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Word length statistics and Lyapunov

exponents for Fuchsian groups with cusps

Vaibhav Gadre, Joseph Maher and Giulio Tiozzo

ABSTRACT. Given a Fuchsian group with at least one cusp, Deroin,
Kleptsyn and Navas define a Lyapunov expansion exponent for a point
on the boundary, and ask if it vanishes for almost all points with respect
to Lebesgue measure. We give an affirmative answer to this question, by
considering the behavior of the word metric along typical geodesic rays
and their excursions into cusps. We also consider the behavior of the
word metric along rays chosen according to harmonic measure on the
boundary, arising from random walks with finite first moment. We show
that the excursions have different behavior in the Lebesgue measure
and harmonic measure cases, which implies that these two measures are
mutually singular.
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1. Introduction

Let G be a Fuchsian group, i.e., a discrete subgroup of SL(2,R), and
suppose the quotient G\H? has finite volume but is not compact (such a
group is also called a nonuniform lattice in SL(2,R)).

For any finitely generated group G of circle diffeomorphisms and any point
p € S1, Deroin—Kleptsyn—Navas [3] define the Lyapunov ezpansion exponent
of G at p as

1
1 Aexp(p) := limsup max — log|g¢'(p
1) exp(p) 1= limsup max - log g/ (0)
where B(R) is a ball of radius R in G with respect to a word metric for
some finite generating set.

Theorem 1.1. For a nonuniform lattice in SL(2,R), we have

)\exp (p) =0
for almost every p € S' with respect to Lebesque measure.

This answers a question of Deroin—Kleptsyn—Navas [3, Question 3.3] in
the affirmative. The essential idea is that, given p € S!, the group elements
realizing the maximum of the derivative in definition (1) are the closest
ones to the geodesic ray from the basepoint to p, and we show that their
derivative grows subexponentially.

We shall consider two different metrics on the group G. As G is finitely
generated, we can endow it with a word metric dg with respect to a finite
set of generators. On the other hand, the group G is hyperbolic relatively
to the parabolic subgroups, in the sense of Farb [4]. Thus, G can be also
equipped with a relative metric dye, in which any distance in a subgroup
fixing a cusp has constant length (see Section 2; note that this metric is
usually not proper).

Given a basepoint zg € H?, we may identify the unit tangent space at
xo with the circle ! = OH? at infinity, and the measure induced on the
boundary is absolutely continuous with respect to Lebesgue measure on the
unit circle.

Let v be a geodesic ray from the basepoint zg, and +; a point at distance ¢
from the basepoint along . For each time t, let h; be a group element such
that hexg is a closest element of the G-orbit of g to v;. A way to measure the
penetration into the cusp of the geodesic ~; is to consider the ratio dg/dyel
between the word and relative metrics, since consecutive powers of parabolic
elements increase the numerator but not the denominator. We thus define
the quantity

o da(1, hy)
p(f}/) T tILI}’)lo drel(la ht)7
which we shall refer to as the word length ratio. In Section 2, we shall show
that the limit is infinite for almost all geodesics in visual measure.
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Theorem 1.2. Let G be a nonuniform lattice in SLa(R). Then the word
length ratio p(y) = oo for almost all geodesics chosen according to Lebesgue
measure on the circle at infinity.

In Section 3, we shall use Theorem 1.2 to prove Theorem 1.1. Finally,
in Section 4, we show an analogous result for random walks. Furstenberg
[5] showed that the image of a random walk on G in H? under the orbit
map g — gz converges almost surely to the boundary, defining a harmonic
measure v on S'. We show that the word length ratio is finite for almost all
rays chosen according to harmonic measure.

Theorem 1.3. Let G be a nonuniform lattice in SLa(R), and let v be a har-
monic measure on the boundary OH? determined by a probability distribution
w with finite first moment in the word metric, whose support generates G as
a semigroup. Then there is a constant ¢ > 0 such that the word length ratio
p(v) = ¢, for v-almost all geodesic rays.

Comparing Theorems 1.2 and 1.3 shows that geodesics chosen at random
with respect to Lebesgue measure penetrate more deeply into the cusps than
geodesics chosen at random with respect to harmonic measure.

In particular, this shows that Lebesgue measure and hitting measure are
mutually singular. This was previously known for the congruence subgroup
I'(2) of PSL(2,Z) by Guivarc’h and Le Jan [9,10], for SL(2,Z) and p with
finite first moment, by Deroin, Kleptsyn and Navas [3], and for nonuniform
lattices in SL(2,R) and p with finite support, by Blachére, Haissinsky and
Mathieu [1]. It is worth remarking that the assumption of finite first moment
is essential, as Furstenberg showed that it is possible to construct random
walks (with infinite first moment in the word metric) whose harmonic mea-
sure is in the Lebesgue class [6].

Theorems 1.2 and 1.3 are extended to the case of the mapping class group
acting on Teichmiiller space in [7].

