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NACA RM I56H20 CONFIDENTIAL
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

INVESTIGATION AT SUPERSONIC SPEEDS OF THE EFFECTS OF
BOMB-BAY CONFIGURATION UPON THE AERODYNAMIC
CHARACTERISTICS OF FUSELAGES WITH
NONCIRCULAR CROSS SECTIONS

By Robert W. Rainey
SUMMARY

An investigation has been made in the Langley 9-inch supersonic
tunnel to ascertain the 1lift, drag, and pitching moments of typical
body—Dbomb-bay configurations with and without bomb. The bodies had
elliptical, triangular, and teardrop cross sections. The present
investigation was an extension of that reported in NACA Research
Memorandum L55E27 in which a body of revolution was used.

Measurements were made at angles of attack from -4° to 8° for all
the combinations of components at Mach numbers of 1.62, 1.94, and 2.40.
Boundary-layer transition was induced artificially ahead of the bomb bay.

The results indicate that, in general, at an angle of attack of OO,
the drags of the noncircular cross-sectional bodies in combination with
the various bomb bays were less than the drags of the combinations using
the circular cross-sectional fuselage. However, the incremental drags
due to adding a bomb bay to the noncircular cross-sectional body were,
in general, no less than those realized with the circular cross-sectional
body. Also, in general, the lowest drag at an angle of attack of 0° was
realized by the body—bomb-bay combination using the elliptical cross-

sectional body with the minor axis of the ellipse in the cross-flow plane.

The addition of an internal-type bomb bay with bomb resulted in about the
same drag penalty as the addition of the semiexternal bomb which had the
least incremental drags of the external type of bomb bay.

In general, adding a bomb bay increased the slope of the 1lift curve
as well as the drag at an angle of attack of 0°. Changing body cross-
sectional shape had a large effect upon lift-curve slope at each test
Mach number; however, Mach number variation had little effect upon the
ratio of the lift-curve slopes of the noncircular cross-sectional bodies
to the lift-curve slope of a circular body.
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INTRODUCTION

Some of the incremental aerodynamic characteristics which result
when various bomb-bay configurations are combined with a body having a
circular cross section have been determined recently (ref. 1). That
investigation has been extended by the present investigation to bodies
having elliptical, modified-triangular, and teardrop cross sections;
the bomb-bay and bomb configurations reported in reference 1 were used
in the present investigation.

Force tests were made in the Iangley 9-inch supersonic tunnel.
Lift, drag, and pitching moment were measured at angles of attack from
-40 to 8° at Mach numbers of 1.62, 1.94, and 2.40. Boundary-layer
transition was induced artificially ahead of the bomb bay.

SYMBOLS
Drag
C dr fficient
D ag coefficient, s
CDO drag coefficient at o = Q°
Lift
C 1ift coefficient, ——=
L > 3.8
Cm pitching-moment coefficient (referenced to 50 percent of body
length), Pitching
9,5t
ACh incremental drag coefficient,

(CD for body—bomb-bay configuration) - (CD for body)

ACT incremental 1ift coefficient,
(CL for body—bomb-bay configuration) - (CL for body)

ACm incremental pitching-moment coefficient,
@%1for body—bomb-bay configuration) - (Cm for body)
dcCr,
CLa-— da
- 9L

Cl@o—dd, at C(.—Oo
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e

Iy da

C = EEE HEon = (0)

mao da

e

fcr, — dacy,

¢ body length

e free«stream Mach number

a, free-stream dynamic pressure

R Reynolds number, based on body length

S frontal area of basic body

SB frontal area of bomb body

SB,e frontal area of exposed portion of bomb when used in conjuneétion
with bomb bay 4B

aerodynamic-center location referenced to body nose, 0.50 - CmCL

Axac incremental change in aerodynamic-center location,
(xac of body—Dbomb-bay configuration) - (xac of body)

a angle of attack, positive when bomb-bay location is on windward

side

APPARATUS AND MODELS

Wind Tunnel

All tests were made in the Langley 9-inch supergonic tunnel which
is a continuous-operation complete-return type of tunnel in which the
absolute stagnation pressure may be varied and controlled from about
l/lO atmosphere to about 4 atmospheres. The stagnation temperature and
dewpoint may also be varied and controlled. The Mach number 1s varied
by interchanging nozzle blocks which form test sections approximately

