
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/10 9 9 2 5/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Bar ri e n to s,  N a t alia,  Lear, Ca roline  , Jakobs son,  M a r tin,  S t r a n n e,  Ch ris ti a n,  O'Re g a n,

M a t t ,  C ronin,  Tho m a s  M., Gukov, Alexa n d r  Y. a n d  Coxall, H ele n  K. 2 0 1 8.  Arc tic

Oce a n  b e n t hic  for a minife r a  M g/Ca  r a tios  a n d  glob al  M g/Ca-t e m p e r a t u r e  c alib r a tions:

N e w  cons t r ain t s  a t  low t e m p e r a t u r e s.  Geoc hi mic a  e t  Cos mochi mic a  Acta  2 3 6  , p p.

2 4 0-2 5 9.  1 0.1 0 1 6/j.gc a.2 01 8.02.03 6  

P u blish e r s  p a g e:  h t t p://dx.doi.or g/10.10 1 6/j.gc a.2 01 8.02.03 6  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



Arctic Ocean benthic foraminifera Mg/Ca ratios and global
Mg/Ca-temperature calibrations: New constraints at

low temperatures

Natalia Barrientos a,b,⇑, Caroline H. Lear c, Martin Jakobsson a,b, Christian Stranne a,b,
Matt O’Regan a,b, Thomas M. Cronin d, Alexandr Y. Gukov e, Helen K. Coxall a,b

aDepartment of Geological Sciences, Stockholm University, Stockholm 10691, Sweden
bBolin Centre for Climate Research, Stockholm University, Stockholm 10691, Sweden

cSchool of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
dU.S. Geological Survey, Reston, VA, USA

eLena Delta Reserve, Akademika Fedorova Str. 28, 678400 Tiksi, Yakutia, Russia

Received 1 June 2017; accepted in revised form 22 February 2018; available online xxxx

Abstract

We explore the use of Mg/Ca ratios in six Arctic Ocean benthic foraminifera species as bottom water palaeothermometers
and expand published Mg/Ca-temperature calibrations to the coldest bottom temperatures (<1 �C). Foraminifera were ana-
lyzed in surface sediments at 27 sites in the Chukchi Sea, East Siberian Sea, Laptev Sea, Lomonosov Ridge and Petermann
Fjord. The sites span water depths of 52–1157 m and bottom water temperatures (BWT) of �1.8 to +0.9 �C. Benthic fora-
minifera were alive at time of collection, determined from Rose Bengal (RB) staining. Three infaunal and three epifaunal spe-
cies were abundant enough for Mg/Ca analysis. As predicted by theory and empirical evidence, cold water Arctic Ocean
benthic species produce low Mg/Ca ratios, the exception being the porcelaneous species Quinqueloculina arctica. Our new data
provide important constraints at the cold end (<1 �C) when added to existing global datasets. The refined calibrations based
on the new and published global data appear best supported for the infaunal species Nonionella labradorica (Mg/Ca = 1.325
± 0.01 � e^(0.065 ± 0.01 � BWT), r2 = 0.9), Cassidulina neoteretis (Mg/Ca = 1.009 ± 0.02 � e^(0.042 ± 0.01 � BWT),
r2 = 0.6) and Elphidium clavatum (Mg/Ca = 0.816 ± 0.06 + 0.125 ± 0.05 � BWT, r2 = 0.4). The latter is based on the new
Arctic data only. This suggests that Arctic Ocean infaunal taxa are suitable for capturing at least relative and probably
semi-quantitative past changes in BWT. Arctic Oridorsalis tener Mg/Ca data are combined with existing O. umbonatus

Mg/Ca data from well saturated core-tops from other regions to produce a temperature calibration with minimal influence
of bottom water carbonate saturation state (Mg/Ca = 1.317 ± 0.03 � e^(0.102 ± 0.01 BWT), r2 = 0.7). The same approach
for Cibicidoides wuellerstorfi yields Mg/Ca = 1.043 ± 0.03 � e^(0.118 ± 0.1 BWT), r2 = 0.4. Mg/Ca ratios of the porcelaneous
epifaunal species Q. arctica show a clear positive relationship between Mg/Ca and D[CO3

2�] indicating that this species is not
suitable for Mg/Ca-palaeothermometry at low temperatures, but may be useful in reconstructing carbonate system
parameters through time.
� 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Benthic foraminifera; Mg/Ca temperature calibration; Arctic Ocean; Core-tops

https://doi.org/10.1016/j.gca.2018.02.036

0016-7037/� 2018 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Department of Geological Sciences, Stockholm University, Stockholm 10691, Sweden.
E-mail address: natalia.barrientos@geo.su.se (N. Barrientos).

www.elsevier.com/locate/gca

Available online at www.sciencedirect.com

ScienceDirect

Geochimica et Cosmochimica Acta xxx (2018) xxx–xxx

Please cite this article in press as: Barrientos N., et al. Arctic Ocean benthic foraminifera Mg/Ca ratios and global Mg/Ca-temperature
calibrations: New constraints at low temperatures. Geochim. Cosmochim. Acta (2018), https://doi.org/10.1016/j.gca.2018.02.036



1. INTRODUCTION

Instrumental records provide a short perspective on
Arctic Ocean temperatures, revealing ongoing warming
over recent decades (Quadfasel et al., 1991; Carmack
et al., 1995; Schauer et al., 2004; Polyakov et al., 2005;
Schauer et al., 2008; Polyakov et al., 2012). Quantifying
long-term changes in Arctic Ocean temperatures using
palaeoceanographic proxies is necessary to gain wider per-
spective on the magnitude of the recent changes and to help
identify links between ocean-climate feedback processes
(Serreze and Barry, 2011). Mg/Ca-palaeothermometry is a
useful geochemical tool for reconstructing bottom water
temperatures (BWT) in the geological past. Mg/Ca ratios
have the advantage over d18O palaeothermometry in that
they are independent of changes in seawater d18O that arise
from ice growth and decay (Lear et al., 2000; Billups and
Schrag, 2002; Martin et al., 2002). Mg and Ca are consid-
ered to have Myr long residence times in seawater
(Broecker and Peng, 1992; Stanley and Hardie, 1999;
Ries, 2010), thus Mg/Ca changes in marine calcite on Qua-
ternary time scales should reflect ocean temperature rather
than seawater Mg/Ca. The calculated benthic foraminiferal
Mg/Ca-BWT relationship (‘sensitivity’) derived from exist-
ing calibrations is around �10 ± 1% or �0.1 ± 0.01 mmol/
mol Mg/Ca increase per �C increase in ambient seawater
temperature at calcification time (Rosenthal et al., 1997;
Lear et al., 2002; Martin et al., 2002; Marchitto et al., 2007).

Existing benthic foraminifera Mg/Ca-
palaeothermometry calibration studies span field BWT
ranges of �1 �C to 18 �C (e.g. Rosenthal et al., 1997;
Lear et al., 2002; Martin et al., 2002; Rathmann et al.,
2004; Elderfield et al., 2006; Kristjánsdóttir et al., 2007;
Marchitto et al., 2007; Healey et al., 2008; Yu and
Elderfield, 2008; Elderfield et al., 2010; Lear et al., 2010;
Skirbekk et al., 2016). While a few of the existing calibra-
tion studies include data from the cold end (<1 �C) of the
global BWT spectrum (Rathburn and De Deckker, 1997;
Martin et al., 2002; Rosenthal et al., 2006; Kristjánsdóttir
et al., 2007; Yu and Elderfield, 2008; Lear et al., 2010;
Quillmann et al., 2012; Skirbekk et al., 2016), these cannot
be compared to the unique conditions occurring in the Arc-
tic Ocean. Most available low temperature Mg/Ca data
show extremely high Mg/Ca-BWT sensitivities with lower
Mg/Ca values when compared to global calibrations. This
has been linked to and conceptualized as the ‘carbonate
ion saturation (D[CO3

2�]) effect’, i.e. that a threshold of D
[CO3

2�] exists below which Mg/Ca in foraminifera calcite
decreases more as a consequence of a steep drop in bottom
water D[CO3

2�], and is less influenced by BWT (Martin
et al., 2002; Elderfield et al., 2006; Marchitto et al., 2007;
Yu and Elderfield, 2008). Quantification of this D[CO3

2�]
effect is challenging, since in reality bottom water D

[CO3
2�] is controlled not only by water depth and tempera-

ture but also by dissolved inorganic carbon (DIC) and alka-
linity of bottom waters, which vary significantly between
different ocean basins. The bottom waters bathing regions
of Arctic Ocean seafloor sampled in this study, which
includes the central Arctic and Russian Arctic shelves and
slopes, all exhibit low temperatures (from �1.82 to 0.91 �

C) and a relatively large range in bottom water D[CO3
2�]

(from �10.35 to 57.48 mmol/kg). This provides an opportu-
nity to expand global calibrations at the coldest end of
ocean waters and to explore whether a D[CO3

2�] effect is
controlling the Mg/Ca ratios in these cold waters. Some
studies have suggested that salinity may also influence for-
aminiferal Mg/Ca (Dissard et al., 2010). However, the
salinity ranges in our calibration sets are too small to fully
evaluate this effect.

