PATTERNS OF DIVERGENCE OF TERRESTRIAL *LIGIA* ISOPODS IN THE WORLD'S HIGHEST COASTAL MOUNTAIN RANGE

A Thesis

by

NEGAR YARYAN

Submitted to the Graduate and Professional School of

Texas A&M University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Committee Members,

Head of Department,

Luis A. Hurtado Mariana Mateos Michael F. Criscitiello Kirk Winemiller

December 2021

Major Subject: Ecology and Conservation Biology

Copyright 2021 Negar Yaryan

Abstract

Cryptic diversity is the occurrence of two or more morphologically indistinguishable lineages within a species that are evolutionarily distinct. Tropical rainforests and marine habitats are the most species-rich habitat on Earth and might be where cryptic diversity mostly happens. Within arthropods, recognizing cryptic species is more critical. Limited knowledge of cryptic species in arthropods impacts human health, pest management, and studies of coevolution and species interactions.

Ligia species within Arthropoda phylum are halophilic, and their habitat is restricted between the supralittoral area and the waterline of rocky shores all around the world. Worldwide studies on supralittoral *Ligia* species reveal high levels of cryptic diversity within nominal species. However, for the first time, this study showed cryptic diversity in one terrestrial *Ligia* species, which lives in the Sierra Nevada de Santa Marta, Colombia.

We used two mitochondrial and one nuclear gene and by Bayesian and Maximum Likelihood analyses revealed cryptic diversity in *Ligia* SNSM. *Ligia* in the Sierra Nevada de Santa Marta was distributed according to elevation, the first one from 780 to 1,445 MASL, the second one from 1,700 to 1,817 MASL, and the third one from 1,964 to 2,198 MASL. The high cryptic diversity observed in this study for *Ligia* SNSM emphasizes the high level of biodiversity and endemism in this region. It highlights the importance of conservation studies, efforts, and strategies.

Acknowledgements

I would like to thank my committee chair, Dr. Hurtado, for adding me to his research project and allowing me to advance the project in the right direction. In addition, I have appreciated his supportive attitude throughout my academic journey, both as an advisor and an instructor improving my knowledge. I will always appreciate his efforts to ensure that my experience throughout the COVID-19 pandemic was important in improving my skills and knowledge.

I would also like to thank my committee members, Dr. Mateos and Dr. Criscitiello, for their guidance and support throughout the course of this research.

I want to thank my amazing mom and dad, for their unconditional love and support. They encouraged me every single day during our short FaceTime calls and pushed me whenever I wanted to give up. I want to thank My dear sister Sahar and her husband Ehsan for supporting me emotionally and financially to be able to pursue my passions.

I want to thank my boyfriend, Reza, who has known me in the last year of my degree, the most stressful year of my life in the US, and still thinks dating me is worthwhile. He listened to my complaints for hours and calmed me even when he was in stressful situations.

Finally, I want to thank the mother of nature and my forever love, OCEANS. I only trust nature, and when nature speaks, I listen.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Professor Luis A. Hurtado of the Texas A&M University Department of Ecology and conservation Biology and committee members Professors Mariana Mateos of the Texas A&M University Department of Ecology and conservation Biology and Professor Michael F. Criscitiello of the Texas A&M University Department of Veterinary Pathobiology.

The data analyzed for Chapter III was provided by Professors Luis Hurtado and Mariana Mateos. The analyses depicted in Chapter VI were retrieved by Professors Luis A. Hurtado and Mariana Mateos of the Department of Ecology and Conservation Biology. Collection of samples were obtained from terrestrial *Ligia* species in Sierra Nevada de Santa Marta conducted by Professor Luis A. Hurtado. The sample collection and research were carried out with assistance from Kelsea Anthony, Carlos Mario López Orozco, Yesenia Carpio Díaz, Luis Hartado Jr. and, Reserva El Dorado

Funding Sources

All other work conducted for the thesis (or) dissertation was completed by the student independently.

Abstractii
Acknowledgementsiii
Contributors and funding sourcesiv
CHAPTER I Introduction And Literature Review1
Cryptic diversity
The Phylum Arthropoda 1 The subphylum Crustacea 2 The Order Isopoda 2 Body Structure 2 The genus Ligia 3
Terrestrialization7
The Sierra Nevada de Santa Marta (SNSM)
Justification and Hypothesis
References
CHAPTER II Materials and Methods13
Sampling
Molecular methods
Phylogenetic analyses
References
CHAPTER III- Results
Mitochondrial and nuclear datasets
Phylogenetic results
Implications and future work

Table of Contents

List of Figures

Figure 1. The elevation map of the study area (SNSM, Colombia)
Figure 2. Unrooted MAXIMUM LIKELIHOOD TREE of 16s rDNA
Figure 3. Unrooted MAXIMUM LIKELIHOOD TREES of 12s rDNA
Figure 4. Unrooted MAXIMUM LIKELIHOOD TREES of NaK gene
Figure 5. Bayesian tree for 16s rDNA gene
Figure 6. Bayesian tree for NaK gene
Figure 7. Bayesian tree for 12s rDNA gene
Figure 8. Maximum Likelihood tree of 16s rDNA gene
Figure 9. Maximum Likelihood tree of 12s rDNA gene
Figure 10. Maximum Likelihood tree of NaK gene

List of Tables

Table 1. List of all recognized coastal terrestrial Ligia species	5
Table 2. List of all recognized fully terrestrial Ligia species	7
Table 3.List of Ligia species genes used in this study	15
Table 4. Three different main haplotypes in Ligia SNSM	22
Table 5. Genetic divergences between different linages for 16s rDNA gene	23
Table 6. Genetic divergences between different linages for 12s rDNA gene	24
Table 7. Genetic divergences between different linages for NaK gene	25
Table 8. Best model selected by jModeltest	26

CHAPTER I Introduction And Literature Review

Cryptic diversity

Cryptic diversity or hidden diversity is defined as occurrence of two or more morphologically indistinguishable lineages within a species that are evolutionarily distinct. Two or more species are "cryptic" when they are morphologically indistinguishable but classified as a nominal species (Wattier et al., 2020). Speciation is not always accompanied by morphological changes and causes cryptic diversity. Therefore, the number of biological species is greater than the current nominal species which explains why cryptic diversity is taken into consideration in ecology and evolutionary biology (Theodoridis et al., 2019). Tropical rainforests and marine habitats are the most species rich habitat on Earth and might be the habitats that cryptic diversity mostly happens. Many Studies depicted cryptic diversity within fungi, frogs and arthropods. Recognizing cryptic species is important for conservation planning, bioprospecting, biological control and the treatment of diseases and snakebites. Within arthropods, recognizing cryptic species is more critical. Limited knowledge of cryptic species in arthropods impact human health, pest management and studies of coevolution and species interactions (Bickford et al. 2007). In this study we reveal patterns of cryptic diversity in a terrestrial lineage of *Ligia* isopods.

The Phylum Arthropoda

Arthropoda has the greatest portion of biodiversity among terrestrial species. The earliest record of arthropods on land dates to between Cambrian and Silurian (Cannicci et al., 2020; Cloudsley-Thompson, 1998).

The subphylum Crustacea

Crustacea is one of the Arthropoda groups containing lineages that succeeded in the territorialization process (Broly et al., 2012). This taxon has been categorized into five classes based on their adaptation to terrestrial life: T1 to T5, where T5 refers to fully terrestrial species that can conduct all biological activities on land (Harzsch et al., 2011). Within Crustacea, only five major lineages have achieved some degree of terrestriality: Anomura, Brachyura, Astacoidea, Amphipoda, and Isopoda. Of these, only Amphipoda and Isopoda have some species that are categorized as T5 or fully terrestrial and the other three lineages require aquatic larval stages. (Broly et al., 2012; Harzsch et al., 2011).

The Order Isopoda

The order isopoda contains 11 suborders and more than 10,300 species belonging to more than 500 genera (Dimitriou et al., 2019; Broly et al., 2012; Schmidt, 2008). There are more than 3800 terrestrial species of the order of Isopoda (Campos-Filho et al., 2019; Schmalfuss, 2003). This order has evolved many morphological characteristics and adapted to different environments, including deep sea, freshwater, and terrestrial ecosystems in all climate zones from subpolar regions to deserts. Terrestrial isopods are distributed in different elevations from sea level up to mountains (Krieger et al., 2021; Castello et al., 2020). One of the most essential factors in the distribution of isopods is soil moisture which is affected by geological conditions and precipitation (Warburg, 1993). Also, most isopods are omnivorous and feed on fungi, live or dead plants, or animals (Dean and Hodgson, 2020; Warbug, 1993).

