NASA Environmental Control and Life Support Technology Development and Maturation for Exploration: 2021 to 2022 ICES Paper 2022-281

James L. Broyan, NASA Headquarters Melissa McKinley, Imelda Stambaugh, NASA Johnson Space Center Gary A. Ruff, NASA Glenn Research Center Andrew C. Owens, NASA Langley Research Center

51st International Conference on Environmental Systems July 10-14, 2021

Agenda

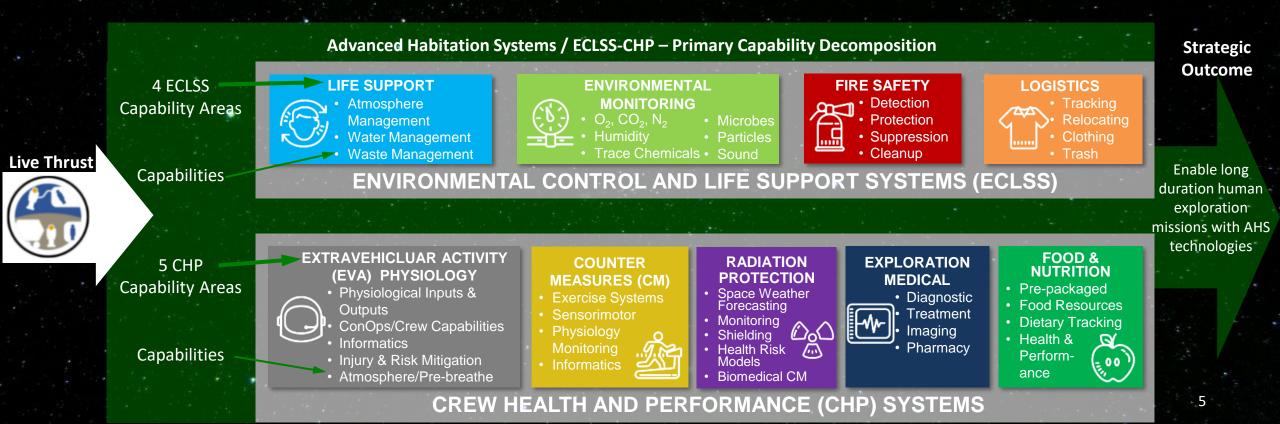
- Capability alignments to NASA objectives
- ECLSS-CHP capabilities and mission drivers
- ECLSS envisioned future and exploration ECLSS
- Technology development progress toward envisioned futures
- Validating performance and reliability
- Summary

Capabilities Alignment to NASA Objectives

• ECLSS-CHP technology development has been capability focused for several years

- Approaching technology development using capability needs and gaps is robust way supporting higher level NASA goals
- NASA released 50 blueprint objectives in May 2022 (Transportation-Habitation, Lunar and Mars Infrastructure, Operations, and Science)
 - Most ECLSS-CHP capabilities directly align to four transportation-habitation blueprint objectives (TH-3, TH-4, TH-7, TH-8)
- NASA's Space Technology Mission Directorate released its strategic framework of 4 'Thrusts' (Go, Land, Live, and Explore) in January 2022
 - Most ECLSS-CHP capabilities directly align to the Live thrust

What are ECLSS-CHP Systems?


- The systems and technologies that keep our astronauts healthy and productive while living and working in space
- 9 Capability Areas are further decomposed to capabilities and sub-capabilities to define gaps

July 10-14, 2021

ECLSS-CHP SCLT Capability Areas and Capabilities

- Capability areas are divided into 25 technology development roadmaps
 - Roadmaps capture development, tech demos, validation, reliably testing and mission infusion targets
 - Roadmaps are directorate (e.g. ESDMD, SOMD, STMD) and program (EC, ISS, HRP, GCD) agnostic
- ECLSS-CHP has 76 ESDMD Capability Integration Team (CIT) recognized gaps plus numerous related gaps

Mission Characteristics Influence on Capability Areas (1/2)

