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A B S T R A C T

We propose a theory of structure learning in the primate brain. We argue that the parietal cortex is critical for
learning about relations among the objects and categories that populate a visual scene. We suggest that current
deep learning models exhibit poor global scene understanding because they fail to perform the relational in-
ferences that occur in the primate dorsal stream. We review studies of neural coding in primate posterior parietal
cortex (PPC), drawing the conclusion that neurons in this brain area represent potentially high-dimensional
inputs on a low-dimensional manifold that encodes the relative position of objects or features in physical space,
and relations among entities in abstract conceptual space. We argue that this low-dimensional code supports
generalisation of relational information, even in nonspatial domains. Finally, we propose that structure learning
is grounded in the actions that primates take when they reach for objects or fixate them with their eyes. We
sketch a model of how this might occur in neural circuits.

1. Introduction

As they learn about the world, humans and other animals form new
mental representations. During human development, these representa-
tions pertain to basic items and categories (e.g. “dog”, “table”) but in
adulthood a rich repertoire of more abstract concepts is formed (e.g.
“commerce”, “friendship”). This ensemble of categories and concepts
lays the foundation for our knowledge of the world (Murphy, 2002). For
decades, psychologists have made assertions about how representations
(or mental schemas) are used by higher cognitive processes involving
memory, reasoning and language (Schank and Abelson, 1977). In par-
allel, neurobiologists have studied the organisation of representations
in the brain, by measuring the tuning properties of single neurons or
charting gross patterns of category selectivity with neuroimaging
methods. However, there is a notable lack of consensus about how new
mental representations are acquired de novo from natural sensory ex-
perience, and building systems that learn rich concepts remains a key
goal in artificial intelligence (AI) research (Hassabis et al., 2017; Lake
et al., 2016).

In this article, we discuss how humans (and potentially other ani-
mals) might learn the abstract representations that support intelligent
behaviour. We begin by reviewing an emerging theory of neural coding
based on contemporary deep learning models (LeCun et al., 2015).
These models excel at image classification and acquire representations
that resemble those in the primate brain. However, we argue that
standard deep learning architectures may struggle to learn the sorts of

rich abstractions that support human intelligence, because they do not
explicitly encode relational information among stimuli. In subsequent
sections, we review evidence that neurons in the posterior parietal
cortex (especially lateral intraparietal area LIP) code for object relations
in physical space and go on to suggest that these dorsal stream re-
presentations may form a basis set for learning about the structure of
more abstract spaces, and potentially play a role human concept
learning.

2. Representation learning in deep neural networks

Recent advances in deep learning have offered a new theory of re-
presentation learning for biological brains (Kriegeskorte, 2015; Yamins
and DiCarlo, 2016). Researchers have examined the representations
formed by deep neural networks that are trained with supervision to
perform challenging object classification tasks and compared them to
observations in the ventral stream of monkeys and humans. Promis-
ingly, the early layers of deep networks form filters that are selective to
orientation and spatial frequency, resembling the tuning of V1 cells
(Yoshinski et al., 2015), and the distribution of object and category
selectivity in the hidden layers resembles that from neurophysiological
recordings in area IT (Yamins et al., 2014). Moreover, patterns of re-
presentational similarity among population responses to visual cate-
gories are similar in humans, monkeys and neural networks (Khaligh-
Razavi and Kriegeskorte, 2014). Reassuringly, composite measures re-
veal that artificial network architectures that excel at image
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classification are those that most closely resemble the primate brain
(Yamins and DiCarlo, 2016). In part, this convergence is expected from
the fact that contemporary deep networks incorporate many known
computational motifs from biological vision, including layer-wise
depth, convergent connectivity, local receptivity, pooling and divisive
normalisation (Krizhevsky et al., 2012).

However, a different perspective holds that deep networks are at
best only a partial theory of visual representation learning in biological
systems (Lake et al., 2016). Aside from noting the relative paucity of
labelled data available in the real world (Marcus, 2018) many re-
searchers have emphasised the differences in performance between
humans and machine learning systems on object classification tasks.
Deep networks are vulnerable to being misled with “adversarial”
images that (to a human observer) show obvious category members
(Brendel et al., 2017), and are also prone to classifying nonsense images
as objects with high confidence (Nguyen et al., 2014). A related issue is
that deep networks are highly susceptible to variation in the statistics of
the images in training and test data sets. For example, the addition of
small amounts of pixel noise or light bandpass filtering of test images
confuses the networks appreciably more than human observers
(Geirhos et al., 2018). Thus, whilst after extensive training deep net-
works may exhibit highly accurate object classification, they seem to
lack the robustness that is characteristic of biological vision.

To understand these phenomena, it may be useful to take a step
back and consider the nature of the problem that visual cognition
evolved to tackle. Humans and other primates experience rich and
complex visual scenes that typically contain multiple objects at once.
Natural scenes are thus understood not just by their contents (e.g. the
identity of the objects that are present) but also by their structure (i.e.
the relationships among those objects). For example, two images of a
person playing with a toy car and driving a car may both contain the
items “human” and “car” but mere label assignation ignores the in-
formation about relative scale (is the person bigger than the car?) and
containment (is the person inside the car?) that are crucial for inter-
preting these scenes (Fig. 1a). Nearly a century ago, the Gestalt psy-
chologists defined a compact set of principles for describing the struc-
ture of visual information, focussing on the relative scale, proximity,
similarity, and grouping of elements within an array (Fig. 1b). Criti-
cally, these structural descriptions are agnostic to the specific object
labels assigned to scene contents. For example, a configuration that
obeys the Gestalt principle of symmetry is agnostic to the size, shape or
colour of the symmetric items (Wagemans et al., 2012). In con-
temporary parlance, Gestalt perception is the outcome of structure
learning about natural scenes.