Body Structure

The habitat of the isopods significantly impacts their morphological and behavioral characteristics (Schmalfuss 1984). Isopods have long, arched or flat bodies and have seven pairs of legs (Dean and Hodgson, 2020). All the isopods have cuticle integument, which contains

spherical pigment granules. The isopods' integuments change during their development (Warburg, 1993). In terrestrial isopods, there are two phases of molting. In the first phase, the molting occurs in the posterior half of the body, and after a few days, the second phase happens in the anterior half (Verhoeff, 1940). Some isopods such as *Ligia baudiniana* and *Ligia exotica* have the ability to change their body color when exposed to different backgrounds (Warburg, 1993). The respiratory organs of the marine isopods are gills. However, terrestrial isopods are evolved to develop pleopodal lungs (Wright and Ting, 2006; Unwin, 1931).

The genus Ligia

In 1798, Fabricius described the genus Ligia as a member of Ligiidae and suborder Oniscidea, which is one of the suborders of Isopoda (Fabricius, 1798). Since 1995, the monophyly of Oniscidae and Ligiidae has been controversial (Zhang et al., 2021). In 2000, based on mtDNA markers, Michel-Salzat and Bouchon stated that Ligia is closely related to the suborder of Sphaeromatidea (Dimitriou et al., 2019; Michel-Salzat and Bouchon, 2000). In 2017, based on Bayesian analysis on both protein and non-protein coding genes, it was suggested that Ligia is not a well-supported group in the Oniscidea suborder (Lins et al., 2017). In 2019, Dimitriou et al. conducted a study based on two nuclear genes and two ribosomal RNA genes to show relationships among major Oniscidea clades. In their study, genus Ligia is paraphyletic and appeared to be more closely related to marine suborder clades. while the phylogenetic pattern of other species of Oniscidea implied a complex history of the transition from the marine environment to land (Dimitriou et al., 2019). The most recent study based on complete mitogenomes suggests that Ligiidae is much more primitive than other terrestrial isopods and should be considered a suborder, parallel to Oniscidea. Furthermore, the genus of Ligia is closer to marine suborders, including Valvifera, Cymothoida, and Sphaeromatidae (Zhang et al., 2021).

Currently, 42 species in the genus of *Ligia* are recognized (Santamaria et al., 2013). Most *Ligia* species are halophilic, and their habitat is restricted between the supralittoral area and the waterline of rocky shore worldwide (Hurtado et al., 2010). The supralittoral areas or sea-land interface areas are influenced by both sea and land (Winder et al., 2017). Seal-land interface areas are exposed to harsh conditions such as extreme temperatures, fresh water from the rain and seawater from wave splash and different predators from land and sea birds. These conditions make sea-land interface areas a harsh place to live. However, most *Ligia* species are adapted to live in the supralittoral regions. The supralittoral isopod species (Table 1) are direct developers and they do not have planktonic larval stage. These isopods have limited swimming abilities and avoid entering the water (Hurtado et al., 2014). The supralittoral isopod species exhibit intermediate physiological, morphological, biochemical, and behavioral characteristics between totally marine and terrestrial species (Carefoot & Taylor 1995). Worldwide studies on supralittoral Ligia species reveal high levels of cryptic diversity within nominal species. In 2010, Hurtado et al. conducted a study on supralittoral Ligia rocky intertidal shores from central California to central Mexico. Maximum Likelihood and Bayesian phylogenetic analyses on two mitochondrial genes (Cytochrome Oxidase I and 16S ribosomal DNA) represented high levels of allopatric genetic divergence among many localities in Ligia occidentalis in this region (Hurtado et al., 2010). In addition, a study conducted in 2013 by Eberl et al. showed high levels of allopatric differentiation among Ligia Occidentalis at Point conception related to temperature (Ebrel et al., 2013). Santamarta et al. represented high levels of allopatric divergences among Caribbean supralittoral *Ligia. Ligia baudiniana* is the only valid native supralittoral species of *Ligia* in the Caribbean coastal region. This study revealed 17.04-23.97% of genetic divergences between different lineages of L. baudiniana in this region (Santamarta et al., 2014).

In this study we revealed patterns of cryptic diversity in a terrestrial lineage of *Ligia* isopods for the first time. Eight strictly terrestrial species of *Ligia* have been recorded (Table 2). They presumably evolved strict terrestriality independently from supralittoral ancestors. The strictly terrestrial species are not dependent on standing water for feeding, movement, and reproduction (Cloudsley-Thompson, 1998; Taiti et al., 2003; Santamaria et al., 2013).

Table 1. List of all recognized coastal terrestrial Ligia species

Schmalfuss, 2003)		1					
Species Name	Reported by	Distribution					
Ligia australiensis	Dana, 1853	Coast of Australia, including Tasmania and Lord Howe Island					
Ligia baudiniana	Milne Edwards, 1840	Atlantic and Pacific shores of America from Florida to Brazil and from California to Ecuador, including Galapagos Islands					
Ligia cinerascens	Budde-Lund	Japan; Kuril Islands					
Ligia curvata	Vandel, 1948	Angola: Lobito					
Ligia dentipes	Budde-Lund, 1885	Andaman and Nicobar Islands					
Ligia dilatata	Brandt, 1833	Namibia: Lüderitzbucht; South Africa: Cape Peninsula					
Ligia dioscorides	Taiti & Ferrara, 2004	Yemen: Socotra Archipelago					
Ligia exotica	Roux, 1828	Circumtropical					
Ligia ferrarai	Kersmaekers & Verstraeten, 1990	Madagascar: "Songoritelo Barn-Hill"					
Ligia filicornis	Budde-Lund, 1893	NW-Venezuela: Puerto Cabello					
Ligia glabrata	Brandt, 1833	Namibia: Lüderitzbucht; South Africa: Cape Peninsula					
Ligia gracilipes	Budde-Lund, 1885	West coast of Africa from Senegal to northern Angola					
Ligia hachijoensis	Nunomura, 1999	Japan: Izu Islands					
Ligia hawaiensis	Dana, 1853	Hawaii Islands and Fiji Islands					
Ligia italica	Fabricius, 1798	Coasts of Black Sea, Mediterranean Sea, Atlantic in northern Africa down to Cape Verde, Macaronesian Islands					

(Schmalfuss 2003)

Table 2. List of all recognized coastal terrestrial Ligia species

Schmalfuss, 2003) Species Name	Reported by	Distribution
-		
Ligia litigiosa	Wahrberg, 1922	Coasts of Chile and Peru; Juan Fernández Islands
Ligia malleata	Pfeffer, 1889	East Africa: "Bagamoyo"
Ligia miyakensis	Nunomura, 1999	Japan: Izu Islands
Ligia natalensis	Collinge, 1920	South Africa: southeastern coast from Knysna to Natal
Ligia novizealandiae	Dana, 1853	New Zealand and Kermadec Islands
Ligia occidentalis	Dana, 1853	Coasts of California (USA and Mexico)
Ligia oceanica	Linnaeus, 1767	Atlantic coasts of Europe, coasts of western Baltic Sea, and some places at the Atlantic coast of North America (introduced?)
Ligia pallasii	Brandt, 1833	Pacific coast of North America from the Aleutian Islands and Alaska to Santa Cruz in California
Ligia pallida	Jackson, 1938	Polynesia: Christmas Island
Ligia pigmentata	Jackson, 1922	Red Sea, Persian Gulf and coast of Somalia
Ligia rugosa	Jackson, 1938	Southeastern Polynesia
Ligia ryukyuensis	Nunomura, 1983	Japan
Ligia saipanensis	Nunomura, 2001	Micronesia: Saipan Island
Ligia vitiensis	Dana, 1853	Sulawesi; Singapore; New Guinea; Melanesia; Polynesia; Somalia (introduced ?)
Ligia yamanishii	Nunomura, 1990	Japan: Tokyo Prefecture

(Schmalfuss, 2003)

Table 3. List of all recognized fully terrestrial Ligia species

Species Name	Reported by	Distribution
Ligia perkinsi	Dollfus, 1900	Hawaiian Islands
Ligia simoni	Dollfus, 1893	Northern Venezuela and northern Colombia
Ligia platycephala	Van Name, 1925	Venezuela; Guyana; Trinidad
Ligia philoscoides	Jackson, 1938	Southeastern Polynesia
Ligia latissima	Verhoeff, 1926	New Caledonia
Ligia boninensis	Nunomura, 1979	Japan: Bonin Islands
Ligia taiwanensis	Lee, 1994	Taiwan
Ligia torrenticola	Nunomura, 2011	Chichijima and Anijima Islands

(Nunomura et al., 2011; Schmalfuss, 1978)

Terrestrialization

After the origin of the planet Earth and the multicellularity development, terrestrialization is considered to be the third most significant event in the history of life on Earth. Terrestrialization is explained as the invasion of land habitat by plants and animals (Vecoli et al., 2010; Selden 2001). The terrestrialization processes require some physical and morphological adaptations. These adaptations reduce water dependency and support physicochemical environmental changes. Organisms that colonized the land from the sea habitat experienced remarkable changes in their dispersal and locomotion as well as digestive, reproductive, and respiratory systems. Previous studies suggest that terrestrial organisms modify their water management and osmoregulation (Broly et al., 2012; Little, 2009; Selden, 2001). Evolving new respiratory organs such as lungs were one of the most significant developments in intertidal and terrestrial organisms. Before the evolution of respiratory organs, gills were responsible for respiratory activities, ionic, osmotic, and pH regulation (Cannicci et al., 2020).