Mission characteristics the drive capability needs		Lunar Surface	Mars Transit	Mars Surface	Most affected capability areas			
Missi	Mission Duration							
	Crew consumables and waste generation are fixed kg/d	I.	с	с				
	Duration needs to be long enough to offset system closure mass	s	с	s				
Crew safety and mission success goals								
	Longer duration increases risk	I	С	С	<mark>6 🎕 🏄</mark> 🗗 😵			
	Increased Probability of Sufficiency (POS) - increase spares & certainly of spares life	I	с	s				
	Increased ability for Earth independent diagnostics and repair	I	с	с				
Microgravity vs Surface								
	μg adds complexity to address liquid-gas- solids separation and other phenomena	I	s	N/A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Freq	Frequent planned EVAs							
	Loss of water and oxygen (less available for recycling)	s	N/A	s				
	Increased crew fatigue and injury risk	s	N/A	S	S O 🙆			
	Reduced cabin pressure to reduce pre- breath time, impacts 14.7 psia/23% O ₂ systems	s	I	S				

I = influences S = strong C = critical

51st International Conference on Environmental Systems July 10-14, 2021

Mission Characteristics Influence on Capability Areas (2/2)

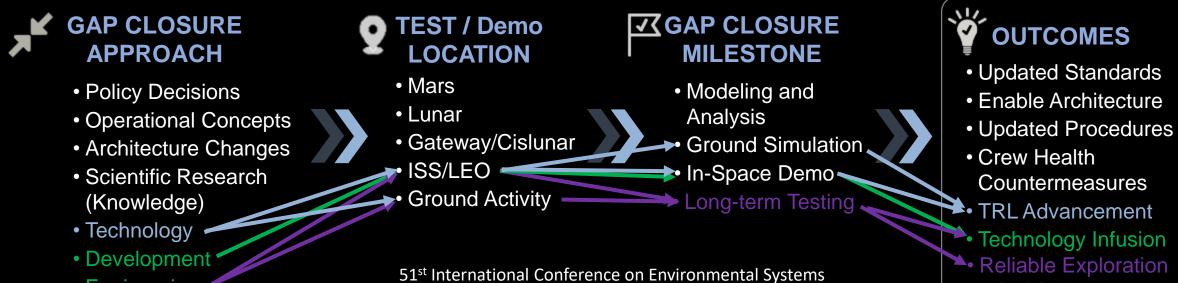
Mission characteristics the drive capability needs		Lunar Surface	Mars Transit	Mars Surface	Most affected capability areas			
Number of crew members								
	Crew consumables are fixed kg/d	I	I	1	S T 💮			
Planetary protection and science integrity								
	Monitoring/sterilization/treatment/contain ment adds mass	I	s	с	S 🗕 🖀 👕			
Long uncrewed periods								
	Adds mass to prevent or recover from microbial upset	s	с	I	<u>@ & # </u> ~			
	Importance of habitat autonomy and robotic caretaking increases	I	s	I				
Availability of In-Situ Resource Utilization (ISRU) products (water and gases)								
	Influences recycling break even point, possible ISRU-ECLS sensor and processor commonalities	s	N/A	s				

I = influences S = strong C = critical

Capability Gaps Definition

CAPABILITY The ability to meet an exploration objective through Architecture, Engineering, Development, Technology, Operations or Research for a given set of constraints and level of risk.

Current Capabilities (state of the art)


Capabilities we have today, supporting or available for human or robotic missions....

