2. Measurement of Reactor Period and Reactivity

Shim, Hyung Jin

Nuclear Engineering Department, Seoul National University

Inhour Equation

Point Kinetics Equation

- The reactor kinetics equations based on one-point reactor approximation with one-energy-group theory are as follows:

$$
\begin{align*}
& \frac{d n(t)}{d t}=\frac{\rho-\beta_{e f f}}{\Lambda} n(t)+\sum_{i=1}^{6} \lambda_{i} C_{i}(t) \tag{1a}\\
& \frac{d C_{i}(t)}{d t}=\frac{\beta_{i, e f f}}{\Lambda} n(t)-\lambda_{i} C_{i}(t) \quad(i=1,2, \cdots, 6), \tag{16}
\end{align*}
$$

where $n(t)=$ neutron density or total neutron population,
$C_{i}(t)=i$-th group delayed neutron precursor density,
$\lambda_{i}=$ decay constant of the i-th group delayed neutron precursor,
$\Lambda=$ prompt neutron generation time, which is the prompt neutron lifetime l divided by $k_{e f f}$,
$\beta_{e f f}=$ effective delayed neutron fraction
$\beta_{i, \text { eff }}=$ effective delayed neutron fraction of i-th delayed neutron precursor group

Inhour Equation

- All of the coefficients in Eq. (1) are physical constants, in practice, except the reactivity, which can be changed by variation of a operation parameter.
- In the case where reactivity does not vary, the system is a "constant coefficient" differential equation system, and its solution can be found by merely seeking exponential solutions of the form

$$
\begin{align*}
& n(t)=a \cdot \exp (\omega t), \tag{2}\\
& C_{i}(t)=b_{i} \cdot \exp (\omega t)(i=1,2, \cdots, 6),
\end{align*}
$$

where ω, a, and b_{i} are constants.

- Insertion of Eq. (2) into Eq. (1) gives

$$
\begin{align*}
& \omega a \exp (\omega t)=\frac{\rho-\beta_{e f f}}{\Lambda} a \exp (\omega t)+\sum_{i=1}^{6} \lambda_{i} b_{i} \exp (\omega t), \tag{3a}\\
& \omega b_{i} \exp (\omega t)=\frac{\beta_{i, e f f}}{\Lambda} a \exp (\omega t)-\lambda_{i} b_{i} \exp (\omega t) \quad(i=1,2, \cdots, 6) \tag{3b}
\end{align*}
$$

Inhour Equation (Contd.)

- By substituting b_{i} derived from Eq. (3b) into Eq. (3a), we can obtain a characteristic equation as

$$
\begin{equation*}
\rho=\omega\left[\Lambda_{\text {eff }}+\sum_{i=1}^{6} \frac{\beta_{i, e f f}}{\lambda_{i}+\omega}\right] \tag{4a}
\end{equation*}
$$

- Because $\Lambda_{e f f}=l / k_{e f f}$ where l denote the neutron lifetime is Eq. (4a) can be expressed as

$$
\begin{align*}
& \rho=\omega\left[-l\left(1-\frac{1}{k_{e f f}}\right)+l+\sum_{i=1}^{6} \frac{\beta_{i, e f f}}{\lambda_{i}+\omega}\right] \\
& \Rightarrow \rho=\frac{\omega l}{\omega l+1}+\frac{\omega}{\omega l+1} \sum_{i=1}^{6} \frac{\beta_{i, e f f}}{\lambda_{i}+\omega} \tag{4b}
\end{align*}
$$

- Eq. (4) is called the "inhour equation" because it gives a quantity that can be expressed in hour ${ }^{-1}$ (inverse hour).

Relation betw. Reactivity and Reactor Period

- When a step-wise reactivity change from critical state happen as ρ, the neutron level $n(t)$ after the change of reactivity can be expressed as a summation of exponential functions as follows:

$$
\begin{equation*}
n(t)=\sum_{j=1}^{7} A_{j} \exp \left(\omega_{j} t\right) \tag{5}
\end{equation*}
$$

where ω_{j} should satisfy Eq. (4).

Relation betw. Reactivity and Reactor Period (Contd.)

- When ω_{1} is the largest value among all the seven ω_{j}, from the figure of $<$ Relation between reactivity ρ and $\omega>$, one can see that only ω_{1} is positive when $\rho>0$ and every ω_{j} is negative when $\rho<0$.
- Then, one can imagine that the time-dependent behavior of neutron population due to the reactivity change from the critical state will follow the function of $\exp \left(\omega_{1} t\right)$ after contributions of the other components decay out as

$$
\begin{equation*}
n(t) \cong A_{1} \exp \left(\omega_{1} t\right) \quad(t \gg 0) \tag{6}
\end{equation*}
$$

