

1

Edge-Based Viscous Method for Node-Centered Formulations

Yi Liu1 and Boris Diskin2
National Institute of Aerospace, Hampton, Virginia 23666, USA

William K. Anderson3, Eric J. Nielsen4, and Li Wang5
NASA Langley Research Center, Hampton, Virginia 23681, USA

This paper presents a novel, efficient, conservative, edge-based method for
evaluation of meanflow viscous fluxes and turbulence-model diffusion terms of the
Reynolds-averaged Navier-Stokes equations on tetrahedral grids. The new method is
implemented in a practical, node-centered, finite-volume computational fluid
dynamics solver. The baseline finite-volume scheme that is equivalent to a second-
order accurate finite-element Galerkin approximation of viscous stresses is
reformulated. The order of operations to compute the cell-based Green-Gauss
gradients is changed to combine the operations by edge, which leads to an equivalent
formulation on tetrahedral grids, improves efficiency, and preserves the compact
discretization stencil based on the nearest neighbors. The computational results
presented in this paper verify the implementation of this edge-based method by
comparing its accuracy and iterative convergence with those of the well verified and
validated baseline formulation. Efficiency gains for residual and Jacobian evaluations
result in significant reduction of time to solution. This novel edge-based formulation
on tetrahedra can be seamlessly combined with the baseline formulation on cells of
other types for computing solutions on mixed-element grids.

I. Introduction
This paper introduces, verifies, and assesses a novel edge-based viscous (EBV) method for node-

centered discretizations of elliptic second-order partial differential operators that represent viscous effects
in computational fluid dynamics (CFD) equations. The EBV method has recently been implemented in a
large-scale CFD code, FUN3D [1], that is developed and maintained at the NASA Langley Research Center
(LaRC). FUN3D is widely used for high-fidelity analysis of complex turbulent flows across the speed range
from incompressible to hypersonic regimes [2-5]. Standard FUN3D solutions are computed using a
spatially second-order accurate, node-centered, finite-volume discretization of the Reynolds-averaged
Navier-Stokes (RANS) equations on general unstructured grids. An enhanced hierarchical adaptive
nonlinear iteration method (HANIM) [6, 7] has been recently implemented in FUN3D to improve
robustness and accelerate convergence of nonlinear iterations. FUN3D provides mature capabilities for
multidisciplinary optimization [8] and mesh adaptation [9]. Recent FUN3D porting on advanced computing
architectures [10, 11] enables efficient, high-fidelity, scale-resolving simulations of thermochemical
nonequilibrium flows for many applications including atmospheric entry, hypersonics, and combustion.

The FUN3D finite-volume (FUN3D-FV) discretization scheme balances conserved fluxes at dual
control volumes that are centered at grid points. Inviscid fluxes are evaluated at the edge median in an
efficient edge-based loop. Viscous fluxes use the Green-Gauss theorem to compute gradients at grid cells.
Because this approach relies on cell-based gradients, the viscous fluxes are implemented in a separate cell-

1Senior Research Engineer, Senior Member AIAA
2Senior Research Fellow, Associate Fellow AIAA
3Senior Research Scientist, Computational Aerosciences Branch, Associate Fellow AIAA
4Research Scientist, Computational Aerosciences Branch, Associate Fellow AIAA
5Research Aerospace Engineer, Computational Aerosciences Branch, Associate Fellow AIAA

2

based loop. In this paper, the baseline viscous-flux implementation is referred to as the cell-based viscous
(CBV) method. The CBV method provides a compact nearest-neighbor stencil that is suitable for massively
parallel computing and conveniently supports an exact linearization. FUN3D-FV solutions have been
extensively verified and validated through formal analysis and applications. The EBV method essentially
mimics the CBV method on tetrahedral cells but uses an edge-based implementation. The EBV method
groups the operations required for computing viscous fluxes by edge. This recombination removes
redundant computations inherent in the cell-based flux evaluation loop and significantly reduces the time
required for viscous-flux computations. A concession for the improved efficiency is additional memory
required to store a few coefficients per edge. The coefficients represent local grid metrics, do not depend
on the flow solution, and can be precomputed for static grids. The EBV method maintains the same compact
nearest-neighbor stencil for the viscous fluxes, which is a major benefit of the CBV method. The main
difference between the CBV method and the EBV method is the viscosity (and other coefficients
multiplying gradients in viscous fluxes) evaluation. In the CBV formulation, viscosity is evaluated at the
cell centers, while in the EBV formulation, it is evaluated at the edge medians. Both the CBV and EBV
methods maintain conservation and second-order accuracy.

In this paper, EBV solutions on tetrahedral grids are verified and demonstrate significant speedup in
comparison with the baseline CBV solutions. In this effort, the EBV method has been implemented only
for tetrahedra. For mixed-element grids, a hybrid EBV/CBV method is applied: the EBV method is used
on tetrahedra and the CBV method is used on cells of other types. The hybrid EBV/CBV solution remains
as accurate as the CBV solution on the same grid, but the EBV efficiency benefits are reduced.

The material in the paper is presented in the following order. Section II describes the RANS formulation
with a linear one-equation turbulence model used in this study. Section III outlines the discretization
methods and the baseline and HANIM iterative solvers available in FUN3D-FV. Section IV describes the
details of the EBV method for the viscous fluxes of the meanflow equations and the diffusion term of the
turbulence-model equation. Section V compares EBV and CBV solutions for a benchmark flow on a family
of tetrahedral grids and analyzes the EBV benefits for the baseline and HANIM iterations. Section VI
presents an EBV/CBV solution on a mixed-element grid. Section VII gives concluding remarks. Appendix
A discusses the conservation property of the CBV and EBV methods.

II. Reynolds-Averaged Navier-Stokes Equations

 The three-dimensional (3D) compressible unsteady RANS equations are given by [12]:
𝜕"𝑸 + 𝜕%𝑭 + 𝜕'𝑮 + 𝜕)𝑯 = 𝟎.																																																													(1)

 The vectors 𝑭, 𝑮, and 𝑯	are defined as

𝑭 =

⎝

⎜
⎛

𝜌𝑢
𝜌𝑢𝑢 + 𝑝 − 𝜏%%	
𝜌𝑢𝑣 − 𝜏%'	
𝜌𝑢𝑤 − 𝜏%)	

(𝐸 + 𝑝)𝑢 − >𝑢𝜏%% + 𝑣𝜏%' + 𝑤𝜏%)? + 𝑞%⎠

⎟
⎞
,	

𝑮 =

⎝

⎜
⎛

𝜌𝑣
𝜌𝑢𝑣 − 𝜏%'	

𝜌𝑣𝑣 + 𝑝 − 𝜏''	
𝜌𝑣𝑤 − 𝜏')

(𝐸 + 𝑝)𝑣 − >𝑢𝜏%' + 𝑣𝜏'' + 𝑤𝜏')? + 𝑞'⎠

⎟
⎞
,																																												(2)	

𝑯 =

⎝

⎜
⎛

𝜌𝑤
𝜌𝑢𝑤 − 𝜏%)
𝜌𝑣𝑤 − 𝜏')

𝜌𝑤𝑤 + 𝑝 − 𝜏))
(𝐸 + 𝑝)𝑤 − >𝑢𝜏%) + 𝑣𝜏') + 𝑤𝜏))? + 𝑞)⎠

⎟
⎞
.	

3

Here, 𝑝 is the static pressure, 𝒖 = (𝑢, 𝑣, 𝑤)F is the velocity vector,	𝒒 = >𝑞%, 𝑞', 𝑞)?
F
 is the local heat flux

vector, and 𝑸 ≡ (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝐸)F is the vector of conserved variables that includes the density	𝜌, the
momentum	𝜌𝒖 = (𝜌𝑢, 𝜌𝑣, 𝜌𝑤)F, and the total energy per unit volume	𝐸. The superscript T denotes
transposition to indicate vertical vectors. For a perfect gas, equations are closed using the following
relations:

𝑝 = (𝛾 − 1) J𝐸 −
𝜌
2
(𝑢K + 𝑣K + 𝑤K)L , 𝑎K = 𝛾

𝑝
𝜌
,																																				(3)	

where 𝑎 is the speed of sound and 𝛾 = 1.4 is the ratio of specific heats.
 The viscous fluxes in the RANS equations refer to the diffusion terms including the shear stress tensor
and the heat flux vector defined as:

𝜏%% =
2
3
𝑀QRS

𝑅𝑒
(𝜇 + 𝜇")>2𝜕%𝑢 − 𝜕'𝑣 − 𝜕)𝑤?,			

𝜏'' =
2
3
𝑀QRS

𝑅𝑒
(𝜇 + 𝜇")>2𝜕'𝑣 − 𝜕%𝑢 − 𝜕)𝑤?,			

𝜏)) =
2
3
𝑀QRS

𝑅𝑒
(𝜇 + 𝜇")>2𝜕)𝑤 − 𝜕%𝑢 − 𝜕'𝑣?,		

𝜏'% = 𝜏%' =
𝑀QRS

𝑅𝑒
(𝜇 + 𝜇")>𝜕%𝑣 + 𝜕'𝑢?,	

						𝜏)% = 𝜏%) =
𝑀QRS

𝑅𝑒
(𝜇 + 𝜇")(𝜕%𝑤 + 𝜕)𝑢),																																																							(4)	

𝜏)' = 𝜏') =
𝑀QRS

𝑅𝑒
(𝜇 + 𝜇")>𝜕)𝑣 + 𝜕'𝑤?,	

𝑞% =
𝑀QRS

𝑅𝑒(𝛾 − 1)
W
𝜇
𝑃𝑟

+
𝜇"
𝑃𝑟"

Z𝜕%𝑇,			

𝑞' =
𝑀QRS

𝑅𝑒(𝛾 − 1)
W
𝜇
𝑃𝑟

+
𝜇"
𝑃𝑟"

Z𝜕'𝑇,			

𝑞) =
𝑀QRS

𝑅𝑒(𝛾 − 1)
W
𝜇
𝑃𝑟

+
𝜇"
𝑃𝑟"

Z𝜕)𝑇.	

Here, 𝑇 is the temperature, 𝜇 is the dynamic laminar viscosity computed by Sutherland’s law [13], 𝜇" is the
turbulent eddy viscosity computed by a turbulence model,	𝑀QRS is the reference Mach number, 𝑅𝑒 is the
Reynolds number, and 𝑃𝑟 and 𝑃𝑟" are the Prandtl numbers for the meanflow and turbulence models,
respectively. In Sutherland's law, the nondimensional local dynamic viscosity, 𝜇, relates to the local non-
dimensional temperature, 	𝑇, through the following formula

𝜇(𝑇) = 𝑇
\
K]

1 + 𝑆
𝑇QRS

𝑇 + 𝑆
𝑇QRS

_,																																																																														(5)

where	𝑆 = 198.6ºR, and the reference dimensional viscosity, 	𝜇QRS, is assumed at the reference dimensional
temperature 𝑇QRS .