The high level of diversity among the terrestrial species shows that terrestrialization happened several times in various phyla of plants and animals during the Paleozoic, i.e., between 540 to 251 million years ago (Cannicci et al., 2020; Broly et al., 2012). However, only a few animal phyla such as the Chordata, the Mollusca, and the Arthropoda were able colonize the land, overcome their dependency on moist habitat to complete their life cycles outside the water, and become fully terrestrial (Lozano-Fernandez et al., 2016; Rafferty, 2010).

The Sierra Nevada de Santa Marta (SNSM)

Colombia is one the richest countries as far as biological aspects are concerned. The Sierra Nevada de Santa Marta (SNSM) is a unique biosphere reserve in Colombia and a well-known habitat for many endemic and migratory species (Duran-Izquierdo and Olivero-Verbel, 2021). This region has extraordinary biodiversity and endemism and is considered one of the most irreplaceable places on Earth for threatened species (Le Saout et al., 2013; IUCN.org, 2013). There are 1800 species of flora, 631 species of birds, 50 species of amphibians, 189 species of mammals, and 92 species of reptiles in SNSM. One hundred thirty-three of these species (about 5%) are endemic or restricted in this region (Duran-Izquierdo and Olivero-Verbel, 2021). SNSM is an isolated triangle-shaped mountain range with a 13,700 sq km area (Tschanz et al., 1974). SNSM is the world's most elevated coastal range, reaching 5,775 m within only 48km from the shore (Le Saout et al., 2013; Reenen and Gradstein, 1983). Wide alluvial plains separate SNSM from the main mountain ranges in Colombia. This region is surrounded by the Caribbean Sea and the plains of the lower Guajira Peninsula from the north, Magdalena River plain from the west, and the valleys of the Rios Cesar and Ranchería from the southeast side (Tschanz et al., 1974). In SNSM, vegetation is varied and dependent on climate and location in different seasons. The north and northwest of SNSM is covered with evergreen forest and has the shortest dry season (January to

March). The western SNSM receives a significant amount of rainfall and is covered with semideciduous forest (Adams and Bernard, 1977).

The *Ligia* isopod in SNSM

In 1913, Pearse collected *Ligia* samples between Minca (~800 MASL) to Cuchilla San Lorenzo (>2000 MASL) in SNSM. He described them as *Ligia richardsonae*. Later, in 1952, Vandel synomized *Ligia richardsonae* with *Ligia simoni* i.e., the species first identified in the mountains of Venezuela at 1,200 meters above sea level (Schmalfuss, 2003; Schmalfuss, 1978). Schmalfuss also categorized *Ligia* in SNSM as *Ligia simoni*. *Ligia* SNSM is recorded between 780 m and 2,198 m above sea level (Schmalfuss, 1978). Schmalfuss's hypothesis states that the presence of *Ligia* at high altitudes is attributed to supperalitoral *Ligia* species escaping from a rocky intertidal crab, *Grapsus grapsus*, and inhabited in the mountainous mist forests.

Justification and Hypothesis

The previous studies on coadstal *Ligia* show high levels of allopatric differentiation. In this study we are interested to know if high levels of allopatric differentiation is also observed in this terrestrial lineage given its broad altitudinal distribution and what factors may be the determining differentiation. In addition, we conducted molecular phylogenetic analyses of *Ligia* SNSM with other *Ligia* species, including those in the Caribbean study (Santamaria et al. 2014) to determine whether the SNSM lineage originated within the present-day Caribbean clade or it has an earlier split. Herein, we conducted maximum likelihood and Bayesian phylogenetic analyses to infer the evolutionary history of the *Ligia* lineages in the world's highest coastal mountain range in tropic regions. To understand the evolution pattern of *Ligia* in SNSM we provided information on the number of lineages as well as phylogenetics relationship to find their affinities to other *Ligia* species around the world.

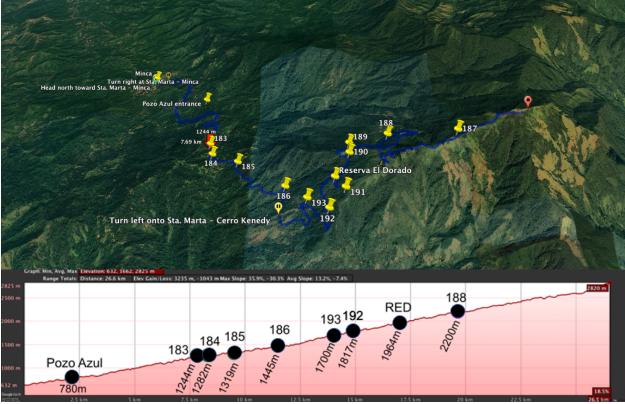
References

- Adams M., Bernard G., 1977. Pronophiline butterflies (Satyridae) of the Sierra Nevada de Santa Marta, Colombia. Systematic Entomology. https://doi.org/10.1111/j.1365-3113.1977.tb00376.x
- Broly P., Deville P., Maillet S., 2012. The origin of terrestrial isopods (Crustacea: Isopoda: Oniscidea). Evolutionary Ecology. 27:461–476. DOI 10.1007/s10682-012-9625-8
- Campos-Filho I, Sorbo Fernandes C , Cardoso G, Bichuette M , Aguiar J, Taiti S, 2019. Two new species and new records of terrestrial isopods (Crustacea, Isopoda, Oniscidea) from Brazilian caves. Zootaxa. https://doi.org/10.11646/zootaxa.4564.2.6
- Cannicci F., Fratini S., Meriggi N., Bacci G., Iannucci A., Mengoni A., Cavalieri D., 2020. To the Land and Beyond: Crab Microbiomes as a Paradigm for the Evolution of Terrestrialization. Front. Microbiol. doi.org/10.3389/fmicb.2020.575372
- Carefoot TH, Taylor BE. 1995. *Ligia*: a prototypal terrestrial isopod. In: Alikhan MA, ed. Terrestrial isopod biology. New York: A.A. Balkema Publishers, 47_60.
- Castello J., Bitar G., Zibrowius H., 2020. Isopoda (crustacea) from the Levantine sea with comments on the biogeography of mediterranean isopods. Mediterranean Marine Science, 21(2), 308-339. doi:https://doi.org/10.12681/mms.20329
- Cloudsley-Thompson, 1998. Evolution and adaptation of terrestrial arthropods. Library of Congress Cataloging in-Publication Data. ISBN-IJ: 978-3-540-1818ll-o
- David Bickford, David J. Lohman, Navjot S. Sodhi, Peter K.L. Ng, Rudolf Meier, Kevin Winker, Krista K. Ingram, Indraneil Das, 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, volume 22, issue 3, pages 148-155, ISSN 0169-5347, https://doi.org/10.1016/j.tree.2006.11.004.
- Dean A., Hodgson E., 2020. Management Considerations for Millipedes and Isopods: Do Insecticides Work?. Integrated Crop Management News. 2602. https://lib.dr.iastate.edu/cropnews/2602
- Dimitriou A., Taiti S., Sfenthourakis S., 2019. Genetic evidence against monophyly of Oniscidea implies a need to revise scenarios for the origin of terrestrial isopods. Scientific Reports. | https://doi.org/10.1038/s41598-019-55071-4 doi: 10.1016/j.cbpa.2006.06.020
- Duran-Izquierdo M., Olivero-Verbel J., 2021. Vulnerability assessment of Sierra Nevada de Santa Marta, Colombia: World's most irreplaceable nature reserve. Global Ecology and Conservation. https://doi.org/10.1016/j.gecco.2021.e01592
- Fabricius J., 1798. Supplementum entomologiae systematicae. Hafniae [= Copenhagen]: Proft and Storch
- Harzsch S., Rieger V., Krieger J., Seefluth F., Strausfeld N.J., Hansson B.S., 2011. Transition from marine to terrestrial ecologies: Changes in olfactory and tritocerebral neuropils in land-living isopods. Arthropod Structure & Development 40 (2011) 244e257.

