LECTURE 9: Conditioning on an event; Multiple continuous r.v.'s

- Conditioning a r.v. on an event
- Conditional PDF
- Conditional expectation and the expected value rule
- Exponential PDF: memorylessness
- Total probability and expectation theorems
- Mixed distributions
- Jointly continuous r.v.'s and joint PDFs
- From the joints to the marginals
- Uniform joint PDF example
- The expected value rule and linearity of expectations
- The joint CDF

Conditional PDF, given an event

$$
\begin{aligned}
p_{X}(x) & =\mathrm{P}(X=x) & f_{X}(x) \cdot \delta \approx \mathbf{P}(x \leq X \leq x+\delta) \\
p_{X \mid A}(x) & =\mathrm{P}(X=x \mid A) & f_{X \mid A}(x) \cdot \delta \approx \mathrm{P}(x \leq X \leq x+\delta \mid A)
\end{aligned}
$$

$$
\mathbf{P}(X \in B)=\sum_{x \in B} p_{X}(x) \quad \mathbf{P}(X \in B)=\int_{B} f_{X}(x) d x
$$

$$
\mathbf{P}(X \in B \mid A)=\sum_{x \in B} p_{X \mid A}(x) \quad \mathbf{P}(X \in B \mid A)=\int_{B} f_{X \mid A}(x) d x \quad \text { Def }
$$

$$
\sum_{x} p_{X \mid A}(x)=1 \quad \int f_{X \mid A}(x) d x=1
$$

Conditional PDF of X, given that $X \in A$

$$
\begin{aligned}
& \mathbf{P}(x \leq X \leq x+\delta \mid X \in A) \approx f_{X \mid X \in A}(x) \cdot \varnothing \\
& =\frac{P(x \leq x \leq x+\delta, X \in A)}{P(A)} \\
& =\frac{P(x \leq X \leq x+\delta)}{P(A)} \approx \frac{f_{X}(x) \varnothing}{P(A)}
\end{aligned}
$$

$$
f_{X \mid X \in A}(x)= \begin{cases}0, & \text { if } x \notin A \\ \frac{f_{X}(x)}{\mathrm{P}(A)}, & \text { if } x \in A\end{cases}
$$

Conditional expectation of X, given an event

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{x} x p_{X}(x) \\
\mathrm{E}[X \mid A] & =\sum_{x} x p_{X \mid A}(x)
\end{aligned}
$$

$$
\mathrm{E}[X]=\int x f_{X}(x) d x
$$

$$
\mathrm{E}[X \mid A]=\int x f_{X \mid A}(x) d x \quad D e f
$$

Expected value rule:

$$
\mathrm{E}[g(X)]=\sum_{x} g(x) p_{X}(x) \quad \mathrm{E}[g(X)]=\int g(x) f_{X}(x) d x
$$

$\mathbf{E}[g(X) \mid A]=\sum_{x} g(x) p_{X \mid A}(x)$

$$
\mathrm{E}[g(X) \mid A]=\int g(x) f_{X \mid A}(x) d x
$$

Example

$$
A: \quad \frac{a+b}{2} \leq X \leq b
$$

$$
\underbrace{\frac{2}{b-a}}_{a} \underset{\frac{a+b}{2}}{f_{X \mid A}(x) \uparrow} \quad{ }_{b}
$$

$$
\begin{aligned}
& \mathrm{E}[X \mid A]=\frac{1}{2} \cdot \frac{a+b}{2}+\frac{1}{2} b \\
&=\frac{1}{4} a+\frac{3}{4} b \\
& \mathrm{E}\left[X^{2} \mid A\right]= \\
& \int_{\frac{a+b}{2}}^{b} \frac{2}{b-a} \cdot x^{2} d x
\end{aligned}
$$

Memorylessness of the exponential PDF

- Do you prefer a used or a new "exponential" light bulb? Probabilistically identical!
- Bulb lifetime T : exponential (λ)

$$
\mathbf{P}(T>x)=e^{-\lambda x}, \text { for } x \geq 0
$$

- we are told that $T>t$
- r.v. X : remaining lifetime $=T-t$

$$
\begin{aligned}
& P(X>x \mid T>t)=e^{-\lambda x}, \text { for } x \geq 0 \\
& =\frac{P(T-t>x, T>t)}{P(T>t)}=\frac{P(T>t+x, T>t)}{\underline{P}(T>t)}=\frac{P(T>t+x)}{P(T>t)} \\
& =\frac{e^{-\lambda(t+x)}}{e^{-\lambda t}}=e^{-\lambda x}
\end{aligned}
$$

