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ABSTRACT 

 

Members of genus Capitella (Annelida: Capitellidae) are often found in high 

abundance in areas of anthropogenic disturbance, such as fish farms and waste-water 

outflow sites and are frequently cited as ecological indicators of organic pollution. 

Understanding evolutionary relations and habitat preferences between Capitella species 

that can tolerate these, and other, harsh environments and those that cannot is important for 

their continued and improved use as indicators of pollution.  

Five previously undocumented species of Capitella and Capitella nonatoi, a 

species described from Brazil, were detected in the Gulf of Mexico (GoM) by DNA 

barcoding. Most of the new species were found in a single location, with one being 

distributed throughout the GoM. Two of the proposed species are supported by distinctive 

life history characteristics. These findings underscore the potential to uncover large 

amounts of biodiversity in the GoM, a region subject to many anthropogenic and natural 

disturbances. Additionally, support was found for a single evolutionary origin of acicular 

spines in Capitella, which seems to be a morphology unique to Western Atlantic estuarine 

waters. 

Comparing six species abundance modeling techniques using internal validation 

metrics with six capitellids in Tampa Bay, Florida indicated that none of the assessed 

models works best for all species. However, Hurdle and GAM-Tweedie models had good 

performance overall. This was attributed to how these models handle zero-inflation, which 

every species had. Species rarity was influential and required consideration. For example, 

Capitella aciculata was found to be a very rare species and this restricted model 
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specification, resulting in the removal of one of the covariates. Assessment of 

environmental term importance indicated that depth and bay segment/region are important 

across all species, with higher abundance in shallow, near-shore regions of the bay. 

Investigation of the evolution of hypoxia inducible factor (HIF), a key transcription 

factor in the cellular oxygen-sensing pathway consisting of an alpha and beta subunit, 

revealed high diversity across Annelida. Some recognized groups of annelids were 

supported by both gene phylogenies. However, neither of the two genes mirrored current 

hypotheses of annelid phylogenetics but HIFβ reflected current annelid phylogeny 

hypotheses more closely, indicating stronger conservation of this gene. Additionally, the 

protein domains of the two genes were recovered with varying degrees of success. This 

was attributed to loss of low-quality data during transcriptome assembly and high 

divergence of the domains. 

These findings contribute to our understanding of Capitella species diversity, 

patterns of occurrence, and potential for low-oxygen tolerance. A key component to 

understanding how Capitella have come to occupy so many different marine habitats (e.g. 

sulfide vents, deep-sea wood falls, squid egg masses) lies in understanding their functional 

response to the low oxygen levels they encounter in some of these habitats. This will 

provide insights into the evolution of the HIF transcription factor across Annelida and its 

potential role in speciation across the phylum. 
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1. INTRODUCTION  

 

Capitellid polychaetes (Annelida, Capitellidae) are commonly found in marine 

benthos. Compared to most polychaetes they have a reduced morphology (no appendages 

and rarely any branchiae), are generally red in color, and are deposit feeders. 

Morphological synapomorphies that define this family include a thoracic region that bears 

mostly capillary chaetae (Figure 1.1A&E) and an abdominal region bearing hooded hooks 

(Figure 1.1C&E). Genera and species of Capitellidae are differentiated by traits such as 

thoracic and abdominal region chaetal formulae, hooded hook morphology, and the 

presence/absence of other structures, e.g. genital hooks, anal cirri, and branchiae (Blake 

2008). Capitella have nine thoracic chaetigers (Figure 1.1A-B) with genital hooks on the 

dorsum of chaetigers eight and nine (Figure 1.1D). 
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Figure 1.1: Modified from Hilliard et al. (2016). Scanning electron micrographs of 

Capitella cf. capitata from Galveston Bay, Texas. A. Fragmented specimen with 

presegmental structures labeled. B. Fragmented specimen with nine thoracic 

segments numbered and attention drawn to the ventral groove. C. Hooded hooks on 

right side of segment 11 of specimen shown in image A. D. Genital spines on segments 

8 and 9 of specimen shown in image A. E. Mixed neurochaetae (capillary chaetae and 

hooded hooks) on left side of segment 7. CC, capillary chaeta; F, main fang; GS, 

genital spine; HH, hooded hook; NuO, nuchal organ; Per, peristomium; Pro, 

prostomium; VGr, ventral groove. Scale bars: A=500 µm; B=200 µm; C & E=15 µm; 

D=50 µm. 

 

The family Capitellidae comprises 44 accepted genera (WoRMS 2020). Capitellids 

are of interest because they are often regarded as indicators of polluted and/or disturbed 

marine sediments where they often occur in high abundance. (Dean 2008). This is 

especially true for Capitella, the second largest genus with 31 accepted species (WoRMS 

2020). Unfortunately, the extent to their use as such is questionable because their 

taxonomy and evolutionary history remain largely unresolved (Blake 2008). Capitella 

capitata was originally considered a cosmopolitan species but early work indicated at least 
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six sibling species along the Massachusetts coast alone with few morphological differences 

but with distinct life histories, reproductive strategies, and allozyme signatures (Grassle 

and Grassle 1976). Since then, at least 50 sibling species have been documented worldwide 

(Méndez et al. 2000) based on physiological, reproductive, and developmental 

characteristics, among other traits (Eckelbarger & Grassle, 1983 & 1987; Gamenick et al. 

1998; Grassle et al. 1987). With this is mind, Capitella is likely much larger and more 

diverse than officially indicated on WoRMS (2020). Interestingly, a recent phylogeny only 

supports monophyly for Capitella (Tomioka et al. 2018) and none of the other capitellid 

genera. These findings in combination with other species presumed cosmopolitan with 

large distributions highlight the need for a large revision of the family and continued work 

on species delimitation. 

Capitella are found in many diverse habitats. They occur regularly in estuarine 

sediments, as evidenced by this dissertation. They have been found inhabiting wood and 

whale-bone falls in the deep-sea (Judge and Barry 2016, Silva et al. 2016). Some species 

have different sulfide tolerances, with some inhabiting sediment near shallow-water 

hydrothermal vents (Gamenick et al. 1998). A unique habitat expansion for Capitella is 

squid egg masses. Capitella ovincola is one such species that inhabits Doryteuthis 

opalescens egg masses (Zeidberg et al. 2011). 

One of the originally detected cryptic species, Capitella sp. I (Grassle and Grassle 

1976), has been formally described as Capitella teleta (Blake et al. 2009) and it is an 

important model of spiralian/lophotrochozoan development. Its genome has been 

sequenced (Simakov et al. 2012) and it has become a well-established model organism 

(Seaver 2016). Notable evo-devo studies include a comprehensive cell fate map (Meyer et 
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al. 2010), annotation and mapping of Hox genes (Fröbius et al. 2008, de Jong and Seaver 

2016) and ParaHox genes (Fröbius and Seaver 2006), and several studies on posterior 

regeneration (Özpolat and Bely 2016, de Jong and Seaver 2017).  

Capitella karyotypes have a lot of variability with diploid numbers ranging 12-26 

and differences in chromosome morphology between populations of a species (Grassle et 

al. 1987). This indicates that genome rearrangement and/or duplication events may have 

been involved in Capitella evolution. With such diversity in species and habitat, 

development of other Capitella species as comparative models would be insightful to 

understand the implications of genome rearrangement for speciation, habitat expansion, 

and the evolution of segmentation. 

This dissertation contributes to the understanding of three aspects of capitellid 

biology: evolutionary history, ecology, and physiology. Specifically, I have focused on 

Capitella in the Gulf of Mexico (GoM). The first article addresses species delimitation and 

supports at least five new species from the GoM based on DNA sequence analysis. We 

also detected a species previously only known from Brazil in the GoM. Thoracic acicular 

spines were found in a well-supported monophyletic clade, indicating a single origin for 

this unique morphology. 

The second article is focused on the ecology of six capitellids in Tampa Bay, 

Florida. All taxa have a zero-inflated abundance distribution and there is spatial 

autocorrelation by bay regions. Lorenz Curves were found to be an effective tool to assess 

spatial patterns of species abundance across large areas. Bay Segment, Depth, and 

Dissolved Oxygen were the most important environmental drivers. Modeling was 

accomplished by comparing six different approaches: GAMs (Poisson, Negative Binomial, 
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Tweedie, and Zero-Inflated Poisson distributions), Hurdle models, and Boosted Regression 

Trees. There was no model evaluated with top performance for every species. However, 

GAM-Tweedie and Hurdle models performed well overall and may be useful for studies of 

other benthic marine invertebrates. 

The final article addresses the evolution of the hypoxia inducible factor (HIF) 

transcription factor and its two subunits, HIFα and aryl receptor nuclear transferase 

(ARNT), or HIFβ, across Annelida. HIF is a key component of the cellular oxygen sensing 

pathway. While the recovered gene phylogenies do not directly approximate the known 

annelid phylogeny, some known groups are supported. Annotation of protein domains with 

Hidden Markov Model (HMM) profiles resulted in recovery of the known domains of each 

gene across Annelida but incompletely for each species. Updating HMMs to better reflect 

diversity within Annelida improved the results. 

1.1. References 
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2. CAPITELLA (ANNELIDA: CAPITELLIDAE) SPECIES IN THE GULF OF 

MEXICO: DELIMITATION, PHYLOGEOGRAPHIC PATTERNS, AND PHYLOGENY 

OF THE GENUS 

 

2.1. Introduction 

Capitellid polychaetes (Annelida: Capitellidae) are common members of the 

world’s marine benthos, from shallow estuaries to the deep sea. Capitella capitata 

(Fabricius et al., 1780), the most commonly reported species, is frequently cited as a 

bioindicator (Dean, 2008). However, its utility as a sentinel species is questionable, since it 

is part of a large complex of morphologically similar but genetically, reproductively and 

developmentally distinct species (Grassle & Grassle, 1976). Méndez et al. (2000) 

characterized 50+ putative Capitella species on the basis of life history characteristics 

alone. Other differences among sibling species include physiology, karyotypes, 

chromosomal count, egg envelope ultrastructure, and mature sperm morphology 

(Eckelbarger & Grassle, 1983 & 1987; Gamenick et al., 1998; Grassle et al., 1987). 

Recent attempts have been made to understand the relationships within this species 

complex globally with molecular sequence data, mostly using the mitochondrial 

cytochrome c oxidase subunit I (COI) gene (Hilliard et al., 2016; Livi et al., 2017; Man-Ki 

et al., 2018; Silva et al., 2017; Tomioka et al., 2016). According to the COI data, Capitella 

teleta (formerly known as Capitella sp. I, according to Grassle & Grassle 1976) is one of 

the most widespread species, occurring in Japan (Tomioka et al., 2016), South Korea 

(Man-Ki et al., 2018) as well as in the Mediterranean Sea around Italy (Livi et al., 2017). 
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New species have been described from the coast of Brazil (Silva et al., 2017) and 

speculated around Japan (Tomioka et al., 2016) and Italy (Livi et al., 2017). 

Hilliard et al. (2016) found two morphotypes of Capitella in the northern Gulf of 

Mexico (GoM). Based on the presence of acicular spines, one of these matches the 

description of C. aciculata (Hartman 1959), while the second one, without acicular spines, 

fits the general description of C. capitata. However, COI sequence data could not confirm 

the separation of the two morphotypes as separate clades (Hilliard et al. 2016); instead they 

appear to constitute a single, morphologically plastic species. In addition, the sequence 

data suggest a genetic break between the eastern and western populations in the northern 

GoM.  

To document developmental differences between the western and eastern GoM, we 

recently described differences in the early development and adult morphology between 

Capitella sp. from Tampa Bay, FL and Tamiahua Lagoon, Veracruz, Mexico (Méndez et 

al., 2019). Populations with acicular spines also occur along the Brazilian coast but were 

sufficiently genetically distinct from the GoM populations that Silva et al. (2017) described 

them as a new species, Capitella neoaciculata.  

For the present study, we examined additional samples from the US and Mexican 

coasts of the GoM. Our objectives are 1) to determine molecular support for the Tampa 

Bay and Tamiahua Lagoon populations (Méndez et al. 2019) and identify possible 

geographic patterns, 2) to delimit species boundaries and re-evaluate the significance of 

acicular spines as diagnostic characters, and 3) to re-analyze the phylogeny of the genus 

Capitella using the newly generated data in conjunction with publicly available data. 
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2.2. Materials and Methods 

2.2.1. Specimen Collection/Storage 

Capitella specimens were collected from shallow mud/sand flats, canals, and the 

edge of red mangrove swamps along the GOM coast and in Miami, Florida (Figure 2.1 and 

Table 2.1). Sediment was collected with a shovel at a depth not exceeding 15 cm and 

sieved through a 0.5- or 1-mm sieve. Some specimens were hand picked off of the mesh 

and stored in a centrifuge tube with ambient water while others were later picked from 

retained material (stored in a plastic storage container with ambient water). Most adult 

Capitella spp. (identified by the presence of nine thoracic chaetigers and/or genital spines 

in the 8th and/or 9th chaetigers) were processed within several hours of collection by 

relaxing them in a sea water:7% magnesium chloride (or sulfate) (1:1) solution and then 

fixed and stored in 95% ethanol. Some specimens from Apollo Beach Preserve in Tampa 

Bay and from Tamiahua Lagoon in Veracruz were maintained in culture to document their 

early development (Méndez et al. 2019). Some of the cultured specimens were sequenced 

for this study as well. 
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Figure 2.1: Sampling locations throughout the Gulf of Mexico.  The shapefiles used to 

make this map are from version 2.3.7 of the Global Self-consistent, Hierarchical, 

High-resolution Geography (GSHHG) Database, accessible at 

http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html. 

 

  

http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
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Table 2.1: All sampling localities, figure abbreviations, and GenBank accession 

numbers for samples collected by the authors in this study (italicized) and Hilliard et 

al. (2016). 