9 inches square.
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Models

The basic bodies, bomb-bay inserts, and bombs were constructed of
metal, and all the exterior surfaces were smooth. The width and height
of all bodies were constructed within *0.003 inch of the specified
dimensions. The internal bomb-bay dimensions, the maximum diameter of
the bomb, and the thickness of the bomb fins were within #0.00l inch of
the specified dimensions. All other dimensions are believed to be
within X0.005 of the specified values.

Basic bodies.- All bodies were designed to have the same longitu-
dinal cross-sectional-area distribution as body 1 which was reported in
reference 1. This body (fig. 1(a)) consisted of a conical nose to
station 1.70l, a circular arc of revolution to station 2.697, a cylin-
der to station 5.000, and a circular arc of revolution to the base.

The base area of each body was Ul percent of the maximum cross-sectional
area. The shapes of the cross sections were designed to be similar to
some of the shapes considered in reference 2 and are summarized in
table 1.

A removable Insert located 3% inches behind the nose facilitated

the interchange of bomb-bay and bomb configurations (figs. 1(a) and
1(b)). The use of the solid bomb-bay insert, designated as bomb bay 1
(fig. 1(b)) resulted in a "clean body" configuration which is referred
to as the "basic body" throughout this report (for instance, fig. 1(a)).
A transition strip 1/4 inch wide and about 0.006 inch thick was installed
on the noncircular cross-section bodies investigated herein with its
rear edge 1/2 inch ahead of the bomb-bay-insert opening. This strip
consisted of fairly evenly distributed aluminum-oxide crystals. The
thickness of this strip was in keeping with the findings of reference 3
and was somewhat thinner than that used in reference 1. Previous
experience has indicated that either thickness will usually induce
boundary-layer transition with a negligible strip pressure drag.

Bomb and bomb bays.- The bomb (fig. 1(c)) and bomb-bay (fig. 1(b))
configurations utilized in the present tests were the same as those
utilized in reference 1; however, the numerical designations of some
of the bomb bays have been changed in the present tests. (See
fig. 1(b).)

Model Installation and Balance System
The model installation was identical to that described in refer-

ence 1. The bodies were sting mounted to the model support of the
external balance system. The sting was shielded by a windshield and,
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therefore, was not subjected to air loads. The windshield was equipped
with four pressure tubes open at the snout of the windshield to measure
the model base pressure (fig. 2). The gap between the model base and
the snout of the windshield was about 0.020 inch for all tests.

The balance system used in these tests was a six-component, exter-
nal type which utilized mechanical, self-balancing beams for force meas-
urements. In the present tests only three of the six components were
used. A detailed description of the balance system is presented in the
appendix of reference 1.

TESTS

The tests were conducted at Mach numbers of 1.62, 1.94, and 2.40

and at Reynolds numbers of 9.0 X 106, 8.6 x 106, and 7.6 X 106, respec-
tively, based on body length and free-stream conditions. Since transi-
tion was induced artificially, the effective Reynolds numbers of the

flow, based on body length, were higher than the aforementioned values.

Each body was alined in the test section at the start of a series
of tests at each Mach number and was not removed until all tests using
that body at that Mach number were completed. Consequently, any extra-
neous forces due to initial alinement, flow inclination, or model sym-
metry are about constant for all tests of a body at a particular Mach
number.

