From species characteristics to ecosystem functions: a trait-based distribution model for upscaling the macrobenthos role in benthicpelagic coupling over the Black Sea continental shelf

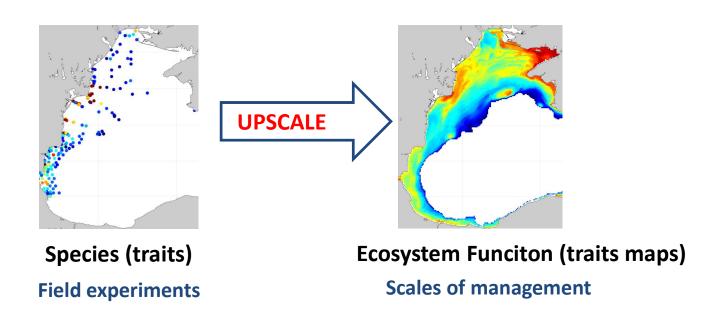
Marilaure Grégoire¹, Arthur Capet¹, Lei Chou², Nathalie Fagel³, Evgeny Ivanov¹, Molly Lepoint¹, Catherine Meulders¹, Audrey Plante², Karline Soetaert⁴, Adrian Teaca⁵ Luc Vandenbulcke¹

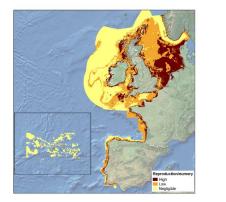
1. MAST-FOCUS, Liege University, Belgium

2. Chemical Oceanography and Water Geochemistry, University of Brussels, Belgium

3. Laboratoire de géochimie des argiles, Liege University, Belgium

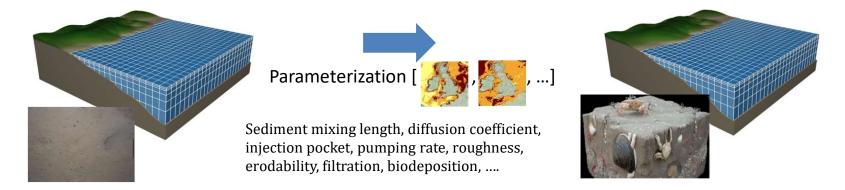
4. NIOZ, The Netherlands

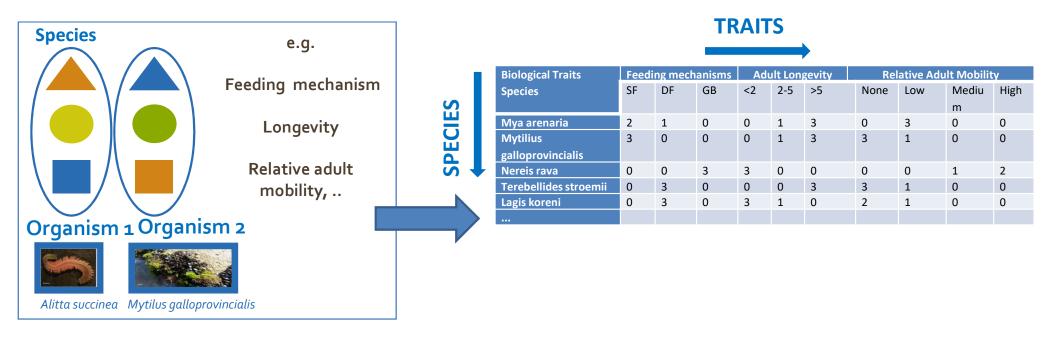

5. GeoEcoMar, Romania



Objective

Upscaling ecosystem functions


Why? Mapping indicators and ecosystem functions

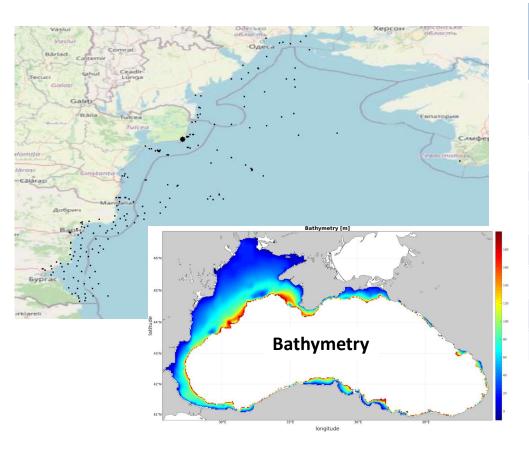

Integrating ecosystem functions into ocean models

Parameterization of ocean models that considers the characteristics and variability of the benthos

How?

