
 

The role of non-native plants in the integration of 

non-native phytophagous invertebrates in native 

food webs 
 

 

Submitted by Sally Luker, to the University of Exeter as a thesis for the degree of 

Doctor of Philosophy in Biological Sciences in August 2020. 

 

 

This thesis is available for Library use on the understanding that it is copyright 

material and that no quotation from the thesis may be published without proper 

acknowledgement. 

 

I certify that all material in this thesis which is not my own work has been identified 

and that any material that has previously been submitted and approved for the award 

of a degree by this or any other University has been acknowledged. 

 

 

Signature………………………………………………… 

 

 



Thesis outline 

2 
 

     

     

     

     

     

     

     

     



Thesis outline 

3 
 

 

Abstract 

 

This thesis brings together a series of studies, examining the role of non-native plants 

in the integration of non-native invertebrates in native food webs.  I use data from 

comprehensive surveys of formally-planted gardens to investigate the efficacy of 

straightforward measures of non-native plant presence and/or landscape parameters, 

as reliable predictors of non-native invertebrate presence, finding that non-native 

invertebrate richness increases with non-native plant species richness, with 

invertebrates showing a clear preference for woody plants. I then use the context of 

metapopulation theory to explore the facilitative role of non-native plants in the ability 

of a non-native invertebrate to persist within a community, finding that where host-

plant habitat patches are closer together, the likelihood of a patch being occupied is 

greater, especially if the patch is occupied but that this effect is not universal, with 

species-specific effects present also.  I then explore the potential for apparent 

competition, in the form of negative indirect interactions between native and non-native 

plants mediated by a shared invertebrate enemy, with the indirect interactions biased 

by plant relatedness, finding that phylogenetically ranked pairwise native/non-native 

plant interactions are weakly correlated with observed shared invertebrate 

interactions, while a significant Mantel test result indicates a significant potential for 

apparent competition.  Finally, I test for detectability of apparent competition in a gall 

wasp community, finding no evidence of apparent competition but potential evidence 

for the unexpected occurrence of apparent mutualism.  Collectively, these findings 

provide original insight into how non-native plants and non-native invertebrates 

interact in an ecological community, and how these interactions help to structure the 

community. Additionally, they have implications for non-native invertebrate species 

management, from the practical application of ground-level planting decisions to the 

development of reliable predictive tools. 
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Chapter 1: General Introduction 

 

1.1 Non-native species 

Non-native species, or ‘alien species’, are defined as taxa which occur outside of their 

past/present natural range, introduced either intentionally or unintentionally via 

anthropogenic activity (CBD 1992; IUCN 2000).  A non-native species is defined as 

‘invasive’ if it becomes established or has the ability to become established, acting as 

an agent of change, causing damage to the environment, economy or human health, 

and/or threatens native biodiversity (CBD 1992; IUCN 2000; Roy et al. 2012, 2014).  

Globally, the impacts of invasive species are considered among the greatest threats 

to ecosystem stability, ranked in the top five drivers of biodiversity loss (Mack et al. 

2000; Sala et al. 2000; Duraiappah et al. 2005). 

Ecologically, non-native species integrate in food webs (interaction networks) as 

predators, prey, parasites, as vectors of disease, or as competitors for resources (e.g. 

Vitousek 1990; Crooks 2002; Strauss et al. 2006).  The effect of a non-native 

invertebrate within a food web can be positive or negative (e.g. Simberloff & Von Holle 

1999; Carlsson et al. 2009; Sanders & van Veen 2012; Vitule er al. 2012).  Typically, 

negative effects occur as a consequence of biological homogenisation, caused by 

displacement of native communities following the arrival of a more dominant species, 

such as a species that has arrived without any natural enemies (e.g. Mack et al. 2000; 

Crooks 2002; White et al. 2006; Altieri et al. 2010; Helden et al. 2012).  This, in turn, 

can lead to further ecosystem modification, creating cascade effects, and potentially 

triggering rapid evolutionary responses in native species (e.g. Strauss et al. 2006 and 

references therein but see Vellend et al. 2007).  

