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A review of the equations used to determine the 1-D vapor transport in the thermal

diffusion cloud chamber (TDCC) is presented. These equations closely follow those of the

classical Stefan tube problem in which there is transport of a volatile species through a

noncondensible, carrier gas. In both cases, the very plausible assumption is made that the

background gas is stagnant. Unfortunately, this assumption results in a convective flux
which is inconsistent with the momentum and continuity equations for both systems. The

approximation permits derivation of an analytical solution for the concentration profile

in the Stefan tube, but there is no computational advantage in the case of the TDCC.

Furthermore, the degree of supersaturation is a sensitive function of the concentration

profile in the TDCC and the stagnant background gas approximation can make a dramatic
difference in the calculated supersaturation. In this work, the equations typically used

with a TDCC are compared with very general transport equations describing the 1-D

diffusion of the volatile species. Whereas no pressure dependence is predicted with the

typical equations, a strong pressure dependence is present with the more general equations

given in this work. The predicted behavior is consistent with observations in diffusion
cloud experiments. It appears that the new equations may account for much of the

pressure dependence noted in TDCC experiments, but a comparison between the new

equations and previously obtained experimental data are needed for verification.

INTRODUCTION

Prior to the advent of and ready access to inexpen-

sive computers, major advances in our understanding

of physical phenomena were often dependent on finding

a good approximation to the real-world system where

the solution could be computed analytically and was ex-

pected to closely match the measured response of the

actual physical system. Today, the availability of pow-

erful personal computers makes it easier to solve most,

well-defined, bounded transport problems "exactly" via
numerical techniques. However, in what follows we will

show that problems can sometimes arise when previously

derived approximations find their way into such numeri-

cal routines rather than using the slightly more complex

equations upon which the original approximation was
based.

The thermal diffusion cloud chamber (TDCC) has

been used to study the nucleation of a variety of mate-
rials since its introduction to the nucleation community

by Katz and Orstermeir over 30 years ago[l]. In the
early years, it was used to measure the critical super-

saturation, Scr, the supersaturation at which the flux

of droplets was approximately 1 cm-a-s -1. In the late

1980's as researchers began measuring both the flux as

well as the supersaturation, they noticed a dependence

of the flux on the background gas that was not seen

in typical expansion studies[2]. Since a difference of a

few percent in the supersaturation can cause an order

of magnitude or more difference in the flux, these flux

measurements were extremely sensitive indicators of dif-

ferences between the two experimental systems.

To examine the role of the background gas on the

nucleation behavior, Heist et al. developed a high pres-

sure diffusion cloud chamber (HPCC) capable of study-

ing the nucleation of materials at pressures as high as

40 bar[3-5]. The results of this work seem to suggest

that there is a slight pressure dependence of the critical

supersaturation, increasing with increasing pressure.

Today there is increasing concern in determining the
stable range of operation of the TDCC/HPCC. For ex-

ample, at sufficiently high pressures, there can be an

inversion in the density profile. Such an inversion re-

sults in strong convective currents within the chamber,

thereby rendering the 1-d model of the TDCC system
invalid. A more insidious problem can be caused by con-

vective flows generated by sidewall buoyancy effects. In
this case, convective flows can cause a slight, yet system-

atic change in the temperature and mole fraction profiles
within the chamber. Because of their small magnitude,

it may be difficult to detect such flows.

To examine the possible magnitudes of these flows,

Ferguson and Nuth developed a 2-dimensional model of

a typical diffusion cloud chamber which includes the ap-
propriate buoyancy effects[6]. Ferguson and Nuth found

that small flows can exist and, for the cases they inves-

tigated, these flows were able to reduce the maximum

supersaturation along the centerline by roughly 2-8%.

