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Abstract

Building segmentation in large-scale aerial images is
challenging, especially for small buildings in dense and
cluttered urban environments. Complex building structures
with highly varied geometric footprints pose an additional
challenge for the building segmentation task in satellite im-
agery. In this work, we propose to tackle the issue of de-
tecting and segmenting small and complex-shaped build-
ings in Electro-Optical (EO) and SAR satellite imagery. A
novel architecture Deep Multi-scale Aware Overcomplete
Network (DeepMAO), is proposed that comprises an over-
complete branch that focuses on fine structural features and
an undercomplete (U-Net) branch tasked to focus on coarse,
semantic-rich features. Additionally, a novel self-regulating
augmentation strategy, “Loss-Mix,” is proposed to increase
pixel representation of misclassified pixels. DeepMAO is
simple and efficient in accurately identifying small and ge-
ometrically complex buildings. Experimental results on
SpaceNet 6 dataset, on both EO and SAR modalities, and
the INRIA dataset show that DeepMAO achieves state-of-
the-art building segmentation performance, including small
and complex-shaped buildings with a negligible increase in
the parameter count. In addition, the presence of the over-
complete branch in DeepMAO helps in handling the speckle
noise present in the SAR image modality.

1. Introduction
The availability of high-resolution satellite images from

different modalities, such as Electro-Optical (EO) and Syn-
thetic Aperture Radar (SAR), has made it easy to monitor
urban environments on a large scale. Building segmenta-
tion is important in monitoring changes in the urban land-
scape, as buildings are critical components in these regions.
It aims to classify the area occupied by the building in the
image by pixel-level classification. Building information

†Equal contribution of authors.

is used in many applications like change monitoring, map
updating, disaster response [1], population density estima-
tion [23], humanitarian aid, and 3-D modeling [4]. In these
applications, high-resolution SAR imaging is highly bene-
ficial, as it provides consistent information over EO imag-
ing due to all-weather operational capabilities. However,
SAR sensors have certain drawbacks such as speckle noise
and less semantic information, which makes interpretation
challenging for computer vision systems as well as human
interpreters [20]. Automated building detection still faces
significant challenges due to the diversity of buildings in
terms of shapes and sizes, the complex background environ-
ment, and the complexities introduced due to SAR sensors.

Advances in deep learning-based segmentation models
have largely improved building segmentation performance
in high-resolution remote-sensing images. Semantic seg-
mentation architectures such as U-Net [19], DeepLabv3+
[5], FPN [12], PSPNet [31] have achieved competitive
results on datasets like MS-COCO [13], Cityscapes [6].
However, the small objects defined in these benchmark-
ing datasets differ from those defined for remote sensing
datasets. The small buildings defined in SpaceNet 6 dataset
[21] are smaller than pixel area of 225 in the full image size
of 900 x 900 pixels. Fig. 1 shows the predictions of build-
ings of various sizes made by U-Net and DeepMAO. U-Net
falls short in recognizing buildings of different shapes and
sizes, especially in dense and cluttered environments. The
aforementioned standard segmentation models exhibit poor
building segmentation results for buildings with small-area
footprints due to low pixel representation, even in a super-
vised setting. Small buildings in close proximity to larger
buildings are not detected accurately, leading to a huge vari-
ation in performance between buildings with smaller and
larger footprints.

Convolutional encoder-decoder architectures [3], [5],
[19] are widely used to extract semantic information from
remote-sensing images [28]. The input images undergo
compression in the encoder and are subsequently decom-
pressed in the decoder. The focus of these networks is lim-
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Figure 1. Building predictions by U-Net and the proposed model DeepMAO. The predictions made by U-Net have coarse boundaries, and
inaccurate small buildings. Proposed model identifies small buildings and poses stricter boundaries. In (b), red denotes building footprints,
yellow denotes the boundary pixels.

ited to relatively large objects, as only the shallow layers
of the encoders are responsible for the low-level features.
As the receptive field increases in size over the depth of
the encoder blocks, the network focuses more on high-level
features. However, smaller receptive fields are required for
making fine-grained predictions in a dense and cluttered en-
vironment and identifying small buildings accurately.

