Broadband Predictions of Optimized Proprotors in Axial Forward Flight

Joshua Blake, Chris Thurman, Nik Zawodny, Len Lopes

Aeroacoustics Branch NASA Langley Research Center

Supported by the NASA Transformational Tools and Technologies Project

2023 AIAA AVIATION Forum, 12–16 June 2023 San Diego, CA & Online June 15, 2023: AA-43, Propeller, Rotorcraft and V/STOL Noise VII - Simulation and Prediction

Copyright 2023 United States Government as represented by the Administrator of the National Aeronautics and Space Administration. No copyright is claimed in the United States under Title 17, U.S. Code. All Other Rights Reserved. Published by the American Institute of Aeronautics and Astronautics, Inc. with permission.

Motivation

Model Scale Proprotors (D = 2 ft.) LSAWT Experiments, 45° below rotor plane

Expect tonal noise to dominate in axial flight

Broadband noise is *potentially* **significant** for multirotor UAM vehicles (e.g., Joby^{†‡})

[†]Bain, J.; Goetchius, G. and Josephson, D. *Flyover Noise Comparison Between Joby Aircraft and Similar Aircraft*, VFS, 2022

[‡]Pascioni, K. A.; Watts, M. E.; Houston, M.; Lind, A.; Stephenson, J. H. and Bain, J., *Acoustic Flight Test of the Joby Aviation Advanced Air Mobility Prototype Vehicle*, AIAA 2022-3036, 2022

When might broadband noise dominate?

Tonal noise is shifted to lower frequencies by a slower rotation rate

We might *perceive* high frequency broadband noise to be *louder* than low frequency tonal noise (A-weighting)

Research question:

Can our tools predict broadband noise trends correctly for axial flight?

Experimental Data

Source: NASA

- Proprotor design validation campaign
 - ⇒ Minimize tonal noise from a baseline design using OpenMDAO
 - \Rightarrow Study low-noise designs
 - \Rightarrow Evaluate our prediction tools
- Low Speed Aeroacoustic Wind Tunnel (LSAWT) tests
 - ⇒ Hover and forward flight
 - \Rightarrow Several M_{tip} and M_{∞}
- TM is available (NASA/TM-20220015637)
 - \Rightarrow Documents tunnel entry
 - \Rightarrow Performance and acoustic data
 - ⇒ Data and geometry released: 2022 Optimized Rotor Data Set

Low-Fidelity Prediction Methods

Aerodynamics

- ANOPP-PAS (Propeller Analysis System)
 - BEMT with radially varying inflow
 - Local α , M, and Re at each blade station
- Thrust at the design condition was matched by adjusting blade collective
- Blade stations from r/R = 0.2 to 0.99

Noise Predictions

- Broadband Self-Noise: ANOPP2 (ASNIFM)*
 - Brooks, Pope, and Marcolini (BPM)
 - Implemented for rotors
- Tested in hover and edgewise flight^{†‡^}
- Not often applied to axial flight

Single Microphone

45° below rotor plane, 12R

BPM: Useful But Limited**

Most BB noise generated here! **Brooks, T. F., Pope, D. S., and Marcolini, M. A., "Airfoil Self-Noise and Prediction," NASA RP 1218, 1989. BPM Method In M C24ND Outside M Range $M_{tip} = 0.667$ Range ⇒ Semiempirical Six self-noise sources for 2D and 3D airfoils r/R = 0.2 r/R = 0.32r/R = 1 \Rightarrow Widely used in low- and mid-fidelity analysis Built on limited data set In M OPT-III **Outside** M Range $M_{tin} = 0.619$ \Rightarrow Only for an NACA 0012 Range \Rightarrow Only two modeled BL trips - Untripped/naturally transitional r/R = 0.2r/R = 0.34r/R = 1- Heavily tripped \Rightarrow Reynolds number up to 1.5x10⁶ **Outside** M COPR-3 $M_{tip} = 0.343$ In M Range Mach number up to 0.208 Range Blade station Mach numbers* are r/R = 0.61r/R = 1r/R = 0.2greater than the BPM limit! Research question: *Reynolds numbers are in range Can our tools predict broadband noise trends correctly for axial flight?

Two[†] Main Self-Noise Mechanisms**

**Adapted from: Brooks, T. F., Pope, D. S., and Marcolini, M. A., "Airfoil Self-Noise and Prediction," NASA RP 1218, 1989.

Total TBL-TE

[†] LBL-VS and tip vortex noise are not considered here.

TBL-TE Noise Mechanism**

**Adapted from: Brooks, T. F., Pope, D. S., and Marcolini, M. A., "Airfoil Self-Noise and Prediction," NASA RP 1218, 1989.