Following the formulation presented at the NASA Turbulence Modeling Resource (TMR) website*, the
standard Spalart-Allmaras (SA) turbulence model [14] is given by the following nonconservative equation:

𝜕"�̂� + 𝑢𝜕%�̂� + 𝑣𝜕'�̂� + 𝑤𝜕)�̂� − 𝑐gh(1 − 𝑓"K)𝑆j�̂� + k𝑐lh𝑓l −
𝑐gh
𝜅K

𝑓"Kn W
�̂�
𝑑
Z
K

																														

−
1
𝜎
k𝜕%>(𝜈 + �̂�)𝜕%�̂�? + 𝜕' q(𝜈 + �̂�)𝜕'�̂�r + 𝜕)>(𝜈 + �̂�)𝜕)�̂�?																																															(6)

+ 𝑐gK q(𝜕%�̂�)K + >𝜕'�̂�?
K
+ (𝜕)�̂�)Krn = 0.

* https://turbmodels.larc.nasa.gov/; accessed May 18, 2021

4

 The boundary conditions are the following:

�̂�ltuu = 0, �̂�StQSvRuw = 3𝜈QRS.																																																			(7)	
Here, �̂� is the turbulence variable, 𝑑 is the distance to the nearest wall, 𝜈 = 𝜇/𝜌 is the kinematic viscosity,
and 𝜈QRS is the reference kinematic viscosity.
 The turbulent eddy viscosity is computed as

𝜇" = max(𝜌�̂�𝑓}h, 0) .																																																																								(8)

𝑆j = 𝛺 +
�̂�

𝜅K𝑑K
𝑓}K,																																																																											(9)	

where Ω is the magnitude of vorticity,

𝛺 = �>𝜕'𝑤 − 𝜕)𝑣?
K
+ (𝜕)𝑢 − 𝜕%𝑤)K + >𝜕%𝑣 − 𝜕'𝑢?

K
,																																										(10)	

	𝑓}h =
𝜒\

𝑐}h\ − 𝜒\
,			𝜒 =

�̂�
𝜈
,			𝑓}K = 1 −

𝜒
1 + 𝜒𝑓}h

,			𝑓l = 𝑔 �
1 + 𝑐l\�

𝑔� + 𝑐l\�
�

h
�
,			𝑔 = 𝑟 + 𝑐lK(𝑟� − 𝑟), (11)	

		𝑓"K = 𝑐"\exp(−𝑐"�𝜒K),			𝑟 = min �
�̂�

𝑆j𝜅K𝑑K
, 10� ,																																																																				(12)	

and the constants are	𝜅 = 0.41,			𝜎 = K
\
,			𝑐gh = 0.1355,			𝑐gK = 0.622,			𝑐lh =

���
�
+ h����

�
,			𝑐lK = 0.3,

𝑐l\ = 2,			𝑐}h = 7.1,			𝑐"\ = 1.2,		and 	𝑐"� = 0.5.	
 The standard SA model equation is solved for	�̂� > 0. For negative	�̂�, the following equation [15] is
solved

𝜕"�̂� + 𝑢𝜕%�̂� + 𝑣𝜕'�̂� + 𝑤𝜕)�̂� − 𝑐gh(1 − 𝑐"\)𝛺�̂� − 𝑐lh W
�̂�
𝑑
Z
K

																																																						

−
1
𝜎
k𝜕%>(𝜈 + �̂�𝑓�)𝜕%�̂�? + 𝜕' q(𝜈 + �̂�𝑓�)𝜕'�̂�r + 𝜕)>(𝜈 + �̂�𝑓�)𝜕)�̂�? 																																

+ 𝑐gK q(𝜕%�̂�)K + >𝜕'�̂�?
K
+ (𝜕)�̂�)Krn = 0.																																																																														(13)

with

𝑓� =
𝑐�h + 𝜒\

𝑐�h − 𝜒\
, 𝑐�h = 16.																																																																	(14)

The SA model extended to negative values of �̂�	is referenced as the SA-neg model. The SA-neg turbulent
eddy viscosity is also computed using Eq. 8.

III. Baseline Discretization and Iteration Methods
This section overviews the baseline FUN3D-FV discretization method, including the CBV method for

the meanflow inviscid fluxed and the turbulence-model diffusion term. The baseline and HANIM iterative
solvers are also overviewed.
A. FUN3D-FV Discretization Scheme

FUN3D is a general-purpose solver for the RANS equations discretized on unstructured mixed-element
grids that may contain tetrahedra, pyramids, prisms, and hexahedra. The FUN3D-FV residuals are evaluated
on a set of median-dual control volumes centered around grid points. Edge-based inviscid fluxes are
computed at primal edge medians using an approximate Riemann solver. In the current study, Roe’s flux
difference splitting [16] is used. For second-order accuracy, density, pressure, and velocity are
reconstructed by a UMUSCL (Unstructured Monotonic Upstream-centered Scheme for Conservation
Laws) scheme [17, 18]. The spatial discretization of the SA-neg turbulence model uses a first-order accurate
convection scheme. For the discretization of viscous fluxes, the Green-Gauss theorem is used to compute
cell-based gradients. On tetrahedral meshes, this CBV approach is equivalent to a Galerkin approximation
[19]. For nontetrahedral meshes, cell-based Green-Gauss gradients are combined with edge-based gradients
[20-22] to improve stability of viscous operators and prevent odd-even decoupling. The diffusion term in

5

the turbulence model is handled similarly, with the exception that the edge-based gradient augmentation is
performed at all cells, including tetrahedra. The vorticity-based source term for the turbulence model is
computed using velocity gradients evaluated by the Green-Gauss method on dual control volumes. The
boundary conditions involved in the present study include farfield Riemann-invariant, farfield Roe-based,
symmetry, and viscous-wall boundary conditions [23].

B. Baseline Iterative Solver

The general form of the unsteady RANS equations is given by Eq. 1. For steady-state computations, the
time derivative can be dropped, leading to a formal equation

𝑹(𝑸) = 0,																																																																																								(15)
where 𝑸 denotes the flow solution and 𝑹 denotes the discrete nonlinear steady-state residual. This nonlinear
system of equations is solved by a defect-correction method

𝑫∆𝑸 +	
𝝏𝑹�
𝝏𝑸

	∆𝑸 = −𝑹(𝑸�),																																																																									(16)

𝑸��h = 𝑸� + ∆𝑸.																																																																															(17)
Here, 𝑸� and 𝑸��h are the solutions at iterations 𝑛 and	𝑛 + 1, respectively. The term 𝝏𝑹

�

𝝏𝑸
 approximates the

Jacobian		𝝏𝑹
𝝏𝑸

, 𝑫 is a diagonal matrix with �
∆�

 on the diagonal,	𝑉	is a control volume, and ∆𝜏 is a pseudotime
step, which is set through a Courant-Friedrichs-Lewy (CFL) number specification. The meanflow and SA-
neg equations are loosely coupled. The approximate Jacobian for the meanflow equations is formed using
the linearization of the first-order flux-vector splitting inviscid fluxes [24] and the second-order viscous
fluxes.

The approximate Jacobian for the SA-neg equation includes the contributions from the advection,
diffusion, and source terms. The advection term is linearized with a first-order approximation. The exact
linearization is used for the diffusion term. The entire contribution from the linearized source term is added
to the diagonal. The absolute value of the diagonal term is placed on the diagonal of the turbulence-model
equation to enforce positivity prior to adding the pseudotime term. Nonlinear iterations can reuse the
Jacobian computed at a previous iteration; Jacobian updates are scheduled according to residual
convergence.

At each nonlinear iteration, the linear system represented by Eq. 16 is solved using a specified number
of point-implicit Gauss-Seidel (GS) sweeps with multicolor ordering. The resulting	∆𝑸 is added to the
nonlinear solution. The CFL number can be predefined or ramped linearly within a specified number of
nonlinear iterations.

C. HANIM Iterative Solver

HANIM is a strong nonlinear solver that is based on a hierarchy of modules including a preconditioner,
a Newton-Krylov linear solver, realizability check, nonlinear control, and CFL adaption modules. The
specific HANIM implementation [7] follows Refs. [6, 25, 26]. The goal of HANIM is to enhance the
iterative scheme with a mechanism for an automatic adaption of the pseudotime step to increase
convergence rate and overcome instabilities occurring in transient solutions. The preconditioner is similar
to the baseline defect-correction method. The matrix-free linear solver [27-31] uses Fréchet derivatives and
a Generalized Conjugate Residual (GCR) [28] method from the family of Krylov methods. HANIM
prescribes the residual reduction targets for the preconditioner, GCR, and nonlinear solution updates and
specifies the maximum number of linear iterations allowed in the preconditioner and the maximum number
of search directions allowed in GCR. Unlike the baseline iterative solver, the HANIM CFL update strategy
is adaptive. HANIM increases the CFL number if all the HANIM modules have reported success. On the
other hand, if any of the modules fail, HANIM discards the suggested correction and aggressively reduces
the CFL.

6

IV. Edge-Based Viscous (EBV) Method for Tetrahedral Cells
Node-centered edge-based finite-volume schemes for inviscid fluxes are widely used in unstructured-

grid solvers, including FUN3D-FV. Edge-based schemes on tetrahedral grids offer advantages of efficiency
and generality. In addition, third-order accuracy for the inviscid fluxes can be achieved [32-35] on
tetrahedral grids.

Edge-based schemes for viscous fluxes have been proposed in the literature as well [36-39]. These
schemes typically require extended stencils that include neighbors of neighbors. The EBV method proposed
in this paper is derived from the baseline CBV method and preserves the compact CBV stencil that includes
only immediate neighbors. The CBV gradient at a cell is computed using a Green-Gauss approach. For the
tetrahedron in Fig. 1, vector 𝒏v = >𝑛v%, 𝑛v', 𝑛v)?

F
, 𝑖 = 1, 2, 3, and	4, is the outward directed area of the

triangular face opposite to the point 𝒑v. For a discrete function 𝜑 defined at grid points, its gradient can be
computed as

Figure 1. Tetrahedron sketch.

𝛁𝜑 =
(𝜑K + 𝜑\ + 𝜑�)𝒏h + (𝜑h + 𝜑\ + 𝜑�)𝒏K + (𝜑h + 𝜑K + 𝜑�)𝒏\ + (𝜑h + 𝜑K + 𝜑\)𝒏�

3	𝑉𝑜𝑙
.			(18)

Here, 𝑉𝑜𝑙 is the volume of the tetrahedron, and 𝛁 ≡ >𝜕%, 𝜕', 𝜕)?
F
 denotes a formal vector differentiation

operator. For a closed tetrahedron,
𝒏h + 𝒏K + 𝒏\ + 𝒏� = 0.																																																																											(19)	

Introducing the edge-based difference operator
∆v§𝜑 ≡ 	𝜑v − 𝜑§.																																																																															(20)

and substituting 𝒏h = −(𝒏K + 𝒏\ + 𝒏�) in Eq. 18, one can obtain
𝛁𝜑 = ¨h

\	�©u
(∆Kh𝜑𝒏K + ∆\h𝜑𝒏\ + ∆�h𝜑𝒏�).		 	 	 (21a)	

Analogously,

𝛁𝜑 = ¨h
\	�©u

(∆hK𝜑𝒏h + ∆\K𝜑𝒏\ + ∆�K𝜑𝒏�),	 	 	 (21b)	

𝛁𝜑 = ¨h
\	�©u

(∆h\𝜑𝒏h + ∆K\𝜑𝒏K + ∆�\𝜑𝒏�),		 	 	 (21c)	

𝛁𝜑 = ¨h
\	�©u

(∆h�𝜑𝒏h + ∆K�𝜑𝒏K + ∆\�𝜑𝒏\).		 	 	 (21d)	
Equations 21a-21d express the cell-based gradient (Eq. 18) in terms of the edge-based differences.

