 7, July 1959, pp. 952-962.
106. Flass, H. J. Jr., "Damping of vibrations in elastic rods and sandwich structures by incorporation of additional viscoelastic material," Proc. Third Midwestern Conf. on Solid Mechs., 1957, pp. 48-71.
107. Ungar, E. E., "Loss factors of viscoelastically damped beam structures," J.Acous.Soc.Amer., Vol. 34, No. 8, August 1962, pp. 1082-1089.
108. Mead, D. J., "Damped sandwich plate for vibration control," Environmental Engineering, No. 9, March 1964, pp. 11-15.
109. DiTaranto, R. A., "Theory of vibratory bending for elastic and viscoelastic finite-length beams," J.App.Mech., Vol. 32, No. 4, Dec. 1965, pp. 881-886.
110. DiTaranto, R. A. and Blasingame, W., "Effect of end conditions on the damping of laminated beams," J.Acous.Soc.Amer., Vol. 39, No. 2, Feb. 1966, pp. 405-407.
111. DiTaranto, R. A. and Blasingame, W., "Composite loss factors of selected laminated beams," J.Acous.Soc.Amer., Vol. 40, No. I, July 1966, pp. 187-194.
112. DiTaranto, R. A. and Blasingame, W., "Composite damoing of vibrating sandwich beams," Paper No. 67-Vibr-6, ASME Vibrations Conference, Boston, Massachusetts, March 29-31, 1967.
113. Bert, C. W., Wilkins, D. J. Jr. and Crisman, W. C., "Damping in sandwich beams with shear flexible cores," Paper No. 67-Vibr.-11, ASME Vibrations Conf., Boston, Massachusetts, March 29-31, 1967.
114. Ruzicka, J. E., Derby, T. F., Schubert, D. W. and Pepi, J. S., "Damping of structural composites with viscoelastic shear-damping mechanisms," U. S. NASA CR-742, Washington, D. C., March 1967, 176 pages.
115. Yu, Y. Y., "Damping of flexural vibrations of sandwich plates," J.Aero.Sci., Vol. 29, No. 7, July 1962, pp. 790-803.
116. Yu, Y. Y. "Viscoelastic damping of vibrations of sandwich plates and shells," Proc.IASS Symp. On Non-Classical Shell Probs., NorthHolland Pub. Co., Amsterdam, and Polish Scientific Publications, Warsaw, 1964, np. 551-571.
117. Yu, Y. Y. and Ren, N., "Damping parameters of layered plates and shells," Accoustical Fatigue in Aerospace Structures, Proc. Second Int. Conf. Acous. Fatigue, Trapp, W. J. and Forney, D. R. Jr. (editors), Syracuse University Press, Syracuse, New York, 1965, pp. 555-584.
118. Hertelendy, P. and Goldsmith, W., "Flexural vibrations of elastic plates with two symmetric viscoelastic coatings," J.App.Mech., Vol. 34, No. 1, March 1967, pp. 187-194.
119. Nicholas, T. and Heller, R. A., "Determination of the complex shear modulus of a filled elastomer from a vibrating sandwich beam," Exp.Mechs., Vol. 7, No. 3, March 1967, pp. 110-116.
120. Nashif, A. D., "New method for determining damping properties of viscoelastic materials," NRL Shock and Vibration Bull., Jan. 1967, pp. 37-47.
121. Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, Fourtin Edition, Dover Pubs., New York, 1944,643 pages.
122. Novozhilcv, V. V., The Theory of Thin Elastic Shells, translated from the Russian by P. G. Lowe, edited by J. R. M. Ra, s, P. Noordhoff Ltd., Groningen, The Netherlands, 1959.
123. Cowper, G. R., "The shear coefficient in Timoshenko's beam theory," J.App.Mech., Vol. 33, No. 2, June 1966., pp. 335-340.
124. Reissner, E., "The effect of transverse shear deformation on the bending of elastic plates," J.App.Mech., Vol. 12, No. 2, June 1945, pp. A69-A77.
125. Nordby, G. M., Crisman, W. C. and Bert, C. W., "Dynamic elastic, damping and fatigue characteristics of fibregless reinforced sandwich structure," U. S. Army fviation Material Laboratories, Technical Report 65-60, Oct. 1965.
126. Clough, R. W., "The finite element method in structural mechanics," Chapter 7, pp. 85-119 of Reference 54.
127. Tharner, M. J., Martin, R. C. and Weikel, R. C., "Further developments and applications of the stiffness method," in AGARDograph 72 , cited in Reference 64.
128. Fraeijs de Veubeke, B., "Displacement and equilibrium models in the finite element method," Chapter 9, pp. 145-197 of Reference 54.
129. Timoshenko, S. P., Strength of Materials, Third Edition, Vol. I, D. Van Nostrand Co., Princeton, New Jersey, 1956, Section 39, pp. 170-175.
130. March, H. W., "Sandwich construction in the elastic range," Symposium on Structural Sandwich Construction, ASTM Special Technical Publication No. 118, Philadelphia, Pennsylvania, 1951, pp. 32-45.
131. Abramowitz, M. and Stegun, I. A, (editors), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards, App. Math Series No. 55, 1964, (also Dover, New York, 1965), pp. 887-8 , 916-917.
132. Timoshenko, S. P. and Woinowsky-Krieger, S., Theory of Plates and Shells, McGraw-Hill, New York, 1960, 580 pages.
133. Flügge, W., Stresses in Shells, Springer-Verlag, Berlin, 1961, 499 pages.
134. Wilkinson, J. P. D., "Natural frequencies of closed spherical sandwich shells," J.Ac.Soc.Amer., Vol. 40, No. 4, Oct. 1966, pp. 801-806.
135. Bland, D. R., 'The Theory of Linear Viscoelasticity, Pergamon Press, New York, 1960,125 pages.
136. Flügge, W., Viscoelasticity, Blaisdell Publishing Co., Waltham, Massachusetts, 1967, 127 pages.
137. Tobolsky, A. V., Properties and Structure of Polymers, John Wiley \& Sons, New York, 1960, 331 pages.
138. Ferry, J. D., Viscoelastic Properties of Polymers, John Wiley \& Sons, New York, 1961, 482 pages.
139. Bueche, F., Physical Properties of Polymers, Interscience Publishers, New York, 1962, 354 pages.
140. Nielson, L. E., Mechanical Properties of Polymers, Reinhold Publishing Co., New York, 1962, 274 pages.
141. Ritchie, P. D. (editor), Physics of Plastics, D. Van Nostrand Co., Princeton, New Jersey, 1965, 447 pages.
142. Baer, E. (editor), Engineering Design for Plastics, Reinhold Publishing Co., New York, 1964, 1202 pages.
143. Sharma, M. G., Viscoelasticity and Mechanical Properties ur Polymers, Summer Institute on Applied Mechanics and Materials Science, Department of Engineering Mechanics, The Pennsyivania State University, University Park, Pennsylvania, 1964, 280 pages.
144. Kaelble, D. H., "Micromechanisms ana phenomenonclogy of damping in polymers," Internal Friction, Damping and Cyclic Plasticity, ASTM STP-378, Philadelphia, Pennsylvania, 1964, pages 109-124.
145. Ungar, E. E. and Kerrin, E. M. Jr., "Loss factors of viscoelastic systems in terms of energy concepts," J.Ac.Soc.Amer., Vol. 34, No. 7, July 1962, pages 954-957.
146. Murray, R. C., "Steady state vibrations of linear viscoelastic solids," Graduate Student Research Rcport No. 331, SESM Division, Department of Civil Engineering, University of California, Berkeley, California, 1968.
147. Leitmann, M. J., "Variational principles in the linear dynamic theory of viscoelasticity," Quart.App.Math., Vol. 24, No. 1, April 1966, pp. 37-46.
148. Wilson, E. L. and Nickell, R. E., "Application of the finite element method to heat conduction analysis," Nuc. Eng. and Design, Vol. 4, No. 3, Oct. 1966, Fn. 276-286.
149. Nickell, R. E. and Sackman, J. L., "Variational principles for linear coupled thermoelasticity," Quart.App.Math., Vol. 26, No.l, April 1968, pp. 11-26.
150. Jhang, T. Y., "Approximate solutions in linear viscoelasticity," SESM Report 66-8, Departmeut of Civil Engineering, Uriversity of California, Berkeiey, California, 1966.

APPENDIX A: MATRICES FOR SANDWICH BEAMS

The matrices that follow are for a three-layer sandwich beam elenent of unit width and length ℓ. The facing layers are of equal thickness and are composed of the same material. Further detaile are given in Section III.1.

A.1. Linear Variation of Shear Strain

The relevant vectors for the stiffness anaiysis are dofined as follows:

$$
\begin{aligned}
& \{u(\xi)\}^{T}=\left\langle w(\xi) x(\xi) \gamma_{c}(\xi) \gamma_{f}(\xi)\right\rangle \\
& \{q\}^{T}=\langle u(0): u(1)\rangle=\left\langle u_{i} ; u_{j}\right\rangle \\
& \{\varepsilon(\xi)\}^{T}=\left\langle k_{x c} \gamma_{x z c} \varepsilon_{x f}^{o t} \kappa_{x f}^{t} \gamma_{x z f}^{t} \varepsilon_{x f: i}^{o b} \kappa_{x f}^{b} \gamma_{x z f}^{b}\right\rangle \\
& \{\in(\xi, z)\}^{T}=\left\langle\varepsilon_{x c} \gamma_{x z c} \varepsilon_{x f}^{t} \gamma_{x z f}^{t} \varepsilon_{x f}^{b} \gamma_{x z f}^{b}\right\rangle \\
& \{\sigma(\xi, z)\}^{T}=\left\langle\sigma_{x c} \tau_{x z c} \sigma_{x f}^{t} \tau_{x z f}^{t} \sigma_{x f}^{b} \tau_{x z f}^{b}\right. \\
& \{r\}^{T}=\left\langle w_{i} \chi_{b i} \gamma_{i} w_{j} x_{b j} \gamma_{j}: \gamma_{f i} \gamma_{f j}\right\rangle
\end{aligned}
$$

A.1.1. $[\Phi(E)]$ of Equation (II.19)

$$
\left[\begin{array}{cccc:cccc}
\left(1-3 \xi^{2}-2 \xi^{3}\right) & \ell \xi\left(1-2 \xi+\xi^{2}\right) & 0 & 0 & \xi^{2}(3-2 \xi) & \ell \xi^{2}(\xi-1) & 0 & 0 \\
6 \xi(\xi-1) / \ell & \left(1-4 \xi+3 \xi^{2}\right) & 0 & 0 & 6 \xi(1-\xi) / 2 & \xi(3 \xi-2) & 0 & 0 \\
0 & 0 & (1-\xi) & 0 & 0 & 0 & \xi & 0 \\
0 & 0 & 0 & (1-\xi) & 0 & 0 & 0 & \xi
\end{array}\right]
$$

A.1.2 [. of Equation (II.20)

$$
\left[\begin{array}{cccc:lccc}
\frac{6}{\ell^{2}}(1-2 \xi ; & \frac{2}{\ell}(2-3 \xi) & -\frac{1}{\ell} & 0 & \frac{6}{\ell^{2}}(2 \xi-1) & \frac{2}{\ell}(1-3 \xi) & \frac{1}{\ell} & 0 \\
0 & 0 & (1-\xi) & 0 & 0 & 0 & \xi & 0 \\
\frac{3 d}{\ell^{2}}(2 \xi-1) & \frac{d}{l}(3 \xi-2) & \frac{h_{c}}{2 \ell} & \frac{h_{f}}{2 \ell} & \frac{3 d}{\ell^{2}}(1-2 \xi) & \frac{d}{\ell}(3 \xi-1) & -\frac{h_{c}}{2 \ell} & -\frac{h_{f}}{2 \ell} \\
\frac{6}{\ell^{2}}(1-2 \xi) & \frac{2}{\ell}(2-3 \xi) & 0 & -\frac{1}{\ell} & \frac{6}{\ell^{2}(2 \xi-1)} & \frac{2}{\ell}(1-3 \xi) & 0 & \frac{1}{\ell} \\
0 & 0 & 0 & (1-\xi) & 0 & 0 & 0 & \xi \\
\frac{3 d}{\ell^{2}}(1-2 \xi) & \frac{d}{\ell(2-3 \xi)} & -\frac{h_{c}}{2 \ell} & -\frac{h_{f}}{2 \ell} & \frac{3 d}{\ell^{2}(2 \xi-1)} & \frac{d}{\ell}(1-3 \xi) & \frac{h_{c}}{2 \ell} & \frac{h_{f}}{2 \ell} \\
\frac{6}{\ell^{2}}(1-2 \xi) & \cdot \frac{2}{\ell}(2-3 \xi) & 0 & -\frac{1}{\ell} & \frac{6}{\ell^{2}(2 \xi-1)} & \frac{2}{\ell}(1-3 \xi) & 0 & \frac{1}{\ell} \\
0 & 0 & 0 & (1-\xi) & 0 & 0 & 0 & \xi
\end{array}\right]
$$

A.1.3. [2] of i :ion (il.21)

$$
\left[\begin{array}{llllllll}
z_{c} & c & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & z_{f} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & z_{f} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

A.1.4. [C] of Equation (II.22)

$$
\left[\begin{array}{llllll}
E_{c} & & & & & \\
& k_{c} C_{c} & & & & \\
& & E_{f} & & & \\
& & & k_{f} G_{i} & & \\
& & & & E_{f} & \\
& & & & & \kappa_{f} G_{f}
\end{array}\right]
$$

A.1.5. [G] of Equation (II.27)

$$
\left[\begin{array}{lllllll}
E_{c} \mathbf{I}_{\mathbf{c}} & & & & & & \\
& K_{c} \mathbf{G}_{\mathbf{c}} \mathbf{A}_{\mathbf{c}} & & & & & \\
& & \mathbf{E}_{\mathbf{f}} \mathbf{A}_{\mathbf{f}} & & & & \\
& & & \mathbf{E}_{\mathbf{f}} \mathbf{I}_{\mathbf{f}} & & & \\
& & & K_{\mathbf{f}} \mathbf{G}_{\mathbf{f}} \mathbf{A}_{\mathbf{f}} & & & \\
& & & & & \mathbf{E}_{\mathbf{f}} \mathbf{A}_{\mathbf{f}} & \\
& & & & & \mathbf{E}_{\mathbf{f}} \mathbf{I}_{\mathbf{f}} & \\
& & & & & & \\
& & & & & & \mathbf{K}_{\mathbf{f}} \mathbf{G}_{\mathbf{f}} \mathbf{A}_{\mathbf{f}}
\end{array}\right]
$$

A.1.6. [$\left.\mathrm{k}_{\mathrm{q}}\right]$ of Equations (II.29) and (III.9)

$$
\begin{aligned}
& {\left[k_{c}^{M}\right]=\frac{E_{c} I_{c}}{\ell^{3}}\left[\begin{array}{cccc:cccc}
12 & 6 \ell & 0 & 0 & -12 & 6 \ell & 0 & 0 \\
& 4 \ell^{2} & -\ell^{2} & 0 & -6 \ell & 2 \ell^{2} & \ell^{2} & 0 \\
& & \ell^{2} & 0 & 0 & \ell^{2} & -\ell^{2} & 0 \\
& & & 0 & 0 & 0 & 0 & 0 \\
& & & & 12 & -6 \ell & 0 & 0 \\
& & & & & 4 \ell^{2} & -\ell^{2} & 0 \\
\text { symmetric } & & & & & \ell^{2} & 0 \\
& & & & & & & 0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\mathbf{k}_{f}{ }^{Q}\right]=\frac{\mathbf{K}_{f} \mathbf{A}_{f} \mathbf{G}_{f}^{\ell}}{3}\left[\begin{array}{cccc:cccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & 0 & 0 & 0 & 0 & 0 & 0 \\
& & & 2 & \frac{0}{0} & -\frac{0}{0} & \frac{0}{0} & -\frac{1}{0} \\
& & & & & & 0 & 0 \\
\text { symmetric } & & & & & 0 & 0 \\
& & & & & & & 2
\end{array}\right]}
\end{aligned}
$$

A.1.7. Transformation matrix $[T]=[T]$ of Equation (II.31)

$$
\left[\begin{array}{cccccc:cc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & h_{c} / \mathrm{d} & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hdashline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & h_{c} / d & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

A.1.8. Consistent load vector in global co-ordinates from Equations
(II.29) and (II.33).

$$
\{R\}^{T}=\frac{p_{z} \ell}{2}<1 \frac{\ell}{6} \frac{h_{c}^{\ell}}{6} 1 \frac{-\ell}{6} \frac{{ }^{-h} c_{c}^{\ell}}{6}: \frac{\ell}{6} \frac{-\ell}{6}>
$$

A. 2. Quadratic Variation of Shear Strain

The relevant vectors for the stiffness analysis are defined as follows:

$$
\begin{aligned}
& \{q\}^{T}=\left\langle w_{i} \dot{x}_{i} \gamma_{c i} \gamma_{f i}: w_{j} x_{j} \gamma_{c j} \gamma_{f j}\right. \\
& \{r\}^{T}=\left\langle\gamma_{i} x_{b i} \gamma_{i} w_{j} \gamma_{f j} \gamma_{j}: \gamma_{f i} \gamma_{f j} \gamma_{c o} \gamma_{f o}\right\rangle
\end{aligned}
$$

The vectors $\{u\},\{\varepsilon\},\{\in\}$ and $\{\sigma\}$ remain the same as given in Appendix A.1. [Z], [C] and [G] are also unchanged.
A.2.1. [$\Phi(\xi)]$ of Equation (II.19)
$\left[\begin{array}{cccccccc:c}\left(1-3 \xi^{2}+2 \xi^{3},\right. & \ell \xi\left(1-2 \xi+\xi^{2}\right) & 0 & 0 & \xi^{2}(3-2 \xi) & 2 \xi^{2}(\xi-1) & 0 & 0 & 1 \\ 6 \xi(\xi-1) i \ell & \left(1-4 \xi+3 \xi^{2}\right) & 0 & 0 & 1 & 6 \xi(1-\xi) / \ell & \xi(3 \xi-2) & 0 & 0 \\ 0 & 0 & \left(1-3 \xi+2 \xi^{2}\right) & 0 & 0 & 0 & \xi(2 \xi-1) & 0 & 1 \\ 0 & 0 & 0 & \left(1-3 \xi+2 \xi^{2}\right) & 0 & 0 & 0 & \xi(2 \xi-1) 1\end{array}\right.$

$$
\left.\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 4 \xi(1-\xi) & 0 \\
1 & 0 & 4 \xi(1-\xi)
\end{array}\right]
$$

A.2.2. $[B(\xi)]$ of Equation (II. 20)
A.2.3. [$\left.\mathrm{k}_{\mathrm{q}}\right]$ of Equations (II.29) and (III.9)

A.2.5. Consistent load vector in global co-ordinates from Equations (II.29) and (II.33)

$$
\left.\{R\}^{T}=\frac{p_{2}^{\ell}}{2}<1 \frac{\ell}{6} \frac{h_{c}^{\ell}}{6} 1 \frac{-\ell}{6} \frac{h_{c} \ell}{6} \right\rvert\, \frac{\ell}{6} \frac{-\ell}{6} \quad 0 \quad 0>
$$

APPENDIX B: MATRICES FOR AXISYMMETRIC SANDWICH PLATES

The matrices that follow are for a three layered axisymmetric sandwich plate element of radial lentil ℓ. The facing layers are of equal thickness and are composed of the same material. Further details are given in Section III. 2.

The following vectors and matrices apply for all of the elements for which specialized matrices are given below

$$
\begin{aligned}
& \{u(\xi)\}^{T}=\left\langle w X_{b} \gamma \gamma_{f}\right\rangle \\
& \{\varepsilon(\xi)\}^{T}=\left\langle\gamma_{r z c} K_{r c} K_{\theta c} \quad \varepsilon_{r f}^{\circ t} \varepsilon_{\sigma f}^{\circ t} \gamma_{r Z f}^{t} K_{r f}^{t} K_{\theta f}^{t}\right. \\
& \varepsilon_{r f}^{\circ b} \varepsilon_{\theta f}^{\circ b} \quad \gamma_{r Z f}^{b} K_{r f}^{b} K_{\theta f}^{b}> \\
& \{\in(\xi)\}^{T}=\left\langle\varepsilon_{r c} \varepsilon_{\theta c} \gamma_{r z c} \varepsilon_{r f}^{t} \varepsilon_{\theta f}^{t} \gamma_{r z f}^{t} \varepsilon_{r f}^{b} \varepsilon_{\theta f}^{b} \gamma_{r z f}^{b}>\right. \\
& \{\sigma(\xi)\}^{\prime \prime}=\left\langle\sigma_{r c} \sigma_{\theta c} \tau_{r z c} \sigma_{r f}^{t} \sigma_{\theta f}^{t} \tau_{r z f}^{t} \sigma_{r f}^{b} \sigma_{\theta f}^{b} \tau_{r z f}^{b}>\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
\\
{[Z]} \\
9 \times 13
\end{array} \mathrm{Z}_{\mathrm{c}} \quad 0 \quad 0 \quad 1 \quad \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
F_{c} & 0 & 0
\end{array} \\
& \begin{array}{lllll}
{[\mathrm{G}]} \\
13 \times 13
\end{array} \quad \begin{array}{llll}
0 & \mathrm{~F}_{\mathrm{f}} & 0 & \text { where } \\
0 & 0 & \mathrm{~F}_{\mathrm{f}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& B_{i}=\frac{E_{i} h_{i}}{\left(1-v_{i}{ }^{2}\right)}, \quad D_{i}=\frac{E_{i} h_{i}^{3}}{12\left(1-v_{i}{ }^{2}\right)} \quad, \quad i=c, f
\end{aligned}
$$

B.1. Annular Element with Linear Shear

The rodal displacement vectors are chosen as follows

$$
\{q\}^{T}=\{r\}^{T}=\left\langle w_{i} X_{b i} \gamma_{i} w_{j} X_{b j} \gamma_{j} \quad \gamma_{f i} \gamma_{f j}\right\rangle
$$

1	ξ	ξ^{2}	ξ^{3}	0	0	0	0
	$1 / \ell$	$2 \xi / \ell$	$3 \xi^{2} / \ell$	$-\mathrm{i}_{\mathrm{c}} / \mathrm{d}$	$-\mathrm{h}_{\mathrm{c}} \xi / \mathrm{d}$	$-\mathrm{h}_{\mathrm{f}} / \mathrm{d}$	$-\mathrm{h}_{\mathrm{f}} \xi / \mathrm{d}$
	0	0	0	1	ξ	-1	$-\xi$
0	0	0	0	0	0	1	ξ

B.1.2. [B($\left.\left.{ }_{(\xi)}\right)\right]$-f Equation (II. 20)

0	0	0	0	1	ξ	0	0
0	0	$-2 / \ell^{2}$	$-6 \xi / \ell^{2}$	0	1/8	0	0
0	-1/rl	-2\%'r r ¢	$-3 \xi^{2} / \mathrm{rl}$	1/r	$\boldsymbol{5 / r}$	0	0
0	0	d / ℓ^{2}	$3 \mathrm{~d} \xi / \ell^{2}$	0	${ }^{-h} c^{\prime 2} / 2 \ell$	0	$-h_{f} / 22$
0	d/2rl	d ξ / rl	$3 \mathrm{~d} \xi^{2} / 2 \mathrm{rl}$	$-h_{c} / 2 \mathrm{r}$	$-h_{c} \xi / 2 \mathrm{rl}$	$-h_{f} / 2 \mathrm{r}$	$-h_{f}{ }^{5 / 2 r \ell}$
0	0	0	c	0	0	1	$\overline{5}$
0	0	$-2 / \ell^{2}$	$-6 \xi / l^{2}$	0	0	0	1/8
0	$-1 / \mathrm{rl}$	-5/ri	$-3 \xi^{2} / \mathrm{r} \ell$	0	0	$1 / \mathrm{r}$	$\boldsymbol{5 / r}$
0	0	$-d / \ell^{2}$	$-3 \mathrm{~d} \xi / \ell^{2}$	0	$h_{c} / 2 \ell$	0	$\mathrm{h}_{\mathrm{f}} / 2 \ell$
0	-d/2re	$-5 / 58$	$-3 \mathrm{~d} \xi^{2} / 2 \mathrm{rl}$	$\mathrm{r}_{\mathrm{c}} / 2 \mathrm{r}$	$h_{c} \xi / 2 \mathrm{sl}$	$\mathrm{h}_{4}{ }^{\prime} \mathrm{r}$	$\mathrm{raf}_{\mathrm{f}}^{5 / 2 \mathrm{rl}}$
0	0	0	0	0	0	1	ξ
0	0	$-2 / \ell^{2}$	$-6 \xi / \ell^{2}$	0	0	1	1/8
0	$-1 / \mathrm{r} 2$	$-2 \xi / 5 \ell$	$-3 \xi^{2} / r \ell$	0	0	1/x	ξ / r

B.1.3. [A] of Equation (II.30)

1	0	0	0	0	0	0	0
0	$1 / \ell$	0	0	$-h_{c} / \mathrm{d}$	0	$-h_{f} / \mathrm{l}$	0
0	0	0	0	1	0	-1	1
1	1	1	1	0	0	0	0
0	$1 / \ell$	$2 / \ell$	$3 / \ell$	$-i_{c} / \mathrm{d}$	$-h_{\mathrm{c}} / \mathrm{d}$	$-\mathrm{h}_{\mathrm{f}} / \mathrm{d}$	$-\mathrm{h}_{\mathrm{f}} / \mathrm{d}$
0	0	j	0	1	1	-1	-1
0	0	0	0	0	1	1	0
0	0	0	0	0	0	i	1

B. $1.4\left[A^{-1}\right]=[T]$ of Equations (II.30) and (II.33)

1	0	0	0	0	0	0	0
0	ℓ	$h_{c} \ell / d$	0	0	0	ℓ	0
-3	-2ℓ	$-2 h_{c} \ell / d$	3	$-\ell$	$-h_{c} \ell / d$	-2ℓ	$-\ell$
2	ℓ	$h_{c} \ell / d$	-2	ℓ	$h_{c} \ell / d$	ℓ	ℓ
0	0	-1	0	0	0	1	0
0	0	-1	0	0	0	-1	1
0	0	0	0	0	0	1	$\vdots 0$
0	0	0	0	0	0	-1	11

B.1.5. $\left\{Q_{\alpha}\right\}$ of Equations (III.20) and (III.21) for linear variation of transverse distributed load.

$$
\begin{aligned}
& \left\{Q_{Q}\right\}^{T}=2 \pi \ell<Q_{1} Q_{2} Q_{3} Q_{4} 0000> \\
& Q_{1}=\left(r_{i} / 2+\ell / 6\right) p_{i}+\left(r_{i} / 2+\ell / 3\right) p_{j} \\
& Q_{2}=\left(r_{i} / 6+\ell / 12\right) p_{i}+\left(r_{i} / 3+\ell / 4\right) p_{j} \\
& Q_{3}=\left(r_{i} / 12+\ell / 20\right) p_{i}+\left(r_{i} / 4+\ell / 5\right) p_{j} \\
& Q_{4}=\left(r_{i} / 20+\ell / 30\right) p_{i}+\left(r_{i} / 5+\ell / 6\right) p_{j}
\end{aligned}
$$

B.1.6. \{R\} of Equation (II.33)

$$
\begin{gathered}
Q_{1}-3 Q_{3}+2 Q_{4} \\
\ell\left(Q_{2}-2 Q_{3}+Q_{4}\right) \\
h_{c} \ell\left(Q_{2}-2 Q_{3}+Q_{4}\right) / d \\
3 Q_{3}-2 Q_{4} \\
-\ell\left(Q_{3}-Q_{4}\right) \\
-h_{c} \ell\left(Q_{3}-Q_{4}\right) / d \\
\ell\left(Q_{2}-2 Q_{3}+Q_{4}\right) \\
-\ell\left(Q_{3}-Q_{4}\right)
\end{gathered}
$$