1.1. Notation. We will write f(x) < g(x) to mean that the inequality
holds up to additive and multiplicative constants, i.e., there are constants
K and c such that

flz) < Kg(z) +c,
and similarly f(z) < g(x) will mean that there exist constants K, c such
that )
9(@) —e< fz) < Kg(a) +e
Acknowledgements. The authors wish to thank the referee for helpful
comments.

2. The word length ratio for Lebesgue measure

Let G be a nonuniform lattice in SL(2, R), and X = H?/G the correspond-
ing hyperbolic surface with cusps. Given € > 0, the thick part of X is the set
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of points x € X with injectivity radius larger than € (i.e., such that the ball
of radius €/2 in X centered at = has fundamental group with finite image in
the (orbifold) fundamental group of X, which we may identify with G). We
shall denote the thick part, which is compact, by N, and its complement is
called the thin part. If € is sufficiently small, then the thin part is the union
of disjoint neighborhoods ¢y, - -- , ¢, of the cusps of X. The universal cover
of X is the hyperbolic plane H?, and the lift of the union ¢; U-- - U cp of the
cusp neighborhoods in the universal cover is the union of countably many
disjoint horoballs, which we shall denote by H.

The group G is finitely generated, and a finite choice of generators A
for G defines a proper word metric on . Different choices of generators
produce quasi-isometric metrics. For each cusp neighborhood ¢; in X, let us
choose a lift ¢; in the universal cover, and denote by G; the stabiliser of ¢;.
The group G; is infinite cyclic and is a maximal parabolic subgroup; let g;
be a generator of G;. We may also define a relative metric on G by taking
the word metric with respect to the larger (infinite) generating set

A= AUG U UGy;

that is, along with the generators of G, the set A’ includes all powers of all
the parabolic generators g;. The metric space (G, dye1) is not proper, but it
is Gromov hyperbolic. In fact, as proven by Farb, G is strongly hyperbolic
relatively to the parabolic subgroups G; [4, Theorem 4.11].

The unit tangent bundle T'H? carries a natural SL(2, R)-invariant mea-
sure, which in the upper half-plane model is given by df = W. This

measure descends to a measure on the unit tangent bundle to X = G\H?
which is invariant for the geodesic flow, and is called Liouville measure.
Moreover, it is a classical result due to Hopf [11] that this flow is ergodic,
and indeed mixing. The Haar measure on the unit circle in the tangent space
at any point is the pullback via the visual map of the standard Lebesgue
measure on OH? = S

By studying the collection #H of horoballs, Sullivan [15] showed that a
generic geodesic ray with respect to Lebesgue measure is recurrent to the
thick part of X, and ventures into the cusps infinitely often with maximum
depth in the cusps of about logt, where ¢ is the time along the geodesic ray.

Given a horoball H and a geodesic v that enters and leaves H, we define
the excursion E(7v, H) to be the distance in the path metric on 0H between
the entry and exit points (see Section 2.2). Sullivan’s theorem implies that
a lift in H? of a Lebesgue-typical geodesic ray enters and leaves infinitely
many horoballs in the packing. We use this setup to estimate from below
the word length along a Lebesgue-typical geodesic in terms of the sum of
the excursions in these horoballs.

We say a basepoint zg € H? is generic if the stabilizer of x¢ in G is trivial.
The G-orbit of the basepoint xg is called a lattice, and if xg is a generic
basepoint, then each lattice point corresponds to a unique group element.
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We shall assume that we have chosen a generic basepoint, and then each
point ~; along the geodesic has at least one closest lattice point hyxg, and
in fact this closest point and the group element h; are unique for almost all
points along the geodesic.

2.1. Projected paths are quasigeodesic. Let us now fix some thick part
N of X, and let N be its preimage in the universal cover. The space N is
a geodesic metric space with the following path metric. Every two points
T,y in N are connected by some arc, and the path metric between x and y
is defined as the infimum of the (hyperbolic) lengths of all rectifiable arcs
connecting z and y. We shall denote this distance as dg(z,y). Since the
quotient G\]\Nf = N is compact, then by the Svarc-Milnor lemma the space
N with the path metric is quasi-isometric to the group G endowed with the
word metric. A geodesic for the metric dg will be called a thick geodesic.

In order to have a better control on the geometry of the thick part, we
shall now define a canonical way to connect two points in the thick part,
and prove that these canonical paths (which we call projected paths) are
quasigeodesic for the path metric on N.

Each point of H? has a unique closest point in the thick part N , hence we
can define the closest point projection map 75 : H? — N. Any two points

x,y in the thick part N are connected by a hyperbolic geodesic segment
in H?, which may pass through a number of horoballs in H. The projected
path p(x,y) between x and y is the closest point projection of the geodesic
segment between x and y to the thick part:

p(z,y) == m5(y)

More explicitly, the geodesic v intersects a finite number r (possibly zero)
of horoballs of the collection H, which we denote as Hj,..., H;, and the
intersection of v with IV is the union of r 4+ 1 geodesic segments

[, 1] U [x2, 23] U - - U [z2r, y].

