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Abstract

In the context of general iterated function systems (IFSs), we introduce bi-
linear fractal interpolants as the fixed points of certain Read-Bajraktarević
operators. By exhibiting a generalized “taxi-cab” metric, we show that the
graph of a bilinear fractal interpolant is the attractor of an underlying con-
tractive bilinear IFS. We present an explicit formula for the box-counting
dimension of the graph of a bilinear fractal interpolant in the case of equally
spaced data points.
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Read-Bajraktarević operator, bilinear mapping, bilinear IFS, box counting
dimension
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1. Introduction

Bilinear filtering or bilinear interpolation is used in computer graphics to
compute intermediate values for a two-dimensional regular grid. One of the
main objectives is the smoothening of textures when they are enlarged or
reduced in size. In mathematical terms, the interpolation technique is based
on finding a function f(x, y) of the form f(x, y) = a+ bx+ cy + dxy, where
a, b, c, d ∈ R, that passes through prescribed data points.

As textures reveal, in general, a non-smooth or even fractal characteristic,
a description in terms of fractal geometric methods seems reasonable. To this
end, the classical bilinear approximation method is replaced by a bilinear
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fractal interpolation procedure. The latter allows for additional parameters,
such as the box dimension, that are related to the regularity and appearance
of an underlying texture pattern.

We introduce a class of fractal interpolants that are based on bilinear
functions of the above form. We do this by considering a more general class
of iterated function systems (IFSs) and by using a more general definition of
attractor of an IFS. These more comprehensive concepts are primarily based
on topological considerations. In this context, we extend and correct some
known results from [15] concerning fractal interpolation functions that are
fixed points of so-called Read-Bajraktarević operators. Theorem 4 relates the
fixed point in Theorem 3 to the attractor of an IFS and generalizes known
results to the case where the IFS is not contractive.

As a special example of the preceding theory we introduce bilinear fractal
interpolants and show that their graphs are the attractors of an underlying
contractive bilinear IFS. Such bilinear IFSs have been investigated in [5] in
connection with fractal homeomorphisms and address structures underlying
an IFS. Finally, we present an explicit formula for the box dimension of the
graph of a bilinear fractal interpolant in the case where the data points are
equally spaced.

2. General iterated function systems

The terminology here for iterated function system, attractor, and con-
tractive iterated function system is from [4]. Throughout this paper, (X, d)
denotes a complete metric space with metric d = dX.

Definition 1. Let N ∈ N := {1, 2, 3, . . .}. If fn : X → X, n = 1, 2, . . . , N,
are continuous mappings, then F = (X; f1, f2, ..., fN) is called an iterated
function system (IFS).

By slight abuse of terminology we use the same symbol F for the IFS,
the set of functions in the IFS, and for the following mappings. We define
F : 2X → 2X by

F(B) :=
⋃
f∈F

f(B)

for all B ∈ 2X, the set of subsets of X. Let H = H(X) be the set of nonempty
compact subsets of X. Since F (H) ⊂ H, we can also treat F as a mapping
F : H → H. When U ⊂ X is nonempty, we may write H(U) = H(X) ∩ 2U .
We denote by |F| the number of distinct mappings in F .
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Let dH denote the Hausdorff metric on H, defined in terms of dX. A
convenient definition (see for example [7, p.66]) is

dH(B,C) := inf{r > 0 : B ⊂ C + r, C ⊂ B + r},

for all B,C ∈ H. For S ⊂ X and r > 0, S+r denotes the set {y ∈ X : ∃x ∈ S
so that dX(x, y) < r}.

We say that a metric space X is locally compact to mean that if C ⊂ X
is compact and r is a positive real number then C + r is compact. Here, S
denotes the closure of a set S. (For an equivalent definition of local com-
pactness, see for instance [8, 3.3].)

The following information is foundational.

Theorem 1. (i) The metric space (H, dH) is complete.

(ii) If (X, dX) is compact then (H, dH) is compact.

(iii) If (X, dX) is locally compact then (H, dH) is locally compact.

(iv) If X is locally compact, or if each f ∈ F is uniformly continuous, then
F : H→ H is continuous.

(v) If f : X→X is a contraction mapping for each f ∈ F , then F : H→ H
is a contraction mapping.

Proof. (i) This is well-known. A short proof can be found in [7, p.67, Theo-
rem 2.4.4].

(ii) This is well-known; see for example [10]. Here is a short proof. Let
ε > 0 be given. Since X is compact we can find a finite set of points Xε ⊂ X
such that X = ∪x∈XεB (x, ε) where B (x, ε) ⊂ X denote the open ball with
center at x and radius ε. Let Hε := 2Xε , a finite set of points in H. It is
readily verified that H = ∪C∈HεB (C, ε) where now B (C, ε) ⊂ H denotes the
open ball with center at C ∈ H and radius ε, measured using the Hausdorff
metric. It follows that H is totally bounded. It follows that H is compact.

(iii) Let C ∈ H. Consider the set C + r. It belongs to H since X is locally
compact. Let ε > 0 be given. Since C + r is a compact subset of X we can find
a finite set of points Cε ⊂ C + r such that C + r⊂ ∪c∈CεB (c, ε). Let Cε :=
2Cε , a finite set of points in H. It is readily verified that C + r⊂ ∪c∈CcB (C, ε)
where now B (c, ε) ⊂ H denotes the open ball with center at c ∈ H and
radius ε, measured using the Haudorff metric. It follows that C + r is totally
bounded. It follows that C + r is compact.
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(iv) Let B ∈ H. We show that F : H→ H is continuous at B. We
restrict attention to the action of F on B + 1. If X is locally compact,
it follows that B + 1 is compact. It follows that each f ∈ F is uniformly
continuous on B + 1. It follows that if X is locally compact, or if each f ∈ F
is uniformly continuous, we can find δε > 0 such that dX(f(x), f(y)) < ε
whenever dX(x, y) < δε, for all x, y ∈ B + 1, for all f ∈ F . Let C ∈ H with
dH(B,C) < δε and let f ∈ F . We can suppose that δε < 1.

