2. Measurement of Reactor Period and Reactivity

Shim, Hyung Jin

Nuclear Engineering Department, Seoul National University

Inhour Equation

2

Point Kinetics Equation

 The reactor kinetics equations based on one-point reactor approximation with oneenergy-group theory are as follows:

where n(t) = neutron density or total neutron population,

- $C_i(t) = i$ -th group delayed neutron precursor density,
- λ_i = decay constant of the *i*-th group delayed neutron precursor,
- Λ = prompt neutron generation time, which is the prompt neutron lifetime *l* divided by k_{eff} ,
- β_{eff} = effective delayed neutron fraction
- $\beta_{i,eff}$ = effective delayed neutron fraction of *i*-th delayed neutron precursor group

Inhour Equation

- All of the coefficients in Eq. (1) are physical constants, in practice, except the reactivity, which can be changed by variation of a operation parameter.
- In the case where reactivity does not vary, the system is a "constant coefficient" differential equation system, and its solution can be found by merely seeking exponential solutions of the form

where ω , a, and b_i are constants.

• Insertion of Eq. (2) into Eq. (1) gives

$$\omega a \exp(\omega t) = \frac{\rho - \beta_{eff}}{\Lambda} a \exp(\omega t) + \sum_{i=1}^{6} \lambda_i b_i \exp(\omega t), \qquad (3a)$$

$$\omega b_i \exp(\omega t) = \frac{\beta_{i,eff}}{\Lambda} a \exp(\omega t) - \lambda_i b_i \exp(\omega t) \quad (i = 1, 2, \dots, 6).$$
(3b)

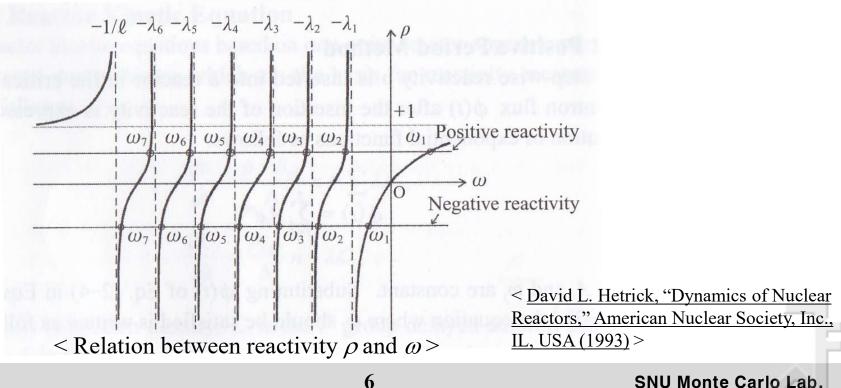
Inhour Equation (Contd.)

• By substituting b_i derived from Eq. (3b) into Eq. (3a), we can obtain a characteristic equation as

$$\rho = \omega \left[\Lambda_{eff} + \sum_{i=1}^{6} \frac{\beta_{i,eff}}{\lambda_i + \omega} \right]$$
(4a)

• Because $\Lambda_{eff} = l/k_{eff}$ where *l* denote the neutron lifetime is Eq. (4a) can be expressed as

$$\rho = \omega \left[-l \left(1 - \frac{1}{k_{eff}} \right) + l + \sum_{i=1}^{6} \frac{\beta_{i,eff}}{\lambda_i + \omega} \right]$$
$$\Rightarrow \rho = \frac{\omega l}{\omega l + 1} + \frac{\omega}{\omega l + 1} \sum_{i=1}^{6} \frac{\beta_{i,eff}}{\lambda_i + \omega}$$
(4b)


• Eq. (4) is called the "inhour equation" because it gives a quantity that can be expressed in hour⁻¹ (inverse hour).

Relation betw. Reactivity and Reactor Period

When a step-wise reactivity change from critical state happen as ρ , the neutron level n(t) after the change of reactivity can be expressed as a summation of exponential functions as follows:

$$n(t) = \sum_{j=1}^{7} A_j \exp(\omega_j t)$$
 (5)

where ω_i should satisfy Eq. (4).

Relation betw. Reactivity and Reactor Period (Contd.)