7

 The same approach can be extended to the viscous terms of the RANS equations. Recall that only four
meanflow equations have contributions from viscous fluxes; the mass conservation equation does not
include viscous fluxes. The viscous shear stress contribution from a cell to the 𝑥-, 𝑦-, and 𝑧-momentum
conservation residuals evaluated at the grid point 𝒑v can be written as:

𝑅¯%v = 𝑅¯%v −
𝑀QRS

𝑅𝑒
𝜇 + 𝜇"
𝑉v

�−
2
3
>𝛁° ∙ 𝒖?𝑑v% + >𝒅v ∙ 𝛁°?𝑢	 + 𝜕%°(𝒅v ∙ 𝒖)�,									(22)

𝑅¯'v = 𝑅¯'v −
𝑀QRS

𝑅𝑒
𝜇 + 𝜇"
𝑉v

�−
2
3
>𝛁° ∙ 𝒖?𝑑v' + >𝒅v ∙ 𝛁°?𝑣	 + 𝜕'°(𝒅v ∙ 𝒖)�,									(23)

𝑅¯)v = 𝑅¯)v −
𝑀QRS

𝑅𝑒
𝜇 + 𝜇"
𝑉v

�−
2
3
>𝛁° ∙ 𝒖?𝑑v) + >𝒅v ∙ 𝛁°?𝑤	 + 𝜕)°(𝒅v ∙ 𝒖)�.									(24)

The residuals in Eqs. 22-24 are divided by the control volume 𝑉v associated with the grid point 𝒑v to
approximate the differential formulation of the momentum conservation equations (Eq. 2). The
corresponding undivided residual evaluating the balance of discrete fluxes can be written in a vector form
as

𝑹¯v = 𝑹¯v − (𝜇 + 𝜇") �−
2
3
>𝛁° ∙ 𝒖?𝒅v + >𝒅v ∙ 𝛁°?𝒖	 + 𝛁°(𝒅v ∙ 𝒖)�.											(25)

Here, 𝑹¯v =
³R
´µ¶·

𝑉v>𝑅¯%v, 𝑅¯'v, 𝑅¯)v?
F

 is the vector of momentum-conservation residuals, 𝒅v =

>𝑑v%, 𝑑v', 𝑑v)?
F

 is a directed area vector [2] of the control-volume boundary located within the cell, and the
superscript ℎ denotes discretization of the cell gradient. For a tetrahedron, the directed area of the control-
volume boundary associated with point 𝒑v relates to the directed area of the opposite face as

𝒅v =
1
3
𝒏v.																																																																																		(26)

 For the momentum conservation residual (Eq. 25) evaluated at grid point 𝒑h of the tetrahedron shown
in Fig. 1, the cell gradients can be expressed in terms of the edge-based differences corresponding to edges
that include cell point 𝒑h	as in Eq. 21a. Then

𝛁°𝜑 =
−1
3	𝑉𝑜𝑙

(∆Kh𝜑𝒏K + ∆\h𝜑𝒏\ + ∆�h𝜑𝒏�),																																								(27)

𝑹¯h = 𝑹¯h +
𝜇 + 𝜇"
3	𝑉𝑜𝑙

�−
2
3
>(𝒏K ∙ ∆Kh𝒖)𝒅h + (𝒏\ ∙ ∆\h𝒖)𝒅h + (𝒏� ∙ ∆�h𝒖)𝒅h?																				(28)

+ >(𝒏K ∙ 𝒅h)∆Kh𝒖 + (𝒏\ ∙ 𝒅h)∆\h𝒖 + (𝒏� ∙ 𝒅h)∆�h𝒖? 	

+ >(𝒅h ∙ ∆Kh𝒖)𝒏K + (𝒅h ∙ ∆\h𝒖)𝒏\ + (𝒅h ∙ ∆�h𝒖)𝒏�?�,

where ∆§v𝒖 = >∆§v𝑢, ∆§v𝑣, ∆§v𝑤?
F
, ∆§v𝑢 = 𝑢§ − 𝑢v,			∆§v𝑣 = 𝑣§ − 𝑣v,			∆§v𝑤 = 𝑤§ − 𝑤v.

 Equation 28 is equivalent to the CBV method. The terms in square brackets are edge-based terms. The
viscosity coefficient appearing in front of the square bracket is the only cell-based term. To enable an edge-
based implementation, the viscosity must instead be evaluated along the edge. The EBV method modifies
Eq. 28 as

𝑹¯h = 𝑹¯h +
1

3	𝑉𝑜𝑙
�(𝜇 + 𝜇")Kh J(𝒏K ∙ 𝒅h)∆Kh𝒖 −

2
3
(𝒏K ∙ ∆Kh𝒖)𝒅h + (𝒅h ∙ ∆Kh𝒖)𝒏KL			(29)

+ (𝜇 + 𝜇")\h J(𝒏\ ∙ 𝒅h)∆\h𝒖 −
2
3
(𝒏\ ∙ ∆\h𝒖)𝒅h + (𝒅h ∙ ∆\h𝒖)𝒏\L

+ (𝜇 + 𝜇")�h J(𝒏� ∙ 𝒅h)∆�h𝒖 −
2
3
(𝒏� ∙ ∆�h𝒖)𝒅h + (𝒅h ∙ ∆�h𝒖)𝒏�L�,	

where

(𝜇 + 𝜇")§v =
(𝜇 + 𝜇")§ + (𝜇 + 𝜇")v

2
.																																																										(30)

8

represents the edge-based average of the viscosity coefficients defined at points 𝒑v and 𝒑§.
 Substituting Eq. 26 into Eq. 29, the contribution from edge [𝒑h, 𝒑K] to the momentum-conservation
residual evaluated at grid point 𝒑h can be represented as

𝑹¯h = 𝑹¯h +
(𝜇 + 𝜇")Kh
9	𝑉𝑜𝑙

�(𝒏K ∙ 𝒏h)∆Kh𝒖 −
2
3
(𝒏K ∙ ∆Kh𝒖)𝒏h + (𝒏h ∙ ∆Kh𝒖)𝒏K�																	(31)

= 𝑹¯h +
(𝜇 + 𝜇")Kh
9	𝑉𝑜𝑙

�(𝒏K ∙ 𝒏h)𝑰 −
2
3
𝒏h𝒏KF + 𝒏K𝒏hF� ∆Kh𝒖.

Here, 𝑰 is the 3 × 3 identity matrix and the 3 × 3 matrix in the square brackets represent the nine EBV
coefficients. The EBV coefficients are summed over all tetrahedra that share edge [𝒑h, 𝒑K] . The resulting
nine EBV coefficients represent the contribution from the edge to the momentum-conservation residual at
the point 𝒑h. In general, 𝒏h𝒏K½ ≠ 𝒏K𝒏h½, implying that some edge contributions to the momentum-
conservation residuals from individual cells are not symmetric with respect to the edge endpoints. This lack
of symmetry indicates that the EBV method does not conserve edge-based contributions from individual
cells. However, as shown in the appendix, the matrix of the EBV coefficients collected over all tetrahedra
that surround and share the edge is expected to be symmetric with respect to the edge endpoints, indicating
the global conservation property.
 In the initial EBV implementation for the meanflow viscous fluxes, a separate set of coefficients has
been allocated for each endpoint of the edge. This approach doubles the memory requirements. Recently,
it has been recognized that, the two 3 × 3 matrices, k(𝒏K ∙ 𝒏h)𝑰 −

K
\
𝒏h𝒏KF + 𝒏K𝒏hFn and k(𝒏h ∙ 𝒏K)𝑰 −

K
\
𝒏K𝒏hF + 𝒏h𝒏KFn, of the momentum-residual EBV coefficients (Eq. 31) that correspond to the two edge

endpoints are transpose of each other. Consequently, it is sufficient to store only one set of the EBV
coefficients. Moreover, as discussed in Appendix, for the interior edges surrounded by tetrahedra, the
matrices are expected to be symmetric. Thus, there are only six independent coefficients for the momentum-
conservation residual.
 For the energy conservation equation, the term with the shear stress tensor has the same EBV
formulation as in the momentum equations. The same EBV coefficients are used; no additional
computations and storage are needed. However, the heat flux,

 𝒒 =
´µ¶·

³R(¿¨h)
q À
ÁQ
+ ÀÂ

ÁQÂ
r 𝛁𝑇	,																																																													(32)

contribution to the energy equation residual needs to be reformulated using the edge-based differences, and
one additional EBV coefficient is needed.

𝑅Rh = 𝑅Rh +
q 𝜇𝑃𝑟 +

𝜇"
𝑃𝑟"

𝑃𝑟"r
Kh

9	(𝛾 − 1)𝑉𝑜𝑙
(𝒏K ∙ 𝒏h)∆Kh𝑇,																																															(33)

where

W
𝜇
𝑃𝑟

+
𝜇"
𝑃𝑟"

Z
§v
=
1
2
JW

𝜇
𝑃𝑟

+
𝜇"
𝑃𝑟"

Z
§
+ W

𝜇
𝑃𝑟

+
𝜇"
𝑃𝑟"

Z
v
L.																																												(34)

 Overall, the optimized EBV implementation of the momentum and energy conservation equations
requires storage of seven coefficients for each edge: six coefficients to compute the shear stresses and one
coefficient to compute the heat flux. These EBV coefficients depend only on grid metrics and can be
precomputed for static-grid simulations.
 The EBV method has also been implemented for the diffusion term of the SA-neg turbulence model.
The nonlinear diffusion term of Eq. 13 is the term in the square brackets. Direct discretization of the term
(𝛁𝜈Ã ∙ 𝛁𝜈Ã) associated with the coefficient 𝑐gK	is not straightforward and may negatively affect stability of
nonlinear iterations. Contributions from this term to the linearization matrix have an unpredictable and
uncontrollable effect because of lack of diagonal dominance and variation of the sign of 𝜈Ã	derivatives. These
considerations are especially important for iterative methods that use simple point- and line-implicit
iterations, which invert the diagonal blocks.