The projected path p(z,y) follows the geodesic segment [z, 2] in the thick
part, then follows the boundary of the horoball H; from x; to x2, then again
the geodesic segment [x2, x3] and so on, alternating paths on the boundary
of the horoballs H; with hyperbolic geodesic segments in the thick part until
it reaches y. Given x and y in N, we shall denote as L(z,y) the length of
the projected path p(z,y) joining z and y.

The usefulness of projected paths arises from the fact that they are quasi-
geodesic, as proven in the following lemma.

Lemma 2.1. There are positive constants L, K and c, such that if the dis-
tance between the horoballs is at least L, then the projected path p is a (K, c)-

quasigeodesic in the thick part N.
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Proof. Let v be a geodesic ray in H?2, both of whose endpoints lie in the
thick part N. Let p be the projected path, and let ¢ be the thick geodesic
in N connecting the endpoints of 7. As ¢ is a thick geodesic, the length of ¢
is at most the length of the projected path p. We now show that the length
of the thick geodesic ¢ is at least the length of the projected path p, minus
2n, where n is the number of horoballs the geodesic 7 intersects. As long
as the distance between the horoballs is at least 4, this implies that p is a
(2, 2)-quasigeodesic.

Label the intersecting horoballs H;, in the order in which they appear
along . The hyperbolic geodesic v intersects the boundary of each horoball
twice, and we shall label these intersections 7;,, , and -y, as illustrated
below in Figure 1.

N H;q

Vtoi Vtgit1 Vtoita

Py Pyitq Paito

FI1GURE 1. Perpendicular geodesics through intersections of
~ and 0H;.

For each point of intersection ~;,, let P; be the perpendicular geodesic to
v through v¢,. Each perpendicular geodesic P; separates the endpoints of +,
so any path connecting the endpoints must pass through each perpendicular
plane. Furthermore, the perpendicular geodesics are all disjoint, so they
divide the hyperbolic plane into regions, each of which contains a subsegment
of v which is either entirely contained in the thick part NV, or else is entirely
contained in a single horoball. As the regions are disjoint, the length of any
path is the sum of the lengths of its intersections with each region. We now
show that the length of the thick geodesic ¢ in each region is bounded below
by the length of the projected path in that region, up to a bounded additive
error.

First consider a region between an adjacent pair Py; and P41 of perpen-
dicular geodesics containing a segment of v of length do; in the thick part N.
The length of the projected path p inside this region has length exactly do;.
As nearest point projection onto the geodesic is distance decreasing in H?,
any path from P; to Py;41 has length at least dg; in the hyperbolic metric,
and hence also in the thick metric. Therefore the intersection of the thick
geodesic ¢ with this region has length at least dy;, i.e., at least the length of
the projected path.
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Now consider a region between an adjacent pair Po;11 and P42 of perpen-
dicular geodesics containing a segment of v of length dg;4+1 in the boundary
of a horoball H;11. The length of the projected path p in this region has
length exactly do;+1. The image of the part of the perpendicular geodesic
P51 in the thick part N projected onto the horoball H;;; has diameter
at most 1. Similarly, image of the part of the perpendicular geodesic Pa;yo
in the thick part N projected onto the horoball H;,; also has diameter at
most 1. Therefore, as the nearest point projection from H?\ H; 1 onto the
boundary of the horoball H;; is distance decreasing, the length of any path
in N between P11 and Pojyo has length at least do;1q1 — 2.

This implies that the length of the thick geodesic ¢ is at least the length
of the projected path, minus 2n, where n is the number of horoballs the
geodesic v passes through. If we assume that the horoballs are distance at
least L > 4 apart, then the length of the thick geodesic is at least half the
length of the projected path, up to an additive error of at most 2. ([

2.2. The word metric for Fuchsian groups. We now show that word
length is coarsely monotonic along geodesics. Recall that we write h; to
denote the closest lattice point to ;.

Proposition 2.2. There are constants ¢y > 0 and co such that for any
geodesic v and for any 0 < s <t

da(1, hs) < c1dg(1, hy) + co.

Proof. Let p; := m5(:) be the point on the projected path that is closest
to 7¢. Recall that L(z,y) is the length of the projected path joining = and
y. The function t — L(xg, p;) is continuous and for any 0 < s < ¢ it satisfies
L(zo,ps) < L(xo,p¢). The proposition then follows as the projected path is
a (K, c)-quasi geodesic in the thick part N , and the thick part with its path

metric is quasi-isometric to G with the word metric. ([

We shall define the ezcursion of v; with respect to the horoball H to be
the length (in V) of the intersection of the projected path p(0,t) from py to
p¢ with the horoball H, i.e.,

E(y, H) := Lg(p(0,t) N H),
where L denotes the length of the path in the N-metric. Similarly, we
shall denote the excursion of the geodesic v into H as
E(’Yv H) = tllgloE(’yth)’
and this limit is finite for each horoball for almost all geodesic rays.