Corrections, which have been standardized and considered routine
for all sting-mounted model tests in the Langley 9-inch supersonic
tunnel, were applied to the drag of each configuration to account for
the difference between free-stream static pressure and (1) the measured
pressure on the base annulus of the basic body and (2) the measured
pressure in the fixed-windshield—shield—balance-box enclosure.

During the course of testing, occasional repeat readings were taken
at various angles of attack to determine whether the alinement of the
movable windshield with respect to the model base would change the meas-
ured characteristics. In no instance did the snout of the windshield
unport appreciably from behind the model base. The effects of such
misalinement were found to be within the limits of the experimental
accuracy for all bodies and Mach numbers.
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PRECISION OF DATA

A1l bodies were initially referenced with respect to the tunnel
walls within +0.06°9; angles of attack with respect to each other were
accurate within #0.01°. Surveys of the test section indicate maximum

flow inclination of the order of %9.

A summary of the estimated maximum probable errors for the tests
of models using the external balance system is presented in the fol-
lowing table:

Test Maximum probable errors in -

Mach

number Mo R Cr, Cn CD
1.62 | 40.010 | +0.11 x 106 [40.00%3 | +0.00% |40.002
1.94 +.010 +.18 +.003 | #.00% | #.002
2.40 £.015 +.21 +.004 | +.004 | &.002

PRESENTATION OF RESULTS

The measured aerodynamic characteristics are presented in figures
3, 4, 5, and 6 as a function of a for bodies 2, 3, }t, and 5, respec-
tively. It should be noted that the use of bomb bay 1 results in a
clean-body configuration which is referred to as the basic body in many
instances. In figure 7 is presented the departure of Cy and Gy . for

the basic bodies from values dictated by Cluo and Cm“o at M = 1.62.

The increments, as a result of adding a bomb bay or a bomb bay and bomb
to the basic body, are presented as a function of o« in figures 8, 9,
and 10. TIncluded are the values of Cp for the isolated bomb (refs. 1

and 4) at the same free-stream Reynolds number of the bomb used in the

S
present tests of bomb bay 1B and the values of £5s8 Cp for the isolated
bomb at a Reynolds number of 765 ¥ 106. This was the highest Reynolds
number of the isolated bomb tests and should be more indicative of CD
for the semiexternal bomb (bomb bay 4B) which is located within a

turbulent boundary layer.

In figure 11, the effects of body cross-sectional shape upon

I CD and ACDO are compared as a function of Mach number. Some
0 0
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of the measured results and incremental lifts, drags, and aerodynamic-
center locations at o = 0° using various bomb bays are compared in
figure 12 as a function of Mach number.

DISCUSSION
Effects of Angle-of-Attack Variation

Measured results.- All the bagic data (figs. 3 to 6) exhibit the
increase in CLa and decrease in CmOL with o shown previously to be
typical of the circular cross-sectional body (ref. 1). It is believed
that the viscous effects associated with the cross-flow component of
the flow caused a large portion of the slope changes.

For the majority of the configurations tested, CD decreased and
0
Cr, increased as M, increased; however, the drag due to lift

increased as Mm increased. In many cases, this resulted in higher
values of CD at a = 8° for the higher Mach number results.

Comparison of basic bodies.- The experimental viscous contribution
to Cp and C_ for four of the basic bodies at M, = 1.62 1is pre-

sented in figure 7 and compared with calculated values. The calculated
values were obtained by using only the viscous (last) term in the fol-
lowing equations from reference 5

Plan-form area\ »
ap S dq,-90 S

Q
Il

‘Volume - base area (1 < xcg)
m CI(‘LP[ S3 - ~ a +

o (Pla.n-farm area (xcg ; xou=90°)a2
Ta=g0° 5 ¢

6/
where
CL potential lift-curve slope
b 4
c cross-flow drag coefficient (ref. 6
da=9 0 g ( )
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xcg distance from nose to pitching-moment reference

xa=900 distance from nose to center of viscous cross force
(centroid of plan-form area)

The potential (first) term of the equations was not used in view of the
obvious difficulties for obtaining the potential lift-curve slope for a
body with nonaxial symmetry. Although the agreement between experimen-
tal and calculated values (fig. 7) is only fair, the results indicate
that the viscous effects are of the correct magnitude and account for
the effects of changes in body cross-sectional shape. Furthermore, the
agreement would be expected to improve for bodies with higher fineness
ratios as has been shown to be the case for bodies of revolution.

