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Abstract. The ℓ0-minimization problem that seeks the sparsest point of a polyhedral set is a long-

standing challenging problem in the fields of signal and image processing, numerical linear algebra and

mathematical optimization. The weighted ℓ1-method is one of the most plausible methods for solving this

problem. In this paper, we develop a new weighted ℓ1-method through the strict complementarity theory

of linear programs. More specifically, we show that locating the sparsest point of a polyhedral set can be

achieved by seeking the densest possible slack variable of the dual problem of weighted ℓ1-minimization.

As a result, ℓ0-minimization can be transformed, in theory, to ℓ0-maximization in dual space through some

weight. This theoretical result provides a basis and an incentive to develop a new weighted ℓ1-algorithm,

which is remarkably distinct from existing sparsity-seeking methods. The weight used in our algorithm is

computed via a certain convex optimization instead of being determined locally at an iterate. The guar-

anteed performance of this algorithm is shown under some conditions, and the numerical performance of

the algorithm has been demonstrated by empirical simulations.
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1 Introduction

A polyhedral set P in finite-dimensional spaces can be represented as

P = {x ∈ R
n : Ax = b, x ≥ 0}, (1)

where A ∈ R
m×n is a given matrix and b ∈ R

m is a given vector. We assume m < n, b 6= 0 and

P 6= ∅ throughout, and consider the so-called ℓ0-minimization problem

min{‖x‖0 : x ∈ P}, (2)

where ‖x‖0 denotes the number of nonzero components of x. This problem arises in many practical

scenarios, including nonnegative signal and image processing [19, 3, 9, 42, 55, 56, 31], machine

and statistical learning [35, 6, 7, 36, 20, 47], computer vision and pattern recognition [55, 50],

and nonnegative sparse coding and compressed sampling [29, 58, 19, 9, 28, 60]. It is also closely

relevant to nonnegative matrix factorization [44, 43]. In fact, seeking sparsity has become a com-

mon request in various data processing tasks such as compression, reconstruction, transmission,

denoising and separation [8, 20, 49, 21]. Thus developing reliable computational methods for (2)

is fundamentally important from both mathematical and practical viewpoints, despite the fact

that the problem (2) is NP-hard in general [39, 1].

One avenue for solving ℓ0-minimization is to use ℓ1-minimization [12], i.e., min {‖x‖1 : x ∈ P},

which is also called basis pursuit (BP). Heuristic methods such as orthogonal matching pursuit

(OMP) [34, 17, 52, 54, 41] and the thresholding algorithm [16, 4, 20, 5] have also been widely

exploited in recent years. The guaranteed performance of these algorithms has been analyzed

under various conditions. For example, the performance of ℓ1-minimization can be guaranteed

if one of the following conditions (or properties) holds: mutual coherence [18, 20], restricted

isometry property (RIP) [10], null space property (NSP) [14, 58, 59] or the so-called verifiable

condition in [30, 51]. Moreover, the performance of OMPs can be guaranteed under the mutual

coherence condition [18, 20] or the ERC assumption [24, 53, 54]. The mutual-coherence and

the RIP-type assumptions can also ensure the success of thresholding methods [20, 5]. Most

existing conditions often imply the uniqueness of solutions to ℓ0- and ℓ1-minimization. Recently,

the guaranteed performance of ℓ1-minimization has been more broadly interpreted in [61, 60]

through a range-space-property-based analysis and by distinguishing the equivalence and strong

equivalence between ℓ0- and ℓ1-minimization. This analysis shows that ℓ0-minimization can be

solved by ℓ1-minimization when the range space property (RSP) of AT holds at a sparsest point

of P, irrespective of whether P possesses a unique sparsest point or not.

To find a method that may outperform ℓ1-minimization, Candès, Wakin and Boyd [11] have

proposed a weighted ℓ1-method and have empirically demonstrated that such a method may

outperform ℓ1-minimization in many situations. It is known that the weighted ℓ1-method can

be developed through the first-order estimation of a continuously differentiable approximation

of ‖x‖0 (see, e.g., [57, 62]). In particular, based on the first-order approximation of the ℓp-

quasinorm (0 < p < 1), Foucart and Lai [22] proposed another weighted ℓ1-method, for which

a further investigation was made in [32, 13]. Recently, some unified analysis for a family of

weighted ℓ1-algorithms has been provided by Zhao and Li [62]. Other recent studies for weighted

ℓ1-algorithms and their applications can be found, for example, in [40, 45, 38, 2, 48, 63].

Defining a weight by the iterate is a common feature of existing weighted ℓ1-methods. Al-

though empirical results indicate that the algorithms within this framework may perform very
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well in many situations [11, 22, 32, 15, 62, 13, 48], some important issues associated with these

algorithms, from algorithmic structure to theoretical analysis, have still not been properly ad-

dressed. For example, if the sparsity pattern of the current iterate is very different from that of

the sparsest points of P, existing weighted ℓ1-methods might continue to generate the next iterate

which admits the same sparsity pattern, causing the algorithm to fail. Also, these methods use

the first-order estimation of a concave approximation of ‖x‖0. As a result, restrictive conditions

(including the RIP, NSP or their variants [22, 32, 62]) are often imposed on the problem in order

to ensure the theoretical efficiency of these methods. Most of these conditions imply that ℓ0- and

ℓ1-minimization are strongly equivalent in the sense that both problems have the same unique

solution. This is not always the case, however, since either ℓ0- or ℓ1-minimization may have mul-

tiple optimal solutions, and the solution of ℓ1-minimization may not be the sparsest one at all (in

which case, ℓ1-minimization completely fails to solve ℓ0-minimization). So an immediate question

arises: Can we develop a new weighted ℓ1-algorithm so that it goes beyond the current algorithmic

framework, and can its theoretical performance be rigorously shown under some conditions that

allow a polyhedral set to possess multiple sparsest points?

In this paper, we work toward addressing the above questions. By using the classic strict com-

plementarity theory of linear programs, we first prove that finding a sparsest point of P amounts

to searching for the densest possible slack variable of the dual problem of certain weighted ℓ1-

minimization. In other words, ℓ0-minimization can be translated, in theory, into ℓ0-maximization

with an implicitly given weight. Thus ℓ0-minimization can be cast as a bilevel programming

problem with a special structure (see Theorem 3.1 for details). This provides a theoretical basis

for the development of a new weighted ℓ1-algorithm, going beyond the existing algorithmic frame-

work. The weight used in this method is computed through convex optimization instead of being

defined directly at an iterate generated in the course of the algorithm. As desired, the guaranteed

performance of the proposed method for locating the sparsest point of P can be shown under cer-

tain conditions which allow a polyhedral set to admit multiple sparsest points. The perturbation

theory of linear programs [37] is also employed to carry out such a theoretical analysis. Numerical

experiments indicate that in many situations the proposed algorithm remarkably outperforms the

normal ℓ1-minimization when locating the sparsest points of polyhedral sets.

This paper is organized as follows. The connection between the sparsest point and weighted

ℓ1-minimization and a class of merit functions for sparsity are given in Section 2. A new weighted

ℓ1-algorithm for the sparsest points of polyhedral sets is developed in Section 3, and the guaranteed

performance of the proposed algorithm is shown in Section 4. Finally, numerical results are

reported in Section 5.

2 Preliminary

2.1 Notation

In this paper, Rn denotes the n-dimensional Euclidean space, Rn
+ the set of nonnegative vectors

in R
n, and R

n
++ the set of positive vectors in R

n. x ∈ R
n
+ (x ∈ R

n
++) is also written as x ≥ 0

(x > 0). e = (1, 1, . . . , 1)T ∈ R
n is the vector of ones, P is the polyhedral set defined by (1), and

W = diag(w) is the diagonal matrix with diagonal entries equal to the components of the vector w.

For a set J ⊆ {1, 2, . . . , n}, we use J to denote the complement of J, i.e., J = {1, 2, . . . , n}\J. For

an index set J and a matrix A ∈ R
m×n with columns ai (i = 1, . . . , n), AJ denotes the submatrix
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of A with columns ai, i ∈ J, and AT
J denotes the transpose of AJ . A similar notation is applied to

the subvector of a vector. For vectors x, y ∈ R
n, x ≥ y (x > y) means x− y ∈ R

n
+(x− y ∈ R

n
++).

Given x ∈ R
n, let J+(x) = {i : xi > 0}. Clearly, J+(x) coincides with the support of x ∈ R

n
+.

2.2 Basic properties of the sparsest point of P

Note that for any x ∈ P, b = Ax = AJ+(x)xJ+(x) where J+(x) = {i : xi > 0}. Lemma 3.1 in [60]

claims that at any sparsest point x of P , the associated matrix

[
AJ+(x)

eTJ+(x)

]
has full column rank.

This result can be further improved, as shown by the following lemma.

Lemma 2.1. At any sparsest point x of P, the matrix AJ+(x) has full column rank.