We now show that the sum of the excursions along the geodesic gives a
lower bound on the word length, using the cutoff function |z] 4, defined by

) DJJA:{Q: if > A,

0 otherwise.
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Proposition 2.3. There are constants A > 0,c > 0 and d such that

(3) d(Lh) 2 ) | B(y, H)|a —d.
HeH

Proof. The excursion E(v, H) is the length of the horocyclic segment of
the projected path in 0H, and so the sums of the lengths of the excursions
is a lower bound on the length of the projected path. The projected path p
is quasi-geodesic in N, and N is quasi-isometric to the word metric, and so
the result follows. ([

2.3. The geodesic flow. Let H, be the subset of the horoballs H consist-
ing of those points which are at least distance logn from the boundary of
the horoballs in the hyperbolic metric, i.e.,

Hy = {x € H? : d(z,0H) > logn}.

Let us denote as X,, the quotient of H,, under the action of G, so X,, C X.
We will write 7' X for the unit tangent bundle to X, and T'Y for the
restriction of the unit tangent bundle to any subset Y C X. Given a geodesic
ray v, we will denote as v; the unit tangent vector to v at the point ;. Let
¢ denote the Liouville measure on 7' X. Since the geodesic flow on 71X is
ergodic, for any function ¢ € L}(T'X, ), and for almost every geodesic ray
v, we have the equality

1 T
lim /0 wlodt = [ vy

In particular, the proportion of time that a geodesic ray spends in X, is
asymptotically the same as the volume of T'X,,, and an elementary calcula-
tion in hyperbolic space shows that this volume is 1/n, up to a multiplicative
constant depending on the choice of cusp horoballs. Let x, be the charac-
teristic function of 7' Xyn, and let ¢ : T'X — R be

P(v) = 2"xn(v).
n=1

This function is not in L'(T' X, £), but it is well defined, since each v lies in
finitely many X,,. We now show that, as a consequence of the 1/n decay of
volumes, the ergodic average of ¢ is infinite.

Proposition 2.4. For almost every tangent vector v € T'X with respect to
Liouville measure, we have

. 1
(4) Th_r)r;of ; P(vg)dt = 0.

Proof. Let ¢y : T'X — R be the truncation

N
Unl) = 3 2 v),
n=1
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which does lie in L}(T' X, ¢), and is a lower bound for . Up to a uniform
multiplicative constant,

1/JN dl < N.
T'X

By ergodicity, along f-almost every geodesic ray v we have

1 T

lim / Y (vg)dt :/ Yy dl < N
T—oo 1 0 T1X

where v; is the unit tangent vector to « at the point «;. As a consequence,

along f-almost every geodesic ray « the inequality

17 1 [T
liminf/ Y(vg)dt > lim T/ Yy (vy)dt < N
0 0

T—oo T T—00

holds for all N, which yields the claim. O

Proposition 2.5. Let H be a horoball in H, and let t1 < ty be the entry
and exit times in H for a geodesic ray vy, and let A > 0 be a constant. Then
up to uniform additive and multiplicative constants, which depend on A,

to

P(ve) dt < [E(y, H)|a,

t1

where |x| 4 is the cutoff function defined in (2).

Proof. Let N be the smallest number such that ¢ (v;) = ¥n(v¢) for every t €
[t1, 2], so that up to a uniform additive constant 2 < E(y, H) < 2V*1. We
shall write H,, for the intersection of the horoball H with H,,, so H,, consists
of all points of H that are distance at least logn from 0H. In the upper
half-plane model for hyperbolic space, we may assume that the boundaries
of the H,, are given by horizontal lines, and the geodesic vy is part of a circle
perpendicular to the real line. The hyperbolic distance between Hyr and
Hyk 41 is independent of k, and the shortest geodesic running between them
is a vertical line, and the longest geodesic segment is given by a semicircle
tangent to the upper horizontal line. This implies that for £ < N — 1, there
are uniform lower and upper bounds independent of £ and N for the amount
of time sy that the geodesic ray 7 can spend in Hyx \ Horr1. There is also a
uniform upper bound independent of N for the amount of time sy that the
ray 7 can spend in Hon \ Hyv+1. These bounds imply

ts N k '
wN(Ut) dtstk 22] XQNXE(’)/,H).
t k=1 j=1

Finally, we observe that the function x is equivalent to |x] 4, up to a suitably
chosen additive constant, and so the result follows. ([l

Combining Propositions 2.3, 2.5 and Equation (4) we obtain:
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Proposition 2.6. For Lebesque-almost every ~v we have

i 96 hr)
im ————= =00
T—o00 T

On the other hand, the relative length of A7 is up to a uniform multiplica-
tive constant bounded above by T'. In fact, by ergodicity, the ray = spends
a definite proportion of its time in the thick part of X. This implies that
the relative length of hr grows linearly in 7. Combining this observation
with the limit above completes the proof Theorem 1.2.