Deep networks are typically trained on datasets that are curated to
ensure that each label pertains to a single identifiable object class
(Fig. 1d). They are thus not placed under any explicit pressure to learn
about object relations in natural scenes. As a consequence, whilst deep
networks may excel at category labelling, they tend to show limited
generalisation on tasks that require objects to be segregated from the
background, counted, or compared in terms of their relative scale or
position (see below). In other words, whilst deep networks are highly
effective at learning a mapping between distributions of image statistics
and a class label, they form only a superficial scene understanding that
lacks the fundamental human notion of “objectness”. In what follows,
we discuss the computational principles that may hamper current ma-
chine learning architectures from fully understanding natural scenes
and consider how it might be possible to build information processing
systems that learn about scene structure in a way that more closely
resembles the primate brain.

For a neuropsychologist, these failures of object and scene under-
standing in deep networks have a rather intuitive explanation. As out-
lined above, the representations formed by deep networks resemble
those in primate inferotemporal cortex (Yamins and DiCarlo, 2016).
However, primates have also evolved a parallel visual pathway that
projects dorsally to the parietal cortex (Goodale and Milner, 1992).

Lesions that affect this pathway lead to deficits of visual cognition that
resemble those exhibited by deep neural networks. For example, pa-
tients with bilateral parietal damage suffer from Balint’s syndrome, a
debilitating disorder that impairs global scene perception whilst pre-
serving local object recognition (Chechlacz and Humphreys, 2014). One
symptom of Balint’s syndrome is simultanagnosia, a visuospatial deficit
which impairs decisions about groups of objects. For example, patients
may perfectly identify a lone object as a cat but fail to enumerate how
many cats are present in a scene or identify which is the largest
(Friedman-Hill et al., 1995). Parietal damage can also lead to con-
structional apraxia, a disorder characterised by an inability to build,
assemble or draw objects from their constituent parts (Black and Strub,
1976). Thus, patients with parietal damage behave as if they lack a
representation of visual space that would otherwise allow them to in-
dividuate distinct objects within a scene (e.g. a cat and a dog), and thus
permit the relational inferences between elements that are required for
rich and accurate scene descriptions (e.g. the dog is chasing the cat).
This pattern of intact local but impaired global scene perception re-
sembles that displayed by current supervised deep networks. Indeed,
deep networks struggle on lab-based cognitive tasks that involve pro-
cessing of multiple objects, such as change detection and multi-object
tracking, both of which are associated with intact parietal function
(Leibo et al., 2018). Neural networks also fare poorly on tasks that in-
volve discriminating object arrays according to their Gestalt properties
(Fleuret et al., 2011) and may fail at object counting (Wu et al., 2018).
We suggest that failures occur because deep networks lack a dorsal
steam pathway or an equivalent module for explicitly processing the
spatial relations among objects (Fig. 1c).

3. Neural codes for relational structure

Thus far we have argued that biological systems, unlike current
deep networks, can learn about relational structure among objects and
use it for scene understanding. We also suggested that the dorsal stream
pathway may play a role in this process. But how is this achieved at the
mechanistic level, and how are the proposed computations consistent
with empirically observed principles of neural coding in the primate
parietal cortex?

Understanding the neural and computational basis of structure
learning is a challenge that has recently come to the fore in neu-
roscience (Behrens et al., 2018; Bellmund et al., 2018; Tervo et al.,
2016), spurred by the recognition that in order for AI systems to pro-
duce intelligent behaviours, they will need to encode and generalise
abstract relational knowledge (Lake et al., 2016). Deep neural networks
are powerful function approximators whose connections (weights) im-
plicitly contain information about the structure of the data to which
they are exposed, such as the probability of co-occurrence of different
scene elements. However, rapid and versatile transfer of knowledge
between environments requires that the system learns to explicitly re-
present the structure within data, by explicitly coding the relational
structure among object parts, such as the patterns of brushstrokes that
constitute a handwritten character (Lake et al., 2015).

To illustrate what is meant by an “explicit” representation, consider
a deep network exposed to scenes in which one object is inside another
(e.g. a ball in a cup or a human in a car). Contemporary deep networks
can learn to decompose these scenes into interpretable constituents, as
shown by the emergence of units that code for specific objects or code
for feature variation in interpretable ways (Burgess et al., 2019).
However, in order to support rapid generalisation to new scenes, the
network needs to form units or assemblies that code for the concept of
“inside” as well as “cup” or “book”, i.e. to factorise scene knowledge
into structure and contents (Behrens et al., 2018). The activity of such a
unit (or assembly) coding explicitly for structure would allow the net-
work to transfer its knowledge to previously unseen images, signalling
for example that a dog is inside a kennel or a shirt is inside a drawer. This
intuition has a long pedigree in the cognitive sciences (Gentner, 1983).
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Cognitive models are often endowed with handcrafted inputs for the
structure and contents of data, for example they are provided with units
labelled by the researcher as corresponding to “close”, “inside” or
“largest” (Doumas et al., 2008). These models are geared to explain the
human ability to learn about both objects and predicates, or about the
syntax and semantics of natural language. However, these systems do
not learn abstractions from raw input data (e.g. image pixels) as bio-
logical systems can.