\{R\} $\quad 2 \pi \ell$

B.2. Annular Element with Quadratic Shear

The nodal displacement vector is

$$
\{q\}^{T}=\{r\}^{T}=\left\langle w_{i} x_{b i} \gamma_{i} w_{j} x_{b j} \gamma_{j} \quad \gamma_{f i} \gamma_{f j} \gamma_{c o} \gamma_{f o}\right\rangle
$$

B.2.1. $[\Phi(\xi)]$ of Equation (II.19)

1	ξ	ξ^{2}	ξ^{3}	0	0	0	0	0	0
0	$1 / \ell$	$2 \xi / \ell$	$3 \xi^{2} / \ell$	$-h_{c} / \mathrm{d}$	$-h_{c} \xi / \mathrm{d}$	$-\mathrm{h}_{\mathrm{f}} / \mathrm{d}$	$-\mathrm{h}_{\mathrm{f}} \xi / \mathrm{d}$	$-\mathrm{h}_{\mathrm{c}} \xi^{2} / \mathrm{d}$	$-\mathrm{h}_{\mathrm{f}} \xi^{2} / \mathrm{d}$
0	0	0	0	1	ξ	-1	$-\xi$	ξ^{2}	$-\xi^{2}$
0	0	0	0	0	0	1	ξ	0	ξ^{2}

B.2.2. [B(ξ)] of Equation (II.20)

The first eight columns of [B] are the same as [B] given in Appendix
B.1.2. The transpose of the two additional rolumns is:

$$
\begin{array}{ccccccccccccc}
\xi & 2 \xi / \ell & \xi^{2} / r & -h_{c} \xi / \ell & -h_{c} \xi^{2} / 2 r & 0 & c & 0 & h_{c} \xi / \ell & h_{c} \xi^{2} / 2 r & 0 & 0 & 0 \\
0 & 0 & 0 & -h_{f} \xi / \ell & -h_{f} \xi^{2} / 2 r & \xi^{2} & 2 \xi / \ell & \xi^{2} / r & h_{f} \xi / \ell & h_{f} \xi^{2} / 2 r & \xi^{2} & 2 \xi / \ell & \xi^{2} / \mathbf{r}
\end{array}
$$

B.2.3. [A] of Equation (II.30)

1	0	0	0	0	0	0	0	0	0
0	$1 / \ell$	0	0	$-h_{c} / \mathrm{d}$	0	$-\mathrm{h}_{\mathrm{f}} / \mathrm{d}$	0	0	0
0	0	0	0	1	0	-1	0	0	0
1	1	1	1	0	0	0	0	0	0
0	$1 / \ell$	$2 / \ell$	$3 / \ell$	$-\mathrm{h}_{\mathrm{c}} / \mathrm{d}$	$-\mathrm{h}_{\mathrm{c}} / \mathrm{d}$	$-\mathrm{h}_{\mathrm{f}} / \mathrm{d}$	$-\mathrm{h}_{\mathrm{f}} / \mathrm{d}$	$-\mathrm{h}_{\mathrm{c}} / \mathrm{d}$	$-\mathrm{h}_{\mathrm{f}} / \mathrm{d}$
d	0	0	0	1	1	-1	-1	1	-1
0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	1	0	1
0	0	0	0	1	$1 / 2$	0	0	$1 / 4$	0
0	0	0	0	0	0	1	$1 / 2$	0	$1 / 4$

B.2.4. $\left[\mathrm{A}^{-1}\right]=[\mathrm{T}]$ of Equations (II.30) and (II.33)

1	0	0	0	0	0	0	0	0	0
0	ℓ	$h_{c} \ell / d$	0	0	0	ℓ	0	0	0
-3	-2ℓ	$-2 h_{c} \ell / d$	3	$-\ell$	$-h_{c} \ell / d$	-2ℓ	ℓ	0	0
2	ℓ	$h_{c} \ell / \downarrow$	-2	ℓ	$h_{c} \ell / d$	ℓ	$-\ell$	0	0
0	0	1	0	0	0	1	0	0	0
0	0	-3	0	0	-1	-3	-1	4	0
0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	-3	-1	0	4
0	0	2		0	2	2	2	-4	0
0	0	0	0	0	0	2	2	0	-4

B.2.5. $\left\{\mathrm{Q}_{\alpha}\right\}$ of Equations (III.20) and (III.21) for linear variation of transverse loads. The notation of B.1.5 applies.
$\left\{Q_{\alpha}\right\}^{T}=2 \pi \ell<Q_{1} \quad Q_{2} \quad Q_{3} \quad Q_{4} \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0>$
B.2.6. \{R\} of Equation (II.33) is the same as in B. 1.6 except for the addition of two zero elements to make the vector 10×1.

B. 3. Disc Element with Linear Shear

When $r_{i}=0$, the nodal displacement vectors are chosen as follows
$\{q\}^{T}=\{r\}^{T}=\left\langle\begin{array}{llllllll}w_{i} & 0 & 0 & w_{j} & X_{b j} & \gamma_{j} & 0 & \gamma_{f j}\end{array}>\right.$

0	0	0	1	ξ^{2}	ξ^{3}	0	0
0	0	0	0	$2 \xi / \ell$	$3 \xi^{2} / \ell$	$-h_{c} \xi / d$	$-h_{f} \xi / \mathrm{d}$
0	0	0	0	0	\ddots	ξ	$-\xi$
0	0	0	0	0	C	0	ξ

B.3.2. $[B(\xi)]$ of Equation (II.20) (Note: $r / \ell=\xi$)

0	0	0	0	0	0	ξ	0
0	0	0	0	$-2 / \ell^{2}$	$-6 \xi / \ell^{2}$	$1 / \ell$	0
0	0	0	0	$-2 / \ell^{2}$	$-3 \xi / \ell^{2}$	$1 / \ell$	0
0	0	0	0	$\mathrm{~d} / \ell^{2}$	$3 d \xi / \ell^{2}$	$-\mathrm{h}_{\mathrm{c}} / 2 \ell$	$-\mathrm{h}_{\mathrm{f}} / 2 \ell$
0	0	0	0	$\mathrm{~d} / \ell^{2}$	$3 \mathrm{~d} \xi / 2 \ell^{2}$	$-\mathrm{h}_{\mathrm{c}} / 2 \ell$	$-\mathrm{h}_{\mathrm{f}} / 2 \ell$
0	0	0	0	0	0	0	ξ
0	0	0	0	$-2 / \ell^{2}$	$-6 \xi / \ell^{2}$	0	$1 / \ell$
0	0	0	0	$-2 / \ell^{2}$	$-3 \xi / \ell^{2}$	0	$1 / \ell$
0	0	0	0	$-\mathrm{d} / \ell^{2}$	$-3 \mathrm{~d} \xi / \ell^{2}$	$\mathrm{~h}_{\mathrm{c}} / 2 \ell$	$\mathrm{~h}_{\mathbf{f}} / 2 \ell$
0	0	0	0	$-\mathrm{d} / \ell^{2}$	$-3 \mathrm{~d} \xi / 2 \ell^{2}$	$\mathrm{~h}_{\mathrm{c}} / 2 \ell$	$\mathrm{~h}_{\mathrm{f}} / 2 \ell$
0	0	0	0	0	0	0	ξ
0	0	0	0	$-2 / \ell^{2}$	$-6 \xi / \ell^{2}$	0	$1 / \ell$
0	0	0	0	$-2 / \ell^{2}$	$-3 \xi / \ell^{2}$	0	$1 / \ell$

B.3.3. [A] of Equation (II.30)

0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	$2 / \ell$	$3 / \ell$	$-h_{c} / d$	$-h_{c} / d$
0	0	0	q	0	0	1	-1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1

B.3.4. $\left[A^{-1}\right]=[\underline{T}]$ of Equations (II.30) and (II.33)

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
-3	0	0	3	$-\ell$	$-h_{c} \ell / \mathrm{d}$	0	$-\ell$
2	0	0	-2	ℓ	$h_{c} \ell / \mathrm{d}$	0	ℓ
0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	1

B.3.5. $\left\{\mathrm{Q}_{\alpha}\right\}$ of Equations (III.20) and (III.21) for linear variation of transverse distributed loads. The notation of B. 1.5 applies.

$$
\left\{Q_{\alpha}\right\}^{T}=2 \pi \ell<0 \quad 0 \quad 0 \quad Q_{1} \quad Q_{3} \quad Q_{4} \quad 0 \quad 0>
$$

B.3.6. \{R\} of Equation (II.33)

$$
\begin{gathered}
Q_{1}-3 Q_{3}+2 Q_{4} \\
0 \\
0 \\
\{R\}=2 \pi \ell \quad 3 Q_{3}-2 Q_{4} \\
-\ell\left(Q_{3}-Q_{4}\right) \\
h_{c} \ell\left(Q_{3}-Q_{4}\right) / d \\
0 \\
-\ell\left(Q_{3}-Q_{4}\right)
\end{gathered}
$$

B.4. Disc Element with Qundratic Shear

When $r_{i}=0$, the nodal displacement vectors are chosen as follows:

$$
\{q\}^{T}=\{r\}^{T}=\left\langle\begin{array}{llllllllll}
y_{1} & 0 & 0 & w_{j} & X_{b j} & \gamma_{j} & 0 & \gamma_{f j} & \gamma_{c o} & \gamma_{f o}
\end{array}\right\rangle
$$

B.4.1. [$\Phi(\xi)]$ of Equation (II.19)

0	0	0	1	ξ^{2}	ξ^{3}	0	0	0	0
0	0	0	0	$2 \xi / \ell$	$3 \xi^{2} / \ell$	$-h_{c} \xi / d$	$-h_{f} \xi / \mathrm{d}$	$-h_{c} \xi^{2} / d$	$-h_{f} \xi^{2} / \mathrm{d}$
0	0	0	0	0	0	ξ	$-\xi$	ξ^{2}	$-\xi^{2}$
0	0	0	0	0	0	0	ξ	0	ξ^{2}

B.4.2. $[B(\xi)]$ of Equation (II.20)

The first eight columns of [B] are the same as [B] given in
Appendix B.3.2. The transpose of the two additional columns is the same as that given in Appendix B.2.2 with r / ξ replaced by ℓ.
B.4.3. [A] of Equation (II.30)

0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	0	$2 / \ell$	$3 / \ell$	$-h_{c} / \mathrm{d}$	$-h_{f} / \mathrm{d}$	$-\mathrm{h}_{\mathrm{c}} / \mathrm{d}$	$-\mathrm{h}_{\mathrm{f}} / \mathrm{d}$
0	0	0	0	0	0	1	-1	1	-1
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	$1 / 2$	0	$1 / 4$	0
0	0	0	0	0	0	0	$1 / 2$	0	$1 / 4=$

B.4.4 $\left[A^{-1}\right]=[\underline{T}]$ of Equations (II.30) and (II.33)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0
-3	0	0	3	$-\ell$	$-h_{i} \ell / d$	0	$-\ell$	0	0
2	0	0	-2	ℓ	$h_{c} \ell / d$	0	ℓ	0	0
0	0	0	0	0	-1	0	-1	4	0
0	0	0	0	0	0	0	-1	0	4
0	0	0	0	0	2	0	2	-4	0
0	0	0	0	0	0	0	2	0	-4

B.4.5 $\left\{Q_{\alpha}\right\}$ of Equations (III.20) and (III.2i) for linear variation of transverse loads. The notation of B.1.5 applies.
$\left\{Q_{\alpha}\right\}^{T}=2 \pi \ell<0 \quad 0 \quad 0 \quad Q_{1} \quad Q_{2} \quad Q_{3} \quad 0 \quad 0 \quad 0 \quad 0 \quad 0>$
B.4.6. \{R\} of Equation (II.33) is the same as in B. 3.6 except for the addition of two zero elements to make the vector 10×1.

APPENDIX C: MATRICES FOR AXISYMMETRIC SANDWICH SHELLS

The matrices that follow are for a three-layer axisympetric sandwich shell element with chord length \& (see Section III.3). The facing layers are of equal thickness and are composed of the same material. Further details are given in Section III.4.

The following vectors and matrices apply for all of the elements for which specialized matrices are given below:

$$
\begin{aligned}
& \{u(\xi)\}^{T}=\left\langle w \quad X_{b} \quad \gamma \quad \gamma_{f}\right\rangle \\
& \{\varepsilon(\xi)\}^{\mathbf{T}}=\left\langle\varepsilon_{s c}^{0} \varepsilon_{\theta c}^{\circ} \gamma_{s \zeta c} K_{r c} K_{\theta c}\right. \\
& \begin{array}{llllllllll}
\varepsilon_{s f}^{\circ t} & \varepsilon_{\theta f}^{\circ t} & \gamma_{s \zeta f}^{t} & \kappa_{s f}^{t} & \kappa_{\theta f}^{t} & \varepsilon_{s f}^{b} & \varepsilon_{\theta f}^{b} & \gamma_{s \zeta f}^{b} & \kappa_{s f}^{b} \quad \kappa_{\theta f}^{b}>
\end{array} \\
& \{\epsilon(\xi)\}^{T}=<\varepsilon_{s c} \quad \varepsilon_{\theta c} \quad \gamma_{s \zeta c} \quad \varepsilon_{s f}^{t} \quad \varepsilon_{\theta f}^{t} \quad \gamma_{s \zeta f}^{t} \quad \varepsilon_{s f}^{b} \quad \varepsilon_{\theta f}^{b} \quad \gamma_{s \zeta f}^{b}> \\
& \{\sigma(\xi)\}^{T}=\left\langle\sigma_{s c} \quad \sigma_{\theta c} \quad \tau_{s \zeta c} \quad \sigma_{s f}^{t} \quad \sigma_{\theta f}^{t} \quad \tau_{s \zeta f}^{t} \quad \sigma_{s f}^{b} \quad \sigma_{\theta f}^{b} \quad \tau_{s \zeta f}^{b}>\right. \\
& \begin{array}{lll}
C_{c} & 0 & 0
\end{array} \\
& \begin{array}{llll}
{[C]} \\
9 \times 9
\end{array}=\begin{array}{lll}
0 & C_{f} & 0
\end{array} \quad \text { where } \\
& E_{i} /\left(1-v_{i}^{2}\right) \quad v_{i} E_{i} /\left(1-v_{i}^{2}\right) \quad 0 \\
& \begin{array}{cccc}
{\left[C_{i}\right]=} & \nu_{i} E_{i} /\left(1-\nu_{i}^{2}\right) & E_{i} /\left(1-\nu_{i}{ }^{2}\right) & 0
\end{array}, i=c_{8} f . \\
& \begin{array}{lllll}
\\
{[Z]} \\
9 \times 15
\end{array} \quad \begin{array}{lll}
Z_{\mathbf{c}} & 0 & 0 \\
0 & Z_{f} & 0
\end{array} \quad \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[z_{i}\right]=\begin{array}{lllll}
1 & 0 & 0 & \zeta_{1} & 0 \\
0 & 1 & 0 & 0 & \zeta_{i} \\
0 & 0 & 1 & 0 & 0
\end{array} \quad, 1=c, f .} \\
& {[G]=\quad \begin{array}{llll}
F_{C} & 0 & 0 & \\
0 & F_{f} & 0 & \text { where } \\
0 & 0 & F_{f} &
\end{array}} \\
& {\left[F_{i}\right]=\begin{array}{ccccc}
B_{i} & \nu_{i} B_{i} & 0 & 0 & 0 \\
\nu_{i} B_{i} & B_{i} & 0 & 0 & 0 \\
0 & 0 & \kappa_{i} G_{i} h_{i} & 0 & 0 \\
0 & 0 & 0 & D_{i} & \nu_{i} D_{i} \\
0 & 0 & 0 & \nu_{i} D_{i} & D_{i}
\end{array}} \\
& \text { and } B_{i}=\frac{E_{i} h_{i}}{\left(1-v_{i}{ }^{2}\right)} \quad, \quad D_{i}=\frac{E_{i} h_{i}{ }^{3}}{12\left(1-v_{i}{ }^{2}\right)} \quad, i=c, f \text {. }
\end{aligned}
$$

C. 1. Frustrum Element with Linear Shear

The nodal displacement vectors are chosen as follows:

$$
\begin{aligned}
& \{q\}^{T}=\left\langle u_{1 i} u_{2 i} X_{b i} \gamma_{i} \gamma_{f i} \quad u_{1 j} u_{2 j} X_{b j} \quad \gamma_{j} \quad \gamma_{f j}\right\rangle \\
& \{r\}^{T}=\left\langle u_{i} w_{i} \quad x_{b i} \quad \gamma_{i} \quad u_{j} \quad w_{j} \quad x_{b j} \quad \gamma_{j} \quad \gamma_{f i} \quad \gamma_{f j}\right\rangle
\end{aligned}
$$

C.1.1. [$\Phi(\xi)]$ of Equarion (II.19)

$$
\xrightarrow[\substack{0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ n \\ n}]{\substack{0 \\ n}}
$$

$$
\begin{array}{cccc}
\text { 1.2. } & {[B(\xi)]} & \text { of Equation } & (\text { II.20) } \\
0 & \cos ^{2} \beta / \ell & 0 & b_{7} \\
\sin \psi / \mathrm{r} & \xi \sin \psi / \mathrm{r} & \cos \psi / \mathrm{r} & \xi_{\cos \psi / \mathrm{r}} \\
0 & 0 & 0 & 0 \\
0 & \mathrm{~b}_{1} & 0 & \mathrm{~b}_{2} \\
0 & \mathrm{~b}_{4} & 0 & \mathrm{~b}_{5}
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{r}
\underset{\sim}{0} \\
\underset{3}{\mathbf{0}} \\
\mathbf{3}
\end{array}
\end{aligned}
$$

C.1.3. [A] of Equation (II.30)

$$
\begin{aligned}
& \begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \mathbf{a}_{1} \tan \beta_{i} & 0 & -\mathbf{a}_{1} & 0 & 0 & -\mathbf{h}_{\mathbf{c}} / \mathbf{d} & 0 & -\mathbf{h}_{\mathbf{f}} / \mathbf{d} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array} \\
& \begin{array}{cccccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{llllllllll}
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{ccccccccc}
0 & a_{2} \tan \beta_{j} & 0 & -a_{2} & -2 a_{2} & -3 a_{2} & -h_{c} / d & -h_{c} / d & -h_{f} / d \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1
\end{array} \\
& \begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array} \\
& \text { where } a_{1}=\cos ^{2} \beta_{i} / \ell \\
& a_{2}=\cos ^{2} B_{j} / \ell \\
& \text { C.1.4. }\left[\mathrm{A}^{-1}\right] \text { of Equation (II.30) }
\end{aligned}
$$

where $a_{3}=2 \tan \beta_{i}+\tan \beta_{j}$

$$
a_{4}=\tan \beta_{i}+\tan \beta_{j}
$$

C.1.5. [T] (s, θ, ζ) of Equation (II.31) and Section III.4.4.

$\cos \beta_{i}$	$\sin \beta_{i}$	0	0	0	0	0	0	0	0
$\sin \beta_{i}$	$-\cos \beta_{i}$	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	0	0	u	0	0	0	1	0
0	0	0	0	$\cos \beta_{j}$	$\sin \beta_{j}$	0	0	0	0
0	0	0	0	$\sin \beta_{j}-\cos \beta_{j}$	0	0	0	0	
0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	1

C.1.6. [T] ${ }_{(r, \theta, z)}$ of Equation (II.31) and Section III.4.4.
${ }^{[T]}{ }_{(r, \partial, z)}$ is the same as $[T](s, \theta, \zeta)$ except that each of the 2×2 sub-matrices corresponding to the translations is replaced by
$\sin \psi, \cos \psi$
$\cos \psi-\sin \psi$

Note that in $\{r\}, u$ changes to u_{r} and w to u_{z}.

C.2. Frustrum Element with Quadratic Shear

The model displacement vectors are chosen as follows:

$$
\begin{aligned}
& \{q\}^{T}=\left\langle u_{1 i} \quad u_{2 i} \quad x_{b i} \quad \gamma_{i} \quad \gamma_{f i} \quad u_{l j} \quad u_{2 j} \quad x_{b j} \quad \gamma_{j} \quad \gamma_{f j} \quad \gamma_{c o} \quad \gamma_{f o}>\right.
\end{aligned}
$$

C.2.1. [$\Phi(\xi)]$ of Equation (II.19)

The first ten columns of [Φ] are the same as in Section C.1.1. The additional two columns are

0	0
0	0
$-h_{c} \xi^{2} / d$	$-h_{c} \xi^{2} / d$
ξ^{2}	$-\xi^{2}$
0	ξ^{2}

C.2.2. [B(ξ)] of Equation (II.20)

The first ten columns of [B] are the same as in Section C.1.2.
The transpose of the additional two columns is
$0 \quad 0 \quad \xi^{2} \frac{2 \xi \cos \beta}{\ell} b_{6} \xi^{2} \frac{-h_{c} \xi \cos \beta}{\ell} \frac{-h_{c} \xi^{2} b_{6}}{2} \quad 0 \quad 0 \quad 0$
$0000 \quad 0 \quad 0 \quad \frac{-h_{f} \xi \cos \beta}{\ell} \frac{-h_{f} \xi^{2} b_{6}}{2} \quad \xi^{2} \quad \frac{2 \xi \cos \beta}{\ell} b_{6} \xi^{2}$

$$
\begin{array}{ccccc}
\frac{h_{c} \xi \cos \beta}{\ell} & \frac{h_{c} \xi^{2} b_{6}}{2} & 0 & 0 & 0 \\
\frac{h_{f} \xi \cos \beta}{\ell} & \frac{h_{f} \xi^{2} b_{6}}{2} & \xi^{2} & \frac{2 \xi \cos \beta}{\ell} & 3_{0} \xi^{2}
\end{array}
$$

C.2.3. [A] of Equation (II.30)

C. $2.4\left[A^{-1}\right]$ of Equation (II.30)

$$
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\tan \beta_{i} & 0 & \frac{-1}{a_{1}} & \frac{-h_{c}}{d a_{1}} & \frac{-1}{a_{1}} & \tan \beta_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{3} & -3 & \frac{2}{a_{1}} & \frac{2 h_{c}}{d a_{1}} & \frac{-2}{3_{1}} & -a_{3} & 3 & \frac{1}{a_{2}} & \frac{h_{c}}{d a_{2}} & \frac{1}{a_{2}} & 0 & 0 \\
& & \frac{-1}{a_{1}} & \frac{-h}{d a_{1}} & \frac{-1}{a_{1}} & a_{4} & -2 & \frac{-1}{a_{2}} & \frac{-h_{c}}{d a_{2}} & \frac{-1}{a_{2}} & 0 & \\
& 2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & -3 & -3 & 0 & 0 & 0 & -1 & -1 & 4 & 0 \\
& 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & -3 & 0 & 0 & 0 & 0 & -1 & 0 & 4 \\
0 & 0 & 2 & 2 & 0 & 0 & 0 & 2 & 2 & -4 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & -4
\end{array}
$$

where a_{1} through a_{4} are defined in Section Col.

$C .2 .5$.	$[T]$										
(s, $\theta, \zeta)$	of Equation (II.31) and Section III.4.4.										
$\cos \beta_{i}$	$\sin \beta_{i}$	0	0	0	0	0	0	0	0	0	0
$\sin \beta_{i}$	$-\cos \beta_{i}$	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	$\cos \beta_{j}$	$\sin \beta_{j}$	0	0	0	0	0	0
0	0	0	0	$\sin \beta_{j}$	$-\cos \beta_{j}$	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	1

C.2.6. ${ }^{[T]}{ }_{(r, \theta, z)}$ of Equation (II.31) and Section III.4.4.
${ }^{[T]}(r, \theta, z)$ is the same as $[T](s, \theta, \zeta)$ except that each of the
2×2 submatrices corresponding to the translations is replaced by

$$
\begin{aligned}
& \sin \psi \cos \psi \\
& \cos \psi-\sin \psi
\end{aligned}
$$

Note that in $\left\{_{1}\right\}, u$ changes to u_{r} and w to u_{z}.

C.3. Cap Element with Linear Shear

The nodal displacement vectors are chosen as follows:

$$
\begin{aligned}
& \{q\}^{T}=\begin{array}{lllllllllll}
0 & u_{z i} & 0 & 0 & 0 & u_{1 j} & u_{2 j} & x_{b j} & \gamma_{j} & \gamma_{f j}
\end{array}> \\
& \{r\}^{T}=\left\langle\begin{array}{llllllllll}
0 & u_{z i} & 0 & 0 & u_{j} & w_{j} & x_{b j} & \gamma_{j} & 0 & \gamma_{f j}
\end{array}\right\rangle
\end{aligned}
$$

C.3.1. [$\Phi(\xi)]$ of Equation (II.19)

0	0	0	0	$-\cos \psi$	ξ	0	0	0	0
0	0	0	0	$\sin \psi$	$\xi \tan \beta_{i}$	ξ^{2}	ξ^{3}	0	0
0	0	0	0	0	$\frac{\left(\tan \beta-\tan \beta_{i}\right) \cos ^{2} \beta}{\ell}$	$\frac{-2 \xi \cos ^{2} \beta}{\ell}$	$\frac{-3 \xi^{2} \cos ^{2} \beta}{\ell}$	$\frac{-h_{c} \xi}{d}$	$\frac{-h_{f} \xi}{d}$
0	0	0	0	0	0	0	0	ξ	$-\xi$
0	0	0	0	0	0	0	0	0	ξ

C.3.2. $[B(\xi)]$ of Equation (II.20)

where b_{1} through b_{7} are defined in Section C.1.2. and

$$
\begin{aligned}
& b_{8}=\left(1+\tan \beta_{i} \tan \beta\right) \cos ^{2} \beta / \ell \\
& b_{9}=\left(\sin \psi+\tan \beta_{i} \cos \psi\right) / \bar{r} \\
& b_{10}=\frac{\cos ^{3} \beta}{\bar{r} \ell} b_{14}\left[5 a_{4} \xi^{2}+4\left(a_{3}-a_{4}\right) \xi^{2}+3\left(a_{2}-a_{3}\right) \xi+2\left(a_{2}-a_{1}\right)\right] \\
& b_{11}=2 b_{14} \cos ^{3} \beta / \bar{r} \ell \\
& b_{12}=3 b_{11} \xi / 2 \\
& b_{13}=b_{14} \cos \beta / \bar{r} \\
& b_{14}=\sin \psi+\cos \psi \tan \beta \\
& \bar{r}=r / \xi=\ell(\sin \psi+\bar{\eta} \cos \psi) \\
& \bar{\eta}=\eta / \xi
\end{aligned}
$$

and a_{1} through a_{4} are defined in Section III.3.
C.3.3. [A] of Equation (II.30)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	-1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	$-\cos \psi$	1	0	0	0	0
0	0	0	0	$\sin \psi$	$\tan \beta_{i}$	1	1	0	0
0	0	0	0	0	$\left(\tan \beta_{j}-\tan \beta_{i}\right) a_{2}$	$-2 a_{2}$	$-3 a_{2}$	$-h_{\mathbf{c}} / \mathrm{d}$	$-h_{f} / \mathrm{d}$
0	0	0	0	0	0	0	0	1	-1
0	0	0	0	0	0	0	0	0	1

where $a_{2}=\cos ^{2} \beta_{j} / \ell$.

C.3.4. $\left[A^{-1}\right]$ of Equation (II.30)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	-1	0	0	0	0	0	0	0	0
0	$-\cos \psi$	0	0	0	1	0	0	0	0
0	a_{5}	0	0	0	$-a_{3}$	3	$1 / a_{2}$	$h_{c} / \mathbf{d a}_{2}$	$1 / a_{2}$
0	a_{6}	0	0	0	a_{4}	2	$-1 / a_{2}$	$-h_{c} / d a_{2}$	$-1 / a_{2}$
0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	1

$$
\text { where } \begin{aligned}
a_{2} & =\cos \beta_{j} / \ell \\
a_{3} & =2 \tan \beta_{1}+\tan \beta_{j} \\
a_{4} & =\tan \beta_{1}+\tan \beta_{j} \\
a_{5} & =a_{3} \cos \psi+3 \sin \psi \\
a_{6} & =-a_{4} \cos \psi-2 \sin \psi
\end{aligned}
$$

C.3.5. ${ }^{[T]}(8, \theta, \zeta)$ of Equation (II.31) and Section III.4.4.