To address the structural limitation of under-complete
networks, over-complete architectures were proposed to de-
tect small anatomical structures in the medical imaging
community [26]. In these networks, the input is projected
to higher dimensions (in a spatial sense) in the intermediate
layers to restrict the size of the receptive field deeper into
the network. This constriction forces the network to focus
on smaller, intricate features of the input images. The use of
these architectures in remote sensing applications has been
limited due to their inherent drawbacks, such as the need for
greater computing power, GPU memory, and longer train-
ing times, which pose significant challenges. As a result,
they have been under-explored in this domain.

In this paper, we propose Deep Multi-scale Aware Over-
complete network (DeepMAO) for accurately detecting
small and complex shaped buildings in dense and cluttered
urban environments in the EO and SAR image modality.
It contains two branches, where one is an overcomplete
branch to extract finer details, and the other is an under-
complete branch, i.e., U-Net. The overall architecture is
made to be very simple to adjust to the computational over-
load of the upsampling layers. The effectiveness of the pro-
posed method is shown in Fig. 1, where the building pre-
dictions are superior. Additionally, to increase the represen-
tation of small and complex geometric shaped buildings, a
new self-regulative training strategy Loss-Mix is adopted to
further aid DeepMAO’s low-level feature extraction capa-
bilities. The main contributions of this paper are as follows:

1. A Deep Multi-scale Aware Overcomplete Network
(DeepMAO) is proposed, which comprises of an over-
complete branch and an undercomplete branch (U-
Net). Its simple structure focuses on efficiently learn-
ing fine-grained information along with coarse infor-

mation for building segmentation.

2. A new training strategy called Loss-Mix is proposed
that uses self-regulative cut-mix augmentation to in-
crease the pixel representation of harder patches. This
strategy aids the training process of standard building
segmentation models and DeepMAO, for optical im-
ages.

3. DeepMAO outperforms standard building segmen-
tation models across two public building detection
datasets - SpaceNet 6 [21] and INRIA [17]. It achieves
state-of-the-art results for building detection includ-
ing small buildings on EO and SAR modalities on
SpaceNet 6 dataset.

2. Related work
Building segmentation networks: FCN [15], U-Net

[19] and their variants have been used for building extrac-
tion for both EO and SAR sensors [29], [33]. A fully con-
volutional network (FCN) extracts building footprints based
on a skip connection-based architecture to fuse low-level
and high-level semantic information [2]. U-Net [19] has
feature fusion on an equal level of encoder and decoder to
learn the high-level features of the buildings. DeepLabv3+
[5] contains an atrous spatial pyramid pooling block to cap-
ture the contextual information and is used to extract build-
ings of different scales. In [8], a modified auto-encoder
structure using a selective spatial pyramid network (SSPD)
was proposed for multiscale context fusion to extract build-
ings in SAR images. CVCMFF-Net [4] was proposed for
building segmentation of high-resolution complex-valued
SAR images. Furthermore, a fully complex-valued segmen-
tation model FC2MFN [22] was proposed, which showed
empirically that complex-valued models perform better than
their real-valued counterparts for complex-valued SAR im-
ages. In [32], the authors first showed the performance gaps
of deep learning models between EO and SAR modalities,
and a drop in performance for SAR images was reported.
A dynamic network framework was proposed to learn the
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Figure 2. The proposed architecture for Deep Multi-scale Aware Overcomplete Network (DeepMAO). The input image is fed to the U-Net
model with EfficientNet B3 as the encoder. The features of the first U-Net encoder block is passed to the overcomplete branch. The final
segmentation mask is attained by adding the outputs of overcomplete and under-complete branches and passed through a segmentation
head. Feature map visualisations of the four overcomplete layers reveal that the each successive layer focuses on finer features.