To date, while there has been success in using Mg/Ca in
benthic ostracodes from the central Arctic Ocean (Farmer
et al., 2011, 2012; Cronin et al., 2012), no equivalent data
for benthic foraminifera exist. However, in Arctic sedi-
ments benthic foraminifera typically outnumber ostra-
codes, thus developing the proxy with foraminifera is
considered worthwhile. The closest benthic foraminifera
Mg/Ca data constraints, which are from the high latitude
north Atlantic, show positive correlations between test
Mg/Ca and temperature implying that benthic foraminifera
Mg/Ca can faithfully record BWT in sub-Arctic and pre-
sumably Arctic environments (Kristjánsdóttir et al., 2007;
Quillmann et al., 2012; Skirbekk et al., 2016). Field data
from the Arctic Ocean are needed to validate the proxy
given the unique and complex physical and chemical ocea-
nic conditions prevailing there that may influence Mg/Ca
partitioning into calcite.

Here we present the first investigation of benthic forami-
nifera Mg/Ca and BWT in the common Arctic Ocean spe-
cies Elphidium clavatum, Nonionella labradorica, Cassidulina
neoteretis, Quinqueloculina arctica, Oridorsalis tener and
Cibicidoides wuellerstorfi. We also investigate the Mg/Ca
relationships between bottom water D[CO3

2�]. The new
cold-end constraints are incorporated into existing Mg/Ca
compilations spanning broad BWT ranges from globally
distributed sites. We conclude with a set of refined Mg/
Ca-BWT calibrations appropriate for cold waters for five
of the six species analyzed. The new calibrations provide
important constraints for strengthening published tempera-
ture calibrations at the coldest extreme of ocean water
temperatures.

1.1. The Arctic Ocean water masses

The vertical temperature structure of the Arctic Ocean is
quite unlike other oceans. It has an inverted temperature
profile with a strong halocline from the surface to 200 m
reflecting the role of salinity, rather than temperature in
driving Arctic Ocean stratification. The halocline comprises
the coldest water mass layer (from �2 to 0 �C) and its
uppermost 50 m include the ‘polar mixed layer’ that is the
freshest layer, derived from seasonal sea ice melt, fluvial
inputs and Bering Strait inflow (Steele and Boyd, 1998).
Below the halocline (�200 to 900 m water depth) sits the
Atlantic water that is slightly warmer (0–2 �C) and saltier
than subsurface waters, derived largely from Atlantic inflow
(Rudels et al., 1994; Rudels et al., 2012) (Fig. 1). Beneath
�900 m the Arctic Ocean is filled with Arctic deep water,
which has more homogeneous thermal and salinity proper-
ties. The Chukchi Sea, from which several of our new core-
top samples are retrieved, has its own unique characteristics
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due to seasonally varying influence of Pacific origin waters
(Woodgate et al., 2005; Pisareva et al., 2015). This includes
both warmer and fresher summer Pacific water inflows,
which fuel significantly higher primary productivity com-
pared to the other marginal Arctic shelf seas due to Pacific
Ocean sourced nutrients (Astakhov et al., 2015).

2. MATERIAL AND METHODS

2.1. Seafloor sediment and oceanographic sampling

The study is based on 27 sampling stations from the
Chukchi Sea Shelf (6), East Siberian Sea Slope (15), Laptev
Sea Shelf (1), Lomonosov Ridge (4) and Petermann Fjord
(Northern Greenland) (1) (Table 1, Fig. 1). Among these,
23 multicores, 2 kastenlot and 1 piston cores were obtained
by icebreaker Oden at the edge of the summer sea ice in the
eastern Siberian sector of the Arctic Ocean during
SWERUS-C3 Expedition Leg 2 (August–September

2014). A multicore from SWERUS-C3 Leg 1 (July–August
2014) was included because it recorded the lowest BWT
sampled during the two expedition legs. All the cores and
samples are curated at Stockholm University Dept. of Geo-
logical Sciences. In the course of this investigation an addi-
tional stained E. clavatum sample from a multicore taken
off northern Greenland from the Petermann Fjord
(OD1507-002-MC02, 0–2 cm) became available. This sta-
tion, sampled during the Petermann Expedition (summer
2015), was helpful in expanding the field temperature range
in the E. clavatum Mg/Ca-BWT calibration set.

The seafloor sampling stations span water depths of 52–
1157 m and temperatures of �1.8 to 0.9 �C, intersecting all
three main Arctic Ocean water masses. Oceanographic data
(temperature, salinity, total alkalinity, total CO2 and pH)
were sampled during SWERUS-C3 trough conductivity,
temperature and depth (CTD) casts with attached Niskin
bottles that were released to sample bottom water at the
coring stations. For the Petermann Fjord site (OD1507-

Fig. 1. Location of the 27 Arctic Ocean study sites used to build the field Mg/Ca-temperature calibration and a typical central Arctic Ocean

temperature profile. White circles depict the multicore (MC) and kastenlot (KL) coring sites. All cores were recovered during the SWERUS-

C3 expedition, except a single MC obtained during the northern Greenland Petermann-2015 Expedition. Equidistance of the bathymetric

contour lines is 50 m. These are drawn until 900 m water depth emphasizing the deepest limit of Atlantic waters. A water column temperature

curve from the central Arctic Ocean shows the typical Arctic water masses. Data are from the World Ocean Atlas 2013 database (1955–2012)

(Locarnini et al., 2013). They depict vertical temperatures every 1� along the direction of the Lomonosov Ridge with a width of 200 km to

provide a view of average temperatures for the Arctic water column. Arctic Ocean bathymetry is after IBCAO data set (Jakobsson et al., 2012)

and under ice seabed topography is after BEDMAP from the British Antarctic Survey.
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Table 1

Sample stations used in this study and their field bottom water properties. Site and oceanographic data sources were collected during Expeditions SW = SWERUS-C3 (26 sites) and Petermann-

2015 (one site: OD1507-002-MC02). KL = kastenlot, MC = multicore, PC = Piston core. Site locations are: LR, Lomonosov Ridge; HC, Herald Canyon (Chukchi Sea); ESS, Eastern Siberian

Sea; LS, Laptev Sea. Carbonate ion data (D[CO3
2�]) was computed using CO2calc Ver. 1.3.0 (Robbins et al., 2010) and utilizing seawater chemistry measurements (see text for details). RB = Rose

Bengal (RB) stained samples are considered modern, i.e. alive at time of collection and thus have zero age. CBF = calcareous benthic foraminifera.

Site Lat (�N) Lon (�E) Water detph (m) Arctic Ocean location BWT (�C) Salinity D[CO3
2�] (mmol/kg) # RB stained CBF (0–6 cm)

SW L2-1-KL 72.337483 �176.439 73 HC �1.66 32.89 0.67 –

SW L2-2-KL 72.566766 �175.265 71 HC �0.72 32.88 �4.27 133

SW L2-2-MC 72.4317 �175.342 56 HC �0.90 32.61 8.12 115

SW L2-2-PC 72.51658 �175.320 57 HC �0.90 32.71 8.12 –

SW L2-3-MC 72.3771 �175.786 90 HC �1.71 32.93 �3.53 50

SW L2-4-MC 72.8609 �175.711 124 HC �0.26 34.36 �10.35 195

SW L2-8-MC 75.1532 179.873 524 ESS slope 0.28 34.87 45.02 277

SW L2-9-MC 75.0567 �179.820 446 ESS slope 0.45 34.86 47.37 116

SW L2-13-MC 76.186327 �179.278 1118 ESS slope �0.22 34.89 37.55 78

SW L2-14-MC 76.3529 176.461 733 ESS slope 0.25 34.89 42.50 72

SW L2-15-MC 76.3203 175.881 501 ESS slope 0.52 34.86 46.65 187

SW L2-16-MC 76.512015 176.632 1023 ESS slope �0.07 34.90 38.06 92

SW L2-18-MC 76.4091 173.879 349 ESS slope 0.74 34.85 46.61 369

SW L2-21-MC 77.579254 163.308 153 ESS slope �0.10 34.50 25.42 153

SW L2-22-MC 78.223877 164.427 367 ESS slope 0.91 34.87 47.76 104

SW L2-23-MC 78.664367 165.033 522 ESS slope 0.69 34.90 49.99 78

SW L2-24-MC 78.80003 165.382 982 ESS slope 0.02 34.91 39.51 142

SW L2-25-MC 79.226288 152.676 101 ESS slope �0.87 34.24 28.80 102

SW L2-26-MC 79.742133 154.389 378 ESS slope 0.53 34.86 50.81 189

SW L2-27-MC 79.664634 154.126 276 ESS slope 0.43 34.82 49.99 125

SW L2-28-MC 79.919544 154.354 1145 ESS slope �0.16 34.91 36.98 112

SW L2-29-MC 81.342771 141.775 910 LR crest 0.02 34.91 42.53 170

SW L2-31-MC 79.920391 143.165 1157 ESS slope-LR �0.21 34.91 37.70 8

SW L2-32-MC 85.141183 151.590 837 LR crest �0.01 34.90 43.88 133

SW L2-34-MC 84.27605 148.713 886 LR crest �0.10 34.90 41.80 321

SW L1-26-MC/I 76.473 132.044 52 LS �1.82 34.21 29.97 52

OD1507-002-MC02 81.174 �62.062 873 N Greenland 0.30 34.78 – –
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002-MC02), only CTD temperature and salinity data were
available (Münchow and Heuzé, 2015). The degree of D

[CO3
2�] defined as [CO3

2�]measured minus [CO3
2�]saturation

was calculated using CO2calc Ver. 1.3.0 (Robbins et al.,
2010). Program input variables were derived from measure-
ments of total alkalinity, total CO2 and pH. Additional
input parameters were the CO2 dissociation constants K1
and K2 (Mehrbach et al., 1973) refit by (Dickson and
Millero, 1987) (Appendix Table A).