For the nonsymmetrical basic bodies 4 and 5, Cle and CmOL did

not change magnitude near o = 0° as a progressed from negative to
positive (figs. 5(a) and 6(a)). Similar lift-curve results were reported
in references 7 and 8. In the higher angle-of-attack range where the
cross-flow effects became important to the lift contribution, the values
of Cy, and CT_OL at the same positive and negative numerical values of

o were different (also noted in refs. 7 and 8). For the present tests
the negative angle-of-attack range (figs. 5(a) and 6(a)) was not
extended far enough to assess these effects of angle of attack; however,
it is believed that the viscous contribution to Cj would be larger for

the angles of attack whether positive or negative, at which cross-flow
drag coefficients were highest.

Comparison of various bomb bays.- For the bodies utilizing internal
types of bomb bays, the greatest variation of ACp with a at M, = 1.62

was evident using body 3 (fig. 8(b)). For this cross-sectional shape

the internal cutout exposed the forward and rearward surfaces of the
bomb bay more than was the case for the other body cross-sectional shapes
(fig. 1(b)). Tt is probable that as o increased, the flow more readily
impinged upon the rear forward-facing bomb-bay surface and substantially
increased ACp (fig. 8(b)). In general, for all bodies, the effect of

inserting the bomb into the bomb bay in the low angle-of-attack range was
to reduce ACD, probably by a reduction in the flow impingement upon this

rearward surface. Examination of the results for ACp (fig. 8(b)) shows
that, in general, in the low angle-of-attack range, AC; 1s decreased by

the addition of the bomb or baffles or by the use of bodies whose lower
contour (as viewed normal to the body axis) had the comparatively higher
rates of change in curvature (bodies 3 and 5, figs. 8(b) and 8(d)). As
mentioned in reference 1, it is believed that the magnitude of the cir-
culation within the bomb bay determined, in part, AC;. It is believed

that a reduction in this circulation resulted in less negative pressures
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acting upon the upper bomb-bay surface, and, consequently, ACp, was

less negative. This assumption appears reasonable, and it appears prob-
able that the addition of a bomb or baffles, or the partial removal of
the bomb-bay enclosure by body cross-sectional contouring, reduced the
circulation and, consequently, ACy. It appears likely, in view of the

small values of Cp, that the effects of bomb-bay interference upon the
afterbody pressure distribution were small (fig. 8(b)).

For the bodies utilizing external types of bomb bays, ACp for

configuration using bomb bay 1B (external bomb) was substantially
greater than Cp of the isolated bomb and nearly constant throughout

the range of angle of attack (for instance, fig. 8(b)). An approxi-
mation of the drag of the bomb-support struts was made; it was assumed
that the forward half of the struts was subjected to the stagnation
pressure behind normal shock and that the rearward half of the struts
was subjected to zero absolute pressure. This accounted for about
one-third of the strut-plus-interference drag which was the difference
between Cp for the isolated bomb and ACp due to the addition of
bomb bay 1B (external bomb) using body 3 (fig. 8(b)). In general,

for these external types, ACm was negative and AC], positive at values
of o greater than -1° (fig. 8). Tt was found that the ACp contri-
bution to Cp would approximately account for the negative AC, which

suggests that the effects of bomb interference on the afterbody were
either small or compensating.