Memorylessness of the exponential PDF

$$
f_{T}(x)=\lambda e^{-\lambda x}, \quad \text { for } x \geq 0
$$

similar to an independent coin flip, every δ time steps, with $\mathbf{P}($ success $) \approx \lambda \delta$

Total probability and expectation theorems

$$
\left\{\begin{array}{l}
\mathrm{P}\left(A_{1}\right) \\
\mathrm{P}\left(A_{2}\right) \\
\mathrm{E}\left[X \mid A_{1}\right] \\
\mathrm{P}\left(A_{3}\right) \\
\mathrm{E}\left[X \mid A_{3}\right]
\end{array}\right.
$$

$$
\begin{gathered}
\mathrm{P}(B)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(B \mid A_{1}\right)+\cdots+\mathrm{P}\left(A_{n}\right) \mathrm{P}\left(B \mid A_{n}\right) \\
p_{X}(x)=\mathrm{P}\left(A_{1}\right) p_{X \mid A_{1}}(x)+\cdots+\mathrm{P}\left(A_{n}\right) p_{X \mid A_{n}}(x) \\
F_{X}(x)=P(X \leq x)=P\left(A_{1}\right) P\left(X \leq x \mid A_{1}\right)+\cdots \\
=P\left(A_{1}\right) F_{x \mid A_{1}}(x)+\cdots \\
f_{X}(x)=\mathrm{P}\left(A_{1}\right) f_{X \mid A_{1}}(x)+\cdots+\mathbf{P}\left(A_{n}\right) f_{X \mid A_{n}}(x) \\
\int x f_{x}(x) d x=P\left(A_{1}\right) \int x f_{x \mid A_{1}}(x) d x+\cdots \\
\mathrm{E}[X]=\mathrm{P}\left(A_{1}\right) \mathrm{E}\left[X \mid A_{1}\right]+\cdots+\mathrm{P}\left(A_{n}\right) \mathrm{E}\left[X \mid A_{n}\right]
\end{gathered}
$$

Example

- Bill goes to the supermarket shortly, with probability $1 / 3$, at a time uniformly distributed between 0 and 2 hours from now; or with probability $2 / 3$, later in the day
at a time uniformly distributed between 6 and 8 hours from now

$$
f\left(A_{1}\right)=\frac{1}{3} \quad f_{x \mid A_{1}} \sim \text { unif }[0,2] \quad P\left(A_{2}\right)=\frac{2}{3} \quad f_{x \mid A_{2}} \sim U[6,8]
$$

$$
f_{X}(x)=\mathbf{P}\left(A_{1}\right) f_{X \mid A_{1}}(x)+\cdots+\mathbf{P}\left(A_{n}\right) f_{X \mid A_{n}}(x)
$$

- $\mathrm{E}[X]=\mathrm{P}\left(A_{1}\right) \mathrm{E}\left[X \mid A_{1}\right]+\cdots+\mathrm{P}\left(A_{n}\right) \mathrm{E}\left[X \mid A_{n}\right]$

$$
\frac{1}{3} \cdot 1+\frac{2}{3} \cdot 7
$$

Mixed distributions

$$
\begin{aligned}
& X=\left\{\begin{array}{lll}
\text { uniform on }[0,2], & \begin{array}{l}
\text { with probability } 1 / 2 \\
1,
\end{array} & \text { Is } X \text { discrete? } N_{0} \\
\text { with probability } 1 / 2
\end{array}\right. \\
& \begin{array}{ll}
\text { Is } X \text { continuous? } N_{0}
\end{array} \\
& Z \text { discrete } \quad X=\left\{\begin{array}{lll}
Y, & \text { with probability } p & \perp(X=1)=1 / 2 \\
Z, & \text { with probability } 1-p & X \text { is mixed }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
F_{X}(x) & =p \cdot P(Y \leq x)+(1-p) P(z \leq x) \\
& =p F_{Y}(x)+(1-p) F_{Z}(x) \\
E[x] & =p E[Y]+(1-p) E[z]
\end{aligned}
$$

Mixed distributions

$X=\left\{\begin{array}{ll}\text { uniform on }[0,2], & \text { with probability } 1 / 2 \\ 1, & \text { with probability } 1 / 2\end{array} A_{2}\right.$

$$
F_{X}(x)=\mathbf{P}\left(A_{1}\right) F_{X \mid A_{1}}(x)+\mathbf{P}\left(A_{2}\right) F_{X \mid A_{2}}(x)
$$