https://doi.org/10.1371/journal.pone.0094081

- Hurtado LA, Lee EJ, Mateos M, Taiti S (2014) Global Diversification at the Harsh Sea-Land Interface: Mitochondrial Phylogeny of the Supralittoral Isopod Genus *Tylos* (Tylidae, Oniscidea). PLoS ONE 9(4): e94081.
- Hurtado LA, Mateos M, Santamaria CA. 2010. Phylogeography of Supralittoral Rocky Intertidal *Ligia* Isopods in the Pacific Region from Central California to Central Mexico. PLoS ONE 5(7): e11633. doi:10.1371/journal.pone.0011633
- Krieger J., Hörnig M., Kenning M., Hansson B., Harzsch S., 2021. More than one way to smell ashore Evolution of the olfactory pathway in terrestrial malacostracan crustaceans. Arthropod structure & development, Volume 60. https://doi.org/10.1016/j.asd.2020.101022
- Le Saout S., Hoffmann M., Shi Y., Hughes A., Bernard C., Brooks T., Bertzky B., Butchart S., Stuart S., Badman T., Rodrigues A., 2013. Protected Areas and Effective Biodiversity Conservation. Science. Vol. 342, Issue 6160, pp. 803-805. DOI: 10.1126/science.1239268
- Lins L., Ho S., Lo N., 2017. An evolutionary timescale for terrestrial isopods and a lack of molecular support for the monophyly of Oniscidea (Crustacea: Isopoda). Org Divers Evol 17, 813–820. https://doi.org/10.1007/s13127-017-0346-2
- Little, C. (2009). The colonisation of land. Origins and adaptations of terrestrial animals. Cambridge: Cambridge University Press.
- Lozano-Fernandez J., Carton R., Tanner A., Puttick M., Blaxter M., Vinther J., Olesen J., Giribet G., Edgecombe G., Pisani D., 2016. A molecular palaeobiological exploration of arthropod terrestrialization. Philosophical Transactions of The Royal Society B Biological Sciences 371(1699):20150133. DOI:10.1098/rstb.2015.0133
- Michel-Salzat, A. and Bouchon D., 2000. Phylogenetic analysis of mitochondrial LSU rRNA in oniscids (Crustacea Isopoda). C. R. Acad. Sci., Paris, 323: 827-837
- Nunomura N. Horiguchi H., Sasaki T., Hironaka M., Hariyama T., 2011. A New Species of the genus Ligia (Crustacea: Isopoda: Ligiidae from steep streams of Chichijima and Anijima Islands of the Ogawara Islands. 富山市科学博物館研究報告第34号, pP73-7
- Rafferty, J., 2010. The Mesozoic Era: Age of Dinosaurs. Page 219, Rosen Publishing Group.
- Reenen G., Gradstein S., 1983. A TRANSECT ANALYSIS OF THE BRYOPHYTE VEGETATION ALONG AN ALTITUDINAL GRADIENT ON THE SIERRA NEVADA DE SANTA MARTA, COLOMBIA. https://doi.org/10.1111/j.1438-8677.1983.tb01698.x
- Santamaria C., Mateos M., Taiti S., DeWitt T., Hurtado L., 2013. A Complex Evolutionary History in a Remote Archipelago: Phylogeography and Morphometrics of the Hawaiian Endemic Ligia Isopods. PLoS ONE 8(12): e85199. doi:10.1371/journal.pone.0085199
- Schmalfuss H., 1978. Ligia simoni. A model for the evolution of terrestrial isopods. Staatliches Museum für Naturkunde in Stuttgart 317: 1-5.
- Schmalfuss H., 2003. World catalog of terrestrial isopods (Isopoda:Oniscidea). Staatliches Museum für Naturkunde, Serie A., Biologie ;, Nr. 654.
- Schmalfuss, H., 1984. Two new species of the terrestrial isopod genus Pseudarmadillo from Dominican amber (Amber-Collection Stuttgart: Crustacea, Isopoda, Pseudarmadillidae). Stuttgarter Beiträge zur Naturkunde (B)
- Schmidt C., 2008. Phylogeny of the Terrestrial Isopoda (Oniscidea): a Review. Arthropod Systematics and Phylogeny. Published online at www.arthropod-systematics.de on 05.xii.2008.

- Selden P., 2001. Terrestrialization (Precambrian–Devonian). ENCYCLOPEDIA OF LIFE SCIENCES. doi: 10.1038/npg.els.0004145
- Tahiti S., Arnedo M., Lew S., Roderick G., 2003. EVOLUTION OF TERRESTRIALITY IN HAWAIIAN SPECIES OF THE GENUS LIGIA (ISOPODA, ONISCIDEA). Biology of terrestrial isopods, V: 85-102
- Theodoridis S., Nogués-Bravo D., Conti E., 2019. The role of cryptic diversity and its environmental correlates in global conservation status assessments: Insights from the threatened bird's-eye primrose (Primula farinosa L.). Diversity and Distributions. DOI:10.1111/ddi.12953
- TSCHANZ C., MARVIN R., CRUZ J., MEHNERT H., CEBULA G., 1974. Geologic Evolution of the Sierra Nevada de Santa Marta, Northeastern Colombia. GSA Bulletin (1974) 85 (2): 273–284. https://doi.org/10.1130/0016-7606(1974)85<273:GEOTSN>2.0.CO;2
- Unwin EE., 1931. On the structure of the respiratory organs of the terrestrial Isopoda. Pap Proc R Soc Tasmania 1931:37-104
- Vecoli M., Meyer-Berthaud B., Clement G., 2010. The terrestrialization process: Modelling complex interactions at the biosphere-geosphere interface-Introduction. Geological Society, London, Special Publications 2010; v. 339; p. 1-3. doi:10.1144/SP339.1
- Verhoeff KW., 1940. Uber die Doppelhiiutung der Land-Isopoden. Z Morphol Okol Tiere 37: 126-143
- Warburg M., 1993. Evolutionary biology of land isopods. ix, 1-159, 96 text-figs. (Springer-. Verlag). ISBN 3-540-5640-8 (Berlin)
- Wattier, R., Mamos, T., Copilaş-Ciocianu, D. *et al.* 2020. Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon *Gammarus fossarum* (Crustacea, Amphipoda). *Sci Rep* 10, 16536. https://doi.org/10.1038/s41598-020-73739-0
- Winder M., Carstensen J., Galloway A., Jakobsen H., Cloern J., 2017. The land-sea interface: A source of high-quality phytoplankton to support secondary production. Limnology and Oceanography. doi: 10.1002/lno.10650
- Wright J., Ting K., 2006. Respiratory physiology of the Oniscidea: aerobic capacity and the significance of pleopodal lungs. Comp Biochem Physiol A Mol Integr Physiol. 145(2):235-44.
- Zhang R., Chen R., Jianmei A., Santamaria C., 2021. Phylogeny of Terrestrial Isopods Based on the Complete Mitochondrial Genomes, Subvert the Monophyly of Oniscidea and Ligiidae up to New Subfamily Ligiaidea of Isopoda. DOI:10.21203/rs.3.rs-25479/v1


CHAPTER II Materials and Methods

Sampling

Specimens of terrestrial *Ligia* individuals were collected from Pozo Azul, Minca (780 MASL) to the El Dorado Nature Reserve (2198 MASL) in SNSM, Colombia (Figure 1). Samples were preserved in 95% ethanol and stored at -20°C.

Figure 1. The elevation map of the study area (SNSM, Colombia)

The numbers on the map refer to the samples ID which pin to the point that they were collected. The red arrows indicate the lowest point (Pozo Azul, Minca - 780 MASL) where the sampling was started (Google Earth Pro, v7.3.4, April 03, 2019).

Molecular methods

The total genomic DNA was extracted from pleopods and/or legs of *Ligia* specimens by DNeasy Blood & Tissue Kit (Qiagen Inc., Valencia, CA, USA) following the manufacturer's protocol. A 310bp fragment of the 16s rDNA gene was amplified with published primers 16Sar (5'-CGCCTGTTTATCAAAAACAT-3') and 16Sbr (5'-CCGGTCTGAACTCAGATCACGT-3')

(Palumbi, 1996). Each PCR reaction contained 1 ul DNA template, 0.4 uL of each primer 10 mM, 0.1 uL OneTaq DNA polymerase, 0.4 uL dNTPs 10 mM, 0.64 uL MgCl2 25 mM and 4 uL 5x PCR buffer. The PCR protocol used was: 2 min at 94°C followed by 30 cycles of 30s at 94°C; 40s at 52°C, 1 min at 68°C; and a final extension at 68°C for 10 min.