Location 
Geographic 

coordinates 
GenBank Accession 

TEXAS 

  COI H3 

Galveston Bay 

29° 13’ 43.20” N 

94° 54’ 57.04” W 

 KX961408 – KX961417; 

MT246752 – MT246770 

MT221461; MT221470; 

MT221471; MT221474; 

MT221481; MT221490; 

MT221515 – MT221518 

Christmas Bay 

29° 2’ 56.21” N 

94° 9’ 54.71” W 

KX961404 – 

East Matagorda Bay 

28° 45’ 37.87” N 

95° 39’ 19.24” W 

KX961405 MT221535 

Goose Island 

28° 7’ 42.30” N 

96° 59’ 23.41” W 

KX961406 MT221541 

Corpus 

Christi 

Bay 

Oso Bay 

27° 43’ 5.05” N 

97° 19’ 52.71” W 

 KX961403; KX961407 MT221458; MT221542 

Suter Park 

27° 42' 16.4" N  

97° 20' 04.1" W 

MT246688 – MT246710 
MT221459; MT221460; 

MT221462 – MT221469 

Fish Pass 
27°41'41.3" N 

97°11'02.0" W 
– MT221472; MT221473 

FLORIDA 

 

Tampa 

Bay 

Admiral 

Farragut 

Academy 

27° 46’ 40.90” N 

82° 44’ 52.53” W 

 KX961418 – KX961426 – 

Apollo 

Beach 

Preserve 

27° 47’ 34.00” N 

82° 25’ 3.89” W 

MT246684 – MT246687; 

MT246737 – MT246751 
MT221500 – MT221514 

Crystal 

Beach, Saint 

Joseph 

Sound 

28° 5’ 30.91” N 

82° 46’ 52.84” W 

KX961427 – 
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Table 2.1 Continued 
Location Geographic  

coordinates 
GenBank Accession 

   COI H3 

FLORIDA 

Rookery Bay 

26° 0’ 51.24” N 

81° 45’ 14.28” W 

 KX961428 – KX961433 MT221529 – MT221534 

Matheson Hammock 

Park, Miami 

25° 40' 21.5"N  

80° 15' 37.6"W 

MT246678 – MT246683 MT221536 – MT221540 

MEXICO 

Tamiahua, Veracruz 

21° 16’ 11.05” N  

97° 26’ 37.72” W 

MT246711 – MT246721 
MT221475 – MT221480; 

MT221482 – MT221485 

El Estero, Veracruz 

19° 05' 31.3"N  

96° 06' 11.8"W 

MT246722 – MT246729 
MT221486 – MT221489; 

MT221491 – MT221493 

Ciudad del Carmen, 

Campeche 

18° 38' 54.7"N  

91° 50' 24.8"W 

MT246730 – MT246736 MT221495 – MT221499 

Mangrove/Marsh, 

Campeche 

18°44'28.1"N 

91°32'38.8"W 
– MT221494 

 

2.2.2. DNA Purification and Sequencing 

Tissue samples were isolated from each specimen by removing two or three 

segments from either the posterior end of a fragment or from the middle of the abdominal 

region in entire specimens. DNA was extracted and purified using the Qiagen DNeasy 

Blood and Tissue Kit following the manufacturer’s protocols but using half the specified 

amount of several reagents (Buffer AL, proteinase K, 100% EtOH, and Buffers AW1 and 

AW2) with final elutions of 100 µl. COI was amplified by polymerase chain reaction 

(PCR) using the thermocycler protocol of Carr et al. (2011) and two primer sets: polyLCO 

(5’-GAYTATWTTCAACAAATCATAAAGATATTGG-3’) and polyHCO (5’-

TAMACTTCWGGGTGACCAAARAATCA-3’) (Carr et al., 2011); Mega-COIF (5’- 
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TAYTCWACWAAYCAYAAAGAYATTGG-3’) and Mega-COIR (5’- 

TAKACTTCTGGRTGMCCAAARAATC-3’) (Schult et al., 2016). Histone H3 (hereafter 

H3) was amplified using H3aF and H3aR (Colgan et al., 1998). The thermocycler protocol 

included one cycle at 95°C for 180 s; 35 cycles of denaturing at 95°C for 30 s, annealing at 

54°C for 30 s, and extension at 72°C for 60 s; a final extension at 72°C for 300 s; and an 

indefinite hold at 12°C. All PCR amplifications were carried out with 25 µl reaction 

volumes consisting of 16.8 µl autoclaved Milli-Q® (EMD Millipore) water, 1.25 µl of 

each primer (10 µM), 0.2 µl Taq DNA Polymerase (Qiagen), 2 µl dNTP mix (10 mM) 

(Qiagen), 2.5 µl 10X Coral Load Buffer (Qiagen), and 1 µl of template DNA. Amplified 

products were diluted 1:9 in Milli-Q water. 

Cycle sequencing was conducted with the BigDye® Direct Cycle Sequencing Kit 

(Life Technologies, now Thermo Fisher Scientific) using 1 µl Big Dye® Terminator v3.1 

Cycle Sequencing RR-100, 2 µl Big Dye® Terminator v1.1/3.1 Sequencing Buffer (5X), 1 

µl primer (10 µM), 1 µl template DNA, and 5 µl autoclaved Milli-Q® water. The 

thermocycler protocol of Hilliard et al. (2016) was followed. Reaction products were 

cleaned with a ZR DNA Sequencing Clean-Up Kit™ (Zymo Research) following the 

manufacturer’s protocols using half the designated volume of all reagents with final elution 

in 15 µl of Hi-di formamide (Thermo Fisher Scientific). Products were analyzed with an 

ABI 3130 Genetic Analyzer (Applied Biosystems, now Thermo Fisher Scientific). 

Resulting electropherograms and base calls were edited in Sequencher™ 4.8 (Gene Codes 

Corporation) by assembling the forward and reverse reads of each specimen. Final 

sequences were exported as FASTA files. 
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2.2.3. Sequence Analysis 

Capitella spp. COI sequences were downloaded from GenBank (Table 2.2).  

Notomastus profondus (Eisig, 1887) and Heteromastus filiformis (Claparède, 1864) were 

used as outgroups in the COI analysis and a Heteromastus sp. was used as an outgroup in 

the H3 analysis (Table 2.2).  Initial multiple sequence alignment by nucleotides was 

completed using the MUSCLE algorithm (Edgar, 2004) with default settings via MEGAX 

(Kumar et al., 2018). The alignments were further refined and finalized with MAFFT 

v7.428 (Katoh et al., 2002 & 2005; Katoh & Standley, 2013) using the global alignment 

algorithm with a maximum of 16 iterative refinement cycles. MEGAX was used for 

alignment visualization and adjustment. Primer regions were deleted. Model selection was 

completed using jModeltest 2.1.10 v20160303 (Darriba et al., 2012) with 88 candidate 

models (11 substitution schemes, equal/unequal base frequencies, with/without invariable 

sites, with/without rate variation among sites with four categories) and a BIONJ base tree 

for likelihood calculations. Phylogenetic analyses were performed using RaxML HPC 

(8.2.11) (Stamatakis, 2014) for maximum likelihood (ML) and MrBayes (3.2.6) (Ronquist 

et al., 2012) for Bayesian Inference (BI). Average genetic distances between and within 

populations were calculated using the K2P model for comparability to other studies 

(Kimura, 1980). 

For COI, the ML analysis was completed with the GTR+CAT+I substitution model 

(Stamatakis 2006), rapid bootstrapping (Stamatakis et al., 2008) with a random seed of 333 

and automatic bootstopping (Pattengale et al., 2009), a final search for the best-scoring 

tree, and N. profondus and H. filiformis as outgroups. The BI analysis was completed with 

the GTR+I+G substitution model (Tavaré, 1986), 7000000 total generations, a 1000-
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generation sampling frequency, a 5000-generation diagnostic frequency, a 25% burn-in 

fraction, and a Metropolis coupling heating coefficient (λ) of 0.05. Median joining 

haplotype networks (Bandelt et al., 1999) were generated using PopART (Leigh & Bryant, 

2015). 

ML analysis of H3 was completed with the Jukes Cantor substitution model (Jukes 

& Cantor 1969), rapid bootstrapping (Stamatakis et al., 2008) with a random seed of 333 

and automatic bootstopping (Pattengale et al., 2009), a final search for the best-scoring 

tree, and Heteromastus sp. as the outgroup. The BI analysis was completed with the Jukes 

Cantor substitution model (Jukes & Cantor, 1969), 9000000 total generations, a 1000-

generation sampling frequency, a 5000-generation diagnostic frequency, and a 25% burn-

in fraction. 

Bayesian Poisson Tree Process (Zhang et al., 2013) was used to delimit species 

using the COI ML tree. A seed of 333 was set and Markov Chain Monte Carlo was run for 

6000000 generations. The input tree was rerooted on the longest branch and the 

Heteromastus filiformis and Notomastus profondus were specified as outgroups. 
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Table 2.2: All clade names, geographic locations, and GenBank accession numbers 

for samples downloaded from GenBank. 

Gene Clade Location GenBank Accession 

COI 

INDO-

PACIFIC 
Indo-Pacific 

KF737175; KF815717; 

JX676137; JX676150; 

JX676169; JX676171; 

JX676173; JX676174; 

JX676178; JX676179 

CANADA 

Hudson Bay (Canada 

Lineage 1) 

GU672406; GU672407; 

HQ023469; HQ023470 

Hudson Bay (Canada 

Lineage 2) 
HQ023471 – HQ023474 

Capitella 

aracaensis, 

C. biota, C. 

neoaciculata, 

C. nonatoi, 

and C. 

capitata 

(Greenland) 

Brazil and Greenland PopSet: 1043110615 

ITALY Italy PopSet: 1021313792 

Capitella 

teleta 

complex 

Japan, South Korea, and 

Italy (see above) 

LC120630-LC120653; 

KX286328; KX286329; 

KX298243 – KX298247 

OUTGROUPS Portugal KR916855; KR916899 

H3 OUTGROUP Japan LC208097 

 

2.2.4. Morphological Observations 

All specimens used for sequence analyses were morphologically identified with 

light microscopy. Presence/absence of acicular spines was diagnostic for assigning 

specimens to C. cf. capitata or C. cf. aciculata, respectively. Specimens from laboratory-
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maintained cultures of the Galveston (n=3), Corpus Christi (Suter Park) (n=4), and Tampa 

(Apollo Beach Preserve) (n=7) populations were used for scanning electron microscopy 

(SEM). This was done for comparison between populations and to C. capitata from 

Greenland, the type locality, and C. teleta (Blake, 2009; Blake et al., 2009). All cultures 

were started with individuals identified as C. cf. capitata. Individuals with C. cf. aciculata 

morphology were not included to prevent any confounding effects. 

For scanning electron microscopy (SEM), all worms were relaxed in a 1:1 solution 

of sea water:7% magnesium sulfate for at least 30 minutes and stored at 4°C in 2.5% 

glutaraldehyde in Millonig’s Phosphate Buffer (1 part 25% glutaraldehyde, 4 parts 0.34M 

NaCl, and 5 parts Millonig’s Phosphate Buffer (0.46M sodium phosphate monobasic, pH 

7.4)) until processing for SEM analysis. Each worm was rinsed (1 part Millonig’s 

Phosphate Buffer and 1 part 0.6M NaCl) three times for five minutes. Samples were then 

rinsed briefly with distilled water followed by dehydration in an ethanol series (30% for 10 

min, 50% for 10 min, 2 x 70% for 10 min, 2 x 80% for 10 min, 2 x 95% for 10 min, and 2 

x 100% for 10 min). Samples were transferred to a dish, excess ethanol removed, and 

covered with hexamethyldisilazane and left for several minutes until dry. Worms were 

mounted on SEM stubs using carbon tabs, and sputter-coated with gold/palladium. SEM 

was conducted at Texas A&M University at Galveston, TX with a Hitachi TM3000 

scanning electron microscope. 
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2.3. Results 

2.3.1. COI Analysis 

 

A total of 112 specimens were successfully sequenced for COI. Analysis of COI 

sequences revealed a total of 17 Capitella clades (Figure 2.2). Seven of the clades (2, 3, 8, 

9, 11, 12, 16) are limited to a single location and three (3, 8, 16) only contain a single 

specimen. The remaining six encompass specimens from at least two locations. As clades 

1, 3, 4, 5, 6, 7, 13, 14, 16, and 17 do not contain any sequences from the Gulf of Mexico, 

the geographic origins for these clades are listed in Figure 2.2 as countries, but the 

sequences originated from multiple locations in those countries.  

The GoM specimens fall into seven different clades in the phylogenetic tree (clades 

2, 8, 9, 10, 11, 12 and 15). Only one of them, clade 15, can be assigned to a named species, 

Capitella nonatoi (Silva et al. 2017), originally described from Araçá Bay, São Paulo, 

Brazil and here reported from Ciudad del Carmen, Campeche and Texas (Galveston and 

Suter Park). Specimens from Tamiahua, Veracruz form a clade with specimens from 

Ciudad del Carmen, Campeche; Texas; and Florida (Clade 10). This clade is referred to as 

Capitella sp. TV following Méndez et al. (2019). Some of the specimens from Apollo 

Beach Preserve, Tampa Bay culture form a distinct clade (Clade 2) and are referred to as 

Capitella sp. TF after Méndez et al. (2019). Capitella sp. TF has morphological differences 

from Capitella sp. TV (see below for more details). The remaining four clades with 

samples from the GoM cannot be linked to any previously reported species. 

Acicular spines were found in three clades, 10, 12, and 13 (Figure 2.2, green 

boxes). Clades 10 and 13 contain specimens that identified as both Capitella cf. capitata 
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and Capitella cf. aciculata. Clade 13 is a species recently described from Brazil (Silva et 

al. 2017) with all specimens having acicular spines. 

 

 

Figure 2.2: Maximum likelihood phylogenetic tree based on COI sequences. Branch 

labels are bootstrap support values|posterior probabilities. Details of each clade’s 

geographic origin and species name if known are listed. The clades with species where 

acicular spines have been documented are indicated by green boxes. 

 

    

Figure 2.3 shows that the Capitella sp. TV clade is split into Western and Eastern 

regions, with all Texas and Mexico samples in one group and all Florida samples in the 

other, respectively. The two groups are separated by three mutations. Specimens with 

acicular spines were found throughout (Figure 2.3). Within the Eastern Region are all of 

the samples from Miami and nine of the samples from Apollo Beach Preserve, including 
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field collected and culture specimens. The remaining eight field-collected specimens from 

Apollo Beach Preserve form a distinct clade sister to Capitella sp. TV (Clade 9, Figure 

2.2). 

The Capitella nonatoi clade (Clade 15, Figure 2.2) includes specimens from 

Corpus Christi, Galveston and Ciudad del Carmen, in addition to the sequences from 

Brazil. Reconstruction of haplotype networks reveals geographic separation between the 

Gulf of Mexico and Brazil, with some haplotypes shared between Ciudad del Carmen and 

Corpus Christi (Figure 2.4). K2P genetic distances for COI between all populations are 

reported in Figure 2.5.  Multiple samples were collected from Suter Park, Corpus Christi 

Bay (Jan 11, 2017 and May 29, 2017) and Galveston Bay (July 10, 2015 and May 23, 

2018) Texas over five years, but C. nonatoi specimens were only found during May 

sampling. Capitella sp. TV was present during the other samplings as well as the other 

locations throughout both bays. 
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Figure 2.3: Median joining haplotype network of COI for Capitella sp. TV (Clade 10, Figure 2.2). Locations marked by a 

triangle in the legends had some specimens with acicular spines. One hash represents a single mutation. Small black 

circles within the network represent a predicted haplotype that is not present in the data set. 
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Figure 2.4: Median joining haplotype network of COI Capitella nonatoi clade. One 

hash represents a single mutation. Small black circles within the network represent a 

predicted haplotype that is not present in the data set. 
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Our species delimitation analysis using bPTP clearly separated the 17 Capitella 

clades (Figure 2.2). While 13 of the clades were confirmed as species under both 

maximum likelihood and Bayesian posterior probability, four clades (Clades 11, 13, 14 and 

17) were additionally split up into several species, depending on the criterion used. For 

Clade 11, both solutions delimited two species (each represented by a single specimen). 