Figure 3. Feature maps collected from DeepMAO trained on
Spacenet6 dataset. The top row corresponds to feature maps col-
lected from U-Net, while the bottom row corresponds to the fea-
ture maps collected from the layers of the overcomplete branch.

metasensory representation from both the sensors and test
on SAR images. In a two-step training strategy, a knowl-
edge distillation framework known as DisOptNet [9] was
proposed to distill the high-level semantic knowledge from
optical images to SAR images. The trained model was

tested only on SAR images for building detection.
Overcomplete representations: These representations
were explored in signal processing to represent the input
signal samples with more number basis functions. It was
shown that not only are the overcomplete bases better ap-
proximators of the underlying distribution of data but are
also more robust to noise [26]. Models like denoising au-
toencoder with overcomplete layers performed better as fea-
ture detectors [27]. Overcomplete convolutional networks
have been used for SAR despeckling [18]. The finer de-
tails captured by the overcomplete branch are useful for
removing the fine speckles and a Multi-Scale Feature Fu-
sion block is proposed to transfer the low-level features
of the overcomplete branch to the under-complete branch.
A Fine Context-aware Shadow Detection Network (FCSD-
Net) [25] was proposed to detect unclear and blurry shadow
regions by using upsampling layers to reduce the receptive
field as the network propagates deeper.

3. Methodology
In this section, the proposed DeepMAO is explained in

detail along with the self-regulative learning scheme, Loss-
Mix.
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3.1. Deep Multi-scale Aware Overcomplete network

To accurately identify buildings, especially small and
complex shaped buildings, a Multi-scale Aware Overcom-
plete network (DeepMAO) is proposed, which is an over-
complete branch augmented to U-Net. DeepMAO architec-
ture is illustrated in Fig. 2. In DeepMAO, a parallel over-
complete branch is added to the under-complete branch, i.e.,
U-Net, to exploit the low-level features while the U-Net fo-
cuses on the higher-level features, as shown in the feature
maps in Fig. 3. The input image I is fed to the U-Net,
with EfficientNet B3 [24] its encoder. For the task of se-
mantic segmentation, in an encoder-decoder structure, the
receptive field enlarges in an under-complete network as the
network propagates deeper [26]. This is mainly due to the
pooling layers. This increase in the receptive field causes
the network to focus more on the global features of the in-
put image, as shown in the feature visualisations in Fig. 3.
The penultimate layers of the U-Net encoder focus on larger
features to gain high-level semantic context.

From the output of the first encoder block of U-Net, fea-
tures F1 are passed to the overcomplete branch, as shown
in Fig. 2. The proposed overcomplete branch has four bi-
linear interpolate upsampling layers. The scaling factor of
the first three layers is 1.2, and the last upsampling layer is
set to 1.15 to constrain the receptive field after each layer,
allowing the overcomplete branch to not shift focus toward
semantic information, but instead focus on low-level fea-
tures. The ability of DeepMAO to focus on large-sized
buildings and relatively smaller buildings simultaneously
without a drop in performance in either makes it multi-
scale aware. The inputs to the last two upsampling layers
are passed through an atrous convolution layer, with a di-
lation rate and padding of 2. Contrary to the pooling lay-
ers, the upsampling layer projects feature maps to higher-
dimension space to constrict the receptive field and focus
more on the low-level features and finer details. The kernel
size and upsampling coefficient are selected considering the
computational overload due to upsampling layers. The out-
put feature maps of both branches are fused together by a
summation block. These fused features are passed through
a segmentation head of 1 × 1 convolution layers to generate
the final predictions.

3.2. Self-Regulative Learning scheme: Loss-Mix

CutMix [30] augmentation has been widely used to gen-
erate new images by cutting out random image patches and
pasting them onto one another, leading to an increase in
performance for supervised segmentation methods. To in-
crease the number of samples in training data corresponding
to small and complicated building segments, we propose a
self-regulative learning scheme [10] based on CutMix aug-
mentation termed Loss-Mix on the labeled data DL, which
is inspired from SP-CutMix [11].