2.2. Benthic foraminifera sampling and faunal analysis

The recovered SWERUS-C3 multicore sediments were
immediately frozen after retrieval and sampled in Stock-
holm post cruise (Table 1). Multicores were sliced into 1-
cm thick samples over a depth interval of up to 32 cm
(Appendix Table B). The purpose was to observe/include
potentially useful infaunal taxa living within seafloor sedi-
ments. The extracted sediment samples were immediately
wet sieved using deionized water over a 63 mm sieve. The
>63 mm size fractions were dosed with Rose Bengal (RB)
protein stain and left for a minimum of 14 days according
to established methods (Schönfeld et al., 2012). The RB
solution was prepared using 2 g of RB dissolved in 1L etha-
nol (99%). The RB staining colours protoplasm a vivid pink
(Fig. 2) (Walton, 1952; Corliss and Emerson, 1990), thus

allowing distinction between foraminiferal specimens that
were alive (or recently dead) at the time of sampling, and
older ‘fossils’ that are mixed into the surface layer. Once
staining was complete, each sample was wet-picked in a
Petri dish to better distinguish the pink-stained cytoplasm
inside the tests. Representative specimens were imaged
using a digital camera mounted to a Leica Microsystems
DFC 295 light microscope (Fig. 2). Specimens qualified as
‘stained’ only if all chambers, except the ultimate (young-
est), appeared brightly stained. Staining was difficult to
assess in thick-shelled porcelaneous taxa (e.g. the miliolid
Q. arctica), thus it was necessary to break the tests between
glass plates to observe stained cytoplasm.

We surveyed the foraminifera taxonomic distributions
across the study areas using the RB stained assemblages.
All individuals in the 125–500 mm size fraction range were
identified to species level and counted (Table 1 and Appen-
dix Table B). Stained individuals were found in the upper 6
cm, thus including both epifaunal (surface living) and
infaunal (subsurface living) species. Counts were standard-
ized to a 471 cm3 volume of sediment (6 cm subsurface sed-
iment depth, 10 cm diameter multicore). The taxonomy,
distribution and ecology of Arctic Ocean benthic foramini-
fera were taken from various sources (Green, 1960; Lagoe,
1977; Scott et al., 1989; Scott and Vilks, 1991; Wollenburg,
1992; Bergsten, 1994; Seidenkrantz, 1995; Wollenburg and
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Fig. 2. Representative Rose Bengal stained optical microscope (pink) and scanning electron microscope (grey scale) images of the six

foraminiferal species analyzed in this study and their depth and water mass distributions. Scale bar (100 mm) illustrates the average size

fraction of the individuals picked for analysis. N. = Nonionella; E. = Elphidium; C. = Cassidulina; Q. = Quinqueloculina; C. = Cibicidoides; O.

= Oridorsalis. Bar plots show the abundance of these species at each site within the uppermost 6 cm of each multicore. Sites are ordered by

water depth (depth axis is not to scale). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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Mackensen, 1998a; 1998b; Osterman et al., 1999; Scott
et al., 2008).

2.3. Trace metal analysis

Between 3 and 48 monospecific benthic foraminifera
were analyzed for trace metals from samples spanning
0–4 cm into the sediment of each multicore. The test size
class analyzed varied for each species, reflecting the ‘typ-
ical’ per-taxa size range (Table 2). This ‘typical’ size
range was defined using the digital measuring tool in
the Leica optical-microscope and camera system. Repli-
cate analyses were performed for N. labradorica (two sites
with two replicates each), E. clavatum (four sites with two
replicates each) and C. wuellerstorfi (one site with two
replicates). The tests were crushed between glass plates,
inspected under the microscope and impurities remaining
in the inner chambers were removed with a wet brush.
The test fragments were stored in polypropylene acid-
cleaned (10% HCl) Eppendorf safe lock tubes (0.5 ml).
The fragments were rigorously cleaned at Cardiff Univer-
sity, applying three clay-removal steps followed by oxida-
tive and reductive steps to remove external metal sources
derived from clays, organic matter and metal oxides
(Boyle and Keigwin, 1985).

The clean test fragments were dissolved in Optima
pure HNO3 and samples were analyzed against matrix
matched standards on a Thermo Element XR high-
resolution inductively coupled plasma mass spectrometer
(HR ICP-MS) at Cardiff University (Rosenthal et al.,
1999; Lear et al., 2002). Long-term analytical precision
for Mg/Ca, determined by analysis of consistency stan-
dards over the course of a year, is �1% r.s.d. All data
with a Mg signal to noise intensity less than twenty times
the blank, and a [Ca] concentration more than 15% dif-
ferent from the standard were rejected. An additional
screening step was undertaken to test for contamination
by clays and/or metal-oxide coatings (Boyle, 1983;
Barker et al., 2003). This was achieved by observing
intra-species consistency for some of the other trace metal
ratios collected at the same time as Mg/Ca, that are com-
monly associated with such contamination (Fe/Ca, Al/Ca
and Mn/Ca). If the ratios of an individual sample deviate
strongly from the typical values, and are significantly
higher than previous species-specific indications they
would be rejected. The majority of the measured Al/Ca,
Fe/Ca and Mn/Ca analysis in hyaline species fell within
300 mmol/mol, 70 mmol/mol and 90 mmol/mol, respec-
tively, with the exception of N. labradorica which regis-
tered Fe/Ca and Mn/Ca values an order of magnitude
higher, in agreement with previous studies (Skirbekk
et al., 2016). Likewise, all Al/Ca, Fe/Ca and Mn/Ca were
an order of magnitude higher for porcelaneous Q. arctica.
In cases where Al/Ca, Fe/Ca and Mn/Ca values appeared
high, they did not co-vary with Mg/Ca and thus no Mg/
Ca data were excluded based on this screening approach.
Mg/Ca data taken from previously published studies were
adjusted to the full cleaning method by removing 0.1
mmol/mol Mg/Ca (Elderfield et al., 2006; Yu and
Elderfield, 2008) (Appendix Table C).

3. RESULTS

3.1. Arctic Ocean seafloor oceanography and water mass

properties

Seafloor temperature data obtained from SWERUS-C3
CTD casts (Table 1, Fig. 3), span water depths between 52
and 1157 m and a temperature range of �1.8 to 0.9 �C. Col-
lectively they produce a vertical temperature profile in
which the main Arctic water masses can be identified. These
include the polar mixed layer (�0 to 50 m), a pronounced
halocline (�50 to 200 m), warmer and saltier Atlantic
waters (200–900 m) and the more homogeneous Arctic deep
waters (900–1200 m) (Fig. 3a).

Temperature, salinity and D[CO3
2�] co-vary through the

depth profile. All show the largest variability in the upper
200 m comprising mixed layer and halocline waters. The
measured range of D[CO3

2�] falls within the range observed
previously for the ‘Nordic Sea’ (Elderfield et al., 2006). Sim-
ilar to BWT, the bottom water D[CO3

2�] profile is inverted,
with lowest values at the surface within halocline depths.
Chukchi Sea/Herald Canyon stations (Cores SW-L2-1-
KL, -2-MC, -2-KL, -3-MC and -4-MC) show the most
depleted D[CO3

2�], which falls to negative values. The East-
ern Siberian slope (SW-L2-21-MC and -25-MC) and Lap-
tev Shelf (SW-L1-26-MC/I) surface values are somewhat
higher (25–30 mmol/kg) but are still low compared to the
Atlantic layer. Beneath the halocline, temperatures are war-
mer than the shallowest mixed layer waters by up to 2 �C
(from �1.3 to 0.7 �C). Salinity and D[CO3

2�] are also higher
below the halocline (32.6–34.8 psu and �10 to 50 mol/kg
respectively), reflecting Atlantic water chemistry and tem-
perature. Arctic deep waters (900–1200 m) are nearly
isothermal (less than 1 �C temperature change) and homo-
haline (34.9 psu). D[CO3

2�] decreases beneath the Atlantic
layer, similar to other ocean basins (Broecker and Peng,
1992), and a previous Arctic study (Jutterström and
Anderson, 2005). There is a broad correlation between
BWT and D[CO3

2�] for stations below 200 m (Fig. 4), as
would be predicted by typical D[CO3

2�]/temperature/depth
relationships. However, unlike other oceans, our shallowest
sites, which largely sit in the uppermost halocline, have low
D[CO3

2�] values, typically <30 mmol/kg, similar to less well
ventilated Arctic deep water. When D[CO3

2�] is above 30
mmol/kg there appears to be less variability (�20 mmol/kg
variability), showing a general positive correlation with
temperature, while below 30 mmol/kg, where BWT < �0.
5 �C, D[CO3

2�] values are more scattered (�40 mmol/kg
variability). In these cases the scatter is likely a consequence
of water mass mixing effects, with the extremely low values
of SW-L2-4-MC and -1-KL, a consequence of high dis-
solved CO2 content in Pacific water and shelf waters
(Pisareva et al., 2015; Anderson et al., 2016).

3.2. Spatial and water depth distribution of living benthic

foraminifera

‘Live’ RB stained benthic foraminifera were found in all
the core-top samples across the sampled depth range with
different species showing different depth preferences
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Table 2

Arctic benthic foraminifera Mg/Ca results from the topmost 0–3 cm sediments at each site and their respective hydrographic and geochemical characteristics. Calcite saturation state (D[CO3
2�]) was

computed using CO2calc Ver. 1.3.0 (Robbins et al., 2010) and utilizing seawater chemistry measurements (see text for details). Note that there are two replicate values for N. labradorica in two

sites, for E. clavatum in four sites and for C. wuellerstorfi in one site. RB: Rose Bengal stained.