0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	$\cos \beta_{j}$	$\sin \beta_{j}$	0	0	0	0
0	0	0	0	$\sin \beta_{j}-\cos \beta_{j}$	0	0	0	0	
0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	1

C.3.6. $[T](r, \theta, z)$ of Equation (II.31) and Section III.4.4.
${ }^{(T]_{(}}(r, \theta, z)$ is the same as $[T](s, \theta, \zeta)$ except $\cos _{j} \sin \beta_{j}$
$\sin \beta_{j}-\cos \beta_{j}$$\quad$ is replaced by $\quad \begin{aligned} & \sin \psi \cos \psi \\ & \end{aligned}$

Note that in $\{r\}, u$ changes to u_{r} and w to u_{z}.

C.4. Cap Element with Quadratic Shear

The nodal displacement vectors are chosen as follows:

$$
\begin{aligned}
& \{q\}^{T}=\ll \begin{array}{lllllllllll}
0 & u_{z i} & 0 & 0 & 0 & u_{1 j} & u_{2 j} & x_{b j} & \gamma_{j} & \gamma_{f j} & \gamma_{c o}
\end{array} \gamma_{f o}> \\
& \{r\}^{T}=<0 \quad u_{z i} \quad 0 \quad 0 \quad u_{j} \quad w_{j} \quad x_{b j} \quad \gamma_{j} \quad 0 \quad \gamma_{f j} \quad \gamma_{c o} \quad \gamma_{f 0}>
\end{aligned}
$$

C.4.1. [$\Phi(\xi)$] of Equation (II.19)

See Section C.2.1.
C.4.2. [B(ξ)] of Equation (II.20)

Same as Section C. 2.2 except ξ_{6} is replaced by b_{13}.
C.4.3. [A] of Equation (II.30)

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	-1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	$-\cos \psi$	1	0	0	0	0	0	0
0	0	0	0	$\sin \psi \tan \beta_{i}$	1	1	0	0	0	0	
0	0	0	0	0	$\left(\tan \beta_{j}-\tan \beta_{i}\right) a_{2}$	$-2 a_{2}$	$-3 a_{2}$	$-h_{c} / \mathbf{d}$	$-h_{f} / \mathbf{d}$	$-h_{\mathbf{c}} / d$	$-h_{f} / \mathrm{d}$
0	0	0	0	0	0	0	0	1	-1	1	-1
0	0	0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	0	$1 / 2$	0	$1 / 4$	0
0	0	0	0	0	0	0	0	0	$1 / 2$	0	$1 / 4$

c.4.4. $\left[\mathrm{A}^{-1}\right]$ of Equation (II.30)

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	-1	0	0	0	0	0	0	0	0	0	0
0	$-\cos \psi$	0	0	0	1	0	0	0	0	0	0
0	a_{5}	0	0	0	$-a_{3}$	3	$1 / a_{2}$	$h_{c} / d a_{2}$	$1 / a_{2}$	0	0
0	a_{6}	0	0	0	a_{4}	-2	$-1 / a_{2}$	$-1 /{ }_{c} / d a_{2}$	$-1 / a_{3}$	0	0
0	0	0	0	n	0	0	0	-1	-1	4	0
0	0	0	0	0	0	0	0	0	-1	0	4
0	0	0	0	0	0	0	0	2	2	-4	0
0	0	0	0	0	0	0	0	0	2	0	-4

where a_{2} through a_{6} are defined in Section C.3.4.
C.4.5. [T] (s, θ, ζ) of Equation (II.31) and Section III.4.4.

0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	$\cos \beta_{j}$	$\sin \beta_{j}$	0	0	0	0	0	0
0	0	0	0	$\sin \beta_{j}$	$-\cos \beta_{j}$	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	1

C.4.6. ${ }^{[T]}{ }_{(r, \theta, z)}$ of Equation (II.31) and Section III.4.4.

See Section C.3.6.

```
APPENDIX D.. COMPUTER PROGRAM FOR STATIC ANALYSIS OF ELASTIC AXISYMMETRIC
SANDWICH SHELLS (FORTRAN IV)
```

```
PROGRAM AXSNSHLIINPUT,OUTPUT,TAPEI,TAPE2,TAPE3)
C
C***********************************************************************
C DATA CARDS FOR AXSNSHL
C***********************************************************************
    1 CARD.. IlO NUMBER OF SHELLS TO BE ANALYZED
    THEN. FOR EACH SHELL, ALL OF THE FOLLOWING..
    1 CARD.. COLS. 2-72 TITLE
    1 CARD. 3110
        NUMBER OF NODES, NN
            NUMBER OF LOAD CASES. NLC
            NUMBER OF NODES WITH RESTRAINTS, NBC
    1 CARD.. 5F10.0
            THICKNESS OF 1 FACING (IN.)
                YOUNGS MODULUS OF FACINGS (PSI)
            POISSON RATIO OF FA.INGS
            SHEAR MODULUS OF FACINGS IPSI:
            SHEAR STRESS CORRECTION FACTOR FOR FACINGS
    1 CARD.. 5F10.0
                THICKNESS OF CORE (IN.)
                        YOUNGS MODULUS OF CORE (PSI)
                        POISSON RATIO OF CORE
                        SHFAR MODULUS OF CORE (PSII
                        SHEAR STRESS CORRECTION FACTOR FOR CCR
    (NOTE.. SHEARING MAY BE NEGLECTED BY SETTING G TO > 79999)
    NN CARDS.. I10,3F10.0
            NODE NUMBER
                            R. ABSCISSA OF NODE (IN.I
                            Z, ORDINATE OF NUDE (IN.)
                            PHI, LATITUDE ANGLE OF NODE (DEGREES)
    NN-1 CARDS.. 2F10.0
```

```
    CURVATURE AT NODE I OF ELEMENT (I/IN.)
    CURVATURE AT NOOE J OF ELEMENT (1/IN.)
    NBC CARDS.. 5110
        NODE NUMBER
        TANGENTIAL DISPLACEMENT INDEX :0#FREE, l=CONSTRAINED)
    PADIAL DISPLACEMENT INDEX ( DITHO)
    BEND:NG ROTATION INDEX ( DITTO )
    SHEAR WARPING INDEX ( DITTO )
    FOR EACH LOAD CASE, the FOLLOWING..
    1 CARD.. 2I10,LIO
    NUMBER OF LOADED ELEMENTS, NLE
    NUMBER OF LOADED NODES, NLN
    UNIFORM LOA', INDEX, LUL (T IF SAME DISTRIBUTED LOAD
                ON NLE ADJACENT ELEMENTS, F OTHERWISEI
    NLE CARDS.. 110.6F10.0 IIF LUL IS T. THEN ONLY 1 CARD FOR FIRST
                LOADED ELEMENT IS NEEDEDI
    ElEmENT NUMBER
    TANGENTIAL LOAD INTENSITY AT END I (PSI)
    RADIAL LOAD INTENSITY AT END I (PSI)
    MOMENT LOAD INTENSITY AT END : IIN.-LB.IIN**2)
    TANGFNTIAL LOAD INTENSITY AT END J (PSI)
    RADIAL LOAD INTENSITY AT END J (DS!)
    MOMENT LOAD INTENSITY AT END J (IN.-LB./IN**2)
    INOTE.. LINEAR INTERPOLATION OF DISTRIEUTED LOADS
    IS USED along the (hord leNGTH OF The element.)
    NLN CARDS.. 110,3F10.0
    NODE NUMDER
    tangFntial CONCENTRATED lOAD AT NODE (LB./IN.)
    RADIAL CONCENTRATED LOAD AT NOCE (LB.IIN.I
    CONCENTRATED MOMENT AT NODE li -LB./IN.I
    COMMON / / NN,NE,NLC,NDOF,NBC,NRU,NLE,NLS:
    PI = 3.14159265358979
    READ 10N0, NSHELLS
    DO 1ON N = 1,NSHELLS
    CALL SETUF
    CALL BCS
    DO 100 I = 1,NLC
    CALL LOADS(i)
    100 CALL SOLVE'I)
1000 FORMATIIIC
    STOP
    END
```

sIJbROUTINE SETUP
this sugroutine reads thf geometrical and material properties of THE SHELL AND SETS UP THE FOLLOWING.. (1) OVERALL STIFFNESS MATRIX UNMODIFIED FOR BOUNDARY CONDITIONS (2) ELEMENT TRANSFORMATION

```
C MATRICES 5: ED ON TAPE 1 (3) NODAL STRESS RESULTANT MATRICES
C STORED ON TAFE 2 (4) CONSISTENT LOAD INTEGRATION MATRICES STORED
C ON TAPE 3.
C SHEAR STRAIN aND CURVATURE mODELS VARY LINEARLY ALONG CHORD LE'GTH
    REAL NUF,NUC,KF,KC
    COMMON / / NN,NE,NLC.NDGF.NBC.NRD.NLE.NLN.PI
    COMMON /ARRAY/ S(400,8),ST(99,10,2),IBC(50),RL(400),RC(200),U(990)
    COMMON /PROPS/ H.D.HF,HC.EF,NUF,GF,EC,NUC,GC,BF,DF,BC,DC
    COMMON /XGEOM/ YP,YPP,RX,COJB,YBAR
    COMMON /ELGEOM/ R(100),Z(100). EL.SPSI.CPSI,
    1 TBI,TBJ,CBI.CBJ.SB1,SB,.A1,A2,A3.A4
        COMMON/INTEG/ x(12),W(10)
        COMMON /STMATS/ SEL(10.10).E(12.10).DB(12,:0).0T(10.10)
        DIMENSION CPHI(1OחI,SPHI(100),P(10,10.3),P1(10),02(10),P3(10),
    I PHI(100)
    EQUIVALENCE (CPHI\I),QL(1)). (SPHI(1),RLIIOI)), (P(1),U(i)],
    1 (P1(1).U(301)), (P2(1),U(3111), (P3(1),U(3211)
    DATA X / O.C, O.013046735741414. 0.0674683316655507.
    1 0.160295215850488, 0.283302302935376, 0.425562830509184,
    2 0.574437169490816, 0.716697697064624, 0.839704784149512.
    3 0.932531693344493., 0.986953264258586. 1.0 /
    DATA W / 0.066671344308688, 0.149451349150581,
    1 0.2190:6362515982, 0.269266719369996. 0.2955242247144753.
    2 0.295524224714753, 0.269266719300996, 0.219086362515982,
    3 0.149451340150581, 0.066671344308688 /
    PRINT 2000
    REAO 1000
    PRINT }100
    READ 1001, NN:NLC,NBC
    READ 1002, HF,EF,YUF,GF,KF
    READ 1002, HC.EC,NUC,GC,KC
    PRINT 2001, HN,NLC.NBC, HF,HC, EF,NUF,GF,SF, EC,NUC,GC,KC
    IFINN.GT.100) GO TO 900
    IFIGF.GE.9999999998.0) GF=1.OE+20
    IFIGC.GE.9099999998.0) GC=1.OE+20
    H}=\textrm{HC}+2.0*H
    D = HC + HF
    NE = NN-1
    NDOF = 4*NN
    EF = EF/(1.0 - NUF NNUF)
    EC = EC/11.0 - NUCNNU:)
    BF = EF*HF
    BC = EC*HC
    GF = GF*HF*KF
    GC = GC*HC*KC
    DF = BF*HF*HF/12.0
    OC = BC*HC*HC/12*0.
    DO 100 I = 1.NDOF
    DO 100 J = 1,8
100 5(1.J) = 0.0
    JK = 0
    PRINT 20C2
    DR = 180.0/PI
    DO 110 I = 1,NN
    READ 1003, I,R(I),2(I),PHI(I)
```

```
        PRINT 2003,IPR(I),2(I),FHI(I)
        PHI(I) = PHI(I)/DR
        SPHI(I) = SIN(PHI(I))
    110 (PHI(I) = COS(PHIII))
        REWIND 1
        REWIND 2
        REWIND }
        PRINT }200
        DO 500 I = 1,NE
        DR = R(I+1) - R(I)
        DZ = Z(I+1) - Z(I)
        EL = SORT(DR*DR + DZ*DZ)
        SPSI = DR/EL
        CPS: = DZIEL
        SBI = (PHI(I)*CPSI - SPHI'1)*SPSI
        CBI = SPrlll)*SPS! + (PPHill)*SPSI
        TBI = SBI/CBI
        SBJ = CPHI(I+1)*CPSI - SPHIII+l)#SPSI
        CBJ = SPHI(I+1)*CPSI + (PHIII+1)*SDSI
        TBJ = SBJ/CBJ
        READ :034, EURVI,CURVJ
        PRINT 2C05, I,CURVI,CURVJ.E-.SPSI.CPSI,TBI,TBJ
        YPPI = -EL*CURVI/CBI**3
        YOPJ = -EL*CURvJ/CBJ**3
        Al = TBI
        A2 = TB1 + 0.5*YPPI
        A3 = - (5.0*TBI + 4.0*TBJ) + 0.5*YPPJ - YPPI
        A4 = 3.0*(TBI + TBJ) - 0.5*(YPPI - YPPJ)
        DO 150 J = 1.10
        DO 150 K = 1.10
    150 SEL(J,K) = 0.0
C COMDUTE AND STORE ELEMENT TRANSFORMATION MATRIX (A**-1)*T
    CALL TMAT(I)
        WRITEII)((T(K,L),L=1,10),K=1,10)
        DO 400 J = 1.12
        YBAR = (1.0 - X(J))*(A1 + x(J)*(A2 + x(J)*(A3 + x(J)*A4)))
        YP = Al*(1.0 - 2.0#x(J))+ X(J)*(A2*(2.0-3.0#x(J)) + X(J)*(A3*
        1 (3.0 - 4.0*X(J)) + A4*X(J)*(4.0 - 5.0*X(J))l)
        YPP = 2.0*1-A1 + A2*!1.0-3.0*X(J.) ) + X(J)*(A3*(6.0 - 12.0*X(J))
        1 + A4*X(J)*112.0-20.0*X(J)))
        RX = R(I) + X(J)*EL*ISPSI + YBAR*(PSI)
    - COSE = 1.O/(SQRTI..0 + YP*YP))
        EVALUATE BI,: AT NODES AND INTEGRATION POINTS
        CALL gMAT(1,J)
        IFIJ.EO.1.OR.J.EQ.12I GO TO 200
        ADD CONTRIBUTION TO ELEMENT STIFFNESS INTEGRATION
        C= PI*EL*RX*W(J-1)/COSB
        CALL SELA(C)
C COMF JTE MATRICES FOR INTEGRATION OF DISTRIBUTFD LOADS
        CALL PHITMATII,J)
        Pl(J-1)=C
        P2(j-1) = YP
        P3(J-1) = cosB
        GO TO 400
    200 CONTINUE
```

```
C StORE MATRICES nEEDED TO RECOVER StRESS RESULTANTS AT NODES
        CALL STRESS
        WRITE(2) (1B(K,L),L=1,10),K=1,12)
    400 CONTINUE
C STORE INFORMATION FOR INTEGRATION OF DISTRIBUTED LOADS
        WRITE (3) (((P(J.K,L),L=1,3),K=1,10),J=1,10),(P1(J),P2(J),P3(J).
        1 J=1,10)
C TRANSFORM 10XIO ELEMENT STIFFNESS TO GLOBAL CO-ORDINATES AND CON-
C DENSE TO 8\times8
CALL SELRII
C STORE MULTIPLIERS AND PIVOTS
        DO 420 J = 1.2
        !j = J + 8
        OO 420 k = 1,10
    420 5T(I,K.J)= SEL(IJ,K)
C ADD 8x8 ELEMENT STIFFNESS TO OVERALL STIFFNESS
    00 450 J = 1,8
    IJ= JK + J
    JO 450 K = J.8
    Ik = k - J + I
450 S(lJ,{K) = S(li.IK) + SEL(J.K)
5no JK = JK + 4
    END FILE 1
    END FILF 2
    END FILE 3
    RETURN
    900 PRINT 2900
        STOP
10^0 FORMAT(72H
    FGRMMAT(3110)
1001 FCRMAT(3110)
1003 FCRMAT(:10.3F10.0)
1004 FORMAT(2F10.0)
2000 FORMAT(1HI)
2001 FORMATI10X,28HNLMBER OF NODES .13/
    l 10x,284NJMBER OF LOAD CASES .13/
    2 10X,28HNUWBER OF RESTRAINED NODES .13//
    3 10X,16HFACE THICKNESS =,F10.61
    4 10X,16HCJRE THICKNESS =,F10.6/1
    10x,EHFACE E =,F13.1/
    6 10X,OHFACE NU. =,F12.5% .
    7 10X,8HFACE G =,F13.1/
    7 10X.10HFACE KAP =,F11.5/1
    10X.&HCORE E =,F13.1/
    9 1NX,9HCORE NU =,F12.5/
    1 10x,&HCORE G =,F13.1/
    l 10X,10HCORE KAP =,F11.5/;
    2 39H ALL JUANTITIES IN INCHES ANDIOR POUNDS |
2002 FORMAT///11HONODAL DATA /
    9 2X,4HNODE,7X,IIHABSCISSA, R,8X,12H OR!INATE, 2,6X,
    1 14HLATITUDC ANGLE/
    2 15x,5H(IN.),15x,5H(IN.),13X,8H(DEGREE)/)
2003 FORMAT(:4,3F20.8)
2004 FORMATI/I8HOELEMEVT GEOMETRY /
```

```
        1 8H ELEMENT,10X,7HCURV(1),10X,7HCURVIJI,5X,12HCHORD LENGTH,10X,
        2 7HSIN PSI,IOX,7HCOS FSI,6X,11HTAN BETAlII:6X,1IHTAN BETA(J)/
        2 18X,7H(:/IN.),10X,7H(1/1N.),12X,5H(IN.))
2005 FORMAT(I8,7F17.9)
2 9 0 0
FORMAT(/////41HONUMBER OF NODES EXCEEDS ALLOWABLE STOP ,
ごの
```

SUAROUTINE TMATII）
THIS SUBROUTINE EVALUATES THE CO－ORDINATE TRANSFORMATION MATRIX （A＊＊－1）＊T FOR ELEMENT ：－

GLOBAL CO－ORDINATES ARE S AND XI IMERIDIONA：AND RADIAL：AND －hus can be applied only to shells with twice continuous meridians SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH REAL ：UC，NUF
COMMON／PROPS／H，D，HF，HC，EF，NUF，GF，E, NUC，GC，BF，DF，BC．DC
＝OMMON／STMATS／SEL（10，10），E（12，10），DB（12，10），T（10，10）
COMP：ON／ELGEO：1／R（100），Z（100）．EL．SPSI，CPSI．
1 TBI，TBJ，CEI，C3J，SBI，SBJ，A1，A？，A3，A4
$20100 \mathrm{~J}=1,10$
DO $100 \mathrm{~K}=1,10$
$100 \mathrm{~B}(\mathrm{~J}, \mathrm{~K})=\mathrm{C} .0$
IFIR（I）．EQ．0－0）GO TO 500
MATRIX FOR OPEN－ENDED ELEMENT
$B(1,1)=B(3,2)=B(2,6)=1.0$
$B(7,4)=B(7,5)=B(9,5)=1.0$
$B(3,9)=B(8,10)=B(10,10)=1.0$
$3(2,3)=B(8,4)=B(8,5)=B(10,5)=-1.0$
$3: 4,1)=-$ TBI
$B(4,6)=$ TBI
$B(6,6)=T B I+T B J$
$B(6,1)=-B(6,6)$
$B(5,1)=B(6,6)+T B I$
$B(5,6)=-13(5,1)$
$B(5.2)=-3.0$
$B(6,2)=2.0$
$B(5,7)=3.0$
$B(6,7)=-2.0$
$B(4,3)=B(6,3)=-E L / C B I / C B I$
$B(5,3)=-2.0 * B(4,3)$
$B(4,4)=3(6,4)=H C * R(4,3) / D$
$8(5,4)=-2.0 * B(4,4)$
$B(4,5)=B(6,5)=8(4,3)$
$B(5,5)=-2.0 * B(4,5)$
$B(5,8)=E L / C B J / C B J$
$B(6,8)=-B(5,8)$
$B(5,9)=H C * B(5,8) / D$
$B(6,7)=-B(5,7)$
$B(5,10)=8(5,8)$
$B(E, 10)=-B(5,10)$
DC $200 \mathrm{~J}=1.12$

```
        T(J,1) = CBI*B(J,1) + SBI*B(J,2)
        T(J,2)=SBI*B(J.1) - CBI*B(J,2)
        T(J.3) = B(J.3)
        T(J.4) = B(J.4)
        T(J,5) = CBJ*B(J,6) + SBJ*B(J,7)
        T(J,6) = SBJ*B(J,G) - CBJ*B(J,7)
        T(J,7) = B(J,&)
        T(J,8) = B(J,9)
        T(J,9) = B(J,5)
    260 T(J.10) = B(J,10)
        GO TO 1000
        MATRIX FOR CAP
    500 B(5.2) = -1.0
        B(5.6)=B(9.9) = B(9,10) = B(10,10) = 1.0
        B(7.7) = 3.C
        B(8,7) = -2.0
        B(6,2) = -CPSI
        B(7,2) = (2.0*TBI + TRJ)*CPSI + 3.0*SPSI
        B(8,2) = -B(7,2) + TBI*CPSI + SPSI
        B(7,6) = -2.0*TGI - TBJ
        B(8,6) = TBI + TBJ
        B(7,8) = EL/CBJ/CBJ
        B(8,8) = - B(7,8)
        B(7,7) = HC*B(7,8)/D
        B(8.9)= - (17.9)
        B(7,10) = 8(7,8)
        B(8,10) = - B(7,10)
        DO 700 J = 1,10
        T(J,1)=T(J,3)=T(J,4)=T(J,9)=0.0
        T(J,2) = B(J,2)
        T(J.5, = CBJ*B(J,6) + SBJ*B(J,7)
        T(J,6) = SEJ*B(J,6)-CBJ*B(J,7)
        T(J,7) = B(J,8)
        T(J,8) = B(J,9)
    700 T(J,10) = B:J,10)
1000 RETURN
    END
```


SUBROUTINE BMAT(I,J)