- When ω₁ is the largest value among all the seven ω_j, from the figure of <Relation between reactivity ρ and ω>, one can see that only ω₁ is positive when ρ>0 and every ω_j is negative when ρ<0.</p>
- Then, one can imagine that the time-dependent behavior of neutron population due to the reactivity change from the critical state will follow the function of $\exp(\omega_1 t)$ after contributions of the other components decay out as

$$n(t) \cong A_1 \exp(\omega_1 t) \quad (t \gg 0) \tag{6}$$

• Here, the inverse of ω_1 , *T*, is defined as the stable reactor period (or, merely, the period):

$$T \equiv \frac{1}{\omega_1} \tag{7}$$

• Because ω_1 should satisfy Eq. (4b), replacing of ω by 1/T in Eq. (4b) gives

Period Measurement

Experimental Procedure

- 1) Make a reactor critical at a low power level and stay more than 2 minutes.
- 2) Prepare stop watches & record sheets.
- 3) Read and write an initial counts from your detector choice.
- Move up coarse CR by 1cm in one push action and read and write detector counts at every 10 seconds during at least 200 seconds.
- 5) After reading, make the reactor critical at the new power level and stay more than 2 minutes.

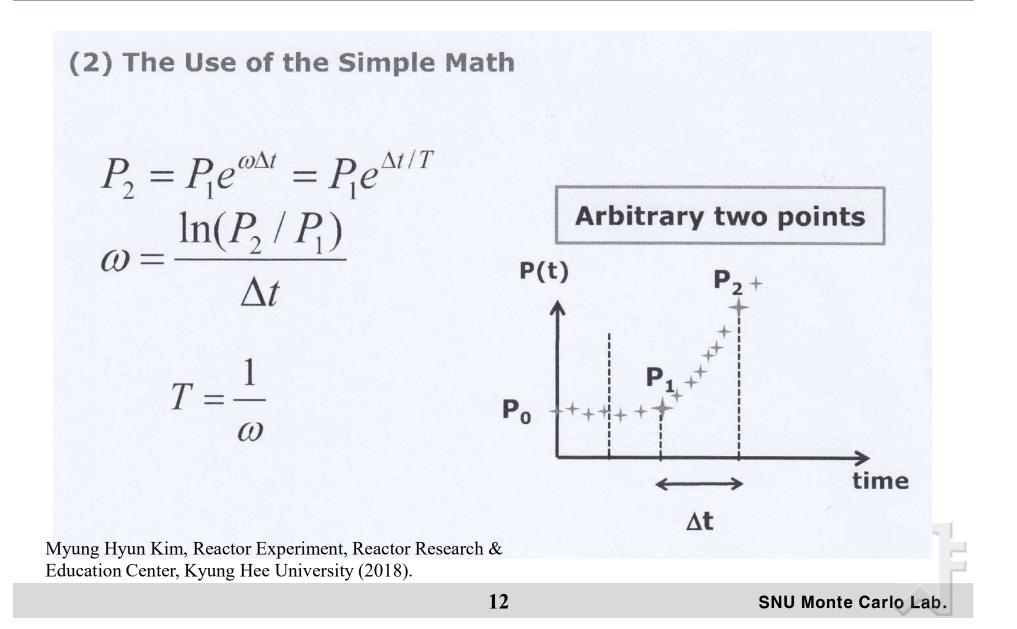
Exchange the roles of each person and do the same procedures with different control rod (fine CR) or different reactivity insertions (rod move down) mode.

Experiment Worksheet Experiment #2 - Reactor Period Measurement

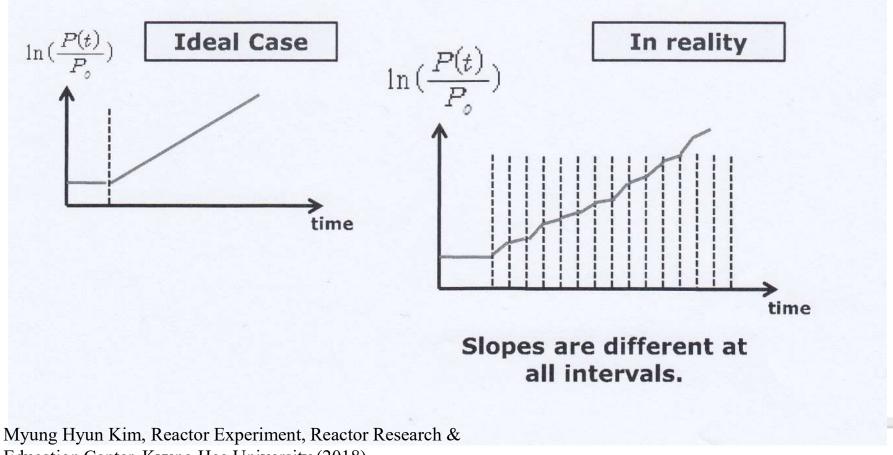
Group #: .	Name:			Time:	Date:			
Experim	ent Condition			Analog Console				
Source I	osition		-	Digital Reactor				
Gamma	In/Out	/	Temp.	Digital Water				
neutron	In/Out	/		Digital Room				