Benthic

foraminifera

Core ID # RB specimens

run (0–4 cm)

Test size

(mm)

Water

depth

(m)

Field

BWT (�

C)

Mg/Ca

(mmol/mol)

D[CO3
2�]

(mmol/kg)

P (db) Temp.

(�C)

Salinity

(psu)

TA

(lmol/

kg)

TCO2

(lm/kg)

pH [CO3
2�] measured

(lmol/kgSW)

X

Ca

[CO3
2�]

saturation

(lmol/kg)

E. clavatum 26-MC/I 20 125–250 52.0 �1.82 0.65 29.97 48 �1.81 34.21 2304.9 2224.4 7.96 71.88 1.72 41.91

E. clavatum 26-MC/I 20 125–250 52.0 �1.82 0.52 29.97 48 �1.81 34.21 2304.9 2224.4 7.96 71.88 1.72 41.91

E. clavatum 2-KL1 13 125–250 71.4 �0.72 0.79 �4.27 70 �1.55 32.7 2251.4 2254.4 7.68 37.56 0.9 41.83

E. clavatum 2-KL1 36 125–250 71.4 �0.72 0.59 �4.27 70 �1.55 32.7 2251.4 2254.4 7.68 37.56 0.9 41.83

E. clavatum 2-PC1 35 125–250 57.0 �0.90 0.75 8.12 50 �0.89 32.6 2246.2 2214 7.8 49.77 1.2 41.65

E. clavatum 2-MC1-4 19 125–250 55.7 �0.90 0.68 8.12 50 �0.89 32.6 2246.2 2214 7.8 49.77 1.2 41.65

E. clavatum 3-MC1-4 15 125–250 89.6 �1.71 0.55 �3.53 89.1 �1.71 32.93 2260 2260.3 7.68 38.51 0.92 42.04

E. clavatum 3-MC1-5 13 125–250 89.6 �1.71 0.75 �3.53 89.1 �1.71 32.93 2260 2260.3 7.68 38.51 0.92 42.04

E. clavatum 4-MC1-4 25 125–250 123.6 �0.26 0.64 �10.35 114.7 �0.26 34.37 2292 2320 7.56 32.26 0.76 42.61

E. clavatum 4-MC1-5 16 125–250 123.6 �0.26 0.67 �10.35 114.7 �0.26 34.37 2292 2320 7.56 32.26 0.76 42.61

E. clavatum OD1507-

002-MC02

48 125–250 873.0 0.30 1.06 – – 0.30 34.78 – – – – – –

N.

labradorica

26-MC/I 3 350–425 52.0 �1.82 1.12 29.97 48 �1.81 34.21 2304.9 2224.4 7.96 71.88 1.72 41.91

N.

labradorica

1-KL1 3 350–425 73.4 �1.66 1.30 0.67 70.3 �1.66 32.8 2257.4 2245.1 7.73 42.53 1.02 41.86

N.

labradorica

2-MC1-4 10 250–350 55.7 �0.90 1.25 8.12 50 �0.89 32.6 2246.2 2214 7.8 49.77 1.2 41.65

N.

labradorica

2-MC1-5 3 350–425 55.7 �0.90 1.11 8.12 50 �0.89 32.6 2246.2 2214 7.8 49.77 1.2 41.65

N.

labradorica

3-MC1-5 4 350–425 89.6 �1.71 1.30 �3.53 89.1 �1.71 32.93 2260 2260.3 7.68 38.51 0.92 42.04

N.

labradorica

4-MC1-4 10 250–350 123.6 �0.26 1.24 �10.35 114.7 �0.26 34.37 2292 2320 7.56 32.26 0.76 42.61

N.

labradorica

4-MC1-5 7 250–350 123.6 �0.26 1.31 �10.35 114.7 �0.26 34.37 2292 2320 7.56 32.26 0.76 42.61

C. neoteretis 8-MC1-4 21 125–250 524 0.28 1.078 45.02 522.8 0.34 34.87 2303.05 2183.1 8.05 91.63 1.97 46.61

C. neoteretis 9-MC1-4 20 125–250 446 0.45 1.090 47.37 437.75 0.56 34.86 2299.65 2174.4 8.03 91.73 2.07 44.36

C. neoteretis 13-MC1-4 18 125–250 1118 �0.22 1.100 37.55 1112.3 �0.27 34.89 2300.7 2180.3 8 90.35 1.71 52.81

C. neoteretis 14-MC1-4 20 125–250 733 0.25 0.971 42.50 734.5 0.21 34.89 2304.1 2184 8.01 91.25 1.87 48.74

C. neoteretis 15-MC1-4 20 125–250 501 0.52 0.987 46.65 504.6 0.5 34.86 2304.2 2181.8 8.02 93.07 2.01 46.42

C. neoteretis 16-MC1-4 20 125–250 1023 �0.07 1.160 38.06 1001.2 �0.12 34.9 2304.7 2186.4 8 89.63 1.74 51.57

C. neoteretis 18-MC1-4 28 125–250 349 0.74 0.998 46.61 342.42 0.73 34.85 2299.3 2180.5 8.01 91.46 2.04 44.86

C. neoteretis 21-MC2-4 27 125–250 159 �0.10 1.040 25.42 154.9 �0.11 34.5 2293 2220 7.9 68.43 1.59 43.01

C. neoteretis 22-MC1-4 28 125–250 367 0.91 1.068 47.76 363.4 0.89 34.87 2304.2 2183.1 8.01 92.82 2.06 45.06
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Benthic

foraminifera

Core ID # RB specimens

run (0–4 cm)

Test size

fraction

(mm)

Water

depth

(m)

Field

BWT (�

C)

Mg/Ca

(mmol/mol)

D[CO3
2�]

(mmol/kg)

P (db) Temp.

(�C)

Salinity

(psu)

TA

(lmol/

kg)

TCO2

(lm/kg)

pH CO3
2� measured

(lmol/kgSW)

X

Ca

CO3
2�

saturation

(lmol/kg)

C. neoteretis 23-MC1-4 20 125–250 522 0.69 1.193 49.99 495.7 0.67 34.9 2302.6 2174.2 8.03 96.33 2.08 46.33

C. neoteretis 24-MC1-4 18 125–250 982 0.02 1.070 39.51 971.8 �0.03 34.91 2303.9 2183.6 8 90.76 1.77 51.25

C. neoteretis 26-MC1-4 23 125–250 378 0.53 1.196 50.81 377.6 0.53 34.86 2297.95 2170.3 8.04 96.01 2.12 45.2

C. neoteretis 27-MC1-4 22 125–250 276 0.43 1.033 49.99 270.4 0.39 34.81 2301.1 2177.4 8.03 94.14 2.13 44.16

C. neoteretis 29-MC1-4 21 125–250 910 0.02 0.910 42.53 851.6 �0.01 34.91 2302.5 2179.3 8.01 92.51 1.85 49.98

C. neoteretis 34-MC1-4 30 125–250 886 �0.10 0.842 41.80 888.2 �0.13 34.9 2306.4 2183.8 8.01 92.17 1.83 50.36

Q. arctica 13-MC1-4 4 250–425 1118 �0.22 20.264 37.55 1112.3 �0.27 34.89 2300.7 2180.3 8 90.35 1.71 52.81

Q. arctica 15-MC1-4 3 250–425 501 0.52 41.851 46.65 504.6 0.5 34.86 2304.2 2181.8 8.02 93.07 2.01 46.42

Q. arctica 16-MC1-4 3 250–425 1023 �0.07 22.553 38.06 1001.2 �0.12 34.9 2304.7 2186.4 8 89.63 1.74 51.57

Q. arctica 18-MC1-4 3 250–425 349 0.74 75.085 46.61 342.42 0.73 34.85 2299.3 2180.5 8.01 91.46 2.04 44.86

Q. arctica 21-MC2-4 3 250–425 153 �0.10 74.220 25.42 154.9 �0.11 34.5 2293 2220 7.9 68.43 1.59 43.01

Q. arctica 22-MC1-4 4 250–425 367 0.91 53.742 47.76 363.4 0.89 34.87 2304.2 2183.1 8.01 92.82 2.06 45.06

Q. arctica 23-MC1-4 5 250–425 522 0.69 71.181 49.99 495.7 0.67 34.9 2302.6 2174.2 8.03 96.33 2.08 46.33

Q. arctica 24-MC1-4 5 250–425 982 0.02 22.708 39.51 971.8 �0.03 34.91 2303.9 2183.6 8 90.76 1.77 51.25

Q. arctica 26-MC1-4 3 250–425 378 0.53 69.776 50.81 377.6 0.53 34.86 2297.95 2170.3 8.04 96.01 2.12 45.2

Q. arctica 27-MC1-4 3 250–425 276 0.43 74.948 49.99 270.4 0.39 34.81 2301.1 2177.4 8.03 94.14 2.13 44.16

Q. arctica 28-MC1-4 3 250–425 1145 �0.16 18.889 36.98 1147.5 �0.24 34.91 2307.7 2187.8 8 90.2 1.7 53.21

Q. arctica 29-MC1-4 4 250–425 910 0.02 59.880 42.53 851.6 �0.01 34.91 2302.5 2179.3 8.01 92.51 1.85 49.98

Q. arctica 34-MC1-4 3 250–425 886 �0.10 39.397 41.80 888.2 �0.13 34.9 2306.4 2183.8 8.01 92.17 1.83 50.36

O. tener 23-MC1-4 16 125–250 522 0.69 1.67 49.99 495.7 0.67 34.9 2302.6 2174.2 8.03 96.33 2.08 46.33

O. tener 24-MC1-4 16 125–250 982 0.02 1.50 39.51 971.8 �0.03 34.91 2303.9 2183.6 8 90.76 1.77 51.25

O. tener 28-MC1-4 24 125–250 1145 �0.16 1.43 36.98 1147.5 �0.24 34.91 2307.7 2187.8 8 90.2 1.7 53.21

O. tener 29-MC1-4 16 125–250 910 0.02 1.74 42.53 851.6 �0.01 34.91 2302.5 2179.3 8.01 92.51 1.85 49.98

O. tener 32-MC1-4 15 125–250 837 �0.01 1.78 43.88 888.2 �0.13 34.9 2306.4 2183.8 8.01 92.17 1.83 50.36

C.