Proof. Let x be a sparsest point in P. Assume that the columns of AJ+(x) are linearly de-

pendent. Then there exists a vector v such that AJ+(x)v = 0 and v 6= 0. Consider the point

xJ+(x) + λv where λ ∈ R. Note that b = AJ+(x)xJ+(x) and xJ+(x) > 0. By the definition of v, we

see that AJ+(x)

(
xJ+(x) + λv

)
= b holds for any number λ ∈ R. Since xJ+(x) > 0 and v 6= 0, there

exists a number λ∗ such that xJ+(x)+λ∗v ≥ 0 and at least one of the components of xJ+(x)+ λ∗v

is equal to zero. Let x̃ ∈ R
n
+ be given by x̃J+(x) = xJ+(x)+λ∗v ≥ 0 and x̃J+(x) = xJ+(x) = 0. Then

x̃ ∈ P and ‖x̃‖0 < ‖x‖0 (i.e., x̃ is sparser than x), leading to a contradiction. Thus when x is a

sparsest point of P , AJ+(x) must have full column rank. �

Clearly, the sparsest point of P may not be an optimal solution to the ℓ1-minimization problem

min{‖x‖1 : x ∈ P}. Even if the sparsest point of P is an optimal solution to ℓ1-minimization,

it may not be the only optimal solution to this problem. Thus we consider the weighted ℓ1-

minimization problem

γ∗ = min
x

{‖Wx‖1 : x ∈ P},

where W = diag(w), w ∈ R
n
+, and γ∗ is the optimal value of the problem. Note that replacing

w by αw for any α > 0 does not affect the optimal solution of the above problem. Particularly,

when γ∗ 6= 1, replacing W by W/γ∗ yields 1 = min{‖(W/γ∗)x‖1 : x ∈ P}. Thus without loss of

generality, we consider the following weighted ℓ1-minimization with γ∗ = 1 :

1 = min
x

{‖Wx‖1 : x ∈ P}. (3)

Throughout the paper, we use W to denote the set of such weights, i.e.,

W =
{
w ∈ R

n
+ : 1 = min

x
{‖Wx‖1 : x ∈ P}

}
, (4)

which is not necessarily bounded. It is worth noting that the uniqueness of solutions to weighted

ℓ1-minimization plays a vital role in sparse signal recovery and in solving an individual ℓ0-

minimization problem [8, 20, 21]. If x is a sparsest point of P, then there exists a weight w ∈ R
n
+

such that x is the unique optimal solution to (3), as indicated by the next result.

Theorem 2.2. Let x be a point in P such that AJ+(x) has full column rank. Then for any

weight w ∈ W satisfying

wJ+(x) > AT
J+(x)

AJ+(x)

(
AT

J+(x)AJ+(x)

)−1
wJ+(x), (5)

x is the unique optimal solution of (3).
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Proof. Suppose that x ∈ P and AJ+(x) has full column rank. Let x̃ be an arbitrary point in

P. Then Ax̃ = b and x̃ ≥ 0, which can be written as AJ+(x)x̃J+(x) +A
J+(x)

x̃
J+(x)

= b, x̃J+(x) ≥ 0

and x̃
J+(x)

≥ 0. This, together with AJ+(x)xJ+(x) = b, implies that

AJ+(x)(x̃J+(x) − xJ+(x)) +AJ+(x)x̃J+(x) = 0, x̃J+(x) ≥ 0, x̃J+(x) ≥ 0.

Since AJ+(x) has full column rank, we have

x̃J+(x) = xJ+(x) −
(
AT

J+(x)AJ+(x)

)−1
AT

J+(x)AJ+(x)x̃J+(x), x̃J+(x) ≥ 0, x̃J+(x) ≥ 0.

For any x̃ ∈ P and x̃ 6= x, the above relation implies that x̃J+(x) 6= 0. We now verify that under

(5), x must be the unique optimal solution to (3). Indeed, for any x̃ ∈ P and x̃ 6= x, we have

‖Wx‖1 − ‖Wx̃‖1 = wTx− wT x̃

= wT
J+(x)xJ+(x) − (wT

J+(x)x̃J+(x) +wT
J+(x)

x̃
J+(x)

)

=

(
wT
J+(x)

(
AT

J+(x)AJ+(x)

)−1
AT

J+(x)AJ+(x) − wT
J+(x)

)
x̃J+(x)

=

(
AT

J+(x)
AJ+(x)

(
AT

J+(x)AJ+(x)

)−1
wJ+(x) − w

J+(x)

)T

x̃
J+(x)

< 0,

where the inequality follows from (5) and the fact that x̃
J+(x)

6= 0. Thus ‖Wx‖1 < ‖Wx̃‖1 for any

x̃ ∈ P and x̃ 6= x, and hence x is the unique optimal solution to (3). �

To suit the convenience of later discussions, we introduce the following definition.

Definition 2.3. A weight w ∈ W given as (4) is called an optimal weight if any solution of

(3) with this weight is a sparsest point in P.

Clearly, there exist infinitely many weights satisfying (5). Merging Lemma 2.1 and Theorem

2.2 yields the following corollary.

Corollary 2.4. For any sparsest point x of P , there exist infinitely many optimal weights in

W such that x is the unique optimal solution of (3).

Although Corollary 2.4 seems intuitive and some informal discussions might be found in the

literature such as [26], we state this property with a rigorous analysis given in Theorem 2.2.

Corollary 2.4 indicates that an optimal weight w ∈ W always exists and that locating the sparsest

point of a polyhedral set can be transformed, in theory, to solving a weighted ℓ1-problem (a linear

program) through an optimal weight. Depending on the sparsest point x, however, the optimal

weight satisfying (5) is not given explicitly. How to identify or estimate an optimal weight becomes

fundamentally important for tackling ℓ0-minimization.

2.3 Merit functions for sparsity

It is well known that the function ‖s‖0, where s ∈ R
n
+, can be approximated by a concave function

Fε(s), where ε ∈ (0, 1) is a given parameter (see, e.g., [35, 6, 36, 45, 62]). For example, ‖s‖0 can

be approximated by each of the following functions:

Fε(s) := n−
1

log ε

(
n∑

i=1

log(si + ε)

)
, (6)
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Fε(s) :=
n∑

i=1

si
si + ε

, (7)

where si > −ε for all i = 1, . . . , n, and

Fε(s) :=
n∑

i=1

(si + ε1/ε)ε =
∥∥∥s+ ε1/εe

∥∥∥
ε

ε
(8)

where si > −ε1/ε for all i = 1, . . . , n. It is evident that every function above satisfies the following

properties: (i) Fε(s) is concave in s ∈ R
n
+; (ii) for every given s ∈ R

n
+, Fε(s) → ‖s‖0 as ε → 0; (iii)

Fε(s) is continuously differentiable in s over an open neighborhood of Rn
+. Similar to the concept

in [62], the function with the above properties is called a merit function for sparsity in the sense

that minimizing such a function promotes the sparsity of its variable. While the above merit

functions are defined over the neighborhood of Rn
+, they can be extended to the whole space by

replacing si with |si| in (6)–(8). Thus when restricted to the first orthant, the definition of merit

functions for sparsity in [62] is the same as the one discussed here.

In this paper, we focus on a class of merit functions for sparsity satisfying the following

assumption.

Assumption 2.5. Let Fε(s), where ε > 0 is a parameter, be concave and continuously

differentiable with respect to s over an open neighborhood of R
n
+. Let 0 < δ1 < δ2 be two

arbitrarily given constants and S(δ1, δ2) = {s ∈ R
n
+ : δ1 ≤ si ≤ δ2 if si 6= 0}. For any fixed

number δ∗ ∈ (0, 1), there exists a small number ε∗ > 0 such that

Fε(s)−Fε(s
′) ≥ 1− δ∗ > 0 (9)

holds for any ε ∈ (0, ε∗], s ∈ S(δ1, δ2), and any s′ with 0 ≤ s′ ≤ δ2e and ‖s′‖0 < ‖s‖0.

Roughly speaking, a function satisfying Assumption 2.5 has some monotonicity property in

the sense that when ‖s‖0 decreases, so does the value of Fε(s). Thus minimizing such a function

yields a sparse vector, and maximizing yields a dense vector. It is not difficult to construct a

function satisfying Assumption 2.5. In fact, (6), (7) and (8) are such functions, as shown by the

lemma below.

Lemma 2.6. For any ε ∈ (0, 1), the functions (6)–(8) are concave and continuously differen-

tiable with respect to s over an open neighborhood of Rn
+, and these functions satisfy Assumption

2.5.

Proof. Clearly, (6)–(8) are concave and continuously differentiable functions over the neigh-

borhood of R
n
+. We now prove that these functions satisfy Assumption 2.5. Let δ∗ ∈ (0, 1)

be a fixed constant and let 0 < δ1 < δ2 be two arbitrarily given constants. Define the set

S(δ1, δ2) = {s ∈ R
n
+ : δ1 ≤ si ≤ δ2 if si 6= 0}. We now show that for each of the functions (6)–(8),

there exists a small ε∗ > 0 such that (9) holds for any ε ∈ (0, ε∗] and any nonnegative vectors s, s′

satisfying that s ∈ S(δ1, δ2), 0 ≤ s′ ≤ δ2e and ‖s′‖0 < ‖s‖0.

(i) Consider the function (6). Note that log ε < 0 for any ε ∈ (0, 1). Then for any t ∈ [δ1, δ2]

and ε ∈ (0, 1), we have

log(δ2 + ε)/ log ε ≤ log(t+ ε)/ log ε ≤ log(δ1 + ε)/ log ε, (10)
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and for any t ∈ [0, δ1) and ε ∈ (0, 1) we have

log(δ1 + ε)/ log ε ≤ log(t+ ε)/ log ε ≤ 1. (11)

Note that log(δ1 + ε)/ log ε → 0 and log(δ2 + ε)/ log ε → 0 as ε → 0+. There exists ε∗ ∈ (0, 1)

such that for any ε ∈ (0, ε∗],

|log(δ1 + ε)/ log ε| ≤ δ∗/3n, |log(δ2 + ε)/ log ε| ≤ δ∗/3n. (12)

Thus for any s ∈ S(δ1, δ2) and ε ∈ (0, ε∗], it follows from (10) and (12) that

∣∣∣∣∣

(∑

si>0

log(si + ε)

)
/ log ε

∣∣∣∣∣ ≤ ‖s‖0(
δ∗

3n
) ≤

δ∗

3
,

which implies that for any given ε ∈ (0, ε∗] and s ∈ S(δ1, δ2),

Fε(s) = n−

[(∑

si>0

log(si + ε)

)
/ log ε+

(∑

si=0

log(si + ε)

)
/ log ε

]

= ‖s‖0 −

(∑

si>0

log(si + ε)

)
/ log ε ≥ ‖s‖0 −

δ∗

3
. (13)

We now consider the value of Fε at s′ where 0 ≤ s′ ≤ δ2e. Then

Fε(s
′) = n−

∑

s′
i
=0

log(s′i + ε)

log ε
−

∑

s′
i
∈(0,δ1)

log(s′i + ε)

log ε
−

∑

s′
i
∈[δ1,δ2]

log(s′i + ε)

log ε

= ‖s′‖0 −
∑

s′
i
∈(0,δ1)

log(s′i + ε)

log ε
−

∑

s′
i
∈[δ1,δ2]

log(s′i + ε)

log ε
.