3. Lyapunov expansion exponent

We now use Theorem 1.2 to prove Theorem 1.1, that if G is a nonuniform
lattice in SL(2,R), then for Lebesgue-almost every p € S! the Lyapunov
expansion exponent is zero,

)\exp (p) = 0.

Here is the rough idea of the proof of Theorem 1.1. Suppose p is a point
in S' and let v be the hyperbolic geodesic ray that connects the origin zg
in D to p. Let hr be the approximating group element for vp. We will
show that for every group element in a ball of radius R = dg(1, ht)/2K?
where K is some uniform constant, the derivative at p has a coarse upper
bound of €?T. As T increases, the word length of the approximating group
elements is monotonically increasing with bounded jump size. Finally, for
Lebesgue-almost every p, Proposition 2.6 says that the ratio 7//R goes to
zero, which proves Theorem 1.1.

3.1. Derivatives of isometries. We shall use the unit disc model D of
hyperbolic plane. An isometry of D is of the form

g EZ—a
where a € . Write a as a = Ae’ and suppose f(e') = ¢9(). Differentiation
with respect to ¢, and an elementary calculation, shows that

5) 0=

TN =142 24 Re(ei®e~t)
It follows that |¢/(¢)| is maximum with value (1 + A)/(1 — A) when t = ¢.
Denoting the origin in I as zg, note that (1 + A)/(1 — A) = e%s2(z0.f(z0))
and so in particular, the calculation shows that the maximum value of the

logarithm of the derivative on S! is equal to the hyperbolic distance that f
moves the origin xy. To summarize, we get:

Lemma 3.1. If g is an isometry of D such that dyz (o, gxo) < T then for
any p € S,
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Remark. Note that the expression (5) for |¢g'(t)| equals the Poisson kernel
Pa(¢p —t). In fact, if u : D — R is a harmonic function, then wo f~1 is
also harmonic, hence we have from the mean value property and a change
of variables

u(a) = u(F(0)) = / w(f e dt = [ u(e®)lg(s)] ds

T o o 2 J_,

which is precisely Poisson’s representation formula if one sets
19'(s)| = Pa(¢ — s).

3.2. Bounding the derivative over a ball in the word metric. Let
p € S', and 7 be the geodesic ray from the origin zo to p. Let pr =
75 (7r) denote the point in the thick part closest to 47 and let hy be the
approximating group element. Let

S(zo,v2r) == {r € D : dy2(x0, ) > dy2(V2r, )}

Thus, S(zg,v2r) is the half-space with 9S(zg,v2r) orthogonal to v at the
point 7.

Proposition 3.2. There exists constants K, K' such that, if gxg lies in
S(x(]:PYQT): then

1
da(1,9) > ?dG(lahT) - K

Before proving Proposition 3.2, we state a basic lemma in hyperbolic
geometry. If H is a horoball, we shall denote as 7y the closest point projec-
tion map onto the boundary of H; moreover, if x,y lie on 0H, we denote as
dop (z,y) the length of the path along the boundary of H between x and y.
Note that the hyperbolic distance between x and y is equal to log dyg (x, y),
up to a multiplicative error independent of x and y. We then have the
following fact, whose proof we omit.

Lemma 3.3. Fix a pointy € D and let H be a horoball that does not contain
y. Let vy be the hyperbolic geodesic that goes from y to the point at infinity of
H. Let g (y) denote the point of entry of vo into H. Let vy be any geodesic
ray from y that enters H, and let v, be its point of entry. Then

don (Yus TH(Y)) < 1.

Proof of Proposition 3.2. Let + = gzo and let § be the hyperbolicity
constant for the hyperbolic metric dype.

Case 1. Suppose 7 is in the thick part. The hyperbolic geodesic from zg
to x must pass through a 30 neighborhood of yr (see Proposition 3.2 of
[13]). This means that there is a point 2’ on the hyperbolic geodesic from
o to x that also lies in the thick part. So the projected path from xg to
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x necessarily passes through x’/. Recall L(y,y’) is the distance along the
projected path between the points y,y’. It follows that

L(zo,7) = L(zg,2') + L(2',2) > L(zo, ")
hence passing to the word metric we get

dc(1,9) < L(zo,2) > L(xo,2") < dg(1, hr).

Case 2. Suppose 7 is in some horoball H and let ~, and ~, be the points

where v enters and leaves H. We may assume that a ball of hyperbolic

radius 39 about 7 is contained in H. Then the hyperbolic geodesic 7' from

xo to x must enter and leave H. Denote its entry and exit points by 7/ and
/ - .

s Moreover, let pr = 75 (y7) be the projection of 47 to the boundary of

the horoball, and denote by E := dg(vu,V) the excursion of v in H, and

D := dﬁ(')’uva)
There are two sub-cases to consider.
Case 2a. If D > E/2, then we are in the situation of Figure 2 and 2 must

lie in the shaded region.

Y0

|
|
|
|
|
!
!
|
|
|
|
|
T
|
|
!
!
|
|
|
1

FIGURE 2. Perpendicular geodesics through intersections of
~v and OH.