Let b′ ∈ f(B). Then there is b ∈ B such that f(b) = b′. Since dH(B,C) <
δε there is c ∈ C such that d(b, c) < δε. Since δε < 1 we have c ∈ B + 1. It
follows that d(f(b), f(c)) < ε. It follows that f(B) ⊂ f(C) + ε. By a similar
argument f(C) ⊂ f(B) + ε. Hence dH(f(B), f(C)) < ε.

(v) This is Hutchinson’s theorem, [11, p. 731], proved as follows. Ver-
ify that if λ ≥ 0 is a uniform Lipschitz constant for all f ∈ F , namely
dX(f(x), f(y)) ≤ λdX(x, y) for all f ∈ F , for all x, y ∈ X, then λ is also
a Lipschitz constant for F , namely dH(F(B),F(C)) ≤ λdH(B,C) for all
B,C ∈ H. If f : X→X is a contraction mapping for each f ∈ F , then we
can choose λ < 1. It follows that F : H→ H is a contraction mapping.

For B ⊂ X, let Fk(B) denote the k-fold composition of F , i.e., the union
of fi1 ◦ fi2 ◦ · · · ◦ fik(B) over all finite words i1i2 · · · ik of length k over the
alphabet {1, . . . , N}. Define F0(B) := B.

Definition 2. A nonempty compact set A ⊂ X is said to be an attractor
of the IFS F if

(i) F(A) = A and

(ii) there exists an open set U ⊂ X such that A ⊂ U and limk→∞Fk(B) =
A, for all B ∈ H(U), where the limit is with respect to the Hausdorff
metric.

The largest open set U such that (ii) is true is called the basin of attraction
(for the attractor A of the IFS F).

Note that if U1 and U2 satisfy condition (ii) in Definition 2 for the same
attractorA then so does U1∪U2. We also remark that the invariance condition
(i) is not needed; it follows from (ii) for B := A.

Example 1. An IFS F = (X; f1, f2, . . . , fN) is called contractive if each
f ∈ F is a contraction (with respect to the metric d), i.e., if there is a
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constant s ∈ [0, 1) such that d(f(x1), f(x2)) ≤ s d(x1, x2), for all x1, x2 ∈ X.
By item (v) in Theorem 1, the mapping F : H(X) → H(X) is then also
contractive on the complete metric space (H(X); dH) and thus possesses a
unique attractor A. In this case, the basin of attraction for A is X.

We will use the following observation [13, Proposition 3 (vii)], [7, Propo-
sition 2.5.6].

Lemma 1. Let {Bk}∞k=1 be a sequence of nonempty compact sets such that
Bk+1 ⊂ Bk, for all k. Then ∩k≥1Bk = limk→∞Bk where convergence is with
respect to the Haudorff metric.

Theorem 2. Let F be an IFS with attractor A and basin of attraction U. If
F : H(U)→ H(U) is continuous then

A =
⋂
K≥1

⋃
k≥K

Fk(B) for all B ⊂ U such that B ∈ H(U).

The quantity on the right-hand side here is sometimes called the topolog-
ical upper limit of the sequence

{
Fk(B)

}∞
k=1

.

Proof. Note that the proof can be carried out under the assumption that
B ∈ H(U). (It then follows from [12, Proposition 3(i)] that Theorem 2 is
true for all B ⊂ U such that B ∈ H(U).) Under this assumption and with

the fact that
⋃
k Fk(B) =

⋃
k Fk(B) (see, for instance, [8]) the statement

follows from Theorem 3.82 in [1].

We will also need the following observation.

Lemma 2. Let X be locally compact. Let F = (X; f1, f2, ..., fN) be an IFS
with attractor A and basin of attraction U . For any given ε > 0 there is an
integer L such that for each x ∈ A+ ε there is an integer l ≤ L such that

dH(A,F l({x})) < ε.

Proof. For each x ∈ A+ ε there is an integer l(x, ε) so that dH(A,F l(x,ε)({x})) <
ε/2.

Since X is locally compact it follows that F l(x,ε) : H→ H is continuous.
Since F l(x,ε) : H→ H is continuous there is an open neighborhood N({x})
(in H) of {x} such that dH(A,F l(x,ε)(Y )) < ε for all Y ∈ N({x}). It follows,
in particular, that there is an open neighborhood N(x) (in X) of x such that
dH(A,F l(x,ε)({y})) < ε for all y ∈ N(x). Also since X is locally compact,
there is a finite set of points {x1, x2, ..., xq} such that A+ ε ⊂ ∪qi=1N(xi).
Choose L := maxi l(xi, ε).
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3. Fractal interpolants as fixed points of operators

Let {(Xj, Yj) : j = 0, 1, ..., N} denote the cartesian coordinates of a finite
set of points in the Euclidean plane, with

X0 < X1 < ... < XN .

Let I denote the closed interval [X0, XN ]. For n = 1, 2, ..., N , let ln : I →
[Xn−1, Xn] be a continuous bijection. Let L : I → I be such that

L(x) := l−1
n (x) for x ∈ [Xn−1, Xn)

for n = 1, 2, ..., N (with the tacit understanding that for n = N the interval
is [XN−1, XN ]). Let S : I → R be bounded and piecewise continuous, where
the only possible discontinuities are finite jumps occuring at the points in
{X1, X2, ..., XN−1}. Let

s := max{|S(x)| : x ∈ I}.