By (10), (11) and (12), we can see that

∣∣∣∣∣∣
∑

s′
i
∈[δ1,δ2]

log(s′i + ε)

log ε

∣∣∣∣∣∣
≤

δ∗

3
,

∑

s′
i
∈(0,δ1)

log(s′i + ε)

log ε
≥ −

δ∗

3
.

Therefore, Fε(s
′) ≤ ‖s′‖0 + δ∗/3 + δ∗/3 = ‖s′‖0 + 2δ∗/3. This, combined with (13), yields

Fε(s)−Fε(s
′) ≥ (‖s‖0 − δ∗/3)− (‖s′‖0 + 2δ∗/3) = (‖s‖0 − ‖s′‖0)− δ∗,

which implies (9) as long as ‖s‖0 > ‖s′‖0 (i.e., ‖s‖0 − ‖s′‖0 ≥ 1).

(ii) Consider the function (7). Clearly, there exists ε∗ ∈ (0, 1) such that for any ε ∈ (0, ε∗]

and for any si ∈ [δ1, δ2], we have 1 − δ∗

n ≤ δ1
δ1+ε ≤ si

si+ε ≤ δ2
δ2+ε ≤ 1. Thus for any ε ∈ (0, ε∗],

s ∈ S(δ1, δ2) and 0 ≤ s′ ≤ δ2e, we have

Fε(s) =
n∑

i=1

si
si + ε

=
∑

si∈[δ1,δ2]

si
si + ε

≥ ‖s‖0

(
1−

δ∗

n

)
, Fε(s

′) =
∑

s′
i
>0

s′i
s′i + ε

≤ ‖s′‖0.

Merging these inequalities yields

Fε(s)−Fε(s
′) ≥ (1−

δ∗

n
)‖s‖0 − ‖s′‖0 = ‖s‖0 − ‖s′‖0 −

δ∗

n
‖s‖0 ≥ (‖s‖0 − ‖s′‖0)− δ∗,
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which implies (9) provided that ‖s‖0 > ‖s′‖0 (i.e., ‖s‖0 − ‖s′‖0 ≥ 1).

(iii) Finally, we consider (8). Note that (δ1 + ε1/ε)ε → 1 and (δ2 + ε1/ε)ε → 1 as ε → 0. Thus

there exists a ε∗ ∈ (0, 1) satisfying ε∗ < δ∗/(2n + 1) such that for any ε ∈ (0, ε∗] and si ∈ [δ1, δ2],

the following inequalities hold:

1−
δ∗

2n + 1
≤ (δ1 + ε1/ε)ε ≤ (si + ε1/ε)ε ≤ (δ2 + ε1/ε)ε ≤ 1 +

δ∗

2n+ 1
. (14)

Hence, for any s ∈ S(δ1, δ2), we have

Fε(s) =
∑

si>0

(si + ε1/ε)ε +
∑

si=0

(si + ε1/ε)ε ≥ (1−
δ∗

2n+ 1
)‖s‖0 + (n− ‖s‖0)ε.

For 0 ≤ s′ ≤ δ2e, it follows from (14) that

Fε(s
′) =

∑

s′
i
>0

(s′i + ε1/ε)ε +
∑

s′
i
=0

(s′i + ε1/ε)ε ≤

(
1 +

δ∗

2n+ 1

)
‖s′‖0 + (n− ‖s′‖0)ε.

Note that ε∗ ≤ δ∗

2n+1 < δ∗ and ‖s‖0 + ‖s′‖0 ≤ 2n. For any ε ∈ (0, ε∗] and s, s′ satisfying s ∈

S(δ1, δ2), 0 ≤ s′ ≤ δ2e and ‖s′‖0 < ‖s‖0, we have

Fε(s)−Fε(s
′) ≥

(
1−

δ∗

2n+ 1

)
‖s‖0 + (n − ‖s‖0)ε−

[(
1 +

δ∗

2n+ 1

)
‖s′‖0 + (n− ‖s′‖0)ε

]

= (‖s‖0 − ‖s′‖0)(1− ε)−
δ∗

2n+ 1
(‖s‖0 + ‖s′‖0)

≥

(
1−

δ∗

2n+ 1

)
−

δ∗

2n + 1
(2n) = 1− δ∗ > 0,

as desired. �

3 New construction of weighted ℓ1-algorithms

A central (and open) question concerning weighted ℓ1-algorithms is how the weight should be

chosen so that the algorithm can locate a sparsest point of P. In existing reweighted ℓ1-methods

(e.g., [11, 22, 32, 13, 15, 62]), the weight wk is chosen according to the current iterate xk. Consider

the following example in [11]:

wk
i =

1

|xki |+ ε
for i = 1, . . . , n,

where ε is a small positive parameter. We see that wk
i is very large when |xki | and ε are very

small. In this case, weighted ℓ1-minimization penalizes the ith component of x, yielding the next

iterate xk+1 with xk+1
i ≈ 0. Thus xk+1 might have a sparsity pattern same as or very similar to

that of xk. This might cause the algorithm to fail to locate a sparsest point if the sparsity pattern

of the initial iterate is far from being the sparsest. The need to investigate other approaches for

the choice of weight is apparent.

In this section, we will develop a new construction of the weighted ℓ1-algorithm. Recall that

the dual problem of (3) is given by

max
(y,s)

{bT y : AT y + s = w, s ≥ 0} (15)
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where s is called the dual slack variable. It is well known that any linear programming problem

with an optimal solution must have a strictly complementary optimal solution (see Goldman and

Tucker [25]) in the sense that there exists a pair (x, (y, s)), where x is an optimal solution to (3)

and (y, s) is an optimal solution to (15), satisfying that (x, s) ≥ 0, xT s = 0 and x+ s > 0. Using

this property, we first prove that solving an ℓ0-minimization problem is equivalent to finding a

weight w ∈ W such that the dual problem (15) has the densest nonnegative vector s = w − AT y

among all possible choices of w ∈ W.

Theorem 3.1. Let (w∗, y∗, s∗) be an optimal solution to the bilevel programming problem

max(w,y,s) ‖s‖0 (16)

s.t. bT y = 1, s = w −AT y ≥ 0, w ≥ 0, 1 = min
x

{‖Wx‖1 : x ∈ P},

where W = diag(w). Then any optimal solution x∗ to the weighted ℓ1-minimization

min
x

{‖W ∗x‖1 : x ∈ P}, (17)

where W ∗ = diag(w∗), is a sparsest point of P. In addition, x∗ and s∗ satisfy that ‖x∗‖0+‖s∗‖0 =

n. Conversely, let w∗ ∈ W given by (4) satisfy that any optimal solution to (17) is a sparsest

point of P. Then there is a vector (y∗, s∗) such that (w∗, y∗, s∗) is an optimal solution to (16).

Proof. Let (w∗, y∗, s∗) be an optimal solution to (16). We now prove that any optimal solution

to (17) is a sparsest point of P. Let x̃ be a sparsest point of P. By Corollary 2.4, there exists a weight

w̃ ∈ W such that x̃ is the unique optimal solution to the problem 1 = minx{‖W̃x‖1 : x ∈ P},

where W̃ = diag(w̃), to which the dual problem is given by

max
(y,s)

{bT y : s = w̃ −AT y, s ≥ 0}.

There is a solution (ỹ, s̃) to this problem so that x̃ and s̃ are strictly complementary, and hence

‖x̃‖0 + ‖s̃‖0 = n. (18)

By the strong duality, we have bT ỹ = ‖W̃ x̃‖1 = min{‖W̃x‖1 : x ∈ P} = 1, which implies that

(w̃, ỹ, s̃) is a feasible solution to (16). Since (w∗, y∗, s∗) is an optimal solution to (16), we have

‖s̃‖0 ≤ ‖s∗‖0. (19)

Let x∗ be an arbitrary optimal solution of (17), to which the dual problem is given by

max
(y,s)

{bT y : s = w∗ −AT y, s ≥ 0}. (20)

By the strong duality again, the constraints of (16) imply that (y∗, s∗) is an optimal solution to

(20). Thus x∗ and s∗ are complementary, and hence

‖x∗‖0 + ‖s∗‖0 ≤ n. (21)

Merging (18), (19) and (21) yields

‖x∗‖0 ≤ n− ‖s∗‖0 ≤ n− ‖s̃‖0 = ‖x̃‖0
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which implies that x∗ is a sparsest point of P. Therefore, ‖x∗‖0 = ‖x̃‖0. This in turn implies from

the above inequalities that ‖x∗‖0 = n− ‖s∗‖0 (and hence x∗ and s∗ are strictly complementary).

Conversely, for a given weight w∗ ∈ W, we assume that any optimal solution of (17) is a

sparsest point of P. We prove that there exists a vector (y∗, s∗) such that (w∗, y∗, s∗) is an optimal

solution to (16). Let (w, y, s) be an arbitrary feasible point of (16). For this w, let x be an

optimal solution to the weighted ℓ1-problem min{‖Wx‖1 : x ∈ P} where W = diag(w). By linear

programming duality theory, the constraints of (16) imply that (y, s) is an optimal solution to

the dual problem of this weighted ℓ1-problem, and hence x and s are complementary. Thus the

following holds:

‖s‖0 ≤ n− ‖x‖0 ≤ n− z∗, (22)

where z∗ is the optimal value of (2), i.e., z∗ = min{‖x‖0 : x ∈ P}. So n−z∗ is the upper bound for

the optimal value of (16). We now consider the problem (17) with weight w∗ and its dual problem.