One possibility is that abstract relational knowledge is grounded in
inferences about physical space (Bellmund et al., 2018). One

compelling version of this theory takes as its starting point the char-
acteristic coding properties of cells in the rodent hippocampal-en-
torhinal system (Behrens et al., 2018). Hippocampal place cells are
sensitive to single locations in allocentric space, whereas grid cells fire
at multiple local positions arranged in a hexagonal lattice. In the rodent
medial temporal lobe, ensembles of both cell classes tile the environ-
ment over multiple spatial scales (e.g. coarse to fine). Intriguingly, a six-
fold symmetric lattice is precisely the coding pattern expected if grid
cells were computing the principal components of the place cell cov-
ariance matrix produced whilst the animal navigates an open field,

Fig. 1. The problem of structure learning. A.
A visual scene is understood not just by its
contents but by the relations between the ob-
jects that are present. In the example on the
left, scene understanding depends on the re-
lative size of the two objects (man > car or
car > man) and containment (man in car or
man outside of car). The scenes can variously
be interpreted as demonstrating a daily com-
mute, play with toys, or a vehicle breakdown.
Right panel: a different example with two ob-
jects (cats and bowls) and two different struc-
tural principles: alignment and cardinality. The
cats might be waiting or eating in an orderly
fashion (good cats) or roaming chaotically
(naughty cats); there might be more bowls
than cats (cats are happy) or vice versa (cats go
hungry). B. Principles of Gestalt perception
offer descriptions of the relations among ob-
jects, here in terms of their relative proximity,
similarity, alignment, or containment. Note
that these Gestalt principles are invariant to
the identity of the objects (one could replace
the yellow circles and blue stars with red tri-
angles and green squares) as well as to their
gross position within the array (one could
translate objects or groups within the array). C.
Theory sketch. Current deep networks explain
variance in ventral stream structures including
V1 (they learn Gabor filters) and IT (they learn
invariant object representations). However,
relations among objects may be encoded in the
parietal cortex (see main text for details). D.
Image classification datasets, such as Imagenet
(Russakovsky et al., 2015), do not distinguish
relational properties of objects. For example,
the top image (one dalmatian) and the bottom
image (three dalmatians) both belong to the
class “dalmatian”. Current deep networks
trained with supervision are thus not placed
under any pressure to explicitly learn about
object relations.
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under a constraint that the cells cannot produce negative firing rates
(Dordek et al., 2016). The theory thus states that while place cells signal
specific instances of space occupancy, the grid cells efficiently encode
the way space is structured itself, i.e. the adjacency properties that are
given by the geometry of the 2D (allocentric) environment. In the terms
employed above, place cells code for the contents of experience and grid
cells code the structure of experience. The efficiency principle (i.e. re-
duction of redundancy) that results from the dimensionality reduction
may make these codes particularly useful for planning in a computa-
tionally frugal fashion during navigation (Stachenfeld et al., 2014).

At present, it is not clear how these principles can be implemented
in a network that learns end-to-end from natural inputs. One possibility
is that training a network to understand and generalise object relations
will require algorithmic innovation. For example, modifying a network
architecture to incorporate strong priors about potential relational
patterns observed in data has allowed researchers to build systems that
generalise relational knowledge within fixed domains. “Relation” net-
works solve visual query problems involving a set of table-top objects
(Santoro et al., 2017) and with sufficient training can even solve rea-
soning problems, such as Raven’s Progressive Matrices, that feature in
human intelligence tests (Barrett et al., 2018). However, it remains
unclear whether these networks will scale efficiently to more general
settings. An alternative possibility is that structure learning requires a
qualitatively different objective or cost function for the network
(Marblestone et al., 2016). For example, one recent paper shows how
distinct representations can emerge in networks trained to perform
related and unrelated tasks simultaneously, arguing that this offers in-
sight into the coding properties in distinct visual streams (Scholte et al.,
2018). In sum, thus, building a system that learns abstract relational
information remains a challenge for AI researchers and neuroscientists
alike.