Denote by C = C(I) the set of continuous functions f : I → R. It is
well-known that (C, d∞) is a complete metric space, where

d∞(f, g) = max{|f(x)− g(x)| : x ∈ I}.

Let

C∗ := {f ∈ C : f(X0) = Y0, f(XN) = YN},
C∗∗ := {f ∈ C : f(Xj) = Yj for j = 0, 1, ..., N}.

Note that C∗ and C∗∗ are closed subspaces of C with C∗∗ ⊂ C∗ ⊂ C. We
say that each of the functions in C∗∗ interpolates the data {(Xj, Yj) : j =
0, 1, . . . , N}.

Let b ∈ C∗ and h ∈ C∗∗. Define T : C∗ → C∗∗ by

Tg := h+ S · (g ◦ L− b ◦ L). (3.1)

T is a form of Read-Bajraktarević operator as defined in [15]. The following
result is a corrected version of [15, Theorem 5.1, p. 136]. See also [11,
Theorem 3, p. 731].
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Theorem 3. The mapping T : C∗ → C∗∗ obeys

d∞(Tg1, T g2) ≤ s d∞(g1, g2)

for all g1, g2 ∈ C∗. In particular, if s < 1 then T is a contraction and it
possesses a unique fixed point f ∈ C∗∗.

Proof. The operator T is well-defined. Indeed, for i = 1, . . . , N − 1,

Tg(Xi−) = h(Xi) = Tg(Xi+).

To prove contractivity in the Chebyshev norm ‖ · ‖∞, observe that

d∞(Tg1, T g2) = max{|S(x)(g1(L(x))− g2(L(x)))| : x ∈ I}
≤ smax{

∣∣(g1(l−1
n (x))− g2(l−1

n (x)))
∣∣ : x ∈ [Xn−1, Xn], n = 1, 2, ..., N}

= s d∞(g1, g2).

The existence of a unique fixed point f ∈ C (when s < 1) follows from the
contraction mapping theorem. Since f(C∗) ⊂ C∗∗ and (C∗∗, d∞) is closed,
hence complete, it follows that f ∈ C∗∗.

Note that Tg = H +S · g ◦L where H = h−S · b ◦L. This tells us that a
fractal interpolation function f is uniquely defined by three functions H, S,
and L, of the special forms defined above.

The fixed point f of T interpolates the data {(Xj, Yj) : j = 0, 1, 2, ..., N}
and is an example of a fractal interpolation function [2]. One way to evaluate
f is to use

f = lim
k→∞

T k(f0),

where f0 ∈ C∗. The proof of the contraction mapping theorem gives also an
estimate for the rate of convergence (cf. [18]], Theorem 5.2.3.):

∥∥f − T k(f0)
∥∥
∞ ≤

sk

1− s
‖f1 − f0‖∞ . (3.2)

In addition, an estimate for the operator T can also be derived (cf. [16]):

‖T‖∞ ≤
1 + s

1− s
.
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4. The metric space (I × R, dq)

The following metric generalizes the “taxi-cab” metric. We will need it
in the proof of Theorem 4.

Proposition 1. Let α, β > 0 and q : I → R. Let dq : (I × R) × (I × R) →
[0,∞) be defined by

dq((x1, y1) , (x2, y2)) := α |x1 − x2|+ β |(y1 − q(x1))− (y2 − q(x2))| ,

for all (x1, y1), (x2, y2) ∈ I × R. Then dq is a metric on I × R. If q is
continuous then (I × R, dq) is a complete metric space.

Proof. Clearly dq((x2, y2) , (x1, y1)) = dq((x1, y1) , (x2, y2)) ≥ 0. Suppose that
dq((x1, y1) , (x2, y2)) = 0. Then α |x1 − x2|+β |(y1 − q(x1))− (y2 − q(x2))| =
0 which implies x1 = x2. Hence |(y1 − q(x1))− (y2 − q(x1))| = 0 which
implies y1 = y2.

Demonstration that d obeys the triangle inequality. Let (xi, yi) ∈ I × R,
for i = 1, 2, 3. Write qi = q(xi) for i = 1, 2, 3. We have

dq((x1, y1) , (x2, y2)) + dq((x2, y2) , (x3, y3))

= α |x1 − x2|+ β |(y1 − q1)− (y2 − q2)|+ α |x2 − x3|+ β |(y2 − q2)− (y3 − q3)|
= α(|x1 − x2|+ |x2 − x3|) + β(|(y1 − q1)− (y2 − q2)|+ |(y2 − q2)− (y3 − q3)|)
≥ α(|x1 − x3|) + β(|(y1 − q1)− (y2 − q2)|+ |(y2 − q2)− (y3 − q3)|)
≥ α(|x1 − x3|) + β(|(y1 − q1)− (y3 − q3)|) = dq((x1, y1) , (x3, y3)).

To prove completeness in the case that q is continuous, let {(xk, yk)}∞k=1

denote a Cauchy sequence with respect to the metric dq. Given ε > 0 we can
find an integer N(ε) so that

α |xk − xl|+ β |(yk − q(xk))− (yl − q(xl))| < ε

whenever k, l > N(ε). It follows that {xk} is a Cauchy sequence with respect
to the Euclidean norm, and so it converges, with limit x∗ ∈ I. Since q is
continuous, it now follows that {q(xk)} converges to some limit q∗ ∈ R. In
turn, it follows that {yk} converges to some y∗ ∈ R. Hence {(xk, yk)}∞k=1

converges to (x∗, y∗) ∈ I × R. It follows that (I × R, dq) is complete.
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5. Fractal interpolants as attractors of iterated function systems

Here we characterize the graph of the fixed point f of T as an attractor
of an IFS. Define wn : I × R→I × R by

wn(x, y) := (ln(x), h(ln(x)) + S(ln(x))(y − b(x))).