Let (x∗, (y∗, s∗)) be a pair of strictly complementary solutions to (17) and its dual problem (such

a pair always exists by linear programming theory). Thus

‖s∗‖0 = n− ‖x∗‖0 = n− z∗, (23)

where the second equality follows from the assumption that any optimal solution to (17) is a

sparsest point of P. Since (w∗, y∗, s∗) is a feasible solution to (16), it follows from (22) and (23)

that ‖s∗‖0 is the optimal value of (16). Thus (w∗, y∗, s∗) is an optimal solution to (16). �

Remark 3.2. For any given w ∈ W, let x(w) denote an optimal solution to the problem (3),

and let (y(w), s(w)) denote an optimal solution to its dual problem (15). By linear programming

theory, x(w) and s(w) are complementary. This implies that

‖x(w)‖0 + ‖s(w)‖0 ≤ n for any w ∈ W, (24)

where the equality can be achieved when x(w) and s(w) are strictly complementary. From (24),

we see that an increase in ‖s(w)‖0 leads to a decrease of ‖x(w)‖0. Thus the densest possible vector

in {s(w) : w ∈ W}, denoted by s(w∗), yields the sparsest vector x(w∗) which must be a sparsest

point of P. Clearly, the vector (w∗, y(w∗), s(w∗)) is an optimal solution to the bilevel programming

problem (16). By Definition 2.3, we see that the weight

w∗ ∈ argmax{‖s(w)‖0 : w ∈ W}

is an optimal weight by which the sparsest point of P can be immediately obtained via weighted

ℓ1-minimization. Theorem 3.1 shows that such an optimal weight can be obtained by solving the

bilevel program (16).

Although it is generally difficult to solve a bilevel program precisely (see, e.g., [33]), the

special structure of (16) makes it possible to find an approximate optimal weight via a certain

approximation or relaxation of (16). Let Fε(s) be a merit function for sparsity defined in Section

2.3. Replacing the objective of (16) by Fε(s) leads to the following continuous approximation of

(16):

max(w,y,s) Fε(s) (25)

s.t. bT y = 1, s = w −AT y ≥ 0, 1 = min
x

{‖Wx‖1 : x ∈ P}, w ≥ 0.
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By duality theory, the constraints of (25) imply that for any given w ∈ W, the vector (y, s)

satisfying the constraints is an optimal solution to the problem (15) which maximizes bT y subject

to the constraint s = w −AT y ≥ 0. Namely, (25) can be written as

max(w,s) Fε(s)

s.t. s = w −AT y, w ∈ W, where y is an optimal solution to (26)

max
y

{bT y : w −AT y ≥ 0}.

In this bilevel program, both bT y and Fε(s) are required to be maximized, subject to the constraint

s = w − AT y ≥ 0 with all possible choices of w ∈ W. Thus we consider the following model in

order to possibly maximize both objectives:

max
(w,y,s)

{
bT y + αFε(s) : s = w −AT y ≥ 0, w ∈ W

}
, (27)

where α > 0 is a given parameter. From (26), we see that Fε(s) should be maximized based

on the condition that bT y is maximized over the feasible set of (27). This indicates that a small

parameter α in (27) should be chosen in order to meet this condition.

Note that (27) might not have a finite optimal value since W is not necessarily bounded.

Another difficulty of (27) is that the constraint w ∈ W is not given explicitly. Since scaling

of weight does not affect the solution of (3), we may confine w to a bounded convex set B in

R
n
+ so that the problem (27) has a finite optimal value. The constraint w ∈ W guarantees 1 =

minx{‖Wx‖1 : x ∈ P}, which by strong duality is equivalent to 1 = max{bT y : s = w−AT y ≥ 0}.

Thus bT y ≤ 1 is a certain relaxation of the constraint w ∈ W. Based on these observations, we

propose the following convex relaxation model of (27):

max
(w,y,s)

{bT y + αFε(s) : s = w −AT y ≥ 0, bT y ≤ 1, w ∈ B}, (28)

where B ⊆ R
n
+ is a bounded convex set. From the above discussion, we see that ε is a parameter

controlling the proximity of the ℓ0-norm and merit functions, and α is a parameter controlling the

proximity of an optimization problem and its perturbation. Thus small values should be chosen

for (α, ε) in order to ensure that (28) is a certain approximation of (16), and thus the vector w

resulting from (28) can be seen as an approximate optimal weight.

Clearly, the solution of (28) relies on the choice of B. For the convenience of convergence

analysis, we choose B as the following bounded polytope:

B = {w ∈ R
n
+ : (x0)Tw ≤ M, w ≤ M∗e}, (29)

where M and M∗ are two given positive numbers, and x0 is the solution to an initial weighted

ℓ1-minimization problem (e.g. the normal ℓ1-minimization with weight e). Except for convergence

analysis, there is another reason to include the inequality (x0)Tw ≤ M in (29). Note that x0 (as

a solution of initial weighted ℓ1-minimization) admits a certain level of sparsity and its sparsity

pattern might carry some useful information for the selection of weights. In existing framework

of reweighted ℓ1-algorithms, the selection of weights often relies on the magnitude of components

of the current iterate, say x0. If x0 is not the sparsest one, the existing idea is to generate another

iterate that might be sparser than x0 by solving a weighted ℓ1-minimization problem with a

weight selected according to the following strategy: Assign large weights corresponding to small
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components of x0, typically, wi = M
(x0)i

for i = 1, . . . , n, where M is a constant. This weight-

selection idea in existing reweighted ℓ1-algorithms is reflected in the inequality (x0)Tw ≤ M in

(29).

We are now in a position to describe the algorithm.

Algorithm 3.3. Let α, ε ∈ (0, 1) be given parameters and let w0 ∈ R
n
++ be a given vector.

• Initialization: Solve min{‖W 0x‖1 : x ∈ P}, where W 0 = diag(w0), to obtain a minimizer

x0. Set γ0 = ‖W 0x0‖1 and choose two constants M and M∗ such that 1 ≤ M ≤ M∗ and

M‖w0‖∞/γ0 ≤ M∗.

• Step 1. Solve the convex optimization problem

max
(w,y,s)

{
bT y + αFε(s) : s = w −AT y ≥ 0, bT y ≤ 1, (x0)Tw ≤ M, 0 ≤ w ≤ M∗e

}
. (30)

Let (w̃, ỹ, s̃) be an optimal solution to this problem.

• Step 2. Let W̃ = diag(w̃) and solve

min{‖W̃x‖1 : x ∈ P} (31)

to obtain a point x̃.

Theorem 3.1 promotes the following idea: Seek an (approximate) optimal weight by maxi-

mizing the cardinality of the support of dual slack variables with all possible choices of w ∈ R
n
+.

Algorithm 3.3 can be seen as an initial development in this direction. Clearly, some modification

or improvement can be made to Algorithm 3.3, depending on the choice of B and the method of

relaxation of (16). Also, an iterative version of the algorithm can be presented when B, α and

ε are iteratively updated in the course of the algorithm according to certain updating schemes.

Clearly, a key difference between Algorithm 3.3 and existing weighted ℓ1-methods lies in the prin-

ciple for tackling ℓ0-minimization. Existing weighted ℓ1-algorithms working in primal space have

been derived from minimizing nonlinear merit functions for sparsity via linearization (i.e., first-

order approximation) which results in the weight given by the gradient of merit functions at the

current iterate (see [22, 57, 62] for details). The theoretical efficiency of these linearization-based

algorithms has still not been properly addressed or has been addressed under some restrictive

assumptions. The benefit for ℓ0-norm maximization is that it can be achieved by maximizing

a concave merit function for sparsity (i.e., minimizing a convex function) without requiring any

first-order estimation of the merit function. The weight ŵ in Algorithm 3.3 can be viewed as an

approximate optimal weight generated by the convex optimization problem (30) in dual space.

4 Guaranteed performance

In this section, the theoretical performance of Algorithm 3.3 will be shown under certain assump-

tions. We first prove a generic guaranteed performance for Algorithm 3.3 under some conditions.

The guaranteed performance under a stronger condition will be discussed in Section 4.2.
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4.1 Generic performance guarantee

Note that Fε(s) is independent of the polyhedral set P, so Assumption 2.5 is not a condition

imposed on P. We make the following assumption on P.

Assumption 4.1. Let A ∈ R
m×n (m < n) be a matrix satisfying that {y ∈ R

m : AT y ≤ w}

is bounded for some w ∈ R
n
+.

This assumption is equivalent to saying that {d ∈ R
m : ATd ≤ 0} = {0} (see, e.g., Theorem

8.4 in [46]). This is a mild assumption on P. To see this, for a vector x ∈ R
n
+, let us define

x+, x− ∈ R
n
+ as (x+)i = max{xi, 0} and (x−)i = |min{xi, 0}| for i = 1, . . . , n. Then x = x+ − x−

and ‖x‖0 =

∥∥∥∥
[
x+
x−

]∥∥∥∥
0

. Thus for any given full-row-rank matrix H ∈ R
m×n (m < n), the ℓ0-

problem minx{‖x‖0 : Hx = b} can be reformulated as the following problem seeking the sparsest

point of a polyhedral set:

min

{∥∥∥∥
[
x+
x−

]∥∥∥∥
0

: Hx+ −Hx− = b, x+ ≥ 0, x− ≥ 0

}
,

which clearly satisfies Assumption 4.1 since

[
HT

−HT

]
d ≤ 0 implies that d = 0 and hence the set

{
y ∈ R

m :

[
HT

−HT

]
y ≤ w

}
is bounded for any given w ∈ R

n
+. We also note that ATd ≤ 0 means

the angles between d and every column of A being greater than or equal to π/2. Clearly, when the

columns of A ∈ R
m×n, where m ≪ n, are uniformly distributed on the surface of a m-dimensional

sphere, the vector d satisfying ATd ≤ 0 would be equal to zero almost surely. Thus the polyhedral

sets with such matrices satisfy Assumption 4.1 almost surely.