Envisioned Future (Future Needed Capabilities)

Anticipated future capabilities based)on future mission architectures and agency strategic planning

ECLSS-CHP

Engineering

July 10-14, 2021

ECLSS Envisioned Futures (CHP covered in ICES-2022-299)

(Mission need) • L = Lunar surface • T = Transit to Mars • M = Mars surface

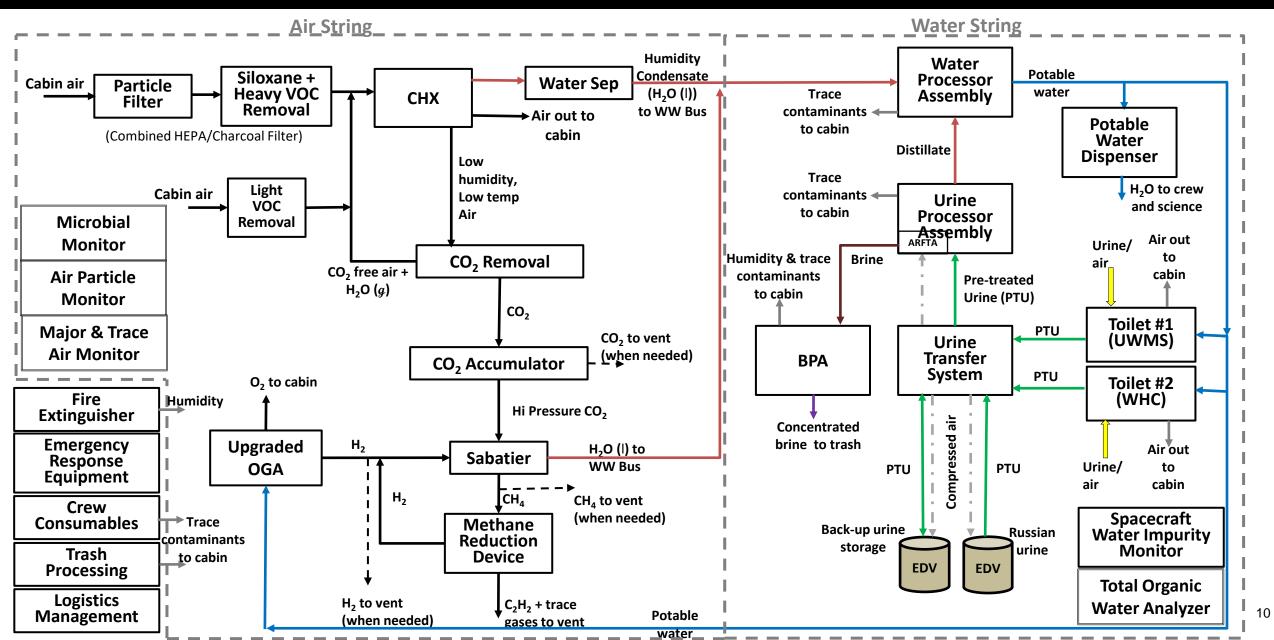
LIFE SUPPORT

- Reliable long-duration life support, >800 days w/o resupply (L,T,M)
- >20% reduction in spares and installed mass (T)
- Repeated missions with >9 months dormancy (L,T,M)
- >75% oxygen recovery at 2 mm-Hg CO₂ (T)
- High pressure oxygen recharge for EVA (L,M)
- >98% water recovery (L,T,M)
- Remove respirable lunar and Mars dust (L,M)
- Planetary protection compatible ECLSS venting (M)

ENVIRONMENTAL MONITORING

- Identify and quantify chemical (>12 water, >33 air) and microbial species in-flight with out sample return (L,T,M)
- Ability to detect unknown constituents (T,M)
- Distinguish between fire, habitat dust, and surface dust particles (L,M)
- Support forward and backward planetary protection detection (both microbial and non-DNA techniques) (M)

- Test-verified partial gravity flammability characteristics and countermeasures (L,M)
- ECLSS compatible fire suppression (L,T,M)
- Reduce post fire clean-up time (L,T,M)
- Common fire safety strategy across element architectures (L,T,M)



- Jettison >90% of trash mass during Mars transit (T)
- Mars trash disposal compatible with planetary protection (M)
- In-flight autonomous logistics (L,T,M)
- Reducing clothing and wipes mass by >50% (L,T,M)
- Clothing flammability (and other non-metallics) >36%
 O₂ (L,M)