4. Neural coding in the primate posterior parietal cortex

The view outlined above is premised on an understanding of neural
coding in the rodent medial temporal lobe. However, primate vision is
quite different from rodent vision. Primates have forward-facing eyes
and frequently direct their attention into peri-personal space, where
they are adept at grasping and manipulating objects with their dextrous
hands. Primates also have a highly developed saccadic system that al-
lows them to experience natural scenes via multiple discrete samples
and to combine the information over space and time, perhaps via neural
integrators in the posterior parietal cortex that exhibit recurrent ex-
citation (Gold and Shadlen, 2007). Thus, whilst rodents and primates
process information in both egocentric (self-to-object) and allocentric
(object-to-object) frames of reference, it seems likely that the latter is
more important in the rodent and the former in the primate (Fig. 2a).
This is suggested by the relatively larger size and greater functional
significance of the hippocampus compared to neocortex in rodents
(Fig. 2b), and the relative waking time spent engaged in locomotion
(i.e. transitioning through allocentric space), which by some estimates
is greater than 50% in rodents (Aragao Rda et al., 2011) but closer to
20% in macaque monkeys (Sussman and Tattersall, 1981). Instead,
many primates in the wild spend much of their time foraging in ar-
boreal environments where dextrous reaching and grasping for bran-
ches and food items (i.e. transitioning through peri-personal space) is
important (Passingham and Wise, 2012). If rodents and monkeys learn
about relational structure by understanding space, then the two species
might vary in the extent to which their inferences are grounded in maps
vs. scenes respectively. A natural question, thus, is whether neural
coding in the primate parietal cortex permits inferences about both the
structure and contents of a visual scene, in the same way as medial
temporal lobe structures have been argued to represent the structure
and contents of allocentric space in rodents.

In what follows, we argue in favour of this view. We draw upon
evidence from recordings in posterior parietal cortex, a brain structure

that has been extensively studied in the macaque monkey. A great deal
of research has focussed on the lateral intraparietal area (LIP;
Brodmann’s areas 39/40), where neurons are activated by stimulation
of their spatially selective response fields, and fire persistently as the
monkey prepares a saccade to their preferred spatial location. LIP has
been implicated in a wide range of functions (Freedman and Ibos,
2018), including spatial working memory (because activity persists
when the saccadic target is removed), decision-making (because ac-
tivity builds up with the probability that the saccade will be rewarded),
top-down spatial attention (because locations cued as relevant elicit
more activity) and in spatial priority (because activity scales with the
bottom-up salience of the stimulus). Despite these diverse theories,
there is good consensus that LIP neurons are spatially selective, coding
for locations in egocentric space much as place cells in the rodent
hippocampus code for locations in an allocentric frame of reference.

Interestingly, there is evidence that cells in an adjacent region of
posterior parietal cortex code explicitly for relations among object
parts, as might be predicted from the study of constructional apraxia
described above. For example, Chafee and colleagues presented mon-
keys with two successive objects at distinct spatial positions, each of
which was built from a set of basic elements (squares). The objects
differed only by a single square, and the task was to discriminate which
square was missing. The authors observed neurons in parietal area 7a
that coded for the spatial relationship between the missing square and
the probe object, and that were invariant to overall spatial position.
This suggests that parietal neurons code explicitly for the spatial rela-
tions among object parts (Chafee et al., 2007).

5. Scalar codes for arbitrary categories

However, cells in posterior parietal cortex also seem to be sensitive
to “what” as well as to “where”. For example, when a monkey learns to
classify shapes (Fitzgerald et al., 2011) or motion directions (Freedman
and Assad, 2006) into arbitrary groupings, LIP neurons abstract over
the physical identity of objects or stimulus features and instead code for
the category itself (Freedman and Assad, 2016). Interestingly, there is
evidence that the patterns of categorical coding that emerge can be
remarkably low-dimensional. Intuitively, after the monkey has been
trained to group shapes into categories A and B one might expect
roughly equal average firing rates among neurons coding for the two
classes. However, within a single animal, neural populations show
globally heightened firing for (an arbitrary) one of the two categories,
so that class membership can be decoded along a single dimension in-
dicated by average firing rate (Fitzgerald et al., 2013). A close ex-
amination of the distribution of selectivity that emerges from the well-
studied random dot motion paradigm reveals a similar phenomenon.
When the monkey is exposed to dot motion patterns that move either
right or left with high or low coherence, input-selective LIP neurons
seem to monolithically prefer high/right > low/right > low/left >
high/left. Again, these finding seem to indicate that LIP has com-
pressed the high-dimensional manifold on which the physical stimuli lie
into a scalar code that signals “rightness” vs. “leftness” via a one-di-
mensional axis of neural responsivity (Chafee, 2013). A similarly idio-
syncratic neural bias for one attended feature over another has been
observed in fMRI signals from a cohort of human participants judging
visual stimuli according to their colour, motion direction, or identity,
with maximal bias in the dorsal stream (Gong and Liu, 2019). A model
that explains these phenomena also accounts for the one-dimensional
linkage between delay-period and spontaneous activity in LIP during a
spatial oculomotor task (Ganguli et al., 2008).

Stepping back, one interpretation of these observations is that the
primate brain has evolved a distinctive computational motif, whereby
high-dimensional inputs are projected onto a low-dimensional manifold
in posterior parietal cortex, and that this manifold encodes their re-
lative position in physical space (in the case of spatially selective neu-
rons) or in an abstract space (in the case of category-selective neurons)
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and may allow translation between the two. Low dimensional re-
presentations sacrifice coding efficiency for robustness and are thus
particularly useful for strong transfer to novel settings –the function-
ality that is limited in contemporary deep networks trained to label
images. Thus, one parsimonious description of the division of labour
between dorsal and ventral streams for object and scene perception
appeals to the dimensionality of neural representations. We speculate
that ventral stream structures form efficient, high-dimensional codes for
object identity, while dorsal stream structures learn low-dimensional
representations of relational structure that are optimised for abstraction
and generalisation.