A generic guaranteed performance of Algorithm 3.3 is given as follows.

Theorem 4.2. Let Fε(s) be a concave and continuously differentiable merit function for spar-

sity with respect to s over an open set containing R
n
+, and let Fε(s) satisfy Assumption 2.5. Sup-

pose that Assumption 4.1 is satisfied. Let w0 ∈ R
n
++ be arbitrarily given and γ0 = min{‖W 0x‖1 :

x ∈ P}. Then there exists a number M̂ ≥ 1 satisfying the following property: For any M ≥ M̂

and M∗ ≥ M max{1, ‖w0‖∞/γ0}, there is a number ε∗ ∈ (0, 1) such that for any ε ∈ (0, ε∗],

there is α∗ ∈ (0, 1) such that for any α ∈ (0, α∗], the point x̃ generated by Algorithm 3.3 with

(M,M∗, α, ε) is a sparsest point of P provided that (w̃)T x̃ = 1, where w̃ is the weight generated

at Step 1 of Algorithm 3.3.

Roughly speaking, under Assumptions 2.5 and 4.1, Algorithm 3.3 can find a sparsest point of

P if α and ε are chosen to be small enough, M and M∗ are chosen to be large enough, and the

optimal solution to (31) satisfies w̃T x̃ = 1 (which can be guaranteed under another assumption

on P, see Section 4.2 for details). Before proving Theorem 4.2, let us first introduce the following

constant that will be used in its proof:

σ∗ = min
x∈Z∗

∥∥∥AT
J+(x)

AJ+(x)(A
T
J+(x)AJ+(x))

−1
∥∥∥
∞
, (32)

where Z∗ denotes the set of the sparsest points of P. By Lemma 2.1, for every x ∈ Z∗, the matrix

AJ+(x) has full column rank. This implies that no two distinct sparsest points share the same

support. Thus Z∗ is a finite set (containing only a finite number of elements), and thus σ∗ is
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a finite nonnegative constant (determined by the problem data (A, b)). The following lemma

established by Mangasarian and Meyer [37] (see Friedlander and Tseng [23] for a more general

setting) will be used in the proof of Theorem 4.2 as well.

Lemma 4.3 [37]. Let φ be a continuously differentiable convex function on some open set

containing the feasible set Q of the linear program min{cTx : x ∈ Q}. If the solution set Ŝ of the

linear program is nonempty and bounded, and cTx + α̃φ(x) is bounded from below on the set Q

for some α̃ > 0, then the solution set of the problem min{cTx + αφ(x) : x ∈ Q} is contained in

Ŝ for sufficiently small α > 0.

We also need to establish two technical results. The first result below claims that by a suitable

choice of (M,M∗), the set B defined as (29) contains an optimal weight for a sparsest point of P.

Lemma 4.4. Let x∗ be the sparsest point satisfying
∥∥∥AT

J+(x∗)
AJ+(x∗)(A

T
J+(x∗)AJ+(x∗))

−1
∥∥∥
∞

= σ∗. (33)

where σ∗ is given by (32). Let w0 ∈ R
n
++ be any given vector and (γ0, x0) be generated at the

initial step of Algorithm 3.3. Then there exist a number M̂ ≥ 1 and an optimal weight w∗ ∈ W

corresponding to x∗ such that the following hold:

(i)

w∗ ∈ B = {w ∈ R
n
+ : (x0)Tw ≤ M, w ≤ M∗e} (34)

for any M ≥ M̂ and any M∗ ≥ M max {1, ‖w0‖∞/γ0}.

(ii) x∗ is the unique optimal solution to the problem

γ∗ = min
x

{‖W ∗x‖1 : x ∈ P} (35)

where γ∗ = 1.

Proof. Note that γ0 is the optimal value and x0 is an optimal solution to the initial problem

min{‖W 0x‖1 : x ∈ P}. Since b 6= 0 and w0 ∈ R
n
++, we must have that x0 6= 0 and γ0 > 0. Setting

ŵ = w0/γ0 and Ŵ = diag(ŵ), we see that x0 is still an optimal solution to the problem

γ̂ = min{‖Ŵx‖1 : x ∈ P} (36)

where γ̂ = 1. We now show that there exists a number M̂ ≥ 1 and an optimal weight w∗ ∈ W

satisfying the desired properties. First, we note that there is a sparsest point x∗ ∈ P satisfying

(33). For simplicity, we denote the support of x∗ by J (i.e., J = J+(x
∗)) and we define ρ =

‖Ŵx∗‖1 = (ŵJ)
Tx∗J . From (36), we see that ρ ≥ γ̂ = 1. Note that σ∗ is a finite constant. Let σ

be a number satisfying σ > σ∗. By using (ŵ, ρ, σ), we define the vector w∗ as

w∗
J = ŵJ/ρ, w∗

J
= σ(‖ŵJ‖∞)eJ (37)

and we define the constant M̂ := max{1, σβ}, where

β =
‖w0‖∞

min1≤i≤nw0
i

≥ 1

is a number determined by w0. We now show that (34) holds for any M ≥ M̂ and M∗ ≥

M max{1, ‖w0‖∞/γ0}. Since ‖ŵJ‖∞ = ‖w0
J‖∞/γ0 ≤ ‖w0‖∞/γ0 = β

(
min1≤i≤n w

0
i

)
/γ0, one has

(x0
J
)T (‖ŵJ‖∞eJ) ≤ β(x0

J
)T
[(

min
1≤i≤n

w0
i

)
eJ

]
/γ0 ≤ β(x0

J
)Tw0

J
/γ0 = β(x0

J
)T ŵJ .
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Therefore, by (37) and noting that (x0)T ŵ = γ̂ = 1 and ρ ≥ 1, we have

(x0)Tw∗ = (x0J)
T ŵJ/ρ+ (x0

J
)T (σ‖ŵJ‖∞eJ) ≤ (x0J)

T ŵJ/ρ+ (σβ)(x0
J
)T ŵJ

≤ max{1/ρ, σβ}[(x0J )
T ŵJ + (x0

J
)T ŵJ ] ≤ M̂ ≤ M

and

‖w∗‖∞ = max{‖w∗
J‖∞, ‖w∗

J
‖∞} ≤ max{1/ρ, σ}‖ŵJ‖∞ ≤ max{1, σβ}‖ŵ‖∞

≤ M‖w0‖∞/γ0 ≤ M∗.

Therefore, (34) holds. We now show that x∗ is the unique solution to (35) with w∗ given by (37)

and the optimal value of (35) is equal to 1. Indeed, by (33) and (37) and the fact ρ ≥ 1, we have

∥∥AT
J
AJ(A

T
JAJ )

−1w∗
J

∥∥
∞

≤
∥∥AT

J
AJ (A

T
JAJ)

−1
∥∥
∞

· ‖w∗
J‖∞ < σ‖ŵJ‖∞/ρ ≤ σ‖ŵJ‖∞,

which, together with (37), implies that

AT
J
AJ(A

T
JAJ )

−1w∗
J < σ(‖ŵJ‖∞)eJ = w∗

J
.

Therefore, by Theorem 2.2, x∗ is the unique optimal solution to (35). Moreover, the optimal value

of (35) is given by γ∗ = ‖W ∗x∗‖1 = (w∗
J)

Tx∗J = (ŵJ)
Tx∗J/ρ = 1. Therefore, w∗ ∈ W is an optimal

weight. �

We now prove the next technical result.

Lemma 4.5. Let Fε satisfy Assumptions 2.5 and matrix A satisfy Assumption 4.1. Let x∗

be the sparsest point satisfying (33), w∗ be the optimal weight (corresponding to x∗) satisfying

(34) and M∗ be the constant given in Lemma 4.4. Let (y∗, s∗) be the optimal solution of the dual

problem of (35), i.e., (y∗, s∗) ∈ argmax{bT y : s = w∗ − AT y, s ≥ 0}, such that s∗ and x∗ are

strictly complementary. Then there exists ε∗ ∈ (0, 1) such that

Fε(s
∗)−Fε(s

′) ≥ 3/4 (38)

holds for any ε ∈ (0, ε∗] and any s′ ∈ S(M∗) with ‖s′‖0 < ‖s∗‖0, where

S(M∗) = {s ∈ R
n
+ : s = w −AT y ≥ 0, y ∈ R

m, 0 ≤ w ≤ M∗e}. (39)

Proof. First, we consider the dual problem of (35)

max
(y,s)

{bT y : s = w∗ −AT y, s ≥ 0}. (40)

By the choice of w∗, x∗ is the unique optimal solution to (35). Thus by linear programming

theory, there is an optimal solution (y∗, s∗) to (40), where s∗ = w∗−AT y∗ ≥ 0, such that x∗ ∈ R
n
+

and s∗ ∈ R
n
+ are strictly complementary, i.e., (x∗)T s∗ = 0 and x∗ + s∗ > 0. We now further show

that J+(s
∗) 6= ∅. Since x∗ is the unique optimal solution to (35), AJ+(x∗) ∈ R

m×|J+(x∗)| has full

column rank (see Remark 3.7 in [60]). Thus

‖x∗‖0 = |J+(x
∗)| = rank(AJ+(x∗)) ≤ m.
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Since m < n, the strict complementarity of s∗ and x∗ implies that |J+(s
∗)| = n − |J+(x

∗)| ≥

n−m > 0. Thus we can define the positive number

δ1 = min
i∈J+(s∗)

s∗i . (41)

Second, we show that the set (39) is bounded. Note that {d ∈ R
m : ATd ≤ 0} is the set of

directions (i.e., the recession cone) of {y ∈ R
m : AT y ≤ M∗e}. By Theorem 8.4 in [46], a convex

set is bounded if and only if its recession cone consists of the zero vector alone. Thus Assumption

4.1 ensures that the recession cone {d ∈ R
m : ATd ≤ 0} = {0}, which implies that the set

{y ∈ R
m : AT y ≤ M∗e} is bounded. Thus, it follows from the fact

{y ∈ R
m : AT y ≤ w, 0 ≤ w ≤ M∗e} ⊆ {y ∈ R

m : AT y ≤ M∗e}

that the set S(M∗) given by (39) is bounded. As a result, there exists a number δ2 > 0 such

that 0 ≤ s ≤ δ2e for all s ∈ S(M∗). In particular, by the choice of w∗ which satisfies (34) and

by the definition of (y∗, s∗), we see that s∗ = w∗ − AT y∗ ≥ 0 and w∗ ≤ M∗e, so s∗ ∈ S(M∗).