Define an IFS by
W := (I × R;w1, w2, ..., wN).

Here we make use of the metric dq of Proposition 1 with q = f , the fixed
point of T . Let η > 0 and let

X := {(x, y) ∈ I × R : |y − f(x)| ≤ η} .

It is readily verified that, when Theorem 3 holds, namely when s < 1,W(X) ⊂
X. The following theorem gives conditions under which (i) the IFS (X;w1, w2, ..., wN)
is contractive with respect to df and (ii) W has a unique attractor. This re-
sult is a substantial generalization of [15, Theorem 5.3, p. 140] which would
require, in the present setting, that h is uniformly Lipschitz. Here, we avoid
this restriction by using the metric dq with q = f .

Theorem 4. Let s < 1 and let f ∈ C∗∗ be the fixed point of T, as in
Theorem 3. Let ln : I → I have uniform Lipschitz constant λl < 1, such that
|ln(x1)− ln(x2)| ≤ λl |x1 − x2| for all x1, x2 ∈ I, for all n. Let S : I → [−s, s]
have Lipschitz constant λS, so that |S(x1)− S(x2)| ≤ λS |x1 − x2| for all
x1, x2 ∈ I. Then the IFS (X;w1, w2, ..., wN) is contractive with respect to the
metric df with α = 1 and 0 < β < (1− λl) /λlλSη. In particular, under
these conditions, the IFS W has a unique attractor A = Γ(f), the graph of
f , with basin of attraction I × R.

Proof. Let (x1, y1) , (x2, y2) ∈ X. We have

df (wn (x1, y1) , wn (x2, y2))− α |ln(x1)− ln(x2)|
= β|h(ln(x1)) + S(ln(x1))(y1 − b(x1))− f(ln(x1))

− (h(ln(x2)) + S(ln(x2))(y2 − b(x2))− f(ln(x2)))|
= β| (S(ln(x1))(y1 − f(x1)))− (S(ln(x2))(y2 − f(x2))) |
≤ β |S(ln(x1))| · |(y1 − f(x1))− (y2 − f(x2))|
+ |S(ln(x1))− S(ln(x2))| · |(y2 − f(x2))|
≤ βs|(y1 − f(x1))− (y2 − f(x2))|+ βλlλSη |x1 − x2| .
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To obtain the second equality, we used the fact that f is the fixed point of
(3.1).

Hence

df (wn (x1, y1) , wn (x2, y2))

≤ (αλl + βλSλlη) |x1 − x2|+ βs|(y1 − f(x1))− (y2 − f(x2))|
≤ (α + βλSη)λl |x1 − x2|+ βs|(y1 − f(x1))− (y2 − f(x2))|
≤ c · (α |x1 − x2|+ β |(y1 − f(x1))− (y2 − f(x2))|)

where c := max {s, λl + βλlλSη/α} . Since λl < 1 we can choose α, β > 0 so
that c < 1. For example, we can choose α = 1 and 0 < β < (1− λl) /λlλSη.

It follows that the IFS W̃ := (X;w1, w2, ..., wN) is contractive, and hence
it has a unique attractor. This attractor must be Γ(f) because a contractive
IFS has a unique nonempty compact invariant set and it is readily verified
that W̃(Γ(f)) = Γ(f). Since we can choose the constant η arbitrarily large,
it now follows that W has a unique attractor, namely Γ(f). Note that we
have not provided a metric with respect to which W is contractive!

We remark that

Γ(Tg) =W (Γ(g)) , for all g ∈ C∗.

When, for example, S is Lipschitz continuous with Lipschitz constant s < 1,
and the functions ln are contractive, the graph of the fractal interpolant f
can be approximated by the “chaos game” algorithm. (See [3] and [6] for
new topological viewpoints of the “chaos game.”)

6. Bilinear fractal interpolation

We consider a specific example of the preceding theory. Let ln : I →
[Xn−1, Xn] be given by

ln(x) := Xn−1 +

(
Xn −Xn−1

XN −X0

)
(x−X0) (6.1)

and S : I → R by
S := Sn ◦ l−1

n ,

for x ∈ [Xn−1, Xn], n = 1, . . . , N , where Sn : I → R,

Sn(x) := sn−1 +

(
sn − sn−1

XN −X0

)
(x−X0) ,
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with {sj : j = 0, 1, 2, ..., N} ⊂ (−1, 1). Note that the sj, j = 0, 1, . . . , N ,
need not be ordered.

Then S is continuous and

|S(x)| ≤ max{|Sn(l−1
n (x))| : x ∈ [Xn−1, Xn], n ∈ {1, 2, ..., N}}

= max {|sj| : j = 0, 1, ..., N} =: s < 1.