Exploration ECLSS on ISS

Getting to 98% water & >75% oxygen recovery requires integration and verification of many systems

Evolving Habitation Systems for SUSTAINABLE HUMAN EXPLORATION

Use ISS as Testbed for Evolution of ECLSS and CHPS

Continue Testbeds on Commercial Platforms in LEO

> Notional Commercial Platform in LEO

International Space Station (ISS)

- Demonstrate new capabilities
- Increase reliability data of existing capabilities

Complementary Ground Tests and Analogs

- Food system analog to evaluate crew impacts
 Integrated reliability testing
- Partial gravity drop tower and suborbital flight material flammability evaluations
 CHPS integrated analogs

Infuse Technologies into Gateway

Orion and Gateway

Toilet
 CO2

- Environmental monitoring
 - Low-mass exercise countermeasure
 - Radiation monitoring
 - Medical system
 - Fire suppression and cleanup
 - · Dormancy/autonomy

Human Landing System and Sustained Lunar Surface ECLSS-CHP Infusion

- Partial gravity and exploration atmosphere fire safety
 Exploration spacewalk pre-breathe and conops
 Surface habitat: regenerative ECLSS and CHPS adapted for surface
- Pressurized rover: ECLSS waste collection and transfer

Infuse Full Long Duration Microgravity ECLSS and CHPS into Mars Transport

Mars-class Transportation

- High-reliability and high loop closure ECLSS
- Broad spectrum environmental monitoring
- Long shelf-life, low water food system
- Countermeasures to support self-egress
- Medical diagnostics, treatment, and decision support

Mars Surface ECLSS-CHPS

Robust microbial and chemical monitoring
Planetary protection compatible surface waste disposal

ECLSS = Environmental Control and Life Support Systems | CHPS = Crew Health and Performance Systems | LEO = Low-Earth Orbit

APHICS NOT TO SCALE 2022051

Life Support – Atmosphere Management

Reducing resupply oxygen from increased metabolic carbon dioxide recycling, support EVA high pressure and medical needs

- Reliable long-duration life support with Earth independent diagnostics and repair (L,T,M)
- •>20% reduction in spares and installed mass (T)
- Enable single missions >800 days w/o resupply (T)
- Repeated missions with >9 months dormancy (L,T,M)
- •>75% oxygen recovery at 2 mm-Hg CO_2 (T)
- High pressure oxygen recharge for EVA (L,M)
- Remove respirable lunar and Mars dust (L,M)
- Planetary protection compatible ECLSS venting (M)

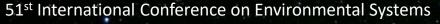
Current Technology

- ~47% of ISS air is currently recycled
- ~Carbon Dioxide Removal Assembly (CDRA)
- Oxygen Generation Assembly (OGA)
- Condensing Heat Exchanger (CHX)
- Trace Contaminate Control System (TCCS)
- HEPA particle filtration

- Benefit from evaluation 5 CO₂ removal flight demonstrations
- Improved O₂ generation maintenance
- Robust TCCS
- Identified and resulted unexpected integrated chemical interactions with cabin air trace contaminants
- Validated operation

Thermal Amine CO₂ Scrubber

4BedCO₂ Scrubber


Technology Development and

Demonstration

- Long duration reliability testing on ISS & ground
- Thermal Amine CO₂ Scrubber
- 4-bed CO₂ Scrubber
- Ionic Liquid CO₂ Scrubber
- Advanced OGA
- Sabatier 2.0 enhancements (>47%)
- High pressure/purity O₂ for EVA
- On-demand medical O₂
- Long-life condensing heat exchanger
- Methane Pyrolysis and Bosch
- Trace gas catalytic oxidizer upgrades
- Scroll and cyclone particulate filtration

Medical Oxygen Generator

July 10-14, 2021

Life Support – Water Management

Reducing resupply water with increased water recovery

- Reliable long-duration life support with Earth independent diagnostics and repair (L,T,M)
- •>20% reduction in spares and installed mass (T)
- Enable single missions >800 days w/o resupply (T)
- Repeated missions with >9 months dormancy (L,T,M)

