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I. Introduction

The propagation of an electromagnetic wave into an inhomogeneous plasma

was first studied by Budden(l). In a plasma with large density gradients

a QTX mode propagating perpendicular to the magnetic field can encounter a

resonance and a cutoff separated by a distance comparable to the incident

wave length. In this region-the wave is evanescent, and in general there

will be a reflected and a transmitted wave, and amplification will occur in

the region near the resonance. The amplification is important for the '

study of nonlinear phenomena and for feedback stabilization applications.

Consider the propagation of a QTX mode in the x-direction. We begin

with the differential equation for E (x)

2
d2E

2 R.'k2., (E = 0 with2 = k 2 [l1+al {a)

2

and k <1
0 c C a 

Cutoff occurs when a = 1 - bV and resonance when a = 1 - S. Assume the

special case of Budden, i.e.

a(1-a) Xo1 += 1 + which leads to Whittaker§ equation.

K.G. Budden, Radio Waves in the Ionosphere (Cambridge University Press), 1966.
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Fig. 1. Plasma density a(x) = (wp/w) as a
p

Setting z = k x and z0 = k 0 x we find
0 

d 2E

dz 2

function of position.

/
/

/1 + O E = 0

'Thus the problem has essentially only one parameter, z0.

variables

In terms of physical

x do a(o) -a(-xo)
_ xjz a- .

o = +ko d(V-)

d-x)

dd 1 4rre2 dn
dx 2 m dx

0

2

= 2

2 

where L is the scale length of the density gradient.

II. Integral Solution

II. Integral Solution

d2E
Given dE +

dz
I z

+
J E = 0 , we have as an integral solution(2)

2
A. Bafros (unpublished); G.M. Weyl, Phys. Rev.. Lett. 25, 1417 (1970); H.L. Berk
and L.D. Perlstein, UCRL Preprint 72536.

And thus

xO

Also

dn 1
dx n )
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E(z) = z e-izt(t-1 )+ i ( z O/ 2 )
(t + l ) - i ( z O / 2 ) dt

Equivalently, let 2w = t + 1

2w - 2= t- 1

2(w - 1) = t - 1

E (z) J z e-iZ(2W-1)(w-1 )+i(zO/Z)w-i(ZO/Z)dw

c
Proof

E = z e (t-t)a(t+l) a dt a = + i(zo/z)

r"I-f( irf~eiZt t~i)a(t )-a 
E" = -it(2 - izt)e Zt(t-l) (t+l)adt 

c

E" + 1 2ia) E = (-2it- 2ia- zt2 +'-z)eizt(t1)a(tl)-adt

c

Let F(t) = -ie
-

i z t (t-l) a + l (t+l) -a

dF -iz + -a + t-adt ( iz t-l t+l_)

dtF [-iz(t2-1) + (a+l)(t+l) + (l-a)(t-1) ] [ie (t-)(t+l) ]

Thus

E"2ia E dFdt
-z dt

C
and the integral representation will give a solution provided that F(t) (the

bilinear concomittant) vanishes at the end points of the contour, i.e. for

z > 0 t -i , +1 ±

z.< O .t+ +i ., +1
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We thus have an integral representation for the field

+iz
E(z) = ze es(w)d,

s(w) = -i 2w- z n w-]

with possible contours of integration given by

z > O 0 l z < O

. ' I. 

-and thus 4asympZ otic beha-vr 4w4i4'l Pbecatlatedeaactly-ater)

lEII(Z) ' CIIe left movingI
+iz

EIII(Z) CIIIe right moving

E I (z) + cie + i z right moving

l Eiv(z) + cive left movingEIV(Z) -t I~e left moving

There is also one contour in the finite plane encircling both branch points

which gives a solution. However a second independent finite-plane contour

does not exist and this representation is therefore not useful.

For boundary conditions we choose for z 0 EI(z), i..e. a transmitted

right moving wave. Thus for z 0 we have the contour T.
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To analytically continue to z < 0 we are restricted to the LHP in z. (This

can be'demonstrated to be necessary by including a small collision frequency in

the problem). Thus to keep the integral convergent we must rotate the contour

ccw as z is rotated clockwise. Thus the contour II becomes successively

V h

p I

and thus E 1 becomes after continuation.to z < 0:

' } F (/-es )

Asymptotic Values

C(*) -

A. >0: We are interested in E1. The major contribution comes for

Im w 'O let w = -iv. It is trivial to show that the semi-circle part of the

contour gives no contribution. .We are then left with
i'. 

III.

I
I

;e PI CIA/d

E
Ille



z SR2! e- .^ ) ' zd
,

9J/e- 4OkCMou)A I V tIe v- V l- we

/ AIS

) e + ' -' 1 T-)j
2z

We calculate first EIII, the incoming amplitude.

/

'°U e '"- -rt_~- , 

Finally to calculate EIV take w - 1 = +iv

Y( -e4 )
2 

/[ (/* .o)

Thus.,the transr

and reflection

mission coefficient

)RI

1 T = /I /
I I -&

=)Fal ( P- 1 )I j -

D. I&'=
which are the values given by Budden.
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B. z<O w = +iv

I

-1

r I (F-)

/E M)

- .-7-c
w e 

-'7 2- I X2
.= .

_ ji- C-

/z-(-R)/



-7-

C. z V O We calculate the value of the field E near z = 0. Distort

the contour as shown and break the integral into three parts:

1. A circle of radius 1 - e about w = o,

e a small positive number. e

2. The two pieces of contour with

-1-e < Imw < -1+e 

3. Imw < -1+E

Then it can easily be shown that the contribution to the second part is

bounded by EzM, M a fixed number, and the contribution from the circular

part of the integral is bounded by zN, N a fixed number. The third part of

the contour yields, for e arbitrarily small /

EI (o) = - (l-e' /
2I 2

JIt.is then ,easy to calculate Ex (z), which becomes infinite at z = 0 in

the absence of collisions.

Including a collision frequency we have /

The collision frequency produces an insignificant change in Ey, but as E

is given by

we have, for z = 0

St, 'i3)
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IV. Application to a specific problem

We.calculate the field in the vicinity of the resonance for physical

parameters corresponding to experiments presently under way at UCLA under the

direction of F. Chen.

We take as initial data

Laser 3 ?- X xc c/

Density ) - ;A 7 A 

Electron reo ; vd t+

Scale length L = .f5 eHle

Arc Thus

Thus

ctcp i

P -

d0"

do

& X/ t

/.g X/'

.-,

. .....

/

/

I/

- I

t. 

A direct on-line calculation of the field using the integration contours shown

was carried out, The data is plotted in Fig. 2 on a scale where the initial

incoming field is normalized to 1. /
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