Clade 13 contains a single species under the maximum likelihood criterion but eight 

species under Bayesian posterior probability. Clade 14 includes two species under 

maximum likelihood and forms a single species under posterior probability. Clade 17 

(Capitella biota) was delimited as six species under maximum likelihood and as eight 

under posterior probability.  

 

Figure 2.5: K2P genetic distances based on COI. Only distances between groups are 

shown and no within-group values are reported. The color scheme for the distance 

values can be interpreted as column = upper right and row = lower left. For example, 

the genetic distance between Capitella teleta and Capitella aracaensis is 0.193, or 

19.3%.
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2.3.2. H3 Analysis 

 

Analysis of H3 did not reveal much, if any, geographic structure. The two Ciudad 

del Carmen specimens that clustered within Capitella nonatoi by COI analysis formed a 

well-supported clade with two specimens from Fish Pass, Corpus Christi, Texas (Figure 

2.6). We did not successfully sequence COI for the Fish Pass specimens. Several of the 

samples from Apollo Beach Preserve formed supported clades, but the clade membership 

does not align with that of COI.
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Figure 2.6: Bayesian Inference phylogenetic tree based on H3 sequences. Branch labels are bootstrap support 

values/posterior probabilities. Branches are only labeled as they are relevant to the Discussion Section.
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2.3.3. Morphology 

 

Scanning electron micrographs show that Capitella sp. TF (Figure 2.7 A-C) is not 

as long as Capitella sp. TV (Figure 2.7 D-F) in terms of total body length and thoracic 

length. Capitella sp. TF has dorsally incomplete intersegmental furrows in chaetigers 1-4 

(Figure 2.7 B-C) whereas Capitella sp. TV has complete furrows (Figure 2.7 E-F). 

Thoracic chaetigers 1-4 of Capitella sp. TF also appear more inflated than those of 

Capitella sp. TV (Figure 2.7 B & E). 

 

Figure 2.7: Scanning electron micrographs. Capitella sp. TF is in all top images (A-C). 

A. Complete specimen for total length. B. Thoracic region of specimen with 

chaetigers 1-4 labeled. C. Dorsal view for emphasis of incomplete intersegmental 

furrows. Capitella sp. TV is in all bottom images (D-F). D. Complete specimen from 

Galveston, TX for total length. E. Thoracic region of specimen from Tampa, FL with 

chaetigers 1-4 labeled. F. Dorsal view of specimen from Suter Park, Corpus Christi, 

TX for emphasis of complete intersegmental furrows. Scale bars: A&D=1 mm; 

B&E=500 µm; C&F=250 µm. 
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2.4. Discussion 

Our results show that Capitella has high diversity along the GoM coast. This 

diversity remains largely undocumented, as the majority of specimens used in this study 

could not be assigned to any named species. Our phylogenetic analysis and the Bayesian 

Poisson Tree Process species delimitation supported at least five new Capitella spp. 

(Clades 2, 9, 10, 11, and 12 Figure 2.2). Capitella species are generally not localized to a 

particular location in the GoM and most locations host several species. Furthermore, the 

proportional contributions of different species at a particular location may be temporally 

variable, depending on season, environmental conditions, or random factors (Grassle and 

Grassle, 1976; Gamenick et al., 1998). For example, Capitella nonatoi was only collected 

in May 2017 and 2018 in Suter Park, Corpus Christi and Galveston Bay, respectively. In 

comparison, Capitella sp. TV was the only species found at these locations at other times 

of the year and it was found in Suter Park in May 2017.  

The acicular spine morphology occurs in Clades 10, 12, and 13 (Figure 2.2, green 

boxes) which, with Clade 11, form a well-supported derived clade in our phylogeny, 

suggesting a single evolutionary origin of acicular spines. Within this acicular clade, only 

Capitella neoaciculata (Clade 13) is currently known from outside of the GoM (Brazil) 

and it is monophyletic with species from southern Veracruz and Campeche, Mexico. This 

would suggest that speciation within this clade may coincide with the opening of the GoM 

and Caribbean Sea and that this morphology evolved during the Jurassic Period (Ross and 

Scotese, 1988). Clitellates evolved as early as the Triassic Period (Manum et al., 1991) and 

the divergence of Capitellidae and Echiura from Clitellata (Weigert and Bleidorn, 2016; 

Helm et al., 2018) predates this. Further work using the fossil records of clitellates will be 
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necessary to establish a molecular clock for Capitellidae and test this hypothesis. While 

some of these species’ ranges may extend into the Caribbean, there are likely undiscovered 

Capitella species with acicular spines as well. 

Capitella capitata was described from Greenland and has been redescribed with 

material from there (Blake, 2009). Blake (2009) hypothesized that Capitella capitata is 

widely distributed in Arctic and Subarctic waters and this is supported by the current 

analysis (Figure 2.2) and the original report of the Capitella capitata COI sequence from 

Greenland (Silva et al., 2017). Interestingly, there is support for samples from the Indo-

Pacific region being true Capitella capitata (Figure 2.2). This is likely the result of an 

introduction by anthropogenic activity. Capitella teleta is also widely distributed and has 

been detected in the Mediterranean Sea and waters of South Korea and Japan (Figure 2.2). 

It was hypothesized that this, too, is due to anthropogenic activity (Tomioka et al., 2016). 

Continued sampling around the world will shed light on these patterns. 

Our data clearly support Capitella sp. TV (Clade 10) and Capitella sp. TF (Clade 

2) as separate species. Méndez et al. (2019) recently distinguished these two species by 

their larval development, based on samples collected from Tamiahua, Veracruz 

(abbreviated as TV) and Tampa Bay, FL (abbreviate as TF). In addition, they can be 

distinguished by their overall size (Figure 2.7) and pigmentation patterns in Capitella sp. 

TF (Méndez et al., 2019).  

Three sympatric species occurred at Apollo Beach Preserve in Tampa Bay, Florida. 

At the time of collection, we did not detect any obvious morphological differences among 

the specimens and some of the larger specimens were preserved for morphological and 

molecular studies. The smaller specimens and the remaining larger specimens were kept in 
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culture under the assumption that they all belonged to a single species. Our COI sequence 

analysis revealed that Capitella sp. TV was present both in the culture and the field-

preserved samples. Capitella sp. TF, a smaller species, was only detected in the culture. A 

third species, comprising larger specimens (Clade 9, Figure 2.2), was only sequenced from 

the field-preserved material (although it is possible that some specimens are present in the 

culture but have not been sequenced).  The three species may have different ecological 

characteristics and/or occupy different depths (Gamenick et al., 1998) or they may 

maintain sympatry through differing seasonal dynamics (Grassle and Grassle, 1976). 

However, our sampling design did not address this. 

Capitella sp. TV from Miami were collected at Matheson Hammock Park, the type 

locality for Capitella caribaeorum (Warren & George, 1986). They are approximately the 

same size (C. caribaeorum < 20 mm, Capitella sp. TV ≤ 24 mm), but our specimens from 

this location were collected differently. While Warren & George (1986) described C. 

caribaerum from a culture stemming from intertidally collected decaying mangrove leaves, 

our specimens were retrieved by sieving sediment from sand flats with interspersed algal 

mats. 

We further considered the possibility that our Capitella sp. TF (Clade 2), represents 

Capitella caribaeorum, but differences in size (mid-thoracic width: Capitella 

caribaeorum: 0.7 mm; Capitella sp. TF: ~0.25 mm) and life cycle make this unlikely as 

well. Capitella caribaeorum larvae metamorphose in the brood tube and emerge as 

juvenile worms (George, 1975) whereas Capitella sp. TF larvae emerge from brood tubes 

as swimming metatrochophores, settling to metamorphose after three days (Méndez et al., 

2019).  
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H3 had limited utility for species delimitation in Capitella, as the phylogenetic 

analysis did not support most of the clades revealed in the COI analysis. The only species 

that was supported as monophyletic in the H3 analysis was C. nonatoi. The average K2P 

distance between C. nonatoi H3 and all other Capitella is 8.54%. Average K2P distances 

among Clades 9-12 range 0.517-11.5%, likely reflecting more recent speciation. Although 

H3 has been successfully used to delimit three cryptic Heteromastus species from Korea 

(Man-Ki et al., 2019), the marker may lack sufficient variation to resolve relationships 

among closely related Capitella species.  

In conclusion, at least five undescribed species of Capitella were present in our 

samples as revealed by COI analysis. Two of them, Capitella sp. TV and Capitella sp. TF, 

also differ in their larval development. Capitella sp. TV is widespread throughout the 

GoM, ranging to at least the southern Atlantic coast of Florida, while the range of 

Capitella sp. TF still remains to be determined. Our phylogenetic tree supports a single 

origin of acicular spines. Our analyses included our own sequences in combination with 

publicly available sequences from multiple locations worldwide. Many parts of the world 

still remain unstudied with regard to Capitella diversity. Increased sampling efforts would 

lead to a more global picture of Capitella phylogeny and biogeography. Finally, multiple 

lines of evidence are useful when delimiting species. Culturing of Capitella is important to 

link developmental characteristics to the genetic signatures and morphology. 
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3. COMPARATIVE SPECIES ABUNDANCE MODELING OF CAPITELLIDAE 

(ANNELIDA) IN TAMPA BAY, FLORIDA 

 

3.1. Introduction 

Species abundance modeling is used in ecology for understanding biogeographic 

patterns and predicting impacts of climate change. These models are not to be confused 

with those commonly termed species distribution models (SDM) and ecological niche 

models (ENM) (Elith and Leathwick 2009, Sillero 2011, Peterson and Soberón 2012). 

While some of these methods use abundance data, they often use presence-only/-absence 

data and have prediction of species’ distributions, and often maps, as an end-goal. 

Research using species abundance models for marine organisms has been focused on 

theoretical ecology, conservation planning, and climate change (Robinson et al. 2017). 

Taxonomic representation has been varied but biased toward vertebrates, with nearly 50% 

of studies focused on fish, birds, and mammals (Robinson et al. 2017).  

Generalized linear models (GLMs) (Nelder & Wedderburn 1972, McCullagh & 

Nelder 1983) and generalized additive models (GAMs) (Hastie & Tibshirani 1986, 1990) 

are regression techniques frequently used for modeling species abundance data (Guisan et 

al. 2002). GLMs and GAMs are similar in that they both allow for non-Gaussian response 

distributions and use a monotonic function, often logarithmic, to link the response and 

predictors. The difference is that GAMs utilize smoothing functions on the predictors to 

determine their individual relationships with the response (Guisan et al. 2002, Zuur et al. 

2009). When there is overdispersion due to zero-inflation, generalized linear modeling can 

be extended to a two-part, or hurdle, model (Cragg 1971). This approach first fits the 
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abundance data as presence/absence with a binary response and then truncates the data and 

fits non-zero abundance with a Poisson or Negative Binomial response (Zuur et al. 2009). 

A newer method being applied to abundance modeling is boosted regression trees 

(BRTs). This approach combines classification and regression trees (Breiman et al. 1984) 

with boosting algorithms (Freund & Schapire 1996). Some advantages include its ability to 

accommodate nonparametric data sets and fit complex interactions (De’ath 2007, Elith et 

al. 2008). For marine species abundance modeling, GLMs and GAMs were used 18% of 

the time while BRTs were used in only 4.2% of papers reviewed (Robinson et al. 2017). 

Hegel et al. (2010) provide a general overview of various other modeling strategies. There 

have been several comparisons of modeling strategies and while some target marine 

organisms (Connolly et al. 2009, Shelton et al. 2014), they are often focused on terrestrial 

organisms (e.g. Potts & Elith 2006, Baldridge et al. 2016) and vertebrates (Oppel et al. 

2012). Such a comparative study of modeling strategies has not been completed for 

capitellid polychaetes. 

Capitellids occur ubiquitously throughout the world’s oceans. They have been 

reported from river mouths, estuaries, sea grass beds, deep sea sediments, and even wood 

and bones from whale falls in the deep sea (Judge & Barry 2016, Silva et al. 2016). This is 

especially the case for the best-known genus of the family, Capitella. Cryptic species of C. 

capitata were initially reported off the coast of Massachusetts primarily on the basis of life 

history characteristics and allozyme data (Grassle & Grassle 1976). Since then, there have 

been 50+ putative species described worldwide on the basis of life history alone (Méndez 

et al. 2000). Recent efforts have aimed to understand this species complex using the 

mitochondrial cytochrome c oxidase subunit I gene (COI) from the coasts of Brazil, Japan, 
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Korea, Italy, and the Gulf of Mexico (Hilliard et al. 2016, Tomioka et al. 2016, Livi et al. 

2017, Man-Ki et al. 2017, Silva et al. 2017). Some DNA barcoding with COI has been 

done on other genera (Carr et al. 2011, Lobo et al. 2016) and a phylogeny of the family 

indicates monophyly only for Capitella and a need to revise other genera (Tomioka et al. 

2018).  

Species in the Capitella species complex, as well as other capitellids, such as 

Heteromastus filiformis, Mediomastus ambiseta, and M. californiensis, have all shown 

utility as bioindicators (reviewed in Dean 2008). However, resolving species boundaries 

and understanding ecological drivers of abundance are necessary steps to effectively use 

them as such. All of these species, as well as C. aciculata and C. jonesi, occur throughout 

Tampa Bay, Florida. Tampa Bay is on the west central Florida coast (27°27’-28°3’ N; 

82°20’-82°44’ W), in a biogeographic transition zone between the Northern Gulf of 

Mexico and Floridian ecoregions, creating a very diverse system (Yates & Greening 2011 

and references therein, Spalding et al. 2007). Tampa Bay has an average depth of 4 m and 

surface area of nearly 1,036 km2 (Morrison & Yates 2011). The shorelines are 

characterized by tidal flats and mangroves (Glick & Clough 2006). 