Samples xi from DL are first fed to the segmentation
model fθ to obtain the predictions, l̃i = fθ (xi). These pre-
dictions l̃i and their corresponding labels li are divided into
H × W patches, and patch-wise loss scores LS are calcu-
lated. These scores are used for evaluating the easy and
difficult patches for the model to predict. The loss score for
the pth patch of the ith sample is defined as Lp

S(li, l̃i). It is
calculated by taking the L1 loss between the model predic-
tions and their corresponding ground-truth labels, given by
the following equation,

Lp
S(li, l̃i) =

∑
|ReLU(l̃i(p))− li(p)|1 (1)

A binary mask M ∈ {0, 1}H×W is generated, keeping M =
1 based on the patch with the maximum loss Lp

S(li, l̃i). The
augmented training samples x′

k and its label l′k are gener-
ated as follows:

x′
k = M ⊙ xi + (1− M)⊙ xj (2)
l′k = M ⊙ li + (1− M)⊙ lj (3)

where xj , lj are image and ground truth label patches cor-
responding to the maximum patch-wise loss Lp

S , and ⊙ is
element-wise multiplication operation. The sampling prob-
ability of misclassified pixels is increased due to the afore-
mentioned augmentation which provides loss-based super-
vision for small and complex shaped buildings.
Training Strategy: The model is trained using Lseg , which
is the summation of dice loss and focal loss and is defined
as :

Lseg(y, p) = LDice(y, p) + LFocalLoss(y, p), (4)

Lseg(y, p) = 1−
2
∑

i piyi∑
i yi +

∑
i pi

−
∑
i

αi(1− pi)
γ log(pi)

(5)

where yi, pi denote the pixel-wise ground truth and pre-
dicted probability values respectively, αi and γi are hyper-
parameters, where αi is generally in the range of [0,1] and
γi > 1. Unlike [11], the models in our training strategy are
trained for sufficient epochs before the proposed augmen-
tation is used. We call this strategy Loss-Mix as it is a se-
quential update in the augmentation by first training on sim-
ple augmentations like scaling and rotation, followed by the
proposed augmentation. This is done in interest of training
stability and so that once the model is sufficiently confident
of its predictions of medium and big-sized buildings, the
proposed augmentations focus only on the harder patches.
Also, SP-CutMix [11] uses a threshold for the confidence
score of the patches, while in Loss-Mix, the patch with the
maximum loss is considered. This makes Loss-Mix self-
regulating in nature. The supervision for harder patches is
not set manually but governed by the loss function. The ef-
fectiveness of the training strategy is shown in the ablation
studies for optical images.
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4. Experimental results

In this section, the qualitative and quantitative results
of DeepMAO are presented. Before proceeding with the
results, the details about the SpaceNet 6 [21] and INRIA
[17], [7] datasets are first described, followed by the evalu-
ation metrics and the implementation details. The building
segmentation performance of DeepMAO is evaluated with
state-of-the-art models like U-Net [19], DeepLab v3+ [5],
and FPN [12]. The backbones for all the networks are the
same, i.e., EfficientNet B3 [24] pretrained on ImageNet.

4.1. Dataset

All the experiments are conducted on three building de-
tection datasets, two from SpaceNet 6 and a third from the
INRIA dataset. In SpaceNet 6 dataset, EO and SAR imag-
ing modalities are used separately to evaluate the perfor-
mance of various models.
SpaceNet 6: SpaceNet 6 [21] (Multi-Sensor All-Weather
Mapping) is a large-scale dataset, covering 120 km2 area
of Rotterdam, The Netherlands, with over 48,000 buildings
footprints. The dataset includes high-resolution optical and
SAR images with a resolution of 0.5m with each tile of size
900 × 900 pixels. The dataset is split into training and test-
ing sets based on the officially released repository in order
to avoid data leakage*. There are about 2654 images in the
training set, and about 747 images in the validation set, for
both EO and SAR images. All four channels of SAR im-
ages are used.
INRIA: The INRIA Aerial Image Labeling Dataset [17],
[7] covers various cities like Austin, Chicago, Kitsap, Vi-
enna, and San Francisco. The spatial resolution of each im-
age is 5000 × 5000 pixels with a surface coverage of 1500
× 1500 m2. We split each image into 25 smaller images of
1000 × 1000 spatial resolution. Following previous inves-
tigations [14], the first five images of each city are selected
for validation, and the rest are selected for training. There
are 3875 training samples and 625 in the validation set. The
supervision is provided by labels which are pixel-wise bi-
nary masks.