wuellerstorfi

13-MC1-4 7 350–425 1118 �0.22 1.32 37.55 1112.3 �0.27 34.89 2300.7 2180.3 8 90.35 1.71 52.81

C.

wuellerstorfi

13-MC1-4 6 350–425 1118 �0.22 1.15 37.55 1112.3 �0.27 34.89 2300.7 2180.3 8 90.35 1.71 52.81

C.

wuellerstorfi

16-MC1-4 9 350–425 1023 �0.07 1.48 38.06 1001.2 �0.12 34.9 2304.7 2186.4 8 89.63 1.74 51.57
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(Table 1, Figs. 2 and 5). All studied species build low Mg
tests except Q. arctica, which has a high Mg-calcite test.
Of the six species, three are epifaunal (Q. arctica, C. wueller-
storfi and O. tener) while the others (C. neoteretis, N.

labradorica, E. clavatum) are deep infaunal (Wollenburg
and Mackensen, 1998b; Murray, 2006). In this sample set,
size fractions are 125–250 mm for E. clavatum, C. neoteretis
and O. tener; and 250–425 mm for N. labradorica, Q. arctica

and C. wuellerstorfi (Fig. 2). Five of these six taxa (or a clo-
sely related species belonging to the same genus) have been
the subject of previous Mg/Ca-BWT investigations outside
of the Arctic Ocean, thus allowing new calibrations across a
wider temperature range (�1.8 to 25.7 �C).

The Arctic benthic foraminifera distribution patterns are
thought to be primarily controlled by food availability
(Wollenburg, 1995). Assemblages from the shallowest sites
(halocline waters), on the Chukchi, East Siberian and Lap-
tev shelves have the highest abundances of the hyaline
infaunal species E. clavatum followed by N. labradorica.
Both species have a wide global distribution and are consid-
ered to prefer shelf seas with high primary production and

dominate in deep water areas of European fjords (Murray,
2006). They are deposit feeders protected from strong bot-
tom currents by their infaunal habitat (Wollenburg, 1992;
Murray, 2006). Elphidium clavatum is known to tolerate
environmental stress (Schafer et al., 1975; Dabbous and
Scott, 2012) that in the Herald Canyon will be related to
strong salinity shifts brought by its location at the seasonal
sea ice margin, and to dysoxic low D[CO3

2�] bottom waters
of Pacific origin.

Sites located on the East Siberian slope and at shallow
depths on the Lomonosov Ridge (�600 to 800 m), are
bathed by warmer and saltier Atlantic waters and contain
higher proportions of C. neoteretis (also known as Islan-

diella teretis). This infaunal species is typical of Arctic inner
shelf to bathyal environments where Atlantic water flows
(Seidenkrantz, 1995; Scott et al., 2008; Lazar et al., 2016).
Cassidulina neoteretis is the most abundant of all studied
species and habits the widest depth ranges. It shows a pro-
nounced peak in abundance at 280–350 m water depth
coincident with the upper Atlantic water. It is dominant
(>50%) at stations 8-MC, 9-MC, 14-MC, 15-MC, 18-MC,

Fig. 3. Bottom water oceanographic data across the 27 sites investigated in this study. (a) Bottom water temperature (BWT), (b) salinity, (c)

calculated seawater D[CO3
2�]. See Table 1 for data source. The sites collectively span the three main water masses found in the Arctic Ocean,

the approximate depth boundaries of which are depicted by horizontal lines. The vertical dashed line in (c) at 30 mmol/kg identifies the

threshold where D[CO3
2�] loses the trend with temperature (Fig. 4) and could influence measured Mg/Ca more strongly. No D[CO3

2�] data was

available for the Northern Greenland site (open square). Grey circles represent Chukchi Shelf sites (Herald Canyon). This region, which is

bathed by ‘old’, nutrient-rich Pacific waters entering the Arctic across the Bering Strait, has the greatest D[CO3
2�] and salinity variability with

small depth differences. Black-filled circles show bottom water samples from ESS = Eastern Siberian Shelf/slope and LR = Lomonosov

Ridge.
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21-MC, 22-MC, 26-MC, 27-MC and 34-MC (Fig. 5). Below
the Atlantic layer in Arctic deep waters (>800 m), Q. arc-

tica, O. tener and C. wuellerstorfi are the most abundant
species, consistent with previous observations (Scott and
Vilks, 1991; Bergsten, 1994; Scott et al., 2008). Quinquelo-

culina arctica, common in Arctic and cold North Atlantic
subsurface waters, is the most common species at sites 24-
MC, 29-MC, 31-MC and 32-MC, where water depths range
between 837 and 1157 m. The presence of epifaunal C.

wuellerstorfi at depths of �1000 m (13-MC and 16-MC)
might reflect more oligotrophic conditions in this region
(Altenbach and Sarnthein, 1989). Oridorsalis tener appears
in small numbers at water depths around 500 m (15-MC
and 23-MC) and becomes dominant at 1145 m (25-MC).
This is consistent with previous studies illustrating that this
species has a preference for Atlantic waters sitting at bath-
yal to abyssal depths. Outside the Arctic Ocean many
authors do not recognize or differentiate O. tener from
the better known close relative O. umbonatus (Osterman
et al., 1999). According to some, O. tener is considered epi-
faunal while O. umbonatus is thought to be shallow infaunal
(Murray, 2006).

3.3. Benthic foraminifera Mg/Ca and bottom water

temperature

None of the six species occupy the full bathymetric or
temperature range. Thus, while the maximum vertical Arc-
tic Ocean temperature range is �3 �C (Fig. 3), the narrow
preferred depth of the individual species means our

monospecific Mg/Ca-BWT data span even narrower tem-
perature ranges. The ranges captured are 2.12 �C in E.

clavatum, 1.56 �C in N. labradorica, 1.45 �C in Q. arctica,
1.38 �C in C. neoteretis, 1.28 �C in O. tener and 0.15 �C in
C. wuellerstorfi. Measured Mg/Ca in hyaline E. clavatum,
N. labradorica, C. neoteretis, O. tener and C. wuellerstorfi

range between 0.5 and 1.8 mmol/mol.
Mg/Ca in E. clavatum (7 stations, n = 11) varies between

0.52 and 1.06 mmol/mol and spans a BWT range of �1.82
to 0.3 �C (Fig. 6a). The warmest data point, which comes
from the Petermann Fjord (northern Greenland), fits with
the overall trend. For N. labradorica (5 stations, n = 7), also
common in the halocline, Mg/Ca of 1.11–1.31 mmol/mol
resulted over a temperature gradient of �1.82 to �0.26 �C
(Fig. 6b). Mg/Ca of N. labradorica is �0.6 mmol/mol
higher than E. clavatum Mg/Ca from the same locality,
consequence of the ‘‘vital effect”. Cassidulina neoteretis,
which is most common in the warmer waters of the Atlantic
layer (15 stations, n = 15), has Mg/Ca values that vary
between 0.84 and 1.20 mmol/mol for a BWT range of
�0.47 to 0.91 �C (Fig. 6c). Like other species producing
high-Mg ‘porcelaneous tests’ (Toyofuku et al., 2000), the
measurements on stained Q. arctica (13 stations, n = 13)
show Mg/Ca up to 40 times higher than hyaline taxa, with
values of 18.89–75.08 mmol/mol over a �0.54 to 0.91 �C
BWT range (Fig. 6d). There are a small number of deep-
water stations where O. tener and C. wuellerstorfi were pre-
sent. In O. tener (5 stations, n = 5), Mg/Ca is 1.43–1.78 m
mol/mol over a BWT range of �0.59 to 0.69 �C (Fig. 6e).
The three C. wuellerstorfi data points (2 stations, n = 3)

Fig. 4. Bottom water D[CO3
2�] and temperature relationship at the SWERUS-C3 Arctic Ocean study sites spanning BWT below 1 �C. See

Table 1 for site information. An almost linear D[CO3
2�]-BWT trend is observed and is disrupted at 30 mmol/kg, depicted as a dashed line. This

limit characterizes the hypothesized 30 mmol/kg threshold, below which D[CO3
2] could influence test Mg/Ca. Our halocline sites fall into this

category. Note that no D[CO3
2�] data was available for the Northern Greenland site.
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show Mg/Ca of 1.15–1.48 mmol/mol and a BWT of �0.22
to �0.07 �C (Fig. 6f). Linear regressions are tentatively
shown in Fig. 6 and Table 3 for discussion purposes. They
are not intended for use as palaeotemperature calibrations,
except for the Arctic E. clavatum dataset which, having the
widest range of field BWT, produces a reasonable correla-
tion with Mg/Ca.