The Environmental Protection Commission of Hillsborough County (EPCHC) has 

been continuously surveying the benthos of Tampa Bay since 1993. This dataset provides a 

unique opportunity for spatial modeling of benthic organisms in an estuarine system. We 

sought to conduct a meta-analysis using EPCHC data on C. capitata complex, C. 

aciculata, C. jonesi, H. filiformis, M. ambiseta, and M. californiensis (Figure 3.1) in this 

study. One goal of this study is to explore the data to understand spatial patterns inherent to 

each species. A second goal is to model environmental drivers of species abundance and 
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ask whether there is one modeling strategy that works well for all species. Modeling is 

accomplished by comparing six different approaches: GAMs (Poisson, Negative Binomial, 

Tweedie, and Zero-Inflated Poisson distributions), Hurdle models, and BRTs. The third 

goal is to use Random Forest models (Breiman 2001), another classification and regression 

method, for environmental driver evaluation. These results can be used to inform future 

studies of benthic invertebrate spatial ecology in general as well as population genetics, 

speciation, phylogeography, and toxicology of capitellids in the Gulf of Mexico. 

3.2. Materials and Methods 

3.2.1. Data Collection 

The EPCHC has been collecting benthic samples throughout the bay since 1993 

following a program designed by the Tampa Bay Estuary Program to monitor large 

changes throughout the bay using robust randomized sampling (Squires et al. 1994). 

Tampa Bay is divided into the seven segments of Hillsborough Bay (HB), Boca Ciega Bay 

(BCB), Terra Ceia Bay (TCB), Manatee River (MR), Lower Tampa Bay (LTB), Middle 

Tampa Bay (MTB), and Old Tampa Bay (OTB) (Figure 3.2). Hexagon grids are overlaid 

to further divide regions. Smaller hexagons are used in smaller regions (HB, BCB, TCB 

and MR) to increase the number of samples. A number of hexagons are randomly selected 

for sampling each year (July – October) and a random point is generated within each 

hexagon. The same general strategy has been followed even though some aspects of the 

design (number of samples, reporting period, etc.) have changed over time. 
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Figure 3.1: Light micrographs of Capitellidae species highlighting diagnostic 

characters. All specimens are from the Hillsborough County Environmental 

Protection Commission’s samples and were photographed in-house. Capitellids are 

characterized by having thoracic and abdominal regions, with the number of thoracic 

chaetigers being the primary diagnostic for genera. The arrangement and type(s) of 

chaetae are also important. (a): Capitella capitata complex specimen at 4X 

magnification with capillary chaetae highlighted. (b): Capitella aciculata specimen at 

40X magnification with acicular spine highlighted. Thoracic chaetigers 1-9 are 

labeled to differentiate thorax from abdomen. (c): Mediomastus ambiseta specimen at 

4X magnification with abdominal capillary chaetae highlighted. (d): Mediomastus 

californiensis specimen at 40X with long abdominal hooded hooks highlighted. 
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Figure 3.2: Map of Tampa Bay. The seven bay segments are indicated by the pie 

charts of relative species frequency over all 23 years. Note that the only instance of no 

species occurrence is Capitella aciculata in Lower Tampa Bay. Map created using 

QGIS Desktop 3.0.2 and Inkscape 0.92.3. The Tampa Bay shapefile was sourced from 

the Florida Geographic Data Library. 

 

Prior to 2007 there was a very large sampling effort with up to 134 samples 

collected in 1995 (Table 3.1). However, the effort was not consistent with as few as 78 

samples collected in 2006 (Table 3.1). Substantially fewer samples have been collected per 

year since 2007 but the sampling effort has become more consistent by bay segment and 

overall, with about 44 samples collected per year (Table 3.1). This is also evidenced by the 

sample decimal ratio, which increases and becomes more consistent from 2007 onward 

(Table 3.1). 
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From 2007 onward MR+TCB and LTB+MTB were treated as single reporting units 

by EPCHC for the random sample selection (Table 3.1). We did not combine these bay 

regions for modeling and kept them as separate bay segment categories for consistency and 

to avoid added complexity.  Despite the change in reporting units, the number of samples 

for each bay segment remained relatively constant (Table 3.1). 

Infaunal samples are collected with a single benthic grab using a Young Modified 

Van Veen grab (0.04 m2), sifted through a 500 micron mesh sieve, and bulk preserved. A 

10% formalin solution was used for preservation prior to 2012 and NOTOXhisto™ 

(Scientific Device Laboratory) has been used since.  After 72+ hours, samples are washed 

and transferred to 70% isopropanol for storage and identification. Surface and bottom 

water quality (pH, temperature, dissolved oxygen, and salinity) and depth are recorded at 

time of collection. A sample is also collected for calculation of the silt/clay fraction. More 

sampling design details, including a map of the hexagon grids, are available in EPCHC’s 

Benthic Report (Karlen et al. 2015). 
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Table 3.1: Number of samples collected by Bay Segment and Year. From 2007 

onward, LTB+MTB and MR+TCB (samples boxed for both combinations) were 

treated as two, instead of four, reporting units for random sample selection. 

Additional samples were collected in 2010 in OTB for a special project (highlighted in 

grey). Decimal ratios were calculated by continuously dividing every number within a 

year by the number to its right; for a given year, the quotient of HB and OTB was 

divided by MTB, whose quotient was divided by LTB, and so on. A decimal ratio of 1 

would indicate equal sampling effort across bay segments. Abbreviations follow those 

outlined in the Methods. 

 
HB OTB MTB LTB MR TCB BCB Bay-Wide Decimal 

Ratio 

1993 19 17 20 17 11 7 0 91  

1994 19 17 20 17 10 7 0 90  

1995 29 23 21 22 11 7 21 134 9.71E-07 

1996 27 15 24 24 13 8 21 132 1.13E-06 

1997 22 16 22 21 13 8 21 123 1.24E-06 

1998 26 16 20 17 13 7 21 120 1.07E-06 

1999 23 19 21 19 13 8 21 124 9.48E-07 

2000 22 19 23 17 13 8 27 129 6.30E-07 

2001 25 18 26 12 9 5 23 118 9.91E-07 

2002 25 8 21 9 7 4 9 83 8.50E-06 

2003 28 9 22 12 7 3 10 91 1.03E-05 

2004 25 9 22 11 10 1 10 88 2.22E-05 

2005 24 10 22 11 6 5 10 88 6.94E-06 

2006 24 8 19 8 5 5 9 78 9.75E-06 

2007 9 7 7 1 5 4 10 43 1.41E-03 
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Table 3.1 Continued 
 HB OTB MTB LTB MR TCB BCB Bay-Wide Decimal 

Ratio 

2008 9 7 5 3 6 3 11 44 1.28E-03 

2009 9 7 6 2 5 4 11 44 1.28E-03 

2010 9 22 5 3 5 4 11 59 4.08E-04 

2011 9 7 5 3 7 2 11 44 1.28E-03 

2012 9 7 5 3 7 2 11 44 1.28E-03 

2013 9 6 5 3 6 3 11 43 1.50E-03 

2014 9 7 5 3 5 4 11 44 1.28E-03 

2015 9 7 5 3 6 3 11 44 1.28E-03 
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3.2.2. Database Acquisition and Filtering 

The EPCHC maintains a Microsoft Access database on an FTP site 

(ftp://ftp.epchc.org/EPC_ERM_FTP/Benthic_Monitoring/). “EPC 

DataSubmittals_####.zip” is the relevant file and contains all data from 1993 through 

present. Data used in this study span 1993 to 2015 and were downloaded in December 

2017. Species identifications were performed by different agencies using the most current 

identification literature at the time. The EPCHC is continually verifying identifications and 

posting data updates. Therefore, minor changes to our dataset have occurred since we 

completed the analyses and will continue to occur as specimens are re-examined.  

The two relevant tables within the database are “Biology”, with records of species 

abundance data, and “DataSpreadsheet”, with all details related to field work and the 

measured environmental variables. These tables were joined and filtered for bottom 

measurements, year, hexagon ID, station number ID, latitude, longitude, and absolute 

abundance (Number/0.04m2) of Capitella capitata complex (hereafter C. capitata), C. 

aciculata, C. jonesi, Heteromastus filiformis, Mediomastus ambiseta, M. californiensis, 

and all other Capitellidae entries. The final data frame for modeling consisted of 1788 

observations of the six listed species’ abundance data, latitude, longitude, bay segment, 

year, temperature (°C), salinity (psu), pH, dissolved oxygen (mg/L), silt clay fraction, and 

depth (meters). 

3.2.3. Spatial Statistics 

Unless otherwise stated, all analyses were performed with R, version 3.4.4 (R Core 

Team 2018) and all graphics were generated with base-R graphics and the package ggplot2 

(Wickham 2009). Inkscape was used to further modify figures for final presentation. 
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Spatial patterns were explored for data description and to inform statistical model 

construction. Species constancy (presence in samples) and dominance (proportion of total 

abundance) were calculated (Carmo et al. 2013). Constancy is a percent calculated as: C = 

(p*100)/N, where p is the number of samples the species was present in and N is the total 

number of samples. Categories include C ≥ 50%, Constant; C = 25 – 50%, Accessory; and 

C ≤ 25%, Rare. Dominance is also a percent calculated as: D = (i/t)*100, where i is the 

species of interest’s abundance and t is total abundance. Categories include D ≥ 10%, 

Eudominant; D = 5 – 10%, Dominant; D = 2 – 5%, Subdominant; D = 1 – 2%, Recessive; 

and D ≤ 1%, Rare. Pie charts of species dominance were plotted and overlaid onto a map 

of Tampa Bay to illustrate the seven regions relative species dominance (Figure 3.2). To 

assess abundance as a function of space, Lorenz curves (Lorenz 1905, Burt et al. 2009), a 

graphical way to assess equality, were manually fit and overlaid with violin plots for each 

species as a function of bay segment. Abundance was averaged by bay segment for Lorenz 

curves to account for unequal sample sizes. A table was generated to assess variation in 

sampling spatially and temporally. Local Indicator of Spatial Association (LISA), or the 

Local Moran’s I (Anselin 1995), was calculated and plotted using the software GeoDa 

(Anselin et al. 2006). The K-Nearest Neighbors method was used to define neighborhoods 

with five neighbors (six total including the sample being considered). GeoDa was also 

used to generate bubble plots of species abundance. 

Species abundance structures were assessed for overdispersion by comparing their 

mean and sample variances. When variance equals mean, a Poisson model is appropriate. 

Overdispersion is present when the variance is larger than the mean and indicates that 

another distribution may be more appropriate. This was also assessed by a likelihood-ratio 
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test between Poisson and Negative Binomial models using the r-package lmtest, version 

0.9-36 (Zeileis & Hothorn 2002).  Zero-inflation of species abundance was assessed by 

visualization with violin plots using the r-package vioplot (Adler 2005). 

3.2.4. Species Abundance Modeling 

GAMs were fit for each species using all terms as covariates with r-package mgcv, 

version 1.8-23 (Wood 2011, Wood et al. 2016, Wood 2017). To not assume a linear 

relationship between each predictor and the response, a smoothing function was applied to 

all continuous covariates to generate a data-driven structure. Instead of using Year as a 

categorical term, the covariate “Total Samples/Year” was calculated and used to determine 

if species abundance is a function of sampling effort. The models took the form of: Species 

~ s(Temperature) + s(Salinity) + s(pH) + s(Dissolved Oxygen) + s(Depth) + s(Silt Clay 

Fraction) + s(Total Samples/Year) + Bay Segment. All GAMs were fit using the “REML” 

smoothing method and a logarithmic link function. The only exception is that the Zero-

Inflated Poisson distribution models had to be fit with an identity link function. 

The Hurdle model was fit using r-package pscl, version 1.5.2 (Zeileis et al. 2008, 

Jackman 2017) with all covariates in the binomial and negative binomial parts of the 

model. Link functions used were logarithmic for the negative binomial model and logit for 

the binomial model. BRTs were fit by first using the ‘gbm.step’ function (available in the 

supplementary materials of Elith et al. 2008, used for this study, and the dismo r-package) 

to determine an optimal number of trees. A seed of 37 was set to permit reproducibility, a 

Poisson distribution was used for the response, tree complexity (or interaction depth) was 

set to one to not allow any interactions, bag fraction was 0.5, and learning rate (or 

shrinkage) was started at 0.01 and adjusted until an optimal tree count of at least 1,000 was 
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reached (Elith et al. 2008). An exception was that C. aciculata was fit with a bag fraction 

of 1.0 due to algorithm convergence problems. 

All models had static structure; all terms were used in every model with no term 

selection procedure or term interactions. This is because the goal was to assess model 

specification “out-of-the-box” and not refine any particular model to optimize its fit. 

Predictor significance was assessed at alpha of 0.05 for all models except for BRTs, for 

which the relative influence of each term is estimated (Friedman 2001, Friedman & 

Meulman 2003). Significance of bay segment in Hurdle models was assessed with a 

likelihood ratio test (r-package lmtest), resulting in a single significance value for the entire 

model. 

Model evaluation and selection of a “best” model was completed by testing internal 

predictive performance, comparing the model’s predicted values against the observed 

values. Statistics used were the Pearson correlation coefficient, Spearman rank correlation, 

root mean square error (RMSE), average (mean absolute) error (AVE), slope, and intercept 

(Potts & Elith 2006). We also followed the methods of Potts and Elith (2006) to correct the 

calibration statistics by estimating bias using the 0.632+ bootstrap method (Efron & 

Tibshirani 1997, Steyerberg et al. 2001) with 200 iterations. R-code was sourced from the 

online supplementary material of Zuur et al. (2009) and modified to shorten processing 

time.  

A data set with as many zeros as C. aciculata (16 records of presence, data not 

shown), especially an entire bay segment with all zeros (LTB), presented unique problems. 

Algorithm convergence failures and matrix singularities were routinely encountered and 

required more exploration of model parameterization to resolve this issue. A consequence 
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is that we could not use the 0.632+ bootstrap corrections and had to remove bay segment. 

Instead of removing bay segment from analyses, removing LTB samples would have also 

worked. We instead chose to keep LTB samples for their information in other cofactors. 

Another consequence is that stochasticity could not be included in the BRT and bag 

fraction had to be fixed at 1.0. These problems are not unrelated as bootstrapping for 

estimate correction and introducing stochasticity into the BRT both require subsampling 

the data frame. Limited presence records for C. aciculata results in a higher (1.05x10^-7) 

probability of a data frame with all zeros being built. In comparison, C. capitata has a 

2.87x10^-141 probability of this happening. 

3.2.5. Environmental Factors 

Analyses for this section were performed with R, version 3.6.0 (R Core Team 

2019). Random forest models were built to assess environmental drivers of species 

abundance independent of the model specification comparisons. We have allowed 

interactions in the random forest as our goal is not to compare this to the other model 

specifications but use it to understand environmental driver importance, and inclusion of 

interactions can aid this. As total samples/year is not an environmental term, it was not 

included in this analysis. We specifically used conditional random forests because they 

reduce variable-selection bias due to differences in variable types and structures (Strobl et 

al. 2009). Models were fit with r-package party, version 1.3-3 (Hothorn et al. 2006, Strobl 

et al. 2007,2008) and r-package caret, version 6.0-85 (Kuhn et al. 2020). Plots of variable 

importance were created. 