Time	#	Rod Position		Count Rate						
1 ime	#	CR	FR	Channel #	Channel #	Channel #				
Initial S	S.S.									
0	0									
10 sec	1									
20 sec	2									
30 sec	3									
40 sec	4									
50 sec	5									
60 sec	6									
70 sec	7									
80 sec	8									
90 sec	9									
100 sec	10									
110 sec	11					1.				
120 sec	12									
130 sec	13									
140 sec	14					THE REAL				
150 sec	15									
160 sec	16			3.4.5						
170 sec	17									
180 sec	18									
190 sec	19	- 2.9	31.11.53							
200 sec	20									

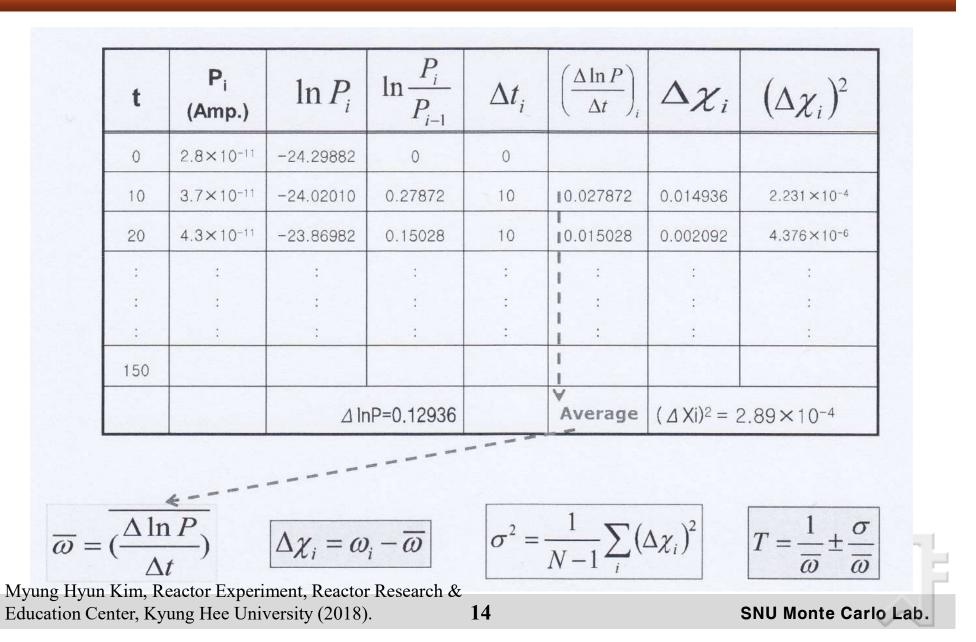
Video for Exp. #2


Calculation of Period – (1) Least Square Fitting

(1) The Use of Least Square Fitting

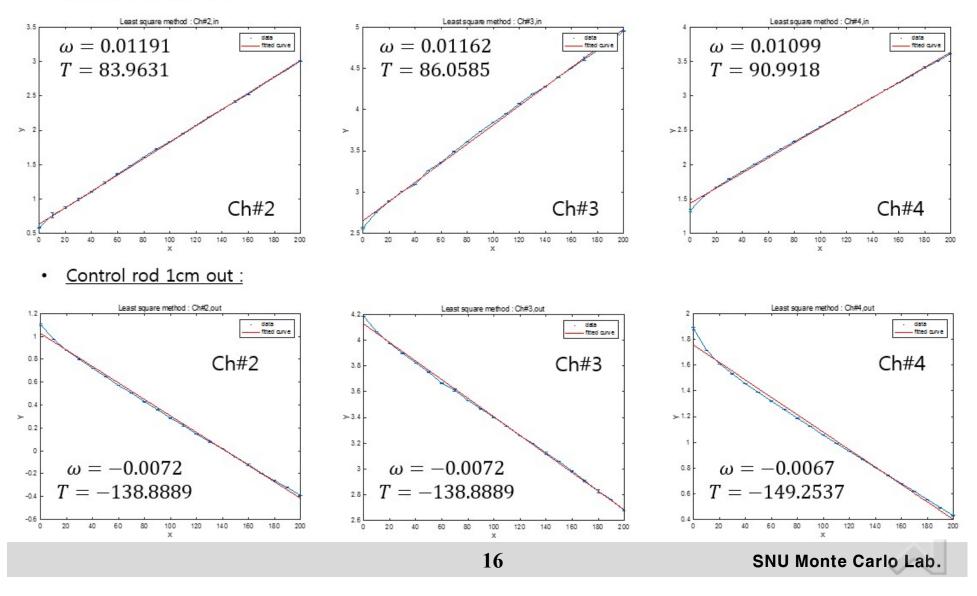

Education Center, Kyung Hee University (2018).

Calculation of Period – (2) Two Point Calculation


Calculation of Period – (3) Statistical Approach

Education Center, Kyung Hee University (2018).

(3) Statistical Approach (Contd.)



Example of Measurements

1. CR 1cm	상승			이재국	김진수	박태준	평균	재욱	구자룡	김경민	평균	박종현	박상진	박경찬	평균
Time	#	CR	FR	Ch#2	Ch#2	Ch#2		Ch#3 [%]	Ch#3	Ch#3		Ch#4	Ch#4	Ch#4	
Initial S.S.		19.5	7 15.64	4 1.4	1.34	1.38	1.373333	9.5	9.75	9.4	9.55	3.46	3.45	3.475	3.461667
	0	0 20.5	7 15.64	4 1.78	1.78	1.8	1.786667	12.9	13.2	. 12.9	13	3.86	3.74	3.76	3.786667
10 sec		1		2.2	2.2	2.04	2.146667	15.7	15.7	15.7	15.7	4.64	4.64	4.64	4.64
20 sec		2		2.4	2.35	2.41	2.386667	18.05	17.85	17.85	17.91667	5.3	5.3	5.3	5.3
30 sec		3		2.66	2.66	2.75	2.69	20.25	20.25	20.25	20.25	5.97	6	5.97	5.98