A 490bp fragment of the 12s rDNA gene was amplified with published primers crust-12sf (5'-CAGCAKYCGCGGTTAKAC-3') and crust-12sr (5'-ACACCTACTWTGTTACGACTTATCTC-3') with the following PCR conditions: 4 min at 94°C, 34 cycles of 1min at 94°C, 30 s at 56°C, 1.5 min at 72°C and final extension at 72°C for 4 min. Each PCR reaction included 6.25 uL of RedTaq polymerase , 0.5 uL of each primer 10 mM and 2.75 uL DNA template.

A 680bp fragment of the NaK gene was amplified with primers NaK forb (5'-(5'-ATGACAGTTGCTCATATGTGGTT-3') and NaK rev2 ATAGGGTGATCTCCAGTRACCAT-3') with the following PCR temperature profile : 3 min at 94°C, 35 cycles of 30 s at 94°C, 30 s at 54°C, 1.5 min at 72°C and final extension at 72°C for 10 min. Each PCR reaction included 6.25 uL of RedTaq polymerase, 0.5 uL of each primer 10 mM and 2.75 uL DNA template. PCR products were cleaned by Applied Biosystems Exosap-itTM (Thermo Fisher Scientific, Waltham, MA, USA). We used Sequencher 4.8 (Genecodes, Ann Arbor, MI, USA) and CodonCode Aligner software package 9.0.1 (CodonCode Corporation, Dedham, MA, USA) to assemble and edit the sequences, and trim the primers. There were no stop codons in NaK sequences. All the other localities' sequences were downloaded from GenBank. The species name as well as their locations, IDs and sources are gathered in Table 3. Sequences were aligned with the online MAFFT version 7 (Katoh et al., 2019), assuming Q-INS-I strategy with default parameters. The NEXUS and FASTA files of all datasets were downloaded for further analysis. The NEXUS files were uploaded on CIPRES portal for Bayesian analysis and FASTA

files were uploaded on IQTree web server for Maximum Likelihood analysis.

Table 4.List of Ligia species genes used in this study.

pecies	Location	I D	16s rDNA Accessio n no.	12s rDNA Accessio n no.	NaK Accessio n no.	Lat.	Long.	Source
L. hawaiensi s	Pu'unalu Beach Park, Hawai'i	1	KF5465 51	KF5465 76	KF54659 3	19° 8'0.60"N	155°30'18.3 0"W	Santamaria, CA., et al. 2013
L. perkinsi	Haupu Range, Kaua'i	2	KF5465 47	KF5465 79	KF54659 2	N/A	N/A	Santamaria, CA., et al. 2013
L. hawaiensi s	Kapua'a Beach Park, Kaua'i	3	KF5465 44	KF5465 71	KF54658 5	22°13'05.30" N	159°25'31.1 5"W	Santamaria, CA., et al. 2013
L. hawaiensi s	Manele Bay, Lana'i	4	KF5465 38	KF5465 64	KF54658 9	20°44'37.37" N	156°53'12.4 7"W	Santamaria, CA., et al. 2013
L. hawaiensi s	Pupukea, O'ahu	5	KF5465 31	KF5465 62	KF54659 1	21°38'59.70" N	158°03'45.4 8"W	Santamaria, CA., et al. 2013
L. exotica	Kanagawa, Japan	6	KX4477 27	MG6764 05	MG6764 43	35°9'25''N	139°36'43"E	Hurtado L., et al., 2018
L. exotica	Qingdao, Shandong, China	7	KX4477 48	MG6764 07	MG6764 31	36°3'58"N	120°22'10"E	Hurtado L., et al., 2018
L. exotica	Okinawa, Japan	8	KX4477 42	MG6764 12	MG6764 29	26°28'46''N	127°55'40"E	Hurtado L., et al., 2018
L. exotica	Zhujiajian Island, Zhejiang, China	9	KX4477 39	MG6764 18	MG6764 40	29°54"N	122°53'E	Hurtado L., et al., 2018
L. exotica	Toyohashi, Japan	1 0	KX4477 41	MG6764 17	MG6764 35	N/A	N/A	Hurtado L., et al., 2018
L. exotica	Municipal Harbor, Port Aransas, TX, USA	1 1	KX4477 20	MG6764 21	MG6764 36	27°50'24"N	97°3'50"W	Hurtado L., et al., 2018
L.cinerasc ens	Cheju, South Korea	1 2	KX4477 56	MG6764 04	MG6764 25	33°22'N	126°32'E	Hurtado L., et al., 2018
L. baudinian a	Fort Sherman, Panama	1 3	KF5557 64	KF5558 11	KF55588 4	09°21_51.36 N	79° 56_55.56 W	Santamaria et al., 2014

T	C t .	1	VE6667	VE5550	VE55500	11.20.07.74	72	C
<i>L</i> .	Santa	1	KF5557	KF5558	KF55588	11°20_07.74	730	Santamaria
baudinian	Marta,	4	76	19	5	N	58_31.26	et al., 2014
<u>a</u>	Colombia						W	~ .
L.	Long Bird	1	KF5557	KF5558	KF55587	32°21_05.34	640	Santamaria
baudinian	Bridge,	5	82	29	3	N	42_35.16	et al., 2014
<u>a</u>	Bermuda	1	WE CCC	VE5550	WE55505	10.01.00.04	W	
L.	Fajardo,	1	KF5557	KF5558	KF55587	18°21_38.84	65°	Santamaria
baudinian	Puerto Rico	6	93	07	4	N	37_28.51	et al., 2014
<u>a</u>	T 7			1100000	WE55505		W	
<i>L</i> .	Veracruz,	1	KF5557	KF5558	KF55587	08°53_28.30	79°	Santamaria
baudinian	Panama	7	95	37	8	N	35_35.19	et al., 2014
<u>a</u>	T1 M	1	VECCC7	VECCO	WE55507	NT/A	W	·
L.	El Morro,	1	KF5557	KF5558	KF55587	N/A	N/A	Santamaria
baudinian	Venezuela	8	89	33	5			et al., 2014
<u>a</u>		1	VD6667	VESSO	WE55505			
L.	Buenaventu	1	KF5557	KF5558	KF55587	N/A	N/A	Santamaria
baudinian	ra, I.	9	97	34	7			et al., 2014
а	Palma,							
T : (Colombia	2	VE5550	VESSO				C
L. italica	Italy	2	KF5558	KF5558	N/A	N/A	N/A	Santamaria,
		0	00	40				C.A. et al., 2013
I idaliaa	T4 - 1	2	DO1920	DO1920		NT/ A	N T/ A	
L. italica	Italy	2	DQ1830 54	DQ1829 54	N/A	N/A	N/A	Klossa-
		1	54	54				Kilia, E., et
L.	Commonst	2	KF5558	KF5558	N/A	N/A	N/A	al, 2006
L. oceanica	Germany	2	NF 3538 02	39	IN/A	IN/A	IN/A	Santamaria et al., 2014
L.	Concarneau	2	JQ81440		N/A	47° 52' N	3° 55' W	Raupach,M.
L. oceanica	, France	$\frac{2}{3}$	0	1N/A	IN/A	47 J2 IN	5 55 W	J., et al,
oceunicu	, Flance	5	0					2014
L.cinerasc	Tianjin,	2	KX4477	N/A	N/A	39°08'N	117°11'E	Hurtado,
ens	China	5	52	11/71	10/24	57 0011	11/11L	L.A., et
ens	Cillia	5	52					al,2018
								Santamaria,
	Nu'uanu	2	KF5465	KF5465				CA., et al.
L. perkinsi	Pali, O'ahu	6	48	72	N/A	N/A	N/A	2013
E. permisi	1 uni, 0 unu	0	10	12	1011	1011	1.011	Santamaria,
	Veracruz,	2	KF5465	KF5465		19°12'33.63"	96°	CA., et al.
L. exotica	Mexico	7	52	84	N/A	N	7'51.39"W	2013
L.					1.011	11	, 0105	Santamaria,
occidental	Guaymas,	2	KF5465	KF5465		27°54'44.33"	110°56'49.5	CA., et al.
is	Mexico	8	53	83	N/A	N	6"W	2013
	Parangtritis		-	-				Santamaria,
	, Java,	2	KF5465	KF5465				CA., et al.
L. vitiensis	Indonesia	9	54	82	N/A	N/A	N/A	2013
	Basin							
	Cabri,							
	Aldabra							Santamaria,
	Atoll,	3	MF8285	MF8285	MF8055			CA., et al.
L. vitiensis	Seychelles	0	79	90	65	N/A	N/A	2017
	Dili,				-			Santamaria,
	Timor-	3	KF5465	KF5465				CA., et al.
L. vitiensis	Leste	1	56	81	N/A	N/A	N/A	2017

