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EXTENSION OF THE STANDARD VISIBILITY FUNCTION
TO INTERVALS OF I MILLIMICRON BY THIRD-DIFFER-
ENCE OSCULATORY INTERPOLATION

By Deane B. Judd

ABSTRACT

The two empiric representations (Tyndall-Gibson and Walsh) of the visibility

of radiant energy yield curves which fail to pass exactly through the values at
every 10 eqm adopted as standard; hence, they can not serve as means of obtaining
interpolated values. By the method of osculatory interpolation the visibility

function is represented as a series of parabolas of the third degree which join at

the specified values so as to have a common first derivative at the junction point.

The discontinuities in derivatives of higher order which exist at the junction
points are sufficiently small to be of no consequence.

Since the adoption of the Gibson-Tyndall l recommended visibility

function as the international standard 2 two empiric formulas have
been proposed for its approximate representation, one by Tyndall
and Gibson 3 and the other, which is of the same type, but with a
somewhat better choice of constants, by Walsh.* Such empiric for-

mulas as these have obvious uses; 6 and if a similar formula were at

hand which fitted the adopted values of visibility exactly, it would be
of somewhat more extended use than either of the formulas already
proposed; for example, it would serve to yield interpolated values of

perfect continuity possessing continuous derivatives of all orders. It

is not to be supposed, of course, that interpolation by such a formula,
or by any other method, graphical or mechanical, yields any informa-
tion concerning the true course of the standard visibility function
between the specified points. In fact, that course is wholly unspeci-
fied, and there are a large number of smooth curves to be drawn
through these intervals. It has been found convenient in the work
of the National Bureau of Standards to adopt arbitrarily a single one
of these curves. The interpolated

^
values adopted are found by a

method superior to any graphical interpolation because the values
may be reproduced at any time anywhere, and it is believed that this

method is superior to solutions by other formulas for interpolation
because it combines continuity in function and in first derivative with

i K. S. Gibson and E. P. T. Tyndall, The Visibility of Radiant Energy, B. 8. Sci. Paper No. 475, p. 174;

1923.
J Proc. International Commission on Illumination, 6th meeting, Geneva, pp. 67 and 232; July, 1924.
« E. P. T. Tyndall and K. S. Gibson, Visibility of Radiant Energy Equation, J. Opt. Soc. Am. and

Rev. Sci. Insty 9, p. 403; 1924.
* J. W. T. Walsh, Visibility of Radiant Energy Equation, J. Opt. Soc. Am. and Rev. Sci. Inst., 11, pp.

111-112; 1925.
» For example, the Tyndall-Gibson formula was used by Ives in computing radiant luminous efficiency

(H. E. Ives, The Luminous Properties of the Black Body, J. Opt. Soc. Am. and Rev. Sci. Inst., 12, pp.
75-78; 1926).
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considerable computational convenience. Indeed, the ease of apply-
ing this method is so great that the labor involved differs little from
that of the graphical method.
The method used is interpolation by the third-difference, oscillatory

formula developed by Karup. 6 Application of this formula, interval

by interval, results in a series of parabolas of the third degree which
join each other at the specified values of the function in such a way
as to yield a continuous curve having a continuous first derivative;
derivatives of higher order are discontinuous at the specified points
to a greater or less degree according as differences of higher order
than the second are great or small.7 Although Karup presented a
method of applying this formula by computing from the leading major
differences (see, for example, Table 1) the leading minor differences

(that is, the leading differences referring to the nine interpolated
values), and then deriving the desired interpolated values by con-
tinuous addition, the present interpolation of the visibility function
was performed by actually finding the products indicated in the
formula and taking their sum. In this way it was found possible

with the aid of a computing machine to obtain nine interpolated
values and to check them by an independent method in about 15
minutes; 8 it seems doubtful whether the continuous addition method
would be much more expeditious.

If V\ be the visibility for wave length, X, and AiVx©-io
2
A2T

7
x o_ 10

and A3 Vx -io be, respectively, the first, second, and third leading major
differences as exemplified in the first row of Table 1 for X o = 550 m/i,

then we compute by the third-difference oscillatory formula the
interpolated values within the wave-length interval, \ to X o +10, as:

^x = TV 10 + Ktk Fx _io +K2A2l\o. l0 + X3A3IV10

where

:

l£i=(X-X o +10)/10
2&=(X-X o +10) (X-X o)/200
Kz

=(\-\ ¥ (X-X o -10)/2,000

Since we wish at present merely to extend the visibility function
to values for every millimicron, it is necessary only to find by inter-

polation nine new values within each 10 m/x interval; hence the co-

efficients, Ki, K2 , and K3 , may be completely evaluated for this

purpose by setting in succession X—

X

equal to 1, 2, 9.