9

 To facilitate discretization, the following transformation is performed:

(𝛁𝜈Ã ∙ 𝛁𝜈Ã) = 𝛁 ∙ (𝜈Ã𝛁𝜈Ã) − 𝜈Ã(𝛁 ∙ 𝛁)𝜈Ã.																																																						(35)

This transformation is exact for the differential operators. The first term, 𝛁 ∙ (𝜈Ã𝛁𝜈Ã), is a conservative
nonlinear diffusion operator that can be discretized by a finite-volume method. The second term, 𝜈Ã(𝛁 ∙ 𝛁)𝜈Ã,
is the Laplace operator multiplied by the local solution. The Laplace operator is a particular example of a
linear diffusion operator that can also be discretized by a finite-volume method. The discretization is non-
conservative because the Laplacian is multiplied by the local solution.
 The modified nonlinear diffusion term can be reformulated as

Ä𝛁 ∙ >(𝜈 + 𝜈Ã𝑓�)𝛁𝜈Ã? + 𝑐gK(𝛁𝜈Ã ∙ 𝛁𝜈Ã)Å = Ä𝛁 ∙ >(𝜈 + 𝜈Ã𝑓� + 𝑐gK𝜈Ã)𝛁𝜈Ã? − 𝑐gK𝜈Ã(𝛁 ∙ 𝛁)𝜈ÃÅ.																		(36)
The contribution from a control-volume face to the residual at grid point 𝒑v can be expressed as

Ä(𝜈 + 𝜈Ã𝑓� + 𝑐gK𝜈Ã)St�R − 𝑐gK𝜈ÃvÅ𝛁𝜈Ã.																																																												(37)
Here, the subscript 𝑓𝑎𝑐𝑒 indicates the quantity evaluated either at the cell centroid for the CBV method or
at the edge median for the EBV method. The subscript 𝑖 indicates the solution at the grid point where the
residual is evaluated, which is either a cell vertex for the CBV method or an edge endpoint for the EBV
method. Since computing the SA-neg diffusion flux requires the same metrics as those used to compute the
heat flux in Eq. 33, there is no need to compute and store additional EBV coefficients for the SA-neg
diffusion term.
 Currently, the EBV method has been implemented only for tetrahedra. On mixed-element grids, the
EBV method for tetrahedra is seamlessly combined with the CBV method for cells of other types. The EBV
coefficients are stored for all edges that belong to a tetrahedral cell. The viscous fluxes corresponding to
tetrahedral cells are computed in an edge loop. The viscous fluxes corresponding to cells of other types are
computed in a separate loop over cells. Jacobian evaluation uses a similar approach.

V. EBV Solutions on Tetrahedral Grids

This section compares the CBV and EBV methods and the corresponding time to solution on tetrahedral
grids. Fully converged solutions are computed for an established benchmark turbulent flow. Performance
of the baseline and HANIM iterative solvers is discussed. Residual and Jacobian components associated
with the CBV and EBV methods are profiled.
Benchmark flow conditions and tetrahedral grid family

 The three-dimensional benchmark flow considered in this section is a subsonic separated flow around a
hemisphere-cylinder configuration [40]. The cylinder and hemisphere have diameters of unity. The
combined length of the configuration is 10. The apex of the hemisphere is located at the origin of the
coordinate system. The cylinder axis is aligned with the 𝑥-axis. The outflow conditions are assigned at a
plane that is orthogonal to the 𝑥-axis and contains the cylinder base located at	𝑥 = 10. The symmetry
condition is assigned at the vertical plane corresponding to	𝑦 = 0. The farfield boundary is a quadrant of a
sphere ((𝑥 − 10)K + 𝑦K + 𝑧K = 𝑟K, (10 − 𝑟) ≤ 𝑥 ≤ 10, 0 ≤ 𝑦 ≤ 𝑟, −𝑟 ≤ 𝑧 ≤ 𝑟)	with the radius	𝑟 =
100. The flow corresponds to the reference (freestream) Mach number of 0.6, the Reynolds number of
3.5 × 10Ç based on the unit length, the angle of attack of 19°, and the reference temperature of 540 °R.
 A family of three nested tetrahedral grids has been generated using the FORTRAN programs available
at the TMR website. The fine T1 grid has 8,995,153 grid points, 53,084,160 tetrahedra, and the surface
triangulation composed of 27,648 faces. The T2 and T3 grids are derived from the T1 grid using the grid-
coarsening program also available at the TMR website. Table 1 provides the grid statistics. Figure 2 shows
the volume and surface meshes corresponding to the T3 grid, where red color indicates the cylinder surface,
blue color shows the symmetry boundary, green color shows the outflow boundary and orange color marks
the farfield boundary.

10

Table 1. Family of tetrahedral grids for hemisphere cylinder.
Grid Points Cells Edges
T1 8,995,153 53,084,160 62,373,200
T2 1,143,081 6,635,520 7,852,072
T3 147,637 829,440 995,444

Figure 2. Volume and surface mesh for benchmark flow around hemisphere cylinder.

Baseline iterations

 To verify the EBV implementation, convergence of the baseline iterations for the EBV and CBV
methods is compared on the family of tetrahedral grids. The EBV solutions computed in this section are
not optimized for memory requirements and use 20 EBV coefficients per edge. The iteration stopping
criterion is set as 10¨h�	for the root-mean-square (rms) norm of residuals. The CFL number is set to 100.
The decoupled linear system is solved using 30 multicolor sweeps for the meanflow and 15 multicolor
sweeps for the SA-neg equation. The UMUSCL parameter is set to	𝜅 = 0.75. Figure 3 shows convergence
of the CBV and SBV methods on the T2 and T1 grids. R2 and R6 denote the rms norm of the 𝑥-momentum
and SA-neg residuals, respectively; CD and CL denote the drag and lift coefficients. As expected, the EBV
and CBV methods show almost identical convergence per iteration and a close agreement between the
converged aerodynamic coefficients. The EBV and CBV convergence plots shown in Figs. 3a and 3b are
hardly distinguishable. The converged lift and drag coefficients computed on the three tetrahedral grids
differ by less than 1% as shown in Table 2. The iterative convergence history versus wall time in seconds
is shown in Figs. 3c and 3d. The EBV method takes less time per iteration than the CBV method and
significantly reduces the time to convergence.

Table 2. Aerodynamic coefficients for hemisphere-cylinder benchmark flow.

Grid Lift Coefficient Drag Coefficient
CBV EBV CBV EBV

T1 0.0848187 0.0840070 0.0343821 0.0340752
T2 0.0838571 0.0830166 0.0349403 0.0346277
T3 0.0845361 0.0837683 0.0383544 0.0380831

11

 a. Nonlinear iterations, T1 grid b. Nonlinear iterations, T2 grid

 c. Wall time, T1 grid d. Wall time, T2 grid

Figure 3. Baseline iterations on tetrahedral grids.

 The overall performance of the EBV and CBV methods is quantitatively assessed in Table 3. For each
grid, the number of Central Processing Unit (CPU) cores and the wall time used to reach the converged
solution from the freestream setup are shown. The EBV speedup is defined as the difference between the
CBV time and the EBV time divided by the CBV time and multiplied by 100%. The solutions are computed
on the NASA LaRC K4 cluster using Intel Gold 6148 Skylake compute nodes. Each node has a dual socket
of 20 processing cores per socket. Intel® Fortran 2019 compiler has been used with the optimization level
“–O2”, which is standard for FUN3D production runs. On all grids, each individual partition has
approximately 30,000 grid points. The solver parameters are the same as in the verification study described
above. The EBV speedup is at least 12% and appears to be independent of the grid size.

Iteration

R
es

id
ua

l

C
L
&

 C
D

0 10000 20000 30000 40000
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

0

0.02

0.04

0.06

0.08

0.1

CBV_R2
CBV_R6
CBV_CL
CBV_CD
EBV_R2
EBV_R6
EBV_CL
EBV_CD

Iteration

R
es

id
ua

l

C
L
&

 C
D

0 10000 20000 30000 40000 50000
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

0

0.02

0.04

0.06

0.08

0.1

CBV_R2
CBV_R6
CBV_CL
CBV_CD
EBV_R2
EBV_R6
EBV_CL
EBV_CD

Wall Time (sec)

R
es

id
ua

l

C
L
&

 C
D

0 5000 10000 15000 20000 25000 30000
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

0

0.02

0.04

0.06

0.08

0.1

CBV_R2
CBV_R6
CBV_CL
CBV_CD
EBV_R2
EBV_R6
EBV_CL
EBV_CD

Wall Time (sec)

R
es

id
ua

l

C
L
&

 C
D

0 5000 10000 15000 20000 25000 30000
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

0

0.02

0.04

0.06

0.08

0.1

CBV_R2
CBV_R6
CBV_CL
CBV_CD
EBV_R2
EBV_R6
EBV_CL
EBV_CD

12

Table 3. Overall performance on tetrahedral grids.

Grid CPU cores Wall time to solution
CBV (sec) EBV (sec) EBV speedup

T1 320 28,478 24,956 12%
T2 40 30,174 26,502 12%
T3 5 11,685 9,946 15%

 Tables 4 and 5 compare the wall time used by the CBV and EBV methods to compute viscous fluxes
and Jacobians for a single nonlinear iteration. The timing for such computations has been averaged over
five iterations and recorded separately for the meanflow and SA-neg equations. The EBV method shows at
least 35% speedup in computing the viscous-flux contributions to the meanflow residuals, 85% speedup in
computing the diffusion term contribution to the SA-neg residual, over 39% speedup in computing the
viscous-flux contributions to the meanflow Jacobian, and 92% speedup in computing the diffusion
contributions to the SA-neg Jacobian.

Table 4. Time for contributions to residual on tetrahedral grids (sec).

Grid Meanflow viscous fluxes SA-neg diffusion
CBV EBV EBV speedup CBV EBV EBV speedup

T1 0.020 0.013 35% 0.065 0.010 85%
T2 0.020 0.012 37% 0.061 0.009 85%
T3 0.014 0.009 38% 0.042 0.006 85%

Table 5. Time for contributions to Jacobian on tetrahedral grids (sec).

Grid Meanflow viscous fluxes SA-neg diffusion
CBV EBV EBV speedup CBV EBV EBV speedup

T1 0.132 0.079 40% 0.160 0.012 92%
T2 0.131 0.076 42% 0.158 0.012 92%
T3 0.084 0.051 39% 0.104 0.008 92%

In practice, the frequency of the Jacobian updates depends on nonlinear residual convergence. Many
nonlinear iterations reduce their computational cost by avoiding Jacobian evaluation. The EBV speedup of
an individual nonlinear iteration depends on the fraction of time that is spent on operations related to viscous
terms. This fraction is significantly higher when Jacobians are evaluated. Comparison of CBV and EBV
timing for one nonlinear iteration that performs Jacobian evaluation is shown in Table 6. The CBV
computations take more than 32% of the corresponding nonlinear iteration; the EBV computations take less
than 15% of the corresponding nonlinear iteration. The EBV method speeds up computations related to
viscous terms by 70% (time reduction by more than a factor of 3) on all grids. The overall speedup is more
than 23%. Table 7 provides the data for a nonlinear iteration that does not update the Jacobians. The fraction
of the CBV computations is reduced to less than 15%; the EBV computations take less than 4% of the
corresponding nonlinear iteration. The EBV method speeds up the computations of the meanflow viscous
fluxes and SA-neg diffusion terms by 73% but because of a small fraction of time that such nonlinear
iteration spends on viscous computations, the overall speedup is about 8%. The EBV speedup for the
baseline iterative solver on tetrahedral grids is expected to be between 8% and 23%, depending on the
fraction of nonlinear iterations that perform Jacobian evaluation.

Table 6. Time for nonlinear iteration with Jacobian evaluation (sec).