 In the interest of space, we chose to only assess the relationship between each 

species and its most important variable. Accumulated local effects (ALE) plots (Apley and 
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Zhu 2016) were generated using r-package iml, version 0.9.0 (Molnar et al. 2018). ALE 

plots average the effects of a factor on model predictions while holding all other factors 

constant. Changes in model predictions are averaged in windows, measuring local effects. 

This approach avoids data extrapolation that can lead to bias when predictors are 

correlated. See Molnar (2019) for further reading. 

3.3. Results 

3.3.1. Spatial Statistics 

Constancy and dominance of the six species are variable throughout all bay 

segments. Capitella capitata was most dominant overall (D = 33.60%) (Table 3.2). C. 

aciculata was the least dominant overall at 2.72% (Table 3.2) and was not found at all in 

LTB. Its peak dominance was in OTB where it comprised 9.97% of abundance (Figure 3.2 

and Table 3.2). C. jonesi also occurred in a small portion of the samples (C = 5.22%) but 

was found throughout the bay with dominance ranging 0.84 – 4.63% (Figure 3.2 and Table 

3.2). C. capitata and Mediomastus spp. were the most constant throughout the bay and had 

dominance that ranged anywhere from 4.6 to 71.48% of species abundance (Figure 3.2 and 

Table 3.2). Heteromastus filiformis has dominance throughout the bay at 3.88 – 11.87% 

but is its most dominant in BCB (D = 36%) (Figure 3.2 and Table 3.2). 
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Table 3.2: Abundance (N), constancy (C), and dominance (D) overall and by Bay 

Segment per Capitella, Heteromastus, and Mediomastus. Abbreviations follow those 

outlined in the Methods. 

 

 

TOTAL HB 

   N C D N C D 

 C. capitata 2760 16.56 33.34 1082 20.54 38.99 

 C. aciculata 233 0.90 2.81 44 0.74 1.59 

 C. jonesi 250 5.32 3.02 129 6.44 4.65 

 H. filiformis 949 8.45 11.46 108 7.43 3.89 

 M. ambiseta 2706 13.21 32.69 1286 12.62 46.34 

 M. californiensis 1381 11.81 16.68 126 3.22 4.54 

              

 

 

OTB MTB 

 

 

N C D N C D 

 

 

618 18.08 42.13 392 9.50 39.60 

 

 

147 1.48 10.02 1 0.30 0.10 

 

 

23 5.90 1.57 35 5.34 3.54 

 

 

175 11.07 11.93 41 5.93 4.14 

 

 

176 12.92 12.00 154 6.23 15.56 

 

 

328 9.59 22.36 367 13.35 37.07 
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Table 3.2 Continued 

 

 

LTB MR 

 

 

N C D N C D 

 

 

66 10.05 13.23 65 9.47 8.16 

 

 

0 0.00 0.00 1 0.59 0.13 

 

 

6 2.28 1.20 6 1.18 0.75 

 

 

41 3.20 8.22 27 7.10 3.39 

 

 

159 10.05 31.86 583 23.67 73.15 

 

 

227 23.74 45.49 115 11.24 14.43 

 

 

            

 

 

TCB BCB 

 

 

N C D N C D 

 

 

111 18.48 27.21 426 26.10 31.72 

 

 

3 1.09 0.74 37 2.03 2.76 

 

 

7 5.43 1.72 44 7.80 3.28 

 

 

44 9.78 10.78 513 14.58 38.20 

 

 

157 20.65 38.48 191 16.27 14.22 

 

 

86 18.48 21.08 132 13.22 9.83 
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Species abundance distributions indicate that there is zero-inflation for all species 

(Figure 3.3). There is also evidence of statistical overdispersion, indicating that 

distributions other than Poisson are appropriate (Table 3.3). Comparing GAM-Poisson and 

GAM-Negative Binomial models with a likelihood ratio test indicates that a Negative 

Binomial distribution describes all species better (Table 3.4). These results led to use of a 

Negative Binomial distribution for the Hurdle model.  

 

Figure 3.3: Violin plots of species abundance. The white points represent the median 

of each range. Abbreviations: C.cap=Capitella capitata; C.acic=Capitella aciculata; 

C.jon=Capitella jonesi; H.fili=Heteromastus filiformis; M.amb=Mediomastus ambiseta; 

M.cal=Mediomastus californiensis. 
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Table 3.3: The variance and mean of each species abundance.  
Variance Mean 

C. capitata 65.13 1.54 

C. aciculata 7.38 0.13 

C. jonesi 2.15 0.13 

H. filiformis 13.01 0.53 

M. ambiseta 126.45 1.51 

M. californiensis 21.47 0.77 

 

Table 3.4: The likelihood ratio test results from comparing the GAM-Poisson and 

GAM-Negative Binomial models for each species. Significance at α of 0.05 indicates a 

better fit of the GAM-Negative Binomial model. 

 Chi-Square 

Degrees of 

Freedom 

p-value 

C. capitata 5970.7 33.564 <2.2E-16 

C. aciculata 53.749 35.572 0.02885 

C. jonesi 363.24 38.151 <2.2E-16 

H. filiformis 1337.5 34.464 <2.2E-16 

M. ambiseta 5387.6 36.59 <2.2E-16 

M. californiensis 3972.6 36.034 <2.2E-16 
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The Lorenz curves illustrate zero inflation and spatial autocorrelation (Figure 3.4). 

The violin plots for every species have a similar shape to those in Figure 3.3, indicating 

zero inflation. Spatial autocorrelation is indicated by steep and changing slopes in the 

Lorenz curves. For example, the violin plot for H. filiformis (Figure 3.4d) at BCB shows a 

very large abundance and the steep slope between LTB and BCB indicates that BCB has a 

large portion, or unequal share, of all H. filiformis abundance in Tampa Bay. A contrasting 

example is M. californiensis (Figure 3.4f) whose violin plots appear more equal and 

Lorenz curve is closer to the line of equal distribution. However, all species show some 

degree of spatial autocorrelation. 

Looking at bubble plots of abundance and LISA plots, organized by bay segment 

(Figure 3.5), there is evidence of spatial autocorrelation. For example, LISA plots show 

that areas of species’ presence often result in significantly autocorrelated neighborhoods 

(Figure 3.5). There is also a pattern of species’ presence near-shore with few occurrences 

in the open-water areas of the bay (Figure 3.5). 
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Figure 3.4: Violin plots of species abundance by Bay Segment, ordered by increasing 

average abundance. Lorenz curves of the cumulative proportion of averaged species 

abundance are overlaid. The different colored lines correspond to each species unique 

distribution and the black lines are a representation of a species with abundance 

equally distributed among Bay Segments. Note that “Species Abundance” scale varies 

between graphs. 
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Figure 3.5: Bubble plots of species abundance and LISA scores. Bubble plots are 

colored by species abundance (No./0.04m2) ranges and size is a function of abundance 

for that sample.  LISA plots are sorted by bay segment. Correlation significance was 

assessed at alpha = 0.05. Neighborhoods were defined by the five nearest neighbors. 

Interpretation: a significant high-high correlation indicates that the sample has a 

high value and is neighbored by other samples with high values. Raw figures 

generated with GeoDa (Anselin, Syabri, and Kho 2006) and further modified with 

Inkscape 0.92.3. 
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Figure 3.5 Continued 
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Figure 3.5 Continued 

 

  



 

63 

 

3.3.2. Species Abundance Modeling 

The 0.632+ bootstrap to correct model optimism was applied to every species 

except C. aciculata. A problem with matrix singularity was encountered during the 0.632+ 

bootstrap processes and apparent (non-adjusted) statistics of the model fits are presented 

for this species. Model calibration can be assessed with the slope and intercept (observed 

count ~ predicted count) (Figure 3.6, Table A.1) (Potts & Elith 2006). It is clear that there 

is a lot of variation within and between species. All models had a bias (intercept) within 

±1.0 except BRT, C. aciculata; GAM-Zero-Inflated Poisson, C. capitata; and Hurdle, M. 

ambiseta. The consistency/spread (slope) was more variable (Figure 3.6, Table A.1). The 

models considered best calibrated for each species are: Hurdle, C. capitata (m = 0.95, b = 

0.04); GAM-Poisson, C. aciculata (m = 1.01, b = 0.00); GAM-Tweedie, C. jonesi (m = 

0.97, b = 0.01); Hurdle, H. filiformis (m = 1.01, b = -0.01); GAM- Negative Binomial, M. 

ambiseta (m = 0.98, b = 0.26); and GAM-Tweedie, M. californiensis (m = 0.94, b = 0.07) 

(Figure 3.6, Table A.1).This calibration is reflected in both correlation values, with the best 

calibrated models generally having the highest, or near highest, values (Figure 3.7, Table 

A.1). It is also corroborated by the RMSE and AVE values, with selected models having 

the lowest or relatively low values (Figure 3.7, Table A.1). 
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Figure 3.6: Plots of the slope and intercept for all models using values from Table A1. 

The axes are unitless as only slope and intercept were used for plot generation. 

However, the y-axis represents the observed count and x-axis the predicted count 

(Potts and Elith 2006).  **Indicates that the biased, apparent values are used. 
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Figure 3.7: Plots of measures of correlation and error between observed and 

predicted values for all models using values from Table A1. Outlying values were not 

plotted for root mean square error and average error for visualization purposes. 

Excluded points are highlighted in Table A1.  **Indicates that the biased, apparent 

values are used. 

 

3.3.3. Environmental Factors 

Significance was assessed at alpha 0.05 for all models (Figure 3.8) except for BRTs 

for which the relative influence of each term is estimated (Friedman 2001, Friedman & 

Meulman 2003) (Figure A.1).GAM-Poisson and -Zero Inflated Poisson models found all 

terms significant for every species except for salinity|H. filiformis (Figure 3.8). Bay 

segment was found significant for every species/model combination. Depth was found 

significant for most species/model combinations and was significant for every best-
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calibrated model. Total samples had the next overall significance with every species/best-

calibrated model combination returning it as significant except for C. jonesi (Figure 3.8). 

This is generally corroborated by the BRTs for which depth or bay segment are within the 

top two influential terms for most species. The exceptions are C. aciculata, which had pH 

as the only term that influences abundance, and H. filiformis, which had depth third but 

still of strong influence (Figure A.1). 

 

 

Figure 3.8: A table graph of term significance for all data-based models. There is a 

key at the top. If the term was significant (alpha = 0.05) for a given species/model 

combination, that block was colored. All colors correspond to those used for the 

models in Figures 7 and 8. Notice that the count and zero (presence/absence) parts of 

the Hurdle model are separated for all terms except Bay Segment. Significance of Bay 

Segment was assessed for the Hurdle model as a whole using a likelihood-ratio test. 

Bay Segment was not investigated for Capitella aciculata. The model chosen as best 

calibrated for each species is highlighted with a bold block. 
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Random forest models indicated that bay segment and/or depth had 50+% 

importance for every species (Figure 3.9). Bay segment was most important for C. 

aciculata, C. jonesi, and M. ambiseta while depth was most important for C. capitata and 

H. filiformis (Figure 3.9). Dissolved oxygen was most important for M. californiensis 

(Figure 3.9). ALE plots for C. capitata and H. filiformis indicate a negative relationship of 

species abundance and depth; higher species abundances are found at shallower depths 

(<1.9 m and <1.0 m, respectively) (Figure 3.10). Species with bay segment being most 

important have ALE plots (Figure 3.10) that reflect patterns of spatial autocorrelation 

observed in Lorenz curves (Figure 3.4). For example, the Lorenz curve for C. jonesi 

indicates a large portion of species abundance in HB and the ALE plot shows a large 

positive effect of HB. M. californiensis has a somewhat sigmoidal relationship with 

dissolved oxygen, with a large increase in abundance between ~4.4 – 7.5 mg/L (Figure 

3.10). 
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Figure 3.9: Conditional random forest variable importance plots with species models 

organized in rows and environmental factors in columns. Variable importance 

represents the permutation importance of each factor, or the average effect on mean 

squared error when the factor is removed. Each factor’s importance is assessed 

independently, thus importance is not additive for each model. Higher importance 

equates to higher error when that factor is removed from the model. Importance is 

represented by size and color scales. 
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Figure 3.10: Accumulated Local Effects (ALE) plots of terms with top variable 

importance for each species. ALE scores are interpreted as the difference between the 

model prediction (at a given instance of x) and the averaged model prediction. 

Continuous predictors include a rug plot on the x-axis for visualizing observation 

density. Abbreviations of bay segments and term units are described in the Methods. 

 

3.4. Discussion 

Our results demonstrate presence of spatial autocorrelation structured by bay 

segment for capitellids and variation in model specification across species. Using Lorenz 

curves in conjunction with violin plots demonstrated an effective way to assess this and 



 

70 

 

overall species abundance structure across different regions of a large area. Interpretation 

of Lorenz curves is that the further the curve is from the line of perfect equality, the more 

unequally distributed the species is. One difference from standard Lorenz curves is that 

ours do not meet the line of equality at the origin. This is because we are using an x-axis 

with categories that are all assumed to have some abundance in the case of perfect equality. 

The curve’s slope allows for quick assessment of autocorrelation; given a steep slope 

between two regions, it can be inferred that the region with greater averaged abundance 

has, proportionally, more of the total species abundance in the entire bay. Some apparent 

examples are OTB for Capitella aciculata, BCB for Heteromastus filiformis, and TCB for 

Mediomastus ambiseta (Figure 3.4). Additionally, the slope of the curve to each bay 

segment reflects the magnitude of effect that bay segment has in ALE plots (results not 

shown).  

Bubble plots of species abundance and LISA plots confirm autocorrelation 

indicated by Lorenz curves (Figures 3.5). It is important to keep in mind that the small 

details do not matter much when interpreting the LISA plots as this dataset was collected 

with large scale patterns in mind. Therefore, what is important is whether or not bay 

segments appear significantly autocorrelated overall; the fact that one neighborhood is 

significant and a neighboring group is not has little interpretation because the sampling 

strategy is not appropriate for such comparisons. For example, H. filiformis abundance in 

BCB (Figure 3.5) has an apparent clustering clear in the bubble plot. LISA plots show 

several neighborhoods with High-High (high values surrounded by other high values) and 

Low-High LISA scores (Figure 3.5). 
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The zero-inflatedness of every species is not surprising. Benthic infaunal 

invertebrates, especially estuarine polychaetes, are known for having patchy spatial 

distributions, often associated with grain size or organic matter/food (Warren 1977, James 

& Gibson 1980, Ansari et al. 1986, Kalejta & Hockey 1991, Sanchez-Moyano & García-

Asencio 2009). Larval settlement patterns are sometimes attributed to the presence of 

conspecific adults (Osman & Whitlatch 1995, Snelgrove et al. 2001), chemical cues in 

sediment (Qian 1999), and/or subjection to near-bottom flow dynamics, with active 

selection during passive flow (Butman 1986, 1989, Butman & Grassle 1992, Snelgrove et 

al. 1993). The presence of some bacteria and their metabolites has even been attributed to 

inducing larval settlement (Harder et al. 2002, Lau et al. 2003, Chung et al. 2010). 