c THIS SUBROUTINE EVALUATES THE MATRIX B FOR ELEMENT I AT POINT X(J)
c SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH REAL NUF, NUC
COIMMON /PROPS/ H,D,HF,HC,EF,NUF,GF, [C,NLE,GC,BF,DF,BC,DC
COMMON /XGEOM/ YP,YPP,RX,COSB,YEAR
COMMON /ELGECM/ R(100),Z(100), EL,SPSI,CPSI.
1 TBI,T3J,CBI, CBJ,CRI,SBJ,A1,A2,A3,A4
CCMM:ON /STMATS/ SFL(10,10),3(12,10),DB(12,10),T(10,10)
COMMON /INTEG/ x(I2),W(10)
Do $100 \mathrm{~K}=1,12$
DO $100 \mathrm{~L}=1,10$

```
    100 B(K,L) = 0.0
    Bl = -YPP*COSB**5*(1.0 - YP*YP)/(EL*EL)
    A3 = COSB**3/(EL*EL)
    B2 = -2.0*YPP*YP*R3*COSB*COSB
    IFIR(II.EQ.O.O) GN TO 400
    A4 = -EL*R3*YP*(SPSI + CPSI*YP)/RX
    B5 = EL*B3*(SPSI + CPSI*YP)/RX
    B6 = COSB*(SPSI + CPSI*YP)/RX
    MATRIX FOR OPEN-ENDED ELEMENT
    B(2.1)=E(7.1)= R(12.1)=SPSI/RX
    B(2,3)=B(7,3)=R(12,3)=CPSI/RX
    B(2,2)=
        B(12,1)*X(J)
        8(12,3)*x(J)
    B(2.4)=
        COSB/EL
    = B(2,4)*x(J)
    B(2,G)=P(2,5)*x(J)
    B(4,8)=B(9,10)=
    B(1,2) = 
    B(1,5) = 2.0*X(J)*R(1,4)
    B(1,6)=1.5*X(J)*R(1,5)
    R(3,7)=B(8,7)=1.0
    B(3,8)=B(3,10)=X(J)
    B(4,2)=B(9,2)=Bl
    B(4,4)=B(9,4)= B2
    B(5,2)=B(10.2)=B4
    B(5.4) = B(10.4) = B5
    B(5,7)=B(10,7)=B6
    Q(5.9) = R(10.10) = B6*X(J)
    B(4,5)=B(9.5)= 2.0*B2*X(J) + 2.0*B3
    B(4,6) = B(9,6) = (3.0*B2*X(J) + 6.0*B3)*x(J)
    B(5,5) = B(10,5) = 2.0*B5*X(J)
    B(5,6)=B(10,6)= 3.0*B5*x(J)*x(J)
    B(5,2) = B(1,2) - D*E1/2.0
    B(11,2)=B(1,2)+D*B1/2.0
    B(6,4: = B(1,4) - D*82/2.0
    B(11,4) = B(1,4) + D*R2/2.0
    B(6,5)=B(1,5)-D*B(4,5)/2.0
    B(11,5) = B(6,5) + D*R(4,5)
    A(6,0) = E:(1,6) - D*B(4,6)/2.0
    9(11,5) = B(ó,6) + D*B(4.5)
    9(6.: = -HC*B(4,8)/2.0
    B(11,8)=-P(6,8)
    9(6́,10)= - HF*B(4,8)/2.0
    B(11,10)= -R(6,10)
    B(7.2) = B(2.2) - D*B4/2.0
    B(12,2) = B(7,2) + D*B4
    B(7.4) = E(2.4)-D*B5/2.0
    B(12.4) = E(7,4) + D*B5
    B(7,5)=B(2.5)-D*B(5,5)/2.0
    B(12.5) = B(7.5) + D*R(5.5)
    B(7,6)=9(2,6)-D*R(5,6)/2.0
    B(12,6) = B(7,6) + D*R(5,6)
    B(7,7) = -HC*B6/ミ.0
    B(12,7)=-8(7,7)
    B(7,8) = B(7,7)*xiJ)
```

```
        R(12,8)=-B(7,8)
        B(7.9) = -HF*B6/2.0
        B(12.9) = -B(7,9)
        B(7.10) = B(7.9)**(J)
        B(12.10) = -B(T.10)
        GO TO 1000
        MATRIX FOR CAP ELEMENT
    400 B6 = EL*(SPSI + YRAR*CPSI
        B5 = COSB**3*(SPSI + YP*(PSI)/(E6*EL)
    B4 = COSB*(SPSI + CPSI*YP)/B6
    B(3,9)= B(8,10)=X(J)
    B(4,9)=B(9,10)=COSB/EL
    B(4,6)= B(9,6)= 91 +TBI*B2
    B(4.7) = B(9.7) = 2.0*B2*X(J) + 2.0*R3
    B(4,8)=B(9,8)= (3.0*B2*x(J) + 6.0#B3)*x(J)
    B(5.6) = R(10.6) =R5*(((5.0*A4*X(J) + 4.0*(A3 - A4))*X(J) +
    1 3.0*(A2 - A3))*X(J) + 2.0*(A1 - A2))
        3(5.7)= 5(10.7) = 2.0*85
        B(5,8) = 3(10,8) = 3.0*B5*X(J)
    B(5,9)=B(10,10)= B4
    B(1.,6) = COSB*B(4.9)*(1.0+ TBI*YP)
    9(1,7) = 2.0*X(J)*COSB*B(4,9)*YP
    9 1,8)=1.5*x(J)*3(1,7)
    B(2.6) = (SPSI + (PSI*TBI)/B6
    B(2,7) = X(J)*CPSI/R6
    B(2,8)=X(J)*B(2,?)
    B(6,6)= B(1,6)-D*B(4,6)/2.0
    B(11,6) = B(6,6) + D*B(4,6)
    B(6,7) = B(1,7) - D*B(4,7)/2.0
    B(:1,?) = B(6,7) + D*S(4,7)
    B(6,8) = B(1,8) - D*B(4,8)/2.0
    B(11,8) = E(6,8) + D*R(4,8)
    B(6,9) = -HC*B(4,9)/2.0
    B(11,7)= -B(6,9)
    B(6,10) = -HF*B(4,91/2.0
    B(11.10) = - B(6.10)
    B(7.6)=B(2.6)-D*3(5,6)/2.0
    B(12,6) = 3(7,6) + D*R(5,6)
    3(7,7) = B(2,7) - D*B5
    B(12,7) = B(2,7) + D*R5
    B(7,8)=B(2,8)-D*B(5,8)/2.0
    B(12,8) = B(7,8) + D*R(5,8)
    B(7.9) = -HC*B4/2.0
    B(12.9)= -B(7.9)
    B(7,10)=-HF*B4/2.0
    B(12,10)=-B(7.10)
RETURN
END
```

```
        SUBROUTINE PHITMATII,J)
C thIS SUBROUTINE EVALUATES tHE TRANSFORM OF the mATRIX PHI fOR
C ELEMENT I AT POINT XI(J)
C SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH
        REAL NUF,NUC
        COMMON /PROPS/ H,D,HF,HC,EF,NUF,GF,EC,NUC,GG,RF,DF,RC,DC
        COMMON /XGEOM/ YP,YPP,RX,COSB,YGAR
        COMMON /ELGEOM/ R(100),Z(100).
        EL,SPSI,CPSI,
        1 TBI,TBJ,CBI,CBJ,SB1,SBJ,A1,A2,A3,A4
        COMMON /ARRAY/ S(400,8),ST(99,10,2),IBC(50),RL(400),RC(200),U(990)
        COMMON /INTEG/ X(12),W(IO)
        COMMON /STMATS/ SEL(10,10),B(12,10),DB!12,10),T(10,10)
        OIMENSION PHIIO.10,3)
        EQUIVALENCE (PHIl),U(l))
        K = J - 1
        00 100 M = 1.10
        DO 100 L = 1,3
    100 PH(K,M,L) = 0.0
        IF(RII).EO.O.0) GO TO 500
C MATRIX FOR OPEN-ENDED ELEMENT
        PH(K,1,1) = PH(K,3,2) = 1.0
        PH(K,2,1)=PH(K,4,2)=X(1)
        PH(K,5,2) = X(J)*X(J)
        PH(K,6,2)=X(J)*PH(K,5,2)
        PH(K,2,3) = COSB*YP*COSB/EL
        PH(K,4,3) = -COSB*COSB/EL
        PH(K,5,3)=2.0*X(J)*PH(K,4,3)
        PH(K,6,3) = 1.5*X(J)*PH(K,5,3)
        PH(K,7,3) = -HC/D
        PH(K,8,3)= X(J)*PH(K,7,3)
        PH(K,9,3)=-HF/D
        PH(K,10,3) = X(J)*PH(K,9,3)
        GO TO 10:0
C MATRIX FOR CAP
    500 PH(K,5,1) = -CPSI
        PH(K,5,2) = SPSI
        PH(K,6,1) = x(J)
        PH(K,6,2) = x(J)*TBI
        PH(K,7,2)=X(J)*X(J)
        PH(K,8,2) = X(J)**3
        PH(K,6,3) = (YP - TBI)*COSB*COSB/EL
        PH(K,7,3)=-2.0*X(J)*COSB*COSB/EL
        PH(K,8,3) = 1.5*X(J)*PH(K,7,3)
        PH(K,9,3)=-HC*x(J)/D
        PH(K,10,3) = -HF*X(J)/D
    10OO RETURN
        END
```

```
    SUBROUTINE SELA(C)
C THIS SUBROUTli.E COMFUTES A TERM IN THE GAUSS INTECRATION FOR THE
C STIFFNESS MATRIX IN GENERALIZED CO-ORDINATES
C SHEAR STRAIN ANO CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH
    REAL NUF,NUC
    COMMON /PROPS/ H,D,HF,HC,EF,NUF,GF,EC,NUC,GC,BF,DF,BC,DC
    COMMON /STMATS/ SEL(10,1(:),B(12,10),DB(12,10),T(10,10)
    00 100 K'= 1,10
    DB(1,K) = BC*(B(1,K) + NUC*B(2,K))*C
    DB(2,K) = BC*(B(2,K) + NUC*B(1,K))*C
    DB(3,K) = GC*B(3,K)*C
    DB(4,K) = DC*(B(4,K) + NUC*B(5,K))*C
    DB(5,K)=DC*(B(5,K) + NUC*B(4,K))*C
    DR(6,K) = BF*(B(6,K) + NUF*B(7,K))*C
    DB(7,K)= BF*(B(7,K) + NUF*B(6,K))*C
    DB(8,K) = GF*B(8,K)*C*2.0
    DB(9,K) = DF*(B(9,K)+NUF*B(10,K))*C*2.0
    DB(10,K)=DF*(B(10,K) + NUF*B(9,K))*C*2.0
    DB(11,K) = BF*(B(11,K) + NUF*B(12,K))*C
    100 DB(12,K)= BF*(B(12,K) + NUF*B(11,K))*C
        DO 200 K = 1,10
        DO 200 L = 1,10
        DO 200 M = 1,12
    200
        SEL(K,L) = SEL(K,L) + B(M,K)*DB(M,L)
        RETURN
        END
c THIS SUBROUTINE EVALUATES THE MATRIX E*B*T AT THE NODES OF THE
n\capn
    ELEMENT FOR LATER CALCULATION OF THE STRESS RESULTANTS.
    SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH
    REAL NUF,NUC
    COMMON /PROPS/.H,D,HF,HC,EF,NUF,GF,EC,NUC,GC,BF,DF,BC,DC
    COMMON /STMATS/ SEL(10,10),B(12,10),DB(12,10),T(10,10)
    DO 150 I = 1,10
    DB(1,1) = BC*(B(1,1) + NUC*B(2,1))
    DB(2,1) = BC*(B(2,1) + NUC*B(1,1))
    DB(3,1) = GC*B(3,1)
    DB(4,1)=DC*(B(4,1) + NUC*B(5,1))
    DB(5,1) = DC*(B(5,1) + NUC*P(4,1))
    DO 100 J = 5,10.5
    DB(J+1,I) = AF*(B(J+1,I) + NUF*B(J+2,I))
100 DB(J+2,1)= BF*(B(J+2,1) + NUF*E(J+1,1))
    DB(8,I) = GF*B(8,1)
    DB(9,I) = DF*(B(9,1) + NUF*B(10,I))
150 DB(10,1) = DF*(B(10,1) + NUF*B(9,1))
    DO 200 1 = 1.12
    DO 200 J = 1,10
    B(1,J) = 0.0
    DO 200 K = 1,10
```

```
200 B(I,J) = B(I,J) + DB(I,K)*T(K.J)
        RETURN
    END
```

SUBROUTINE SELR(L)
C THIS SUBROUTINE TRANSFORMS THE ELEMENT STIFFNESS FROM GENERALIZED
C TO GLOBAL CO-ORDINATES AND CONDENSES IT FROM 10×10 TO 8×8 USING
C STATIC CONDENSATION.
C SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG -HORD LENGTH
COMMON /ELGEOM/ R(100),2(100), EL,SPSI,CPSI,
1 TBI,TBJ,CB1,CBJ,SBI,SBJ,A1,A2,A3,A4
COMMON /STMATS/ SEL(10,10),B(12,10),OB(12,10),T(10,10)
C SYMMETRIZE ELEMENT STIFFNESS IN GENERALIZED CO-ORCINATES
DO 50 I $=1,9$
$1 J=1+1$
DO $50 \mathrm{~J}=1 \mathrm{~J}, 10$
IF(SEL(I,J).EQ.O.n.OR.SEL(J,I).EQ.O.0) GO TO 45
SEL(I.J) $=0.5 *(S E L(1, J)+\operatorname{SEL}(J, i))$
GO TO 50
$5 \operatorname{SEL}(1, J)=0.0$
$50 \operatorname{SEL}(\mathrm{~J}, \mathrm{I})=\operatorname{SEL}(1, \mathrm{~J})$
transform to clobal co-ordinates
DO $100 \mathrm{I}=1,10$
On $100 \mathrm{~J}=1,10$
$D B(1, J)=0.0$
DO $100 \mathrm{~K}=1,10$
$100 \mathrm{DB}(1, J)=\operatorname{DE}(1, J)+\operatorname{SEL}(1, K) * T(K, J)$
DO $200 \mathrm{I}=1,10$
DO $200 \mathrm{~J}=1,10$
$\operatorname{SEL}(I, J)=0.0$
DO $200 \mathrm{~K}=1,10$
$200 \operatorname{SEL}(1, J)=\operatorname{SEL}(1, J)+T(K, 1) * D B(K, J)$
IFIR(L).NE.O.0) GO TO 250
$\operatorname{SEL}(1,1)=\operatorname{SEL}(3,3)=\operatorname{SEL}(4,4)=\operatorname{SEL}(3,9)=1.0$
c
$25000300 \mathrm{~J}=1,2$
IJ = $10-\mathrm{J}$
$1 \mathrm{k}=1 \mathrm{l}+1$
PIVOT = SELI(K,IK)
DO $300 \mathrm{~K}=1.1 \mathrm{~J}$
$c=$ SEL(IK,K)/PIVOT
SEL(IK,K) $=C$
DO 300 I $=K, 1 J$
SEL(I,K) = SEL(I,K; - C*SEL(I,IK)
$300 \operatorname{SEL}(K, I)=\operatorname{SEL}(I, K)$
RETURN
END

```
SUBROUIINE BCS
C THIS SUBROUTINE READS THE BOUNDARY CONDITION MATA, MODIFIES THE
C OVERALL STIFFNESS MATRIX ACCORDINGLY AND THEN TRIANGULARIZES IHE
C STIFFNESS FOR READY SOLUTION
C SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH
    COMMON / / NN,NE,NLE,NOOF,NBC,NRD,NLE,NLN,PI
        C.OMMON /ARRAY/ S(400,8),5T(99,10,2),1BC(50),RL(400),RC(200:,U(990)
        COMMON /ELGEOM/ R(100),Z(100). EL,SPSI,CPSI.
        1 TBI,TBJ,CBI,CBJ,SBI,SBJ,A1,A2,A3,A4
        DIMENSION NR(4)
        NRD = O
        IF(R(1).NE.0.0) GO TO 100
        NRD = 3
        ABC(1)=1
        IBC(2)=3
        IBC(3) = 4
    100 PRINT 2000
    READ KINEMATIC CONSTRAINTS ANO MODIFY OVERAI: STIFFNESS
    DO 300 1 = 1,NBC
    READ 1001, N,(NR(J),J=1,4)
    PRINT ?C01, N,(NR(J).J = 1.4)
    IJ = 4NN - 4
        DO 300 J = 1,4
        IF(NR(J).EQ.O) GO TO 300
        NRD = NRD + 1
        IK=IJ + J
        IRC(NRD) = IK
        S(IK,1) = 1.0
        DO 200 K=2,8
        S(IK,K) = U.O
        L=IK - K + I
        IF(L.LE.O) GO TO 200
        S(L.K) = 0.0
    200 CONTINUE
    30O CONTINUE
        IFINRD.GT.50I GO TO }99
        TRIANGULARIZE STIFFNESS MATRIX
        CALL BANSOL(1,RL,S,400,8,NDOF,8)
        RETURN
    999 PRINT 2999,NRD
    STOP
    1001 FORMAT(5110)
    2000 FORMATI//59HOKINEMATIC CONSTRAINTS }10=\mathrm{ UNCONSTRAINED, 1 = CONSTRA
        IINEDI /
        2 5X,4HNODE,5X,1OHMERIDIONAL,9X,6HRADIAL,7X,8HROTATION,
        3 8X,THWARPING//
    2001 FORMAT(I1U.4115)
    2999 FORMAT(/////38HONUNSER OF CONSTRAINED DISPLACEMENTS =,14,
        1 28H EXCEECS ALLOWABLE 50 STOP,
        END
```

```
    SUBROUTINE LOAOSII)
C this Subroutine reads the loading datm, integrates to obtain
C THE CONSISTENT LUADS, REDUCES THE LOADS BY STATIIC CCNDENSATION
C THE CONSISTENT LUADS, REDUCES THE LOADS BY STATIC CCNDENSATION 
        MATIC CONSTRAINTS.
        SHEAR STRAIN AN') (URVATURE MODELS VARY LINEARLY ALONG CHORD LEINGTH
        COMMON / / NNONE,NLC,NDOF,NGI,NRD,NLE,NLN,PI
        COMMON /ARRAY/ ;(400,8),ST(99,10,2),IBC(50),RL(400),RC(200),U(990)
        COMMON /INTEG/ x(12),W(10)
        COMMON /STMATS/ SEL(10,10),B(12,10),DB(12,10),Tilo,10)
        COMMON /ELGEOM/ R(100),Z(100), EL,SPSI,CPSI,
        1 TBI,TBJ,CBI,CBJ,SBI,SBJ,A1,A2,A3,A4
        DIMENSION P(10),PV(11),PR(10), PH(10,10,3),P1(10),P2(10),P3(10),
        1 CL(500)
            EQUIVALENCE (P(1),SEL(1)). (PR(1),SEL(11)),(PV(1),SEL(21)).
        l (PH(1),U(1)), (P1(1),U(301)), (P2(1),U(311)), (P311),UisE1)1,
        2(CL(1),\(331))
        LOGICAL LUL
        REWINO 1
        REWIND 3
        N=NDOF/2
        DO 50 J = 1:v
        IJ = N + J
        50 RL(J)=RL(IJ)=R(IJ)=0.0
        N=N/2 + NDOF
        0060 J = I.N
    60 CLIJ) = 0.0
        READ 1000, NLE,NLN,LUL
        PRINT 2000, I,NE,NLE,NLN,LUL
        IF!NLE.EO.O1 GO TO 600
        PRINT 2001
        IT = 1
        DO 5OO J = 1.NLE
        DO 100 K = 1,10
    100 PR(K) = 0.0
c READ VALUE OF DISTRIBUTED LC
    IFILUL.AND.J.GT.1) GO TO 155
    READ 1001, IE,(PV(K),K=6,11)
c PREPARE TAPES FOR ELEMENT IE
    IF(IE-IT) 120,160,140
    120 N = 1T - IE
        DO 130 k = 1,N
        BACKSPACE 1
    130 BACKSPACE 3
    GO TO 160
    140 N = IE - IT
        DO 150 K = 1,N
        READ (1)
    150 READ (3)
    GO TO 160
    155 IE = IE + 1
        160 PRINT 2002,IE,(PVIK),K=6,111
c
    READ (3) (()PH(K,L,M),M=1,3),L=1,10),K=1,10), (P1(K),P2(K),P3(K),
```

```
        1 K=1,10)
        00 200 K = 1.10
        C = Pl(k)
        YP = P2(K)
        COSB = P3(K)
        PV(4) = PV(6) + X(K+1)*(PV(9) - PV(6))
        PV(5) = PV(7) + X(K+1)*(PV(10) - PV(7))
        PV(1) = C*COSB*(PV(4) + YP*PV(5))
        PV(2) = C*COSB*(NP*PV(4) - PV(5))
        PV(3) = C*(PV(8) + X(K+1)*(PV(11) - PV(8)))
        DO 200 L = 1.10
        DO 200 M = 1.3
    200 PR(L) = PR(L) + PH(K.L.M;#PV(M)
C TRANSFORM ELEMENT LOAD VECTOR TO GLOBAL CO-ORDINATES
    READ (1) ((T(MOL),L=1,10),M=1,10)
    00 300 K = 1.10
        P(K) = 0.0
        DO 300 L = 1.10
    300 P(K) = P(K) + T(L.K)*PR(L)
    IJ = 5#IE - 5
    C: = 2.0*PI*R(IE)
    IF(RIIE).EQ.0.0) C1 = 1.0
    C2 = 2.0*PI*R(IE+1)
    DO 325 K = 1,4
    IK = IJ + K
        CLIIK) = CL(IK) + P(K)/Cl
        IK = IK + 5
    325 CL(IK) = CL(IK) + P(K+4)/C2
    CL(1J+5) = CL(IJ+5) + P(9)/C1
    CL(:J+10) = CL(IJ+10) + P(10)/C2
C CONDENSE LOAD VECTOR TO 8xI
    DO 400 K = 1,2
    IJ = 10-k
        Jk = IJ + 1
        IK = JK - 8
    20 350 L = 1.1J
    350 P(L) = P(L) - STIIE,L,IK)#P(JK)
    400 F(JK) = P(JK)/STIIE,JK,IK)
C ASSEMble CONOENSED AND REDUCED loadS
        IJ = 4*IE - 4
        DO 450 K = 1,8
        JK=IJ + K
    450 RL(JK) = RL(JK) + P(K)
        IK = 2*IE - 2
        R(IIK+1) = P(9)
        R(1IK +2) = P(10)
    500 IT = IE + 1
    PRINT 2005, (J.CL(5*J-4),CL(5*J-3),CL(5*J-2),CL(5*J-1),CL(5*J),
    1 J = 1,NNI
    600 IF(NLN.EQ.O) GO TO 800
    FRINT }200
C READ AND ASSEmblE CONCENTRATED NODAL lOADS
    DO 700 J = 1.NLN
    READ 1002, N,(P(K),K=1,3)
    PRINT 2004,N,(P(K),K=1,3)
```

```
        IF(R(N).EQ.0.0) PRINT 2900
        RL(4*N-3) = 2.0*PI*P(1)*R(N) + RL(4*N-3)
        RL(4*N-2)=2.0*PI*P(2)*R(N) + RL(4*N-2)
    700 RL(4*N-1) = 2.0*PI*P(3)*R(N! + RL(4*N-1)
    MODIFY LOAD VECTOR FOR KINFMATIC CONSTRAINTS
    800 CONTINUE
        DO 900 J = 1,NRD
        K=IBC(J)
    9\cap0 RL(K) = 0.0
        IF(R(1).EQ.0.0) R(1) = 0.0
        RETURN
1000 FORMAT(2110.L10)
1001 FORMAT(I10,6F10.0)
1002 FORMAT(110,3F10.0)
2000 FORMAT(2OH1LOADING CASE NUMBER .15%
    1 5x.18HNUMBER OF ELEMENTS , I10/
    2 5x,25HNUMBER OF LOADED ELFMENTS .I3\prime
    3 5x,22HNUMBER OF LOADED NODES ,I S/
    4 5x,29HSAME LOAOING ON ALL ELEMENTS ,L3/)
2001 FORMAT(57HODISTRIBUTED LOAD ORDINATES AT NODES OF ELEMENTS IIN PSI
    1) /
    2 8H ELEMENT, 3X,17HMERIDIONAL, PSIII,7X,13HRADIAL, PZ(I),7X.
    3 13HMOMENT, MS(I),3X,17HMERIDIONAL, PS(J),7X,13HRADIAL, PZ(J),7X,
    4 13HMOMENT. MS(J))
    4 13HMOMENT, MS(J) )
2002 FORMAT(I 8,6F20.5)
2003 FORMAT (56HOCONCENTRATED LOADS AT NODES (PER UNIT OF (IRCUMFERENCE)
    1/4X,4HNODE,6X,14HMERIDIONAL, PS,10X,1OHRADIAL. PL, lOX,
    2 IOHMOMENT, MS )
2004 FORMAT(I8,3F20.5)
2005 FORMATI//54HOCONSISTENT LOAD VECTOR (LOADS PER UNIT CIRCUMFERENCE)
    1/10X,4HNODE,16X,4HP(S),16X,4HP(Z),16X,4HM(S),14X,6HM(GAM),13X,
    2 7HM(GAMF) // (Il4,5E20.8))
29OO FORMATI77HOLOADING ON PREVIOUS NODE IGNORED (THEORY DOES NOT ACCOM
    IODATE LOADS AT APFX) //
        END
```

 SUBROUTINE SOLVE(I)
 C THIS SUBROUTINE SOLVES FOR THE NODAL DISPLACEMENTS RECOVERS THE
C CONDENSED DISPLACEMENTS, PRINTS THE ELEMENT DISPLACEMENTS AND
C CALCULATES AND PRINTS THE NODAL STRESS RESULTANTS.
C SHEAR STRAIN AND CURVATURE MONELS VARY LINEARLY ALONG CHORE LENGTH
REAL NUF, NUC

COMMON $/$ / NN,NE,NLC,NDOF,NBC,NRD,NLE,NLN,PI
COMMON /ARRAY/ S(400,8),ST(99,10,2),IBC(50),RL(400),RC(2C0),U(990)
COMMON /ELGEOM/ R(100),Z(100), EL,SPSI.CPSI,
1 TBI,TBJ,CBI,CBJ,SBI,SUJ,A1,A2,A3,A4
COMMON /STMATS/ SEL(10.10).B(12.1C).DB(12,10).T(10.10)
DIMENSION SRI(21),SRJ(21),ASR(1CO.21)

```
        EQUIVALENCE (SRI(1),SEL(1)), (SRJ(1),SEL(31))
C SOLVE FOR NODAL DISPLACEMENTS
        CALL BANSOL(2,RL,5,400,8,NDOF,8)
        PRINT 2000, I
        DO 300 J = 1,NE
        IJ = 10*J - 10
        IL = 4*J - 4
        DO 100K = 1,8
        IK = IL + K
        JK=IJ L K
    100 U(JK) = RL(IK)
        RECOVER CONDENSED UISPLACEMENTS
        IL = 2*J - 2
        DO 250 K = 1.2
        JK=K+8
        IK = JK - I
        II = IJ J +JK
        M = IL + K
        U(II) = RC(M)
        DO 200 L = 1,IK
        M=IJ +L
    200 U(II) = U(II) - ST,J,L,\therefore)*U(M)
        COMPUTE ADDITIONAL DISPLACEMENTS OF INTEREST AND PRINT
        GAMCI = U(IJ+4) + U(IJ+9)
        GAMCJ = U(IJ+8) + U(IN+10)
        CHISI = (HC*GAMCI + HF*U(IJ+9))/0
        CHISJ = (HC*GAMCJ + HF*U(IJ+10))/D
        CHII = U(IJ+3) + CHISI
        CHIJ =U(IJ+7) + CHISJ
    300
    *)
    1 U(IJ+1),U(IJ+2),(HII,U(IJ+3), (HISI,U(IJ+4),GAMCI,U(IJ+9),
    2 U(IJ+5),U(IJ+6),(HIJ.U(IJ+7).(H!SJ,U(IJ+8),GANCJ.U(IJ+10)
        PRINT 2002, R(NN),Z(NN)
        PRINT 2003, I
        COMPUTE STRESS RESULTANTS AT NODES
        DO 350 J = 1,NN
        DO 350 K = 1.20
    350 ASR(J,K) = 0.0
    REWIND 2
    DO 500 J = l,NE
    CALL RESULTS(J)
    SRI(21) = SRJ(21)= 1.OE+10
    IF(ABS(SRI(8)).GE.1.OE-16) SRI(2I) = SRI(3)/SRI(3)
    IF(ABSISRJ(8)).GE.1.OE-16) SRJ(21)= SRJ(3)/SRJ(8)
    C1 = 0.5
    C2 = 0.5
    IF(J.EM.1) Cl = 1.0
    IF(J.EQ.NE) C2 = 1.0
    DO 400 K = 1,20
    ASR(J,K) = ASR(J.K) + Cl*SRI(K)
    4\cap0 ASR(J+1,K)=ASR(J+1,K) + C2*SRJ(K)
    5\capO PRINT 2004, J,R(J),Z(J),
    1 (SRI(K),K=6,10), (SRI(K),K=1,5), (SRI(K),K=11,21),
    2 J,R(J+1),2(J+1).
        (SRJ(K),K=6,10), (SRJ(K),K=1,5), (SRJ(K),K=11,21)
```

```
    PRINT 200:g I
    IF(NLN.GT.O) PRINT 2008
    FRINT 2007
    DO 600 J = 1.NN
    ASR(J.21) = 1.OE+10
    IF(ABS(ASR(J,8)).GE.1.OE-16) ASR(J,21)=ASR(J,3)/ASR(J,8)
600 PRINT 2006, J,R(J):Z(J).
    1 (ASR(J,K),K=6,10):(ASR(J,K),K=1,5):(ASR(J,K),K=11,21)
    RETURN
2000 FORMAT (38HINODAL DISPLACEMENTS FOR LOADING CASE .13/
    1 5H NODE, 2X, 13HMERIDIONAL, U,6X,9HRADIAL, W, 2X,13HROTATION, CHI,
    2 9X,6HCHI(B),9X,6HCHI(S),3X,12HWARPING, GAM,7X,8HGAMMA(C),7X,
    3 8HGAMMA(F)/I
2001 FORMAT(8H ELEMENT,13.39X.7H(R,Z) =. F9.4.1H,.F9.4 /
    1 4X,1HI&8E15.7/
    2 4X,1HJ,8E15.7/1
2002 FORMAT(50X,7HIR,Z) =.F9.4,1H.,F9.4 )
2003 FORMAT(56HISTRESS RESILTANTS AT ENOS OF ELEMENTS FOR LOADING CASE
    9.131
    17H LAYER,15X,4HN(S), 12X,8HN(THETA), 16X,4HQ(S),16X,4HM(S), 12X,
    2 8HM(THETA),7X,13HQ(S,C)/Q(S,F))
2004 FORMAT(8H ELEMENT,13,8H, NODE I, 31X,7H(R,Z) =,F9.4,1H,,F9.4/
    1 7H TOP.5F20.8/
    2 7H CORE.5F20.8/
    3 7H BOTTOM.5F20.8/
    47H TOTAL,5F20.8,F20.5%
    5 8H ELEMENT,13,8H, NODE J,31X,7H(R,Z) =,F9.4,1H,.F9.4/
    67H TOP.5F20.8/
    77H CORE,5F20.8/
    8 7H BOTTOM,5F20.8/
    97H TOTAL,5F20.8,F20.5/1
2005 FORMAT(52HIAVERAGE STRESS RESULTANTS AT NODES FOR LOADING CASE,
    9 [3/ 1
2006 FORMAT(5H NODE,I4,41X,7H(R,Z)=,F9.4,1H,.F9.41
    1'7H TOP,5F20.81
    2 7H CORE.5F20.8/
    3 7H BOTTOM,5F20.8/
    47H TOTAL.5F20.8,F20.51 1
2007 FORMATI
    17H LAYER,16X,4HN(S),12X,8HN(THETA),16X,4HQ(S),16X,4HM(S),12X,
    2 BHM(THETA), 7X,13HQ(S,C);Q(S,F))
2008 FORMAT(5X,117HNOTE.. AT NODES WHERE CONCENTRATER TRANSVERSE LOADS
    l OCCUR, ELEMENT SHEAR-STRESS RESULTANTS ARE MORE ACCURATE THAN /
    2 13X,36HAVERAGE SHEAR-STRESS RESULTANTS /l
        END
```