Grid
Meanflow viscous fluxes and SA-neg diffusion:

residuals and Jacobian Complete nonlinear iteration

CBV EBV EBV speedup CBV EBV EBV speedup
T1 0.378 0.114 70% 1.176 0.909 23%
T2 0.370 0.110 70% 1.115 0.851 24%
T3 0.245 0.074 70% 0.663 0.495 25%

13

Table 7. Time for nonlinear iteration without Jacobian evaluation (sec).

Grid
Meanflow viscous fluxes and SA-neg diffusion:

residuals only Complete nonlinear iteration

CBV EBV EBV speedup CBV EBV EBV speedup
T1 0.084 0.023 73% 0.687 0.631 8%
T2 0.081 0.022 73% 0.656 0.602 8%
T3 0.056 0.015 73% 0.373 0.373 10%

HANIM iterations

The strong nonlinear iterative solver, HANIM [6, 7], presents unique challenges and opportunities for
speedup of the EBV method. The desire to run at as high a CFL number as possible leads to an increased
number of preconditioner sweeps in the linear solver, possibly multiple search directions for the GCR
solver, and relatively frequent nonlinear iteration failures, which tend to decrease the fraction of
computations related to viscous/diffusion terms, thus limiting opportunities for the EBV speedup. However,
each HANIM iteration performs Jacobian evaluation, which increases opportunities for the EBV speedup.
The precise prediction of the EBV speedup for an individual HANIM iteration is not possible because
HANIM iterations are not identical. There are many run-time decisions that HANIM makes based on
comparison of floating-point numbers. Thus, the nonlinear convergence in each iteration is sensitive to
small details of discretization, previous solution, and solver parameters. The CBV and EBV residual
convergence plots are expected to be visibly different, unlike the baseline iteration plots shown in Fig. 3a.

HANIM simulations have been conducted for both the CBV and EBV methods on the T2 grid. The EBV
solutions use 20 EBV coefficients per edge. The following HANIM parameters are used. The maximum
number of preconditioner sweeps is set to 300 for both meanflow and turbulence. The target preconditioner
residual reduction is set to 0.2. The GCR residual reduction target is set to 0.92. Only one GCR search
direction is allowed.

Figure 4 illustrates convergence of the HANIM-EBV and HANIM-CBV iterations. Figures 4a and 4b
show the convergence history of residuals and aerodynamic coefficients versus HANIM iterations and
versus wall time, respectively. The thin lines with symbols show convergence of the HANIM-CBV
iterations and the dashed thicker lines show convergence of the HANIM-EBV iterations. The aerodynamic
coefficients computed by HANIM iterations converge to the same values reported in Table 2. Figures 4c
and 4d show global and zoomed views of the CFL history. As expected, the HANIM-CBV and HANIM-
EBV convergence histories versus iterations shown in Fig. 4a are visibly different. Both HANIM-EBV and
HANIM-CBV iterations converge well, achieve an adaptive CFL number that is significantly higher than
the CFL number of 100 prescribed for the baseline iterations, and dramatically reduce the time to converge
residuals in comparison to the baseline iterations (cf. Fig. 3). In this test, the HANIM-EBV solver runs at a
somewhat higher CFL number than the HANIM-CBV solver. As a result, HANIM-EBV converges the rms
norm of residuals to the stopping tolerance of 10¨h� in less than 3200 iterations, 20% fewer iterations than
those used by HANIM-CBV and requires significantly less time to converge residuals and aerodynamic
coefficients.

14

a. HANIM iterations b. Wall time

 c. CFL number (global view) d. CFL number (zoomed view)

Figure 4. HANIM iterations on tetrahedral grids.

The statistics of the baseline and HANIM iterations on the T2 grid is shown in Table 8. The HANIM
convergence time and iteration count are compared with the time and iteration count of the baseline solver
documented in Table 3. HANIM dramatically speeds up the solution process. In this test, HANIM-EBV
converged 23% faster than HANIM-CBV. An average HANIM-EBV iteration takes only 7% less time than
an average HANIM-CBV iteration. This modest speedup per iteration is expected as the fraction of viscous
computations in a HANIM iteration is reduced comparing to a baseline iteration. The significant overall
speedup demonstrated by the HANIM-EBV solver is attributed to the effect of higher CFL number on
convergence of nonlinear iterations. In general, there is no expectation that HANIM-EBV iterations can
universally run at higher CFL number and be faster than HANIM-CBV iterations. HANIM iterations with
any viscous-flux method are expected to be superior to the corresponding baseline iterations.

Iteration

R
es

id
ua

l

C
L
&

 C
D

1000 2000 3000 4000
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

0

0.02

0.04

0.06

0.08

0.1

CBV_R2_HANIM
CBV_R6_HANIM
CBV_CL_HANIM
CBV_CD_HANIM
EBV_R2_HANIM
EBV_R6_HANIM
EBV_CL_HANIM
EBV_CD_HANIM

Wall Time (sec)

R
es

id
ua

l

C
L
&

 C
D

2000 4000 6000 8000
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

0

0.02

0.04

0.06

0.08

0.1

CBV_R2_HANIM
CBV_R6_HANIM
CBV_CL_HANIM
CBV_CD_HANIM
EBV_R2_HANIM
EBV_R6_HANIM
EBV_CL_HANIM
EBV_CD_HANIM

Iteration

C
FL

1000 2000 3000 4000100

101

102

103

104

105

106

CBV_HANIM_CFL
EBV_HANIM_CFL

Iteration

C
FL

2600 2700 2800 2900 3000
100

101

102

103

104

105

106

CBV_HANIM_CFL
EBV_HANIM_CFL

15

Table 8. Nonlinear iterations on T2 grid.

 Baseline iterations HANIM iterations HANIM speedup
Iterations Wall time (sec) Iterations Wall time (sec.)

CBV 42528 30174 3875 6304 4.79
EBV 42308 26502 3182 4844 5.47

EBV speedup 12% 23%

Further performance improvements on tetrahedral grids

 While the EBV performance shows a significant improvement over the CBV performance, further cost
reduction is possible for both methods. Tables 4 and 5 show a much higher EBV speedup for SA-neg
computations than for meanflow computations. This mismatch is explained by a suboptimal CBV
implementation of the SA-neg residual and Jacobian. The CBV evaluation of the SA-neg diffusion term
takes more than three times longer in comparison with the CBV evaluation of the meanflow viscous fluxes.
The FUN3D-FV CBV method for the meanflow equations is highly optimized for tetrahedral cells, while
the SA-neg CBV implementation does not take advantage of such optimization. In particular, the CBV
evaluation on a general cell includes gradient augmentation at each edge of the cell. Such augmentation is
expensive, but it is required to ensure stability of the discretization scheme on nontetrahedral cells. The
augmentation is not needed for tetrahedra and can be skipped resulting in much less expensive gradient
evaluation. The meanflow CBV implementation segregates tetrahedra from other cells and performs
gradient evaluation optimally. The SA-neg CBV implementation is agnostic to the cell type, performing
gradient augmentation for all cells.
 Optimization of the EBV memory requirements is possible. Instead of 20 EBV coefficients per edge,
only seven coefficients should be stored for interior edges. This optimization should allow better use of
memory and further speedup EBV solutions. Reduction of the memory footprint makes the EBV scheme
more suitable for modern peta- and exascale computer architectures, where the memory bandwidth remains
the main bottleneck for memory bound computations, such as FUN3D solutions.
 From Tables 4 and 5, the cost of meanflow Jacobian evaluation for the CBV and EBV methods exceeds
the cost of the corresponding residual evaluation by a factor of six. In general, the cost of Jacobian
evaluation is expected to be comparable with the cost of residual evaluation. The FUN3D-FV Jacobian is
computed with respect to the conservative variables, (𝜌, 𝜌𝒖,𝐸), while the meanflow residuals are evaluated
from the primitive variables, (𝜌, 𝒖, 𝑝). Part of the cost increase can be explained by additional conversions
between the primitive and conservative variables that are embedded into Jacobian evaluation. The EBV
method for the SA-neg equation does not need such conversions and exhibits comparable timing for the
diffusion contributions to the Jacobian and the residual. However, the six-fold cost increase for the
meanflow Jacobian over the corresponding residual seems excessive, even if the conversions between the
primitive and the conservative variables are taken into account. Significant cost reduction should be
possible through optimization of the Jacobian implementation.
 Table 4 shows that the cost of the EBV SA-neg diffusion is about 30% less than the cost of the EBV
meanflow viscous fluxes. Intuitively, the ratio is expected to be higher. The SA-neg model is one equation,
while four meanflow equations have viscous fluxes. It is possible that additional performance improvement
can be achieved by further optimizing the EBV SA-neg diffusion implementation.

The EBV method that is used in this paper is implemented in a separate edge-based loop. This approach
has been temporarily adopted because it simplifies integration of the EBV method with multiple inviscid-
flux and turbulence-model options available in FUN3D. This separate-loop implementation degrades the
benefits of the EBV method. An exploratory single-processor simulation has been conducted on the T2 grid
with the meanflow inviscid and EBV fluxes computed in a single edge-based loop. The meanflow Jacobian
computations have also been performed in a single loop. In this simulation, Intel® FORTRAN 2019
compiler uses “-O3 -inline all” compiler options. The EBV speedup for the viscous-flux contributions to
the meanflow residuals and Jacobian has increased from 35%-42% reported in Tables 4 and 5 to over 60%.

16

VI. EBV Solutions on Mixed-Element Grids

In this section, hybrid EBV/CBV solutions are compared with the CBV solutions on a mixed-element
grid for a flow around a NASA juncture-flow model (JFM) configuration. This flow has been extensively
studied experimentally and computationally [7, 41-44] and has been chosen as a verification case for the
upcoming High-Fidelity CFD Workshop 2022‡ [45]. It has been convincingly established that linear
turbulence models, such as the SA-neg model, cannot capture important characteristics of flow separation
typical for juncture flows. The goal of the solutions reported here is not to analyze the actual flow
phenomena, but rather to demonstrate feasibility of hybrid EBV/CBV solutions on practical mixed-element
grids and to establish similarity between the hybrid EBV/CBV solutions and well-verified baseline CBV
solutions.

The flow conditions for this test are the following: the freestream Mach number is 0.189, the Reynolds
number is 2,400,000 based on the crank chord of 557.17mm, the reference temperature is 288.84 Kelvin,
and the angle of attack is 5 degrees. A family of grids have been generated for the JFM configuration by
Pointwise® using the Glyph script package GeomToMesh [46]. The specific mixed-element grid chosen for
the study is Grid I [7, 44] that has 13,036,210 grid points, 16,645,072 tetrahedra, 20,368,758 prisms, and
112,989 pyramids. The volume and surface mesh are shown in Fig. 5.

Recall that in hybrid EBV/CBV computations on mixed-element grids, the meanflow viscous fluxes and
SA-neg diffusion term are evaluated by the EBV method on tetrahedra and by CBV method on prisms and
pyramids. The EBV computations are conducted in an edge-based loop over edges of tetrahedral cells, and
the CBV computations are conducted in a cell-based loop over prisms and pyramids.