6. Number and magnitude

The cases highlighted above imply that neural coding of categories
in LIP is approximately one-dimensional. A one-dimensional manifold
is a line, and humans use the concept of magnitude to describe the re-
lative position that stimuli occupy on a line, especially in the case
where high-intensity and low-intensity stimuli fall at opposite ends of
the continuum (a “prothetic” representation). Humans have developed
a symbolic system for quantifying and communicating magnitude, de-
noted by numbers, and the parietal cortex is strongly associated with
numerical cognition. Firstly, there is evidence that parietal damage and
disruption can lead to failures of counting and dyscalculia in humans
(Cohen Kadosh et al., 2007; Martory et al., 2003). Secondly, studies
using non-symbolic number also suggest that single cells in macaque
LIP code for numerosity. For example, when performing a number
matching task, individual cells code for distinct cardinalities with ap-
proximately Gaussian tuning curves (Nieder and Miller, 2003). This
tuning is preserved across different input modalities (number of dots or
sounds), indicating that the neural code for number in LIP abstracts

over physical stimulus properties (Nieder, 2012). In a different task that
involves comparing whether the number of dots in an array is greater or
less than a reference, LIP cells code for number with a rate (or inverse
rate) code – individual neurons fire more frequently to larger (or
smaller) numbers (Roitman et al., 2007). These findings have some
analogues in human data. For example, when human participants re-
port confidence in their memories on a numerical scale, a monotonic
code for response number is observed in single cells in human PPC
(Rutishauser et al., 2018) (Fig. 4a). Moreover, magnetoencephalo-
graphic (MEG) signals over human parietal cortex monotonically code
the pulsatile rate of an audio-visual stimulus on a low-dimensional axis
(Cao et al., 2019) (Fig. 4b).

Posterior parietal cortex thus seems to contain two distinct codes for
magnitude: a heterogenous code (e.g. for specific numbers) and a
“summation” code in which firing rate increases or decreases as number
or magnitude grows. These signals would be ideally suited to respec-
tively relay the place occupied by a given cardinality on the magnitude
line (via a heterogenous code) and the structure of the line itself (via a
summation code) just as place and grid cells may code for distinct
physical loci and overall geometry of allocentric space (Behrens et al.,
2018) (Fig. 2b, lower panels). These abstract codes may even be useful
for structuring behaviour in time. For example, LIP cells code hetero-
geneously for the number of movements elapsed in a structured se-
quence of push and turn movements (Sawamura et al., 2002), akin to
newly-discovered hippocampal cells that keep track of the number of
laps that a rat has run around a track (Sun et al., 2019).

We thus appeal to the connection between neural coding for number
and scalar codes for objects and categories in posterior parietal cortex.
It is as if PPC represents items in a relational space, with otherwise
symmetric classes (e.g. A and B) being arbitrarily coded as if one were
“more” and the other were “less” (Chafee, 2013). Indeed, if one

Fig. 2. Representations of space in rodents
and primates. A. Rodents spend much of their
waking lives engaging in locomotion, which
requires an allocentric representation of space
(left). Primates, by contrast, spend more time
than rodents handling objects in peripersonal
space, such as when foraging for fruit (right).
B. This may be reflected in the relative size and
functional significance of the hippocampal-
entorhinal system (yellow/orange) in the ro-
dent, and the posterior parietal cortex (blue) in
the monkey. The hippocampus and entorhinal
cortex house place cells (O’Keefe and
Dostrovsky, 1971) [Reprinted from Trends in
cognitive sciences, 10(1), Jeffery, K. J., & Bur-
gess, N., ‘A metric for the cognitive map: found
at last?’, 1–3, 2006, with permission from
Elsevier] and grid cells (Hafting et al., 2005)
[Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer
Nature, Nature, Microstructure of a spatial
map in the entorhinal cortex, Hafting, T. et al.,
2005], which have been argued to code for
allocentric position and the structure of allo-
centric space itself. The posterior parietal
cortex contains neurons sensitive to position on
a line, either in physical space or in an abstract
space representing magnitude or number
(Viswanathan and Nieder, 2013), as well as
cells suited for coding the structure of the line
itself (Roitman et al., 2007) (licensed under
CC-BY).
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considers the wider range of variables that seem to be encoded by LIP
neurons, including time (Jazayeri and Shadlen, 2015), value (Platt and
Glimcher, 1999) and decision evidence (Shadlen and Newsome, 2001),
as well as number (Nieder, 2016), these variables all share the common
property that they can be represented on a single dimension (soon vs.
later; good vs. bad; strong vs. weak; few vs. many), suggestive of a
domain-general low-dimensional coding scheme in the primate parietal
cortex (Fig. 3). As alluded to above, it has been proposed that the

spatial coding properties of cells in the rodent hippocampal-entorhinal
system are used as basis functions for forms of nonspatial cognition that
take place in abstract metric spaces. Here, we suggest an equivalent
scheme in the primate parietal cortex that relies on cells sensitive to
locations in egocentric rather than allocentric space.