3.4. Mg/Ca and bottom water carbonate ion concentration (D

[CO3
2�])

Similar to Arctic Ocean temperature structure, the D

[CO3
2�] pattern is atypical compared to other oceans, with

surface waters having the lowest D[CO3
2�] (Fig. 3c). Thus,

most of the sites sitting in halocline waters from the Herald
Canyon have <0 mmol/kg in bottom water D[CO3

2�] as a
consequence of Pacific origin bottom waters bathing the
sites that differ from the dominant Arctic water masses by
having lower salinity, D[CO3

2�], lower oxygen concentration
and higher nutrients (Walsh et al., 1989; Chierici and
Fransson, 2009). In contrast, most of the Arctic Ocean sites
on the eastern shelves, slopes and ridges have oversaturated
waters with respect to calcite, as observed in other studies
(Jutterström and Anderson, 2005). Mg/Ca data from

monospecific hyaline species show no correlation with bot-
tom water D[CO3

2�] (Fig. 7a, b, c, e and f), whereas Mg/Ca
Q. arctica shows a clear positive Mg/Ca-D[CO3

2�] correla-
tion (r2 = 0.77, n = 13; regression not shown) over much
of the data range, excluding station 21-MC, which shows
Pacific water D[CO3

2�] values of 26 mmol/kg (Fig. 7d).

4. DISCUSSION

The goal of this study was to explore the application of
benthic foraminifera Mg/Ca palaeothermometry in the
Arctic Ocean and to expand the scarce Mg/Ca data found
in benthic foraminifera living at the cold end of the temper-
ature scale. The results represent the most extensive set of
physical and chemical field constraints coupled with benthic
foraminifera Mg/Ca available to date in the Arctic Ocean,
and, hence, provide a unique opportunity for comparison
with existing global Mg/Ca-BWT datasets and calibrations.

4.1. Arctic benthic foraminifera Mg/Ca: challenges at the

cold end

Previous studies on the thermodynamic controls on Mg
incorporation into benthic foraminiferal calcite suggest the

Fig. 5. Spatial distribution and proportions of the six species used in this study as observed in ‘live’ benthic foraminiferal assemblages (Rose

Bengal stained) from the SWERUS-C3 25 multicore (MC) and kastenlot (KL) core top sites (grey circles). Counts were made on the >125 lm

stained species found in the topmost 6 cm of each multicore. The Northern Greenland site is not depicted because species counts were not

available. At these sites, assemblage composition is controlled by water depth, different species or combinations of species preferring the

different Arctic Ocean layers: N. labradorica and E. clavatum are restricted to the shelves; C. neoteretis and Q. arctica prefer continental slope

and top ridge settings; O. tener and C. wuellerstorfi are most common in deeper sites. Geographic regions where the multicores were retrieved

Herald Canyon, Eastern Siberian Shelf and slope, Laptev Shelf and Lomonosov Ridge. Equidistance of the contour lines is 50 m These are

present down to 900 m of water depth representing the lower limit of Atlantic water flowing into the Arctic basin.

N. Barrientos et al. /Geochimica et Cosmochimica Acta xxx (2018) xxx–xxx 11

Please cite this article in press as: Barrientos N., et al. Arctic Ocean benthic foraminifera Mg/Ca ratios and global Mg/Ca-temperature
calibrations: New constraints at low temperatures. Geochim. Cosmochim. Acta (2018), https://doi.org/10.1016/j.gca.2018.02.036



relationship to be either linear (e.g. Toyofuku et al., 2000;
Marchitto et al., 2007) or exponential (e.g. Rosenthal
et al., 1997; Lear et al., 2002), the latter implying reduced

Mg sensitivity at low temperatures. The conditions that
characterize the Arctic Ocean include the coldest end of
the global ocean temperature spectrum (down to �2 �C),

Fig. 6. Benthic foraminifera Mg/Ca data for the six species investigated in this study plotted against field bottom water temperature (BWT).

Mg/Ca values of Q. arctica (d) are an order of magnitude higher than all other species due to the characteristic high-Mg calcite tests. Dashed

linear fits and the associated equations are included to facilitate discussion but are not intended for use as paleotemperature calibrations, the

exception being E. clavatum having the widest BWT ranges of all the species. Analytical error for Mg/Ca (0.1 mmol/mol) is equivalent to the

height of the symbols.
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the narrowest vertical temperature range (3 �C) and the flat-
test part of the exponential Mg/Ca-BWT sensitivity curve.
Hence, the slopes of the regression lines for the Arctic data-
sets are low (i.e. large temperature range for little change in
Mg/Ca). With the exception of E. clavatum, these should
therefore not be used for palaeothermometry on their own.

There are a variety of potential reasons why pure Arctic-
only calibrations are challenging. First, there is the question
of whether our measured field BWT are representative of
the conditions under which the analyzed foraminifera calci-
fied. In other words, how much seasonal variability is there
in BWT and when does calcification occur? We have largely
used the CTD temperature data collected at the time of cor-
ing, i.e. in late summer August–September 2014. We con-
sider these temperatures and season an appropriate match
for N. labradorica and E. clavatum, which previous studies
on fjordal environments from Svalbard and the Swedish
west coast have shown grow rapidly at the end of the sum-
mer when shelf bottom waters are at their warmest

(Gustafsson and Nordberg, 1999; Gustafsson and
Nordberg, 2001; Skirbekk et al., 2016). Seasonal variations
in BWT at the depths of the study sites are on the order of
�1 �C, and thus within the Mg/Ca-BWT error, even at the
shallowest studied depths of the Laptev and Chukchi Sea
sites (Rudels, 2009; Dmitrenko et al., 2009; Luchin and
Panteleev, 2014). Thus, we conclude that seasonal BWT
changes could account for ‘noise’ on the order of fractions
of a degree in our shallower sites (<200 m water depth) but
would be insignificant in deeper sites.

Benthic foraminifera life span and peak growth/calcifi-
cation season in the studied Arctic setting is also uncertain.
Predictions range from months to several years and this is
likely species and environment dependent (Myers, 1938;
Boltovskoy and Wright, 1976; Corliss and Silva, 1993;
Debenay et al., 1996; Gustafsson and Nordberg, 1999;
2001; Skirbekk et al., 2016). Moreover, the precise timing
of mineralization is uncertain. Indications are that calcifica-
tion is seasonal in the Arctic. Some studies link the main

Table 3

Comparison of the new and existing Mg/Ca-BWT regression fits for the 6 taxa investigated in this study. The compiled datasets are

constructed based on compiled data from sites with no D[CO3
2�] effect (as described in each study). For published data based on samples that

did not receive the full foraminiferal cleaning procedure Mg/Ca values where adjusted by subtracting 0.1 mmol/mol. In bold are the equations

favored in this study and illustrated in Fig. 8. Data sources for all the compiled data, showing sample locations and Mg/Ca corrections are

presented in Appendix, Table C.

Benthic foraminifera Reference n A B R2 Mg/Ca range (mmol/mol) BWT (�C)

Linear fit, Mg/Ca = (A * BWT) + B

E. clavatum This study (Fig. 8a) 11 0.125 0.816 0.38 0.52–1.06 �1.82 to 0.3

N. labradorica This study 7 0.024 1.259 0.04 1.11–1.31 �1.82 to �0.26

N. labradorica Skirbekk et al. (2016) (autumn) 12 0.088 1.345 0.44 1.36–1.69 0.78–3.9

N. labradorica Compilation 19 0.090 1.344 0.87 1.11–1.69 �1.71 to 3.9

C. neoteretis This study 15 0.071 1.023 0.07 0.84–1.20 �0.47 to 0.91

C. neoteretis Kristjánsdóttir et al. (2007) 10 0.093 0.840 0.90 0.93–1.38 0.22–6.25

C. neoteretis Compilation 25 0.049 1.011 0.62 0.84–1.38 0.96–5.47

Q. arctica This study 13 35.198 40.882 0.37 18.89–75.08 �0.54 to 0.91

Q. yabei Toyofuku et al. (2000) 11 1.730 77.640 0.83 95.20–126.10 11.70–25.70

O. tener This study 5 0.139 1.609 0.09 1.43–1.78 �0.59 to 0.69

O. umbonatus Healey et al. (2008) 24 0.449 0.773 0.67 1.25–2.60 0.85–3.8

O. umbonatus Lear et al. (2010) 21 0.12 1.200 0.9 1.11–1.88 �0.6 to 3.7

O. tener/umbonatus Compilation 83 0.195 1.309 0.64 1.01–3.96 �0.6 to 10.4

C. wuellerstorfi This study 3 1.651 1.602 0.73 1.32–1.48 �0.22 to �0.07

C. wuellerstorfi Healey et al. (2008) 33 0.295 0.670 0.90 0.79–2.05 0.95–3.8

C. lobatulus Quillmann et al. (2012) 38 0.116 1.20 0.9 1.03–2.41 �0.33 to 9.50

Exponential fit, Mg/Ca = B * e^(A * BWT)