Furthermore, let b : I → R be given by

b(x) := Y0 +

(
YN − Y0

XN −X0

)
(x−X0) (6.2)

and h : I → R by

h(x) :=
N∑
n=1

[
Yn−1 +

(
Yn − Yn−1

Xn −Xn−1

)
(x−Xn−1)

]
χ[Xn−1,Xn](x), (6.3)

where χM denotes the characteristic function of a set M .
Note that b ∈ C∗ and h ∈ C∗∗. Theorem 3 implies that T has a unique

fixed point f . Specifically, f is the unique solution of the set of functional
equations of the form

f(ln(x))− h(ln(x)) = Sn(ln(x))[f(x)− b(x)], n = 1, . . . , N ; x ∈ I. (6.4)

We refer to f as a bilinear fractal interpolant. The reason for this name
is that in this case the functions wn of the IFS W take the form

wn(x, y) := (ln(x), a+ bx+ cy + dxy),

where a, b, c, d are real constants. Functions of the form B : (x, y) 7→ a +
bx+ cy+dxy are called bilinear in the computer graphics literature. We will
adhere to this terminology but like to point out that B is for fixed x or fixed
y affine in the other variable. More precisely,

B((1− t)x1 + tx2, y) = (1− t)B(x1, y) + tB(x2, y)

B(x, (1− t)y1 + ty2) = (1− t)B(x, y1) + tB(x, y2),

for all x1, x2, y1, y2, t ∈ R.
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Figure 1: A fractal interpolation function defined by three bilinear transformations. See
text.

Using the expressions for ln, Sn, and h above, we can write the functions
wn in the form

wn(x, y) =

(
Xn−1 +

(
Xn −Xn−1

XN −X0

)
(x−X0), Yn−1 +

(
Yn − Yn−1

XN −X0

)
(x−X0)

(6.5)

+

[
sn−1 +

(
sn − sn−1

XN −X0

)
(x−X0)

] [
y − Y0 −

(
YN − Y0

XN −X0

)
(x−X0)

])
.

In particular note that

wn(XN , y) = (Xn, Yn+sn(y−YN)) and wn+1(X0, y) = (Xn, Yn+sn(y−Y0)).

It follows that the images of any (possibly degenerate) parallelogram with
vertices at (X0, Y0 ± H) and (XN , YN ± H), for H ∈ R under the IFS fit
together neatly, as illustrated in Figure 1.

7. Box dimension of bilinear interpolants

In this section, we derive a formula for the box dimension of the graphs of
a class of bilinear interpolants. To this end, let 1 < N ∈ N, let I := [0, 1] ⊂ R
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be the unit interval, and let � := I×I denote the filled unit square. Suppose
that {0 =: X0 < X1 < · · · < XN := 1} is a set of knots in I. Furthermore,
suppose that {Y j ∈ I : j = 0, 1, . . . , N} and {Y j ∈ I : j = 0, 1, . . . , N} are

two sets of points with the property that 0 ≤ Y j ≤ Y j < 1, ∀j = 0, 1, . . . , N .
Denote by Qn the trapezoid with vertices An := (Xn−1, Y n−1), Bn :=

(Xn, Y n), Cn := (Xn, Y n), and Dn := (Xn−1, Y n−1), n = 1, . . . , N . For each
n = 1, . . . , N , let ln : I → [Xn−1, Xn] be a family of affine mappings and
Bn : I ×R→ R, (x, y) 7→ anx+ bny + cnxy + dn = (dn + anx) + (bn + cnx)y,
an, bn, cn, dn ∈ R, a family of bilinear mappings.

Define mappings wn := (ln, Bn) : �→ Qn by requiring that

(0, 0)
wn7−→ An, (1, 0)

wn7−→ Bn, (1, 1)
wn7−→ Cn, (0, 1)

wn7−→ Dn. (7.1)

It follows readily from (7.1) that the affine mappings ln are given by (6.1)
and the bilinear mappings Bn by

Bn(x, y) = anx+ [sn−1 + (sn − sn−1)x] y + Y i−1, (7.2)

where we set an = Y n − Y n−1, n = 1, . . . , N , and sj := Y j − Y j, j =
0, 1, . . . , N . Note that 0 ≤ sj < 1, for all j = 0, 1, . . . , N .

Definition 3. The IFS F := (�;w1, . . . , wN) where wn := (ln, Bn) with
ln and Bn, n = 1, . . . , N , given by (6.1) and (7.2), respectively, is called
bilinear.

In [5] such bilinear IFSs are investigated in more generality and in connec-
tion with fractal homeomorphisms. The approach undertaken in [5] makes
substantial use of the geometric properties that functions in an bilinear IFS
possess, namely that they take horizontal and vertical lines to lines and that
they preserve proportions along horizontal and vertical lines. For further
details and results, we refer the interested reader to [5].

Recall the definition of the metric dq given in Proposition 1. For our
current purposes, we set q ≡ 1. As in Theorem 4 we denote the Lipschitz
constant of the ln by λn.

Theorem 5. The bilinear IFS F = (�;w1, . . . , wN) is contractive in the
metric d1 with α := 1 and 0 < β < 1−λn

2
.

Proof. It suffices to show that each wn ∈ F is contractive with respect to
the metric d1. To this end, let (x, y), (x′, y′) ∈ � and set ∆sn := sn − sn−1,
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n = 1, . . . , N . Then

d1(wn(x, y), wn(x′, y′)) = |ln(x)− ln(x′)|+ β|Bn(x, y)−Bn(x′, y′)|
≤ λn|x− x′|+ β(|an||x− x′|+ |[sn−1 + ∆snx]y − [sn−1 + ∆snx

′]y′|)
= λn|x− x′|+ β(|an||x− x′|+ |[sn−1 + ∆snx]y

− |[sn−1 + ∆snx
′]y + |[sn−1 + ∆snx

′]y − |[sn−1 + ∆snx
′]y′)

≤ λn|x− x′|+ β(|an||x− x′|+ |∆sny||x− x′|+ |sn−1 + ∆snx
′||y − y|)

≤ (λn + β(|an|+ |∆sn|) |x− x′|+ β|sn||y − y′| (since |x′|, |y| ≤ 1)

≤ max {λn + 2β, sn} d1((x, y), (y′, y′)) (since |an|, |∆sn| ≤ 1).