This, together with (41), implies that 0 < δ1 ≤ s∗i ≤ δ2 for all i ∈ J+(s
∗), i.e., s∗ ∈ S(δ1, δ2).

Let δ∗ = 1/4 be a fixed constant. Since Fε(s) satisfies Assumption 2.5, there exists a number

ε∗ ∈ (0, 1) such that

Fε(s
∗)−Fε(s

′) ≥ 1− δ∗ = 3/4

holds for any ε ∈ (0, ε∗] and any s′ satisfying ‖s′‖0 < ‖s∗‖0 and 0 ≤ s′ ≤ δ2e. In particular, it

holds for any s′ ∈ S(M∗) with ‖s′‖0 < ‖s∗‖0. �

We are now in a position to prove Theorem 4.2. Note that (30) is solved for given parameters

α, ε ∈ (0, 1). In the following proof, we write the vector (w̃, ỹ, s̃) generated at Step 1 of Algorithm

3.3 as (w̃(α, ε), ỹ(α, ε), s̃(α, ε)), and the optimal solution x̃ of (31) as x̃(α, ε).

Proof of Theorem 4.2. Given the polyhedral set P , there is a sparsest point x∗ ∈ P satisfying

(33). Let (w0, γ0, x0) be given according to the initialization of Algorithm 3.3. By Lemma 4.4,

there exist a number M̂ ≥ 1 and an optimal weight w∗ ∈ W corresponding to x∗ such that

w∗ ∈ B = {w ∈ R
n
+ : (x0)Tw ≤ M, w ≤ M∗e}

for any choice of (M,M∗) satisfying M ≥ M̂ and M∗ ≥ M max{1, ‖w0‖∞/γ0}. Moreover, x∗ is

the unique solution to the problem (35). Under Assumptions 2.5 and 4.1, it follows from Lemma

4.5 that there exists a small number ε∗ ∈ (0, 1) such that (38) holds for any ε ∈ (0, ε∗] and any

s′ ∈ S(M∗) with ‖s′‖0 < ‖s∗‖0, where S(M∗) is defined by (39).

Let ε be any fixed number in (0, ε∗]. We now show that there exists a positive number α∗ ∈

(0, 1) satisfying the desired property stated in Theorem 4.2. To achieve this goal, we consider the

problem (30), which is a perturbed version of the linear program

max(w,y,s) bT y

s.t. s = w −AT y ≥ 0, bT y ≤ 1, (x0)Tw ≤ M, 0 ≤ w ≤ M∗e (42)

in the sense that (30) can be obtained by adding αFε(s) to the objective of (42). Let T ∗ be the

set of optimal solutions of (42). As shown in the proof of Lemma 4.5, under Assumption 4.1, the
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set {y ∈ R
m : AT y ≤ M∗e} is bounded. This implies that the feasible set of (42) is bounded,

and so is T ∗. By Assumption 2.5, Fε(s) is a continuously differentiable concave function over an

open neighborhood of the set {s ∈ R
n : s ≥ 0}. This is equivalent to saying that the function

F̂ε(w, y, s) := Fε(s)+0Tw+0T y = Fε(s) is a continuously differentiable concave function over an

open neighborhood of the feasible set of (42). Since the feasible set of (42) is closed and bounded,

for any given α > 0, the concave function bT y + αFε(s) = bT y + αF̂ε(w, y, s) is bounded from

above over the feasible set of (42). Therefore, by applying Lemma 4.3 to the maximization case,

it implies that there exists α∗ ∈ (0, 1) such that for any α ∈ (0, α∗], the solution set of (30) is a

subset of T ∗. Thus the optimal solution (w̃(α, ε), ỹ(α, ε), s̃(α, ε)) of (30) is also an optimal solution

to (42) for any α ∈ (0, α∗].

Because of the constraint bT y ≤ 1, the optimal value of (42) is at most 1. We now further

prove that the optimal value of (42) is equal to 1. Let ŵ = w0/γ0. As shown at the beginning of

the proof of Lemma 4.4, the optimal value γ̂ of (36) is equal to 1. By duality theory (or optimality

conditions), there exists an optimal solution (y(1), s(1)) to the dual problem

max
(y,s)

{bT y : s = ŵ −AT y ≥ 0}

such that bT y(1) = γ̂ = 1. By the definition of ŵ, it is easy to verify that ŵ ∈ B where B is given

by (34). In fact, since x0 is an optimal solution to (36), we have that (x0)T ŵ = γ̂ = 1 ≤ M̂ ≤ M

and

‖ŵ‖∞ = ‖w0‖∞/γ0 ≤ M‖w0‖∞/γ0 ≤ M∗

which implies that ŵ ≤ M∗e. Thus (ŵ, y(1), s(1)) satisfies that

s(1) = ŵ −AT y(1), bT y(1) = 1, (x0)T ŵ ≤ M, 0 ≤ ŵ ≤ M∗e

which implies that (w, y, s) = (ŵ, y(1), s(1)) is an optimal solution to (42) and the optimal value

of (42) is equal to 1. As shown above, (w̃(α, ε), ỹ(α, ε), s̃(α, ε)) is an optimal solution to (42) for

any α ∈ (0, α∗]. Thus we conclude that

bT ỹ(α, ε) = 1 for any α ∈ (0, α∗]. (43)

Given the vector w̃(α, ε), let us consider the linear program

γ̃(α, ε) = max
(y,s)

{bT y : s = w̃(α, ε) −AT y ≥ 0, bT y ≤ 1}, (44)

and its dual problem

min
(x,t)

{w̃(α, ε)T x+ t : Ax+ tb = b, (x, t) ≥ 0}. (45)

Due to the constraint bT y ≤ 1, the optimal value of (44) is at most 1. Note that for any

α ∈ (0, α∗], (ỹ(α, ε), s̃(α, ε)) is a feasible solution of (44) and ỹ(α, ε) satisfies (43). This implies

that (ỹ(α, ε), s̃(α, ε)) is an optimal solution to the problem (44) and the optimal value γ̃(α, ε) = 1.

By duality theory, the optimal value of (45) is also equal to 1. Thus the solution set of (45) is

given by

U (α,ε) = {(x, t) : w̃(α, ε)T x+ t = 1, Ax+ bt = b, (x, t) ≥ 0}.

We now consider the case w̃(α, ε)T x̃(α, ε) = 1. In this case, (x, t) = (x̃(α, ε), 0) ∈ U (α,ε), and

hence (x̃(α, ε), 0) is an optimal solution of (45). At the optimal solution (ỹ(α, ε), s̃(α, ε)) of (44),
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the values for the associated dual slack variables of (44) are (s̃(α, ε), 0). By the complementary

slackness, (x̃(α, ε), 0) and (s̃(α, ε), 0) are complementary, i.e., s̃(α, ε)T x̃(α, ε) = 0. This, together

with the nonnegativity of x̃(α, ε) and s̃(α, ε), implies that

‖x̃(α, ε)‖0 + ‖s̃(α, ε)‖0 ≤ n. (46)

We now prove that the point x̃(α, ε) must be a sparsest point of P. We prove this by contra-

diction. Assume that x̃(α, ε) is not a sparsest point of P. Then

‖x∗‖0 < ‖x̃(α, ε)‖0, (47)

where x∗ is the sparsest point of P satisfying (33). By linear programming theory, there exists

a solution (y∗, s∗) to the dual problem of (35) such that x∗ and s∗ are strictly complementary.

Thus we have ‖x∗‖0 + ‖s∗‖0 = n which, together with (46) and (47), yields

‖s∗‖0 − ‖s̃(α, ε)‖0 ≥ (n− ‖x∗‖0)− (n− ‖x̃(α, ε)‖0) = ‖x̃(α, ε)‖0 − ‖x∗‖0 > 0.

Thus ‖s̃(α, ε)‖0 < ‖s∗‖0. Clearly, s̃(α, ε) ∈ S(M∗), where S(M∗) is defined by (39). It follows

from Lemma 4.5 that (38) is satisfied, and hence

Fε(s
∗)−Fε(s̃(α, ε)) > 3/4. (48)

On the other hand, the vector (w∗, y∗, s∗) is a feasible point of (30). Since (w̃(α, ε), ỹ(α, ε), s̃(α, ε))

is an optimal solution to (30), we must have

bT ỹ(α, ε) + αFε(s̃(α, ε)) ≥ bT y∗ + αFε(s
∗).