The equations used to solve for the temperature



F.T.Ferguson,R.H.Heist,andJ.A.Nuth,III

GasStreamofA andB

T

: Liquid A

• --------Z _ Z 2

X A : XA2

q Z-.-_Zl

X A = XA1

Figure 1-- Cross-sectional diagram and mass transfer
boundary conditions for the classical Stefan Tube prob-
lem.

and concentration fields are coupled and depend upon

the expressions used for the physical properties of the

constituent species. In order to clearly delineate the ef-

fects due to buoyancy alone, the authors calculated the

maximum supersaturation within the chamber with the

model at a gravitational level of 1 and 0. With g-=0,

buoyancy effects are eliminated and the results should

be identical to the typical 1-d modeling (provided the

diameter to height ration (D/H) is sufficiently high and

the wall effects do not extend to the centerline).
Although very close, the 0g solutions and that of

the typical 1-d modeling did not match identically, even

using identical physical properties• The following dis'
cussion outlines the differences between these two ap-

proaches and the source for this discrepancy•

MODELING OF THE TDCC

The development of the equations for the TDCC fol-

low very closely those for the classical Stefan tube prob-

lem as outlined by Bird, Stewart and Lightfoot[7]. Such

an apparatus can be used to measure binary diffusion

coefficients and a diagram of a typical Stefan tube ap-

paratus is shown in Figure 1. The tube is filled with

a liquid A evaporating into a background gas B and it
is assumed that the mole fraction at the liquid surface

is given by the ratio of the equilibrium vapor pressure

at the temperature of the liquid to the total pressure.

At the top of the tube, the mole fraction of A is also

specified.

Fick's law for the transport of A is

NA -- XA(NA _- NB) = --CDAB_XA (1)

where Ni is the molar flux of species i with respect to

a fixed coordinate system, c the molar concentration of

the mixture, DAB the binary diffusion coefficient and xi

T

l
D
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Figure 2-- Typical thermal diffusion cloud chamber and
transport boundary conditions.

the mole fraction of species i. If we assume the flux is

1-dimensional and that the background gas is essentially

stagnant, (i.e. NBz = 0) we get

CDAB dxA

NAz -- 1 - xA dz " (2)

If it is assumed that the tube is at steady state and

isothermal and that the gases behave ideally, a shell bal-

ance for the flux of A can be used to develop analytical

expressions for the mole fraction profile and the rate of

evaporation[7].

A diagram of a typical diffusion cloud chamber and

the boundary conditions for the typical 1-d modeling are

shown in Figure 2. The TDCC differs from the Stefan

tube in that the top boundary is closed and the bottom
and top surfaces are held at different temperatures• Dur-

ing operation, vapor diffuses from the hotter, lower plate

towards the cooler, upper plate. At sufficiently high su-

persaturations the vapor condenses and forms droplets

which fall back to the lower plate. In order to model the

system in 1-dimension only, the D/H ratio of such cham-

bers are typically large, approximately 5 or greater. In

contrast, Stefan tubes typically have very low D/H ra-

tios to minimize end effects (e.g. error in fluid meniscus

level, circulating flows at the top of the tube).

Katz originally developed the equations describing

transport in the TDCC[8]. Because the system is not

isothermal, an additional equation is needed for the tem-

perature profile. The mass flux in the 1-d system is given
by

xBNAz - XANBz ------CDAB L dz + (3)

where kT is the thermal diffusion coefficient and T the

temperature. The second term in the brackets accounts
for the influence of the temperature field on the mass

flux, i.e. the Soret effect. Again the assumption is made
that the flux of B is zero; hence the equation can be
written as:

[dxA + kr_z In T] (4)xBNAz : --CDAB [ dz

2
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It is more convenient to define the thermal diffusion ra-

tio, a, as
kT

= --. (5)
XAg_B

Also, the following substitution can be made for the mole
fraction, XA,

P

xa = (6)

where P is the partial pressure of A and Pt is the to-

tal pressure within the chamber. The binary diffusion

coefficient, DAB, can be expressed as

DAB = D°ABTS - D°BRT'+t (7)
c Pt

where D°B is a constant and s is a factor ranging from

0.5 to 1.0. Substituting these expressions into equa-

tion (4) yields a differential equation for the partial pres-

sure profile of A:

dP aP(P - Pt) dT (P - Pt)L+ (8)
dz T Pt dz T+ D°As

The heat flux, Q, in the TDCC consists of three terms:

transport by conduction, transport due to convective

flux, and the Dufour effect. This flux is given by

dT RT kT N Az
Q = -k._ + NAzH + (9)XA

where k and H are the thermal conductivity and en-

thaipy of the mixture, respectively. Using the same sub-

stitutions as used for the molar flux equation gives

dTdz - kl [-Q + NA (H + aRT(Pt - P) ) ]pt. (10)

The coupled differential equations, (8) and (10), can
be solved numerically for the temperature and partial

pressure profile to determine the supersaturation pro-

file. The approach is straightforward and very plausible,

yet there are some inconsistencies when one considers
the momentum equation governing the system.