Low-dimensional codes can facilitate generalisation between
otherwise incommensurable domains. Indeed, cognitive scientists have
long noted human behavioural phenomena that point to automatic

Fig. 3. A theory of magnitude. We reprise and extend ATOM
theory (Walsh, 2003) which argues that overlapping neural
codes for space, time and number in the parietal cortex are all
manifestations of a common representation of prothetic
magnitude. We suggest that other quantities that are coded
monotonically in LIP cells – including value, decision in-
formation, and even arbitrary categories – may reflect the
projection of high-dimensional signals onto a one-dimensional
(or low-dimensional) manifold that is suited for generalisation
and transfer, i.e. for the understanding of the analogical re-
lations between abstract concepts. Here, we emphasise those
concepts that share one-dimensional structure.

Fig. 4. Neural evidence for low-dimensional coding in human posterior parietal cortex. A. Example single neuron in human PPC whose firing rate depends on
memory strength as reported on a numerical scale, with highest response for number “6” and lowest for number “1” (Rutishauser et al., 2018). (Redistributed under
Elsevier user licence) B. Whilst undergoing MEG recordings, humans judged the rate of a multisensory stimulus that pulsated simultaneously and independently in
the visual (flashes) and auditory (flutter) domains. Left panel: colours show different auditory and visual rate conditions. Right panel: multidimensional scaling
(MDS) reveals that brain signals over PPC represented fused multisensory rate with a low-dimensional signal (Cao et al., 2019), whereas A1 coded for the input rate.
C. Univariate EEG signals evoked by symbolic numbers (1–6; top panel) and visual images that paid out reward with fixed probability (ranked by their value, b1-b6;
bottom panel). D. Cross-validated representational similarity analysis shows that common coding for numbers and bandits with the same magnitude occurred at
300–700ms post-stimulus. E. MDS shows the low-dimensional form of the shared neural representation. Data in C–E from (Luyckx et al., 2019) (licensed under CC-
BY).
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generalisation between space, time and number, leading to the proposal
that the parietal cortex houses a domain-general magnitude re-
presentation (Walsh, 2003). For example, in the well-known SNARC
(spatial-numerical association of response codes) effect, participants
from Western cultures are faster at responding to larger numbers on the
right side of visual space, as if their mental number line recycled a
spatial representation arranged from left (low numbers) to right (high
numbers), consistent with their learned reading direction (Dehaene
et al., 1993). A plethora of other biases suggest deep homologies in the
way that space, time and number are coded (Hubbard et al., 2005;
Lourenco and Longo, 2011). In fact, the idea that space provides a basis
for more abstract form of inference is an old one in psychology, dating
back to the debate between analogue vs. propositional representations
in the 1980s (Pylyshlyn, 1981).

One recent paper set out to directly test one of these homologies in
human brain signals (Luyckx et al., 2019). A precursor to this research
was the demonstration that when humans view Arabic digits, patterns
of EEG activity vary smoothly with numerical distance, such that the
multivariate signal evoked by “3” is more similar to that elicited by “4”
than “5” (Spitzer et al., 2017; Teichmann et al., 2018). Because the
numbers shown were symbolic, this signal cannot be explained by
sensory features of the stimulus and thus must reflect an abstract code
for numerical magnitude. Luyckx and colleagues (Fig. 4c–e) replicated
this finding, but additionally asked participants to choose among pairs
of 6 possible visual images (animal pictures) on the basis of their pay-
out probability (Luyckx et al., 2019). After training on this “bandit”
task, the multivariate EEG signals for numbers 1–6 predicted those
evoked by the animal pictures, ranked by their reward probability, with
the highest-valued bandit eliciting homologous patterns to number “6”
and the lowest to number “1”. This occurred even though no numerical
information had ever been associated with the visual images, sug-
gesting that the neural representation of the bandits was structured by
the pre-existing representation of numerical magnitude in the brains of
the participants. Interestingly, the multivariate EEG signal for both
numbers and bandits was partly (but not wholly) driven by a univariate
(i.e. one-dimensional) summation code with a maximum over centro-
parietal electrodes, consistent with the theory of parietal function ad-
vanced here. In related work, others have noted overlapping re-
presentations in parietal BOLD signals for one-dimensional metrics in

distinct domains, such as spatial, temporal and social distance
(Parkinson et al., 2014). However, it has been debated whether these
results imply a common representation or simply shared resources in
the parietal cortex (Borghesani et al., 2019).

7. How is structure learned from experience?

Thus far, we have described a theory of the parietal cortex that
emphasises its role in representing the relational structure of objects
and categories, in both physical and abstract metric spaces. Specifically,
we suggest that parietal neurons tuned for spatial position are recycled
for making relational inferences in nonspatial domains. The theory
appeals to the seemingly abstract and low-dimensional codes that are
observed in neural populations in LIP. However, we have not explained
how these coding properties may be acquired by experience. In fact,
building a neural information processing system that learns about ab-
stract relational structure remains a grand challenge for both neu-
roscientists and AI researchers. Nevertheless, in the final part of this
article, we advance some ideas which we hope may shed light on this
question.

How can a neuron learn to explicitly represent the structure of the
natural world in a way that is invariant to its contents? The challenge is
that learning of invariant structure must be grounded in experience,
and that experience is dominated by the contents of sensory inputs.
Consider the case of an agent learning an abstract representation of
number. Confronted with an array of three wholly novel objects, a
human who is unable to identify the objects would have no difficulty
counting them, because she has learned the concept of “three”. But how
is this concept acquired in the first place?