Current Technology

- ~93% of ISS water is currently recycled
 - ~100% of humidity condensate
 - ~85% of urine
- Urine Processor Assembly (UPA)
- Water Recovery System (WRS)
- Potable Water Dispenser (PWD)
- Microbial check valves (MCVs)
- Iodine biocide
- Chromic-phosphoric urine pretreatment

Technology Development and Demonstration

- Long duration reliability testing on ISS & ground
- Wetted systems dormancy tolerance and recovery
- Water Processor Assembly (WPA) Upgrades
- UPA Upgrades
- Brine Processor Assembly (BPA)
- Exploration Potable Water Dispenser
- Disinfection development for dormancy
- Partial-g planetary water system

Brine Processor Assembly

Urine Processor Assembly Upgraded Distillation Assembly

- Demonstrated high level of water recovery
- Identified and resulted unexpected integrated chemical interactions with cabin air trace contaminants
- Safe high quality potable water
- Reliable operation

Life Support – Waste Management

Collection, stabilization and drying of waste; lower mass and volume

- Reliable long-duration life support with Earth independent diagnostics and repair (L,T,M)
- •>20% reduction in spares and installed mass (T)
- Enable single missions >800 days w/o resupply (T)
- Repeated missions with >9 months dormancy (L,T,M)

Current Technology

- Russian commode frequent component changeout, large mass and volume
- Precise pretreatment allows 85% water recovery in UPA
- No fecal processing

Technology Development and Demonstration

- Universal Waste Management System (UWMS)
- UWMS Alternate Fecal Container to reduce logistics mass
- Fecal drying technologies under development to recover water and reduce logistics mass

WHC/UWMS Dual Stall

UWMS and Acoustic Cover Mockups

- Compact volume and reduced mass toilet
- Provides precise urine pretreatment dose
- Identified acoustic and pre-treatment measurement issues with redesign solutions in-work

UWMS Rigid Fecal Canister (left) and Alternate Fecal Canister (right)

Environmental Monitoring

Ensure habitat safe air, water, surfaces without sample return analysis

- Includes air, water, microbial, particulate, and acoustic monitoring
- Identify and quantify chemical (>12 water, >33 air) and microbial species in-flight with out sample return (L,T,M)
- Ability to detect unknown constituents (T,M)
- Distinguish between fire, habitat dust, and surface dust particles (L,M)
- Support forward and backward planetary protection detection (both microbial and non-DNA techniques) (M)

Current Technology

Major Constituent Analyzer

• Air Quality Monitor

analysis

• Distinct technologies for different types of monitoring

Potable Water Total Organic Analyzer

Reliance on return sample and ground

Technology Development and Demonstration

- Long duration reliability testing on ISS
- MinIon-DNA sequencer
- Air and water microbial sequencing sample preparation
- Air Particle Monitor
- Miniature air monitor
- Spacecraft Atmosphere Monitor (SAM)
- Potable Water Total Organic Carbon Analyzer
- Spacecraft Water Impurities Monitor (SWIM)
- Acoustic monitors, low mass acoustic materials, and quiet fan modeling
 - 51st International Conference on Environmental Systems

July 10-14, 2021

Airborne Particulate Monitor

Spacecraft Atmospheric Monitor

MinIon/Biomole

Mini-Total Organic Carbon Analyzer

- Long term operation and reliability testing planned
- Developing smaller particulate and TOC
- Developing broad spectrum air and water monitors
 - 15

Fire Safety

Materials, procedures, and fire safety equipment for ug and partial-g environments

- Test-verified partial gravity flammability characteristics and countermeasures (L,M)
- ECLSS compatible fire suppression (L,T,M)
- Reduce post fire clean-up time (L,T,M)
- Common fire safety strategy across element architectures (L,T,M)

Current Technology

- Partial understanding of large ug fire propagation and properties
- Very limited knowledge of partial gravity fire properties
- Obsolete monitoring
- Cleanup by depress/repress
- Limited mask emergency response
- CO2 based fire extinguishers