C	THIS SUBROUTINE EVALUATES THE NOOAL STRESS RESULTANTS FOR ELE-
C	MENT J
C	SHEAR STRAIN AND CURVATURE MODELS VARY LINEARLY ALONG CHORD LENGTH

```
    REAL NUF,NUC
    COMMON /PROPS/ H,D,HF,HC,EF,NUF,GF,EC,NUC,GC,BF,DF,BC,NC
    COMMON /ARRAY, S(400.8),ST(99,IO,2),IBC(50),RL(400),RC(200),'J(990)
    COMMON /STMATS/ SEL(10,10),日(12,10),DE(12,10),T(10,10)
    DIMENSION SRI(21),SRJ(21)
    EQUIVALENCE (SRI(1),SEL(1)), (SRJ(1).SEL(31))
    IJ = 10*J - 10
    READ (2) ((B(K,L),L=1,10),K=1,12)
    REAU(2) ((DB(K,L),L=1,10),K=1,12)
C COMPUTE NODAL STRESS RESULTANTS IN THE LAYERS
    DO 100 L = 1,12
    SRI(L) = SRJIL) = 0.0
    co 100 K = 1,10
    IK = IJ + K
    SRI(L)=SRI(L) + B(L,K)*U(IK)
    100 SRJ(L) = SRJ(L) + DR(L,K)*U(IK)
        DO 150 L = '3.15
        SRI(L) = SRI(L-5)
    150 SRJ'L) = SRJ(L-5)
c
    compute the total nodal stress resultants
    DO 200 L = 16,20
    SRI(L)= SRJ(L) = 0.0
    DO 200 K = 1.11,5
    IK = K + L - 16
    SRI(L) = SRI(L) + SRI(IK)
    200 SRJ(L) = SRJ(L) + SRJ(IK)
    SRI(19) = SRI(19) + 0.5*D*(SRI(11) - SRI(6))
    SRI(20) = SRI(20) + 0.5*D*(SRI(12) - SRI(7))
    SRJ(19) = SRJ(19) + 0.5*D*(SRJ(11) - SRJ(6))
    SRJ(20) = SRJ(20) + 0.5*D*(SRJ(12) - SRJ(7))
    RETURN
    END
    SUBROUTINE BANSOL(KKK, B, A, ND, MD, NN, MM)
    SYMMETRIC BAND MATRIX EQUATION SOLVER
    KKK = 1 TRIANGULARIZES A
    KKK = 2 SOLVES FOR VECTOR B, SOLUTION VECTOR RETURNS IN B
    PROGRAMMED BY C. A. FELIPPA.
    DIMENSION B(1), A(ND,MD)
    NRS = NN - 1
    NR = NN
    IF (KKK-1) 100,10n,200
100 DO 120 N = 1,NRS
    M = N - 1
    MR = MINO(MM,NR-M)
    PIVOT = A(N,1)
    DO 120 L = 2,MR
```

$C=A(N, L) / P I V O T$
$I=M+L$
$J=0$
DO $110 K=L, M R$
$J=J+1$
$110 \mathrm{~A}(1, \mathrm{~J})=\mathrm{A}(\mathrm{I}, \mathrm{J})-\mathrm{C} * \mathrm{~A}(\mathrm{~N}, \mathrm{~K})$
$120 \mathrm{~A}(\mathrm{~N}, \mathrm{~L})=\mathrm{C}$
GO TO 400
200 DO $220 \mathrm{~N}=1$, NRS
$M=N-1$
$M R=M I N O(M M, N R-M)$
$C=B(N)$
$B(N)=C / A(N, 1)$
DO $220 \mathrm{~L}=2$ •MR
$I=M+L$
$220 \mathrm{~B}(I)=\mathrm{B}(I)-\mathrm{A}(\mathrm{N}, \mathrm{L}) * C$
$B(N R)=B(N R) / A(N R, 1)$
DO 320 I = 1 , NRS
$N=N R-1$
$M=N-1$
$M R=M I N O(M M, N R-M)$
DO $320 K=2, M R$
$L=M+K$

- $320 B(N)=B(N)-A(N, K) * B(L)$

400 RETURN
END

```
APPENDIX E.. COMPUTER PROGRAM FOR FREE VIBRATION ANALYSIS OF ELASTIC AXISYM-
``` METRIC SANDWICH SHELLS (FORTRAN IV)

PROGRAM AXSSFVQIINPUT, OUTPUT.TAPE1=INPUT,TAPE2=OUTPUTI
FREE AXISYMMETRIC VIBRATION ANALYSIS OF THIN ROTATIONAL SANDWICH SHELL WITH CONSTANT THICKNESS AND TWICE CONTINUOUS MERIDIAN. MATERIAL PROPERTIES MAY NOT VARY IN THE MERIDIONAL DIRECTION FOR THE PRESENT PROGRAM, ALTHOUGH MODIFICATION FOR THIS CAPAEILITY MAY BE READILY ACHIEVED. NO RESTRICTION ON RATIOS OF LAYER THICKNESSFS OR LAYER PROPEPTIES. NODES ARE NUMBEREN CONSECUTIVELY ALONG THE AERIDIAN AND IF A NODE IS LOCATED ON THE AXIS OF SYMMETRY NUMBERING MUST REGIN AT THIS NODE. FLENENTS ARF NUMRERED SUCH THAT THE ELEMENT NUMBER IS THE SAME AS THE SMALLER ADJACENT NODE NUMYER.
STORAGE FOR 35 NODES (AND THUS FOR 34 ELEMENTSI.
SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND L!NEARLY ALONG THE CHORD LENGTH, RESPECTIVELY.
 DATA CARDS FOR AXSSFVG
C***
 1 CARD.. I 10 NUMBER OF SHELLS TO BE ANALYZED
 THEN, FOR EACH SHELL, ALL OF THE FOLLOWING..
 2 CARD.. COLS. 2-72 TITLE
 1 CARD.. 3110.L10
 NUMBER OF NODES, NN
 NUMBER OF MODE SHAPES, NMS
 NUMBER OF NODES WITH RESTRAINTS, NBC
 ROTATORY INERTIA INDEX (T IF LUMPED ROTATORY INERTIA
 INCLUDED, F OTHER'NISE)
 1 CARD. 6F10.0
 THICKNESS OF 1 FAC:NG (IN.)
 YOUNGS MODULUS OF FACINGS (PSI)
 POISSON RATIO OF FACINGS
 SHEAR MODULUS OF FACINGS (PSI)
 SHEAR STRESS CORRECTION FACTOR FOR FACING
 DENSITY OF FACINGS (LB./II.**3)
 1 CARD. GF10.0
 THICKNFSS OF CORE (IN.)
 YOUNGS VODUL!JS OF CORE (PSI)
 POISSON RATIO OF CORE
 SHEAR MODULUS OF CORE (PSI)
 SHEAR STRESS CORRECTION FACTOR FOR CORE
 DENSITY OF CORE (LB./IN.**3)
 (NOTE.. SHEARING :AAY BE NEGLECTED gY SETTING G TO 9999999999)
 NN CARDS.. \(110,3 F 10.0\)
 NODE NUMAER
```

    R, ARSCISSA OF NODE (IN.I
    Z, ORDINATE OF NODE (IN.)
    Phi, latitude angle of node (degrees)
            Curvature at node l OF ELEMENT (I/IN.)
    CURVATURE AT NODE J OF ELEMENT (1/INol
    NODE NUMBER
    TANGENTIAL DISPLACEMENT INDEX (0=FREE, l=CONSTRAINED)
    RADIAL DISPLACEMENT ...DEX ( DITTO )
    BENDING ROTATION INDEX ( DITTO )
    SHEAR WARPING INDFX ( DITTO )
    ```
 NN-1 CARDS.. 2F10.0
 NBC CARDS.. 5110
LOGICAL LRI
COMMON / / NN.NE,NMS.NDOF,NBC,NLM,LRI,PI
PI = 3.14159265358979
READ 100C, NSHELLS
DO \(100 \mathrm{~N}=1\) NSHELLS
CALL SETUP
CALL BCS
CALL EIGEN
IF(NMS•NE.O) CALL SHAPES
100
1000
FORMAT:IIO
stop
END

SUBROUTINE SETUP
this surroutine reads the geometrical and material properties of the shell and sets up the overall stiffness matrix and the diagonAL MASS MATRIX, BOTH UNMODIFIED FOR BOUNDARY CONDITIONS. SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY ALONG CHORD LENGTH, RFSPECTIVELY.
REAL NUF, VUC, KF,KC
LOGICAL LRI
COMNON / / NN,NE,NMS,NDOF,NBC,NLM,LRI,PI
COMMON /ARRAY/ S(140,8),5T(34,12,4),XM(140),A(105,105),E(105),
1 V(205,105),IV(105), DUM(140)
COMMON /PROPS/ H,C,HF,HC,EF, NUF,GF, EC,NUC,CC, EF, TF, EF, CC
COMMON /XGEOM/ YP,YPP,RX,COSB,YBAR,X(10)
CCMMON /ELGEOM/ EL,SPSI,CPSI,TBI,TBJ,CBI,CBJ,SBI,SBJ,A1,A2,A3,A4
COMMCN /NODCEO/ R(35),2(35)
CGMMON /STAATS/ SEL(12,12),8(12,12),OB(12,12),T(12,12)
DI:AENEION CPHI(35),SPHI(35),W(10), Y(10),WM(10),AN(35), PHI(35)
EGUIVALENCE (CPHI(1),A(1)), (SPHI(1),A(101)), (PHI(1),A(201)),
1 (ARN11), A(301))
CATA X , \(0.013046735741414,0.067468316655507\).
1 2.167275215850488, 0.283302302935376, 0.425562830509184,
```

    2 0.574437169490816,0.716697697064624,0.839704784149512,
    30.932531683344493,0.986953264258586 ,
        DATA W / 0.066671344308688, 0.149451349150581,
    1 0.2.9086362515982,0.269266719309996, 0.295524224714753,
    20.295524224714753,0.269266719309996, 0.219086362515982,
    3 0.149451349150581,0.066671344308688 /
    DATA Y / 0.023455038515334, 0.115382672473579,
    l 0.25,0.384617327526421, 0.476544961484666.0.523455038515334.
    2 0.615382672473579, 0.75,0.884617327526421, 0.976544961484666 /
    DATA WM / 0.236926885056189, 0.478628670499366,
    1 0.5688888888888889,0.478628670499366, 0.236926885056189,
    2 0.236926885056189, 0.478628670499366, 0.568888888888889,
    30.478628670499366,0.236926885056189 ,
    WRITE (2,2000)
    READ (2,1000)
    WRITE (2,1000)
    READ (1,1001) NN,NMS,NBC,LRI
    READ (1,1002) HF,EF,NIJF,GF,KF,RHOF
    READ (1.1002) HC,EC,NUC,GC,KC,RHOC
    WRITE (2,2001) NN,NMS,NBC, HF,HC, EF,NUF,GF,KF,RHOF, EC,NUC,OC,KC,
    1 RHOC, LRI
    IFINN.GT. 35) GO TO 900
    IFIGF.GE.9999999998.0) GF = 1.OE+20
    IF(GC.GE.9999999998.0) GC = 1.OE+20
    H = HC + 2.O*HF
    D=HC + HF
    NE = NA - 1
    NDOF = 4*NN
    NLM = 2*NN
    IF(LRI) NLM = 3*NN
    EF = EF/(1.0 - NUF*NUF)
    EC = EC/(1.0 - NUC*NUC)
    BF=EF*HF
    BC = EC*HC
    GF = GF*HF*KF
    GC = GC*HC*KC
    DF = BF*HF*HF/12.0
    DC = BC*HC*HC/12.n
    RHO = (HC*RHOC + 2.n*HF*RHOF)/386.088
    AMOM = (RHOC*HC**3 + RHOF*(H**3 - HC**3))/(12.0*386.088)
    DO 100 I = 1,NDOF
    x.111) = 0.0
    DO 100 J = 1,8
    JK = 0
    WRITE (2,2002)
    DR = 180.0/PI
    DO 110 I = 1,NN
    AN(1) = 0.0
    READ (1,1003) I,R(I),Z(I),PHI(I)
    WRITE (2,2003) I,R(I),Z(I),PHI(I)
    PHI(I) = PHI(1)/DR
    SPHI(I) = SIN(PHI(1),
    110 CPHI(I) = COS(PHI(I))
WRITE (2,2004)

```
```

        DO 500 1 = 1.NE
        DR = R(I+1) - R(I)
        OZ = 2(1+1) - 2(1)
        EL = SQRT(DR*DR + DZ*DZ)
        SPSI = DR/EL
        CPSI = DZ/EL
        SBI = CPHI(I)*CPSI - SPHI(I)*SPSI
        CBI = SPHI(I)*CPSI + CPHIII)*SPSI
        TBI= SBI/CBI
        SBJ = CPHI(I+1)*CPSI - SFHIlI+1)*SPSI
        CBJ = SPHI(I+1)*CPSI + CPHIII+1)*SPSI
        TBJ = SBJ/CBJ
        READ (1,1004) CURVI,CURVJ
        WRITE (2,2005) I,CURVI,CURVJ,EL,SPSI,CPSI,TRI,TEJ
        YPPI = -EL*CURVI/CBI**3
        YPPJ = -EL*CURVJ/CBJ**3
        Al = TBI
        A2 = TBI + 0.5*YPPI
        A3 = -(5.0*TBI + 4.0*TBJ) + 0.5*YPPJ - YPPI
        A4 = 3.0*(TBI + TRJ) + 0.5*(YPPI - YPPJ)
        DC 150 J = 1,12
        00 150 K = 1,12
    150 SEL(J,K) = 0.0
    C COMPUTE ELEMENT TRANSFOR:AATION MATRIX (A**-1)*T
CALL TMAT:I)
00400 J = 1,10
YBAR = (1.0 - X(J))*(A) + X(J)*(A2 + X(J)*(A3 + X(J)*A4))
YD = A1*(1.0 - 2.0*X(J)) + X(J)*(A2*(2.0 - 3.0*X(J)) + X(J)*(A3*
1 (3.0 - 4.0*x(J)) + A4*X(J)*(4.0 - 5.0*x(J))))
YPP = 2.0*(-A) + A2*(1.0-3.n*X(J)))+X(J)*(A3*(6.0 - 12.n*X(J))
1 + A4*x(J)*(12.0 - 20.0*x(J)))
Rx = R(I) + X(J)*EL*(SPSI + YBAR*CPSI)
COSE = 1.0/(SORT(1.0 + YP*FP))
C EVALUATE Sl,) AT INTEGRATION POINTS
CALL BMATII,J)
C ACD CONTRIBUTION TO ELEMENT STIFFNESS INTEGRATION
C = PI*E!*RX*WIJ! /COSB
CALL SELA(C)
YBAR = (1.0 - Y(J))*(A1 + Y(J)*(AZ + Y(J)*(A3 + Y(J)*A4)))
VD = A1*(1.0 - 2.0*Y(J))+Y(J)*(A2*(2.0-3.0*Y(J)) + Y(J)*(A3*
1 (3.0-4.0*Y(J)) + A4*Y(J)*(4.0 - 5.0*Y(J))1)
RX = R(I) + Y(J)*EL*(SPSI + YBAR*CDSI)
COSB = 1.C,/ISORT(1.0 + YP*YP))
C = PI*EL*RX*WM(J)/COSB/2.0
IF(J.GT.5) GO TO 200
AN(I) = AN(I) + C
GO TO 400
200 AN(I+1) =AN(I+1) + C
400 CONTINUE
TZANSFORM 12x12 ELEMENT STIFFNESS TO GLOBAL CO-ORDINATES AND CON-
DENSE TO 8x8
CALL SELRIII
C STORE MULTIPLIERS AND PIVOTS
DO 420 J = 1,4
IJ= J + 8

```
```

        DO 420 K = 1.12
    420 ST(I,K,J)= SEL(IJ,K)
    C ADD 8X8 ELEMENT STIFFNESS TO OVERAL.L STIFFNESS
DO 450 J = 1.8
IJ= JK + J
DO 450 K = J.8
IK = K - J + I
450 S(IJ,IK) = S(IJ,IK) + SEL(J.K)
500 JK = JK + 4
CONSTRUCT DIAGONAL MASS MATRIX
DO 600 I = 1,NN
IJ = 4*I - 3
XM(IJ)= XM(IJ+I) = SORT(RHO*AN(I))
IF(.NOT.LRI) GO TO 600
XM(IJ+2) = SQRT(AMOM*AN(I))
6NO SONTINUE
RETURN
900 NRITE (2,2900)
-TOC
1000 FUF:NAT(72H
l
1001 FORMAT(3110,L10)
1002 FORMAT(6F10.0)
1003 FORMATI:10.3F10.01
1004 FORMAT(2F10.0)
2000 FORMAT(1H1)
2001 FORMAT(1OX,28HNUMBER OF NODES ,I3/
1 10X,28HNUMBER OF MODE SHAPES ,13/
2 10X,28HNUMBER OF RESTRAINED NODES ,13//
3 10X,16HFACE THICKNESS =,F10.6/
4 10X,16HCORE THICKNESS =,F10.6//
5 10X,9HFACE E =,F13.1/
6 10X,9HFACE NU =,F12.5/
7 10X,8HFACE G =,:-13.1/
6 10X, 1OHFACE KAP =,F11.51
7 10X, 1OHFACE RHO =,F11.6/1
8 10X,8HCORE F = FI3.1/
9 10X,9HCORE NU =,F12.5/
1 10X.8HCORE G =,F13.1/
2 10X,10HCORE KAP =,F11.5/
3 10X,1OHCORE RHO =,F11.6/1
4 44H ROTATORY INERTIA INCLUDED (T = YES, F = NO) 0L5 //
5 45H ALL QUANTITIES IN INCHES, POUNDS AND SECONDS /)
2002 FORMAT I//1IHONODAL DATA /
9 2X,4HNODE,7X,11HABSCISSA, R,8X,12H ORDINATE, 2.6X.
1 14HLAT:TUDE ANGLE/
2 15X,5H(IN0),15X,5H(IN.),13X,8H(DEGREE)/)
2073 FORMAT(:4,3F20.8)
2004 FORMAT(/18HOELEMENT GEOMETRY /
1 BH ELEMENT, 1OX,7HCURV(I), 10X,7HCURV(J),5X,12HCHORD LENGTH, 1OX,
2 7HSIN PSI,10X,7HCOS PSI,6X,11HTAN GETA(I),6X,ILHTAN BETAIJ)!
3 18X,7H(1/IN.),10X,7H(1/IN.),12X,5H(IN.)!
2905 FURMAT(I8,7F17.8)
290O FORMAT(/////41HONUMBEP OF NODES EXCEEDS ALLOWARLE STOP,
END

```
```

SUBROUTINE TMATIII
G THIS SI,MROUTINE EVALUATES THE CO-CRDINATE TRANSFORMATIOM MATRIX

- (A**-1)*T FOR ELEMFNT I.
C GLOBAL CO-ORDINATES ARE S AND XI IMERIDIONAL AND TACIAL.: ANO
C THUS CAN BE APPLIED ONLY TO SHELLS WITH TWICE SONTINUOUS MERIDIANS
C
SHEAR STRAIN AND CURVAIURE MODELS VARY QUADRATICALLY AND LINEARLY
ALONG CHORD LENGTH, RESPECTIVELY.
REAL NUIC,NLIF
COIMON/JROPS/ H,D,HF,HC,EF,NUF,GF,EC,NUC,GC,BF,DF,BC,DC
COMMON /STYATS/ SEL(12,12),P(12,12).DB(1%,12),T(12,12)
COMMON /NODGEO/ R(35),Z(35)
COMMON /ELGEOM/ EI,SPSI,CPSI,TBI,TBJ,CBI,CRJ,SBI,SBJ,AI,A2,A3,A4
DO 100 J = 1.12
DO 100 K = 1,12
100 B(J,K) = 0.0
IF(R(I).EQ.O.O) GO TJ 50N
C MATRIX FOR OPEN-ENDED ELEMENT
B(1,1)=B(3,2)=B(2,6i=1.0
R(7,4)=B(7,5)=B(9,5)=1.0
B(8,9)=B(8,10)=B(10,10)= E(2,1)=-1.0
B(4,I)=-TBI
B(4,6) = TBI
B(6,6)=TBI + TBJ
B(6,1) = - B(6,6)
B(5,1)=B(6,6) + TBI
B(5,6)=-B(5,1)
B(5,2)=B(8,4)=B(8,5)=B(10,5)=-3.0
B(6,2)=B(11,4)=B(11,5)=B(12,5)=2.0
B(11,0) = B(11,10) = B(12:10) = 2.0
B(5.7)=3.0
B(5,7) = -2.0
B(8,11)=
B(11,11)= B(12.12)= -4.0
B(4,3)=B(6,3)=-EL/CBI/CBI
B(5,3)=-7.0*B(4,3)
B(4,4)=B(5,4) - HC*F(4,3)/D
B(5,4)=-2.0*B(4,4)
B(4,5)=B(6,5)=B(4,3)
B(5.5)=-2.0*B(4.5)
B(5.8) = EL/CBJ/CBJ
B(6,8)=-8(5,8)
B(5,9) = HC*B(5,8)/0
B(6,9) = -B(5.9)
B(5,10)=B(5,8)
B(6,10)= -B(5,10)
DO 200 J = 1,12
T(J.1) = CBI*B(J.1) + SRI*B(J,2)
T(J,2)=SBI*B(J,1) - CBI*B(J,2)
T(J.3) = B(J,3)
T(J,4) = B(J,4)
T(J,5) = CBJ*B(J,6) + SBJ*B(J,7)
T(J,6)= S\&J*B(J,6) - CBJ*B(J,7)
T(J,7)=B(J,8)
T(J,8) = B(J,9)
T(J,9) = B(J,5)

```
```

        T(J.10) = B(J.10)
        T(J,11) = B(J,11)
    200 T(J.12)=B(J.i2)
        GO TJ 1000
    C MATRIX FOR CAP
500 B(5.2) = -1.0
B(9.0)=B(9,10)=B(10,10)= -1.0
B(6.6) = 1.0
B(7.7) = 3.0
3(11.9)=B(11.10)=B(12.10)=2.0
B(8.7) = -2.0
B(9,11)=B(10,12)=4.0
B(11.11)=B(12.12)= =4.0
B(6.2) = CPSI
B(7.2)=(2.0*TBI + TBJ)*CPSI + 3.0*SPSI
B(8,2) = -B(7,2) + TBI*CPSI + SPSI
6(7.6) = -2.0*TBI - TBJ
B(8,5) = TBI + TBJ
S(7,E) = EL/CBJ/CBJ
B(8,8) = -B(7,8)
B(7,9) = HC*B(7,C)/D
A(8.9)= - 8(7.9)
B(7,10) = B(7.8)
B(8.10) = -B(7.10)
DC 700 J = 1.12
T(J,1)=T(J,3)=T(J,4)=T(J,9)=0.0
T(J,2) = B(J,2)
T(J,5) = (BJ*R(J,6) + SRJ*B(J,7)
T(J,S) = SBJ*B'J,6) - CBJ*B(J,7)
T(J,7) = B(J,8)
T(J,E)= B(J.9)
T(J.\0) = B(J.10)
T(J.11) = B(J.11)
7CO T(J.12)= B(J.121
IONn RETURN
END

```
C SUBROUTINE BMATII THIS SURRDUTINE EVALUATES THE MATRIX B FOR ELEMENT I AT POINT X(J)
C SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALEY AND LINEARLY
\(C\) ALONG EHORD LENGTH, RESPECTIVELY.
 REAL NUF, NUC
 COMMON /PROPS/ H,D,HF,HC,EF,NUF,GF,EC,NUC,GC,EF,DF,EC,DC
 COMMON /SY'4ATS/ SEL(12,12),E(12,12),CB(12,12),T(12.12)
 COYMON /ELGEOM/ EL,SPSI,CPSI,TBI,TBJ,CBI,CBJ,SEI,SBJ,AI,A2,A3,A4
 COMMON /NODGEO/R(35).Z(35)
 COMMON /XGEO:1/ YP,YPP,RX,COSB,YRAR,X(10)
 \(0010 \mathrm{CK}=1.12\)
 \(00100 \mathrm{~L}=1.12\)
 \(1 C O B(K, L)=0.0\)
```

81 = -YPP**OSB**5*(1.0 - YP*YP)/(EL*EL)
B3 = COSB**3/(EL*EL)
B2 = -2.0*YPP*YP*R3*COSB*COSB
IFIRIII.EQ.O.01 GO TO 400
B4 = -EL*B3*YP*ISPSI + CPSI*YPI/RX
B5 = EL*B3*(SPSI + CPSI*YP)/RX
B6 = COSB\#(SPSI + CPSI\#YP)/RX
MATRIX FOR OPEN-ENDED ELEMENT
B(2.1) = B(7.1) = A(12.1) = SPSI/RX
B(2.3)=B(7.3)=B(12.3)=CPSI/RX
A(2,2) = Bli2,1)\#x(J)
R 2,4)= B(12,3)*x(J)
B(2.5)= B(2.4)*x(J)
B(2,6)=B(2,5)*x(J)
B(4.8)=B(9,10)= COSB/EL
B(4,il) = B(9,12) = 2.0*X(J)*B(4,8)

```

```

B(1,4)= B(1,2)*YP
B(1,5)=2.0*X(J)*B(1,4)
A(1.6) = 1.5*X(J)*B(1.5)
B(3,7)=B(8,0)= 1.0
E(3,E)=B(8,10)= X(J)
B(3,11) = B(8,12)= X(J)*x(J)
B(4,2)=B(9,2)= Bi
B(4,4)=B(9,4)= B2
5(5,2)=B(10.2) = B4
B(5,4; = B(10,4)= = 55
B(5.7) = B(10.7) = B6
B(5:8)=B(10,:0)= B6*x(J)
B(5,11) = B(10,12) = X(J)*8(5,8)
B(4.5) = B(9.5) = 2.0*82\#x(J) + 2.0*83
B(4.6) = B(9.6) = 13.0*B2*x(J) + 6.0*B3)*x(J)
B(5,5)= B(10,5) = 2.0*B5*x(J)
S(5.6)=B(i0.6)= 3.0*:55*\times(J)*x(J)
B(6.2: = 8:1.2) - D*B!/2.0
B(:1,2)=B(1,2) + D*B1/2.0
B(0,4)= B(1,4) - D*B2/2.0
8(11,4) = B(1,4) + D*B2/2.0
B(6,5)=B(1,5)-D*B(4,5,/2.0
S(11,5) = B(6,5) + D*B(4,5)
B(6,6) = B(1,6: - D*B(4.6)/2.0
B(11,t) = B(6,6; + D\#P(4,t)
B(6,8) = -HC*B(4,8)/2.0
B(11,Q) = - 3(6,8)
B(6,10) = -HF*B(4.8)/2.0
B(11,10) = -B(6,10)
3(6,11) = 2.0*x(1)*B(6,8)
B(11.11) = -B(6.11)
B(6,i2) = 2.0*x(J)*3(6.10)
A(11,12) = - 8:6.12)
B(T,2)= S(2,2)-D*B4/2.0
B(12,2) = 8(7.2) + D*R4
B(7,4)= B(2,4)-D*B5/2.0
B(12,4)= B(7,4)+D*85
B(7.5) = 3(2.5) - D*B(5.5)12.0

```
```

    B(12,5)=B(7.5) + D*B(5,5)
    B(7,6)=B(2,6) - D*B(5,6)/2.0
    B(12.6)=B(7.6)+D*B(5,6)
    B(7.7) = -HC*B6/2.0
    B(12.7) = - B(7.7)
    B(7.8) = B(7.7)#X(J)
    B(12,8) = -B(7.B)
    B(7.9)= -HF*B6/2.0
    B(12.9) = -B(7.9)
    B(7.10)=B(7.9)*X(J)
    B(12,10) = -B(7,10)
    B(7,11)= x(J)*8(7,8)
    B(12,11)= -B(7,11)
    B(7,12)=X(J)*B(7,10)
    B(12.12) = -8(7.12)
    GO TO 1000
    c
400 B6 = EL*ISPSI + YBAR*CPSI)
B5 = COSB**3*(SPSI + YP*(PSI)/(B6*EL)
B4 = COSB*(SPSI + (PSI*YP)/66
B(3,9)=B(8,10)=X(J)
B(3,11)=B(8,12)= X(J)*X(J)
B(4,9)=B(9,10)=COSB/EL
B(4,11)=B(9,12)=2.0*X(J)*B(4,9)
B(4,6)=B(9,6)= B1 + TB1*82
B(4,7)=B(9,7)= 2.0*B2*X(J) + 2.0*B3
A(4,8) = B(9,8) = (3.0*B2*x(J) + 6.0*B3)*x(J)
B(5,6)=B(10,6)=B5*(((5.0\#A4*X(J) + 4.0*(A3 - A4))*X(J) +
1 3.0*(A2 - A3))*x(J) + 2.0*(A1 - A2))
B(5.7)=B(10.7)= 2.0*B5
B(5,8)=B(10,8)= 3.0*B5*X(J)
B(5,9: = B(10,10) = B4
B(5.1:) = B(20.12)=x(J)*24
B(1,6)=COSB*B(4,0)*(1.0+ TBI*YP)
B(1,7) = 2.0*X(J)*COSB*B(4,9)*YP
9(1,8)=1.5*x(J)*S(1,7)
3(2,6) = (SPSI + (PSI*TBI)/66
B(2,7)=x(J)*CPSI/66
3(2,8) = X(J)*B(2,7)
B(6,6)=B(1,6)-D*B(4,6)/2.0
B(:1,6)=B(6,6)+D*B(4,6)
B(6,7) = B(1,7 - D*B(4,7)/2.0
B(il,7)=B(6,7) + D*R(4,7)
B(6,8) = P(1,8) - D*B(4,8)/2.0
B(11,8) = B(6,8) + D*B(4,8)
B(6.9) = -HC*B(4,0)/2.0
B(11,9)= -B(6,9)
B(6,10)= -HF*B(4,9)/2.0
B(11,10) = -B(6,10)
B(6.11)=2.0*X(J)*B(6.9)
B(11,11) = -B(6,11)
B(6,12)=2.0*X(J)*B(6,10)
B(11,12) = -B(6,12)
B(7,6)=B(2,6)-D*B(5,6)/2.0
B(12,6)=B(7,6)+D*B(5,6)

```
```