One possibility is that passive exposure to the contents of sensory
experience itself is sufficient to ground structure learning. This is a
popular view among machine learning researchers, who hope that re-
lational abstractions will emerge in neural networks that are built to be
sufficiently expressive (being endowed with layer-wise depth and mil-
lions of parameters) and trained on a broad enough distribution of
static images or videos. In fact, there is recent evidence that codes re-
sembling those for numerosity emerge spontaneously in the deep layers
of a neural network trained to label objects from a very large database
(Nasr et al., 2019). However, humans and monkeys who exhibit neural

Fig. 5. Proposed neural circuit for structure learning and
generalisation. A. The posterior parietal cortex (PPC) not
only receives inputs from early visual cortex (V1), but also has
rapid access to information about the relative salience of dif-
ferent spatial locations, via inputs from the superior colliculus
(SC). This salience map defines the “gaze affordances” for the
scene, i.e. the likely transitions between scene locations that
will be made with the eyes. B. Humans readily understand the
analogy between the two images shown on the left and right,
whereby cats are queuing for food and commuters are queuing
in a traffic jam. C. We propose that signals concerning likely
saccadic targets in a scene (from SC) convey information
about object relations to parietal cortex. This affords parietal
cortex the opportunity to learn invariances over scene struc-
ture, which for example facilitate generalisation between the
images in panel B. Neural codes for scene structure (in parietal
cortex) and object identity (in inferotemporal cortex) may
then be combined into a comprehensive scene representation
in downstream structures, such as the medial temporal lobe or
retrosplenial cortex.
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representations of number do not have the luxury of learning via mil-
lions of labelled examples, and so it is unclear whether this approach is
ultimately practicable for biological systems. Recent advances in un-
supervised methods have led to the hope that human-interpretable
concepts can be disentangled without labels and from pixels alone
(Higgins et al., 2017), but learning abstractions that are not tied to
physical sensory properties (e.g. Fig. 5) remains an elusive goal in AI
research.

Here, we draw upon an alternative view: that structure learning is
ultimately grounded in action. In fact, the ability to take actions is ar-
guably a necessary precursor to learning about space itself. This is most
evident in the case of allocentric space, whose structure is disclosed by
actively experiencing the state transitions that occur during navigation
(at least for mammals that never experience a bird’s eye view of the
environment). However, it is almost certainly the case that the structure
of egocentric space is learned by reaching and grasping for objects and
fixating the objects with the eyes at various spatial positions and in
different planes of depth. To cycle back to our critique of deep learning
as a computational theory of visual scene understanding, this argument
entails that objectness cannot be learned without a control policy that
allows objects to be picked up and handled, and scene structure cannot
be understood without a shifting gaze that explores multiple different
scene elements in turn.

We thus argue that information about viable or probable actions is
potentially an important source of input to any neural system that is
built to learn about the structure of natural scenes. This idea draws
upon the longstanding theme, dating back to theories of “direct per-
ception” (Gibson, 1979), whereby objects are understood by the actions
that they afford. In fact, it is salient that PPC neurons code for spatial
information in a mixed frame of reference that bridges sensory input
and motor output (Bennur and Gold, 2011). For example, micro-
stimulation of LIP neurons elicits a saccade towards their preferred
location, whereas cells in the more anterior AIP region become active
during reaching towards an object in peri-personal space (Andersen and
Cui, 2009). In other words, these parietal areas putatively coding for
relations among objects multiplex sensory inputs with signals per-
taining to the motor actions required to handle or fixate them. Indeed,
this would explain why the neural build-up signals that are observed in
advance of oculomotor behaviour do not seem to be causally necessary
for saccadic decisions in simple discrimination tasks (Katz et al., 2016)
but are important for more abstract category decisions (Zhou and
Freedman, 2019). Another framing of this claim is that when we talk
about “affordances” we are referring to a transition probability matrix
for peri-personal space, describing the probability that an object will be
a future goal of reaching or target of fixation. In the primate, this
transition matrix may be encoded in parallel with that for allocentric
space in the MTL, with the two structures offering complementary
coding schemes for the encoding of abstract concepts.

Actions are typically thought of as an output from, rather than an
input to, sensorimotor systems. However, at least in the case of eye
movements, the circuitry of the oculomotor in principle allows in-
formation about candidate actions to arrive to posterior parietal cortex
contiguously with (or even before) sensory inputs (White et al., 2017b).
In parallel to the classic thalamocortical pathway, visual information is
routed to the primate superior colliculus (SC) where candidate saccades
are computed rapidly in a viewer-centred frame of reference. It is
widely accepted that SC codes candidate target spatial positions for
saccades on the basis of their bottom-up salience and top-down re-
levance (White et al., 2017a). Visuomotor neurons signalling this in-
formation in SC fire within 50–60ms of stimulus onset, and tracing
studies reveal that IPL is a major target for SC outputs (Clower et al.,
2001). It is possible, thus, that posterior parietal cortex receives in-
formation about the likely saccadic eye movements that will be taken
towards a visual scene (Fig. 5). Critically for our argument, these sig-
nals will inevitably carry information about the relational geometry of
the objects that are present in the scene, stripped of information about

the object identity. This provides an opportunity for IPL to form re-
presentations of scene structure independent of scene contents, and
thus potentially to support relational generalisation between scenes
with comparable structure. This theory is currently a speculation, but it
leads to a number of testable predictions both for neuroscience and
machine learning research.