INCONSISTENCIES IN THE MODELING

Inside the TDCC, in the absence of any buoyancy-

induced convection, there should be no mass average ve-

locity, v, within the chamber. For a justification of this

statement we look at the momentum equation for this

steady system:

Vpv- v = -VP + #V2v + pg (11)

In this equation, v is the mass average velocity, p, the

density, P, the pressure, p, the fluid viscosity, and g,

the gravitational acceleration. In equation (11), the only

sources for momentum generation are the pressure gradi-
ent term, VP, and the body force term, pg. Since there

are no pressure gradients within the chamber (essentially

isobaric and closed) and buoyancy forces are neglected

v==

(b)

Figure 3-- Two different concepts of the velocity profile
within the stefan tube and diffusion cloud chamber.

(which is consistent the the assumptions of 1-d transport

in the chamber), the momentum equation becomes

Vpv- v = -#V2v (12)

Since there are no moving boundaries or velocity com-

ponents at the boundaries, we are left with the trivial

conclusion that the mass average velocity, v, is zero ev-

erywhere within the chamber. Furthermore, the conti-
nuity equation for this l-d, steady system is

dpv=
d--=_ = 0 (13)

which implies that the pv= -- constant. Again, since the

velocities at the boundaries equal zero it follows that the

velocity must be zero everywhere within the chamber.

Yet, as Whitaker points out, the equations given

in (2) and (4) suggest that there is a convective flux

present[9]. For example, the mass average velocity in

the system is given by

1
v = -- [pAVA q- pBVB] (14)

P

since Pi = c+Mi where Mi is the molecular weight of
species i and Ni = civl we have

v = 1 [NAMA + NBMB] (15)
P

or in 1-dimension

1
vz = - [NA+MA + NB+MB] (16)

P

but it has been assumed that NB_ = 0; therefore,

1
vz = -[NAzMA] (17)

P
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which contradicts the conclusions derived from both

the momentum and continuity equations. Furthermore,

there is no radial dependence in this equation for the ve-

locity in the chamber and this equation predicts a flat ve-

locity profile as shown in Figure 3-(A); yet such a profile
violates the no-slip boundary condition at the chamber

side wall. The no-slip boundary at the chamber sidewall

should give a parabolic-type of velocity profile as shown

in Figure 3-(B).

Finally, the ordinary, concentration-induced molar
flux of A for both the stefan tube and the TDCC are

given by equation (2). Whitaker also notes that this
equation for the flux suffers from problems as ZA --_

1.0[0].

There appears to be considerable confusion in the

literature regarding the transport of vapor in the Ste-
fan tube and these same problems appear in the equa-

tions used to describe the TDCC. These problems arise

from the assumption that the background gas, B, is stag-
nant. In a 1-d system, for reasons mentioned earlier there

should not be any mass-averaged velocities in a Stefan
tube or TDCC.

It was recognized quite a while ago that the uniform

velocity profile violated the no-slip boundary condition
at the wall. It was assumed that there was some radial

variation in the concentration gradient. Heinzelmann et

al.[10] performed a detailed experimental and theoreti-

cal analysis of the Stefan tube assuming no-slip at the
walls and concluded that the radial concentration was

essentially uniform within their experimental error[10].

Rao and Bennet[ll] performed another study of radial
concentration effects in the Stefan tube and arrived at a

similar conclusion.

Later on, justifications for the apparent discrepancy

between the velocity profile of species A and the no-slip

boundary condition came including the existence of a re-

circulating flow in the tube[12] and the presence of slip

at the walls. Kramers and Kistemaker[13] postulated
the existence of a diffusive slip boundary condition in

the presence of a concentration gradient and this was

invoked by Whitaker as a possible explanation for the

momentum boundary condition inconsistency[14]. Un-
fortunately, Kramers and Kistemaker made a mistake in

the reference frame upon which they based their theoret-

ical treatment of slip. This error gives a nonzero velocity

or slip effect at the walls which is not actually present[15]