By strong duality, Lemma 4.4 (ii) implies that bT y∗ = 1. This, together with (43), implies that the

above inequality is equivalent to Fε(s̃(α, ε)) ≥ Fε(s
∗), which contradicts (48). This contradiction

shows that x̃ = x̃(α, ε), generated at Step 2 of Algorithm 3.3, is a sparsest point of P. �

From the above proof, we see that under Assumptions 2.5 and 4.1, the point (w̃, ỹ, s̃) =

(w̃(α, ε), ỹ(α, ε), s̃(α, ε)) generated by Algorithm 3.3 satisfies the property (43) for any given suffi-

ciently small (α, ε). Since (ỹ(α, ε), s̃(α, ε)) is a feasible solution to the linear program max(y,s){b
T y :

s = w̃(α, ε) − AT y ≥ 0}, which is the dual problem of (31). Thus by (43), the optimal value of

this dual problem is at least 1. By duality theory, this in turn implies that the optimal value of

(31) is also at least 1. Thus

w̃(α, ε)T x̃(α, ε) ≥ 1 (49)

for any given sufficiently small (α, ε). Theorem 4.2 claims that when (49) holds with equality for

a sufficiently small pair (α, ε), x̃(α, ε) must be a sparsest point of P. In the next subsection, we

develop a condition to ensure that (49) holds with equality.

Note that all functions (6)–(8) satisfy Assumption 2.5. We also note that Assumption 4.1

is a mild condition imposed on polyhedral sets. From a theoretical point of view, such a mild

assumption is generally not enough to ensure Algorithm 3.3 to solve ℓ0-minimization, unless some

further conditions are imposed on the problem. This is exactly reflected by the condition ŵT x̂ = 1

(i.e., w̃(α, ε)T x̃(α, ε) = 1) in Theorem 4.2. The performance analysis in this paper does not rely on

the existing assumptions such as mutual coherence, RIP, NSP, and ERC. The condition ŵT x̂ = 1
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in Theorem 4.2 is verifiable in contrast to some existing assumptions. In the next section, we will

show that the so-called strict regularity of P (the ERC counterpart for polyhedral sets) implies

that ŵT x̂ = 1 if the parameters in Algorithm 3.3 are properly chosen. We will point out that the

mutual coherence condition can also imply our condition. Clearly, the standard ℓ1-minimization

(i.e., BP) and OMP only find one solution of ℓ0-minimization. By contrast, when ℓ0-minimization

admits multiple solutions, Algorithm 3.3 in this paper can find different or all solutions of the

problem by varying the initial weight (see the discussion at the end of Section 4.2). Moreover,

numerical experiments demonstrate that our algorithm remarkably outperforms BP for solving

ℓ0-minimization in many situations (see Section 5 for details).

4.2 Performance guarantee under strict regularity

In this subsection, we still denote by (w̃(α, ε), ỹ(α, ε), s̃(α, ε)) the solution of (30), i.e.,

max
(w,y,s)

{
bT y + αFε(s) : s = w −AT y ≥ 0, bT y ≤ 1, (x0)Tw ≤ M, 0 ≤ w ≤ M∗e

}

and by x̃(α, ε) the solution of (31), i.e.,

min{‖W̃x‖1 : x ∈ P}.

Under Assumption 4.1, we have shown that the vector (w̃(α, ε), ỹ(α, ε), s̃(α, ε)), generated by Step

1 in Algorithm 3.3, satisfies (49) for any sufficiently small (α, ε). We now impose another condition

on P to ensure that (49) holds with equality for any sufficiently small (α, ε). The condition is

based on the next definition.

Definition 4.6. P is said to be strictly regular if there is a sparsest point x ∈ P such that

‖AT
J+(x)

AJ+(x)(A
T
J+(x)AJ+(x))

−1‖∞ < 1.

Reduced to the sparsest solution of a system of linear equations, it is easy to see that the

strict regularity coincides with the exact recovery condition (ERC) introduced in [53]. In general,

however, the sparsest point of P is not a sparsest solution of the underlying system of linear

equations and vice versa. The strict regularity of P can be viewed as the generalized concept of

ERC to polyhedral sets. Clearly, if P is strictly regular, then σ∗ < 1, where σ∗ is the constant

determined by (32). Under the strict regularity of P, the performance of Algorithm 3.3 can be

guaranteed when the initial weight w0 and parameters (M,M∗, α, ε) are properly chosen, as shown

by the next result.

Theorem 4.7. Let Fε(s) be a concave and continuously differentiable merit function for

sparsity with respect to s over an open set containing R
n
+, and let Fε(s) satisfy Assumption 2.5.

Suppose that P is strictly regular and Assumption 4.1 is satisfied. Then there exists a constant

β∗ > 1 such that the following holds: For any given w0 ∈ R
n
++ with β := ‖w0‖∞/

(
min1≤i≤nw

0
i

)
<

β∗ and for any M∗ ≥ M max{1, ‖w0‖∞/γ0} where M = 1 and γ0 = min{‖W 0x‖0 : x ∈ P}, there

exists ε∗ ∈ (0, 1) such that for any ε ∈ (0, ε∗], there is α∗ ∈ (0, 1) such that for any α ∈ (0, α∗],

the point x̃ = x̃(α, ε) generated by Algorithm 3.3 with such parameters (M,M∗, α, ε) is a sparsest

point of P.

Proof. Define

β∗ =

{
1
σ∗ if σ∗ > 0
+∞ otherwise,
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where σ∗ is given by (32). Since P is strictly regular, we have σ∗ < 1, which implies that if

β∗ < ∞ then β∗ > 1. Let w0 ∈ Rn
++ be any vector satisfying β = ‖w0‖∞/

(
min1≤i≤nw

0
i

)
< β∗

(for instance, w0 = (1, 1, . . . , 1)T ∈ R
n
++ always satisfies this condition). It is easy to see that

σ∗β < 1. Let σ = 1/β, then σ > σ∗. As in the proof of Lemma 4.4, we let M̂ := max{1, σβ} = 1.

We then set M = M̂ = 1 and let M∗ be any given number satisfying M∗ ≥ ‖w0‖∞/γ0. Repeating

the same proof of Theorem 4.2, we conclude that there exists ε∗ ∈ (0, 1) such that for every fixed

ε ∈ (0, ε∗], there is a sufficiently small number α∗ ∈ (0, 1) such that for any α ∈ (0, α∗], the point

x̃(α, ε) generated by Algorithm 3.3 with such parameters (M,M∗, α, ε) is a sparsest point of P

provided that

w̃(α, ε)T x̃(α, ε) = 1. (50)

Thus, to prove the theorem, it is sufficient to show that (50) holds under the assumptions of the

theorem. In fact, we have shown in the proof of Theorem 4.2 that for any α ∈ (0, α∗], the solution

(w̃(α, ε), ỹ(α, ε), s̃(α, ε)) of the problem (30), i.e.,

max
(w,y,s)

{
bT y + αFε(s) : s = w −AT y ≥ 0, bT y ≤ 1, (x0)Tw ≤ M, 0 ≤ w ≤ M∗e

}

satisfies the relation (43), i.e., bT ỹ(α, ε) = 1 for any α ∈ (0, α∗]. This implies (49), i.e., w̃(α, ε)T

x̃(α, ε) ≥ 1. From the constraints of the above problem, we also have w̃(α, ε)T x0 ≤ M = 1.

Moreover, since x̃(α, ε) is an optimal solution and x0 is a feasible solution to the problem

min{‖W̃x‖1 : x ∈ P}, it follows from w̃(α, ε)T x̃(α, ε) ≥ 1 that

1 ≤ w̃(α, ε)T x̃(α, ε) ≤ w̃(α, ε)T x0 ≤ M = 1. (51)

Thus (50) holds for any sufficiently small (α, ε), as desired. �

It is well known that the performance of BP, OMP and other greedy pursuits can be guaran-

teed under a verifiable mutual coherence assumption. Similarly, the guaranteed performance of

Algorithm 3.3 can be also established under this assumption. For instance, suppose that there is

a point x̂ ∈ P satisfying

‖x̂‖0 ≤

(
1 +

1

µ(A)

)
/2, (52)

where µ(A) is the mutual coherence of A. As x̂ ∈ P is also a solution to the system Az = b, (52)

implies that x̂ is the unique sparsest solution of this system of linear equations (see, e.g., [8, 20]).

This in turn implies that x̂ is the unique sparsest point of P. In this case, the set of sparsest

points of P coincides with that of the underlying system of linear equations, and hence the strict

regularity of P coincides with the ERC condition. It is known that for systems of linear equations,

the mutual coherence condition implies the ERC condition (see [53]). Thus the condition (52)

implies the strict regularity of P. However, (52) is very restrictive from a practical viewpoint.

In this paper, the performance analysis of Algorithm 3.3 is carried out under the assumptions

which are remarkably different from those widely assumed conditions in the literature such as

mutual coherence, RIP, NSP, and their variants. These conditions in the literature often imply

the uniqueness of the sparsest solutions to a system of linear equations. Assumption 4.1 and

the strict regularity in this paper allow a polyhedral set to possess multiple sparsest points. For

example, P = {x : Ax = b, x ≥ 0} with

A =




1 0 −1/5 1/3 0
0 0 −1/5 1/6 1/5
0 −1 −3/5 1/3 4/5


 , b =




1
0

−1


 (53)
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contains distinct sparsest points: x∗ = (1, 1, 0, 0, 0)T and x̃∗ = (0, 0, 5, 6, 0, )T . It is straightforward

to verify that ATd ≤ 0 implies d = 0. Thus Assumption 4.1 is satisfied for this example. Moreover,

it is easy to verify that at x∗ = (1, 1, 0, 0, 0)T ,

∥∥∥AT
J+(x∗)

AJ+(x∗)(A
T
J+(x∗)AJ+(x∗))

−1
∥∥∥
∞

=

∥∥∥∥∥∥




−1/5 3/5
1/3 −1/3
0 −4/5



∥∥∥∥∥∥
∞

=
4

5
< 1,

which implies that P is strictly regular.