Technology Development and Demonstration

- Anomaly Gas Analyzer
- Water Spray mist fire extinguisher
- Smoke cleanup device
- Improved realistic fire training
- Saffire VI on Cygnus ug (varies ~2000-3700 cm²)
- CLPS partial-g (~150 cm²)
- Blue Origin partial-g (~40 cm²)
- · Partial gravity drop tower spin test and development of non-spin capability

ISS Emergency Mask Donning Practice

Water Spray Mist Fire Extinguishers

Anomaly Gas Analyzer

Saffire IV ug

Material Tests (planned)

Partial-g Spin **Drop Tower** Test Rig

16

Common emergency response equipment across vehicles

Logistics Reduction

In-flight trash stabilization/disposal, flame resistant crew clothing, and autonomous logistics

- Jettison >90% of trash mass during Mars transit (T)
- Mars trash disposal compatible with planetary protection (M)
- In-flight autonomous logistics (L,T,M)
- Reducing clothing and wipes mass by >50% (L,T,M)
- Clothing flammability (and other non-metallics) >36% O2 (L,M)

Current Technology

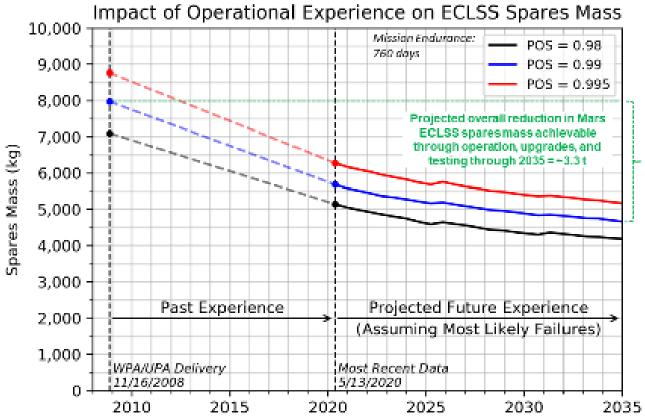
- Trash removed from the space station by resupply vehicles
- Manual bar code scanning with partial implementation of RFID automatic reading in 3 modules
- Flammable crew clothing
- Disposable Cargo Transfer Bag (MCTB)
 usage
- Improved logistics localization and crew time savings
- Zero trash logistics outfitting
- Reduced trash volume and stability improves habitability

Technology Development and Demonstration

- Trash Compactor Processing System (TCPS)
- Trash-to-gas / OSCAR
- RFID Enabled Autonomous Logistics Management (REALM)
- Multipurpose Cargo Transfer Bag (MCTB) usage
- Long wear clothing / laundry
- In-flight disinfectant solution generation for reusable wipes
- ISS Bishop airlock jettison bag
- Exploration trash jettison trade study
- Lunar vacuum cleaner testing