The use of the semiexternal cavity (bomb bay 4) increased the drag
as much as or more than the use of the semiexternal bomb (bomb bay 4B)
and resulted in positive values of AC; and negative values of ACh

(fig. 8). The comparison of ACp of bomb bay 4B with the corresponding

S
values of —glg Cp of isclated bomb indicated small interference drags
B
(fig. 8). The drag increments for bomb bay LB were the least of the
external types and for many conditions were competitive with those of
the internal types.

In general the incremental results at M, = 1.94 and M, Lo

(figs. 9 and 10) were similar to those Jjust discussed at M,
(Fis. O).

= 2.
1562
Effects of Mach Number Variation at o = 0°

Comparison of various bodies.- The effects of body cross-sectional
shape upon lift-curve slope and drag are presented in figure 11(a) for

CONFIDENTTAL
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each bomb-bay configuration. Since CLuO was obtained at values of

o between -1° and 1°, viscous effects upon 1lift should be minor; and
the changes in Cgp were due primarily to the change in cross-sectional

shape. As might be expected, the higher values of Clao were obtained

with the wider bodies. However, from a consideration of slender-body
theory, the lifting pressures due to angle of attack are those that

result from integration over the length of the body of the two-dimensional
incompressible pressure differential between the upper and lower surfaces
of an elemental length of the body subjected to the cross-flow velocity.
It is therefore apparent that body width is not the only parameter that
determines Cluo' This was exhibited in reference 7, and further exam-

ination of the present data exhibits this also. The present results also
indicate that Mach number had little effect upon the ratio of Clqo

of a noncircular cross-sectional basic body to Cg of the circular

cross-sectional basic body. In general, the addition of bomb bays to
the basic bodies increased Clﬂo.

The C results (fig. 11(a)) indicate that, in general, the basic
Do ’

body of circular cross section had the highest total drag throughout the
Mach number range. Because this body had the least. surface area and
transition was induced artificially at the same longitudinal station on
all bodies, it is believed that the skin-friction drag of the basic
circular body was least of the basic bodies. This suggests that the
wave drag of the basic circular cross-sectional body (body 1) would be
higher than that of the basic noncircular cross-sectional bodies. This
is in agreement with the results of reference 9 which considers circular
and elliptical cross-sectional bodies. The same conclusion was also
noted in reference 2 for conical bodies without axial symmetry. Adding
the various bomb bays (except 1B) to body 1, in general, resulted in the
highest values of CDO. Also, in general, the combination of body 2

with various bomb bays resulted in the lowest values of Cp, (fig. 31l(u) )}

Although the use of body 1, in combination with the wvarious bomb
bays, generally resulted in the highest values of CDO (ELg- 11(a)),

the consequence of higher basic body drags for body 1 resulted in values
of ACp at a = 0° (fig. 11(b)) for body 1 that were not generally the

highest. In fact, the ACD as a result of adding bomb bay 1B (at all

values of M,) and bomb bay 4B (at M, <2) were least when used in
combination with the circular cross-sectional body (body 1).

CONFIDENTIAL




NACA RM L56H20 CONFIDENTIAL 11

Comparison of various bomb bays.- The effects of increasing Mach
number at o = 0° (fig. 12) were to increase Cluo’ decrease Cp,

and shift the aerodynamic center rearward for all the basic body config-
urations tested; this 1s also typical for bodies of revolution. The
addition of an internal type of bomb bay did not alter these trends
although, generally, CIuO and CDo were increased and the aerodyna-

mic center shifted rearward. In figure l2(b), the negative AC; for
the internal types mentioned previously is shown to exist at all Mach
numbers, generally becoming smaller as Mach number increased. The
effects of adding the bomb to the bomb bay were generally to reduce the
measured increments (fig. 12(b)) probably through a reduction of cir-
culation and of flow impingement within the bomb bay.