E. clavatum This study 11 0.164 0.799 0.40 0.52–1.06 �1.82 to 0.3

N. labradorica Compilation (Fig. 8b) 19 0.062 1.334 0.88 1.11–3.42 �1.71 to 3.9

C. neoteretis Kristjánsdóttir et al. (2007) 10 0.082 0.864 0.90 0.93–1.38 0.22–6.25

C. neoteretis Compilation (Fig. 8c) 25 0.042 1.009 0.62 0.84–1.38 �0.47 to 5.47

O. umbonatus Lear et al. (2002) 16 0.114 1.008 0.40 1.09–3.43 0.8–9.9

O. umbonatus Rathmann et al. (2004) 6 0.09 1.528 – 1.91–3.96 2.9–10.4

O. umbonatus Healey et al. (2008) 24 0.252 0.988 0.67 1.25–2.60 0.85–3.8

O. umbonatus Tisserand et al. (2013) 12 0.110 1.360 0.53 2.26–3.1 4.17–6.06

O. tener/umbonatus Compilation (Fig. 8e) 83 0.102 1.317 0.65 1.01–3.96 �0.6 to 10.4

C. wuellerstorfi Martin et al. (2002) 27 0.309 0.448 0.81 0.68–1.46 1.8–3

C. wuellerstorfi Healey et al. (2008) 33 0.230 0.781 0.91 0.79–2.05 0.95–3.8

C. wuellerstorfi Raitzsch et al. (2008) 44 0.145 0.830 0.89 0.84–2.02 0.39–3.88

C. wuellerstorfi Tisserand et al. (2013) 34 0.19 0.820 0.73 1.8–3.91 4.17–6.06

C. wuellerstorfi Compilation (Fig. 8f) 200 0.118 1.043 0.43 0.92–3.81 �1.15 to 6.06

C. lobatulus Quillmann et al. (2012) 38 0.069 1.240 0.89 1.03–2.41 �0.33 to 9.50

C. wuellerstorfi / lobatulus Compilation (Fig. 8f) 238 0.092 1.130 0.45 0.92–3.81 �1.15 to 9.50
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phase with peak summer BWT (Scourse et al., 2004), i.e.
September for the Arctic Ocean. Another study based in
Kongsfjorden (Svalbard) found interspecies variability;
one species calcified in summer, another appeared to have

continuous reproduction/growth lasting from July to
November, while N. labradorica, also investigated in this
study, calcified in autumn (Skirbekk et al., 2016). Under-
standing the seasonal nature of Mg/Ca-BWT signals is

Fig. 7. Benthic foraminifera Mg/Ca data compared to field bottom water D[CO3
2�]. Quinqueloculina arctica (d) is the only species showing a

positive Mg/Ca relationship to D[CO3
2�]. Shelf sites at water depths <200 m experience wide variability in D[CO3

2�]. The resident shelf species

(a) and (b) Mg/Ca results do not show significant relationships with (D[CO3
2�]). In (a), the Northern Greenland site data point is not available.

Analytical error for Mg/Ca (0.1 mmol/mol) is equivalent to the height of the symbols.
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clearly important for developing and interpreting
palaeotemperature proxies.

4.2. Integration of Arctic benthic foraminifera Mg/Ca-BWT

data with existing records

A further step in analyzing the Arctic Ocean Mg/Ca
data is to compare it to existing monospecific compilations
of benthic Mg/Ca data from wider temperature ranges and
different ocean basins. By combining published data (thor-
oughly cleaned, or adjusted to cleaned values, see methods),
we see how the Arctic benthic foraminifera Mg/Ca data
provide important new constraints at low temperatures
for six species, including several covered only sparsely in
previous studies and one common species for which no
published data exist (E. clavatum) (Fig. 8). For the five spe-
cies where previous data are available (Appendix Table C
shows the origin of each dataset), we provide revised linear
and exponential regressions that include our new con-
straints (Table 3). We note that care should be taken when
compiling epifaunal benthic foraminifera Mg/Ca global
datasets if the bottom waters from the sites experience
low D[CO3

2�] because Mg/Ca values may mainly reflect D
[CO3

2�] changes instead of BWT (Elderfield et al., 2006).
Therefore, in the presented C. wuellerstorfi compilation
we have not included undersaturated data from deep sites
found in Russell et al. (1994), Martin et al. (2002), Healey
et al. (2008), Raitzsch et al. (2008), and Yu and Elderfield
(2008) studies.

For the genus Elphidium, no previous calibrations were
found to date. The regression presented here, therefore, is
based on the Arctic E. clavatum dataset alone (Fig. 8a).

While we have no other comparison, the infaunal habitat
and absence of any relationship between Mg/Ca and D

[CO3
2�] gives confidence that this species should make a

suitable palaeothermometry tracer. We present a Mg/Ca-
BWT linear sensitivity of 0.125 mmol/mol/�C (Mg/Ca = 0
.816 ± 0.06 + 0.125 ± 0.05 � BWT, r2 = 0.4), which is real-
istic considering benthic foraminifera sensitivity found in
several previous studies using different species (Lear et al.,
2002; Marchitto et al., 2007; Lear et al., 2010; Tisserand
et al., 2013). Our N. labradorica and C. neoteretis Mg/Ca
data, both also infaunal, fit previous published trends
(Fig. 8b and c). Nonionella labradorica is a common species
of Arctic shelf waters. Combining the Arctic N. labradorica

data with that from Kongsfjorden, Svalbard (Skirbekk
et al., 2016; Fig. 8b) expands the cold end of the field data-
set by 3 �C, and can be described by the relationship: Mg/
Ca = 1.325 ± 0.01 � e^(0.065 ± 0.01 � BWT), r2 = 0.9.
The resulting revised linear sensitivity is 0.090 mmol/mol/
�C, that is very close, i.e. within error, to Skirbekk et al.’s
(2016) original (autumn only) linear fit (0.088 mmol/mol/�
C). A reason for this consistency could be the infaunal habi-
tat, that minimizes any potential complications due to low
bottom water D[CO3

2�]. This is encouraging and suggests N.

labradorica could be a useful Mg/Ca signal carrier in shelf
settings. Cassidulina neoteretis is the most common species
in the Arctic Ocean Atlantic layer and is also common
throughout North Atlantic, Nordic and Arctic shelf settings
(Seidenkrantz, 1995; Lazar et al., 2016). We find a robust fit
when we combine the new Arctic data with data from the
northern Icelandic shelf (Kristjánsdóttir et al., 2007); there
is a small overlap between the two datasets (Fig. 8c, Table 3)
and the new data extend the cold end from 0.22 �C to

Fig. 8. Arctic benthic foraminiferal trace metal data for the six species investigated in this study compared to published data derived from the

Atlantic, Pacific and Indian Oceans for the same taxa. The Mg/Ca and field BWT axes scales are customized per species reflecting the different

test Mg concentrations typifying individual taxa. New exponential fits to the monospecific compilations are shown (equations in the figures),

apart from E. clavatum (a) for which no existing data was found. In this case a linear fit is preferred because of the narrow temperature range

of the Arctic-only constraints. Curve fits were not applied to the compiled Q. arctica / yabei dataset.
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�0.47 �C in this species. This leads to an exponential fit of
Mg/Ca = 1.009 ± 0.02 � e^(0.042 ± 0.01 � BWT), r2 =
0.6. We suggest this might be an option for capturing low
temperature variations in the Atlantic sourced waters in
the Arctic Ocean.

We see somewhat different patterns for the three epifau-
nal species investigated. The porcelaneous species Q. arctica

shows a strikingly larger Mg/Ca range for minimal temper-
ature change compared to both other Arctic species and the
only other published dataset for Quinqueloculina, which
comes from a culture study of the species Q. yabei, common
in tidal pools off the coast of Japan (Toyofuku et al., 2000)
(Fig. 8d). This result implies that, for this taxon, different
factors control Mg/Ca in different locations. Specifically,
this suggests that under the low temperatures of the Arctic
Ocean, D[CO3

2�] has a stronger influence on Q. arctica Mg/
Ca than temperature (Fig. 7d) (see Section 4.3 for further
discussion).

Oridorsalis tener was found at sites bathed by Atlantic
water andArctic deepwaters. This speciesmay be considered
the polar variant of O. umbonatus (Wollenburg and
Mackensen, 1998a; Wollenburg et al., 2007), which has
proved useful for Mg/Ca BWT reconstructions in a number
of other calibration studies (Lear et al., 2002, 2010; Martin
et al., 2002; Rathmann et al., 2004; Healey et al., 2008) and
it is a preferred Mg/Ca signal carrier in early Cenozoic
palaeoclimate reconstructions. Therefore, we compared the
Arctic O. tener Mg/Ca with various published datasets for
O. umbonatus. The resulting Mg/Ca data compilation fits
reasonably well with existing correlations (Fig. 8e). How-
ever, we notice that our few Arctic data points all sit slightly
above the regression curve. While this could be within sam-
ple/method error, it is possible that this is a consequence of
differences in their depth habitat, epifaunal forO. tener, shal-
low infaunal for O. umbonatus. Alternatively, the O. tener/
umbonatus mismatch may derive from authigenic Mg-
enrichment in the material collected from Little Bahama
Bank, as suggested by the authors (Lear et al., 2002). This
observation highlights the point that integrating data to
build single-species Mg/Ca-BWT relationships is likely to
add additional noise, since each setting has its own unique
oceanic and taphonomic characteristics that could overprint
the temperature signals. An additional consideration for this
larger O. umbonatus dataset is the use of different test size
windows between the studies that could represent another
variable that can introduce noise due to potential metabolic
or ontogenetic effects that alter the quantities of Mg entering
the calcite. For example, Tisserand et al. (2013) showed that
O. umbonatus from a 250 to 400 mm size window hadMg/Ca
values�0.4 mmol/molMg/Ca lower compared to tests in the
150–250 mm size range. This size consideration could be rel-
evant to our Arctic O. tener since it is smaller (125–250 mm)
and thinner-walled than the compiled O. umbonatus data (2
50–400 mm). The slightly higher Mg/Ca in our Arctic data
(Fig. 8e), thus, may be the result of ontogenetic vital effects
(Lear, 2000; Elderfield et al., 2002). Despite these considera-
tions, O. tener might be useful for tracing relative BWT
changes in deeper water Arctic settings and the refined cali-
bration results in Mg/Ca = 1.317 ± 0.03 � e^(0.102 ± 0.01
BWT), r2 = 0.7.