Table 3 gives such values of the coefficients, Klf K2 , and Kz . Table
4 gives the details of the computation for the wave-length interval,

6 J. Karup, On a New Mechanical Method of Graduation, Trans. 2d Int. Actuarial Congress, p. 83;

1898. J. W. Glover, Derivation of the United States Mortality Table by Oscillatory Interpolation, Quar-
terly Publications of the American Statistical Assoc, 12, p. 90; 1910.

7 The term, osculatory, applies with more aptness to interpolation by the fifth (and higher) difference
formulas than to the third-difference formula because for these formulas the second derivative as well as
the first is continuous at the specified values, which insures that the successive parabolas join so as to have
a common osculating circle at the point of junction. The third-difference formula is also commonly re-

ferred to as an osculatory formula because Karup used that term and because it is derived by argument
similar to that leading to the formulas involving fifth differences, or differences of higher order. We might
have used the fifth-difference formula here, but since, due to the regularity of the standard visibility func-
tion, the resulting values would not differ appreciably from those by the third-difference formula, the
added labor would not have resulted in any practical gain.

8 The check was carried out by taking the differences in the ascending order rather than in the descend-
ing order as indicated by the formula. In general, the resulting products need not be found; they are dis-

covered to be already evaluated incidental to the determination of interpolated values in descending order
for other wave lengths; the check consists, therefore, of assembling in different groupings, for addition,
products already found. (See Tables 1, 2 and 4.)
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550 to 560 m/x, together with the check by the ascending differences

whose computation is indicated in Table 2. The leading ascending
differences, ViVxo+w, v^x^o and VzV\ 0+20j for X o = 550 m/x, appear in

the first row of the table.

The values of the visibility function obtained in this manner for

every millimicron are given in Table 5, together with the values for

every 10m/z (bold-face type) from which the interpolated values
were computed. 9 The function defined, interval by interval, by the

third-difference oscillatory, interpolation formula is, as mentioned
before, continuous and possesses a continuous first derivative. The
derivatives of higher order, however, are not continuous through
the specified points at every 10 m/z. Nevertheless, since no marked
irregularities occur* in the standard values of visibility, these dis-

continuities in derivatives of higher order are of small magnitude
and may be neglected.

Table 1.

—

Computation of the leading descending differences, \ c == 550 inn

X in mji Vx A,Fx AjVx A3 Vx

540
550
560
570

0.954
.995
.995
.952

+0.041
.000

-.043

-0.041
-.043

-0.002

Table 2.

—

Computation of the leading ascending differences, X D — 550 m\i

X in to.\x Vx ViVx V2Vx VsVx

570
560
550
540

0.952
.995
.995
.954

+0. 043
.000

-.041

-0.043
-.041

+0.002

Table 3.

—

Coefficients, K\, K2, and Kz , for interpolation to tenths by the third-

difference, osculatory, interpolation formula:

Vx= Vx -lo+iiTi Aj Vx -lo+KiAtVx -lo+iftA3 Vx -M

X-Xo Kv Ki K3

1

2
3

4
5

+1.1
+1.2

' +1.3
+1.4
+1.5

+0. 055
+.120
+. 195

+.280
+.375

-0.0045
-.0160
-.0315
-.0480
-.0625

6

8
9

+1.6
+1.7
+1.8
+1.9

+.480
+. 595

+.720
+.855

-.0720
-. 0735
-.0640
-.0405

1

9 The first and last intervals were filled in by assuming the visibility for this purpose to be 0.000012 and
0.000015 at 370 and 780 van, respectively.
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Table 4.