40 sec		4		3.03	2.968	3.03	3.009333	22	22	2 22	22	6.69	6.69	6.69	6.69
50 sec		5		3.4	3.408	3.5	3.436	26.1	26.1	26.1	26.1	7.49	7.46	7.46	7.47
60 sec		6		3.91	3.86	3.93	3.9	28.8	28.8	3 28.8	28.8	8.33	8.33	8.33	8.33
70 sec		7		4.41	4.415	4.41	4.411667	32.65	32.95	32.95	32.85	9.31	9.31	9.31	9.31
80 sec		8		5.01	5.01	5.01	5.01	37.1	37.1	. 37.1	37.1	10.37	10.3	10.37	10.34667
90 sec		9		5.65	5.65	5.59	5.63	41.85	42.05	41.85	41.91667	11.51	11.57	11.51	11.53
100 sec	1	0		6.23	6.23	6.27	6.243333	46.75	46.75	46.75	46.75	12.82	12.82	12.78	12.80667
110 sec	1			7.03	7.07				52			14.24	14.24	14.24	14.24
120 sec	1			7.94	7.94							15.87			
130 sec	1			8.96								17.6			
140 sec	1-			10			10.03567					19.63			
150 sec	1			11.1	11.15							22			21.93667
160 sec	1			12.5	12.44							24.23			
170 sec	1			14.2	14.2							27			
180 sec	1			16								30			
190 sec	1			17.9	17.88							33.34			
200 sec	2	0		20.3	20.18	20.3	20.26	141.35	141.35	5 141.83	141.51	37.13	37.13	37.13	37.13
			Period	Reactivity											
Reference Data	from Digita	al Console	78 sec	0.105 \$											
	from DDR	CS		66.2 pcm											

Example of Experimental Results

<u>Control rod 1cm in :</u>

Discussion Points

- 1. What is the most reliable method for period measurement among three based on your experience?
- 2. If you want to apply for the nuclear power plant, which method will be adaptable to a real world?
- 3. Did you find any differences from different detectors in use?
- 4. Did you find the expected results from different experimental runs done by other groups?