	Stone Town,							Santamaria
		2	ME0205	ME0205			20011/26 4/	
L. vitiensis	Zanzibar, Tanzania	3 2	MF8285 78	MF8285 89	N/A	6°09'33.8″S	39°11′26.4″ E	CA., et al. 2017
								Santamaria
	Galle, Sri	3	MF8285	MF8285			80°13′03.3″	CA., et al.
L. dentipes	Lanka	3	76	84	N/A	6°01′49.9″N	E	2017
	Silhouette							Santamaria
	Island,	3	MF8285	MF8285	MF8055		55°15′12.4″	CA., et al.
L. dentipes	Seychelles	4	73	86	64	4°29′08.4″S	Е	2017
,	Dutch Bay,							
	Trincomale							Santamaria
	e, Sri	3	MF8285	MF8285			81°14′27.8″	CA., et al.
L. dentipes	Lanka	5	77	83	N/A	8°33′52.6″N	Е	2017
L.		-			1.011	0.0002.011		Santamaria
occidental	Guaymas,	3	KF5465	KF5465		27°54′44.3″	110°56′49.6	CA., et al.
is	Mexico	6	53	83	N/A	27 54 44.5 N	"W	2017
L.occident	Harris	3	HM5698	05	KC9531	11		Eberl R., e
alis	Point	7	86	N/A	03	N/A	N/A	al., 2013
L.occident	Isthmus	3	HM5699	11/A	KC9531	11/7	11/1	Eberl R., e
L.occident alis	Cove	8	12	N/A	13	N/A	N/A	al., 2013
L.occident	Cove	8 3	HM5698	IN/A	KC9531	111/74	IN/A	
L.occiaent alis		3 9	HM3698 97	N/A	21	N/A	N/A	Eberl R., e
L.occident	Ensenada	9 4	97 HM5698	IN/A	KC9531	1N/A	IN/A	al., 2013 Eberl R., e
	Tom stal			NT/A			NT/A	,
alis	Tomatal	0	96	N/A	35 KC0521	N/A	N/A	al., 2013
L.occident	Bahia	4	HM5699		KC9531			Eberl R., e
alis	Asuncion	1	03	N/A	42	N/A	N/A	al., 2013
L. glabrat	Luderitz,	4	37/4	37/4	MH1731	0.000015#0	1 500 415 5 115	Greenan et
а	Namibia	2	N/A	N/A	52	26°39′47″S	15°04′55″E	al., 2018
	Koelbaai,				1 11 1 201			G
T 111	South	4	37/4	37/4	MH1731	0.401.4451.80	1005141545	Greenan et
L. dilatata	Africa	3	N/A	N/A	53	34°14′51″S	18°51′15″E	al., 2018
	Summerstr							
	and, Port							
_	Elizabeth,							
L. natalen	South	4			MH1731			Greenan e
sis	Africa	4	N/A	N/A	54	33°59′01″S	25°40′16″E	al., 2018
	Kidd's							
	Beach,							
L. natalen	South	4			MH1731			Greenan et
sis	Africa	5	N/A	N/A	55	33°08′50″S	27°42′10″E	al., 2018
L. SNSM	Sierra	L						This Study
(83, 84,	Nevada de							
85, 86, pa)	Santa							
	Marta,							
	Colombia							
L. SNSM	Sierra	Μ						This Study
(92, 93)	Nevada de							
	Santa							
	Marta,							
	Colombia							
L. SNSM	Sierra	Н						This Study
(88)	Nevada de							
. /	Santa							

	Marta, Colombia							
Sphaerom a serratum (outgroup)	Italy	4 6	N/A	N/A	MN2342 62	N/A	N/A	Dimitriou et al., 2019
Sphaerom a serratum (outgroup)	Italy	4 7	N/A	N/A	MN234 261	N/A	N/A	Dimitriou et al., 2019
<i>Idotea</i> <i>chelipes</i> (outgroup)	Italy	4 8	N/A	N/A	MN234 263	N/A	N/A	Dimitriou et al., 2019
<i>Idotea</i> <i>chelipes</i> (outgroup)	Italy	4 9	N/A	N/A	MN2342 64	N/A	N/A	Dimitriou et al., 2019
Sphaerom a serratum (outgroup)	Atlantic, Portugal	5 0	KU2482 78	N/A	N/A	N/A	37.07°N ~8.31°W,	Wetzer et al., 2018
Sphaerom a serratum (outgroup)	Siec island, France	5 1	AJ38807 4	N/A	N/A	N/A	N/A	Michel- Salzat and Bouchon, 2000
<i>Idotea</i> <i>chelipes</i> (outgroup)	N/A	5 2	GQ3026 89	N/A	N/A	N/A	N/A	Koutmos et al. (Unpublishe d)
<i>Idotea</i> <i>chelipes</i> (outgroup)	Ré island, France	5 3	AJ38808 0	N/A	N/A	N/A	N/A	Michel- Salzat and Bouchon, 2000
Idotea resecata (outgroup)	Monterey Bay, USA	5 4	N/A	AF2595 26	N/A	N/A	N/A	Wetzer, 2001

Model Selection

By using jModelTest 2.1.10 v. 20160303 (Darriba et al., 2012), we determined the most appropriate model of DNA substitution to calculate likelihood scores among 88 candidate models for NaK, 16s rDNA, 12s rDNA genes. jModelTest was only run only on each dataset.

Phylogenetic analyses

For ML analyses IQTree on web server (http://iqtree.cibiv.univie.ac.at/) (Trifinopoulos et al., 2016) were used with the simplest appropriate models for 16s rDNA, 12s rDNA and Nak genes with 100 bootstrap replicates. For Bayesian inferences, we used MrBayes on XSEDE 3.2.7a. This program was implemented in the CIPRES portal <u>https://www.phylo.org/</u>. All the tree files were

downloaded and visualized by FigTree v1.4.4 (Rambaut 2009) and the PDF files of the trees with clade support were extracted from this software.

References

- Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest2: more models, new heuristics and parallel computing. Nature Methods 9:772 DOI 10.1038/nmeth.2109.
- Kazutaka Katoh, John Rozewicki, Kazunori D Yamada, MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization, *Briefings in Bioinformatics*, Volume 20, Issue 4, July 2019, Pages 1160–1166, https://doi.org/10.1093/bib/bbx108
- Palumbi SR (1996) Nucleic acids II: The polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Inc, pp. 205–247
- Rambaut A. 2009 . FigTree. Available from: http://tree.bio.ed.ac.uk/software/figtree/
- Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) *Nucl. Acids Res.* 44 (W1): W232-W235. doi: 10.1093/nar/gkw256

CHAPTER III- Results

Mitochondrial and nuclear datasets

Both mitochondrial and nuclear sequences showed that there are three different main haplotype groups in *Ligia* SNSM. Each haplotype corresponded to a certain elevation of the study area. The first haplotype's habitat is from 780-1445 meters above sea level (MASL), the second one's habitat is 1700-1817 MASL and the third haplotype's habitat starts at 1964 to 2198 MASL (Table 4, Figures 2, 3 and 4). Also, genetic divergences between these three haplotypes were calculated (Tables 5, 6 and 7). As there was no sequence divergence among individuals within each elevation, we retained one individual from each elevation in our phylogenetic analyses. For 16s rDNA, 41 sequences from different Ligia species and different localities were added to the dataset. Sphaeroma serratum and Idotea chelipes sequences were used as outgroups in the 16s rDNA dataset. However, for 12s rDNA, due to limited study, 33 sequences from other Ligia species of different localities were added to the dataset and *Idotea chelipes* was used as an outgroup. After alignment, the total characters of 16s rDNA were 561 and 431 characters were retained. For 12s rDNA, 487 characters were retained out of 518. The NaK gene was obtained from 41 individuals of Ligia SNSM which represent three different elevations exactly according to the mitochondrial genes. Similarly, there were no variabilities between individuals from each habitat for the NaK gene and the sequence of an individual from each elevation was chosen in our phylogenetic analyses. For this gene, 30 sequences of different Ligia species from different localities were added to the dataset. Also, Sphaeroma serratum and Idotea chelipes were considered as outgroups.


Table 5. Three different main haplotypes in Ligia SNSM.