Traits Distributions Models (TDMs)

Southwood hypothesis (1977) : "The habitat provides the templet on which evolution forges characteristic life history strategy. This means that **biological traits can be related to the <u>physical</u> <u>and biogeochemical properties</u> of the environment".**

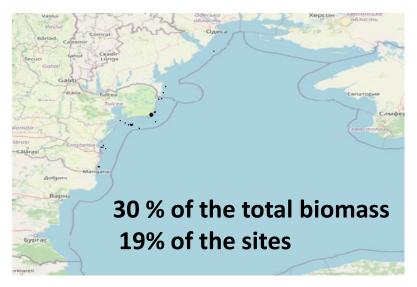

Selected Traits

- Method of sediments reworking
- Propensity to move through the sediment
- Feeding mechanisms
- Burrow Type
- Max sediment dwelling depth
- Degree of attachment
- Relative adult mobility
- Adult life habit
- Larval development mechanisms
- Propagule dispersal
- Larval type
- Longevity
- Maximum adult size
- Tolerance to disturbance

Traits linked with the bioturbating activity of a species.

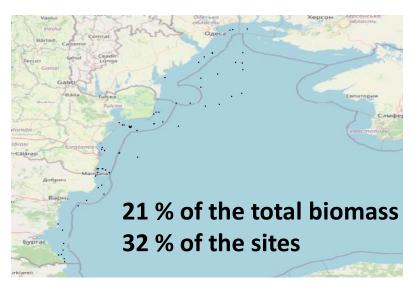
Macrobenthos data set in the Black Sea

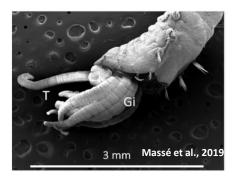
237 stations (1995-2017)


64 dominant species

Phyllum	Class	# species	% of total Biomass
Mollusca	Bivalvia, Gastropoda	32	80
Annelida	Polychaeta	19	17
Crustacea	Malacostraca	4	1
Cnidaria	Anthozoa, Hydrozoa	3	<1
Tunicata	Ascidiacea	3	<1
Echinozoa	Holothuroidea	1	<1
Nemertea indet.			<1
Porifera	Demospongiae	1	<1

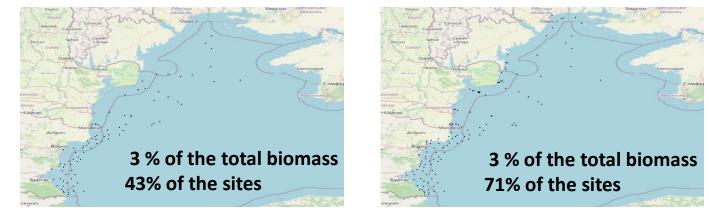
Dominant Species in terms of biomass


Mya arenaria Linnaeus, 1758


Mytilus galloprovincialis Lamarck, 1819

Dominant Species in terms of coverage

Melinna palmata Grube, 1870


Terebellides stroemii Sars, 1835

Nephtys hombergii Savigny in Lamarck, 1818

Bioturbation Potential (BPc)

TRAIT	Modalities			
Method of sediments	(1) Epifauna that bioturbate at the			
reworking	sediment-water interface,			
	(2) surficial modifiers (<1-2cm)			
(Reworking mode: Ri)	(3) upward/downward conveyors			
	that actively transport			
	sediment to/from the			
	sediment surface			
	(4) biodiffusors			
Propensity to move through the	(1) in a fixed tube			
sedimentary matrix	(2) limited movement, sessile, but			
Scallendary matrix	not in a tube			
(Mobility :Mi)	(3) slow movement			
	(4) free movement via burrow			
	system			

$$BP_c = \sum_{i=1}^n BP_i = \sum_{i=1}^n \sqrt{\frac{B_i}{A_i}} A_i M_i R_i$$

- BP_c : Bioturbation potential of the community
 - **BP**_i : per capita effect of **each species**

(Solan et al., 2004).