For the baseline iterations, the meanflow CFL of 50 and the SA-neg CFL of 30 are set to ensure
convergence of all residuals to the level of	10¨hÈ. The preconditioner performs 30 multicolor GS sweeps
for the meanflow and SA-neg linear equations. For HANIM iterations, the following parameters are set.
The maximum number of GS sweeps is 100 for the meanflow and SA-neg preconditioner equations. The
preconditioner residual reduction target is 0.5, and the GCR residual reduction target is 0.92. Only one GCR
search direction is allowed. The mixed-element solutions have been computed using 60 Intel® Xeon Sandy
Bridge compute nodes (960 cores). Figures 6 and 7 illustrate convergence of the baseline and HANIM
iterations, respectively.

a. Volume mesh b. Surface mesh

Figure 5. Volume and surface mesh for Grid I of juncture flow model.

Since a point-based graph partitioner is generally agnostic to cell type, load imbalances related to cell-
specific operations are often encountered in practice. For this test case, the 960 partitions are well balanced

‡ https://turbmodels.larc.nasa.gov/highfidelitycfd_workshop2022.html; accessed May 18, 2021

17

for the grid points; the ratio of maximum to minimum grid points per partition is 1.34. However, there are
three partitions that have only prismatic cells. For this reason, there is no expectation of improved efficiency
for the parallel EBV/CBV solutions in which the EBV method is applied only on tetrahedra.

a. Nonlinear iterations b. Wall time

Figure 6. Baseline iterations on JFM mixed-element grid.

As expected, convergence of residuals and lift and drag coefficients observed in the baseline EBV and
CBV iterations is almost identical both in terms of iterations and wall time. HANIM solvers converge to
the same solutions much faster. Both HANIM solvers dramatically outperform the baseline solvers, using
an order of magnitude fewer iterations and reducing the time to convergence by more than 70%. The
difference between the HANIM-EBV and HANIM-CBV convergence plots is small; the iteration and time
plots shown in Figs. 7a and 7b, respectively, are hardly distinguishable in the global view. Figures 7c and
7d indicate that HANIM iterations operate with an average CFL number above 1000, which is more than
an order of magnitude higher than the operational CFL numbers set for the baseline iterations.

a. HANIM iterations b. Wall time

Figure 7. HANIM iterations on JFM mixed-element grid.

Iteration

R
es

id
ua

l

C
L
&

 C
D

0 5000 10000 15000 20000
10-12

10-10

10-8

10-6

10-4

10-2

100

0.2

0.4

0.6

0.8

1

CBV_R2_HANIM
CBV_R6_HANIM
CBV_CL_HANIM
CBV_CD_HANIM
EBV_R2_HANIM
EBV_R6_HANIM
EBV_CL_HANIM
EBV_CD_HANIM

Wall Time (sec)

R
es

id
ua

l

C
L
&

 C
D

0 10000 20000 30000 40000
10-12

10-10

10-8

10-6

10-4

10-2

100

0

0.2

0.4

0.6

0.8

1

CBV_R2_HANIM
CBV_R6_HANIM
CBV_CL_HANIM
CBV_CD_HANIM
EBV_R2_HANIM
EBV_R6_HANIM
EBV_CL_HANIM
EBV_CD_HANIM

18

 c. CFL number (global view) d. CFL number (zoomed view)

Figure 7. Concluded.

VII. Concluding Remarks
An efficient, conservative, edge-based viscous (EBV) method for evaluation of meanflow viscous fluxes

and turbulence-model diffusion terms in the Reynolds-averaged Navier-Stokes (RANS) equations with the
negative variant of the one-equation Spalart-Allmaras (SA-neg) turbulence model has been developed. The
EBV method has been derived for tetrahedral cells and implemented in FUN3D, NASA’s node-centered,
unstructured-grid RANS solver. The EBV method reformulates the extensively verified and validated
baseline second-order finite-volume (FUN3D-FV) method for viscous fluxes. The baseline formulation,
which is equivalent to the finite-element Galerkin formulation on tetrahedral grids, uses cell-based Green-
Gauss gradients, evaluates viscous fluxes in a cell-based loop, and is referred to as the cell-based viscous
(CBV) method. The EBV method recombines operations to compute Green-Gauss gradients by edge, which
leads to an equivalent formulation that can be computed in an edge-based loop. The resulting EBV
implementation eliminates redundancies inherent in the CBV method, improves efficiency, and preserves
favorable properties of the CBV method, such as a compact stencil based on nearest neighbors. A hybrid
EBV/CBV method has been implemented for simulations on mixed-element grids; the EBV method is
performed for tetrahedra and the CBV method is performed for cells of other types.

The EBV method has been verified and assessed using a benchmark subsonic separated flow around a
hemisphere-cylinder configuration. The NASA turbulence model resource (TMR) website provides flow
conditions, families of grids, and reference solutions for this case. The EBV and CBV solutions have been
compared on a family of tetrahedral grids. The residual reduction per iteration and final solutions computed
with the EBV and CBV methods are almost identical. The EBV method reduces the time for evaluation of
the meanflow viscous fluxes and corresponding Jacobian by 35%-42%. The FUN3D-FV implementation
of the CBV method for meanflow fluxes and Jacobian has previously been optimized, which makes this
significant EBV efficiency gain more impressive. For evaluation of the diffusion term of the SA-neg
turbulence model and the corresponding Jacobian contributions, the EBV speedup is much higher, 85%-
93%. For the simple baseline nonlinear iterations, this EBV speedup is translated into 8%-23% reduction
in the time to solution, depending on how often nonlinear iterations perform Jacobian updates. A strong
hierarchical adaptive nonlinear iteration method (HANIM) has recently been implemented to improve
robustness of FUN3D-FV solutions and accelerate convergence. HANIM updates the Jacobian at each
nonlinear iteration, which increases the fraction of time spent on viscous-flux computations and increases
the opportunity for EBV gains. On the other hand, HANIM also performs additional computations unrelated
to the meanflow viscous fluxes and the SA-neg diffusion term. For the tests considered in this paper, the
EBV method proved to be beneficial for HANIM convergence, reducing the average iteration cost and the

19

number of iterations to convergence. An additional 23% reduction in time to solution has been observed
with HANIM-EBV in comparison to a highly efficient HANIM-CBV solution.

Opportunities for further efficiency improvements for both the EBV and CBV methods on tetrahedral
grids have been identified. Significant reduction of the EBV memory footprint, from twenty to seven EBV
coefficients per edge, should improve memory access and further reduce the computation time.
Optimization of the SA-neg diffusion implementation can significantly speed up the baseline CBV method.
Optimization of the meanflow Jacobian evaluation and the SA-neg diffusion term can accelerate both the
CBV and EBV solutions. Currently, the EBV method has been implemented in a separate edge-based loop
to simplify logistics of integration with the rest of FUN3D. Preliminary tests indicate that combining
viscous and inviscid fluxes in a single edge-based loop can improve the EBV performance by an additional
20%.

A hybrid EBV/CBV method has been applied to compute solutions on a practical mixed-element grid
generated around a NASA juncture-flow model configuration. The EBV method has been applied on
tetrahedra and the CBV method has been applied on cells of other types. The hybrid EBV/CBV solutions
proved to be accurate, matched the CBV solutions and convergence history almost perfectly. However, the
hybrid method produced no efficiency gains since the domain decomposition methods used in the study are
solely based on equidistribution of point-based operations. Development of an EBV method for cells of all
types is expected to address this deficiency and extend the EBV efficiency gains to solutions on mixed-
element grids.

Appendix: Conservation Property of CBV and EBV Methods

A property of conservation for a discretization method can be understood through relations between
discrete residuals defined on a set of nonoverlapping control volumes and conserved solution quantities. A
conservative residual at any control volume can be represented as a linear combination of conserved
solution quantities. A solution quantity is conserved if any perturbation of this quantity in the interior of the
computational domain leads to the net zero changes in the sum of all residuals. A finite-volume
discretization method is an example of a conservative discretization method. A finite-volume residual at a
control volume is a summation of fluxes (conserved quantities) through the control-volume boundary. Any
perturbation of a flux at the boundary that separates two control volumes changes residuals at both control
volumes; the changes are equal in magnitude and opposite in sign.

In this appendix, we illustrate the conservation property of the CBV and EBV discretization methods.
A scalar three-dimensional linear diffusion operator of a twice differentiable function 𝜑(𝑥, 𝑦) is defined as

𝛁(𝜇𝛁𝜑)																																																																																										(38)
where 𝜇 is a spatially variable diffusion coefficient. The operator is discretized on a general tetrahedron
with points 𝒑h, 𝒑K, 𝒑\, and	𝒑�	shown in Fig. 8. The point 𝒎v§ =

𝒑Ê�𝒑Ë
K

 is the median of the edge connecting

points 𝒑v and	𝒑§. The point 𝒇v§Í =
𝒑Ê�𝒑Ë�𝒑Î

\
 is the centroid of the face that has points 𝒑v, 𝒑§, and	𝒑Í. The

point 𝒄hK\� =
𝒑��𝒑��𝒑Ð�𝒑Ñ

�
 is the centroid of the tetrahedron.

 The quadrilateral shape shaded in Fig. 8a is the portion of the control-volume boundary that is shared
by the control volumes centered at the points 𝒑h and	𝒑K; 𝒅hK	is the corresponding directed-area vector
pointing outward from the control volume centered at the point	𝒑h. In the CBV method, the flux computed
at the control-volume boundary shared between the points	𝒑h and	𝒑K provides the following contribution
to the residual at the point 𝒑h

𝑅h = 𝑅h + 𝜇hK\�(𝛁hK\�𝜑 ∙ 𝒅hK).																																																							(39)
Here, the diffusion coefficient and the gradient are evaluated at the tetrahedron from function values defined
at points as

𝜇hK\� =
𝜇h + 𝜇K + 𝜇\ + 𝜇�

4
;																																																							(40)

𝛁hK\�𝜑 =
1
𝑉𝑜𝑙

�
𝜑K + 𝜑\ + 𝜑�

3
𝒏h +

𝜑h + 𝜑\ + 𝜑�
3

𝒏K +
𝜑h + 𝜑K + 𝜑�

3
𝒏\ +

𝜑h + 𝜑K + 𝜑\
3

𝒏��.		(41)

20

 This gradient discretization is the same as in Eq. 18; 𝑉𝑜𝑙 is the volume of the tetrahedron, the vector 𝒏v
is the outward directed area of the triangular face opposite to the point	𝒑v.

a. CBV method b. EBV method

Figure 8. Control-volume boundaries within tetrahedron.

 The contribution to the residual at the point 𝒑K from the flux computed at the shared portion of the
control-volume boundary has the same magnitude and opposite sign as the outward directed area is pointing
to the opposite direction.