B(7.7) = B(2.7) - D*B5
B(12,7)=B(2,7) + D*B5
B(7,8)=B(2,8)-D*B(5,8)/2.0
B(12,8) = B(7,8) + D*B(5,8)
B(7.9)=-HC*34/2.0
B(12,9) = -B(7.9)
B(7.10)= -HF*B4/2.0
B(12,10)= -B(7,10)
B(7,11)= X(J)*B(7.9)
B(12.11)= -B(7.11)
B(7,12)=X(J)*B(7,10)
B(12,12)=-B(7,12)
1000
RETURN
END
subroutine SELi(C)
C SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY
C ALONG CHORD LENGTH, RESPECTIVELY.
REAL NUF,NUC
COMMON /PROPS/ H,D,HF,HC,EF,NUF,GF,EC,NUC,GC,BF,DF,BC,DC
COMMON /STMATS/ SEL(12,12),B(12,12),DB(12,12),T(12,12)
DO 100 K = 1,12
DB(1,K)= BC*(B(1,k) + NUC*B(2,k))*C
DA(2,k) = BC*(B(2,K) + NUC*B(1,K:)*C
DB(3,k)=GC*B(3,k)*C
DE(4,K)= DC*(B(4,K) + NUC*B(5,K))*C
DB(5,K)=DC*(B(5,K) + NUC*B(4,K))*C
DB(6,K)= BF*(B(6,K) + NUF*B(7,K))*C
D3(7,K) = BF*(B(7,K) + NUF*B(6,K))*C
OB(8,K)=GF*B(8,K)*(*2.0
DB(9,K)= DF*(B(9,k)+NUF*B(10,K))*C*2.0
DB(10,K)= DF*(B(10,K) + NUF*B(S : ) **(2.0
DB(il,K)= SF*(B(ll,k) + NUF*B(1,0K))*C
100 OB(12,K)= BF*(E(12,K) + NUF*B(11,K))*C
00 200 K = 1,12
DO 200 L = 1,12
DO 200 M = 1,12
200 SEL(K,L) = SEL(K,L) + B(M,K)*DB(M,L)
RETURN
END

```
```

    SUBROUTINE SELR(L)
    THIS SUBROUTINE TRANSFORMS THE ELEMENT STIFFNESS FROM GENERALIZED
C TO GLOBAL CO-ORDINATES AND CONDENSES IT FRTM 12X12 TO 8X8 USING
C STATIC CONDENSATION.
SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY
ALONG CHORD LENGTH. RESPECTIVELY.
COMMON /NODGEO/ R(35),2(35)
COMMON /STMATS/ SEL(12.12).8(12.12).OB(12.12).T(12,12)
C SYMMETRIZE ELEMENT STIFFNESS IN GENERALIZED CO-ORDINATES
DO 50 I = 1.11
IJ = 1 +1
DO 50 J = IJ.12
IFISEL(I,J'.EQ.O.O.OR.SEL(J.I).EQ.O.O) GO TO 45
SELII.J) = 0.5*(SELII.J) + SEL(J.I))
GO TO 50
4 5 ~ S E L ( 1 , J ) ~ = ~ 0 . 0 ~
50 SEL(J,I) = SEL(I,J)
TRANSFORM TO GLOBAL CO-ORDINATES
DO 100 1 = 1,12
DO 100 J = 1,12
DB(I.J) = 0.0
DO 100 K = 1.12
100 DB(I,J)= DB(I,J) + SEL(I,K)*T(K,J)
DO 200 I = 1.12
DO 200 J = 1.12
SELII:J) = 0.0
DO 200 K = 1.12
200 SEL(I;J) = SEL(I,J) + T(K,I)*DB(K,J)
IF(R(L).NE.O.O) GO TO 250
SEL(1,1)= SEL(3,3)=\operatorname{SEL}(4,4)=\operatorname{SEL}(9,9)=1.0
C
250 DO 300 J = 1,'4
IJ = 12 - J
IK = IJ + I
PIVOT = SEL(IK,IK)
DO 300 K = l.IJ
C = SEL(IK,K)/PIVOT
SEL(IK,K) = C
DO 300 I = K,IJ
SEL(I,K) = SEL(I,K) - C*SEL(I,IK)
300
SEL(K,I) = SEL(I,K)
RETURN
END

```

SUBROUTINE BCS
THIS SUBROUTINE READS THE BOUNDARY CONDITION DATA, MODIFIES THE OVERALL STIFFNESS MATRIX AND MASS MATRIX ACCORDINGLY AND THEN TRIANGULARIZES THE STIFFNESS FOR READY SOLUTION. SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATI CALLY AND LINEARLY ALONG CHORD LENGTH, RESPECTIVELY.
```

            LOGICAL LRI
            COMMON / / NN,NE,NMS,IDOF,NBC,NLM,LRI,PI
            COMMON /ARRAY/ S(140,8),ST(34,12,4),XM(140),A(105,105),E(105),
            l v(105,105),IV(105),W(140)
            COMMON /NODGEO/ R(35),2(35)
            DIMENSION NR(4)
            IF(R(1).NE.O.O) GO TO 100
            NLM = NLM - 1
            XM(1) = 0.0
            IF(.NOT.LRI) GO TO 100
            NLM = NLM - 1
            XM(3) = 0.0
    100 WRITE (2,2000)
    C READ KINEMATIC CONSTRAINTS AND MODIFY OVERALL STIFFNESS AND MASS
DO 300 1 = 1,NBC
READ (1,1001) N,(NR(J),J=1,4)
WRITE (2,2001) N.(NR(J),J=1,4)
IJ = +*N - 4
OO 300 J = 1.4
IF(NR(J).EQ.O) GO TO 300
IK = IJ + J
s(Ik,l) = 1.0
DO 200 K = 2,8
S(IK.K) = 0.0
L = IK - K + l
IF(L.LE.0) GO TO 200
S(L,K)=0.0
2O0 CONTINUE
IF(J.EQ.4) GO TO 300
IF(J.EQ.3.AND..NOT.LRI)GO TO 300
NLM = NLM - 1
XM(IK) = 0.0
300 CONTINUE
IF (NMS.GT.NLM) NMS = NLM
C TRIANGULARIZE STIFFNESS MATRIX
CALL DYBSOL(NDOF,8,140,S, W,1,1)
RETURN
1001 FORMAT(5I10)
2000 FORMATI//59HOKINEMATIC CONSTRAINTS 10 = UNCONSTPAINED, 1 = CONSTRA
IINEDI /
2 6X,4HNODE,5X,1OHMERIDIONAL,9X,6HRADIAL,7X,8HROTATION,
3 8X,7HWARPING/)
2001 FDRMAT(I10,4115)
END
SUBRCUTINE EIGEN
c THIS SUBROUTINE TRANSFORMS THE EIGENVALUE PROBLEM FROM
T0
A(,)*V()=V()/OM**2

```
```

C WHERE
c M,) = STIFFNESS MATRIX
C a(,) = DIAGONAL MASS MATRIX
C A(,) = M(,)**0.5*F(,)*M(0,)**0.5
C Fi,l = FLEXIBILITY MATRIX AFTER CONDENSATION ON DEGKIES OF
FREEDOM NOT CORRESPONDING TO LUMPED MASSES
V() = M(.)*\#0.5\#()()
the eigenvalues and nms of the eigenvectors are then computed.
logical LRI
COMMON / / NN,NE,NMS,NDOF,NBC,NLM,LRI,PI
COMMON /ARRAY/ S(140,8),ST(34,12,4),XM(140),A(105,105),E(105),
l V(105,105),IV(105),W(140)
COMMON /STMATS/ SEL(12,12),B(12,12),DE(12,12),T(12,12)
DIMENSION G(105),R(105),P(IC5),0(105),INT(105)
EQUIVALENCE (G(1).SEL(1)), (R(1),SEL(106)), (P(1),B(67)),
1 (O(1),DB(28)), (INT(1),CB(133))
COMPUTE INDEX VECTOR OF LUMPED MASSES
N = 1
DO 100 I = 1,NLM
50 IF(XM(N).NE.O.O) GO TS :O
N = N+1
GO TO 50
60 IV(I) = N
100 N = N+1
ASSEMBLE MATRIX Al,)
DO 300 1 = 1,NLM
DO 200 J = 1,NDOF
200
N = IV(I)
W(N) = 1.0
CALL DYBSOL(NDOF,8,140,S,W,2,N)
DO 300 J = I.NLM
L = IV(J)
A(J,I) = XM(L)*W(L)*XM(N)
300
A(1,J)=A(J,1)
COMPUTE EIGENVALUES AND EIGENVECTORS
CALL HORWINLM,105,NMS,A,E,V,G,R,P,Q,W,INT)
COMPUTE AND PRINT NATURAL FREOUENCIES
WRITE (2.2000)
DO 400 I = 1,NLM
E(I) = 1.0/SORT(EII))
PER = 2.0*PI/E(I)
FREQ = 1.0/PER
400 WRITE (2,2001) I,E(I),FREQ,PER
RETURN
2000 FORMAT(21HINATURAL FREQUENCIES //
1 10H MODE NO.,15X,5HOMEGA,10X,1OHOMEGA/2*PI,14X,6HPERIOC /
2 21X,9H(RAD/SEC),11X,OH(CYC/SFC),15X,5H(SEC) /)
2001 FORMAT(110.3E20.8)
END

```
```

SUBROUTINE SHAPES
C this subroutine recovers and prints the complete mode shapes.
LOGICAL LRI
REAL NUC,NUF
COMMON / / NN,NE,NMS,NDOF,NBC,NLM,LRI,PI
COMMON /ARRAY/ S(140,8),5T(34,12,4),XM(140),A(105,105),E(105),
l V(105,105),IV(105),W(140)
COMMON /NODGEO/ R(35),2(35)
COMMON /PROPS/ H,D,HF,HC,EF,NUF,GF,EC,NUC,GC,BF,OF,BC,OC
DIMENSION UII2I
EQUIVALENCE (U(1).A(1))
WRITE (2,2003)
DO 800 1 = 1.NMS
C= E(I)*E(I)
DO 100 J = 1.NDOF
100 W(J) = 0.0
DO 200 K = 1,NLM
L = IV(K)
200W(L) = C*XN'L)*V(K,I)
CALL DYBSOLINDOF,8,140,S,W,2,1)
WRITE 12,2000) 1
DO 700 J = l,NE
IL = 4*J - 4
DO 300 K = 1.8
IK = IL + K
300 U(K) = W(IK)
RECOVER CONDENSED DISPLACEMENTS
DO 400 K = 1,4
JK = K + 8
IK ■ JK - 1
U(JK)=0.0
DO 400 L = 1,IK
400 U(JK) = U(JK) - ST(J.L,K)*U(L)
COMPUTE ADDITIONAL DISPLACEMENTS OF INTEREST AND PRINT
GAMC1 =U(4) +U(9)
GAMCJ = U(8) + U(10)
CHISI = (HCHGAMCI + HF*U(9))/C
CHISJ = (HC*GAMCJ + HF*U(10)1/D
CHII = U(3) + CHISI
CHIJ = U(7) +CHISJ
GAMO = U(11) - U(12)
CHISO = (HC*U(11) + HF*U(121)/D
700 WRITE (2,2001) J.R(J),Z(J).
l U(1),U(2),CHIL,U(3),CHISI,U(4),GAMCI,U(9),
2 CHISO,GAMO.U(11),U(12).
3 )(5),U(6),CHIJ,U(7),CHISJ,U(8),GAM=J.U(10)
BNO WRITE (2,20021 R(NN),Z(NN)
RETURN
2000 FORMATI/18HOMODE SHAPE NUMBER ,13/
1 SH NODE, 2X,13HMERIDIONAL, U,6X,9HRADIAL, W,2X,13HROTATION, CHI,
2 9X,6HCHI(B),9X,6HCHIISI,3X,12HWARPING, GAM,7X,8HGAMMA(C),7X,
8HGAMMA(F)/1
2001 FORMAT(8H ELEMENT,13,39X,7H(R,Z) =, F9.4,1H.,F9.4 /
1 4X,1HI,8E15.7/

```
```

    2 4X,1HO,60X,4E15.71
    3 4X,1HJ,8E15.7/1
    2002 FORMAT(50X,7H(R,Z) =,F9.4.1H.,F9.4 )
2003 FORMAT(16HIVIBRATION MODES /)
ENO

```
```

    SUBROUTINE DYBSOL (NN,MM,NDIN,A,B,KKK,LIM)
    ```
 SUBROUTINE DYBSOL (NN,MM,NDIN,A,B,KKK,LIM)
C DYBSOL IS AN SPECIAL IN-CORE BAND SOLVER FOR DYNAMIC PROBLEMS
C DYBSOL IS AN SPECIAL IN-CORE BAND SOLVER FOR DYNAMIC PROBLEMS
C INVOLVING CONDENSATION OF ROTATIONAL DEGREES OF FREEDOM.
C INVOLVING CONDENSATION OF ROTATIONAL DEGREES OF FREEDOM.
 PROGRAMMED BY C. 1. FELIPPA.
 PROGRAMMED BY C. 1. FELIPPA.
 DIMENSION A(NDIM&I), B(1)
 DIMENSION A(NDIM&I), B(1)
 NR = NN - 1
 NR = NN - 1
 IF (KKK.GT.1) GO TO 300
 IF (KKK.GT.1) GO TO 300
C
C
 DECOMPOSITION OF BAND MATRIX A WITH SEMI-BANDWIDTH MM
 DECOMPOSITION OF BAND MATRIX A WITH SEMI-BANDWIDTH MM
 DO 200 N = 1,NR
 DO 200 N = 1,NR
 M = N-1
 M = N-1
 PIVOT = A(N,I)
 PIVOT = A(N,I)
 IF (PIVOT.EQ.O.) PIVOT = 1.OE-08
 IF (PIVOT.EQ.O.) PIVOT = 1.OE-08
 MR = MINO (MM,NN-N)
 MR = MINO (MM,NN-N)
 DO 200 L = 2,MR
 DO 200 L = 2,MR
 C=A(N,LI/PIVOT
 C=A(N,LI/PIVOT
 IF (C.EQ.O.) GO TO 200
 IF (C.EQ.O.) GO TO 200
 I=M+L
 I=M+L
 J=0
 J=0
 DO 180 K = L,MR
 DO 180 K = L,MR
 J=J+1
 J=J+1
 180 A(I,J) = A(I,J) - C*A(N,K)
 180 A(I,J) = A(I,J) - C*A(N,K)
 A(N,L)=C
 A(N,L)=C
 200 CONTINUE
 200 CONTINUE
 GO TO 500
 GO TO 500
C
C
300 DO 350 N = LIM.NR
300 DO 350 N = LIM.NR
 M=N-1
 M=N-1
 MR = MINO (MM,NN-M)
 MR = MINO (MM,NN-M)
 C=B(N)
 C=B(N)
 B(N)=C/A(N,1)
 B(N)=C/A(N,1)
 DO 350 L = 2,MR
 DO 350 L = 2,MR
 I=M+L
 I=M+L
350 B(I) = B(I)-A(N,L)*C
350 B(I) = B(I)-A(N,L)*C
 B(NN)=B(NN)/A(NN,1)
 B(NN)=B(NN)/A(NN,1)
 NS = NN - LIM + I
 NS = NN - LIM + I
 DO 400 K = 2.NS
 DO 400 K = 2.NS
 M =NN-K
 M =NN-K
 N=M+1
```

    N=M+1
    ```
```

    MR = MINO (MM,K)
    DO 400 L =2,MR
        I=M+L
    400B(N)=B(N)-A(N,L)*B(I)
500 RETURN
END

```
n

 PROGRAMMED BY C. A. FELIPPA, FEB. 1967
INPUTS
 N MATRIX ORDER, MIIST NOT EXCEED NM.
 NM DIMENSION OF INPUT MATRIX G IN THE CALLING PROGRAM.
 \(M\) NVEC \(=\) IABS(M) IS THE NUMBER OF EIGENVECTORS DESIRED
 10 TO NI. ITS SIGN SPECIFIES THE ORDERING OF THE
 EIGENVALUES E(I)EE(N) AS FOLLOWS
 IF M LT 0 OR -O, BY INCREASING ALGEBRAIC VALUE
 IF M GT O OR + O, BY DECREASING ALGEBRAIC VALJE.
 CALCULATED EIGENVECTORS (IF ANY) WILL CORRESPOND TO
 E(1), E(2) •..E E(NVEC)
 G INPUT SYMMETRIC SQUARE MATRIX (RETURNS UNALTEREDI.
OUTPUTS
 E VECTOR OF EIGENVALUES, ARRANGED AS EXPLAINED ABOVE.
 \(V\). NORMALIZED EIGFNVECTORS, STORED AS COLUMNS OF V.
 IF NVEC=0, V MAY BE A DUMMY VARIABLE.
 A DIAGONAL OF REDUCED TRIDIAGONAL FORM.
 B FIFST OFF-DIAGONAL OF REDUCED TRIDIAGONAL FORM.
 WORKING SPACE
 P,W,Q.INT WORKING VECTORS OF LENGTH AT LEAST N,N+I,N AND N
 RESPECTIVELY. IF NVEC \(=0\), \(Q\) AND INT MAY RE
 DUMMY VARIABLES.
```

norinn
** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
the FOLLOWING PaRAMETERS ARE MACHINE-DEPENDENT AND SHOULD
BE PRE-SET AS FOLLOWS
DRECS = 10.**(-NDIG) WHERE NDIG IS THE NUMBER OF SIGNIFICAN,
DECIMAL DIGITS CARRIED OUT BY THE MACHINE IN FLOATING
point arithmetic.
baSe = the baSe number of the machine, in floating point.
ILIM = TO GE CHOSEN SO THAT BASE**(ILIM+4) IS OF THE ORDER
(but dOES NOT EXCEED) the mACHINE OVERFLOW LIMIT.
HOV = BASE**(ILIM/2)
THIS VERSION IS FOR THE CDC 6400 INDIG=15, BASE=2.. IL:M=1000)
C
DIMENSION G(NM,1), E(l), V(NM,1), A(l), B(1), P(1), W(l), Q(l)
REAL LAMBDA
LOG!CAL INTI]
IF (N.LE.O.OR.N.GT.NM) GO TO 1000
PRECS = i.OE-15
BASE = 2.0
ILIN = 1000
HOV = SASE**500
3(1)=0.
SQRT2 = SQRT(2.)
N1 = N-1
DO 100 l = 1,N
100 E(I) = G(I.I)
IF (N-2) 900,280,110
C
TRI-DIAGONALIZF MATRIX G BY HOUSEHOLDERIS PROCEDURE
C
110 DO 250 K = 2.N1
k1 = k-1
KJ=K+1
Y = G(K,k1)
SUM = 0.0
DO 120 I = KJ,N
120 SUM = SUM + G(I,K1)**2
IF (SUM.EQ.O.) GO TO 230
S = SQRT(SUM+Y**2)
B(K) = SIGN(S,-Y)
W(K)=SQRT(1.+ABS(Y)/S)
X = SIGN(1./(S*W(K)),Y)
DO 150 ! = K.N
IF (I.GT.K) W(I) = X*G(I,K1)

```
```

    P(I) = 0.
    150G(I,K1) = W(I)
        DO 18C I = K,N
        Y = W(1)
        IF (Y EQ.O.) GO TO 180
        11 = 1 + ]
        DO 160 J = K.I
    160 P(J) = P(J) + Y*G(I,J)
        IF (II.GT.N) GO TO 180
        DO 170 J = 11,N
    170 P(J) = P(J) + Y*G(J,1)
    180 CONTINUE
    190 x = 0.
    DO 2CO J=K,N
    2no x = x + W(J)*P(J)
    x = 0.5*x
    DO 210 J = K,N
    210 P(J) = X*W(J) - P(J)
        DO 220J J = K,N
        DO 220 I = J,N
    220G(I,J)=G(I,J) +P(I)*W(J) + P(J)*W(I)
    GO 10 250
    230 G(K,K1) = SQRT2
        B(K) = -Y
        DO 240 1 = KJ,N
    240G(I,K)=-G(I,K)
    250 CONTINUE
    280 00 290 1 = 1,N
        A(I) = G(I,I)
    290 G(1,1) = E(I)
    G(N) = G(N:NI)
    C
get eigenvalues of tridiagonal form by kahan-varah g-r metriod
TOL = PRECS/(10.*FLOAT(N))
SNiAX = 0.
TYAX = 0.
w(N+1)=0.
DO 3nO I = 1,N
BMAX = AMAX1(BMAX,ABS(B(1)))
300 TMAX = AMAX1(BMAX,ABS(A(!)),TMAX)
SCALF = 1.0
IF (BMAX.EQ.O.) GO TO 520
00 310 1 = 1,ILIM
IF (SCALE*TMAX.GT.HOV) GO 1O 320
310 SCALE - SCALE*BASF
320 DO 330 1 = 1,N
E(I) = A(I)*SCALE
330 W(I) = (B(1)*SCALE)**2
DELTA = TMAX*SCALE*TOL
EPS = DFLTA**2
k=N
350 L = K

```
```

    IF (L.LE.O) GO TO 460
    Ll = L - l
    DO 360 1 = 1.L
    Kl = K
    K = K - l
    360 IF (W(K1).LT.EPS) GO TO 380
    380 IF (Kl.NE.L) GC TO 400
    W(L) = 0.
    CO TO }35
    4nO T = E(L) - E(LI)
    x = k(L)
    r = 0.j#T
    S = SORT(X)
    IF (ABS(T).GT.DELTA) S = (X/Y)/(1.+SORT(lo+X/Y**2))
    El = E(L) + S
    F2 = E(Ll)- S
    IF (KI.NE.LI) GO TO 430
    F(1) = El
    E(LI) = E2
    W(LI) = 0:
    GO TO 350
    430 LAMBDA = E1
    I- (ABS(T).LT.DELTA.AND.ABSIE2).LT.ARS(E1)| LAMBDA = E2
    S = 0.
    c=1.
    GG = E(KI)-I-AMBDA
    GO TO 450
    440 C = F/T
    S=x/T
    n=GG
    GG = C*(E(Kl)-LAMRDA) - S*X
    F(K)=(X-GG) + E(Kl)
    .r (ABS(GGI.LT.DEL;A) GG = GG + SIGNIC*DELTA,GG)
    F= GG**2/C
    K = K1
    K1 = K 1
    x = w(kl)
    T = X + F
    W(k) = S*T
    IF (K.LT.L) GO Tn 440
    E(<) = Gr. + LAMBDA
    GO TO 350
    460 00 470 I = 1,N
    470 E(I) = E(I)/SCALE
    Y = ISIGN(I,M)
    OC 5CO i = 1,N1
    K = N - :
    00 500 I = ?,K
    IF (Y*(E(I)-E(I+1)).GT.O.) GO TO 500
    x = E:1)
    E(I) = E(I+1)
    E(I+1)= 
    sno CONTINJE
    520 IF (M.EO.O) GO In 10no
C

```

```

C
NVEC = IABS(M)
IF (NVEC.GT.N) NVEC = N
F= SCALE/HOV
IF (RMAX*F.LT.PRECS) GO TO 830
OO 530 I = 1,N
A(1) = A(I)*F
530 B:II = B(I)*F
SEP = 25.*TMAX*PRECS
X1 = 0.
X2 = SORT2
DO 800 NV = 1.NVFC
IF (NV.GT.I.AND.ARS(FINV)-F(NV-1))-LT.SEPI GO TO 550
DO 540 I = 1,N
540 WIII = 1.0
GO TO 570
550 DO 560 I = 1,N
x = AMOD (x1+x2,2,0)
X1 = X2
x2 = x
560 W(II = X - 1.0
570 EV = F(NV)*F
X = A(1) - EV
y = B(2)
J = NI
DO 600 I = 1.NI
C = A(I+I) - EV
S = 3(I+1)
IF (ABS(X).GE.ABS(S)) GO.TO 580
P(I)=S
O(I) = C
INTIII = .TRIIE.
Z = -x/S
X = Y + Z*C
IF (I.LT.NI) Y= 2*S(I+2)
GO T0 60n
590 IF (495(X).LT.TOL) X=TOL
P(!)=X
Q(I) = Y
INTII) = .FALSE.
Z = -S/X
X = C + Z*Y
Y = R(I + 2)
6MO 'S(I,NV) = Z
IF (ABS(X).LT.TOL) X=TOL
NiTER = 0
|
620 NITER = NITER + I
W(N) = W(N)/X
SUM = W(N)**2
20640 L = 1.N1
I = N - L
Y=W(I) - O(I)*W(I+1)

```
```

    IF (INT(I)) Y = Y - R(I+2)#W(I+2)
    W(I) = Y/P(I)
    640 SUM = SUM + W(1)*\#2
S = SORT(SUM)
OC 660 I = 1,N
\epsilon60 w(I) = w(I)'s
IF (NITER.C:.2) GO TO 760
DO 700 1 = l.Nl
z=v(I.Nv)
IF IINT(I)I GO TO 680
W(I+1)=W(I+1) + 2*W(I)
GO TO 700
680 Y = W(I)
W(I) = W(I+1)
W(I+1) = Y + Z*W(I)
7NO CONTINUF
GO TO 620
730 L = J
J = J - 1
x = 0.
DO 740 I = L.N
740 x = x + G(I.J)*W(I!
OC 750 1 = L.N
75n w(I) = W(I) - X*G(I,J)
760 IF (J.GT.1) GO TO 730
DO 800 I = 1,N
8no V(I.NV) = W(I)
DO 820 1 = 1,N
A(I) = A(I)/F
820 R(I) = R(I)/F
GO TO 86n
830 DO 850 NV = 1,NVFC
DO 840 1 = 1,N
340 V(I,NV) = 0.
350 V(NV,NV) =?.0
850 DO 880 I = 2,N
k = 1 - I
DO 880 J = 1,K
880 G(I,J) = G(J,I)
Gn TO 1000
900 v(l.1) = 1.0
A(1) = E(1)
1000 RETURN
END

```
```