Irrigation Potential (IPc)

TRAIT		Modalities		
Burrow Type (BTi)	(1)	Epifauna, internal irrigiation (e.g. siphons)		
	(2)	Open irrigation (e.g. U- or v shaped burrows)		
	(3)	Blind ended irrigation (e.g. blind ended burrows, no burrow systems)		
Feeding type	(1)	Surface filter feeder		
(FTi)	(2)	Predator		
	(3)	Deposit feeder		
	(4)	Sub surface filter feeder		
Injection pocket depth	(1)	0 – 2 cm		
(IDi)	(2)	2 – 5 cm		
	(3)	5– 10 cm		
	(4)	> 10 cm		

$$IP_{c} = \sum_{i=1}^{n} IP_{i} = \sum_{i=1}^{n} \frac{B_{i}}{A_{i}}^{0.75} A_{i} BT_{i} FT_{i} ID_{i}$$

 IP_c : Irrigation potential of the community

*IP*_{*i*} : per capita effect of **each species**

(Wrede et al., 2018).

Environmental variables

Black Sea operational model 3 km resolution run by ULiège

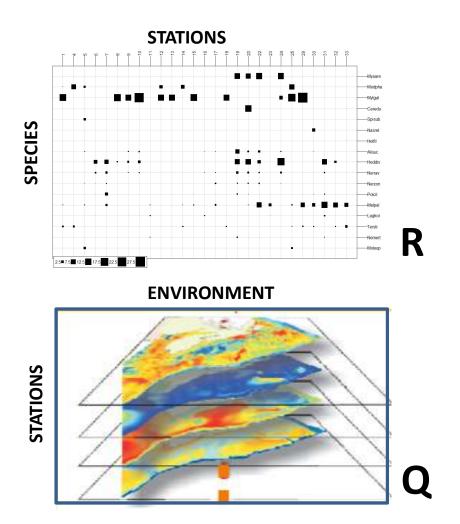
Average, std, min, max bottom values computed at seasonal and annual scale.

In-situ data: substrate (Folk 7 classification)

Model variables

Physical variables:

- Température,
- Salinity,
- Total shear stress (current+wave)


Biogeochemical variables

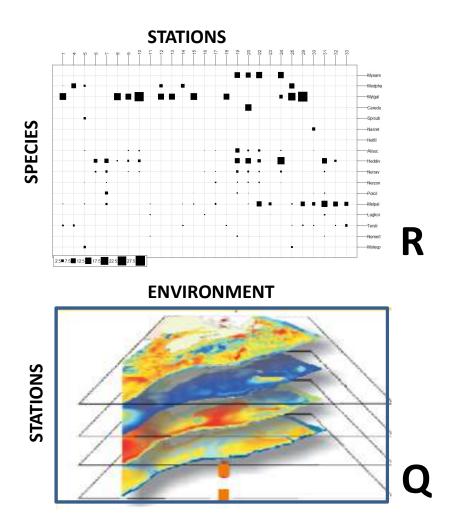
- Oxygen
- Flux of POC to the bottom
- Carbon in the sediment (two pools)
- PAR

11

Species-Traits-Environment

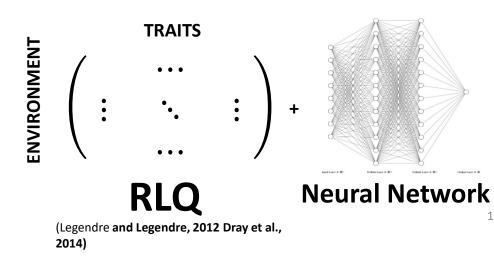
SPECIES

ENVIRONMENT

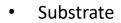

TRAITS

Biological Traits Species	Feeding mechanisms			Ad	Adult Longevity		
	SF	DF	GB	<2	2-5	>5	
Mya arenaria	2	1	0	0	1	3	
Mytilius	3	0	0	0	1	3	
galloprovincialis							
Nereis rava	0	0	3	3	0	0	
Terebellides stroemii	0	3	0	0	0	3	
Lagis koreni	0	3	0	3	1	0	