In this case, let mg(x) be the closest points projection of x onto the
boundary of H; then by Lemma 3.3, the entry point .. is within distance 1
of v, and the exit point v/ is within distance 1 of 7y (z). So we get

do (Ve 7s) = dom (Yu, T (2)) —2 > — — 2.

| &y

On the other hand, dyg (yu, pr) < E, so we have

1
d@H('Y;, 7;) P idaH(’YuapT) — 2.
Moreover, by Lemma 3.3 and Lemma 2.1,

L(x0777/") = dﬁ(£077{") = dﬁ(x(),"}’u) -1x L(xo,’yu)
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Consequently, the distances along respective projected paths satisfy

L(xzo,x) > L(zo,7,) + dor (75 7s)
2 L(zo,vu) + don (vu, p1)
= L(x(]apT)'
Thus, passing to the word metric we get
dg(1,9) < L(zg,z) 2, L(xo, pr) < dg(1, hr).

Case 2b. If D < E/2, then we are in the situation of Figure 3 and z must
lie in the shaded regions.

Y0

T |
R 1 H

br

s
SN
S
\\e

8
=}

gl

F1GURE 3. Perpendicular geodesics through intersections of
~v and OH.

If z is in the shaded region on the right, then note that

don (Yu, T (7)) = dom (Yu, PT),
which by Lemma 3.3 implies

dor (v 7vs) = dow (yu, PT) — 2,

and the required estimate for dg(1, g) then follows by estimates on distances
along respective projected paths similar to Case 2a. If z is in the shaded
region on the left, let p/. be the point on dH such that pp and p/. are
symmetric about g, the geodesic ray from xy to the point at infinity for
H, and denote py = mg(zg). Observe that dapm(po, 7a(x)) = dom(po, p'y).
Hence, by Lemma 3.3,

dor (Vs ve) = dor(po, mr () — 2
> dan (po, pT) — 2
= dan(po, pr) — 2
> dop (Yu,pT) — 3

and the required estimate for dg(1, g) then follows by estimates on distances
along respective projected paths similar to Case 2a. ([
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Let K, K’ be the constants in Proposition 3.2, and for each T let
Rr:=dg(1,hr)/K — K'.

Consider the ball B(Rr) of radius Ry in G in the word metric; our goal is
to prove an upper bound on the derivatives of the elements in the ball. Let
us first establish another elementary lemma in hyperbolic geometry.

Lemma 3.4. Let L > T, and y be a point on S (xg,vy2r) such that

iz (y,yr) =L —T.
Let 0 be the angle between v and the ray ' from xo toy. Then there exists a
constant C' > 0 such that, if T is sufficiently large (say when tanhT > 1/2)

and L > 2T, then
0> Ce T,

Proof. It follows by hyperbolic trigonometry, applied to the right triangle
A(l’o, T, y) : U

Proposition 3.5. Any g € B(Rr) satisfies

lg' ()| S e
for each p € S*.

Proof. Fix p € S!, and let v be the geodesic ray from the origin x of the
unit disc to p. Fix T > 0 and g € B(Ry), and let L := dg2(x0, gx0). By
Lemma 3.1, if L < 2T, then |¢/(p)| < €?* which implies the proposition.
Hence, we may assume L > 27. Let y; and ys be points on 95(xg,y2r), on
opposite sides of yr, such that dy2(y;,yr) = L — T for i = 1,2, and let U
be the sector subtended at zg by rays from x( passing through y; and ys.
We claim that the point gxg cannot be in U. Indeed:

e The point gz cannot lie in S(zg, y27), because otherwise (by Propo-
sition 3.2 and the definition of Ry) the word length of g satisfies
da(1,9) > Ry, contradicting the fact that ¢ is in B(Rr).

e gxo cannot lie in U \ S(zg, y2r), because otherwise it belongs to the
geodesic triangle A(xg, y1,y2), hence dy2(xo, gzo) < (L—=T)+T = L.

Now, by the derivative calculations (Equation (5))
B 1— A?
14 A2 —2Acos ¢
where ¢ is the angle between v and the geodesic ray joining xg with gxg,
and A = (e —1)/(el + 1). Hence,
, 4el e b
l9'(P)| = 51 < —— :

2e2L(1 —cos¢) +2(1 +cosp) ~ sin*(¢/2)

Now, by Lemma 3.4, the angle ¢ satisfies ¢ > Ce™ T, so
g'(0) ST S

which completes the proof of the case L > 2T. O

19" (p)]
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3.3. Proof of Theorem 1.1. Before proving the theorem, we still need
to show that the function 7' — dg(1, hr) has bounded jump size, in the
following sense.

Lemma 3.6. For v a hyperbolic geodesic ray, let us define the set
R(y) :={r € Z=o : 7 =dg(1, hy) for some T}.