APPENDIX F.. COMPUTER PROGRAM FOR FREE VIBRATION ANALYSIS OF VISCJELASTIC
AXISYMMETRIC SANDWICH SHELLS (FORTRAN IV)

```
PROGRAM ASVEFVQIINPUT, OUTPUT, TAPEI=INPLT,TAPE2=OUTPUT)
\(c\)

\(C\) DATA CARDS FOR ASVEFVO

C 1 CARD.. I 10 NUMBER OF SHELLS TO BE ANALYZED
THEN, FOR EACH SHELL, ALL OF THE FOLLOWING.e
1 CARD. COLS. 2-72 TITLE
1 CARD.. 3I10.L10
NUMBER OF NODES, NN
NUMBER OF MODE SHAPES NMS
NUMBER OF NODES WITH RESTRAINTS, NBC
ROTATORY INERTIA INDEX (T IF LUMPED ROTATORY INERTIA INCLUDED, F OTHERWISE)
1 CARD.. 8F10.0
THICKNESS OF 1 FACING (IN.)
YOUNGS MODULUS OF FACINGS (PSI) (RE AND IM PARTS)
POISSON RATIO OF FACINGS
SHEAR MODULUS OF FACINGS (PSI) (RE AND IN PARTS) SHEAR STRESS CORRECTION FACTOR FOR FACING DENSITY OF FACINGS (LB./IN.**3)
1 CARD. \(8 F 10.0\)
THICKNESS OF CORE (IN.)
YOUNGS MODULUS OF CORE (PSI) (RE ANC IM PARTS)
POISSON RATIO OF CORE
SHEAR MODULUS OF CORE (PSI') (RE AND IM PARTS)
SHEAR STRESS CORRECTION FACTOR FOR CORE
DENSITY OF CORE (LB./IN.**3)
(NOTE.. SHEARING MAY BF NEGLECTED BY SETTING REAL PART OF G TU 9999999999)

NN CARDS.. \(110,3 \mathrm{~F} 10.0\)
NODE NUMRER
R, ABSCISSA OF NODE (IN.)
Z. ORDINATE OF NODE (IN.)

PHI, LATITUDE ANGLE OF NODE (DEGREES)
NN-1 CARDS.. 2F10.0
CURVATURE AT NODE 1 OF ELEMENT (1/IN.)
CURVATURE AT NODE J OF ELEMENT (1/IN.)
NBC CARDS.. 5110
NODE NUMBER
TANGENTIAL DISPLACEMENT INDEX (0=FREE, 1=CONSTRAINED)
RADIAL DISPLACEMENT INDEX (DITTO)
bending rotation index (ditto)
Shear warping index (ditto)
LOGICAL LRI
COMMON / / NN,NE,NMS,NDOF,NBC,NLM,LRI,PI
PI \(=3.14159265358979\)
READ 1000, NSHELLS
DO \(100 \mathrm{~N}=1\), NSHELLS
CALL SETUP
CALL BCS
CALL EIGEN
IFINMS.NE.0) CALL SHAPES
100 CONTINUE
1000 FORMAT(IIO)
STOP
END

SUBROUTINE SETUP
this subroutine reads the geometrical and material properties of
the shell and sets up the overal.l stiffness matrix and the diagonAL MASS MATRIX, ROTH UNMODIFIED FOR BOUNDARY CONDITIONS. SHEAR STRAIN AND CURVATURE MODFLS VARY QUADRATICALLY AND LINEARLY
ALONG CHORD LENGTH, RESPECTIVELY.
COMPLEX ARITHMETIC FOR LINEAR VISCOELASTIC MATERIALS.
REAL NUF, NUC.KF:KC
LOGICAL LRI
COMPLEX S,ST,ADEVV
COMPIEX EC,GC,EF,GF,RF,DF,RC,DC
() MPLEX SEL,DB
COMMON / / NN,NE,NMS,NDOF,NBC,NLM.LRI,PI
COMMON /ARRAY/ S(80,8),ST(19,12,4),XM(80),A(60,60),E(60),IV(60),
\(1 \mathrm{v}(80)\)
COMMON /PROPS/ H,D,HF,HC,EF,NUF,GF,EC,NLC,GC,BF,RF,BC,DC
COMMON /XGEOM/ YP,YPP,RX,COSB,YBAR,X(10)
COMMON /ELGEOM/ EL,SPSI,CPSI,TBI,TB之,CBI,CBJ,SBI,SBI,A1,A2,A3,A4
```

    COMMON /NODGEO/ R(35),2(35)
    COMMON /STMATS/ SEL(12,12),B(12,12),DB(12,12),T(12,12)
    DIMENSION CPHI(35),SPHI(35),W(10),Y(10),WM(10),AN(35),PHI(35)
    EQUIVALENCE (CPHI(1),A(1)), (SPHI(1),A(lOL)), (PHI(1),A(201)),
    1(AN(1),A(301))
    DATA X / 0.013046735741414,0.067468316655507.
    10.160295215850488,0.283302302935376, 0.425562830509184,
    2 0.574437169490816, 0.716697697064624.0.839704784149512.
    3 0.932531683244493,0.986953264258586 /
    DATA W / 0.066671344308688,0.149451349150581,
    0.21908636?515982, 0.269266719309996. 0.295524224714753.
    2 0.295524224714753,0.269266719309996,0.219086362515982,
    3 0.149451349150581,0.066671344308688 ,
    DATA Y / 0.023455038515334, 0.115382672473579,
    0.25,0.384617327526421,0.476544961484666, C.5234.25038515334,
    2 0.615382672473579,0.75,0.884617327526421, C.976544961484666
    DATA WM / N.236926885056189, 0.478628670409366,
    0.568688888d88889,0.478628670499366. C.236926885056189,
    0.236926885056189, 0.478628670499366,0.568888888888989,
    30.478628670499366, 0.236926885056189 /
    WRITE (2,2000)
    READ (1,1000)
    WRITE (2,1000)
    READ (1,1001) NN,NMS,NBC,LRI
    READ (1,1002) HF,EF 'IF,GF,KF,RHOF
    FEAD (1:1002) HC,Tr, vIIC,GC,KC,RHOC
    WRITE {2,2OC1) NN,NMS,NBC, HF,HC, EF,NUF,GF,KF,PHOF, EC,NUC,GC,KC,
    1 R:HOC. LRI
    IF(NN.GT. 20) GJ TO 900
    IF(REALtGF).GE.9999999998.0) GF = (1.0E+20. 0.0)
    IF(REAL(GC).GE.9999999998.C) GC = (1.OE+20. 2.C)
    H = HC + 2.O*HF
    O 4C + HF
    NE = NN - 1
    N:DOF=4*NN
    NL: = 2*NN
    IFILRI) NLY = 3*NN
    EF=EF/(1.O - NUF*NUF)
    EC = EC/(i.O - NUC*NUC)
    EF=EF*HF
    2C = EC*HC
    GF =GF*HF*KF
    GC = GC*HC*KC
    DF = BF*HF*HF/12.0
    DC = BC*HC*HC/i2.0
    RH' = (HC*RHOC + 2.0*HF*RHUF)/386.088
    AMON = (RHOC*HC**3 + RH^NF*(H**3-HC**3))/(12.0*386.088)
    OO 100 1 = 1,NDOF
    xy(1) = 0.0
    00 100 J = 1.8
    100 S(!.J) = (0.0.0.0)
JK = O
WRITE (2,<002)
DR = 180.0/PI
DO 110 i = 1,NN

```
```

    AN(I) = 0.0
    READ (1,1003) 1,R(1),2(1),PH1(1)
    WRITE (2,2003). I.R(I),2(I),PHI(I)
    PHIII) = PHI(1)/DR
    SPHI'I) = SIN(PHIII)I
    110 CPHI(I) = COS(PHI(1))
    WRITE (2,2004)
    DC 500 1 = 1.NE
    DR = R(I+1) - R(I)
    DZ = Z(I+1) - Z(I)
    EL = SORTIDR*DR + DZ*DZ'
    SPSI = DR/EL
    CFSI = DZ/EL
    SBI = CPHI(I)*CPSI - SPHI(II*SPSI
    CBI = SPHI(I)*CPSI + CPHI(I)*SPSI
    TBI = 5B1/CBI
    SBJ = CPHI(I+l)*CPSI - SPHIII+ll*SPSI
    CBJ = SPHI(I+1)*CPSI + CPHIII+1)*SPSI
    TBJ = SBJ/CBJ
    READ (1,1004) CURVI,CURVJ
    WRITE (2,2005) I,CURVI,CURVJ,EL,SPSI,CPSI,TBI,TBJ
    YPFI = -EL*CURVI/CBI**3
    YPPJ = -EL*CURVJ/CBJ**3
    Al = TBI
    A2 = TBI + 0.5*YPPI
    A3 = -(5.0*TBI + 4.0*TBJ) + 0.5*YPPJ - YPPI
    A4 = 3.0*(TBI + TBJ) + 0.5*(YPPI - YPPJ)
    00 150 J = 1,12
    00 150 K = 1.12
    150 SELIJ.K) = (0.0.0.01
    C COMPUTE ELEMENT TRANSFORMATION MATRIX (A**-1)*T
CALL TMAT(I)
DO 400 J = 1,10
YBAR = (1.0 - X(J))*(A1 + X(J)*(A2 + X(J)*(A3 + X(J)*A4)))
YP = Al*(1.0 - 2.0*X(J))+ X(J)*(A2*(2.0-3.0*X(J)) + X(J)*(A3*
1(3.0-4.0*X(J)) + A4**(J)*(4.0 - 5.0*x(J))))
YPP = 2.0*(-Al + A2*(1.0 - 3.0*x(J)))+ X(J)*(ん3*(6.0 - 12.0*X(J))
1+A4*x(J)*(12.0-20.0*x(J)))
RX = R(I) + X(J)*EL*(SPSI + YBAR*CPSI)
COSE = 1.0/(SORT(1.0 + YP*YP))
C EVALUATE BI,) AT INTEGRATION POINTS
CALL EMIT(I,J)
C ADD CONTRIBUTION TJ ELEMENT STIFFNESS INTEGRATION
C = DI*EL*RX*W(J) /COSB
\mathrm{ SALL SELA(C)}
YBAR = (1.0 - Y(J))*(A) +Y(J)*(A2 +Y(J)*(A3 +Y.J)*A4)))
YP = Al*!1.0 - 2.0*Y(J))+Y(J)*(A2*(2.0 - 3.0*Y(J)) + Y(J)*(A3*
1 (3.0-4.0*Y(J)) + A4*Y(J)*(4.0 - 5.0*Y(J)I))
RX = R(I) + Y(J)*EL*(SDSI + YBAR*CPSI)
COSB = 1.0/(SQRT(1.0 + YP*YP))
C = PI*EL*RX*NM(JI/COSB/2.0
IF(J.GT.5) GO TO 200
AV(I) = AN(I) + C
GO TO 400
200 AN(I+1)=AN(I+1) +C

```
```

    400 CONTINUE
    C TRANSFORM 12X12 ELEMENT STIFFNESS TO GLOBAL CO-ORDINATES AND CON-
C DENSE TO 8X8
CALL SELR(I)
C STORE MULTIPLIERS AND PIVOTS
DO 420 J = 1.4
IJ=J+8
DO 420 K = 1,12
420 ST(I,K,J) = SEL(IJ,K)
C ADD 8X8 ELFMENT STIFFN
DO 450 J = 1.8
IJ = JK + J
DO 450 K=J,8
IK = K - J + I
450 S(IJ,IK) = S(IJ,IK) + SEL(J,K)
500 JK = JK + 4
C CONSTRUCT DIAGNNAL MASS MATRIX
DO 600 1 = 1,NN
IJ = 4*I - 3
XM(IJ)= XM(IJ+I)= SORT(RHO*AN(I))
IF(.NOT.LRI) GO TJ 600
XM(IJ+2) = SQRT(AM)M*AN(I))
600 CONTINUE
RETURN
GOO WRITF (2,2900)
STIP
1000 FORMATI72H
l
I
1001 FORMAT(3110,L10)
1002 FORMAT(8F10.0)
1003 FORMATII10.3F10.0)
1004 FORIAAT(2F10.0)
2OOO FORMAT(IH1)
2001 FORMATIIOX,28HNUMBER OF NODES ,13/
1 10X, 28HNUMBER OF MODE SHADES
10X,28HNUMBER OF RESTRAINED NODES .13/1
10X,16HFACE THICKNESS =,F10.6/
10X,16HCORE THICKNESS =,F10.6//
10X,BHFACE E =,F13.1,1H,,F14.3/
10X,9HFACE NU =,F12.5/
10X,BHFACE G =,F13.1.1H,,F14.3;
10X,10HFACE KAP =,F11.5/
10X,10HFACE RHO =,F11.6/1
10X,8HCORE E =,F13.1,1H,,F14.3/
10X,9HCORE NU =.F12.5/
1 10X,8HCORE G = F13.1,1H,9F14.3/
2 10X,1OHCORE KAP =,F111.5/
3 10X,10HCORE RHO =,F11.6/1
4 44H ROTATORY INERTIA INCLUDEN IT = YFS,F = NO) :L5 //
5 4 5 H ALL OUANTITIES IN INCHES, POUNDS AND SFCONDS /)
20\cap2 FORMATI//1IHONODAL DATA /
2X,4HNODE,7X,11HABSCISSA, R,8X,12H ORDINATE, Z,6X,
l liHLATITUDE ANGLE/
2 15X,5H(IN.),15X,5H(IN.),13X,8H(DEGREE)/)
2003 FCRMAT(I4,3F20.8)

```
```

2On4 FORMATI/18HOELEMENT GEOMETRY /
1 BH ELEMENT,10X,7HCURV(1),10X,7HCURV(J),5X,12HCHORD LENGTH,10X,
2 7HSIN PSI,10X,7HCOS PSI,6X,11HTAN BETA(I),6X,11HTAN RETAIJI/
3 18X,7H(1/IN-),10X,7H(1/IN-),12X,SH(IN-))
2005 FORMAT(18,7F17.8)
2900 FORMATI/////41HONUMBER OF NODES EXCEEDS ALLOWARLE STOP,
END

```
 SUBROUTINE TMAT(I)
 THIS SUBROUTINE EVALUATES THE CO-ORDINATE TRANSFORMATION MATRIX
 (A**-1)*T FOR ELEMENT I.
 GLOBAL CO-ORDINATES ARE \(S\) AND XI (MERIDIONAL AND RADIAL), AND
 THUS CAN \(3 E\) APPLIED ONLY TO SHELLS WITH TINICE CONTINUOUS MERIDIANS
 SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY
 ALONG CHORD LENGTH, RFSPECTIVELY.
 COMPLEX ARITHMETIC FOR LINEAR VISCOELASTIC MATERIALS.
 REAL NUC,NUF
 COMPLEX EC,GC,EF,GF,FF,DF, RC, DC
 COMPLEX SEL,DB
 COMMON /PROPS/ H,D,HF,HC,EF,NUF,GF,EC,NUC,GC,BF, IF, RC,DC
 COMMON /STMATS/ SEL(12,12),B(12,12),DB(12,12),T(12,12)
 COMMON /NODGEO/ R(35),2(35)
 COMMON /ELGEOM/ EL,SPSI,CPS:,TBI,TBJ,CE1,CBJ,SBI,SBJ,A1,A2,A3,A4
 \(00100 \mathrm{~J}=1.12\)
 DO \(100 \mathrm{~K}=1,12\)
 \(1 \cap 0 B(J, K)=0.0\)
 IF(RII).EQ.0.0) GO TO 500
= MATY:X FOR OPEN-ENDED ELEMENT
 \(B(1,1)=B(3,2)=B(2,6)=1.0\)
 \(B(7,4)=B(7,5)=B(9,5)=1.0\)
 \(B(8,9)=B(8,10)=B(2,10)=B(2,1)=-1.0\)
 \(B(4,1)=-T B I\)
 \(B(4,6)=T B I\)
 \(3(6,6)=T A I+T B J\)
 \(B(6,1)=-8(6,5)\)
 \(B(5,1)=B(6,6)+T B I\)
 \(B(5,6)=-B(5,1)\)
 \(B(5,2)=B(B, 4)=B(8,5)=9(10,5)=-3.5\)
 \(B(6,2)=B(11,4)=B(11,5) \quad A(12.5)=2.0\)
 \(B(11,0)=B(11,10)=R(12,10)=2.0\)
 \(B(5,7)=3.0\)
 \(B(5.7)=-2.0\)
 \(B(8,: 1)=B(10,12)=4.0\)
 \(B(11,11)=8(12,1 ?)=-4.0\)
 \(B(4,3)=B(6,3)=-E L / C B I / C B I\)
 \(B(5,3)=-2.0 * B(4,3)\)
 \(B(4,4)=B(6,4)=H C * B(4,3) / D\)
 \(B(5,4)=-2.0 * B(4,4)\)
 \(B(4,5)=B(6,5)=B(4,3)\)
 \(B(5,5)=-2.0 * B(4,5)\)
```

        B(5,8) = EL/CBJ/CBJ
        B(6,8) = -B(5,8)
        B(5,9)=HC*B(5,8)/D
        B(6,9) = -B(5,9)
        B(5,10) = B(5,8)
        B(6,10) = - - (5,10)
        DO 200 J = 1,12
        T(J,1) = CBI*B(J,1) + SEI*B(J,2)
        T(J,2) = SBI*B(J.1) - CBI*BIJ,2)
        T}(J,3)=B(J,3
        T(J,4) = B(J,4)
        T(J,5) = CBJ*B(J,6) + SBJ*B(J,7)
        T(J,6) = SEJ*B(J,6) - CBJ#B(J,7)
        T(J,7) = B(J,8)
        T(J,B) = B (J,9)
        T(J,9) = B(J,5)
        T(J,10) = B(J,10)
        T(J,11) = B(J,11)
    200 T(J.12) = 8(J.12)
        GO to }100
        MATRIX FOR CAP
    5nO B(5,2) = -1.0
        B(9,9) = A(9,10) = B(10,10) = -1.0
        B(6,5) = 1.0
        B(7,7) = 3.0
        B(11,9) = B(11,10) = R(12,10) = 2.0
        B(8,7)=-2.0
        B(9,11) = B(10.12) = 4.0
        B(11,11)= B(12,12)=-4.0
        8(6,2) = -CPSI
        B(7.2) = (2.0*TBI + TRJ)*CPSI + 3.0*SPSI
        B(8,2) = -B(7,2) + TBI*CPSI + SPS:
        B(7,6) = -2.0*TBI - TRJ
        B(8,6)=TRI + TBJ
        B(7.8) = EL/(CBJ/CBJ
        B(5,8)=-B(7,8)
        B(7,9) = HC*B(7,8)/D
        B(8,9)=-B(7,9)
        B(7,10) = B(7,8)
        B(8,10) =-B(7,10)
        DO 700 J = 1,12
        T(J,1)=T(J,3)=T(J,4)=T(J,9) = 0.0
        T(J,2) = B(J.2)
        T(J,5) = CBJ*B(J,6) + SBJ*B(J,7)
        T(J,6) = SBJ*B(J,0) - CBJ*B(J,7)
        T (J,7) = 3(J,8)
        T(J,8) = B(J,9)
        T(J,10) = B(J,10)
        T(J,11) = B(J,11)
    700 T(J.12) = B(J.12)
    1000 RETURN
END

```

SUBROUTINE BMATII.J) GIHEAR STRAIN AND CURVATURE MUDELS VARY QUADRATICALLY ANO LINEARLY
ALONG CHORD LENGTH. RFSFECTIVELY.
COMPLEX ARITHMETIC FOR LINEAR VISCOELASTIC MATERIALS.
REAL NUF NUC
COMPLEX EC,GC,EF,GF,OF,DF,RC.DC
COMPLEX SEL,DB
COMMON /PROFS/ H,D,HF,HC,EF,NUF,GF,EC,NUC,GCORF,CF,RC,DC
COMMON /STMATS/ SEL(12.12).8(12.12),DB(12.12).f(12.12)
COMMON /ELGEOM/ EL,SPSI,CPSI,TBI,TBJ,CBI,CBJ,SRI,SRJ,AI,A2,A3,A4
COMMON /NCDGEO/ R(35),2(35)
COMMON /XGEOM/ YP,YPP,RX,COSB,YBAR,X(10)
DO \(100 \mathrm{~K}=1,12\)
DO \(100 \mathrm{~L}=1.12\)
\(B(K, L)=0.0\)
\(B 1=-Y P P * \cos B * 5 *(1.0-Y P * Y P) /(E L * E L)\)
\(33=\) COSA**3/(EL*EL)
\(R_{2}=-2.0 * Y P P * Y P * R 3 * \operatorname{COSR*COSB}\)
IF(RII).EQ.ก.O) GO TO 400
\(A 4=-E L * B 3 * Y P *(S P S I+C P S I * Y P) / R X\)
\(B 5=E L * 83 *(S P S I+(P S I * Y P) / R X\)
\(B 6=\) COSE*(SPSI + CPSI*YP)/RX
MATRIX FOR OPEN-ENDED ELEMENT
\(3(2.1)=3(7.1)=8(12.1)=\) SPSI/RX
\(Q(2,3)=B(7,3)=R(12,3)=\operatorname{CPSI} / R X\)
\(B(2,2)=6(12,1) * \times(J)\)
\(f(2,4)=\)
\(B(2,5)=B(2,4) * x(J)\)
R(12.3!*x(J)
\(B(2,6)=B(2,5) * x(J)\)
\(B(4,8)=B(9,10)=\quad \cos R / E L\)
\(B(4,11)=B(9,12)=2.0 * X(J) * R(4,8)\)
\(B(1.2)=\operatorname{COSB*R(9.10)}\)
\(R(1,4)=3(1,2) * Y P\)
\(R(1,5)=2.0 * X(J) * R(1,4)\)
\(B(1,5)=1.5 * \times(J) * B(1,5)\)
\(B(3,7)=B(3.7)=1.0\)
\(B(3,8)=3(8,10)=X(1)\)
\(B(3,11)=8(8,12)=X(\therefore * x(J)\)
\(B(4,2)=B(9,2)=B 1\)
\(B(4,4)=B(9,4)=R 2\)
\(B(5,2)=B(10.2)=B 4\)
\(B(5,4)=B(10.4)=B 5\)
\(R(5,7)=B(10,9)=B 6\)
\(5 \cdot, 8)=B(10,10)=\quad B 6 * Y, J)\)
 \(\cdot 3,11)=B(10,12)=X(J) * B(5,8)\)
\(5(+5)=B(4,5)=2.0 * E 2 *\) 半 \((J)+2 .(1 * B 3\)
\(B(4.6)=B(9.6)=\quad(3.0 * R 2 * \times(J)+6.0 * B 3) * \times(1)\)
\(R(5,5)=8(10.5)=\quad 2.0 * B 5 * x(J)\)
\(B(5.5)=E(10,5)=3.0 * B 5 * \times(J) * \times(J)\)
\(B(6,2)=B\left(1,2^{\circ}-D^{*} R 1 / 2.0\right.\)
\(B(1:, 2)=B(1,2)+D * B 1 / 2.0\)
\(B(t, 4)=B(1.4)-D * R 212.0\)
\(B(11,4)=B(1,4)+D * E 2 / 2.0\)
\(B(6,5)=8(1,5:-0 * S(4,5) / 2.0\)
```

    B(11,5)=B(6,5) + D*P(4,5)
    B(6.6) = B(1,6) - D*R(4,6)12.0
    B(11,6)=B(6,6) + D*R(4,6)
    R(6,8) = -HC*B(4,8)/2.0
    B(11,8)= = B(6,8)
    B(6.10) = -HF*B(4.8)/2.0
    B(11,10) = -R(6,10)
    B(6.11)=2.0*X(J)*B(6.8)
    B(11,11) = -B(6.11)
    B(6,12)=2,0*\times(J)*B(6,? (j:
    B(11,12) = -B(6.12)
    B(7,2)= B(2,2)-D*B4/2.0
    B(12.2) = B(7.2) + O*B4
    B(7,4) = B(2,4) - D*S5/2.0
    B(12,4)=B(7.4)+D*B5
    B(7,5) = B(2,5) - D*B(5,5)/2.0
    B(12,5)=B(7,5) + D*R(5,5)
    B(7,6)= B(2,6) - 7*B(5,6)/2.0
    R(:2,6) = B(7,6) , O*P(5,6)
    B(7.7) = -HC*B6/2.0
    B(12,7) = -B(7,7)
    B(7.3)=B(7,7)#X(J)
    B(12,8) = -B(7.8)
    B(7,9) = - 4F*B6/2,0
    B(12,9) = -8(7.9)
    B(7,10)=B(7,9)*X(J)
    B(12.10) = -B(7.10)
    B(7,11) = X(J)*B(7,8)
    B(12,1:1)= -B(7.11)
    B(7,12)=X(J)*B(7,10)
    B(12.12) = -R(7.17)
    GO TO 1 1000
    = MATRIX FOR CAP ELEMENT
400 R6 = EL*(SPSI + YRAR*(PS!)
B5 = COSB**3*(SPSI + YP*(PPSI)/(R6*EL)
B4 = COSB*(SPSI + (PSI*YP)/86
E(3,0)=B(8,10)=X(J)
S(3,11) = B(8,12) = X(J)*X(J)
R(4,9)=S(9.10)=COSB/EL
R(4,11)= B(9,12)=2.0*X(J)*R.4.9)
B(4,6)=B(7.6)= Bl + TRI*32
B(4,7)=B(9,7)= 2.0*82*X(J)+2.0*B3
A(+,8) = A(9,8) = {3.0*B2+ Y(J) + 6.0*H2)*X(J)
S(5,6)= B(10,6)-5*(1(5.0*A4*X(J) + 4.0*(A3 - i4))*X\J; +
1 3.0*(A2 - A3))*x(J) + 2.O*(Al - A2))
R(5.7) = B(?0.7)= 2.0*B5
B(5.8)=B(10.8)= 3.0*B5*X(J)
B(5,9) = B(10,1)) = F4
R(5.11)= = (10.12)= X(J)*R%
B().S) = COSp*B(4.9)*(1.0)+ TBT*YP)
B( ,7)=2.(1)X(J)*(OSF*B(4.0)*YP
R(1,9) = 1.5*X(J)*R(1,7)
B(2.6) = (SDSI + CPSI*TE1)/B6
B(2,7)=X(J)*CPSI/B6
E:2,8)= X(J)*B(?,7)

```
```

B(6.6) = E(1.6) - D*B(4.6)/2.0
B(11,6) = B(6,6) + D*R(4,6)
B(6,7)= B(1,7) - O*B(4,7)/2.0
B(11,7) = B(6,7) + D*R(4,7)
B(5.8) = B(1.8) - D*B(4.8)/2.0
B(11,8) = B(6,8) + D*R(4,8)
B(6,9) = -HC*B(4,9)/2.0
B(11,9) = -B(6,9)
B(5,10) = -HF*B(4,9)/2.0
R(11,10) = - (6,6,10)
B(5,11) = 2.0**(J)*r.(6,9)
B(11,11) = -R(6,11)
B(6.12)=2.0*X(J)*B(6,10)
B(11,12) = -A(6,i2)
B(7,6)=B(2,6)-D*B(5,6)/2.0
B(12,6)= B(7,6) + C*P(5,5)
B(7,7) = B(2,7) - D*B5
B(12,7)=B(2,7) + D*R5
B(7,8)=P(2,8)-D*R(5,8)/2.0
B(12,8)= F(7,8)+D*R(5,8)
B(7.9) = -HC*B4/2.0
B(12,9) = -B(7,9)
B(7,10)= -HF*B4/2.0
B(12,10) = - B(7.10)
9(7,11)= x(J)*B(7.个)
B(12,11) = -8(7.11)
B(7,12)= X(J)*S(7,10)
B(12,12) = - 8(7.12)
10no RETURN
END

```
SUB zOUTINE SELA(C)
C this sueroutine computes a term in the gauss integration for the
\(c\) STIFFNESS MATRIX IN GENERALIZED CO-ORDINATES
C SHEAR STRAIN AND CURVATURE MODELS VARY QUADRATICALLY AND LINEARLY
E ALONG CHCRD LENGTH, RFSPECTIVELY.
C COMPLEX ARITHMETIC FOR LINFAR VISCOELASTIC MATERIALS.
REAL NLF, Nue
COMPLEX EC,GC,EF,GF,BF,DF,BC,DC
COMPLEX SEL,DB
COMMON /PROPS/ H,D,HF,HC,EF,NUF,GF,EC,NUC,GC,BF,DF,BC,DC
COMMON /STMATS/ SEL(12,12),B(12,12),DB(12,12),T(12,12)
DO \(100 \mathrm{~K}=1,12\)
DB(1,K) = BC*(B(1, <) - NUC*B(2, K) \()=C\)
\(D B(2, k)=A C *(B(2, k)+N U C * B(1, k)) * C\)
DA(3,k) \(=G C * B(3, k) * C\)
\(D R(4, K)=D C *(B(4, K)+N U C * B(5, K)) * C\)
\(D B(5, K)=D C *(B(5, K)+N U C * B(4, K)) * C\)
\(D A(6, K)=3 F *(3(6, K)+N U F \# B(7, K)) * C\)
\(D B(7, K)=B F *(B(7, K)+N U F * B(6, K)) * C\)
```