Capitella are among the better studied marine invertebrates (Grassle & Grassle 1976, 

Blake et al. 2009, Seaver 2016). One of the cryptic species discovered by Grassle and 

Grassle (1976) has since been formally described as C. teleta (Blake et al. 2009) and has 

been the subject of several studies on larval settlement (Dubilier 1988, Grassle et al. 1992, 

Hill & Nelson 1992, Thiyagarajan et al. 2005, Biggers et al. 2012, Burns et al. 2014). 

There are limited studies on the other genera considered (Hannan 1984, Snelgrove 1994).  

Although not considered the best-calibrated model for every species, GAM-

Tweedie and/or Hurdle models have intercepts closest to, or near, the origin for all species, 

indicating low bias in their calibration. One of the two was considered best-calibrated for 

C. capitata, C. jonesi, H. filiformis, and M. californiensis (Table A.1). C. aciculata and M. 

ambiseta have GAM-Tweedie slopes within ±0.3 (Table A.1). This is an indication that 

although these two models may not be deemed the best fit in all cases, they are reasonably 

calibrated and could be considered a good starting point.  



 

72 

 

The overall high performance of GAM-Tweedie and Hurdle models may be 

attributable to their ability to handle the excess zeros in unique ways. Hurdle models have 

been specifically used for rare species count data (Cunningham and Lindenmayer 2005). 

This approach splits the dataset into a binary version (presence/absence) and a zero-

truncated abundance version. assuming that processes driving presence/absence are 

separate from those driving abundance (Cragg 1971, Zuur et al. 2009). All other methods 

keep the dataset whole and assume the processes driving zero-inflation are also driving 

abundance. A Tweedie distribution allows more flexibility for the species abundance 

distribution’s shape, as this is determined by a power term (p) in the variance function (e.g. 

p=1 is the Poisson distribution) (Jørgensen 1987). The mgcv r-package has the option to 

estimate the power term during model fitting, resulting in an automated distribution choice 

that may fit the data better than the standard Poisson or Negative Binomial distributions. 

BRT models have shown equal (Martínez-Rincón et al. 2012) and better (França 

and Cabral 2015) performance compared to GAMs. Our results indicate better performance 

of GAMs. This is likely due to the “stump model” restriction (not allowing any 

interactions), as a key benefit of a BRT is that it can handle very complex interactions that 

are not possible in the data-based models (De’ath 2007, Elith et al. 2008). It is likely that a 

well-built BRT could perform just as well as, if not better than, the GAM-Tweedie and 

Hurdle models. See Elith et al. (2008) for a guide to assembling BRT models and further 

references on the topic. 

General location within a bay and sampling effort are expected to affect how many 

worms are collected, so the overall significance of bay segment and total samples is not 

surprising. What was unexpected was the significance of depth, as Tampa Bay is only 4m 
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deep on average (Morrison & Yates 2011). This is not a result of collinearity as standard 

measures (augmented pairs plots and variance inflation factor values) did not reveal any 

collinearity among environmental factors (results not shown). Relationships of species 

abundance and diversity with depth are complex (Houston & Haedrich 1984, Paterson & 

Lambshead 1995, Sibaja-Cordero et al. 2012). Studies focused on depth gradients in 

shallow estuarine systems would be useful to better understand this relationship. 

We recognize that these data may be confounded by presence of cryptic species. 

There is little known about how many species comprise the C. capitata complex in Tampa 

Bay, but recent work indicates at least three distinct genetic lineages (Section 2 of this 

dissertation). It is also possible that C. aciculata may not be a distinct species and is part of 

a C. capitata complex lineage (Hilliard et al. 2016). Preliminary work on H. filiformis in 

the Gulf of Mexico indicates the presence of distinct genetic lineages world-wide and 

likely the presence of another species complex in Capitellidae (JH, pers. obs.). While there 

has been no work on genetic lineages of M. ambiseta and M. californiensis, it can be 

hypothesized that they are also species complexes due to their large geographic range 

(Blake 2008) and the emerging patterns in Capitella. This is, unfortunately, a factor that 

we cannot control or account for at this time. However, these results still further our 

general understanding of capitellid ecology. 

We have shown that, despite filling a similar ecological niche (burrowing deposit 

feeders), there is not one model optimal for every species. Much consideration should be 

given to a taxon’s biology, especially the shape of its distribution in the area of interest, 

and the structure of the data frame (e.g., sampling design and scale). For example, C. 

aciculata was especially zero-inflated and this required more exploration of model 



 

74 

 

parameterization. This highlights the complex biology of capitellids, as the extreme zero-

inflation may be due to this species truly being rare. It may also be that C. aciculata is not 

a unique species (Hilliard et al. 2016) and the records should be combined with C. capitata 

complex until there is further resolution of species boundaries. Consideration of the data 

structure and the sampling scale and design indicated that spatial autocorrelation needed 

accounted for on a bay-scale and comparisons at smaller scales were not appropriate. 

Taking an approach similar to the one presented here allows for systematic comparison of 

several modeling strategies at once. The model(s) considered best can then be refined. In 

the case of a benthic infaunal marine invertebrate with zero-inflated presence/absence 

records, Hurdle and GAM-Tweedie models may be a good place to start if resources are 

limited. 
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4. ANALYSIS OF ANNELID TRANSCRIPTOMES AND GENOMES REVEALS HIGH 

DIVERSITY OF THE OXYGEN SENSING TRANSCRIPTION FACTOR HYPOXIA 

INDUCIBLE FACTOR (HIF) 

 

4.1. Introduction 

Oxygen shapes the composition and functioning of most biological communities. 

Throughout geological time, hyperoxic conditions have led to bursts of diversification 

(Graham et al. 1995; Berner et al. 2007) and gigantism (Dudley 1998) whereas hypoxia 

generally leads to the opposite effects (Levin 2003; Heinrich et al. 2011; Friedrich et al. 

2014). In marine and estuarine environments, oxygen levels can vary greatly spatially and 

temporally. Hypoxia zones are natural phenomena, occurring in oxygen minimum zones, 

enclosed basins or semi-enclosed fjords, but can be exacerbated by anthropogenic 

activities, in extreme cases leading to “dead zones” (Rabalais et al. 2002; Díaz and 

Rosenberg 2008). Hypoxia is generally defined as dissolved oxygen (DO) levels below 2 

ml O2/l (Díaz and Rosenberg 1995). This degree of oxygen depletion can lead to severely 

diminished diversity and biomass, especially when combined with other environmental 

stressors such as warming temperatures and acidification (Pörtner et al. 2005; Rosa and 

Seibel 2008; Melzner et al. 2013; Rosa et al. 2013). The threshold value of 2 ml O2/l is 

somewhat arbitrary, as different organisms exhibit different sensitivities to diminishing O2 

and the viability and fitness of an organism are often negatively affected at only slightly 

decreased O2 levels well above the 2 ml O2/l threshold (Vaquer-Sunyer and Duarte 2008).  

The phylum Annelida comprises a large diversity of species inhabiting terrestrial, 

freshwater and marine habitats. Polychaetes are a subset of annelids which form an 
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important component of marine benthic communities. Many species survive or even thrive 

under low oxygen or hypoxia and can tolerate significant fluctuations in DO levels by 

sophisticated mechanisms for maximizing oxygen uptake, transport and delivery 

(Kristensen 1983, Hourdez and Lallier 2007, Qu et al. 2015). However, it is not well 

studied how they sense DO levels and how the physiological coping mechanisms are 

activated.  

Due to its relevance for physiology and medicine, oxygen sensing is well studied in 

humans and other vertebrates, and to some degree in invertebrate models such as 

Drosophila (Nambu et al. 1996), Caenorhabditis (Epstein et al. 2001; Jiang et al. 2001), 

and even the simple Trichoplax adhaerens (Leonarz et al. 2011). In all of these vastly 

divergent species, the physiological response to low oxygen is triggered by molecular 

cascades in which Hypoxia Inducible Factors (HIFs) play a key role.  HIFs are 

heterodimeric transcription factors with a basic helix-loop-helix (bHLH) motif which 

trigger cellular responses to low oxygen (Wang et al. 1995). Under normoxic conditions, 

one of the subunits, HIFα, is hydroxylated at two proline residues by the enzymes HIF 

proline hydroxylase (PHD) and Factor Inhibiting HIF1 (FIH1). Both PHD and FIH1 are 

oxygen dependent, but FIH1 remains functional under lower DO concentrations than PHD, 

and thus may be particularly important under moderate hypoxia (Kaelin Jr and Ratcliffe 

2008).  

Proline hydroxylation of HIFα promotes interaction with a cellular protein complex 

containing von Hippel-Lindau factor (vHL), eventually leading to proteasomal degradation 

(Kaelin Jr 2005). Under hypoxic conditions, the degradation is disrupted because PHD and 

FIH1 become non-functional. As a consequence, HIFα accumulates in the cytoplasm and 
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dimerizes with the stable subunit HIFβ (also known as Aryl Hydrocarbon Nuclear 

Translator, ARNT). The dimer translocates to the nucleus and acts as a transcription factor 

by binding to short Hypoxia Response Elements (HREs) in the genome, enhancing 

transcription of downstream genes. Thus, HIFs are only functional as transcription factors 

under hypoxic conditions.  

Three HIFαs have been characterized in metazoans, but only HIF1α and HIF2α 

have been studied extensively (Kaelin Jr and Ratcliffe 2008). Drosophila and 

Caenorhabditis only have a single PHD family member, known as Egl9, whereas three 

PHDs occur in vertebrates (Kaelin Jr and Ratcliffe 2008). By comparison, very little is 

known about oxygen sensing in the third branch of bilaterians, the lophotrochozoans or 

spiralians. The only lophotrochozoan taxa studied to date in this respect are several species 

of molluscs, including two species of oysters (Piontkivska et al. 2011; Kawabe and 

Yokoyama 2012), a mussel (Giannetto et al. 2015) and an abalone (Cai et al. 2014). The 

above studies have characterized HIFα, HIFβ, and PHD in molluscs, but FIH1 has not been 

identified in any lophotrochozoan. It has primarily been characterized in vertebrates, as 

well as recently in a freshwater shrimp (Sun et al. 2016). 

HIFα and ARNT are part of the basic helix-loop-helix-per-arnt-sim (bHLH+PAS) 

family, characterized by a bHLH and two PAS domains (Figure 4.1). Additionally, HIFα 

has two transactivation domains, a c-terminal (CTAD) and n-terminal (NTAD) (Figure 

4.1). CTAD contains an asparagine residue that is hydroxylated under normoxia and binds 

to the p300 transcription coactivator under hypoxia (Lando et al. 2002). NTAD confers 

target gene binding specificity (Hu et al. 2007).  
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There have been multiple studies on the evolution of the bHLH super family 

(Ledent et al. 2002, Simionato et al. 2007) as well as the bHLH+PAS gene family within it 

(Yan et al. 2014, Graham and Presnell 2017). These studies focused on identifying 

overarching patterns in metazoans, with hardly any representation of annelids (but see 

Simionato et al. 2007). This study aims to examine the diversity and evolution of the two 

subunits of the HIF transcription factor across the phylum Annelida. We expect to find 

high diversity of these genes as annelids range widely in their activity patterns and feeding 

modes (e.g. sessile passive filter feeders vs. highly motile predators) and occur in virtually 

all marine habitats, spanning well oxygenated to hypoxic conditions. 

 

 

Figure 4.1: Illustration depicting the domain structure of hypoxia inducible factor 

with the basic helix-loop-helix, per-arnt-sim, n-terminal transactivation, and c-

terminal transactivation domains labeled. Aryl receptor nuclear transferase has the 

same arrangement but without the transactivation domains. Illustration created with 

Illustrator for Biological Sequences. 

 

4.2. Materials and Methods 

4.2.1. Public Data Sourcing and Transcriptome Assembly  

Most data were retrieved from the NCBI Sequence Read Archive (SRA) using the 

SRA Toolkit (Table 4.1). Raw SRA files were converted to FASTQ and split into paired 

end sets. Trinity v2.5.1 (Grabherr et al. 2011; Haas et al. 2013) was used for transcriptome 

assembly. Reads were quality-trimmed with the --trimmomatic option and normalized (i.e. 
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reads with > 50x representation were discarded). Transcriptomes for several other annelids 

and the outgroup were sourced from Kocot et al. (2017), where assemblies are provided. 

Predicted gene sets for Capitella teleta and Helobdella robusta genomes were sourced 

from EnsemblMetazoa (Yates et al. 2020). 

4.2.2. Capitella sp. TV RNA-Sequencing and Transcriptome Assembly  

Material was sourced from a lab culture started with specimens from Galveston 

Bay, Texas. Total RNA was extracted from 50 metatrochophore larvae (Stage 9, Seaver et 

al. 2005) (two replicates of 25 larvae), two adult males, two adult females, and two adult 

hermaphrodites using TRIzol for extraction and Qiagen RNeasy for cleanup. TRIzol 

protocol differences: pestle (~25 twists) and 27 gauge syringe (~10 draws) used for 

homogenization; precipitation of RNA by adding 0.1volume 3M Na Acetate and 

2.5volume 100% EtOH, inverting five times, and incubating at -80°C for 110 minutes; air 

dried RNA pellet for 20 minutes; and final elution in 107µl nuclease-free water. RNeasy 

protocol differences: all centrifugations were at 4°C; all 15sec centrifugations were for 

30sec;  the optional full speed centrifugation for 1min was run for 2min followed by 

leaving the sample in the centrifuge for 10min to dry the column better; a 57µl elution was 

performed to use 7µl for sample quantification and qualification and the remaining 50µl 

for library prep; and samples were stored at -80°C until used. 

Sequencing libraries were prepared and sequenced by TAMU AgriLife. Illumina 

TruSeq RNA stranded libraries were prepared. Sequencing was conducted on an Illumina 

NovaSeq 6000. Illumina software (NCS v1.0.2 and RFV v1.0.2, default settings) were 

used for sequence cluster identification, quality prefiltering, base calling, and uncertainty 

assessment. NovaSeq basecall files were demultiplexed and converted to FASTQ using 
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Illumina bcl2fastq2 v2.19.0. A single transcriptome for the species was assembled using all 

of the data following the same approach used for the public data. 