It is worth mentioning that when P admits multiple sparsest points, the point x̂ found by

Algorithm 3.3 has the least weighted ℓ1-norm with respect to the weight Ŵ = diag(ŵ), i.e.,

‖Ŵ x̂‖1 ≤ ‖Ŵx‖1 for all x ∈ P, where ŵ is generated at Step 1 of the algorithm. Clearly,

a change of ŵ may result in a different sparsest point. By the structure of Algorithm 3.3, ŵ

depends on the choice of w0. This indicates that every sparsest point of P might be located

by the algorithm if different initial weights are used. As an example, all sparsest points of P

with (53) can be found by Algorithm 3.3 with different initial weights. Indeed, using function

(6), α = ε = 10−8, M = 10 and M∗ = M(max{1, ‖w0‖∞/γ0} + 1) in Algorithm 3.3, we im-

mediately obtain the following results for (53) (see details to how to do so in Section 5): If

w0 = (1, 1, 1, 1, 1)T , then ŵ = (0.5096, 0.4904, 5.2493, 5.1408, 4.8934)T is generated by the al-

gorithm which yields the sparsest point x∗ = (1, 1, 0, 0, 0)T ; if w0 = (1, 0.5, 0.1, 0.1, 0.1)T , then

ŵ = (5.9349, 5.7046, 0.1047, 0.0794, 5.2895)T is found by the algorithm which yields the sparsest

point x̃∗ = (0, 0, 5, 6, 0)T .

5 Numerical experiments

To evaluate the efficiency of Algorithm 3.3, we consider random examples of polyhedral sets. The

entries of A and the sparse vector x∗ are generated as i.i.d Gaussian random variables with zero

mean and unit variance. For every generated matrix A ∈ R
m×n (m < n) and k-sparse vector

x∗ ∈ R
n
+, we set b = Ax∗. Then the polyhedral set P = {x : Ax = b, x ≥ 0} contains the

known k-sparse vector x∗. All examples of polyhedral sets in our experiments are generated this

way. We perform a large number of random trials of polyhedral sets in order to demonstrate

the performance of our algorithm in locating the sparsest points of these polyhedral sets. When

x∗ is the unique sparsest point of P, we say that x∗ is exactly recovered by an algorithm if x∗

is the solution found by the algorithm. However, this is not the only case for the success of an

algorithm in solving ℓ0-minimization. When P admits multiple sparsest points, an algorithm can

still succeed in solving ℓ0-minimization provided that the solution generated by the algorithm

is one of the sparsest points of P. Thus the criterion “exact recovery of x∗” does not properly

measure the success rate of an algorithm when P has multiple sparsest points. Thus we count one

“success” if the found solution x̃ satisfies that ‖x̃‖0 ≤ ‖x∗‖0. We use such a criterion to measure

the success rate of our algorithm.

In what follows, Algorithm 3.3 is referred to as the “NRW” algorithm. We use (6) as the

default merit function (unless otherwise stated) and we take w0 = e as the initial weight. With

this w0 and a prescribed number M ≥ 1, we set

M∗ = M(max(1, 1/γ0) + 1) (54)
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which satisfies that 1 ≤ M ≤ M∗ and M∗ ≥ M‖w0‖∞/γ0. We implement the algorithm in

MATLAB and use the CVX [27] with solver “sedumi” to solve all convex optimization problems

(30) and (31).

From the structure of the NRW and theoretical analysis in Section 4, we see that (M,M∗)

should be taken to be relatively large. In the above-mentioned environment, we have carried out

an experiment to illustrate how the choice of M might affect the performance of the algorithm.

We fix (α, ε) = (10−8, 10−15) and compare the performance of our algorithm with different M.

For every sparsity level of x∗ ∈ R
200
+ (ranged from 1 to 30), we performed 800 trials of (A, x∗)

where A ∈ R
50×200. The success frequencies of the NRW with M = 10, 100 and 1000, respectively,

are shown in Fig. 1(i), from which it can be seen that the NRW with a larger M performs

slightly better than the algorithm with a smaller M. However, such a difference between their

performances is not remarkable, especially when M is relatively large. Thus we set M = 100 as

a default in our algorithm.
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Figure 1: Comparison of the performance of the NRW algorithm with different M and (α, ε).

From the analysis in Section 4, we see that (α, ε) should be taken to be small. To see how

the choice of (α, ε) might influence the performance of the NRW method, we compare the algo-

rithms with different choices of (α, ε). The success rates of the NRW with (α, ε) = (10−2, 10−3),

(10−4, 10−6), (10−6, 10−10) and (10−8, 10−15) are given in Fig. 1(ii). In this experiment, a total

of 800 trials of (A, x∗), where A ∈ R
50×200, were run for every given sparsity level of x∗ ∈ R

200
+ .

Fig. 1(ii) demonstrates that the performance of the NRW method is insensitive to the choice of

(α, ε) provided that they are small enough. Thus we set

(α, ε) = (10−8, 10−15) (55)

as the default parameters in our algorithm.

Under (55) and the choice M = 100, we can also compare the performance of our algorithm

with the following merit functions: (6) (termed “logmerit”), (7) (termed “non-logmerit”), and the

sum of (6) and (7) (termed “combined”). Note that any positive combination of merit functions

yields a new merit function. Thus the sum of (6) and (7) is also a merit function for sparsity.

For every sparsity level of x∗ ∈ R
200
+ , we performed 1000 trials of (A, x∗), where A ∈ R

50×200.

The result is given in Fig. 2(i) which indicates that there is no remarkable difference between the

performance of the NRW algorithm with these merit functions.
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Figure 2: (i) Performance comparison of the NRW algorithm with different choices of merit
functions. (ii) Comparison of algorithms when µ = 10−2 is taken in CBW, Wlp, and NW2
algorithms.

We now compare the performance of the NRW method and ℓ1-minimization (basis pursuit)

and several other iteratively reweighted ℓ1-methods such as the one proposed in [11] (termed

“CWB”), the one in [22] (termed “Wlp”), and the “NW2” method presented in [62]. In this

experiment, we use M = 100, (54), (55) and (6) in the NRW method. The following weights

wk =
1

|xk|+ µ
, wk =

1

(|xk|+ µ)1−p
, wk =

q + (|xki |+ µ)1−q

(|xki |+ µ)1−q
[
|xki |+ µ+ (|xki |+ µ)q

]1−p , (56)

where p, q, µ ∈ (0, 1) are given parameters, are used in CBW, Wlp and NW2 algorithms, re-

spectively. The parameters p = q = 0.05 are set in Wlp and NW2 algorithms. The standard

ℓ1-minimization is used as the initial step for all these algorithms. Simulations have indicated

that the performance of these iteratively reweighted methods is sensitive to the choice of µ. For

small µ, their performances are very similar to that of ℓ1-minimization. In this case, if the initial

step fails to find a sparsest point, the remaining iterations of algorithms are also likely to fail.

This suggests that µ in (56) should not be chosen to be too small. Empirical results have also

indicated that if a reweighted ℓ1-algorithm can solve an ℓ0-minimization problem, it usually solves

the problem within a few iterations, and if the algorithm fails to locate the sparsest point within

the first few iterations, it is usually difficult for the algorithm to find a sparsest point even if

more iterations are carried out. In addition, ℓ0-minimization is a global optimization problem,

for which no optimality condition has been developed. Thus, in all our experiments, the CWB,

Wlp and the NW2 were performed for a total of 5 iterations on every generated problem. It

is worth noting that the NRW algorithm only consists of a single iteration. To compare these

algorithms, we performed 1000 trials of (A, x∗) for every sparsity level of x∗, where A ∈ R
50×200.

The success frequencies of these algorithms when applied to these polyhedral sets are given in Fig.

2(ii) and Fig. 3(i), in which µ = 10−2 and µ = 10−3 are used in CWB, Wlp and NW2 algorithms,

respectively. From these experiments, we see that the NRW method remarkably outperforms the

standard ℓ1-minimization and it performs better than CWB, Wlp and NW2 as well, especially as

µ in (56) is relatively small. Experiments indicate that when µ ≤ 10−4, the performance of CWB,

Wlp and NW2 is almost identical to that of ℓ1-minimization (this has already been observed from

Fig. 3(i) when µ = 10−3).
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(i) µ = 10−3 in (56)
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(ii) A = [G B G D] ∈ R50×200

Figure 3: (i) Comparison of algorithms when µ = 10−3 is taken in CBW, Wlp, and NW2 algo-
rithms. (ii) Comparison of algorithms when P admits multiple sparsest points.

Finally, we compare the performance of algorithms when applied to polyhedral sets which are

very likely to possess multiple sparsest points. A simple way of constructing such examples is

to generate A at random but allow A to have some repeated columns. For instance, let A =

[G B G D] ∈ R
50×200 where G ∈ R

50×25, B,D ∈ R
50×75 are random matrices, and let x∗ ∈ R

200
+

be a randomly generated k-sparse vector. Setting b = Ax∗, we see that the generated P is very

likely to possess multiple sparsest points and multiple ℓ1-minimizers thanks to repeated columns

in A. We ran 1000 such trials for each given sparsity level k = 1, 2, . . . , 25. The performance of

algorithms is shown in Fig. 3(ii). It can be seen that the NRW method has performed remarkably

better than ℓ1-minimization, CWB, Wlp and NW2 in this situation.

6 Conclusions

Based on the strict complementarity theory of linear programs, we have shown that seeking the

sparsest point of a polyhedral set is equivalent to solving a bilevel programming problem with

ℓ0-maximization as its outer layer and with weighted ℓ1-minimization as its inner problem. As

a result, locating the sparsest point of a polyhedral set can be transformed to searching for the

densest possible slack variable of the dual problem of weighted ℓ1-minimization. This property

provides a new basis to understand ℓ0-minimization, leading to a new development of weighted

ℓ1-algorithms. This new method computes the weight through a certain convex optimization

instead of defining the weight directly by the iterate. The efficiency of the proposed method has

been demonstrated by empirical results and has been shown under some assumptions, including

the monotonicity of the merit function for sparsity and boundedness of the feasible set of the dual

problem of weighted ℓ1-minimization. These assumptions do not require the uniqueness of the

sparsest points of polyhedral sets.
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