4.2. Evaluation metrics

Four evaluation metrics are chosen to evaluate the mod-
els, namely precision, recall, F1 score, and Intersection over

*SpaceNet 6 winner’s code: https : / / github . com /
SpaceNetChallenge / SpaceNet _ SAR _ Buildings _
Solutions/tree/master/1-zbigniewwojna

Union (IoU), which are defined as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1-score =
2TP

2TP + FP + FN
(8)

IoU =
TP

TP + FP + FN
(9)

where TP, TN, FP, and FN are true positive, true negative,
false positive, and false negative respectively. With pixel-
wise classification, failing to detect smaller buildings does
not necessarily cause a significant decrement in the overall
F1 score or the other metrics. Hence, a threshold is intro-
duced for the evaluation metrics to identify the small build-
ings correctly. If the buildings are correctly identified with a
threshold greater than 0.5, they are counted as true positives,
else they are counted as false positives. The threshold is ap-
plied so that potential bias in the overall dice score resulting
from the presence of larger buildings is not prevalent. The
threshold is set for SpaceNet 6 dataset but not for the IN-
RIA dataset due to the nature of the ground truth labels of
the same.

4.3. Implementation details

We choose U-Net [19] with EfficientNet-B3 [24] back-
bone pre-trained on ImageNet as the under-complete model
architecture. All the models are trained using AdamW opti-
mizer [16] with weight decay of 10−2. The initial learning
rate is 2.0 x 10−4 with a stepwise decrement of 0.5 at epochs
80, 100, and 120. All models are trained for 150 epochs
with a batch size of 8. In the training phase, the optical im-
ages are randomly cropped into the spatial size of 512 x 512
pixels, while random scaling and 10o random rotation are
used as the augmentations. The same process is followed
for SAR images, with the only addition being random flips
being added as an augmentation. Loss-Mix is added after
half number of epochs. Loss-Mix is only applied to opti-
cal images and not SAR images. All the models are trained
using Lseg loss, i.e., summation of dice and focal loss. All
experiments are implemented using Pytorch deep learning
framework on Nvidia RTX Quadro 5000 GPU with 16GB
memory.

4.4. Results

Quantitative results: Table 1 shows the building seg-
mentation performance of DeepMAO with other methods
on the SpaceNet 6 optical images. Buildings with a pixel
area range of 40 to 225 are classified as small buildings,
as the performance of segmentation models for buildings
above the pixel area of 225 is more confident, as seen from
the F1 scores in Table 1. As the resolution of images is 0.5
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Method # Params F1 Score Precision Recall
F1 Score

(10 m2 <Area <56.25 m2)
F1 Score

(56.25 m2 <Area)
Overall F1 Score
(10 m2 <Area)

DeepLab (v3+) 11.6 M 15.78 62.17 43.80 52.41 37.67
FPN 12.47 M 30.45 74.93 56.35 64.61 49.96

U-Net 13.15 M 34.07 74.60 57.35 64.03 51.93
DeepMAO

(+Loss-Mix) 13.30 M 38.42 76.29 59.92 66.2 54.73

Table 1. Evaluation metrics (%) of building segmentation networks and DeepMAO on SpaceNet 6 dataset EO Images.