REALM-2 Mobile Reader on Astrobee REALM Smart Drawer Tag

MCTB as cargo bag



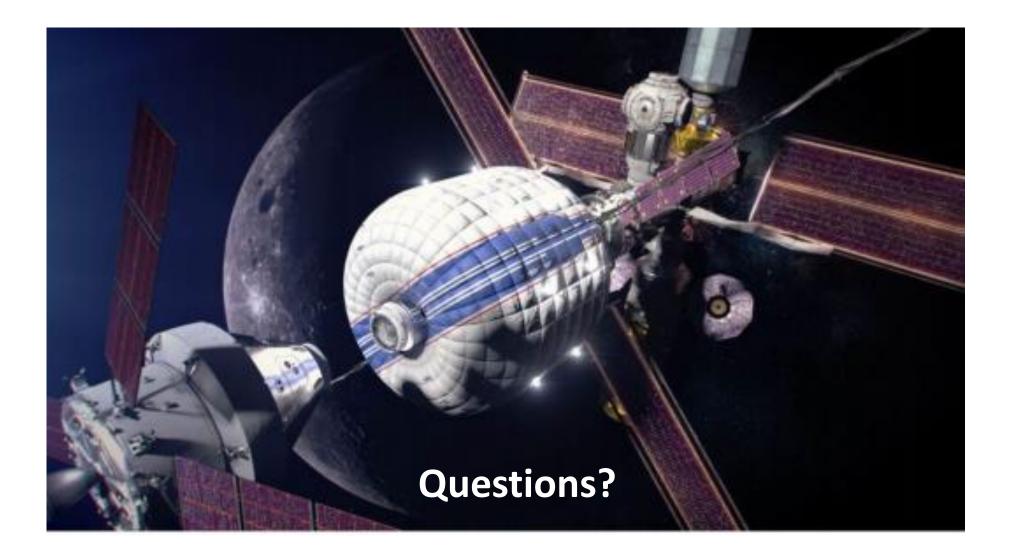
MCTBs deployed to adsorb treadmill noise

TCPS compacted trash tile

Long-term Test Verified ECLSS is Critical for Mars Reduces Mass and Improves Crew Safety

ECLSS spares allocated to achieve a **reasonable range** of Probability of Sufficient (POS) spares for a **760-day Mars-class mission** using initial, current, and projected future failure rate estimates.

- Failure rates cannot be measured directly
- Must be statistically estimated from test & operational data
 - ISS experience shows that initial failure rate estimates are often incorrect, sometimes by >4x
 - ISS flight experience has been extremely valuable, providing data to refine failure rate estimates
 - 30% reduction in spares mass
 - Improved crew safety via identification and mitigation of hidden risk from underestimated failure rates (too low a spares mass allocation or taking the wrong complement of spares)


Open loop ECLSS for 4 Crew on round trip Mars mission (860 days) requires:

- ~16,500 kg water
- ~3,300 kg oxygen
- ~ 6,000 kg food (@25% hydration)
- Does not include tankage, packaging and structure

18

Summary

- The interactions of air, water, crew consumables, and crew in a closed loop habitat are chemically and physically complex and understanding issues evolves over time
- Reducing spares mass with reliability testing and CO₂ reduction/reduced launched food water content are the largest knobs to turn to reduce Mars Transit departure mass
- Test verified ECLSS-CHP systems requires many years of ground and LEO operation
 - Systems fail and interact in unexpected ways
 - New failure modes still being identified after 10+ years of operational time
- Long term NASA ECLSS-CHP investments have dramatically improved loop closure, resolved unexpected performance issues, and is prepared for long term reliability testing
- It is possible to on-ramp new ECLSS technologies, but it requires significant test verified performance and understanding of interactions across the habitat

51st International Conference on Environmental Systems July 10-14, 2021

ECLSS-CHP Envisioned Future Decomposition by Capability Area

(only a subset of the 77 gaps listed)

LIFE SUPPORT

- Reliable long-duration life support with Earth independent diagnostics and repair (L,T,M)
- >20% reduction in spares and installed mass (T)
- Enable single missions >800 days w/o resupply (T)
- Repeated missions with >9 months dormancy (L,T,M)
- >75% oxygen recovery at 2 mm-Hg CO₂ (T)
- High pressure oxygen recharge for EVA (L,M)
- >98% water recovery (L,T,M)
- Remove respirable lunar and Mars dust (L,M)
- Planetary protection compatible ECLSS venting (M)

SPACESUIT PHYSIOLOGY

- 100% of tasks within human performance (L,T,M)
- Predict and mitigate decompression sickness (L,M)
- Predict and mitigate of suit or EVA injury (L,M)
- 6 Major physiological informatics parameters provided in-suit to enable real time self assessment or loss of communication areas (L,M)

ENVIRONMENTAL MONITORING

- Identify and guantify chemical (>12 water, >33 air) and microbial species in-flight with out sample return (L,T,M)
- Ability to detect unknown constituents (T,M)
- Distinguish between fire, habitat dust, and surface dust particles (L,M)
- Support forward and backward planetary protection detection (both microbial and non-DNA techniques) (M)