4.2.3. Open Reading Frame (ORF) Prediction and Basic Local Alignment Tool 

(BLAST) Searches  

ORFs were predicted for all transcriptomes and genomes using TransDecoder 

v3.01 (Haas & Papanicolaou et al. in prep) with default settings. Nucleotide BLAST 

databases were built with the predicted ORFs. Reference sequences were obtained from 

multiple sources (Satou et al. 2003, Simionato et al. 2007, Gyoja 2014, Fortunato et al. 

2016, Graham and Presnell 2017). These were used as query sequences in tBLASTn 

searches to identify putative homologs. BLAST hits with E-Value ≤1E-06 were 

considered significant, filtered for unique headers, and converted to protein 

sequences for further analysis. 

4.2.4. Gene Identification by Phylogenetic Analysis  

Significant ORFs from both BLAST searches were concatenated with HIFα, SIM, 

NPAS1-4, ARNT(2), and ARNTL(2) sequences from Graham and Presnell (2017). 

Redundant sequences were removed with Jalview v2.11.0 (Warehouse et al. 2009) 

and MAFFT v7.266 (Katoh and Standley 2013) accurate local alignment was 

performed. The multiple sequence alignment was trimmed and again filtered for 

redundancy in Jalview. A maximum likelihood (ML) phylogeny was constructed with 

IQ-TREE v1.6.12 (Nguyen et al. 2015) with automatic model selection restricted to 

only amino acid nuclear models via ModelFinder (Kalyaanamoorthy et al. 2017). 

Branch support was determined using the SH-like approximate likelihood ratio test 

(SH-aLRT) (Guindon et al. 2010) and ultrafast bootstrap (UFBoot) (Minh et al. 2013). 
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These two metrics have different interpretations from standard, nonparametric 

bootstrapping (Felsenstein 1985). See the above references and IQ-TREE manual for 

details. Drosophila melanogaster Hey gene (Simionato et al. 2007) was used as an 

outgroup. The tree was viewed using FigTree v1.4.4 (Rambaut 2012) to define HIFα 

and ARNT clades. Sequences were manually parsed out of the pre-alignment file for 

subsequent analyses. 

4.2.5. Isoform Selection and Gene-Specific Phylogenetic Analyses 

To represent each species with a single sequence in each phylogenetic tree, only 

one isoform can be used. Isoform selection was performed with IsoSel v1.0 (Philippon et 

al. 2017) with default settings and a species/gene identifier file (for automatic filtering of 

sequences). Multiple sequence alignments were built using MAFFT accurate local 

alignment. ML phylogenetic analyses were performed as above. Crassostrea gigas was 

used as an outgroup for both analyses. 

4.2.6. Domain Annotation 

 hmmsearch from HMMER v3.1b2 (Eddy 2009) was used to search Hidden Markov 

Model Profiles (HMMs) for different domains against the final HIFα and ARNT pre-

alignment dataframes. HMMs downloaded from the Pfam database include helix-loop-

helix (HLH) (PF00010), per-arnt-sim (PAS) (PF00989), HIF N-terminal transactivation 

domain (NTAD) (HIF-1; PF11413), and HIF-1 alpha C terminal transactivation domain 

(CTAD) (PF08778). 

Given the limited annelid representation in the HMMs, searches were conducted 

iteratively, updating the HMM with significant hits (E-value ≤1e-5) until the domain was 

found in all sequences or the search stopped returning significant hits. Significant domains 
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were extracted from sequences using hmmer3_extract_domains.pl 

(https://github.com/amgraham07/HIF_eukaryote) (Graham and Presnell 2017). 

4.3. Results 

4.3.1. BLAST Searches and Gene Identification by Phylogenetic Analysis 

The final database had 72 annelid species and the outgroup Crassostrea gigas. A 

total of 69 HIFα and 51 ARNT sequences (available in a supplementary file) were used to 

query the annelid database. Before any reduction, the starting dataframe had 1965 

sequences from BLAST searches and 180 annotated bHLHs. After trimming and removal 

of redundant sequences, the final alignment for analysis consisted of 542 sequences. HIFα 

and ARNT were recovered for 43 (58.9%) and 40 (54.8%) of the species in the database, 

respectively (Table 4.1). The black branches in Fig. 4.2 are annelid bHLH sequences 

which did not cluster with any of the known bHLH genes used and remain to be 

characterized. 

  

https://github.com/amgraham07/HIF_eukaryote
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Table 4.1: Species used in this study, NCBI SRA accession information for RNA Seq 

data, and whether HIFα and ARNT were found for them. 
SRA/Accession Major 

Group 
Family Species Environment HIF𝛂 ARNT 

SRR5353284 Sedentaria Acanthodrilidae Maoridrilus_wilkini terrestrial 
  

SRR1221445 Sedentaria Acrocirridae Macrochaeta_clavicornis marine 
  

SRR3665377 Sedentaria Alvinellidae Paralvinella_grasslei marine y y 

SRR5590961 Sedentaria Ampharetidae Hypania_invalida freshwater y y 

SRR651044 Basal Amphinomidae Hermodice_carunculata marine y y 

SRR1257732 Basal Amphinomidae Paramphinome_jeffreysii marine y 
 

SRR5590965 Sedentaria Apistobranchidae Apistobranchus_tullbergi marine 
  

SRR2005653 Sedentaria Arenicolidae Arenicola_marina marine y y 

THIS STUDY Sedentaria Capitellidae Capitella_sp_TV marine y y 

EnsemblMetazoa Sedentaria Capitellidae Capitella_teleta marine y y 

SRR1646443 Basal Chaetopteridae Chaetopterus_sp marine y y 

SRR1219647 Basal Chaetopteridae Chaetopterus_variopedatus marine 
  

SRR1257898 Basal Chaetopteridae Phyllochaetopterus_sp marine y y 

SRR1224605 Basal Chaetopteridae Spiochaetopterus_sp marine y y 

SRR5590966 Sedentaria Cirratulidae Cirratulus_cirratus marine y y 

SRR2018886 Sedentaria Dinophilidae Dinophilus_taeniatus marine 
 

y 

SRR2014693 Sedentaria Dinophilidae Trilobodrilus_axi marine 
 

y 

SRR2014574 Sedentaria Dinophilidae(?) Apharyngtus_punicus marine 
  

SRR2131612 Sedentaria Diurodrilidae Diurodrilus_subterraneus marine 
 

y 

SRR2014681 Errantia Dorvilleidae Protodorvillea_kefersteini marine 
  

SRR2017645 Sedentaria Echiura Bonellia_viridis marine y y 

SRR2040479 Errantia Eunicidae Eunice_pennata marine y y 

SRR1232833 Errantia Eunicidae Marphysa_bellii marine y 
 

SRR2017643 Sedentaria Fauveliopsidae Fauveliopsis_sp marine y y 

SRR3574613 Sedentaria Flabelligeridae Flabelligera_mundata marine 
  

EnsemblMetazoa Sedentaria Glossiphoniidae Helobdella_robusta freshwater 
 

y 

Kocot et al. 
(2017) 

Errantia Glyceridae Glycera_dibranchiata marine 
  

SRR1237870 Errantia Glyceridae Glycera_tridactyla marine 
  

SRR4162952 Sedentaria Haemadipsidae Haemadipsa_cavatuses terrestrial y y 

SRR4162958 Sedentaria Haemopidae Whitmania_pigra freshwater y y 

SRR6371134 Sedentaria Hirudinidae Hirudo_nipponica freshwater y y 

SRR4162957 Sedentaria Hirudinidae Poecilobdella_javanica freshwater y y 

SRR923752 Sedentaria Lumbricidae Lumbricus_terrestris terrestrial y y 

SRR1257639 Basal Magelonidae Magelona_berkeleyi marine 
  

SRR1222290 Basal Magelonidae Magelona_johnstoni marine y y 

Kocot et al. 
(2017) 

Sedentaria Maldanidae Clymenella_torquata marine 
  

Kocot et al. 
(2017) 

 
MOLLUSCA Crassostrea_gigas 

 
y y 
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Table 4.1 Continued 
SRA/Accession Major 

Group 
Family Species Environment HIF𝛂 ARNT 

SRR1237872 
 

Myzostomatidae Myzostoma_cirriferum marine y y 

SRR1232795 Errantia Nephtyidae Nephtys_caeca marine 
  

Kocot et al. 
(2017) 

Errantia Nereididae Alitta_succinea marine 
 

y 

SRR1742987 Errantia Nereididae Platynereis_dumerilii marine y y 

SRR2014581 Sedentaria Nerillidae Mesonerilla_fagei marine 
  

SRR2017631 Sedentaria Opheliidae Thoracophelia_mucronata marine y y 

SRR1222216 Sedentaria Orbiniidae Phylo_foetida marine 
  

SRR1221444 Sedentaria Orbiniidae Scoloplos_armiger marine 
  

SRR1222288 Basal Oweniidae Owenia_fusiformis marine y y 

SRR2027869 Sedentaria Parergodrilidae Stygocapitella_subterranea marine 
  

SRR2057036 Sedentaria Pectinariidae Pectinaria_gouldii marine 
 

y 

Kocot et al. 
(2017) 

Basal Phascolosomatidae Phascolosoma_agassizii marine y 
 

SRR1231565 Basal Phascolosomatidae Phascolosoma_granulatum marine 
  

SRR2016923 Errantia Phyllodocidae Phyllodoce_medipapillata marine y y 

SRR2014676 Errantia Polygordiidae Polygordius_lacteus marine y y 

SRR1237766 Errantia Polynoidae Harmothoe_extenuata marine y y 

SRR2014684 Errantia Protodrilidae Protodrilus_adhaerens marine y 
 

SRR2016233 Errantia Protodriloidae Protodriloides_chaetifer marine y y 

SRR2017810 Sedentaria Sabellariidae Neosabellaria_cementarium marine y y 

SRR1232634 Sedentaria Sabellariidae Sabellaria_alveolata marine 
  

SRR1231830 Sedentaria Sabellidae Megalomma_vesiculosum marine y 
 

SRR2005708 Sedentaria Sabellidae Sabella_pavonina marine y 
 

SRR2014689 Errantia Saccocirridae Saccocirrus_burchelli marine y 
 

SRR5590970 Sedentaria Scalibregmatidae Scalibregma_inflatum marine y y 

SRR516531 Sedentaria Serpulidae Pomatoceros_lamarckii marine 
 

y 

SRR3556248 Sedentaria Siboglinidae Lamellibrachia_luymesi marine y 
 

SRR3574382 Sedentaria Siboglinidae Osedax_rubiplumus marine y y 

SRR3560108 Sedentaria Siboglinidae Sclerolinum_brattstromi marine 
  

SRR3560206 Sedentaria Siboglinidae Siboglinum_fiordicum marine 
  

SRR3571603 Sedentaria Siboglinidae Spirobrachia_sp marine y 
 

Kocot et al. 
(2017) 

Sedentaria Spionidae Boccardia_proboscidea marine y 
 

SRR1222145 Sedentaria Spionidae Scolelepis_squamata marine 
  

SRR2017800 Sedentaria Sternaspidae Sternaspsis_affinis marine y y 

SRR1224604 Errantia Syllidae Syllis_sp marine 
  

SRR5590962 Sedentaria Terebellidae Lanice_conchilega marine y y 

SRR1237767 Errantia Tomopteridae Tomopteris_helgolandica marine 
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Figure 4.2: Maximum likelihood phylogenetic tree of annotated bHLH genes 

(Graham and Presnell 2017) and extracted annelid and Crassostrea gigas sequences. 

Only support values for branches relevant to HIFα and ARNT identification are 

shown and they are in the format of SH-aLRT/UFBoot. The black branches are 

annelid sequences that did not have clear membership to one of the known clades 

(NPAS1/3, NPAS4, SIM, ARNTL(2), ARNT2). 

 

4.3.2. Gene-Specific Phylogenies 

In the HIFα phylogenetic tree (Fig. 4.3), Clitellata is recovered with moderate 

support and Hirudinea is well supported (Figure 4.3). Families are well supported in cases 

of two or more species (Capitellidae, Chaetopteridae, Amphinomidae, Eunicidae, and 

Sabellidae) (Figure 4.3). A relationship between Capitellidae and Echiura is also well 

supported (Figure 4.3). 
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In the ARNT phylogenetic tree (Figure 4.4), families with two or more species 

(Nereididae, Chaetopteridae, Capitellidae, and Dinophilidae) are well supported (Figure 

4.4). Most of Clitellata and Hirudinea form a well-supported clade (Figure 4.4), but two 

clitellates form a long branch close to the base of the tree (Figure 4.4). The relationship of 

Echiura with Capitellidae is poorly supported (Figure 4.4). Two notable clades that were 

mostly recovered are Sedentaria and Errantia/Basal groups. They are poorly supported and 

polyphyletic, but do reflect patterns in the known annelid phylogeny (Weigert and 

Bleidorn 2016) (Figure 4.4). 

4.3.3. Domain Annotation 

All of the known domains of HIFα and ARNT were recovered within Annelida 

(Graham and Presnell 2017) (Figures 4.3 and 4.4). Ten of the HIFα sequences lacked the 

HLH domain (Figure 4.3) as did twelve of the ARNT sequences (Figure 4.4). The HLH 

HMM was updated until HLH was no longer found. PAS domains were recovered in every 

species but in eight of the HIFα sequences and 16 of the ARNT sequences, only a single 

PAS domain was present. The PAS HMM was updated until there was no improvement in 

the resulting hits with no indication of a second PAS domain in the relevant sequences. 

CTAD was only recovered in three HIFα sequences and NTAD was found in 18 of the 

sequences (Figure 4.3). Both of the transactivation domain HMMs were updated until they 

were no longer found in the remaining sequences. 
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Figure 4.3: Maximum likelihood phylogenetic tree of annelid HIFα genes. Branch support values are 

in the format of SH-aLRT/UFBoot. Presence of protein domains is indicated following the key in the 

top right corner. 
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Figure 4.4: Maximum likelihood phylogenetic tree of annelid ARNT genes. Branch support values 

are in the format of SH-aLRT/UFBoot. Presence of protein domains is indicated following the key in 

the top right corner. 
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4.4. Discussion 

Our findings suggest that domain structure of HIFα and ARNT varies greatly 

across Annelida. Identification of these genes in annelids was only possible through 

phylogenetic analysis, as BLAST searches using reference sequences as queries were not 

specific enough and detected related other bHLH+PAS genes (ARNT2, ARNTL(2), SIM 

1/2, and NPAS 1/3/4) beside the target genes. 

It is likely that BLAST searches primarily captured the highly conserved PAS 

domains. For example, the first hmmsearch of the Pfam PAS HMM (with no annelids in 

the profile) returned 42 significant hits for HIFα. On the other hand, HLH domains have 

been found to be diverse (Graham and Presnell 2017) and the annelids are not an 

exception. The first hmmsearch of the Pfam HLH HMM (which only has Helobdella 

robusta in the profile) returned three significant hits for HIFα. The lack of the HLH 

domain in some species is likely an artifact resulting from removal of low-quality data. 