By choosing 0 < β < 1−λn
2

the maximum can be made strictly smaller than
1.

Adapting (6.1), (6.2), and (6.3) to the current setting using {Y j : j =
0, 1, . . . , N} instead of {Yj : j = 0, 1, . . . , N}, we see by Theorem 3 that the
associated operator T : C∗ → C∗∗ defined by

Tg := h+ [sn−1 + ∆sn (•)] · (g − b) ◦ L (7.3)

is contractive and its unique fixed point f is an element of C∗∗. Moreover, f
satisfies the functional equations set forth in (6.4).

Next, we derive a formula for the box dimension of the graphs of bilinear
fractal interpolants arising from the above bilinear IFS F = (�;w1, . . . , wN).
For this purpose, we may assume, without loss of generality, that Y 0 =
Y N = 0. This special case can always be achieved by means of an affine
transformation (which does not change the box dimension).

To this end, we recall the definition of box-counting or box dimension of
a bounded set M ⊂ Rn:

dimBM := lim
ε→0+

logNε(M)

log ε−1
, (7.4)

where Nε(M) is the minimum number of square boxes with sides parallel
to the axes, whose union contains M. By the statement “dimBM = D” we
mean that the limit in equation (7.4) exists and equals D.

In the case where M is the graph Γ(f) of a function f , knowledge of
the box dimension of Γ(f) provides information about the smoothness of f
since dimB Γ(f) is related to Hölder exponents associated with f . (See, for
example, [19, Section 12.5].)
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The following result gives an explicit formula for the box dimension of
the graph of a bilinear fractal interpolant defined via the operator (7.3). The
proof is based on arguments first applied in [9].

Theorem 6. Let F denote the bilinear IFS defined above and let Γ(f) denote
its attractor. Suppose that the knots {Xj : j = 0, 1, . . . , N} are uniformally
spaced on I, i.e., Xj = j/N , ∀j = 0, 1, . . . , N , and suppose that s0 = sN . If

γ :=
∑N

n=1
sn−1+sn

2
> 1 and Γ(f) is not a straight line segment then

dimB Γ(f) = 1 +
log γ

logN
;

otherwise dimB Γ(f) = 1.

Proof. Note that in the computation of the box dimension of Γ(f) it suffices
to consider covers of Γ(f) whose elements are squares of side N−r, r ∈ N0 :=
N ∪ {0}. Denote by C0(r) a cover of Γ(f) consisting of a finite number of
squares of side N−r, r ∈ N0. Now consider a specific cover C(r) of Γ(f) of
the form

C(r) :=

{[
k − 1

N r
,
k

N r

]
×
[
a, a+

1

N r

]
: r ∈ N0; k = 1, . . . , N r; a ∈ R

}
.

(7.5)
By the compactness of Γ(f), there exists a minimal cover C∗0(r) of Γ(f) and
also a minimal cover C∗(r) of Γ(f) of the form (7.5). Denote by N0(r),
respectively, N (r) the cardinality of these minimal covers. Since covers of
the form (7.5) are more restrictive, we have N0(r) ≤ N (r). On the other
hand, every (N−r × N−r)-square in C∗0(r) can be covered by at most two
(N−r ×N−r)-squares from a cover of the form (7.5). Thus, N (r) ≤ 2N0(r).
Hence, when computing the box dimension of Γ(f) it suffices to consider
covers of the form (7.5).

To this end, let r ∈ N0 be fixed. Let C(r) be a minimal cover of Γ(f) of
cardinalityN (r) consisting of squares of side N−r whose interiors are disjoint.
Let C(r, k) be the collection of all squares in C(r) that lie between x = k−1

Nr

and x = k
Nr , k = 1, . . . , N r. Denote by N (r, k) the cardinality of C(r, k), and

let
R(r, k) :=

⋃
C∈C(r,k)

C.

As C(r) is a cover of Γ(f) of minimal cardinality, every square in C(r) must
meet Γ(f), and since f is continuous on I, the set R(r, k) must be a rectangle
of width N−r and height N−rN (r, k). Note that N (r) =

∑Nr

k=1 N (r, k).
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Now apply the mappings wn, n = 1, . . . , N , defined in (7.1) to the rect-
angle R(r, k). The image of R(r, k) under wn is a trapezoid contained in the

strip

[
l(k, n)− 1

N r+1
,
l(k, n)

N r+1

]
× R, with l(k, n) := k + (n− 1)N r. Observe that

N (r + 1) =
N∑
n=1

Nr∑
k=1

N (r + 1, l(k, n)).

The fixed point equation for Γ(f), namely, Γ(f) =
N⋃
n=1

wi(Γ(f)), implies that

Γ(f) ⊆
N⋃
n=1

wn

(
Nr⋃
k=1

R(r, k)

)
.

Depending on the sign of ∆sn, there are ten possible geometric shapes for
the trapezoid wn(R(r, k)). In Figure 2 one of these trapezoids is depicted
and the relevant geometric quantities identified.

A B

C D

1

Nr

h

y1

y2

wn

A'

B'

D'

C'

1

Nr+1

an + Dsn y2

Nr

an + Dsn y1

Nr

Figure 2: An image of a rectangle under the map wn.

Employing the notation in Figure 2, we write A′ < B′ if the y–coordinate
of the point A′ is less than the y–coordinate of the point B′. Similarly, we
define A′ ≤ B′.