Markham and Rosenberger[16] performed a full nu-
merical simulation of the Stefan tube which did not in-

clude the assumption of a stagnant background gas and

imposed the no-slip boundary condition. Unfortunately,

the assumption of a bulk velocity associated with the

Stefan tube is so entrenched in the literature that they

specified a velocity at the liquid surface based on equa-

tion (2) which is, in turn, based on the stagnant B ap-

proximation. By specifying a velocity at the surface,

they, by necessity, found a recirculating flow which was
influenced by the gravitational level. In their work the

authors note that they were left with a singularity in

the corners of their solution domain where the specified

velocity at the liquid surface met the no-slip boundary

condition of the tube walls. It is interesting to note that

in their analysis there was considerable recirculation of

the background gas, B.
In the case of the Stefan tube there is an advantage

to making the assumption that the background gas is

stagnant. Using this assumption, the differential equa-

tion describing the vapor transport in the Stefan tube

can be solved analytically to yield reasonable estimates

of the vapor concentration profile and flux. Since the

TDCC is not isothermal, the equations describing the

energy and mass transport in the TDCC are coupled

and must be solved numerically. Therefore, there is no

significant computational advantage to making the stag-

nant gas assumption in this case.

STAGNANT GAS ASSUMPTION

In this section we examine the effect of the assump-

tion that the background, carrier gas is stagnant. For
simplicity, we neglect the cross-coupling terms in the

transport equations. The emphasis of this analysis is

to highlight the differences between the terms describ-
ing ordinary, concentration-induced diffusion; the cross-

coupling terms would unnecessarily complicate the anal-

ysis and may be included in a full analysis with little
effort.

A mass balance on species A, at steady state and

without generation terms through chemical reactions

gives

V. (tXJAV) = (V . pDABVWA) (18)

where WA is the mass fraction of species, A. Since the

velocities in the momentum and continuity equations are

mass average velocities, there is an advantage to switch-

ing to mass fractions for concentrations rather than using

mole fractions. In equation (18), for 1-d without any flow

(v = 0 everywhere) based on the previous justifications,

the inertial term drops out and we are left with

d-'-z ODAB ----0 (19)

Had we used an equivalent equation for the molar con-
centration we would be left with a convective term de-

pendent upon the non-zero, molar average velocity. The

mass average velocity must satisfy the typical, hydro-

dynamic boundary condition of no-slip at the walls, but

there is no such restriction on the molar average velocity.

Therefore it is possible to have a convective flux using

molar units, even though there might not be a convective
flux while using mass units.

Using p = cM where M is the mean molecular

weight of the mixture and

in equation (19) gives

dz J =o

(20)

(21)

4
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Figure 4-- A comparison between the predicted mole
fraction profiles based on the stagnant gas assumption
and no assumption about the background gas. Curves
are shown for different concentrations with a total Axa
of 0.I.

and since MA and MB are constants

d [ CDAB dxA]_z l_-fB + (_A: MB)XA dz J = 0. (22)

This equation should be compared with the equation un-

der the stagnant gas approximation,

d [ CDAB dxA] /dz (I:_A) dz = 0 (23)

As xa -+ 0, the denominator of equation (22)-+ MB.

Since the denominator of equation (22) is just the mean

molecular weight of the binary mLxture, it is always
greater than zero.

COMPARISON BETWEEN EXPRESSIONS

What is the difference in the mole fraction profiles

between equations (22) and (23)? To examine this ef-

fect we assume that the CDAB product is a constant,

(which is reasonable for an ideal gas mixture); then the

equations reduce to a comparison of

d[ 1 dx_._A]dz (1--'XA) dz J =0 (24)

and

_z MB+(SIA--MB)XA dz J =0 (25)

For the second equation we need molecular weights so we

choose .3/[A = 60.096 and MB = 4.0026 corresponding to

1-propanol and helium, respectively, as a test case.

Figure 4 is a comparison between these two equa-
tions for 3 different cases with constant difference in the

mole fraction at the boundaries, AXA, of 0.1. The re-

sulting profiles will depend upon the value of XA so three
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0.0
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Figure 5-- A comparison between the predicted mole
fraction profiles based on the stagnant gas assumption
and no assumption about the background gas. Curves
are shown for different concentrations with a total Axa
of 0.2.

extreme cases are shown in the graph; XA -+ 0, XA "" 0.5,

and xA -'+ 1.0. The dark curve denotes the typical, stag-

nant background gas solution while the dashed curve is

the profile calculated without this approximation.