Each haplotype corresponded to a certain elevation of the study area. The first haplotype's habitat (Green) is from 780-1445
meters above sea level (MASL), the second one's habitat (Blue) is 1700-1817 MASL and the third haplotype's habitat (Purple)
starts at 1964 to 2198 MASL. The empty cells mean we did not PCR amplified the genes of that individuals.

Sample ID	16r DNA	12s rDNA	NaK	Sample ID	16s rDNA	12s rDNA	NaK
183-1				186-2			
183-2				186-3			
183-3				186-4			
183-4				186-5			
183-5				186-6			
183-6				186-7			
183-7				186-8			
183-8				186-9			
183-9				186-10			
184-1				186-11			
184-2				186-12			
184-3				186-13			
184-4				188 1			
184-5				188-2			
184-6				188-3			
184-7				188-4			
184-8				188-5			
184-9				188-6			
184-10				188-7			
185-1				188-8			
185-2				188-9			
185-3				192-1			
185-4				192-2			
185-5				192-3			
185-6				192-4			
185-7				192-5			
185-8				192-6			
pa-1				192-7			
pa-2				192-8			
pa-3				192-9			
pa-4				192-10			
pa-5				193-1			
pa-6				193-2			
pa-7				193-3			
pa-8				193-4			
pa-9				193-5			
pa-10				193-6			
pa-11				193-7			
pa-12				193-8			
pa-13				185_?			
pa-14				186_?			
				El Dorado			
pa-15				Enterance			
186-1							

Figure 2. Unrooted MAXIMUM LIKELIHOOD TREE of 16s rDNA

Color coding corresponds to different altitudes. Green refers to 780 - 1445 MASL. Blue refers to 1700 to 1817 MASL and purple refers to 1964 to 2198 MASL.

	Blue	Purple
Green	4.4%	5.9%
Blue	-	5.7%

Figure 3. Unrooted MAXIMUM LIKELIHOOD TREES of 12s rDNA

Color coding corresponds to different altitudes. Green refers to 780 - 1445 MASL. Blue refers to 1700 to 1817 MASL and purple refers to 1964 to 2198 MASL.

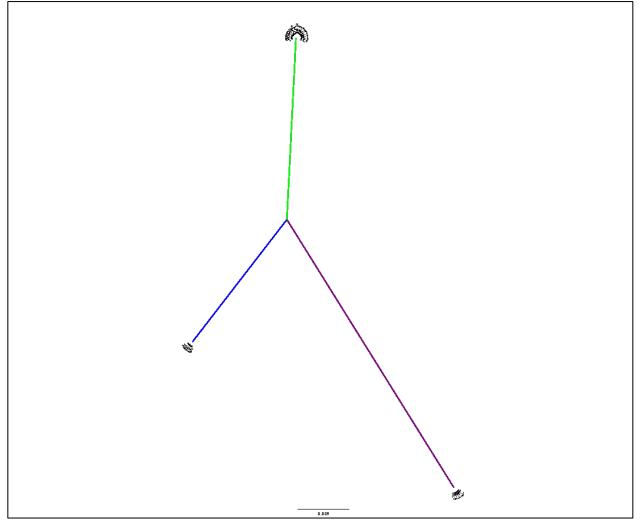
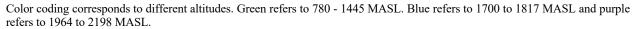



Table 7. Genetic divergences between different linages for 12s rDNA gene.

	Blue	Purple	
Green	5.2%	8%	
Blue	-	7.6%	

Figure 4. Unrooted MAXIMUM LIKELIHOOD TREES of NaK gene

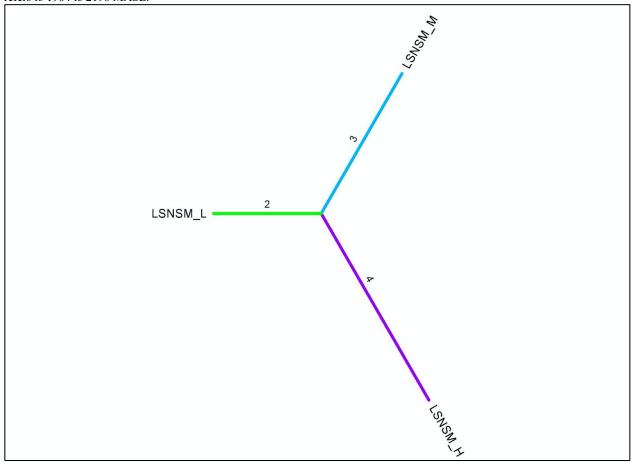


Table 8. Genetic divergences between different linages for NaK gene.

	Blue	Purple	
Green	0.9%	1.9%	
Blue	-	1.8%	

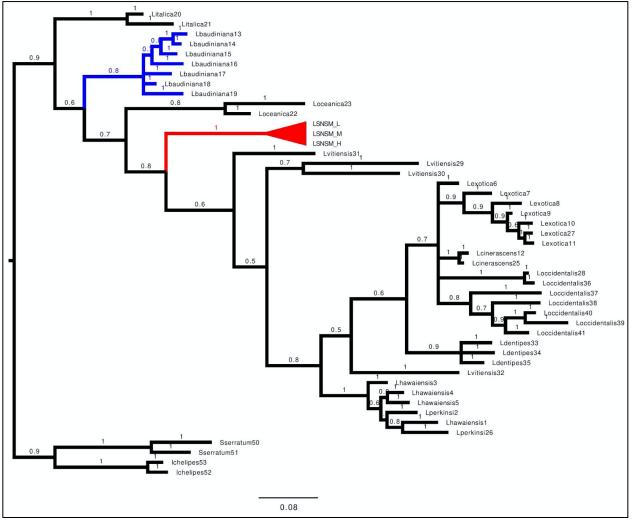
For the 16s rDNA dataset, jModelTest selected GTR model with six substitution parameters (AC, AG, AT, CG, CT, GT) +I and, +G according to the Akaike Information Criteria

(AIC) (weight = 0.7386) and AICc (weight = 0.5794). The selected model according to the Bayesian Information Criterion (BIC) was a simpler model e.i. TVM (weight = 0.7205) with five substitution parameters (AC, AT, CG, GT, AG = CT) +I and, +G. For the 12s rDNA dataset, the selected model based on AIC was GTR (weight = 0.4491) with six substitution rates +G and +I, based on the AICc the selected model was TIM2 (weight = 0.4027) with for substitution rates (AC = AT, CG = GT, AG, CT) +I +G. Under BIC, the selected model was TrN (weight = 0.3276) with three substitution rates (AC = AT = CG = GT, AG, CT) +I and, +G (Table 8). For each dataset, we considered the simplest model according to the substitution rate. The selected model for the 16s rDNA was TVM+I+G and for the 12s rDNA was TrN+I+G. We applied these models for both Bayesian and Maximum likelihood analyses.

For the NaK dataset, jModelTest selected the TIM3 model (weight = 0.1708) with four substitution rates (AC = CG, AT = GT, AG, CT) +G based on AIC. Models TIM3ef+G (weight = 0.1967) with four substitution parameters (AC = CG, AT = GT, AG, CT) and K80+G (weight = 0.3227) with two substitution rates (AC = AT = CG = GT, AG = CT) were selected in order for AICc and BIC. For this dataset, we considered the simplest model according to the substitution rate e.i. K80+G for both Bayesian and Maximum likelihood analyses.

Gene	No. of Character	Best Model AIC	Best Model AICc	Best Model BIC
NaK	347	TIM3+G Partition: 012032 Weight: 0.1708	TIM3ef+G Partition: 012032 Weight: 0.1967	K80+G Partition: 010010 Weight: 0.3227
16s rDNA	431	GTR+I+G Partition: 012345 Weight: 0.7386	GTR+I+G Partition: 012345 Weight: 0.5794	TVM+I+G Partition: 012314 Weight: 0.7205
12s rDNA	487	GTR+I+G Partition: 012345 Weight: 0.4491	TIM2+I+G Partition: 010232 Weight: 0.4027	TrN+I+G Partition: 010020 Weight: 0.3276

Table 9.	Best model	selected	by jModeltest
----------	------------	----------	---------------


Phylogenetic results

Although there are some discrepancies among different analyses and genes, that are reflected in the support values and topologies of trees; the phylogenetic analyses of both mitochondrial and nuclear datasets indicated that *Ligia* from SNSM is a divergent group from all other species of *Ligia* and corresponded to a well-supported monophyletic clade (Bootstrap Support (BS): 90-100; Posterior Probability (PP): 97-100) (Figures 5, 6, 7, 8, 9 and 10).