The addition of an external type of bomb bay did not alter the
general trends of the basic-body results exhibited in figure 12(a) with
the exception of body 3, bomb bay 4, at M, = 1.94. The high values of
Cp, and consequently ACp (fig. 12(b)), using bomb bay 1B existed

throughout the test Mach number range. It is of interest to note that
ACD for bomb bay 4 was of the same order as Cp for the isolated bomb

(fig. 12(b)). This large ACy 1s believed to have been due to the

expansion and separation of the flow (and accompanying reduced pressure)
in the forward portion of the cavity and compression of the flow (and
accompanying increased pressure) in the rearward portion of the cavity,
both of which undoubtedly tended to increase the drag. These positive
incremental pressures were believed to have been predominant and caused
the positive ACy, with little change in aerodynamic-center location.

The values of ACD for bomb bay 4B were the least of the external types
(fig. 12(b)) and indicated little interference drag (compare ACp with
SB,e
Sp

Cp for isolated bomb, fig. l2(b€> throughout the Mach number range.

CONCLUSIONS

The results of an experimental investigation at Mach numbers of
1.62, 1.94, and 2.40 of several bomb-bay and bomb—bomb-bay configura-
tions in combination with four bodies having noncircular cross sections
indicate the following conclusions:

1. The addition of the internal type bomb-bay configurations with
bomb at an angle of attack of O° resulted in about the same order of
drag penalty as the addition of the semiexternal bomb which had the
least incremental drags of the external types of bomb bays.
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12 CONFIDENTIAL NACA RM L56H20

2. Large changes in lift-curve slope of the basic bodies at an
angle of attack of 0° resulted from changes in body cross-sectional
shape at each Mach number; however, Mach number variation had little
effect upon the ratio of the lift-curve slope of a noncircular cross-
sectional body to the lift-curve slope of a circular cross-sectional
body.

3. In general, the highest drag at an angle of attack of 0° was
realized by the use of the circular cross-sectional body in combination
with the various bomb bays. However, the incremental drags due to
adding a bomb bay to the circular cross-sectional body were, in general,
no greater than those realized as a result of using a noncircular cross-
sectional body.

4. The highest lift-curve slope and, in general, the lowest drag
at an angle of attack of 0° were realized by the body—bomb-bay config-
urations using the elliptical-cross-sectional body with the minor axis
of the ellipse in the cross-flow plane.

Langley Aeronautical Taboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 16, 1956.
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TABLE I. MODEL CROSS-SECTIONAL SHAPES

@bximum frontal area of basic bodies = 0.5027 sq in.;
W = total width; D = total depth,]

a
Elliptical cross section
k./ afb = 1/2

b
a Body 3
Elliptical cross section
a/b =1/2

| R
] - Body 4
118.8° . c Modified-triangular cross section
a/R = 2.79%

( X b béR = 2532
T c/R = 2.5
R[':——\% w/D = 1.258
- 8 ->
Y
Parabolic
f Body 5
Teardrop cross section
L £/R = 0.33
{ L/R = 1.35

3 X W/D = 0.7T4T
N Equation of parabola:

- __1'1215 %2 = Y - 1.35R
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(a) Basic-body configurations.

1l.- Model dimensions and designations.
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Figure 1.- Continued.
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(c) Bomb configuration (meximum dismeter at 40 percent length).

Figure 1.- Concluded.
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Tunnel side walls

»— Movable windshield
Model Snout pressure tubes
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Bomb-bay insert —% ———~ 0.020-inch gap

L-874b1.1
Figure 2.- Typical model installation in Iangley 9-inch supersonic tunnel.
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Figure 3.- Aerodynamic characteristics of body 2 with various bomb-bay

configurations.
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configurations.
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Figure 11.- Variation of measured results with Mach number for various
bodies. a = 0°.
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(b) Incremental drags.

Figure 11.- Concluded.
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Figure 12.- Variation of measured results with Mach number for various

bomb-bay configurations. o = Q°.
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Figure 12.- Continued.
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Figure 12.- Continued.
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Figure 12.- Concluded.
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