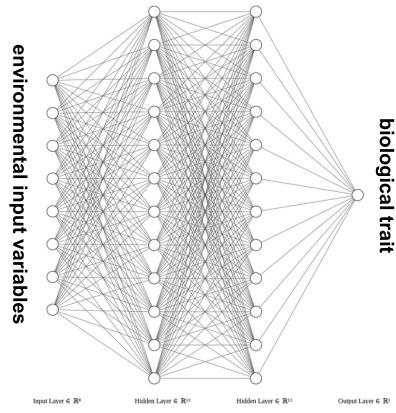
TRAITS


?

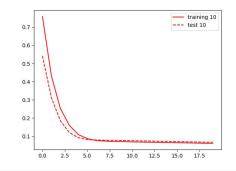
Species-Traits-Environment


SPECIES

Biological Traits Adult Longevity Feeding Species mechanisms SF DF GB <2 2-5 >5 Mya arenaria Mytilius galloprovincialis Nereis rava Terebellides stroemii Lagis koreni



TRAITS

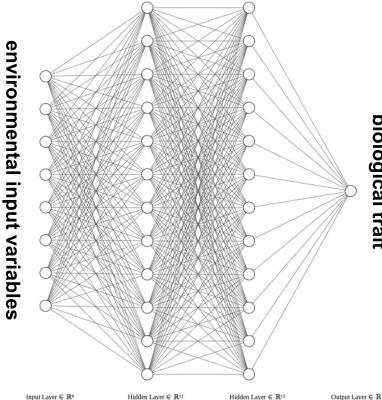

- 2 hidden layers with 12 neurons
- Training and testing data sets, 50 repetitions
- Selection of the most important variables: Input variables are removed one after the other and we keep variables that degrade the most the RMS when they are removed.
- Re-run the NN with the selected env. variables

- Température
- Salinity
- Total shear stress
- Oxygen
- POC flux to the bottom
- Carbon in the sediment
- PAR

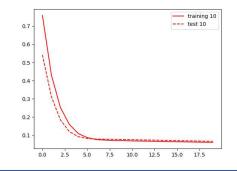
Evolution of the RMS (training and test) during one repetition

Community weighted abundance of

- Method of sediments reworking
- Propensity to move through the sediment
- Feeding mechanisms
- Burrow Type
- Max sediment dwelling depth


BPc

IPc


- 2 hidden layers with 12 neurons
- Training and testing data sets, 50 repetitions
- Selection of the most important variables: Input variables are removed one after the • other and we keep variables that degrade the most the RMS when they are removed.
- Re-run the NN with the selected env. variables

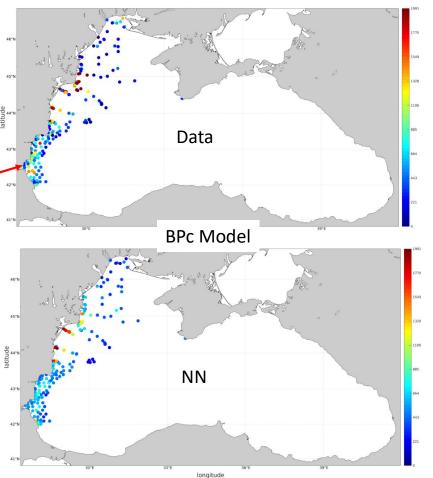
- POC flux to the bottom
- **Substrate** .
- Température
- Salinity

Evolution of the RMS (training and test) during one repetition

Community weighted abundance of

- Method of sediments reworking ٠
- Propensity to move through the sediment
- Feeding mechanisms •
- **Burrow Type** •
- Max sediment dwelling depth ٠