In all three cases, equation (25) predicts a smaller

value for the mole fraction than equation (24). For values
of XA ~ 0.5, there is virtually no difference between the

two solutions. As X A -+ 0 and X A -* 1.0, the differences

between the two profiles are larger and the effect is more
pronounced for the XA -+ 1.0 case.

Figure 5 is a similar plot for the mole fraction pro-

file, but with a larger concentration difference between

the boundaries. In this case, the concentration differ-

ence between the two boundary points is 0.2. Again,

in all cases the stagnant background gas approximation

predicts a higher value for the mole fraction of A at any

point over the results from equation (25).

The differences between the two profiles are again
the smallest for the xA " 0.5 solution, but the differences

between the solutions are more dramatic for the AXA ----

0.2 case than the AXA = 0.1 case.

Because of the coupling between the equations for

the concentration and temperature profiles, it can be

hazardous to draw general conclusions as to the results

on the supersaturation profile. The results from Fig-

ures 4 and 5 seem to suggest that the supersaturation

calculated via equation (25) will always be lower than

that calculated using equation (24) and these differences
will be more pronounced as the concentration of the va-

por becomes very small or very large.

CALCULATION OF SUPERSATURATION DATA

To examine the effect of the stagnant background

gas approximation on the actual supersaturations calcu-

lated, we will examine two test cases. The first of these
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Expt. No. S_==_

Soret/Dufour Effects Included? Yes

NB= = 0 Assumed? Yes

Source of Data? Katz[8]

6 13.46

6 a 13.72

11 26.54

15 41.89

15 a 41.5

No No

Yes No

This "Work This Work

13.61 6.43

13.36 7.51

26.92 11.59

42.08 17.88

40.12 21.3

Table 1-- Comparison between maximum supersaturation values for nonane taken from the work of Katz[8] (column 2),

calculated using the stagnant gas assumption (column 3), and calculated without the stagnant gas assumption (column 4).
Experiments highlighted with an a represent runs where the total pressure in the chamber was doubled.

will be the condensation of 1-propanol in helium at 1.18

bar with lower and upper plate temperatures of 302.9 4o.0

and 256.5 K, respectively. The maximum supersatura-

tion between the two plates is calculated via the typical

1-d equations derived by Katz and by the following two 30.0
equations for the temperature and mass fraction profile,

respectively:

= o (26) 200

d[ d A]d--z pDAB--_"Z =0 (27)

As with the traditional equations for the TDCC, the con-

densation flux is assumed to be sufficiently small that

effect of the condensing vapor does not significantly in-

fluence the temperature or concentration profile as cal-

culated by these equations• Physical properties for both
sets of equations were identical and were taken from the

tabulated data given by Heist[3]. In both sets of equa-

tions the Soret and Dufour effects were neglected and
the ideal gas equation of state was used.

The results were an Sin°= of 3.226 calculated via

equations (26) and (27) and an S,na= of 3.66 as calcu-

lated via the typical, stagnant background gas solutions.

The S,,az = 3.226 is identical to the solution derived by

Ferguson and Nuth's 2-dimensional model at 0g[6] while
the 3.66 value is close to the value estimated from the

graph in the work Bertelsmann and Heist[17]. As ex-

pected, the value calculated from the full equations is

lower than the stagnant background gas equations and
in this case there is just over 10% difference between the
two values.

A second comparison is made between the values

calculated by Katz for a nonane-helium system[8]. In
this case, a direct comparison is more complicated be-

cause Katz included the Soret/Dufour effects on the pro-

files. Fortunately, Katz also included a detailed sensitiv-

ity analysis for these same data and examined the effect

of several parameters upon the maximum calculated su-

persaturation anywhere within the chamber. His analy-

sis indicates that the effect of neglecting these coupling

10.0

- _ ........... Stagnant Background Gas

/\ _ -- No_ump,_ o_Back_rour,dGes

¢:!" _ .... Pressure Doubled Data

• :"\\

• \

%%% " •

_'_,,_. "_._._"_:"._.,_.._

, l , , l , I l J , , I
250.0 300.0 350.0

Temperature (K)

Figure 6- A comparison between nonane experimen-
tal data and CNT predictions. The supersaturation
prediction from the equations with no assumption on
the background gas transport indicate a pressure effect
while the typical equations used to calculate the super-
saturation profile in the TDCC do not show this effect.

terms causes an approximately 3% deviation in the max-

imum supersaturation.