Total TBL-TE

Modeling δ^* for TBL-TE Noise

- δ^* model depends on boundary layer trip
 - \Rightarrow Untripped / natural transition
 - \Rightarrow Fully / aggressively tripped
 - ⇒ Moderately tripped (calculated average in ASNIFM)
- No physical trip in the proprotor tests!
 - \Rightarrow Underpredicted TBL-TE noise with untripped setting $\stackrel{\circ}{\sim}$
 - ⇒ Calculated δ^* were possibly too small?
 - \Rightarrow Trip needed to model correct TBL-TE noise trends
- δ^* is assumed to only depend on Reynolds number in the BPM method
- Could δ^{*}also depend on Mach number?

δ^* for a constant Reynolds number:

BPM (untripped) vs. XFOIL (natural transition)

What is the best trip setting for TBL-TE across several flight conditions?

Moderately Tripped Predictions

Bluntness Vortex Shedding Mechanism**

**Adapted from: Brooks, T. F., Pope, D. S., and Marcolini, M. A., "Airfoil Self-Noise and Prediction," NASA RP 1218, 1989.

Tuning the Trailing Edge Angle (ψ)

NACA 0012: $\psi = 14^{\circ}$

Flat plate: $\psi = 0^{\circ}$

- Trailing edge thickness, *h*
 - \Rightarrow Modeled as a % of chord, **h/c**
 - ⇒ h/c was tuned for each proprotor
- Trailing edge angle, $\boldsymbol{\psi}$
 - $\Rightarrow \psi$ was tuned for each flight condition
 - $\Rightarrow \psi$ should only depend on geometry!

BVS Trends For A Constant Advance Ratio (J)

- Assume that BVS also depends on $\boldsymbol{\alpha}$
- If α distribution is the same, should *not* have to retune ψ
- Same J = same α distribution

BVS likely varies with $\boldsymbol{\alpha}$

Trends for All Three Proprotors

- Amplitude not predicted well for C24ND (baseline) proprotor
 - \Rightarrow 6 dB underprediction possibly due to M_{tip} = 0.667
 - ⇒ Difficult to compare noise reduction during design iterations

Trends for All Three Proprotors

- Amplitude not predicted well for C24ND (baseline) proprotor
 - \Rightarrow 6 dB underprediction possibly due to M_{tip} = 0.667
 - \Rightarrow Difficult to compare noise reduction during design iterations
- Spectral shapes and frequency trends are predicted well
 - \Rightarrow Required <u>tuning</u> TBL-TE and BVS inputs!
 - \Rightarrow Possible root/hub noise below 5 kHz

With tuning and amplitude shift, <u>trends between proprotors</u> are acceptable for low-fidelity predictions

Conclusions

Key takeaways

- ⇒ Trends can be matched by tuning BPM parameters
 - Moderately tripped boundary layer setting worked best across a range of flight conditions despite no physical trip in experiments
 - BVS trends matched by adjusting h/c for each proprotor and ψ for each flight condition

⇒ BPM needs to be improved and expanded

- δ^* may depend on Mach number, which was not considered in the BPM model
- BVS may depend on α , which was not considered in the BPM model

• Questions for future study

- ⇒ How does δ^* vary with Mach number?
- \Rightarrow Can we determine a variation of BVS with α ?
- \Rightarrow How accurate are the other BPM models (LBL-VS, tip vortex noise)?

Thank you.

Joshua Blake

joshua.d.blake@nasa.gov

Nikolas Zawodny

nikolas.s.zawodny@nasa.gov

christopher.thurman@nasa.gov

Christopher Thurman

Leonard Lopes

leonard.v.lopes@nasa.gov

Aeroacoustics Branch NASA Langley Research Center

2023 AIAA AVIATION Forum, 12–16 June 2023 San Diego, CA & Online

June 15, 2023: AA-43, Propeller, Rotorcraft and V/STOL Noise VII - Simulation and Prediction

Backup Slides

 \bigcirc

Experimental Setup

Summary of TBL-TE and BVS Noise Investigation

- Moderately tripped gave best TBL-TE predictions across a range of flight conditions for all proprotors
 - ⇒ Untripped boundary layer setting underpredicted TBL-TE
 - \Rightarrow Proprotors were untripped in the experiments!
 - ⇒ Possible dependence of δ^* on Mach number was discovered and may explain the need for increasing the boundary layer trip
 - ⇒ C24ND underpredicted peak TBL-TE by 6 dB, possibly due to high tip Mach number
 - ⇒ Possible root stall or hub noise observed in C24ND experimental data
- Predicting BVS noise correctly required tuning h/c for each proprotor and ψ for each flight condition
 - \Rightarrow BVS model does not accurately capture the physics for a change in α
 - \Rightarrow Predictions at a constant advance ratio (same α distribution) did not require retuning ψ
 - \Rightarrow BVS may vary with α

See paper for plots and additional details

Predictions at the Design Condition: C24ND

Predictions at the Design Condition: OPT-III

Predictions at the Design Condition: COPR-3