Examination of the multiple sequence alignment indicates total lack of data in this region 

for the respective species. The alternative of true loss of the HLH domain is not probable 

as this domain is responsible for DNA binding activity.   

There is no clear relationship between transactivation domain presence and 

phylogeny (Figure 4.3). NTAD is present throughout Annelida but lost in several lineages 

(Figure 4.3). CTAD has a very limited occurrence and the three species it was found in are 

not closely related (Figure 4.3). However, Hermodice carunculata and Owenia fusiformis 

both have basal positions in the current annelid phylogeny. Phyllodoce medipapillata is in 

the Errantia grouping. This may indicate loss of the CTAD domain within Sedentaria 

(GIGA 2014, Weigert and Bleidorn 2016, Helm et al. 2018). While these domains are 
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presumed to be important for HIF activity and specificity (Lando et al. 2002, Hu et al. 

2007), they may not be entirely necessary for annelids, and invertebrates in general 

(Graham and Presnell 2017), or they are just so diverged that we could not detect them. 

Capitellids and echiurans are frequently cited as the sister group to clitellates 

(GIGA 2014, Weigert and Bleidorn 2016, Helm et al. 2018). A relationship between 

capitellids and echiurans is present in both genes, but their status as sister to clitellates is 

not supported by HIFα (Figure 4.3) and only poorly supported by ARNT (Figure 4.4). 

Clitellata is derived and moderately supported in both gene trees (Figures 4.3 and 4.4). The 

long branch for the clade containing Hirudo nipponica and Whitmania pigra outside of 

Clitellata in the ARNT phylogeny may be caused by extreme diversification and long-

branch attraction (Bergsten 2005), but we did not evaluate this. It is noteworthy that both 

H. nipponica and W. pigra are freshwater species, but so are Helobdella and Poecilobdella. 

Recent work on clitellates indicates duplication events of Na+/K+ - ATPases with 

freshwater colonization (Horn et al. 2019). Further work with a better representation of 

Clitellata would reveal any oxygen-sensing pathway novelties associated with transitions 

to freshwater and terrestrial environments. 

ARNT recovered two large clades, Sedentaria and Errantia/Basal groups (Figure 

4.4). While support is low, it is congruent with current annelid phylogenies (GIGA 2014, 

Weigert and Bleidorn 2016, Helm et al. 2018). This pattern was not recovered in HIFα 

(Figure 4.3) and likely due to HIFα being under less evolutionarily constraint. ARNT takes 

part in various other processes from HIF dimerization (Graham and Presnell 2017). 

In conclusion, we have demonstrated high diversity in the transcription factor HIF 

across Annelida. Its heterodimer ARNT is more conserved and reflects the current 
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hypotheses of annelid phylogeny more closely. Protein domains were recovered in varying 

degrees and it is not clear if this is due to domain loss, extreme divergence, or loss of low-

quality data during transcriptome construction. Through annotation of the domains, HMM 

profiles were updated to better reflect diversity in Annelida. Use of these updated models 

for further gene discovery with studies on the activity of this transcription factor will 

continue to shed light on the evolution of this important cellular pathway. 
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5. CONCLUSIONS 

While the results of each chapter of this dissertation represent a significant 

contribution, they also contain interconnecting relevance. Gene evolution and function 

impacts the ecology of organisms by restricting and/or expanding their ecological niche. 

The interaction of these aspects of their biology contribute to patterns of speciation and, 

ultimately, a deeper understanding of evolutionary history. 

I have demonstrated that the Gulf of Mexico (GoM) contains many unknown 

species of Capitella with the discovery of at least five new species and the first report of 

Capitella nonatoi, originally described from Brazil. This is significant in multiple ways. 

First, it simply adds to our understanding of the evolutionary history of Capitella. It will 

take substantial effort to ultimately determine the total number of species contained in this 

genus and their phylogeny. For example, I found three sympatric species at Apollo Beach 

Preserve, Tampa Bay, Florida. One of the species was also found throughout the GoM 

while the range of the other two appears very restricted, since they were recovered only 

from that field site. This indicates that a very targeted sampling effort, inclusive of 

different sediment depths, is necessary to recover all Capitella. Beyond estuarine/shallow-

water habitats, there are still deep-sea and specialized habitats (whale-bone and wood falls 

and squid egg masses) that likely harbor additional diversity. 

Second, an expanded understanding of Capitella phylogeny could lead to the 

eventual establishment of new spiralian evo-devo models. Capitella teleta is very well 

studied and has helped to fill gaps in our understanding of protostome and bilaterian 

evolution; sequencing annelid genomes revealed a strong likeness to non-protostomes and 

further uncovered characteristics of the metazoan last common ancestor (Simakov et al. 
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2012). While Capitella cryptic species are presumed closely related, and thus assigned to 

the same genus, they can be notably diverse in their chromosome diploid number, ranging 

12-26 with only 19 species evaluated (Grassle et al. 1987). This suggest many genome 

rearrangements during the evolution of Capitella. Novel insights that can come from evo-

devo studies comparing species of Capitella include the role of genome rearrangement 

events in speciation, regeneration rates of posterior segments, early segmentation patterns 

during embryonic development, and spiralian development (e.g. cell fate specification, 

development of eye spots, and nervous system development). 

Third, interesting questions about population dynamics are raised with the 

discovery of sympatric species. For example, discovery of Capitella nonatoi in the GoM 

and its dominance in the May samplings contrasts with Capitella sp. TV that was found at 

other times. This may represent an instance of seasonal dynamics as was suggested in the 

originally detected cryptic Capitella species in Massachusetts (Grassle and Grassle 1976). 

There may also be resource partitioning for Capitella in the GoM as cryptic species have 

been found inhabiting different sediment depths in the Mediterranean (Gamenick et al. 

1998). Differences in larval development, maternal investments (i.e. presence/absence of 

yolk reserve), and timing of reproductive events (Méndez et al. 2000) between species 

would allow larvae to functionally inhabit different niches and reduce competition (Levin 

and Huggett 1990). 

Finally, resolved species boundaries will facilitate more focused use of Capitella as 

pollution indicators. It is well established that Capitella have a lot of potential use as 

environmental sentinels. There has even been evidence that they can degrade polycyclic 

aromatic hydrocarbons (Li et al. 2004). This indicates that they may play a role in 
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bioremediation of organically-polluted sites, contributing to their known r-selected nature. 

However, their capacity in this role may vary as cryptic species have shown physiological 

differences, tolerating different sulphide levels (Gamenick et al. 1998). Species 

delimitation studies such as this one will make research on these topics more targeted and 

repeatable. 

Regarding contribution to their ecology, I showed that, among the models 

evaluated, there is not a single strategy that works well for capitellids, despite them filling 

a similar ecological niche (burrowing, deposit feeders). However, Hurdle and GAM-

Tweedie models performed well overall, possibly resulting from their handling of zeros. 

Bay segment was important overall, indicating that unexplained processes (water 

circulation patterns, anthropogenic activity, etc.) within these regions of the bay may have 

a strong influence over capitellid occurrences and distributions. For C. capitata complex 

specifically, depth was most important.  

These results are significant because they 1) provide the first comparison of this 

kind for modeling capitellid species abundance and 2) generate hypotheses for future work 

on Capitella ecology. For example, the importance of depth in such a shallow system was 

surprising. These model results suggest the hypothesis that C. capitata complex is most 

abundant in shallower, near-shore waters, and this could be tested.  

Furthermore, finding five new species in the GoM, three in Tampa Bay, Florida, 

raises the question as to whether the results for C. capitata complex are reliable. It is likely 

that the referenced three species, among others, are present within these samples. However, 

the specimens were preserved for morphology and not DNA integrity, making DNA 

barcoding difficult. Using Ancient DNA extraction methods in the future could turn this 
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dataset into a useful resource for species delimitation in the GoM and, ultimately, refine 

our understanding of their ecology. 

I did not directly study Capitella physiology but evaluated the phylogeny of two 

genes that are crucial in cellular oxygen-sensing, hypoxia inducible factor alpha (HIFα) 

and aryl receptor nuclear transferase (ARNT). Under hypoxia these two genes dimerize, 

forming a transcription factor that initiates cellular response. Therefore, understanding 

their evolution across Annelida might be informative to understand evolutionary pathways 

in annelids. 

I found that these genes do not mirror the known annelid phylogeny and reflect 

complex evolutionary pathways that remain to be understood. Annotation of domains 

revealed that annelids are quite diverse, particularly in the helix-loop-helix region. 

Capitellidae was well supported in both phylogenies and their sister relationship to 

Echiura, which is commonly recovered in annelid phylogenies, was supported. 

Additionally, capitellids and echiurans were sister to most of the clitellates in the ARNT 

phylogeny, which is also recovered in annelid phylogenies. 

These findings are significant because they 1) represent the first analysis of HIFα 

and ARNT evolution across Annelida, 2) resulted in updated Hidden Markov Models 

(HMMs) of HIFα and ARNT domains to better reflect diversity within Annelida, and 3) 

contribute omics data of another Capitella species. The original HMM profiles had little or 

no annelid representation. Use of the updated profiles can lead to better discovery of HIFα 

and ARNT across Annelida and further resolution of their phylogenies.  

Capitella are found in low-oxygen environments such as hydrothermal vents of the 

Mediterranean and development of larvae and juveniles has shown resilience to hypoxia 



 

116 

 

(Gamenick et al. 1998, Pechenik et al. 2016). Having many species from diverse habitats, 

being easily amenable to culture, and reproducing multiple times a year make Capitella a 

good candidate system for studying functional response to hypoxia across life stages. This 

and other studies on the functional response to varying oxygen levels across Annelida, will 

shed light on the complex evolutionary history of the HIF transcription factor. 

In conclusion, this dissertation furthers understanding of three areas of Capitella 

biology. Knowledge of oxygen sensing gene evolution can give perspective on species 

distributions and their environmental drivers. Both gene evolution and ecology play a role 

in speciation and can shed light on observed patterns of phylogeography. Continued work 

on these aspects will lead to better utilization of Capitella as environmental sentinels, new 

insights into spiralian evolution, and understanding of annelid evolution as a whole. 
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APPENDIX A 

COMPARATIVE SPECIES ABUNDANCE MODELING OF CAPITELLIDAE 

(ANNELIDA) IN TAMPA BAY, FLORIDA 

 

Table A.1: Model calibration metrics between observed values and model predicted 

values. Cells highlighted in blue indicate that those values are not present in the 

graphs of Figures 7 and 8. **Apparent (not corrected for optimism) statistics 

reported. 

 
Pearson 

Correlation 
Spearman Rank 

Correlation 
Slope Intercept 

Root Mean Square 
Error 

Average Error 

Capitella 
capitata 

      

Poisson -0.06 0.37 1.03 -0.05 7.72E+18 6.25E+17 

Negative 
Binomial 0.18 0.40 0.40 0.78 -815.58 -61.30 

Tweedie 0.11 0.40 0.76 0.35 -133.54 32.04 

Zero-Inflated 
Poisson -0.11 0.26 -7.54E-08 1.54 -3.64E+83 -1.04E+82 

Hurdle 0.31 0.40 0.95 0.04 -40.01 0.41 

Boosted 
Regression Tree 0.15 0.39 1.44 -0.57 7.76 2.21 

Capitella 
aciculata** 

      

Poisson 1.00 0.31 1.01 0.00 0.05 0.01 

Negative 
Binomial 0.05 0.14 0.03 0.12 5.09 0.52 

Tweedie 0.21 0.14 0.79 0.05 2.66 0.21 

Zero-Inflated 
Poisson 0.00 -0.01 -5.12E-08 0.13 7.50E+04 2.21E+03 

Hurdle 0.00 0.08 -5.00E-08 0.13 1.26E+05 6.08E+03 

Boosted 
Regression Tree 0.09 0.08 238.71 -30.81 2.71 0.26 

Capitella jonesi       

Poisson -0.22 0.09 2.04 -0.15 1.96 0.25 

Negative 
Binomial -0.05 0.14 0.47 0.07 1.55 0.35 

Tweedie -0.21 0.10 0.97 0.01 1.55 0.26 

Zero-Inflated 
Poisson -0.02 0.02 -1.04E-09 0.14 3.23E+06** 8.82E+282 

Hurdle 0.06 0.17 0.51 0.06 -2.52E+09 2.49E+07 

Boosted 
Regression Tree 0.00 0.10 4.30 -0.36 1.70 0.24 
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Table A.1 Continued 

 
Pearson 

Correlation 
Spearman Rank 

Correlation 
Slope Intercept 

Root Mean Square 
Error 

Average Error 

Heteromastus 
filiformis 

      

Poisson 0.02 0.32 1.11 -0.06 2.50** 2.99E+177 

Negative 
Binomial 0.15 0.34 0.21 0.36 7.62E+05 -2.25E+04 

Tweedie 0.03 0.33 0.81 0.10 -1.20E+06 2.14E+04 

Zero-Inflated 
Poisson 0.40 0.30 0.98 -0.02 -4.01E+108 -1.36E+107 

Hurdle 0.35 0.34 1.01 -0.01 -5.15E+05 -2.38E+04 

Boosted 
Regression Tree 0.30 0.30 1.25 -0.10 3.99 0.81 

Mediomastus 
ambiseta 

      

Poisson 0.13 0.24 1.20 -0.31 8.06** 1.46E+167 

Negative 
Binomial 0.30 0.28 0.98 0.26 10.80 2.27 

Tweedie 0.36 0.27 1.30 -0.19 10.98 2.27 

Zero-Inflated 
Poisson 0.33 0.25 0.65 0.45 10.64** -7.60E+301 

Hurdle 0.03 0.11 0.12 1.25 10.71 3.03 

Boosted 
Regression Tree 0.37 0.22 1.28 -0.32 11.49 2.27 

Mediomastus 
californiensis 

      

Poisson -0.03 0.23 1.32 -0.24 4.96E+27 1.79E+24 

Negative 
Binomial 0.10 0.25 0.54 0.35 3.65 1.41 

Tweedie 0.04 0.24 0.94 0.07 4.80 1.34 

Zero-Inflated 
Poisson 0.00 0.19 0.00 0.76 20.21** 4.37E+241 

Hurdle 0.07 0.15 0.72 0.15 -15.98 2.11 

Boosted 
Regression Tree 0.12 0.20 1.64 -0.41 5.43 1.30 
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Figure A.1: Plots of the relative influence of each term as determined with the 

Boosted Regression Trees. pH is the only term labeled for Capitella aciculata because 

every other term had zero influence. 

 

 