Table 1 is a comparison between the values de-

rived by Katz, the values calculated via the stagnant

background gas approximation (without Soret/Dufour

terms) and the S,,a= calculated without the stagnant

background gas approximation. As is seen in the table,

the results calculated via our stagnant gas model are

consistent with a 3% variation in the values presented
by Katz. This reinforces the fact that the physical prop-

erties and solution procedure are consistent with those

used by Katz. The values for the supersaturation calcu-

lated without the stagnant background gas approxima-

tion are much lower; approximately 50% lower for most

of the cases shown. However, there is a very real concern

as to the reliability of all the low temperature critical su-

persaturation data for nonane (see below).

Katz obtained excellent agreement between the ex-
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perimentallymeasuredcriticalsupersaturations(using
theequationsbasedonthestagnantgasapproximation)
fornonaneandCNTsodiscrepanciesbetweenthesenew
equationsandCNT arelikelybasedon thesampleof
resultsin Table1. The Scr vs. T envelopes from Katz'

experimental data are plotted in Figure 6 as short dashes

along with the predictions of CNT using the physical

properties for nonane given in the original work. As

shown in the figure, the agreement between the two is
excellent. The experimental data lie a bit below CNT

predictions at the lower temperature end and a bit higher
at the higher temperature end-this behavior is similar to

that seen with a large number of other materials in the

TDCC. It is important to point out that all of the super-

saturation versus temperature curves shown in Figure 6,

except for the five curves in each set at the highest tem-

peratures, violate the stability criteria for stable (e.g.

free from buoyancy-driven convective flows) TDCC op-

eration as defined by Bertelsmann and Heist.[17] As a re-

sult, all these data are suspect and should most probably

be represented by smaller computed supersaturation val-

ues.[6,17] However, the reduction in the computed super-

saturation due to the buoyancy-driven flow in this casse

is not as significant as the reduction in the computed su-

persaturation arising from the stagnant background gas

assumption discussed here.

The Scr vs. T envelopes based on the general equa-
tions where the stagnant gas assumption is not made are
shown as the solid curves. These data fall well below the

CNT predictions. At the lower temperature end, the S_r

values are less than 1/2 of those of the Katz and CNT

predictions and the differences between the two become

smaller at the higher temperatures. Another important

point to notice is that the data with the stagnant back-

ground gas yields a smooth Sc_ vs. T envelope. In con-

trast, there are four data sets for the newly calculated

data which are markedly higher than the rest of the data

set. These four sets correspond to runs where the pres-
sure in the TDCC was doubled.

As noted in the introduction, one of the problems

currently plaguing TDCC work is the apparent depen-

dence of the results upon the pressure of the chamber

carrier gas. Such an effect is not predicted by CNT or

the typical equations used to calculate the supersatu-

ration profile in the chamber. Yet the new transport

equations in this work do predict such a rise in supersat-

uration with increasing pressure.

Again, we restrict our discussion to concentration-

induced diffusion and ignore the smaller-order, cross-

coupling terms in the mass and energy equations. In this

work we have tried to show that equation (19) is consis-

tent with the momentum equation while equation (23),
the one typically used in TDCC studies is not. Both

equations are of the form

r = 0 (2s)

When steady conditions are reached in the TDCC, the

temperature of the upper and lower plates fix the par-

tial pressure at these boundaries via the vapor pressure

equation. These partial pressures are essentially invari-

ant with pressure, so the ¢'s in equation (28), whether

they are mass or mole fractions scale accordingly with

pressure-they are both simply different ways of describ-

ing the partial pressure profile in the chamber. Varia-
tions in the partial pressure profile occur between these

two fixed boundary conditions because of the factor, F,

in equation (28). For equation (23),

( CDAB _ (29)
F= \I--xa]

The mole fractions in TDCC experiments are typically

small. For example, the largest mole fraction of any of

the examples shown in Table 1 is 0.15. Therefore, the de-

nominator in equation (29) is -.- 1.0. Further, the prod-
uct of CDAB is essentially pressure independent. Hence,

a doubling of pressure would make little difference to the

supersaturation profile calculated using equation (24).