    DB(8,K) = GF*B(B,K)*C*2.0
    DR(9,K) = DF*(B(9,K) + NUF*R(10,K))*C*2.0
    DA(10,K) = DF*(S(10,K) + NUF*B(9,K))*C*2.0
    DE(11,K)=BF*(B(11,K) + NUF*B(12,K))*C
    100 OB(12.K) = 3F*(3(12,K) + NUF*&(11,K))*C
        DO 20C K = 1,12
        DC 200 L = 1.12
    DO 200 M = 1.12
    200 SEL(K,L) = SEL(K,L) + B(M*X)*DB(M,L)
    RETURN
    END
    ```
 SUGROUTINE SELR(L)
\(C\) THIS SURROUTINF TRANGFORMS THE ELEMENT STIFFNESS FROM GENERALIZED
\(C\) TO GLOBAL CO-ORDINATES AND CONDENSES IT FROM \(12 \times 12\) TO \(8 \times 8\) USING
\(C\) STATIC CONDENSATION.
C SHEAR SIRAIN AND CURVATURE MODELS VARY OUADRATICALLY AND LINEARLY
C ALONG CHORD LENGTH. RESPECTIVELY.
C COMPLEX ARITHMETIC FOR LINEAR VISCOELASTIC MATERIALS.
 COMPLEX SEL.DB
 COMPLEX PIVOT. C
 COMMON /VODGEO/ R(35),2135)
 COMMON/STMATS/ SFL(12.12).Q(12.12).DB(12.12).T(12.12)
 SYMNETRIZE ELEMENT STIFFNESS IN GENERALIZED CO-ORDINATES
 DC \(501=1.11\)
 \(1 J=1+1\)
 DO \(50 \mathrm{~J}=1 \mathrm{~J}, 12\)
 IFICABS(SEL(I.J)).FQ.O.0.OR.CARS(SFL(J.I)).EQ.O.0) GO TO 45
 SEL(I.J) \(=0.5 *(S E L(I, J)+S E L(J, I))\)
 GC TO 50
 \(45 \mathrm{SEL}(\mathrm{I}, \mathrm{J})=(0.0,0.0)\)
 50 SEL(J.I) \(=\operatorname{SEL}(1, J)\)
 TRANSFORY TS GLOBAL CO-ORDINATES
 DC \(100 \mathrm{I}=1.12\)
 DO \(100 \mathrm{~J}=1.12\)
 OR(I.J) \(=(0.0 .0 .0)\)
 DO \(10 \mathrm{C} K=1.12\)
 \(190 D B(I, J)=D B(I, J)+S E L(I, K) * T(K, J)\)
 DO \(200 \mathrm{I}=1.12\)
 DO \(200 \mathrm{~J}=1.12\)
 \(\operatorname{SEL}(1 . J)=10.0,0.01\)
 DO \(200 \mathrm{~K}=1.12\)
 \(2,5 \operatorname{SEL}(I, J)=S E L(I, J)+T(K, I) * D B(K, J)\)
 IF(R(L).NE.O.0) G TO 250
 \(\operatorname{SEL}(1,1)=\operatorname{SEL}(3.3)=\operatorname{SEL}(4,4)=\operatorname{SEL}(9,9)=(1.0 .0 .0)\)
 CONDENSF TO \(8 \times 8\) ELEMENT STIFFNESS
 \(25000300 \mathrm{~J}=1,4\)
 \(I J=12-J\)
 \(I K=I J+1\)
 PIVOT \(=\) SEL(IK,:K)
```

        DO 300 K=1.1J
        C = SE'-(IK,K)/PIVOY
        SEL(IKOK) = C
        DO 300I = K,IJ
        SEL(IOK) = SEL(I,K) - C*SEL(I,IK)
    300
    SEL(K,I) = SEL(I,K)
RETURN
END

```

```

    IF (NMS.GT.NLM) VMS = NLM
    C TRIANGULARIZE STIFFNESS MATRIX
CALL DYBSLCINDOF,8,80,S,V,1,1)
RETURN
1001 FORMAT(5110)
2000 FORMAT (//59HOKINEMATIC CONSTRAINTS }10=\mathrm{ UNCONSTRAINED, l = CONSTRA
IINED) /
2 6X,4HNODE,5X,1OHMERIDIONAL,9X,GHRADIAL,7X,BHROTATION,
3 8X:?HWARPING/I
2001 FORMAT(I10.4115)
END

```
C THIS SUQROUTINE TFANSFORMS THE EIGENVALUE PRORLEM FROM
C K K(.)*U() = OM** 2*M(,)*U()
C TO \(\mathrm{A}() * V()=,V() / O M * * 2\)
\(c\) WHERE
C Kl.: = STIFFNESS MATRIX
\(C\) MI: = DIAGONAL MASS MATRIX
C \(A()=,M() * \# 0.5 * F,(1) * M(1) * *\),
C FI,: = FLEXIPILITY MATRIX AFTER CONDENSATION ON DEGREES OF
 FREEDOM NOT CORRESPONDING TJ LUMPEC MASSES
 \(V()=M(1) * * 0.5 *(1)\)
 THE EIGENVALUES AND NMS OF THE EIGENVECTORS ARE THEN COMPUTED.
 COMPLEX ARITHMETIC FOR LINEAR VISCOELASTIC MATERIALS.
 LOGICAL LRI
 COMPLEX S,ST,A,E,V
 COUNON ,, NN, NE,NMS, NOOF,NBC,NLM,LRI,PI
 COMMON /ARRAY/ S(BO,8),ST(19,22,4),XY(80),A(60,60),E(60),IV(60),
 1 V(80)
- COMPUTE INDEX VECTOR OF LUMPED NASSES
 \(\mathrm{v}=1\)
 JC \(1001=1 . N L M\)
 50 IF (XM(N).NE.O.0) GO TO 60
 \(N=N+1\)
 GO T9 50
 60 IV(I) \(=N\)
 \(170 \mathrm{~N}=\mathrm{N}+1\)
c ASSEMBLE MATRIX A(.)
 OO 300 I \(=1\). NLM
 \(30200 \mathrm{~J}=1\). NDOF
 \(200 \mathrm{~V}(\mathrm{~J})=(3.0 .0 .01\)
 \(N=I V(I)\)
 \(V(N)=(1.0 .0 .0)\)
 CALL DYRSLC(NDOF \(, 8,80, S, V, 2, N\))
 DO 300 J \(=I\),NLM
 \(L=I V(J)\)
 A(J.I) \(=X\) (LL)*V(L)*XU(N)
 \(300 \mathrm{~A}(\mathrm{I} \cdot \mathrm{J})=\mathrm{A}(\mathrm{J}, \mathrm{I})\)
```

C COMPUTE EIGENVALUES AND EIGENVECTORS
CALL. ALLMAT(A,E,NLM,SO,NRAL,NMS)
C COMPUTE ANS PRINT NATURAL FREQUENCIES
WRITE (2,2000)
IF(NCAL.EQ.O) GO TO 500
CO 400 1 = 1,NCAL
E(I) = 1.0/E(I)
ETA = AIMAG(E(I))/REAL(E(I))
E(I) = CSQRT(EII))
DEC = AIMAG(E(I)I*2.0*PI/REAL(E(I))
PER = 2.0*PI/REAL(E(I))
FREQ = 1.0/PER
400 WRITE (2,2001) I,E(I),FREQ,PER,DFC.ETA
50C IF(NCAL.LT.NLM) WRITE (2,2002) NCAL.NLM
IFINMS.GT.NCAL) NMS = NCAL
RETURN
2000 FORMATI5OHIFINNDAMENTAL FREQUENCIES AND CORRESPONDING DAMPING //
1 9H MODE,11X,5HOMEGA,4X,12HDECAY CONST.,6X,1OHOMEGA/2*PI,10X,
2 6HPERIOD,?X,9HLOG. DEC., 5X,11HLOSS FACTOR /
3 16X,9H(RAD/SEC),8X,8H(1/SEC.),7X,9H(CYC/SEC;,10X,6H(SEC.))
2001 FORMATIIG,SE16.8)
2002 FORMATI///5X,28HNOTE. CONVERGENCE FOR ONLY,13,3H OF,I3,
1 2IH POSSIBLE FREQUFNEIES,
END
SUBROUTINE SHAPES
C THIS SUBROUTINE RECOVERS AND PRINTS THE COMPLETE MODE SHAPES.
C COMPLEX ARITHMETIC FOR LINEAR VISCOELASTIC MATERIALS.
LOGICAL LRI
REAL NUC,NUF
COMPLEX S,ST,A,E,V
COMPLEX EC,GC,EF,GF,BF,OF,BC,DC
COMPLEX C,W(12)
COMMON / / NN,VE,NMS,NDOF,NBC,NLM,LRI,PI
COMMON /ARRAY/ S(80,8),ST(19,12,4),XM(80),A(60,60),E(60),IV(60),
l V(80)
COMMON /NODGEO/ R(35),2(35)
COMMON /PROPS/ H,D,HF,HC,EF,NUF,GF,EC,NUC,GC,BF,DF,FC,EC
DIMENSION U(I2)
WRITE (2,2003)
DO 800 I = 1,NMS
C = E(l)*E(I)
DO 100 J=1,NDOF
100 \(J) = (0.0.0.0)
DO 200 K = 1,NLM
L = IV(K)
200 V(L) = C*XM(L)*A(<,I)
CALL DYGSLC(NDOF,8,80,5,V,2,11
WRITE (2,20CO) I
DO 700 J = 1,NE

```
```

        IL = 4*J - 4
        DO 300 K = 1,8
        IK=IL+K
    300W(K) = V(IK)
    c
RECOVER CONDENSED DISPLACEMENTS
DO 400 K = 1,4
JK = K + 8
IK = JK - 1
W(JK) = (0.0.0.0)
DO 400 L = 1,IK
400W(JK) = W(JK) - ST(J.L,K)*W(L)
DO 500 K = 1,12
IF(REAL(W(K)).EQ.0.0) GO TO 450
U(K)= REAL(W(K))*CABS(W(K))/ABSIREAL(W(K)))
GO TO 500
450 U(K) = CABS(W(K))
5NO CONTINUE
C COMPUTE ADDITIONAL DISPLACEMENTS OF INTEREST AND PRINT
GAMCI = U(4) + U'9)
GAMCJ = U(B) + U(10)
CHISI = (HC*GAMCI + HF*U(9))/D
CHISJ = (HC*GAMCJ + HF*U(10))/D
CHII = U(3) + CHISI
CHIJ = U(7) + CHISJ
GAMO = U(11) - U(12)
CHISO = (HC*U(11) + HF*U(12))/D
7nO WRITE (2,2001) J,R(J),Z(J),
1 U(1),U(2),CHII,U(3),CHISI,U(\therefore),GAMCI,U(9).
2 CHISO,GAMO,U(11),U(12),
3 U(5),U(6),CHIJ,U(7),CHISJ,U(B),GAMCJ,U(10)
800 WRITE (2,2002) R(NN),Z(NN)
RETURN
2000 FORMATI/18HOMODE SHAPE NUMBER ,13/
1 5H NODE, 2X,13HMERIDIONAL, U,5X,9HRADIAL, W, 2X,13HROTATION, CHI,
2 9X,6HCHI(B),9X,6HCHI(S),3X,12HWARPING, GAM,7X,8HGAMMA(C),7X,
3 8HGAMMA(F)//
2001 FORMATI8H ELEMENT,I3,39X,7H(R,Z) =, F9.4,1H,.,F9.4 /
1 4X,1HI.8E15.7/
2 4X,1HO,60X,4E15.7/
3 4X,1HJ,8E15.7/1
2002 FORMAT(50X,7H(R,Z) =,F9.4,1H.,F9.4 )
2003 FORMAT(16HIVIBRATION MODES N
END

```
```

C ADAPTED FROM A PROGRAM BY C. A. FELIPPA.
C
COMPLEX A(NDIM,I), B(I), PIVOT, C
NR = NN - 1
IF (KKK.GT.1) GC TO 300
C DECOMPOSITION OF BAND MATRIX A
DO 200 N=1,NR
M = N-1
PIVOT = A(N,I)
IF(CABS(FIVOT).EQ.0.0) PIVOT = (1.OE-08,0.0)
AR = MINO (MM,NN-[A)
DO 200 L = 2,MR
C=A(N,L)/PIVOT
IFICABSICI.EQ.O.0) GO TO 200
I=M+L
J=0
DO 180 K = L,MR
J=J+1
180A(I,J)=A(I,J)-C*A(N,K)
A(N,L)=C
200 CONTINUE
GO TO 500
C
300 00 350 N = LIM,NR
M=N-1
MR =MI: (MM,NN-M)
C=B(N)
B(N)=C/A(N,1)
DO 350 L = 2,MR
I=M+L
350B(I) = B(I) - A(N,L)*C
B(NN) = B(NN)/A(NN,1)
NS = NN - LIM + 1
DO 400 K = 2,NS
M=NN-K
N=M+1
MR = MINO (MM,K)
DO 400 L = 2,MR
I=M+L
400 B(N) = B(N) - A(N,L)*B(I)
500 RETURN
END

```

SURROUTINE ALLMAT(A.LAMBDA,M,IA,NCAL,IVEC)
PROG.AUTHORS JOHN RINZEL,R•E.FUNDERLIC.UNION CARBIDE CORP.
C NUCLEAR DIVISION,CENTr IL DATA FROCESSING FACILITY,
C OAK RIDGE TENNESSEE
SHARE LIBRARY PROGRAM \$F2 OR AMAT WITH MODIFICATIONS
\(A=\) INPUT MATRIX OF ORDER AT LEAST M X M WHICH UPON RETURN CONTAINS THE EIGENVECTORS OF THE INPUT MATRIX.
LAMDA = VECTOR OF EIGENVALUES WHERE LAMDA(I) CORRESPONDS TO EIGENVECTOR STORED IN AI,II. ARRANGED BY DECREASING ORDER OF ABSOLUTE VALUF.
\(M=\) ORDER OF PROBLEM TO BE SOLVED.
IA \(=\) FIRST DIMENSION OF A(,) IN THF CALLING PROGRAM.
NCAL = INTEGER CONTAINING UPON RETURN THE NUNEER OF EIGENVALUES Calculated. ITHIS Value will be less than m if convergence IS NOT OBTAINFD FOR ONE OR MクRE EIGENVALUES.I
IVEC = INTEGER WHOSE VALUE IS THE NUMBER OF EIGENVECTORS TO BE CALCULAIFD. THESE CORRESPOND TO THE EIGENVALUES OF LOWEST MODULIJS.

COMPLEX A(IA, 1),H(60,60), HL(60,601 ,LAMBDA(1), VECT(60).
1MULT(60), SHIFT(3), TEMP,SIN, COS, TEMP1, TEMP2
LOGICAL INTH(60), TWICE
INTEGER INT(60),R,RP1,RP2
NCAL \(=0\)
IF(M.GT.60) GO TO 57
\(N=M\)
NCAL \(=N\)
IF (N.NE. 1)GO TO 1
\(\operatorname{LAMBDA}(1)=A(1,1)\)
\(A(1,1)=1\).
GO TO 57
1 ICOUNT=0
SHIFT=O.
IF(N.NE.2)GO TO '
2 TEMP \(=(A(1,1)+A(2,2)+\operatorname{CSORT}((A(1,1)+A(2,2)) * * 2-\)
14.*(A(2,2)*A(1,1)-A(2,1)*A(2,2)))//2.

IF(REAL!TEMP).NE.O..OR.AIMAG(TEMP).NE.O.)GOTO 3
\(\operatorname{LAMBDA}(M)=S H I F T\)
LAMBDA: \(M-1)=A(1,1)+A(2,2)+5 H I F T\)
GO TO 137
3 LAMBDA \((M)=T E M P+S H I F T\)
\(\operatorname{LAMBDA}(M-1)=(A(2,2) * A(1,1)-A(2,1) * A(1,2)) /(L A M B D A(M)-S H I F T)+S H I F T\) GO TO 137
\(\rightarrow n\)
\(4 \mathrm{NM} 2=\mathrm{N}-2\)
DO \(15 R=1\), NM2
\(R P I=R+1\)
\(R P 2=R+2\)
\(A B I G=0\).
\(|N T(R)=R P|\)
```

    DO 5 I=RPI.N
    ABSSQ=REAL(A(1,R))**2+AIMAG(A(I,R))**2
    IF(ABSSJ.LE.ABIG)GO TO 5
    INT(R)=1
    ABIG=ABSSO
    5 CONTINUE
        INTER=INT(R)
        IFIINTER.EQ.RPIIGO TO 8
        IF(ABIG.EQ.O.)GO TO 15
        DO 6 I=R,N
        TEMP=A(RP1,I)
        A(RPI,I)=A(INTER,I)
    6 A(INTER,I)=TEMP
    DO }7\textrm{I}=1,
    TEMP=A(1,RP1)
    A(I,RP1)=A(I,INTER)
    7 A(I,INTER)=TEMP
    8 \text { DO 9 I=RP2:N}
    MULT(I)=A(I,R)/A(RPI,R)
    9 A(I,R)=MULT(I)
    DO 11 I=1,RPI
    TEMF=0.
    DO 10 J=RP2,N
    10 TEMP=TEMP+A(I,J)*MULT(J)
    11 A(I,RP1)=A(I,RP1)+TEMP
        DO 13 I=RP2,N
        TEMP =0.
        DO 12 J=RPZ,N
    12 TEMP=TEMP+A(I,J)*MULT(J)
    13 A(1,RP1)=A(1,RP1)+TEIAP-MULT(I)*A(RP1,RP1)
        DO 14 I=RP2,N
        DO 14 J=RP2,N
    14 A(I,j)=A(I,j)-MULT(I)*A(RP1,J)
    15 CONTINUE
    C
CALCULATE EPSILON
EPS=0.
DO 16 1=1,N
16 EPS=EPS+CABS(A(1,1))
DO 18 1=2,N
SuM=0.
[M]=1-1
DO 17 J=1M1,N
17 SUM=SUM+CABS(A(1,J)
18 IF(SUM.GT.EPS)EPS=SUM
EPS=SQRT(FLOAT(N))*EPS**.E-12
IF(EPS.EQ.O.)EPS=1.E-12
DO 19 I= I,N
DO 19 J=1,N
19 H(I,J)=A(I,J)
20 IF(N.NE.1)GO TO 21
LAMBDA(M)=A(1,1)+SHIFT
GO TO 1>7
21 IF(N.EQ.2IGO TO 2

```
```

    22 MNI=M-N+1
        IF(REAL(A(N,N)).NF.O..OR.AIMAG(A(N,N)).NE.O.)
        1 IF(ABS(REAL(A(N,N-1)/A(N,N)))+ABS(AIMAG(A(H,N-1)/A(N,N))I-1.EE-9)
        2 24,24.23
    23 IF(ABS(REAL(A(N,N-1)))+ABS(AIMAG(A(N,N-1))).GF.EFS)GO TO 25
    24 LAMBDA(MN1)=A(N,N)+SHIFT
        I COUNT=0
        N=N-1
        GO TO 21
    C
25 SHIFT(2)=(A(N-1,N-1)+A(N,N)+CSGRT((A(N-1,N-1)+A(N,N))**2
1-4**(A(N,N)*A(N-1,N-1)-A(N,N-1)*A(N-1,N))))/2.
IF(REALISHIFT(2)).NE.O..OR.AIMAG(SHIFT(2)).NE.O.IGO TO 26
SHIFT(3)=A(N-1,N-1)+A(N,N)
GO TO 27
26 SHIFT(3)=(A(N,N)*A(N-1,N-1)-A(N,N-1)*A(N-1,N))/SHIFT(2)
27 IF(CABS(SHIFT(2)-A(N,N)).LT.CABS(SHIFT(3)-A(N,N)))GO TO 28
INDEX=3
GO TO 29
28 INDEX=2
29 IFICABS(A(N-1,N-2)).GE.EPS)GO TO 30
LAMBDA(MNII=SHIFT(2)+SHIFT
LAMBDA(MN1+1)=SHIFT(3)+SHIFT
I COUNT=0
N=N-2
GOTO 20
30 SHIFT=SHIFT+SHIFT(INDEX)
DO 31 I=1,Ni
31 A(I,I)=A(I,I)-SHIFT(INDEX)
C
PERFORM GIVENS ROTATIONS, QR ITERATES
IF(ICOUNT.LE.IO)GO TO 32
NCAL=M-N
GO TO 137
32 NMI=N-1
TEMP1=A(1,1)
TEMP2=A(2,1)
DO 36 R=1,NMI
RP1=R +1
RHO=SQRT(REAL(TEMP1)**2+AIMAG(TEMP1)**2+
1 REAL(TEMP2)**2+A1MAG(TEMP2)**2)
IF(RHO.EQ.O.IGO TO }3
COS=TEMP1/RHO
SIN=TEMP 2/RHO
INDEX=MAXO(R-1,1)
DO 33 1 = INDEX,N
THMP=CONJG(COS)*A(R,1)+CONJG(SIN)*A(RPI,I)
A(RP1,I)=-SIN*A(R,I)+COS*A(RPI,I)
33 A(R,I)=TEMP
TEMP1 = ( (RP1,RP1)
TEMP 2=A(R+2,R+1)
DO 34 I=1,R

```
```

        TEMP=COS*A(I,R)+SIN*A(I,RFI)
        A(1,RP1)=-CONJG(SIN)*A(1,R)+CONJGICOS)*A(1,RPI)
    34 A(1,R)=TEMP
        INDEX=MINO(R+2,N)
        DO 35 l=RPI,INDEX
        A(I,R)=SIN*A(I|RP1)
    35 A(1,RP1)=CONJG(COS)*A(I,RP1)
    36 CONTINUE
        ICOUNT =1 COUNT+1
    GO TO 22
    C
137 NCALM = NCAL - 1
DO 139 1 = 1,NCALM
TEI = LAMBDA(I)
K=1
L = I + 1
DO 138 J = L,NCAL
IF(CABS(TEMP).GE.CABSILAMBDA(J)\) GO TO 138
TEMP = LAMBDA(J)
K = J
138 CONTINUE
IF'K.EQ.1) GO TO 139
LAMBDA(K) = LAMBDA(I)
LAMBDAIII = TEMP
139 CONTINUE
c
c calculate vectors
37 IF(NCAL.EQ.OIGO TO 57
IFIIVEC.EG.O; GO TO 57
IFIIVEC.GT.NCAL) IVEC = NCAL
N=M
NMI=N-1
IF(N.NE.2IGO TO 38
EPS =AMAX1(CABS(LAMBDA(1)),CABSILAMBDA(2)))*1.E-8
IF(EPS.EG.O.)EPS=1.E-12
H(1,1)=A(1,1)
H:1,2)=A(1,2)
H(2,1)=A(2,1:
H(2,2)=A(2,2)
38 DO 56 L=1,IVEC
DO 40 I=1,N
DG 39 J=1,N
39 HL(1,J)=H(I,J)
40 HL(1,1,=HL(1,1)-LAMPDAIL)
DO 44 I=1,NM1
MULT(1)=0.
INTH(I)=.FALSE.
IP1= I+1
IF(CABSIHL(I+1,I)).LF.CABS(HL(I,I)))GO TO 4z
INTH(I)=.TRUE.
DO 41 J=1,N
TEMP=HL(1+1,J)

```

HL(I \(+1, J)=H L(I, J)\)
41 HL(I,J) = TEMF
42 If (REAL(HL(I,I)).EQ.O..AND.AIMAG(HL(I.I)).EQ.O.)GO TO 44 MULT(I) \(=-H L(1+1, I) / H L(I, I)\)
DO \(43 \mathrm{~J}=\mathrm{IPI}\). N
\(43 \mathrm{HL}(I+1, J)=\mathrm{HL}(I+1, J)+V!\) ILT(I)*HL(I,J)
44 CONTINUE
DO \(45 \quad 1=1, N\)
45 VECTI 1\()=1\).
TWICE=。FALSE.
46 IF (REAL(HL (N,N)).EO.O..AND.AIMAG(HL(N,N)).EQ.O. IHL (N,N) =EPS VECT(N) =VECT(N)/HL(N,N)
DO \(46 \mathrm{I}=1\), Nvil
\(\mathrm{K}=\mathrm{N}-1\)
DO \(47 \mathrm{~J}=\mathrm{K}, \mathrm{N}\) M1
47 VECT(K) =VECT(K)-HL(K,J+1)*VECT(J+1)
IF(REAL(HL(K,K)).EQ.O..AND.AIVAG(HL(K,K)).EQ.O.)HL(K,K)=EPS
\(48 \operatorname{VECT}(K)=V E C(K) / H L(K, K)\)
BIG=0.
DO \(40 \mathrm{I}=1\), N
SUM=ABS(REAL(VECT(I)))+ABS(AIMAG(VECT(I)))
49 IF(SUM.GT.SIGIBIG=SUM
DO \(50 \quad \mathrm{I}=1, \lambda\)
50 VECT(I)=VECT(I)/BIG
IFITWICEIGO TO 52
DO 51 I =i,NM1
IF(.NOT.INTH(I))GO TO 51
TEMP = VECT (I)
VECT(I)=VECT(I+I)
\(\operatorname{VECT}(I+1)=\) TEMP
51 VECT(I+1)=VECT(I+1)+MILT(I)*VECT(I)
TWICE =. TRUE.
GO TO 46
52 IF (N.EQ. 2) GO TO 55
\(\mathrm{NM} 2=\mathrm{N}-2\)
DO \(54 \mathrm{I}=1, \mathrm{~N}+12\)
NII \(=\mathrm{N}-1-1\)
\(\mathrm{N} I \mathrm{I}=\mathrm{N}-\mathrm{I}+1\)
DO \(53 \mathrm{~J}=\mathrm{NII} \mathrm{N}\)
\(53 \operatorname{VECT}(J)=H(J, N I I) * V E C T(N I I+I)+V E C T(J)\)
INDEX = INT(NII)
TEMP = VECT(NlI +1)
VECT(NII+I)=VECT(INDEX)
54 VECT(INDEX)=TEMP
55 DO \(56 \mathrm{I}=1, \mathrm{~N}\)
\(56 \mathrm{~A}(\mathrm{I}, \mathrm{L})=\mathrm{VECT}(1)\)
57 RETURN
END```

[^0]: *Numbers in brackets refer to references at the end of the paper.

[^1]: *See the discussion of this assumption in Section II.I.I.

[^2]: * See footncte on next page.

[^3]: * A primary external node is, for example, a node occurring at a corner of a two-dimensional element. A secondary external node occurs at mid-side of such an element.

[^4]: *An alternate approach to formulating the reducf... eirenvalue prchlem in standard form would be to perform a static condensation (Section II.2.6) on the degrees of Ireedom not corresponding to lumped masses. Then the reduced problem

 $$
 [\bar{K}]\left\{\bar{w}_{i}\right\}=\omega_{i}^{n}[\overline{\mathrm{M}}]\left\{\overline{\mathrm{w}}_{i}\right\}-\bar{i}
 $$

 can be trancturmed by premultiplying by $[\bar{M} \mathbb{Z}$. However, the disadvantages of this procedure are that (1) the banded nature of $[K]$ is destroyed in rearranging . uws and columns for the condensation and (2) lowest frequencies correspond to lowest eigenvalues.

[^5]: *Wilkinson [134] has descrited a similar three-branch theory for spherical sandwich shells.

[^6]: *Two different SHARE Library subroutines, F2 OR AMAT and F2 NYU EIG4, have been adapted for use in the present investigations. They produce identical eigenvalues although cnlv the former calculates the mode shaves.

[^7]: See the footnote in the previous example.