—

Example of interpolation of the visibility function by the third-difference,

osculatory formula, descending differences; check by ascending differences

For X o=550 mfi we may write from Table 1:

Vx=0. 954+0.041 Ki -0.041 A2-O.OO2 A3

The coefficients, K\, Aj, and A'3> may be found in Table 3

X in ran +0.041 K\ -0.041 K -0.002 Kz Vx

551
552
553
554
555

556
557
558
559

+0. 045100
+. 049200
+. 053300
+. 057400
+. 061.500

+. 065600
+. 069700
+. 073800
+. 077900

-0. 002255
-. 004920
-. 007995
-. 011480
-. 015375

-. 019680
-. 024395
-. 029520
-. 035055

+0.000009
+.000032
+.000063
+.000096
+.000125

+.000144
+. 000147
+. 000128
+.000081

0. 996854
. 998312
. 999368
1.000016
1. 000250

1.000064
.999452
.998408
.996925

Check by ascending differences: From Table 2 we write:

Vx=0.952+0.043 Ai'-0.043 A/ +0.002 K'z

The coefficients, AY, Ki', and K%, may be found in Table 3 by reading the values of the coefficients,

Ki, K2 , and A'3 , for 10-X+X a

X in mn +0.043 AY -0.043 K^ +0.002 Ki' Vx

551

552
553
554
555

556
557
558
659

+0. 081700
+. 077400
+. 073100
+. 068800
+ 064500

+. 060200
+. 055900
+. 051600
+.047300

-0. 036765
-. 030960
-. 025585
-. 020640
-.016125

-.012040
-. 008385
-. 005160
-. 002365

-0. 000081
-.000128
-. 000147
-.000144
-. 000125

-.000096
-.000063
-.000032
-.000009

0. 996854
. 998312
. 999368

1. 000016
1.000250

1.000064
. 999452
. 998408
. 996926
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Table 5.- The standard visibility function extended to values for every millimicron
by third-difference oscillatory interpolation

X
inm>i

Vx
X

Vx
X

inm/i Vx
X

Vx
X

Vx
X

in m/i Vx

380 0. 00004 450 0.038 520 0.710 590 0.757 660 0.061 730 0. 00052

1 .000045 1 .0399 1 .7277 1 .7449 1 .0574 1 . 000482
2 .000049 2 .0418 2 .7449 2 .7327 2 .0539 2 . 000447
3 .000054 3 .0438 3 .7615 3 .7202 3 .0506 3 . C00415
4 .000059 4 .0459 4 .7776 4 .7076 4 .0475 4 .000387
5 .000064 5 .0480 5 .7932 5 .6949 5 .0446 5 .000360
6 .000071 6 .0502 6 .8082 6 .6822 6 .0418 6 .000335
7 .000080 7 .0525 7 .8225 7 .6694 7 .0391 7 .000313
8 .000090 8 .0549 8 .8363 8 .6565 8 .0366 8 .000291
9 .000104 9 .0574 9 .8495 9 .6437 9 .0343 9 .000270

390 .00012 460 .060 530 .862 600 .631 670 .032 740 .00025

1 .000138 1 .0627 1 .8739 1 .6182 1 .0299 1 .000231
2 . 000155 2 .0654 2 .8851 2 .6054 2 .0280 2 .000214
3 .000173 3 .0681 3 . 8956 3 .5926 3 .0263 3 . 00019S
4 .000193 4 .0709 4 .9056 4 .5797 4 .0247 4 .000185
5 .000215 5 .0739 5 .9149 5 .5668 5 .0232 5 .000172
e .000241 6 .0769 6 .9238 6 .5539 6 .0219 6 .000160
7 .000272 7 .0802 7 .9320 7 .5410 7 .0206 7 .000149
8 .000308 8 .0836 8 .9398 8 .5282 8 .0194 8 .000139
9 .000350 9 .0872 9 .9471 9 .5156 9 .0182 9 .000130

400 .0004 470 .091 .540 .954 610 .503 680 .017 750 .00012

1 .00045 1 .0950 1 .9604 1 .4905 1 . 01585 1 .000111
2 .00049 2 .0992 2 .9661 2 .4781 2 . 01477 2 .000103
3 .00054 3 .1035 3 .9713 3 .4658 3 . 01376 3 .000096
4 .00059 4 .1080 4 .9760 4 .4535 4 .01281 4 .000090
5 .00064 5 .1126 5 .9803 5 .4412 5 . 01192 5 .000084
6 .00071 6 .1175 6 .9840 6 .4291 6 .01108 6 .000078
7 .00080 7 .1225 7 .9873 7 .4170 7 . 01030 7 .000074
8 .00090 8 .1278 8 .9902 8 .4049 8 .00956 8 .000069
9 .00104 9 .1333 9 .9928 9 .3929 9 .00886 9 .000064