8. Outlook

In this article, we have attempted to join the dots between different
literatures: deep learning models as computational theory of re-
presentational learning, the neuropsychology and neurophysiology of
the parietal cortex, and the cognitive origins of abstract thought.
However, there are parts of the puzzle that we struggle to incorporate
into our theory. In closing, we highlight some of the most salient.

Firstly, we offer a speculation about the dimensionality of neural
signals in the primate dorsal and ventral streams: we argue that sparse
neural codes in ventral stream support efficient object recognition,
whereas low-dimensional codes in the dorsal stream permit general-
isation of categories and concepts. Whilst there is preliminary evidence
in favour of this view (Fitzgerald et al., 2013; Quiroga et al., 2008), it
remains a speculation. Indeed, others have suggested that IT neurons
may encode the principal generative factors in datasets composed of
faces (Chang and Tsao, 2017) or abstract shapes (Op de Beeck et al.,
2001), suggestive of the sort of representation we associated with the
dorsal stream. We also acknowledge the complexity of the brain
structures we discuss and their implication in a broad range of func-
tions; we have focussed on the role of the posterior parietal cortex in
scene understanding, but our theory does not (for example) encompass
its participation in a broad range of attentional and mnemonic func-
tions.

Secondly, whilst there is good evidence for a dissociation between
two frames of reference – a representation of allocentric space in the
medial temporal lobe and egocentric space in the parietal cortex – this
may be a simplification. In the primate, hippocampal neurons are
sensitive to spatial views of a scene in a partly egocentric frame of re-
ference (Rolls and O’Mara, 1995). Even in the rodent, cells in the hip-
pocampal formation do not code exclusively for space – they are also
sensitive to objects (Hoydal et al., 2019), landmarks (Manns and
Eichenbaum, 2009) and boundaries (O’Keefe and Burgess, 1996).
Moreover, hippocampal lesions impair transitive inference in rodents
(Dusek and Eichenbaum, 1997), and BOLD signals in the hippocampus
code for other abstract relations that occur naturally in one dimension,
such as position on a social dominance hierarchy (Kumaran et al.,
2012). This suggests that the monotonic coding principles associated
here with the parietal cortex might also find expression in the medial
temporal lobe.

Relatedly, grid cells in the entorhinal cortex of humans (Nau et al.,
2018) and nonhuman primates (Killian et al., 2012) show six fold
modulation by the trajectory of saccadic eye movements across a visual
scene. This clearly blurs the distinction we have proposed between
coding of allocentric space in the medial temporal lobe, and peri-per-
sonal space in the parietal cortex. In fact, recent studies that measure
hexagonal symmetry in human BOLD signals have observed “grid-like”
coding of stimuli with monotonically varying object features
(Constantinescu et al., 2016) or for modalities that lack overt spatial
connotation, such as odours (Bao et al., 2019). We find these results
puzzling, because it seems like a more natural coding scheme for these
spaces would factorise the stimuli according to the relevant axes (e.g.
neck and leg length of a bird, or concentration of pine vs. banana
odour) via the sort of monotonic coding scheme proposed here. We
think it is likely that brain regions will differ with respect to the extent
that they exhibit quadrilateral code (i.e. with one dimension aligned to
each axis) and a hexagonal code, as exhibited by grid cells, but this
remains for future research to discern. In sum, thus, whilst none of these
findings invalidate the claims made here, more research is needed to
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delineate the precise division of labour between the medial temporal
lobe and parietal systems for representing abstract relational informa-
tion in brains of rodents and monkeys.

Finally, the distinction we draw here between parietal cortex and
MTL also overlooks a literature that has studied how these regions in-
teract. For example, neural information from the caudal intraparietal
area is routed to the hippocampus both directly, and indirectly via the
posterior cingulate cortex and retrosplenial cortex (Kravitz et al., 2011).
Computational theories propose how this pathway might subserve the
conversion of spatial information from an egocentric to an allocentric
frame of reference (Byrne et al., 2007). Integrating these ideas into the
theory proposed here is beyond the scope of the current review, but
would be of considerable interest for future work.

We began by noting that adult humans are capable of learning to
represent a rich set of concepts. Many of the more abstract concepts that
we understand and communicate are fundamentally relational in
nature. For example, the concept of “friendship” implies a social rela-
tion between two individuals, and the concept of “commerce” refers to
a relational system by which assets flow within an economy. We think it
is likely that learning about these complex relational concepts is
grounded on an understanding of how physical space is organised,
which in turn arises when we make actions in that space. The deep
connection between space and abstract concepts is also reflected in the
metaphors and similes that we use in natural language (Wolff and
Gentner, 2011). For example, terms invoking the Gestalt principles of
good continuity, containment or scale are used to denote abstract re-
lations in nonspatial domains, as when we state that two individuals’
views are “aligned” or that a group member is an “insider”. In other
words, learning about the organisation of space may be a necessary
precursor to forming a rich and complex model of the world.
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