Method # Params F1 Score Precision Recall
F1 Score

(10 m2 <Area <56.25 m2)
F1 Score

(56.25 m2 <Area)
Overall F1 Score
(10 m2 <Area)

DeepLab (v3+) 11.6 M 10.33 41.5 29.12 45.28 21.46
FPN 12.47 M 11.29 42.05 29.75 45.18 22.18

U-Net 13.15 M 8.61 44.64 30.91 46.62 23.12
DeepMAO 13.30 M 9.99 45.46 31.86 47.53 23.96

Table 2. Evaluation metrics(%) of state of the art building segmentation models and DeepMAO on SpaceNet 6 SAR images.

Method Intersection over Union
DeepLab (v3+) 77.42

FPN 78.09
U-Net 78.86

DeepMAO
(+LossMix) 80.01

Table 3. Evaluation metrics (%) of building segmentation net-
works and DeepMAO on INRIA dataset (EO Images).

m × 0.5 m per pixel in the dataset, a building pixel area
range of 40 to 225 translates to an area range of 10 m2 to
56.25 m2. The F1 score is measured for buildings with three
different area settings, (1) buildings of a small area, i.e., 10
m2 to 56.25 m2, (2) buildings with more than 56.25 m2

area, and (3) all the buildings with an area greater than 10
m2. As seen in the table, the F1 score of DeepMAO has an
increase of 4.35% compared to U-Net and 7.97% compared
to FPN on small buildings.

This indicates the effectiveness of the overcomplete
branch in preserving the semantic knowledge of the small
buildings. The overall F1 score of DeepMAO exceeds U-
Net by 2.57% and FPN by 3.57%. This performance im-
provement comes from an increase of just 1.14% of the pa-
rameters of U-Net.

In Table 2, all the models have been evaluated on SAR
images from SpaceNet 6 without using the Loss-Mix train-
ing strategy. Although FPN performs better than DeepMAO
on small buildings, DeepMAO achieves the best overall
F1 score among all the compared methods proving that it
makes better building predictions for buildings of all sizes.

It achieves a better overall F1 score compared to FPN and
U-Net by 2.11% and 0.95%, respectively. This observation
is in concordance with [26], [18], who observed that over-
complete models can capture finer details and are more ro-
bust to noise. Table 3 shows the INRIA dataset’s evaluation
of DeepMAO and other networks. DeepMAO trained with
Loss-Mix achieves a better performance of 1.24 % com-
pared to U-Net and 1.92% compared to FPN.

As seen in Fig. 5, DeepMAO performs consistently bet-
ter than other models on SAR images, and converges early.
Fig. 4 shows that with an increase in the building footprint
size, the F1 score of all the models increases. Although
DeepMAO performs well on buildings with extremely small
area, its performance is greatly aided by the Loss-Mix train-
ing scheme. The regulative nature of identification of harder
patches from Loss-Mix helps DeepMAO generalize better.

Qualitative Results: The predictions of DeepMAO and
the best-performing models are visualized in Fig. 6 and Fig.
7. The predictions made by DeepMAO are closer to the
ground truth. As seen in the figures, the building predic-
tions by other models are inaccurate in dense and cluttered
urban environments. The building boundaries are blurry,
especially for smaller buildings. This is not the case with
DeepMAO, as the predictions for small and large complex-
shaped buildings are relatively more accurate and precise.

4.4.1 Ablation study

We perform several ablation studies to characterize the pro-
posed DeepMAO architecture and Loss-Mix on both EO
and SAR image modalities. The false positive rate when
employing overcomplete layers was observed as Deep-
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Figure 4. Performance comparison of overall F1 score vs
building footprint size on SpaceNet 6 optical images.

Figure 5. Performance curves of DeepMAO, FPN and U-Net
models on SpaceNet 6 SAR images. The F1 score is plotted
for all buildings with area more than 10 m2.