Cibicidoides wuellerstorfi is the most widely investigated
species for Mg/Ca palaeothermometry (Rosenthal et al.,
1997; Lear et al., 2002, 2010; Martin et al., 2002;
Elderfield et al., 2006; Healey et al., 2008; Raitzsch et al.,
2008; Tisserand et al., 2013). The Arctic data for this species
are too few to make any meaningful regional calibration.
Therefore, we combine it with published core-top data,
exclusively for C. wuellerstorfi, from sites above the hypoth-
esized threshold for significant Mg interference with D

[CO3
2�] (30 mmol/kg) (Elderfield et al., 2006; Marchitto

et al., 2007; Yu and Elderfield, 2008). This new ‘‘well-
saturated” compilation (Fig. 8f, Table 3) can be described
by the exponential equation Mg/Ca = 1.043 ± 0.03 � e^(0
.118 ± 0.1 BWT), r2 = 0.4. Although the r2 value is weaker
than previous studies, the temperature sensitivity is consis-
tent with previous studies (Lear et al., 2002; Martin et al.,
2002; Raitzsch et al., 2008) supporting the use of this spe-
cies for Mg/Ca-palaeothermometry. For additional com-
parison we have integrated the cold water North Atlantic
C. lobatulus Mg/Ca dataset from Quillmann et al. (2012)
that expands the calibration by �2 �C at the warmest end
(Fig. 8f). The C. lobatulus data show consistencies with
the compiled C. wuellerstorfi data at the <4 �C cold end.
However, at >5 �C the C. lobatulus Mg/Ca values are lower
by �1 mmol/mol and less scattered than the values for C.
wuellerstorfi from Tisserand et al. (2013) at similar
temperatures.

In summary, inclusion of the new Arctic Ocean data
modifies the global regression curves for different species
of benthic foraminifera. The revised regressions appear to
work best for infaunal taxa. They produce relationships
that are broadly consistent with previous findings, although
in all cases lowering the Mg/Ca-BWT sensitivity (Table 3)
possibly caused by the addition of Mg/Ca values at the
coldest part of the exponential relationship.

4.3. D[CO3
2�] effect

Temperature typically has the strongest control on Mg
incorporation into benthic foraminifera calcite. However,
as discussed above, it has been shown that D[CO3

2�] can
have a significant influence when temperatures are below
3 �C and D[CO3

2�] < 30 mmol/kg (Martin et al., 2002;
Elderfield et al., 2006; Marchitto et al., 2007; Yu and
Elderfield, 2008). This effect had not previously been sys-
tematically studied in Arctic Ocean benthic foraminifera.

Given that Arctic bottom waters are all colder than 3 �C
and D[CO3

2�] ranges between �10 and 55 lmol/kg, we
might expect some influence of D[CO3

2�] on benthic Mg/
Ca, especially in the halocline sites experiencing the lowest
D[CO3

2�] and BWT (Fig. 3). It has been suggested that bot-
tom water D[CO3

2�] influences pore water D[CO3
2�]

(Weldeab et al., 2016), however we see no systematic rela-
tionship between bottom water D[CO3

2�] and test Mg/Ca
in any of the infaunal stained hyaline species (Fig. 7). For
E. clavatum and N. labradorica, common at the halocline
stations, the lack of influence of bottom water D[CO3

2�]
on test Mg/Ca might be a consequence of their infaunal
habitat where test calcification takes place using buffered
pore waters. Similar ideas have been proposed to explain
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infaunal vs. epifaunal foraminifera Mg/Ca response with
respect to early Cenozoic palaeoclimate events where
extremes of D[CO3

2�] are thought to have occurred (Katz,
2003; Elderfield et al., 2010; Lear et al., 2015). We conclude,
therefore, that for the infaunal hyaline species studied here,
bottom water D[CO3

2�] is not the major control on test Mg/
Ca at the coldest BWT prevailing in the Arctic, nor an obvi-
ous source of error complicating our Mg/Ca-BWT investi-
gations. This is not the case for high-Mg calcite
porcelaneous species Q, arctica, which shows a strong cor-
relation between Mg/Ca and D[CO3

2�]. The small sample
size for O. tener and C. wuellerstorfi preclude further eval-
uation of any D[CO3

2�] effect in hyaline epifaunal benthic
foraminifera, although the bottom water D[CO3

2�] where
above the 30 mmol/kg threshold.

4.3.1. Mg/Ca and calcification in Quinqueloculina arctica

The high Mg calcite tests of Q. arctica display a higher
linear correlation between Mg/Ca and D[CO3

2�] (r2 = 0.77,
n = 13) than between Mg/Ca and BWT (r2 = 0.37, n =
13) (Figs. 7d and 6d). This implies that temperature is not
the dominant control on Mg partitioning into Q. arctica

at the cold bottom waters of the Arctic Ocean. This is in
line with the low temperature control found in other porce-
laneous species when compared to hyaline species
(Pawlowski et al., 2003; de Nooijer et al., 2009). Quinquelo-

culina arctica is regarded as having an epifaunal habitat,
thus directly exposed to bottom waters. In general, the bot-
tom water saturation state decreases with increasing water
depth for these core-tops, with the decreasing D[CO3

2�] dri-
ven by the pressure related increase in [CO3

2�]SAT (Table 2).
However, there is a clear outlier with low D[CO3

2�] at shal-
low water depths (Fig. 7d). This station (SW-L2-21-MC) is
the shallowest site on the Eastern Siberian slope and is
known to be strongly influenced by Pacific waters
(Anderson et al., 2016). Despite the low bottom water D

[CO3
2�] of this site, the Q. arctica Mg/Ca is relatively high

(Fig. 7d). We believe this outlier is not an analytical error
since Q. arctica B/Ca and Sr/Ca ratios are also offset from
the rest of the data. We think that the low D[CO3

2�] of this
shallow site is driven by the high DIC content of the Pacific
influenced waters. Recent foraminiferal culture experiments
show that when seawater CO2 is increased, diffusion of CO2

into foraminiferal protoplasm and its conversion into CO3
2�

using H2O promotes calcification (Toyofuku et al., 2017).
At the same time intra cell Ca2+ transport must decrease
to regulate the degree of Ca saturation for calcite causing
trace element increases in the final precipitated calcite
(Keul et al., 2016). Without drawing too many conclusions
on the basis of a single core-top analysis, we suggest that
paired trace metal analyses of high-Mg calcite and low-
Mg calcite foraminifera have the potential to provide useful
constraints on carbonate system parameters.

5. CONCLUSIONS

The application of benthic foraminifera Mg/Ca
palaeothermometry in the cold bottom waters of the Arctic
Ocean was investigated. An initial survey of Arctic benthic
foraminifera Mg/Ca, a region where these data are espe-

cially scarce, identified six species that were abundant
enough to collectively sample the three main water masses
resident in the Arctic Ocean; i.e. the halocline (E. clavatum,
N. labradorica); Atlantic water (mainly C. neoteretis,Q. arc-

tica) and Arctic deep water (mainly C. wuellerstorfi and O.

tener). Our Mg/Ca data obtained from the five studied hya-
line species ranged from 0.5 mmol/mol in E. clavatum to
1.8 mmol/mol in O. tener, whereas distinct mineralogical
tests of porcelaneous Q. arctica varied between 18 and 75
mmol/mol.

The new Arctic benthic foraminifera Mg/Ca data pro-
vide valuable new constraints at the coldest end (<1 �C)
of the BWT spectrum. By adding our Arctic Ocean results
to existing datasets we have significantly improved the cal-
ibrations for the five hyaline widespread taxa studied here
across the �1 to +10 �C range. Notably, the hyaline taxa
have low Mg/Ca ratios at low temperatures consistent with
theory and empirical evidence, broadly fitting with previous
studies. The three infaunal species E. clavatum, N. labrador-

ica, and C. neoteretis showed the greatest correspondence
between test Mg/Ca and temperature. This is an important
finding and encouraging with respect to using Arctic infau-
nal benthic foraminifera Mg/Ca-palaeothermometry in
Arctic and subarctic regions. The calculated sensitivities
for epifaunal species C. wuellerstorfi and O. tener rely on
less datapoints but are largely consistent with previous find-
ings. Specially, O. tener show slightly higher Mg/Ca values
compared to the predicted linear or exponential fits derived
from data outside the Arctic. We attribute this offset to a
test size effect in O. tener as it grows smaller and has a shal-
lower habitat in the Arctic than in other oceans.

The D[CO3
2�]–BWT relationship observed in this Arctic

study supports the idea that there is a threshold value in D

[CO3
2�] of 30 mmol/kg below which D[CO3

2�] may have a
stronger effect than temperature on Mg incorporation into
test calcite. However, none of the hyaline species investi-
gated showed Mg/Ca–D[CO3

2�] relationships, even when
measured bottom water D[CO3

2�] was low and potentially
corrosive to biogenic calcite (i.e. below D[CO3

2�] of 30
mmol/kg). In contrast, the porcelaneous (high Mg calcite)
epifaunal taxon Q. arctica behaves differently, and appears
to be highly sensitive to bottom water D[CO3

2�]. This spe-
cies, therefore, is not appropriate for tracing temperature
in the Arctic Ocean.
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