If 7 is recurrent to the thick part, then the set R(7y) is infinite, and we can
index its elements in increasing order r1 < ro < ---. Then there exists a
constant k > 0 such that for any recurrent geodesic ray v and any i, we have

Tig1 — T < k.

Proof of Lemma 3.6. For a geodesic ray v, recall that pr = 7wg(yr) is
the point on the projected path of + that is the closest to v7. By Lem-
ma 2.1, the image of the function T' — pr is a continuous path which is
(K, ¢)-quasigeodesic in N. Let us choose times T), along the geodesic such
that L(xo,pr,) = n. Since the thick part N is quasi-isometric to the group
G, then, up to multiplicative constants which depend only on the quasi-
isometry constants, we have

‘dG(17th+1) - dG(L th)‘ 5 dﬁ(anvan+1) g L. 0

Let us now turn to the proof of Theorem 1.1. Recall that the Lyapunov
expansion exponent is defined as

1
Aex = limsup max — log|q’ (p)].
p(p) msup max o glg' (p)|

Lemma 3.6 implies that along geodesic rays recurrent to the thick part the
corresponding values of R given by Ry = dg(1,hr)/K — K’ are infinite
and have a bounded jump size. So the limsup in the above definition can
be replaced by a limsup over values given by Rr. By Proposition 3.5, for
almost every p € S*,

1
max ——

1 oT oT
— log(e?T) = =
geB(Rr) Rt gle”)

Rr " Rr " da(Lhr)
Hence, by Proposition 2.6 for Lebesgue-almost every p

)\exp (p) =0

log |g'(p)] <

proving Theorem 1.1.

4. Random walks

In this section we prove Theorem 1.3. Recall that a subgroup G of
SL(2,R) is called nonelementary if it contains a pair of hyperbolic isometries
with disjoint fixed point sets. Let u be a probability measure with finite first
moment on G, i.e., such that

/ do(1,9) du(g) < oo
G
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where dg is a choice of word metric on G. Assume moreover that the support
of p1 generates a nonelementary subgroup of SL(2,R) as a semigroup, and
consider the random walk generated by p. That is, the space G of sequences
(91,92, -..) is endowed with the product measure uY, and we define the
random walk as the process (wy)nen With wg = id and

Wnp+1 = Wndn+1-

Given a basepoint xo € H?, one can consider the orbit map G' — H? which
sends g — g(xp), so each sample path in G projects to a sample path in
H2. Furstenberg [5] showed that for almost all sequences the random walk
converges to a point in the boundary S!' = 9H?, giving a boundary map
GN — OH? defined for almost all sample paths. The harmonic measure v on
the boundary records the probability that the random walk hits a particular
part of OH?, i.e.,

v(A) = Prob (nh_g)lo wp(x0) € A> .

We start by verifying the linear progress properties that we require. Since
(G is nonamenable, a random walk makes linear progress in the word metric
as shown by Kesten [12], Day [2] and Guivarc’h [8]. Moreover, the random
walk makes linear progress in the relative metric, too:

Proposition 4.1 (Maher-Tiozzo [14]). Let p be a probability distribution
on a countable group G, which acts by isometries on a separable Gromov
hyperbolic space (X,d). Assume moreover that u has finite first moment,
i.e., Y u(g)d(zo, gxo) < 00, and the semigroup generated by its support is a
nonelementary subgroup of G. Then there is a constant ¢ > 0 such that
lim d(1, wn) =c
n—o00 n

This applies to our situation, in which G is a nonuniform lattice acting on
the group G, with the relative metric d,; it is well known that the relative
metric is a (nonproper) hyperbolic metric on G. If p has finite first moment
with respect to the word length in G, then it also has finite first moment
with respect to the relative metric. An earlier result, under the additional
hypothesis of convergence to the boundary and finite support, is proven in
[13].

We shall now prove Theorem 1.3. As the random walk makes linear
progress in both the word metric and the relative metric, by taking the
quotient, the limit

lim do(1,wn)

n—00 drel(la wn)
exists and is finite along almost every sample path w = (wy,ws,...). We
know that almost every sample path w converges to some boundary point
FT(w) = lim, 0o wprg € OH2. We will denote by p, the geodesic ray
which joins the basepoint zp to the boundary point F*(w). We wish to
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obtain a limit for points along the geodesic p,, and so we need to relate
the sample path locations w,xg to the geodesic p,,, which we will do using
a sublinear tracking argument. The fundamental argument for sublinear
tracking in [16] is the following lemma.

Lemma 4.2 (Tiozzo [16]). Let T : Q — Q a measure-preserving, ergodic
transformation of the probability measure space (2, \), and let f: Q — Rxg
any measurable, nonnegative function. If the function

g(w) = f(Tw) — f(w)
belongs to LY (2, ), then for A-almost every w € Q one has
lim 7f(T w)

n—00 n

=0.