𝑅K = 𝑅K − 𝜇hK\�(𝛁hK\�𝜑 ∙ 𝒅hK).																																																		(42)
Thus, the CBV discretization is conservative.
 The EBV method conserves edge contributions,	𝜇v§∆v§𝜑, for which the edge-based diffusion coefficient
is defined similarly to Eq. 30, and the edge-based solution difference is defined similarly to Eq. 20:

𝜇v§ =
𝜇v + 𝜇§
2

, ∆v§𝜑 = 𝜑v − 𝜑§.																																																							(43)
Since the edge-based solution difference ∆v§𝜑 contributes to the cell gradient, to compute the full
contribution from the edge-based term to the residual at the point	𝒑v, one must integrate over the entire
control-volume boundary located within the cell. The shaded area in Fig. 8b indicates the portion of the
control-volume boundary within the tetrahedron that corresponds to the point	𝒑h. Recall that the combined
directed area of the shaded control-volume boundary relates to the area of the opposite face as in Eq. 26:

𝒅h =
1
3
𝒏h.																																																																											(44)

For contributions to the residual at the point	𝒑h, the gradient is represented according to Eq. 21a as

𝛁hK\�𝜑 =
−1
3	𝑉𝑜𝑙

(∆Kh𝜑𝒏K + ∆\h𝜑𝒏\ + ∆�h𝜑𝒏�).																																							(45)
The EBV method provides the following contribution to the residual at the point 𝒑h from the tetrahedron:

𝑅h = 𝑅h −
1

3	𝑉𝑜𝑙
>𝜇Kh∆Kh𝜑(𝒏K ∙ 𝒅h) + 𝜇\h∆\h𝜑(𝒏\ ∙ 𝒅h) + 𝜇�h∆�h𝜑(𝒏� ∙ 𝒅h)? 																							

= 𝑅h −
1

9	𝑉𝑜𝑙
>𝜇Kh∆Kh𝜑(𝒏K ∙ 𝒏h) + 𝜇\h∆\h𝜑(𝒏\ ∙ 𝒏h) + 𝜇�h∆�h𝜑(𝒏� ∙ 𝒏h)?.													(46)

Specifically, the contribution to the residual at the point 𝒑h from the edge connecting the points 𝒑h and 𝒑K
is		À��∆��Ó

Ô	�©u
(𝒏K ∙ 𝒏h). Analogously, the contribution to the residual at the point 𝒑K from this edge

is		À��∆��Ó
Ô	�©u

(𝒏K ∙ 𝒏h). From Eq. 43, 𝜇Kh = 𝜇hK and	∆Kh𝜑 = −∆hK𝜑, implying that the contributions to the
residuals at the points 𝒑h and 𝒑K from the edge connecting these points are equal in magnitude and opposite
in sign. Thus, the EBV discretization of the scalar operator (Eq. 38) is conservative.

21

 The strict conservation property for a discretized system of conservation-law equations requires
conservation (i.e., preservation of the sum of all residuals over the computational domain) for each
individual equation. To demonstrate the conservation property for the system of momentum equations, one
can consider an interior edge of a tetrahedral grid. The edge is surrounded by tetrahedra. The union of the
tetrahedra forms a closed polyhedron. The number of faces in such a polyhedron is twice the number of the
tetrahedra surrounding the edge. A simple example of three tetrahedra that surround and share an edge is
shown in Figure 9.

Figure 9. Three tetrahedra share edge [𝒑h, 𝒑K].

 In a general construction, where 𝑛 tetrahedra surround and share an edge, one can assume that the shared
edge is [𝒑h, 𝒑K]. All other grid points of the involved tetrahedra are ordered from 𝒑\ to 𝒑��K. The point 𝒑v
is connected by edge to the points 𝒑v¨h and 𝒑v�h, 𝑖 = 4,… , 𝑛 + 1; and the points 𝒑\ and 𝒑��K are connected
by edge to form a closed polyhedron. By construction, the index 𝑖 uniquely identifies tetrahedron formed
by points 𝒑h,𝒑K, 𝒑v,	and 𝒑v�h, 𝑖 = 3,… , 𝑛 + 1 (or by points 𝒑h,𝒑K, 𝒑��K,	and 𝒑\, if 𝑖 = 	𝑛 + 2). For
tetrahedron 𝑖, the directed area vector opposite to the point 𝒑h is denoted as 𝒏vh 	

𝒏vh =
1
2
[𝒑v − 𝒑K] × [𝒑v�h − 𝒑K];

the directed area vector opposite to the point 𝒑K is denoted as 𝒏vK

𝒏vK =
1
2
[𝒑v�h − 𝒑h] × [𝒑v − 𝒑h];

and the volume of the tetrahedron 𝑖 is denoted as

𝑉𝑜𝑙v =
1
3
(𝒏vh ∙ [𝒑K − 𝒑h]) =

1
3
(𝒏vK ∙ [𝒑h − 𝒑K]);

 The collective contribution to the momentum-conservation residual at the grid point 𝒑h (cf. Eq. 31) from
all tetrahedra that share the edge [𝒑h, 𝒑K] can be expressed as

𝑹¯h = 𝑹¯h +
(𝜇 + 𝜇")Kh

9𝑉h	
∆Kh𝒖Ö×

1
𝑉𝑜𝑙vv

�(𝒏vK ∙ 𝒏vh)𝑰 −
2
3
𝒏vh𝒏vKF + 𝒏vK𝒏vhF �Ø.									(47)

The summation is over all tetrahedra that share the edge [𝒑h, 𝒑K]. The matrix of collective EBV coefficients
corresponding to the edge is computed as

𝑪K,h =×
1
𝑉𝑜𝑙vv

�(𝒏vK ∙ 𝒏vh)𝑰 −
2
3
𝒏vh𝒏vKF + 𝒏vK𝒏vhF �.																														(48)

To satisfy the strict conservation property, the matrix of collective EBV coefficients should be symmetric.

22

 As mentioned in Section IV, the matrix contributions from individual tetrahedra are not symmetric. For
the matrix of collective EBV coefficients to be symmetric it is necessary and sufficient to show that the
matrix

𝑴 =×
𝒏vh𝒏vKF

𝑉𝑜𝑙vv

																																																																												(49)

is symmetric for an arbitrary set of tetrahedra that surround and share the edge [𝒑h, 𝒑K]. While a rigorous
proof of this statement is not available yet, examples below indicate that the property is expected to be
satisfied on general tetrahedral grids.
 For example, for the grid system shown in Figure 9, Tables 9, 10, and 11 specify the coordinates of the
points, the directed area vectors, and the inverse volumes of tetrahedra, respectively.

Table 9. Point coordinates for grid system in Fig. 9.
Point 𝑥 𝑦 𝑧
𝒑h 0 0 0
𝒑K 0 0 2
𝒑\ 1 0 1.5
𝒑� 0 1 1
𝒑Ç -0.5 -0.5 1

Table 10. Directed area vectors for grid system in Fig. 9.
Point 𝑥 𝑦 𝑧
𝒏\h 0.25 0.5 0.5
𝒏�h -0.75 0.25 0.25
𝒏Çh 0.125 -0.625 0.25
𝒏\K 0.75 0.5 -0.5
𝒏�K -0.75 0.25 -0.25
𝒏ÇK 0.375 -0.875 -0.25

Table 11. Inverse volumes of tetrahedra for grid system in Fig. 9.
𝑖 Tetrahedra 1/𝑉𝑜𝑙v
3 𝒑h, 𝒑K, 𝒑\, 𝒑� 3
4 𝒑h, 𝒑K, 𝒑�, 𝒑Ç 6
5 𝒑h, 𝒑K, 𝒑Ç, 𝒑\ 6

The corresponding tensor products are

𝒏\h𝒏\KF = Û
0.1875 0.125 −0.125
0.375 0.25 −0.25
0.375 0.25 −0.25

Ü ;																																																																

𝒏�h𝒏�KF = Û
0.5625 −0.1875 −0.125
−0.1875 0.0625 −0.0625
−0.1875 0.0625 −0.0625

Ü ;																																											(50)

𝒏Çh𝒏ÇKF = Û
0.046875 −0.109375 −0.03125
−0.234375 0.546875 0.15625
0.09375 −0.21875 −0.0625

Ü.																																									

23

 For this system, the matrix 𝑴 is evaluated as

𝑴 =
𝒏\h𝒏\KF

𝑉𝑜𝑙\
+
𝒏�h𝒏�KF

𝑉𝑜𝑙�
+
𝒏Çh𝒏ÇKF

𝑉𝑜𝑙Ç
= Û

4.21875 −1.40625 0.5625
−1.40625 4.40625 −0.1875
0.5625 −0.1875 −1.5

Ü.			(51)

 In a more practical example, the matrix of EBV coefficients is evaluated on a tetrahedral grid for the
NASA high-lift common research model used for the AIAA CFD High Lift Prediction Workshop§. A
randomly chosen interior edge [𝒑\È, 𝒑��] is surrounded by six tetrahedra. The eight grid points forming this
local subgrid are listed in Table 12. The six tetrahedra that share the edge [𝒑\È, 𝒑��]	are listed in Table 13.

Table 12. Point coordinates for practical sub-grid system.
Grid point number 𝑥 𝑦 𝑧

28 1769.57819 100.27637 290.63749
29 1775.77782 100.27391 290.63578
30 1769.58102 96.62027 295.63767
64 1775.78144 96.62027 295.63767
65 1769.57819 100.27944 290.63961
66 1775.77782 100.27637 290.63748
69 1769.58102 96.62323 295.63995
71 1775.78144 96.62323 295.63995

Table 13. Tetrahedra that share edge [𝒑\È, 𝒑��].
Tetrahedra Point 1 Point 2 Point 3 Point 4

243 28 30 29 66
253 30 66 28 65
261 30 64 29 66
268 66 30 64 71
272 71 66 30 69
273 66 65 30 69

 The matrix of collective EBV coefficients associated with the edge [𝒑\È, 𝒑��] is symmetric:

𝑪\È,�� = Û
0.00161201 0.278009 0.202816
0.278009 0.329915 −0.104578
0.202816 −0.104578 0.00140457

Ü.																										(52)

 The required EBV storage for this edge is the total of seven coefficients: six coefficients are needed for
the momentum-conservation residuals and one coefficient is needed for the heat flux; this latter coefficient
is also suitable for the EBV discretization of the SA-neg diffusion.
 The matrix of collective EBV coefficients is symmetric only if the edge is fully interior, i.e., cells that
share the edge form a closed shape around the edge, and all cells sharing the edge are tetrahedra. For
boundary edges and edges that are shared by cells of different types, nine EBV coefficients are needed to
compute the momentum-conservation residuals resulting in the total of ten EBV coefficients per edge.

Acknowledgments
The Transformative Tools and Technologies (TTT) project of the Transformative Aeronautics Concepts

Program and the NASA Revolutionary Vertical Lift Technology (RVLT) project within the NASA
Aeronautics Research Mission Directorate partially funded the work reported here.

§ https://hiliftpw.larc.nasa.gov; accessed May 18, 2021

24

References
[1] Biedron R. T., Carlson J. R., Derlaga J. M., Gnoffo P. A., Hammond D. P., Jones W. T., Kleb B., Lee-

Rausch E. M., Nielsen E. J., Park M. A., Rumsey C. L., Thomas J. L., Thompson K. B., Walden, A. C.,
Wang, L., and Wood W. A., “FUN3D Manual: 13.7,” NASA TM 2020-5010139, 2020.