Jointly continuous r.v.'s and joint PDFs

$$
\begin{array}{ll}
p_{X}(x) & f_{X}(x) \\
p_{X, Y}(x, y) & f_{X, Y}(x, y)
\end{array}
$$

$$
\begin{array}{lr}
p_{X, Y}(x, y)=\mathbf{P}(X=x \text { and } Y=y) \geq 0 & f_{X, Y}(x, y) \geq 0 \\
\mathbf{P}((X, Y) \in B)=\sum_{(x, y) \in B} p_{X, Y}(x, y) & \mathbf{P}((X, Y) \in B)=\iint_{(x, y) \in B} f_{X, Y}(x, y) d x d y
\end{array}
$$

Definition: Two random variables are jointly continuous if they can be described by a joint PDF

Visualizing a joint PDF

On joint PDF

$$
\begin{aligned}
& \mathbf{P}((X, Y) \in B)=\iint_{(x, y) \in B} f_{X, Y}(x, y) d x d y \\
& \mathbf{P}(a \leq X \leq b, c \leq Y \leq d)=\int_{c}^{d} \int_{a}^{b} f_{X, Y}(x, y) d x d y
\end{aligned}
$$

$$
\mathbf{P}(a \leq X \leq a+\delta, c \leq Y \leq c+\delta) \approx f_{X, Y}(a, c) \cdot \delta^{2}
$$

$$
Y=X
$$

$f_{X, Y}(x, y)$: probability per unit area

$$
\operatorname{area}(B)=0 \Rightarrow \mathrm{P}((X, Y) \in B)=0
$$

From the joint to the marginals

$$
\begin{aligned}
& p_{X}(x)=\sum_{y} p_{X, Y}(x, y) \\
& f_{X}(x)=\int^{\bullet} f_{X, Y}(x, y) d y \\
& p_{Y}(y)=\sum_{x} p_{X, Y}(x, y) \\
& f_{Y}(y)=\int f_{X, Y}(x, y) d x \\
& F_{x}(x)=P(x s x)=\int_{-\infty}^{x}\left[\int_{-\infty}^{\infty} f_{x, y}(s, t) d t\right] d s \\
& f_{x}(x)=\frac{d f_{x}}{d x}(x)=[b
\end{aligned}
$$

Uniform joint PDF on a set S
$f_{X, Y}(x, y)= \begin{cases}\frac{1}{\operatorname{area} \text { of } S}, & \text { if }(x, y) \in S, \\ 0, & \text { otherwise } .\end{cases}$
$P(A)$

$$
f_{x, 4}=\frac{1}{4}
$$

More than two random variables

$$
p_{X, Y, Z}(x, y, z)
$$

$$
f_{X, Y, Z}(x, y, z)
$$

$$
\sum_{x} \sum_{y} \sum_{z} p_{X, Y, Z}(x, y, z)=1
$$

$$
p_{X}(x)=\sum_{y} \sum_{z} p_{X, Y, Z}(x, y, z)
$$

$$
p_{X, Y}(x, y)=\sum_{z} p_{X, Y, Z}(x, y, z)
$$

Functions of multiple random variables
$Z=g(X, Y)$
Expected value rule:

$$
\mathbf{E}[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y) \quad \mathbf{E}[g(X, Y)]=\iint g(x, y) f_{X, Y}(x, y) d x d y
$$

Linearity of expectations

$$
\begin{aligned}
& \mathbf{E}[a X+b]=a \mathbf{E}[X]+b \\
& \mathbf{E}[X+Y]=\mathbf{E}[X]+\mathbf{E}[Y]
\end{aligned}
$$

$$
\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbf{E}\left[X_{1}\right]+\cdots+\mathbf{E}\left[X_{n}\right]
$$

The joint CDF

$$
\begin{aligned}
& F_{X}(x)=\mathrm{P}(X \leq x)=\int_{-\infty}^{x} f_{X}(t) d t \\
& F_{X, Y}(x, y)=\mathrm{P}(X \leq x, Y \leq y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f_{X, Y}(x)=\frac{d F_{X}}{d x}(x) \\
& f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}}{\partial x \partial y}(x, y) \\
& F_{X, Y}(x, y)=x y \\
& f_{X, Y}(x, y)=1
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Introduction to Probability

John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