- Here, the inverse of ω_{1}, T, is defined as the stable reactor period (or, merely, the period):

$$
\begin{equation*}
T \equiv \frac{1}{\omega_{1}} \tag{7}
\end{equation*}
$$

- Because ω_{1} should satisfy Eq. (4b), replacing of ω by $1 / \mathrm{T}$ in Eq. (4b) gives

$$
\begin{align*}
& \rho=\frac{(1 / T) l}{(1 / T) l+1}+\frac{(1 / T)}{(1 / T) l+1} \sum_{i=1}^{6} \frac{\beta_{i, e f f}}{\lambda_{i}+(1 / T)} \\
& \Rightarrow \rho=\frac{l}{l+T}+\frac{T}{l+T} \sum_{i=1}^{6} \frac{\beta_{i, e f f}}{\lambda_{i} T+1} \tag{8}
\end{align*}
$$

Period Measurement

Experimental Procedure

1) Make a reactor critical at a low power level and stay more than 2 minutes.
2) Prepare stop watches $\&$ record sheets.
3) Read and write an initial counts from your detector choice.
4) Move up coarse CR by 1 cm in one push action and read and write detector counts at every 10 seconds during at least 200 seconds.
5) After reading, make the reactor critical at the new power level and stay more than 2 minutes.

Exchange the roles of each person and do the same procedures with different control rod (fine CR) or different reactivity insertions (rod move down) mode.

Experiment Worksheet
Experiment \#2 - Reactor Period Measurement

Group \#: \qquad Name: Experiment Condition					Time:	Date:
				Temp.	Analog Console	
Source Position					Digital Reactor	
Gamma	In/Out		/		Digital Water	
neutron			/		Digital Room	
Time	\#	Rod Position		Count Rate		
		CR	FR	Channel \#	Chamel \#	Channel \#
Initial S.S.						
0	0					
10 sec	1					
20 sec	2					
30 sec	3					
40 sec	4					
50 sec	5					
60 sec	6					
70 sec	7					
80 sec	8					
90 sec	9					
100 sec	10					
110 sec	11					
120 sec	12					
130 sec	13					
140 sec	14					
150 sec	15					
160 sec	16					
170 sec	17					
180 sec	18					
190 sec	19					
200 sec	20					

(from DDRCS) Reactivity

Video for Exp. \#2

Calculation of Period - (1) Least Square Fitting

(1) The Use of Least Square Fitting

$$
\begin{aligned}
& P(t)=P_{0} e^{\omega t}=P_{0} e^{t / T} \\
& \ln \frac{P(t)}{P_{0}}=\omega t \rightarrow f(t)=\omega t \quad T=\frac{1}{\omega} \\
& \text { tor Research \& }
\end{aligned}
$$

Myung Hyun Kim, Reactor Experiment, Reactor Research \&

Calculation of Period - (2) Two Point Calculation

(2) The Use of the Simple Math

$$
\begin{gathered}
P_{2}=P_{1} e^{\omega \Delta t}=P_{1} e^{\Delta t / T} \\
\omega=\frac{\ln \left(P_{2} / P_{1}\right)}{\Delta t} \\
T=\frac{1}{\omega}
\end{gathered}
$$

Arbitrary two points

Myung Hyun Kim, Reactor Experiment, Reactor Research \& Education Center, Kyung Hee University (2018).

Calculation of Period - (3) Statistical Approach

(3) Statistical Approach

Myung Hyun Kim, Reactor Experiment, Reactor Research \& Education Center, Kyung Hee University (2018).

(3) Statistical Approach (Contd.)

t	$\begin{gathered} P_{i} \\ (\text { Amp. }) \end{gathered}$	$\ln P_{i}$	$\ln \frac{P_{i}}{P_{i-1}}$	Δt_{i}	$\left(\frac{\Delta \ln P}{\Delta t}\right)_{i}$	$\Delta \chi_{i}$	$\left(\Delta \chi_{i}\right)^{2}$
0	2.8×10^{-11}	-24.29882	0	0			
10	3.7×10^{-11}	-24.02010	0.27872	10	10.027872	0.014936	2.231×10^{-4}
20	4.3×10^{-11}	-23.86982	0.15028	10	$\begin{aligned} & 1 \\ & 10.015028 \end{aligned}$	0.002092	4.376×10^{-6}
: $:$ $:$: $:$ $:$: $:$ $:$	$:$ $:$ $:$: $:$ $:$: $:$ $:$: $:$ $:$
150					$\begin{array}{\|l\|} \hline 1 \\ \hline \end{array}$		
		$\Delta \ln \mathrm{P}=0.12936$			Average	$(\Delta \mathrm{Xi})^{2}=2.89 \times 10^{-4}$	

$$
\bar{\omega}=\overline{\left(\frac{\Delta \ln P}{\Delta t}\right) \quad \Delta \chi_{i}=\omega_{i}-\bar{\omega}, ~}
$$

Myung Hyun Kim, Reactor Experiment, Reactor Research \& Education Center, Kyung Hee University (2018).

Example of Measurements

Example of Experimental Results

- Control rod 1 cm in:

- Control rod 1 cm out :

Discussion Points

1. What is the most reliable method for period measurement among three based on your experience?
2. If you want to apply for the nuclear power plant, which method will be adaptable to a real world?
3. Did you find any differences from different detectors in use?
4. Did you find the expected results from different experimental runs done by other groups?