[2] Anderson W. K. and Bonhaus D. L., “An Implicit Upwind Algorithm for Computing Turbulent Flows
on Unstructured Grids,” Computers and Fluids, Vol. 23, No. 1, 1994, pp. 1-21.
https://doi.org/10.1016/0045-7930(94)90023-X

[3] Biedron R. T. and Thomas J. L., “Recent Enhancements to the FUN3D Flow Solver for Moving-Mesh
Applications,” AIAA 2009-1360. https://doi.org/10.2514/6.2009-1360

[4] Nielsen, E. J., and Diskin, B., “High-Performance Aerodynamic Computations for Aerospace
Applications,” Parallel Computing, Vol. 64, 2017, pp. 20–32.
https://doi.org/10.1016/j.parco.2017.02.004

[5] Gnoffo P., “Updates to Multi-Dimensional Flux Reconstruction for Hypersonic Simulations on
Tetrahedral Grids,” AIAA 2010-1271. https://doi.org/10.2514/6.2010-1271.

[6] Pandya, M., Diskin, B., Thomas, J., and Frink, N., “Assessment of USM3D Hierarchical Adaptive
Nonlinear Method Preconditioners for Three-Dimensional Cases,” AIAA Journal, Vol. 55, No. 10,
2017, pp. 1–16. https://doi.org/10.2514/1.J055823.

[7] Wang L., Diskin B., Nielsen E. J., and Liu Y., “Improvements in Iterative Convergence of FUN3D
Solutions,” AIAA 2021-0857. https://doi.org/10.2514/6.2021-0857

[8] Wang L., Diskin B., Lopes L., Nielsen E. J., Lee-Rausch E., and Biedron R. T., “High-Fidelity Aero-
Acoustic Optimization Tool for Flexible Rotors,” Journal of the American Helicopter Society, Vol. 66,
No. 2, 2021. https://doi.org/10.4050/JAHS.66.022004

[9] Kleb, B., Park, M. A., Wood, W. A., Bibb, K. L., Thompson, K. B., Gomez, R. J., III, and Tesch, S. H.,
“Sketch-to-Solution: An Exploration of Viscous CFD with Automatic Grids,” AIAA 2019–2948.
https://doi.org/10.2514/6.2019-2948.

[10] Walden A., Nielsen E. J., Diskin B., and Zubair M., “A Mixed Precision Multicolor Point-Implicit
Solver for Unstructured Grids on GPUs," 2019 IEEE/ACM 9th Workshop on Irregular Applications:
Architectures and Algorithms (IA3), Denver, CO, USA, 2019, pp. 23-30.
https://doi.org/10.1109/IA349570.2019.00010

[11] Nastac G., Walden A., Nielsen E. J., and Frendi K., “Implicit Thermochemical Nonequilibrium Flow
Simulations on Unstructured Grids using GPUs,” AIAA 2021-0159.
https://doi.org/10.2514/6.2021-0159

[12] Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., “Computational Fluid Mechanics and Heat
Transfer,” third edition, Taylor & Francis, 2012.

[13] White, F. M., "Viscous Fluid Flow," McGraw Hill, New York, 1974, p. 28.
[14] Spalart, P. R. and Allmaras, S. R., “A One-Equation Turbulence Model for Aerodynamic Flows,”

Recherche Aerospatiale, No. 1, 1994, pp. 5-21.
[15] Allmaras, S. R., Johnson, F. T., and Spalart, P. R., "Modifications and Clarifications for the

Implementation of the Spalart-Allmaras Turbulence Model," ICCFD7-1902, 7th International
Conference on Computational Fluid Dynamics, Big Island, Hawaii, 9-13 July 2012.

[16] Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” Journal of
Computational Physics, Vol. 43, No. 2, 1981, pp. 357–372.
https://doi.org/10.1016/0021-9991(81)90128-5.

[17] Burg, C. O. E., “Higher Order Variable Extrapolation for Unstructured Finite Volume RANS Flow
Solvers,” AIAA Paper 2005–4999. https://doi.org/10.2514/6.2005-4999

[18] van Leer, B., “Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to
Godunov’s Method,” Journal of Computational Physics, Vol. 32, No. 1, 1979, pp. 101–136.
10.1016/0021-9991(79)90145-1.

[19] Barth, T. J., “Numerical Aspects of Computing Viscous High Reynolds Number Flows on Unstructured
Meshes,” AIAA 91–0721. https://doi.org/10.2514/6.1991-721

25

[20] Haselbacher, A. C., A Grid-Transparent Numerical Method for Compressible Viscous Flow on Mixed
Unstructured Meshes, Ph.D. thesis, Loughborough University, 1999.

[21] Nishikawa H., “Beyond Interface Gradient: A General Principle for Constructing Diffusion Schemes”,
AIAA 2010-5093. https://doi.org/10.2514/6.2010-5093

[22] Thomas J. L., Diskin B., and Nishikawa H., “A Critical Study of Agglomerated Multigrid Methods for
Diffusion on Highly Stretched Grids,” Computers & Fluids, Vol. 41, No. 1, 2011, pp. 82-93.
https://doi.org/10.1016/j.compfluid.2010.09.023

[23] Carlson, J.-R., “Inflow/Outflow Boundary Conditions with Application to FUN3D,” October 2011,
NASA/TM–2011-217181, NASA Langley Research Center, Hampton, Virginia.

[24] van Leer, B. “Flux-Vector Splitting for the Euler Equations,” ICASE Report 82-30, 1982.
[25] Pandya, M. J., Jespersen, D. C., Diskin, B., Thomas, J. L., and Frink, N. T., “Accuracy, Scalability, and

Efficiency of Mixed-Element USM3D for Benchmark Three-Dimensional Flows,” AIAA 2019–2333.
https://doi.org/10.2514/6.2019-2333

[26] Pandya, M. J., Diskin, B., Thomas, J. L., and Frink, N. T., “Improved Convergence and Robustness of
USM3D Solutions on Mix-Element Grids,” AIAA Journal, Vol. 54, No. 9, 2016, pp. 2589–2596.
https://doi.org/10.2514/1.J054545.

[27] Knoll, D. A. and Keyes, D. E., “Jacobian-Free Newton–Krylov Methods: A Survey of Approaches and
Applications,” Journal of Computational Physics, 193 (2004) 357–397.
https://doi.org/10.1016/j.jcp.2003.08.010

[28] van der Vorst, H. A. and Vuik, C. “GMRESR: A Family of Nested GMRES Methods,” Numerical
Linear Algebra with Applications, Vol. 1, 1994, pp. 369-386. https://doi.org/10.1002/nla.1680010404

[29] Lucas, P., van Zuijlen, A. H., and Bijl, H., “Fast Unsteady Flow Computations with a Jacobian-free
Newton-Krylov Algorithm," Journal of Computational Physics, Vol. 229, No. 24, 2010, pp. 9201-9215.
https://doi.org/10.1016/j.jcp.2010.08.033

[30] Ceze, M. and Fidkowski, K., “A Robust Adaptive Solution Strategy for High-Order Implicit CFD
Solvers," AIAA Paper 2011-3696. https://doi.org/10.2514/6.2011-3696

[31] Allmaras, S. R., Bussoletti, J. E., Hilmes, C. L., Johnson, F. T., Melvin, R. G., Tinoco, E. N.,
Venkatakrishnan, V., Wigton, L. B., and Young, D. P., “Algorithm Issues and Challenges Associated
with the Development of Robust CFD Codes,” In: Variational Analysis and Aerospace Engineering,
Springer Optimization and Its Applications, Vol. 33, Springer, New York, NY, 2009, pp. 1-19.
https://doi.org/10.1007/978-0-387-95857-6_1

[32] Katz, A. and Sankaran, V., “Mesh Quality Effects on the Accuracy of Euler and Navier-Stokes
Solutions on Unstructured Meshes,” Journal of Computational Physics, Vol. 230, No. 20, 2011, pp.
7670–7686. https://doi.org/10.1016/j.jcp.2011.06.023

[33] Katz, A. and Sankaran, V., “An Efficient Correction Method to Obtain a Formally Third-Order
Accurate Flow Solver for Node-Centered Unstructured Grids,” Journal on Scientific Computing, Vol.
51, 2012, pp. 375-393. https://doi.org/10.1007/s10915-011-9515-1.

[34] Liu, Y., and Nishikawa, H., “Third-Order Inviscid and Second-Order Hyperbolic Navier-Stokes
Solvers for Three-Dimensional Inviscid and Viscous Flows,” AIAA 2016-3969.
https://doi.org/10.2514/6.2016-3969

[35] Liu, Y., and Nishikawa, H., “Third-Order Inviscid and Second-Order Hyperbolic Navier-Stokes
Solvers for Three-Dimensional Unsteady Inviscid and Viscous Flows,” AIAA 2017-0738.
https://doi.org/10.2514/6.2017-0738

[36] Barth, T. J., “Numerical Aspects of Computing Viscous High Reynolds Number Flows on Unstructured
Meshes,” AIAA 1991-0721. https://doi.org/10.2514/6.1991-721

[37] Luo, H., Baum, J. D., Lohner, R., and Cabello, J., “Adaptive Edge-Based Finite Element Scheme for
the Euler and Navier-Stokes Equations on Unstructured Grids,” AIAA 93-0336.
https://doi.org/10.2514/6.1993-336

[38] Mavriplis D.J., “Grid Resolution Study of a Drag Prediction Workshop Configuration Using the
NSU3D Unstructured Mesh Solver,” AIAA 2005-4729. https://doi.org/10.2514/6.2005-4729

26

[39] Nishikawa, H., “Two Ways to Extend Diffusion Scheme to Navier-Stokes Schemes: Gradient Formula
or Upwind Flux,” AIAA 2011-3044. https://doi.org/10.2514/6.2011-3044

[40] Tsieh, T., “An Investigation of Separated Flow About a Hemisphere Cylinder at 0- to 19-Deg Incidence
in the Mach Number Range of 0.6 to 1.5,” AEDC-TR-76-112, 1976.

[41] Rumsey, C. L., Carlson, J.-R., and Ahmad, N. N., “FUN3D Juncture Flow Computations Compared
with Experimental Data,” AIAA 2019-0079. https://doi.org/10.2514/6.2019-0079

[42] Kegerise, M. A. and Neuhart, D. H., “An Experimental Investigation of a Wing-Fuselage Junction
Model in the NASA Langley 14- by 22-Foot Subsonic Tunnel,” NASA/TM-2019–220286, NASA
Langley Research Center, June 2019, Hampton, Virginia.

[43] Rumsey, C. L., Lee, H. C., and Pulliam, T. H., “Reynolds-Averaged Navier-Stokes Computations of
the NASA Juncture Flow Model Using FUN3D and OVERFLOW,” AIAA Paper 2020–1304.
https://doi.org/10.2514/6.2020-1304

[44] Iyer, P. S. and Malik, M. R., “Wall-Modeled LES of the NASA Juncture Flow Experiment,” AIAA
Paper 2020–1307. https://doi.org/10.2514/6.2020-1307

[45] Diskin B., Ahmad N., Anderson W. K., Derlaga J. M., Pandya M. J., Rumsey C. L., Wang L., Wood S.
L., Liu Y., Nishikawa H., and Galbraith M. C., “Verification Test Suite for Spalart-Allmaras QCR2000
Turbulence Model,” AIAA 2021-1552. https://doi.org/10.2514/6.2021-1552

[46] Karman S. and Wyman N., “Automatic Unstructured Mesh Generation with Geometry Attribution,”
AIAA Paper 2019-1721. https://doi.org/10.2514/6.2019-1721