410 .0018 480 .139 550 .995 620 .381 690 .0082 760 .00006

1 .00138 1 .1448 1 .9969 1 .3690 1 .00759 1 .000056
2 .00156 2 .1507 2 .9983 2 .3570 2 .00705 2 .000052
3 .00174 3 .1587 3 .9994 3 .3449 3 .00656 3 .000048
4 .00195 4 .1629 4 1.0000 4 .3329 4 .00612 4 .000045
5 .00218 5 .1693 5 1.0002 5 .3210 5 . 00572 5 .000042
6 .00244 6 .1761 6 1.0001 6 .3092 6 .00536 6 .000039
7 .00274 7 .1833 7 .9995 7 .2977 7 .00503 7 .000037
S .00310 8 .1909 8 .9984 8 .2864 8 .00471 8 .000035
9 .00352 9 .1991 9 .9969 9 .2755 9 .00440 9 .000032

429 .0040 400 .208 560 .995 630 .265 700 .0041 770 .00003

1 .00455 1 .2173 1 .9926 1 .2548 1 .00381
2 .00515 2 .2270 2 .9898 2 .2450 2 .00355
3 .00581 3 .2371 3 .9865 3 .2354 3 .00332
4 .00651 4 .2476 4 .9828 4 .2281 4 .00310
5 .00726 5 .2586 5 .9786 5 .2170 5 .00291
6 .00806 6 .2701 6 .9741 6 .2082 6 .00273
7 .00889 7 .2823 7 .9691 7 .1996 7 .00256
8 .00976 8 .2951 8 .9638 8 .1912 S .00241
9 .01066 9 .3087 9 .9581 9 .1830 9 .00225

430 .0116 500 .333 570 .952 640 .175 710 .0021

1 .01257 1 .3382 1 .9455 1 .1672 1 . 001954
2 .01358 2 .3544 2 .9386 2 .1596 2 . 001821
3 . 01463 3 .3714 3 .9312 3 .1523 3 .001699
4 . 01571 4 .3890 4 .9235 4 .1452 4 .001587
5 .01684 5 .4073 o .9154 5 .1382 5 .001483
6 .01800 6 .4259 6 .9069 6 .1316 6 . 001387
7 .01920 7 .4450 7 .8981 7 .1251 7 .001297
8 .02043 8 .4642 8 .8880 S .1188 8 .001212
9 . 02170 9 .4836 9 .8796 9 .1128 9 . 001130

440 .0*3 510 .503 580 0.870 650 .107 720 . 00105

1 .0243 1 .5229 1 .8600 1 .1014 1 .000975
2 .0257 2 .5436 2 .8496 2 . 0961 2 .000907
3 .0270 3 .5648 3 .8388 3 .0910 3 .000845
4 .0284 4 .5865 4 .8277 4 .0862 4 .000788
5 .0298 5 .6082 5 .8163 5 .0816 5 .000736
6 .0313 6 .6299 6 .8046 6 .0771 6 .000688
7 .0329 7 .6511 7 .7928 7 .0729 7 .000644
8 .0345 8 .6717 8 .7809 8 .0688 8 .000601
9 .0362 9 .6914 9 .7690 g .0648 9 .000560
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The values of Table 5 result from carrying the computation out
to at least one more significant figure than has been reported; they
differ from the values which would result from the rigorous applica-
tion of the formula,therefore, by an amount in every case less than 1

in the last figure reported.

LOOO

.950

<

| .900

>•

I-.850

.800

OOO Specified Values

• • • Values found by
third- difference,
osculatory interpolation

520 530 540 550

WAVE LENGTH IN

560 570 580 590

MILLIMIC RONS
Figure 1.

—

An example of interpolation of the standard visibility function
by the third-difference, osculatory formula

A portion of the visibility curve near its maximum is chosen for a demonstration of the smoothness of

the interpolated values

It is, perhaps, of interest to note that the maximum value of the

visibility function according to third-difference osculatory inter-

polation (see Table 4, Table 5, or fig. 1) is nearly unity, and hence
agrees to within 3 in the fourth decimal with the value given by
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Gibson and Tyndall from graphical interpolation ; and, to be sure,

the wave length of the maximum visibility is also very closely 555
m/x as they found.

Figure 1 serves to indicate graphically for a restricted wave-length
range the regularity of the interpolated values which are shown as

small circles. The values originally specified at every 10 m^u are

plotted as large circles.

Acknowledgment is due Miss Mabel E. Brown for carrying out the
computations.

Washington, December, 1930.