- Test-verified partial gravity flammability characteristics and countermeasures (L,M)
- ECLSS compatible fire suppression (L,T,M)
- Reduce post fire clean-up time (L,T,M)
- Common fire safety strategy across element architectures (L,T,M)

(L,T,M)

MEDICAL

In-flight diagnostics and

treatment for 100 of 120

medical risk conditions

Autonomous medical

support systems (T, M)

skill and & decision

- Jettison >90% of trash mass during Mars transit (T)
- Mars trash disposal compatible with planetary protection (M)

(Mission need) • L = Lunar surface

• T = Transit to Mars • M = Mars surface

- In-flight autonomous logistics (L,T,M)
- Reducing clothing and wipes mass by >50% (L,T,M)
- Clothing flammability (and other non-metallics) >36% O2 (L,M)

- Reduce mass and volume (L,T,M)
- Maintain/monitor fitness inflight to enable unassisted landing egress & EVA (L,T,M)
- Validated lunar and Mars fitness standards (L,M)

- 24-hr prediction of solar storm duration and intensity to >90% (L,T,M)
- High energy neutron detectors (L,T,M)
- Earth independent monitoring/forecasting (T,M)
- GCR shielding (T,M)

- 100% of nutrient stability >5-year shelf life (T,M)
- Food acceptability >90% (L,T,M)
- <30% launched water</p> content (T,M)
- Exploration countermeasure in-flight nutrition intake monitoring (L,T,M)

ECLSS-CHP State-of-the-Art by Capability Area

LIFE SUPPORT

- ISS life support demonstrations have identified required system reliability issues - fixes in work
- ~21,700 kg spares + food, 4 crew x 860days x Probability of Sufficiency (POS)=0.99
- Resupply every 2-6 months
- Nearly uninterrupted use of wetted systems
- ~47% oxygen recovery at 2 mm-Hg CO₂
- No in-flight EVA oxygen recharge capability
- ~93% water recovery
- HEPA filters require frequent manual cleaning

SPACESUIT PHYSIOLOGY

- Physiological inputs/outputs adequately known for ISS EVA only
- Only limited ground communicated informatics provided to EVA crew
- Ground, ISS, and Apollo suit injuries occur (27 injury mechanisms identified)
- Prebreath for 14.7 and 10.2 psia only

- **ENVIRONMENTAL** MONITORING
- Detailed gas/water chemical, microbial identification, and particle analysis only with samples returned to ground
- Major air constituents & limited targeted trace gases in flight
- Water analysis limited to total organic carbon
- Culture based microbial sample return; DNA sequencing limited to surface microbes
- Limited particle measurement capability demonstrated
- Mass intensive passive acoustic adsorption/damping

- 3+ large devices, large mass
- Returning crew egress from landing vehicle requires ground team assistance
- Exercise planning and monitoring via ground Limited sensorimotor countermeasures

- Partial understanding of large ug fire propagation and properties
- Very limited knowledge of partial gravity fire properties
- Obsolete monitoring

- Cleanup by depress/repress
- Limited mask emergency response • CO₂ based fire extinguishers

- Manual trash compaction, short storage time, module level jettison only
- No planetary protection compliance for waste disposal
- Manual & limited In-flight autonomous logistics tracking
- Disposable & flammable clothing, towels, & wipes

6.0

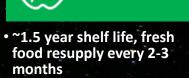
tools

shielding

Mature shielding design

shielding & limited GCR

Crew radiation monitoring


Short term space weather

using earth centric assets

Reconfigurable SPE

- Evacuate <8 hrs
- Resupply 2-3 months
- Limited in-flight diagnostic, treatment
- Ground medical data & decision support systems

FOOD &

NUTRITION

- Only ~215 standard food items, µg plant experiments
- ~47% launched water content
- In-flight nutrient intake monitoring in development