Method #Params F1 Score Precision Recall
F1 Score

(10 m2 <Area <56.25 m2)
F1 score

(56.25 m2<Area)
Overall F1 Score
(Area >10m2)

DeepLab (v3+) 11.6M 15.78 62.17 43.80 52.41 37.67
FPN 12.47M 30.45 74.93 56.35 64.61 49.96

FPN + Loss-Mix 12.47M 32.34 74.66 56.76 63.25 51.48
U-Net 13.15M 34.07 74.60 57.35 64.03 51.93

U-Net+Loss-Mix 13.15M 36.68 75.08 58.43 63.61 54.03
DeepMAO 13.30M 37.66 75.33 58.82 63.59 54.72
DeepMAO
+Loss-Mix 13.30M 38.42 76.29 59.92 66.20 54.73

Table 4. Ablation study of Loss-Mix strategy on DeepMAO and state-of-the-art models on SpaceNet 6 dataset - EO Images.

MAO’s focus shifted towards very fine features. Thereby,
rich semantic contextual information was lost due to the
constriction in the receptive field. Hence, atrous convolu-
tion blocks were introduced in the penultimate layers to ease
said constriction on the receptive field, enabling the network
to regain some vital semantic context. Before passing the
feature maps to the segmentation head, the outputs of the
two branches are added. Better fusion strategies of the two
branches may be employed to further enhance the results.

From Table 4, it can be seen that when the models are
trained with Loss-Mix on SpaceNet 6 EO images, there is
a clear increase in the segmentation performance across all
the metrics, particularly for buildings of smaller sizes. The
F1 score of DeepMAO trained with Loss-Mix is 4.35% bet-
ter than the simple U-Net and 1.74% better compared to
U-Net trained with Loss-Mix for small building segmenta-
tion. In the overall F1-score, it has an increase of 2.57%
compared to the simple U-Net and 1.49% better compared
to U-Net trained with Loss-Mix. The superiority of the pro-
posed vanilla DeepMAO can be seen as it performs better

than U-Net trained with Loss-Mix on small buildings by ap-
proximately 1% and 0.39% on the overall F1 score. Adding
Loss-Mix to DeepMAO further improves its performance.
A similar observation is also made on the INRIA dataset,
as shown in Table 5, where all the models are trained using
Loss-Mix. Loss-Mix is not employed for SAR images as a

Method Intersection over Union
DeepLab (v3+) 77.42

FPN 78.09
FPN + Loss-Mix 78.97

U-Net - BE 78.86
U-Net - BE + Loss-Mix 79.60

DeepMAO 79.31
DeepMAO + Loss-Mix 80.01

Table 5. Ablation study of the effectiveness of Loss-Mix strat-
egy on building segmentation networks on INRIA dataset (EO Im-
ages).

493



Figure 6. Selective crops of SAR input image has been used for visualization purposes. (a) SAR input image. (b) Respective ground truths.
(c) U-Net-BE prediction. (d) DeepMAO predictions. Green box indicates a case where DeepMAO performance is better than Unet-BE.
Blue box indicates a case wherein both models fail to detect a building.

Figure 7. Selective crops of EO predictions. First row consists of Spacenet 6 Challenge dataset. Second row consists of INRIA dataset. (a)
Input EO images. (b) Respective ground truth labels. (c) U-Net-BE predictions. (d) DeepMAO predictions.

minor drop in performance across all models was observed.

5. Conclusion

This work proposes a novel Deep Multi-scale Aware
Overcomplete network (DeepMAO) for building seg-
mentation tasks in satellite imagery for SAR and EO
modalities. Current state-of-the-art models showcase good
segmentation performance for either small or big buildings,
whereas DeepMAO delivers a considerable bump across
the board. The model contains two parallel branches, an
overcomplete branch and the other under-complete branch.
The proposed network focuses on high-level semantic

information as well as the smaller and finer structural
features by constricting the receptive field deeper into the
network. A self-regulative learning scheme termed Loss-
Mix is used, where harder patches are used to augment the
image and further enhance the segmentation performance.
Experimental results indicate that DeepMAO outperforms
other state-of-the-art building segmentation models on EO
and SAR images. It achieves a gain in overall F1 score of
1-2.5% on SpaceNet 6 and INRIA datasets, while more
accurately detecting buildings of smaller area.
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