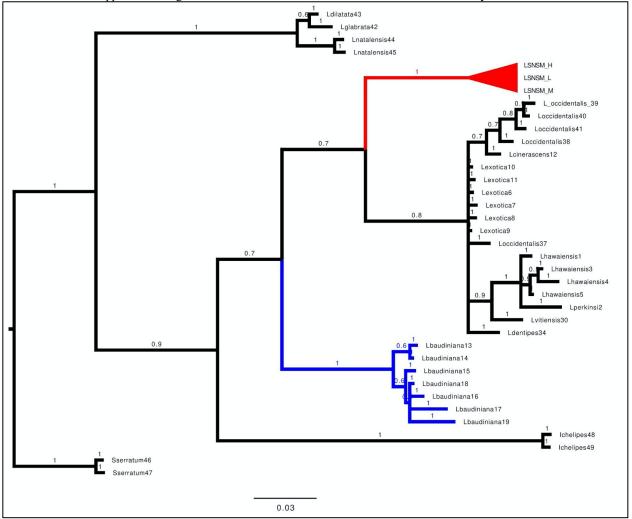

Relationships of *Ligia* SNSM to other *Ligia* were not well resolved, and inferences differed according to both gene and analysis. From all phylogenetic trees for three genes and both analyses we can say that *Ligia* SNSM did not diverge from the one of Caribbean that is represented here. The position of *Ligia* SNSM in relation to other species is unknown because its position changed depending on different genes and analyses. In ML analysis for 12s rDNA gene, *Ligia* SNSM is the sister clade to Caribbean *Ligia*. However, it is not supported by other genes and analyses. The main result from these analyses is that *Ligia* SNSM did not diverged within Caribbean lineage.

Figure 5. Bayesian tree for 16s rDNA gene

The model applied for this gene was TVM+I+G. This tree is rooted with *S. serratum* from Portugal and France and *I. chelipes* from France.

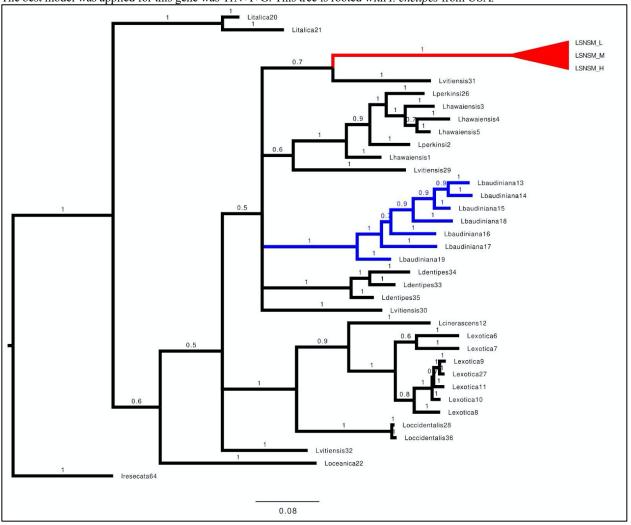
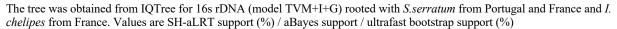
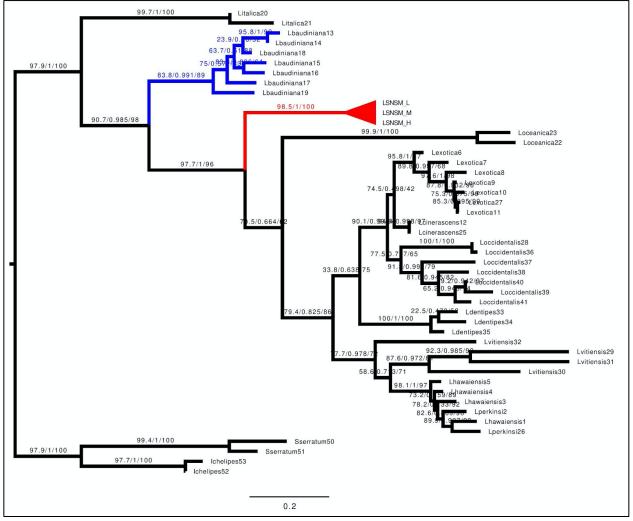
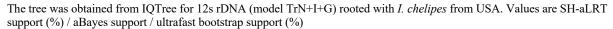
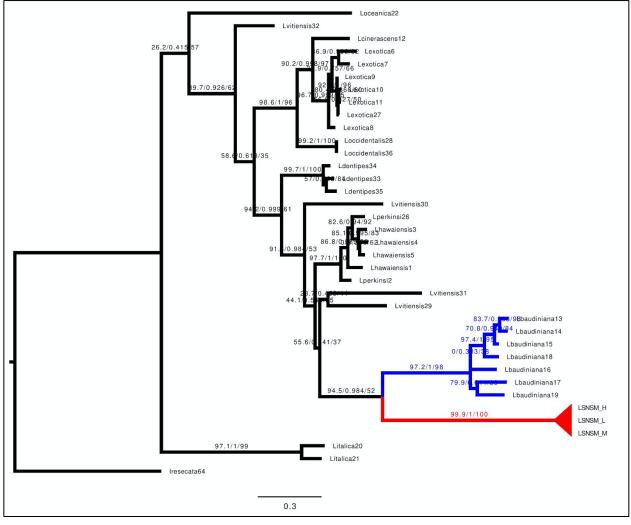


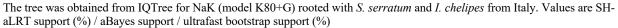
Figure 6. Bayesian tree for NaK gene


The best model was applied for this gene was K80+G. This tree is rooted with *S. serratum* from Italy.


Figure 7. Bayesian tree for 12s rDNA gene


The best model was applied for this gene was TrN+I+G. This tree is rooted with I. chelipes from USA.


Figure 8. Maximum Likelihood tree of 16s rDNA gene



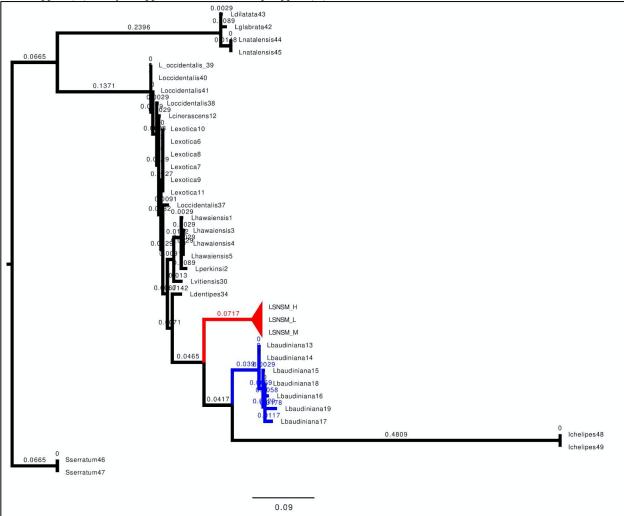

Figure 9. Maximum Likelihood tree of 12s rDNA gene

Figure 10. Maximum Likelihood tree of NaK gene

CHAPTER IV- Conclusions

In this study for the first time we showed that *Ligia* SNSM corresponded to a wellsupported monophyletic group and also included three divergent haplotypes in *Ligia* SNSM. We found three lineages of *Ligia* in the Sierra Nevada de Santa Marta, which were distributed according to elevation, One from 780 to 1,445 MASL, the second one from 1,700 to 1,817 MASL and the third one from 1,964 to 2,198 MASL. We showed that the altitude is a factor contributing to divergence of this isopod in the SNSM. All three genes showed a clear divergence between individuals in different heights. It is possible that each of the three clusters corresponds to a different species, which would add to the extraordinary levels of endemisms in this region. The high cryptic diversity observed for *Ligia* SNSM emphasizes the high level of biodiversity and endemisms in this region and highlights the importance of conservation studies, efforts and strategies.

Despite all the discrepancies that were observed in values and topologies of mitochondrial and nuclear genes, our study showed that the terrestrial *Ligia* in SNSM is a divergent group from all other *Ligia* species all around the world. Although there is uncertainty about the phylogenetic position of *Ligia* SNSM within the genus *Ligia*. We conclude, however, that the divergence of SNSM *Ligia* was not within the present-day Caribbean *Ligia*.

Implications and future work

The finding of three new *Ligia* lineages endemic to the SNSM adds to the extraordinary diversity of this region and highlights the need for similar studies in other invertebrate groups that have been poorly studied. It also highlights the needs for proper conservation of the unique endemics of this

megadiverse region. Phylogenetic analyses with representatives of all *Ligia* species are needed to establish the evolutionary relationships among members of this genus.

According to our results, *Ligia* from SNSM represents a good system to study adaptation to terrestrial life, and also to different altitudes, vegetation, microbial communities and temperature.