Case I: ∆sn ≥ 0. Note that in this scenario, distance(A′, C ′) ≤ distance(B′,
D′). The five possible shapes are given by the location of the vertices A′,
B′, C ′, and D′. They are: B′ < D′ ≤ A′ < C ′, B′ < A′ ≤ D′ ≤ C ′,
B′ ≤ A′ < C ′ ≤ D′, A′ ≤ B′ ≤ C ′ < D′, and A′ < C ′ ≤ B′ < D′. Each one
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of these trapezoids is contained in a rectangle of width N−(r+1) and height
at most (

sn−1 + ∆sn ·
k

N r

)
(N−rN (r, k)) +

2(|an|+ |∆sn|)
N r

, (7.6)

and meets a rectangle of width N−(r+1) and height at least(
sn−1 + ∆sn ·

k − 1

N r

)
(N−rN (r, k))− 2(|an|+ |∆sn|)

N r
. (7.7)

Hence,

N (r + 1, l(k, n)) ≤
[(
sn−1 + ∆sn ·

k

N r

)
(N−rN (r, k)) +

2(|an|+ |∆sn|)
N r

]
N r+1 + 2

= N

(
sn−1 + ∆sn ·

k

N r

)
N (r, k) + 2N(|an|+ |∆sn|) + 2,

(7.8)

and, similarly,

N (r + 1, l(k, n)) ≥ N

(
sn−1 + ∆sn ·

k − 1

N r

)
N (r, k)− 2N(|an|+ |∆sn|)− 2.

(7.9)

Case II: ∆sn ≤ 0. Here, distance(A′, C ′) ≥ distance(B′, D′) and the five
possible shapes are as above. Each one of these trapezoids is contained in a
rectangle of width N−(r+1) and height at most(

sn−1 + ∆sn ·
k − 1

N r

)
(N−rN (r, k)) +

2(|an|+ |∆sn|)
N r

, (7.10)

and meets a rectangle of width N−(r+1) and height at least(
sn−1 + ∆sn ·

k

N r

)
(N−rN (r, k))− 2(|an|+ |∆sn|)

N r
. (7.11)

Thus, similar to Case I, we obtain an upper, respectively lower, bound for
N (r + 1, l(k, n)) of the form

N (r + 1, l(k, n)) ≤ N

(
sn−1 + ∆sn ·

k − 1

N r

)
N (r, k) + 2N(|an|+ |∆sn|) + 2,

(7.12)
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and

N (r + 1, l(k, n)) ≥ N

(
sn−1 + ∆sn ·

k

N r

)
N (r, k)− 2N(|an|+ |∆sn|)− 2.

(7.13)

Denote by N± the set of all indices n ∈ {1, . . . , N} for which ∆sn ≥ 0,
respectively, ∆sn ≤ 0. Then, using Equations (7.6) and (7.10), summation
over n yields

N∑
n=1

N (r + 1, l(k, n)) =
∑
n∈N+

N (r + 1, l(k, n)) +
∑
n∈N−

N (r + 1, l(k, n))

≤ N
∑
n∈N+

(
sn−1 + ∆sn ·

k

N r

)
N (r, k)

+N
∑
n∈N−

(
sn−1 + ∆sn ·

k − 1

N r

)
N (r, k)

+
N∑
n=1

[2N(|an|+ |∆sn|) + 2]

Now,

sn−1 + ∆sn ·
k

N r
=
sn−1 + sn

2
+ ∆sn

(
k

N r
− 1

2

)
, n ∈ N+,

and

sn−1 + ∆sn ·
k − 1

N r
=
sn−1 + sn

2
+ ∆sn

(
k − 1

N r
− 1

2

)
=
sn−1 + sn

2
+ ∆sn

(
k

N r
− 1

2

)
+
−∆sn
N r

, n ∈ N−.

Substitution into the expression for
∑N

n=1N (r + 1, l(k, n)) gives

N∑
n=1

N (r + 1, l(k, n)) ≤ N

N∑
n=1

(
sn−1 + sn

2

)
N (r, k) +N

(
N∑
n=1

∆sn

)(
k

N r
− 1

2

)
N (r, k)

+
∑
n∈N−

−∆sn
N r

+
N∑
n=1

[2N(|an|+ |∆sn|) + 2] .
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As
∑N

n=1 ∆sn = sN − s0 = 0 by assumption, we obtain

N∑
n=1

N (r + 1, l(k, n)) ≤ (Nγ)N (r, k) +
∑
n∈N−

−∆sn
N r

+
N∑
n=1

[2N(|an|+ |∆sn|) + 2]

≤ (Nγ)N (r, k) + c1, (7.14)

where we set c1 :=
∑N

n=1

[
2N(|an|+ |∆sn|) + |∆sn|

N
+ 2
]
.

Summing Equation 7.14 over k produces an upper bound for N (r+ 1) in
terms of N (r):

N (r + 1) ≤ (Nγ)N (r) + c1N
r.

Induction on r yields

N (r) ≤ (Nγ)rN (0) + c1N
r−1

r−1∑
%=0

γ%.

Depending on the value of γ, two cases need to be considered.

Case A: γ ≤ 1. This implies that N (r) ≤ N r(N (0) + c1r). Hence,

dimB Γ(f) ≤ lim
r→∞

logN r(N (0) + c1r)

logN r
= 1.

Case B: γ > 1. Observing that in this situation

r−1∑
%=0

γ% ≤ γr

γ − 1
,

we obtain

N (r) ≤ (γN)rN (0) +
c1(Nγ)r

γ − 1
=: c2(Nγ)r.