For a point # € H?, let proj(z) be the set of closest lattice points to .
Proposition 4.3. For almost every sample path (wy)nen, with correspond-

ing geodesic ray py, there exists a sequence of times t, — oo such that

lim dg (wm hn)
n—00 n

for any hy € proj(pw(tn))-

=0

Proof. In the proof, we consider the set (GZ, u”) of bi-infinite sequences of
group elements. For each sequence w = (g, )nez, we construct the forward
random walk w,, := g1 ... g, and the backward random walk

W_p = go_lg:% .. .g:i.

Since both random walks converge almost surely, the maps
FF(w) :== lim wyzo € OH?
n—oo
F~(w) := lim w_,x¢ € OH?
n—oo

are defined for almost every w € GZ, and F~(w) # F*(w) almost surely
since the hitting measures are nonatomic. Hence, this defines for almost
every w € G” a bi-infinite geodesic in H? whose endpoints are F'©(w) and
F~(w), which we denote by .

Let now P(w) be the union of all closest points over all points in the
geodesic 7, i.e.,

Pw) = |J proi(a).
TEYw

Note that P is equivariant, in the sense that

P(o"w) = w; P(w).

Let us now define the function ¢ : G% — R on the space of bi-infinite sample
paths as

p(w) = da(1, P(w)),
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i.e., the minimal word-metric distance between the base point xg and the
set of closest lattice points to 7,. The shift map o : GZ — G% acts on the
space of sequences, ergodically with respect to the product measure u%. By
the equivariance of P, we have for each n the equality

(6) p(o"w) = da(wn, P(w)).

We shall now apply Lemma 4.2, setting (Q,\) = (G, u%), T = o, and
f = . The only condition to be checked is the L!-condition on the function
g(w) = f(Tw) — f(w), which in this case becomes

9(w) = p(ow) — p(w) = da(1, P(ow)) — dg(1, P(w)).
Now, using (6) we have
|da(1, P(ow)) — da(1, P(w))| = |da (w1, P(w)) — dg(1, P(w))] < dg(1,w1)

which has finite integral precisely by the finite first moment assumption.
Thus, it follows from Lemma 4.2 that for almost all bi-infinite paths w one
gets
d P
lim G(wnv (w))

n—00 n

=0.

By definition of P(w), there exists a sequence of times ¢,,, and group elements
pn € G, such that p, € proj(yu(t,)), and furthermore

(7) lim dag (wmpn)

n—o0 n

=0.

The geodesic ray p,, starting at xy with the same endpoint as 7, is asymp-
totic to 7y, and we may parameterize p,, so that d(py(t),vw(t)) — 0. In
fact, a calculation using the hyperbolic metric shows that for any two as-
ymptotic rays with this parameterization, there is a number K, depending
on the rays, such that d(py(t),vw(t)) < Ke™'. Furthermore, if two points
distance at most d inside a cusp are at most distance e apart, then the
distance between their nearest point projections to the projected path are
distance at most Ke® apart, for some number K depending on e. As the
geodesic ray p starts outside a cusp, the distance of p,(t) inside a cusp is
at most ¢, so this implies that there is a constant K, depending on w, such
that if h,, is a point in proj(pw(t,)) then dg(pn, hyn) < K for all n sufficiently
large. Therefore,

(8) i %¢(Wn: )

n—oo n

=0
as required. O

We now extend the result from the sequence (t,) along the geodesic to
all points ¢ along the geodesic.
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. hT hn—l—l

Pw (T) Pw (tn—i-l)

FIGURE 4. Intermediate times.

Proof of Theorem 1.3. Given a sample path w, let p,, be the geodesic
ray joining the base point zg to the boundary point F'*(w), and let (t,)
be the sequence of times given by Proposition 4.3, and h,, € proj(pw(t,)) a
corresponding sequence of group elements. Let us now pick a time T > 0,
and let hp Xy be a projection of p,(T) to the lattice. Since t,, — 0o, there
exists an index n = n(T') such that t, < T < t,4+1. By Proposition 2.2,
there exist constants C7 > 0, Cs such that

dG(hm hT) < CldG(hm hn—i—l) + Cs.
Moreover, by Proposition 4.3 and the triangle inequality,

lim dG(hm hn+1) < lim dG(hna wn) + dG(wm wnJrl) + dG(wn+1a hn+1)
n—00 n n—00 n

=0.

Here we used the finite first moment condition to ensure

da(Wn, Wny1)/n — 0.

Thus, we also have

lim 96U hr)
n—00 n
and again by Proposition 4.3,
lim dG(wm hT) < lim dG(an hn) —+ dG(hm hT) —0.
n— 00 n n—00 n

Similarly, since the relative metric is bounded above by the word metric,
drel(wru hT)

lim =0.
n—o0 n
Finally, by computing the ratio between the word and relative metric,
dc(1,hr) de(1wn
. da(1,hr) . TR . % c1
lim ————~% = lim ———— = lim —2%—=—=>0.
T—oo dpet(1,hp)  T—oo drel((lj,f)lT) n—oo drellLwn) ¢y
n n

This completes the proof of Theorem 1.3. ([
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