BPc


biological trait

IPc

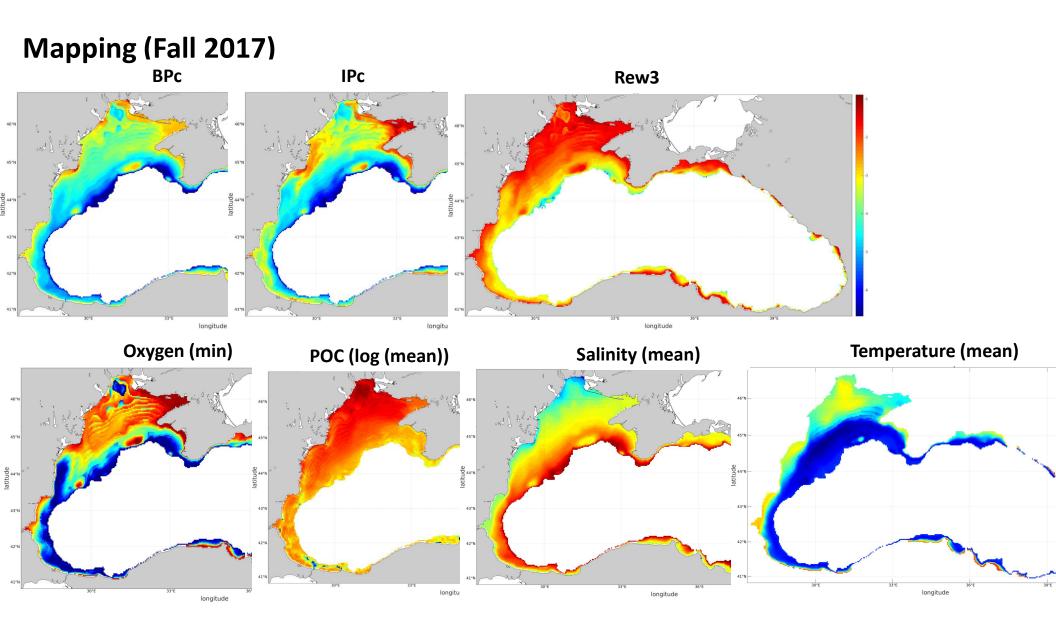
Bioturbation Potential

BPc Data

The NN fails to predict extreme/rare values (lack of training data)

BPc Bias (Model-Data) longitude Main bioturbators 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 N.hombergii M.palmata D.guadrilobata A.succinea H filiforr 15% 9% 8% 5% 17%

16


Biolrrigation Potential

IPc Data Data IPc Model NN longitude

The NN fails to predict extreme/rare values (lack of training data)

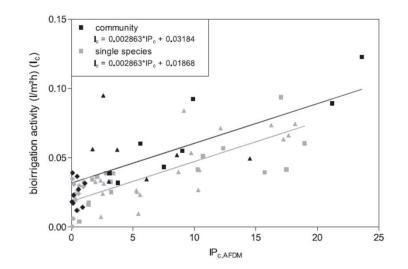
IPc Bias (Model-Data) longitude Main Bioirrigators 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 M.palmata M.arenaria T.stroemi H.filiformis N.hombergi 30% 10% 8% 6% 6%

17

Take-home messages

- Bottom oxygen (mean and min), bottom carbon flux and also mud:sand ratio, bottom temperature and salinity are the environmental variables that selected by the NN for the mapping of the traits.
- NN has good performances (especially for normally distributed traits) but fails to predict extreme values that are rarely sampled. A dedicated data collection protocol targeting regions of high gradients, extreme and rare values is needed to better train the network.
- Traits distribution models are still lagging behind species distribution models. An extension of traits databases will facilitate their development.
- A combination of experimental work and machine learning tools will help to device new model parameterization.

From traits to model parameterization ...


Parameters (traits)

 l_m (BPc)

$$\log\left(\frac{\frac{l_m}{6}}{1-\frac{l_m}{6}}\right) = 4.55 + 0.719\log(BP_c)$$

Established for the Galway Bay by Solan et al., 2004

BioIrrActivity(IPc)

Established from experiments Wrede et al., 2018

Thank you!