On the other hand, in equation (19),

F = pDAB. (30)

In this case a doubling of the pressure effectively doubles

this value, thereby altering the calculated supersatura-

tion profile. Equation (27) predicts an increase in the

supersaturation with pressure as is typically observed.

As a brief aside, we note that equation (29) will be-

come large as the mole fraction of the diffusing compo-

nent approaches unity. The region in the TDCC where
this will occur is in the vicinity of the lower plate bound-

ary, and the reason why this would occur is operating the

cloud chamber under low total pressure conditions. As

mentioned earlier, typical values for mole fractions at the

lower plate are usually small (several tenths or less), so

this is normally not an issue. However, operation under

conditions in which the value of the vapor pressure of

the diffusing component at the lower plate approaches

the magnitude of the total pressure is becoming increas-

ingly important as the cloud chamber is being used to

investigate broader classes of working fluids over wider

ranges of operational conditions (e.g. nucleation near a

critical point[18]).

In experiments, as the value of XA approaches unity

the value of the mass flux will increase significantly and
the conditions at the lower plate surface will move in-

creasingly away from equilibrium. When that happens,
we are no longer able to use the equilibrium boundary

condition approximation for the mole fractions at the

lower (and upper) plate surfaces, and we are no longer

able to calculate conditions within the chamber. Again,

this is generally not a problem as long as the ratio of the

mass flux through the chamber to the equilibrium evap-

oration flux at the lower plate is small. For example,

in recent experiments involving pentanol and hydrogen

in which operation at low total pressures was specifi-

cally investigated, this ratio was typically on the order
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of 10 -6 (even at the lower total pressures used in those

experiments[19]).

In the past investigators have relied on empirical

rules of thumb to help determine proper operating ranges

for the TDCC. One such rule involves the so-called pres-

sure ratio. This quantity is defined as the ratio of the

total pressure to the equilibrium vapor pressure of the

diffusing material at the lower plate. It is generally ac-

cepted that the value of this ratio should be larger than

(roughly) two to three and the bigger the better[20]. At
first glance it might seem reasonable to associate the ef-

fect of the denominator in equation (29) with this pres-
sure ratio.

However, results from the pentanol-hydrogen inves-
tigation mentioned above clearly identified a lower to-

tal pressure stability limit for diffusion cloud chamber

operation below which the nucleation data are increas-

ingly unreliable[19]. In that investigation, mole fraction

and temperature profiles within the cloud chamber were

determined using the stagnant background gas assump-

tion (including thermal diffusion cross coupling terms

and using a real gas equation of state). And, in that

investigation, the ratio of the mass flux to the equilib-
rium flux was generally of the order 10 -6 . Based on the

results of that investigation, it does not appear that the
observed limit of lower total pressure stability reported

in the pentanol-hydrogen investigation is a consequence

of the denominator in equation (29). Rather, as the

authors point out, it appears to be asociated with the

onset of buoyancy-driven convective instabilities within
the cloud chamber and appears also to be related to the

presence of the thin pool of liquid (source of diffusing

vapor) on the lower plate. One other important result
of that investigation is that the pressure ratio bears no

relation to the lower total pressure limit of stability and
should not be used to specify operational conditions for

diffusion cloud chamber operation.

CONCLUSIONS

In this work we have tried to highlight a problem

in the typical equations used to calculate the supersat-
uration in the thermal diffusion cloud chamber. As in

the classical Stefan tube, this problem seems to arise

from the assumption that the background, carrier gas

is stagnant. This assumption seems very plausible and
intuitive-at first glance it seems to be an accurate assess-

ment of what is occurring in the chamber. The assump-

tion was also crucial in the derivation of an analytical

solution for the Stefan tube system. Unfortunately, the

assumption of a stagnant carrier gas manifests itself as

a convective flux of the volatile species which is incon-

sistent with the momentum and continuity equations.
A different equation for the concentration-induced

diffusion of the volatile species in the TDCC has been

introduced which is consistent with the momentum equa-

tion. It is perhaps better to view this approach as regard-

ing the TDCC as a two-point boundary value problem

(where the concentration and temperature are specified)

and solving for the profiles within the chamber using

reasonably general transport equations. Although it ap-
pears that these new equations may resolve much of the

carrier gas problem in the TDCC in a rather simple fash-

ion, a full test of this approach with experimental data

is needed. Fortunately, most of the previously measured
experimental data can be easily recalculated.
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