Thus,

dimB Γ(f) ≤ lim
r→∞

log c2 (γN)r

logN r
= 1 +

log γ

logN
.

Note that since f is a continuous function, dimB Γ(f) ≥ 1. If Γ(f) is a
line segment, i.e., if the set of data J := {(j/N, Y j) : j = 0, 1, . . . , N)} is
collinear, then Γ(f) = [0, 1] implying that dimB Γ(f) = 1.

To obtain a nontrivial lower bound for Γ(f), the following lemma is re-
quired.
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Lemma 3. If γ :=
∑N

i=1
si−1+si

2
> 1, s0 = sN , and Γ(f) is not a line segment

then

lim
r→∞

N (r)

N r
=∞.

Proof. The assumption that Γ(f) is not a line segment implies the existence
of at least one index n0 ∈ {1, . . . , N − 1} so that

δ := Y n0
> 0.

Since f is continuous on I, we have that N (r) ≥ δN r. Note that I is mapped
to the line segments (Xn−1, Y n−1), (Xn, Y n), implying that for r ≥ 1

N (r) ≥
N∑
n=1

[
sn−1 + ∆sn

n0

N

]
δ N r

=

[
N∑
n=1

(
sn−1 + sn

2

)
+

N∑
n=1

(
n0

N
− 1

2

)
∆sn

]
δN r

=
N∑
n=1

(
sn−1 + sn

2

)
(δN r). (As the sum over ∆sn equals zero.)

Proceeding inductively, we arrive at

N (r) ≥
N∑

n1,··· ,nk=1

k∏
`=1

[
sn`−1 + sn`

2

]
(δ N r), r ≥ k.

Therefore,
N (r) ≥ [γr δ − 1]N r,

which, since γ > 1, finishes the proof of the lemma.

Suppose then that γ > 1 and that Γ(f) is not a line segment, i.e., J is
not collinear. Since each C ∈ C(r, k) meets Γ(f), the image of C under the
maps wn, n = 1, . . . , N , must also meet Γ(f).
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Thus, using Equations (7.9) and (7.13), we obtain

N∑
n=1

N (r + 1, l(k, n)) =
∑
n∈N+

N (r + 1, l(k, n)) +
∑
n∈N−

N (r + 1, l(k, n))

≥ N
∑
n∈N+

(
sn−1 + ∆sn ·

k − 1

N r

)
N (r, k)

+N
∑
n∈N−

(
sn−1 + ∆sn ·

k

N r

)
N (r, k)

−
N∑
n=1

[2N(|an|+ |∆sn|) + 2]

Algebra similar to that applied in the estimate for the upper bound, yields

N∑
n=1

N (r + 1, l(k, n)) ≥ N
N∑
n=1

(
sn−1 + sn

2

)
N (r, k)

−
∑
n∈N+

∆sn
N r
−

N∑
n=1

[2N(|an|+ |∆sn|) + 2] .

Summation over k gives

N (r + 1) ≥ (Nγ)N (r)− c1N
r.

Hence,

N (r) ≥ (Nγ)r−mN (m)− c1N
r−1

r−m−1∑
%=0

γ%

≥ (Nγ)r−m
[
N (m)− c1N

m−1

1− γ−1

]
,

for all m ∈ N with 1 ≤ m ≤ r.
Lemma 3 implies that we can choose r and m large enough so that

N (m)− c1N
m−1

1− γ−1
> 0.

Therefore, N (r) ≥ c2 (γ N)r, for a constant c2 > 0 and for large enough r.

Hence, dimB Γ(f) ≥ 1 +
log γ

logN
.
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Remark 1. Recall that the code space associated with an IFS is given by
Ω := {1, . . . , N}∞. The elements of Ω are called codes. The set of all finite
codes is defined as Ω′ :=

⋃∞
k=0{1, . . . , N}k, where the empty set represents a

code of length zero.
The proof of Theorem 6 shows in particular that for a given σ = σ1 . . . σ|σ| ∈

Ω′ of finite length |σ|, there exist constants 0 < c ≤ c such that

c (γ N)|σ| ≤ N (|σ|) ≤ c (γ N)|σ|.

Moreover, if wσ1···σr(Γ(f)) denotes the image of Γ(f) under the maps wσ1···σr :=
wσ1 ◦ · · · ◦ wσr over the subinterval lσ1···σr(I), then there also exist constants
0 < c∗ ≤ c∗ such that

c∗ γσ1 · · · γσr N |σ| ≤ Nσ1···σr(|σ|) ≤ c∗ γσ1 · · · γσr N |σ|, (7.15)

where Nσ1···σr(|σ|) denotes the minimum number of N−|σ| × N−|σ|-squares
from a cover of the form (7.5) needed to cover wσ1···σr(Γ(f)) and γn :=
sn−1+sn

2
, n = 1, . . . , N .

Estimates of this type are important for box dimension calculations in
the context of V -variable fractals and superfractals. We refer the interested
reader to [17] where such computations were made for affine fractal inter-
polants.

Remark 2. Bilinear interpolants may be used to model or describe planar
data sets that exhibit highly irregular behavior for which classical interpolation
and approximation schemes such as polynomials and splines do not succeed.
As in the case of affine interpolants, the determination of the free parameters,
namely the scaling factors s0, s1, . . . sN , is essential for an accurate approxi-
mation of data sets using the error estimate (3.2), or for modeling data with
a pre-described or numerically computed box dimension. However, the par-
ticular nature of the problem dictates what type of optimization needs to be
employed. For instance, an L2-optimization may be applied to a functional
setting as in [12], or bounding volumes may be used for parameter identifica-
tion as in [14]. These and related questions will be investigated elsewhere.
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