As well as the ecological impacts of the arrival and potential subsequent establishment 

of non-native species, the economic impact of their presence is high.  Economic 

impacts might include the financial cost of implementing chemical or bio-control 

measures to reduce or eliminate the species (Williams et al. 2010), or the direct cost 

of damage caused by the species’ presence, such as structural damage to buildings, 

and in the case of invertebrate phytophagous species, physiological damage to host 

plant or financially costly aesthetic damage to a horticultural display (e.g. Smith et al. 

2007).  
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Whether or not the species is considered invasive, once introduced, there is a 

reasonable likelihood that a non-native species will establish and subsequently 

disperse within the environment, either through natural means or via further human-

assisted movement (e.g. Kenis et al. 2007; Hulme et al. 2008), and as such, the full 

impact of the introduction of a non-native species might not be seen until sometime in 

the future (e.g. Crooks 2005; Strauss et al. 2006).   

1.2 Non-native invertebrate species in Britain 

In 2014, 1,952 non-native species were considered as established in Britain (Roy et 

al. 2014), with the annual cost of invasive species to the British economy currently 

given as £1.8 billion (House of Commons Environmental Audit Committee 2019).  Of 

these established species, after higher plants, insects and non-insect invertebrates 

were the most numerous (combined total 502), with c.80% (399) occurring in the 

terrestrial environment, of which c.30% are deemed to have a negative ecological 

and/or socio-economic impact.  While the majority of non-native species in Britain are 

thus not considered invasive, for those that do have a significant ecological and/or 

socio-economic (human) impact (notably negative economic impact or threat to human 

health), their presence is usually of significant encumbrance.  For example, the arrival 

and subsequent establishment of the Harlequin Ladybird Harmonia axyridis in 2004 

has been demonstrated as directly contributing to declines in native ladybird species 

(Brown & Roy 2018), while the Oak Processionary Moth Thaumetopoea processionea 

is recognised as causing severe defoliation of Quercus spp., reducing tree viability, 

and potentially contributing to oak decline, as well as being a health hazard to those 

who come into contact with the caterpillar’s irritant hairs (Evans 2007; EFSA 2009) 

and/or socio-economic impact (Roy et al. 2012).   

1.3 The role of horticulture/ornamental plant trade in the introduction and 

establishment of non-native terrestrial invertebrates 

Anthropogenic global movement of plants and vegetative material is now widely 

accepted to be the principal means of introduction of non-native terrestrial invertebrate 

species, with many phytophagous invertebrates, especially those of low motility, such 

as aphids, psyllids and scale-insects, introduced unintentionally, arriving on 

ornamental plants, often as an undetected contaminant (Levine & D’Antonio 2003; 

Brockerhoff et al. 2006; Jones & Baker 2007; Kenis et al. 2007; Smith et al. 2005, 
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2007; Brasier 2008; Hulme et al. 2008; Roy et al. 2012, 2014; Bergey et al. 2014; 

Turbelin et al. 2016; NNSS 2019).   Unsurprisingly, in their analyses of introduction 

pathways, NNSS (2019) found the ‘ornamental plant contaminant’ pathway to be the 

fifth highest out of 38 pathway categories with regard to the total number of non-native 

species introduced but the third highest for impact, with 9% of plant contaminants 

since 1950 considered ecologically and/or economically damaging.  This is the highest 

pathway involving terrestrial invertebrates, with the ornamental plant contaminant 

pathway ranked first for priority pathways involving terrestrial invertebrates, and third 

overall in recommendations for ‘priority pathways’ management in the UK.  

As an organism that feeds on one or more plants at any stage in its lifecycle, the 

persistence of a phytophagous invertebrate species is inextricably linked to the 

presence of a suitable host-plant. For a non-native phytophagous species, a particular 

non-native plant could be the initial means of arrival in a novel ecosystem, with the 

plant’s presence and/or the presence of other suitable host-plants in a community 

fundamental to how the invertebrate interacts within that community, and whether or 

not it will become established.  Measures of plant presence (e.g. presence/absence, 

area coverage), and factors such as plant type, plant origin and relatedness to other 

plants present, as well as broader geographical factors (location, habitat type, distance 

from other plants, roads, sea, etc.), all have the potential to be used as predictors of 

invertebrate presence.  

Here, using observational field data and utilising a number of statistical methods, I 

examine the role of non-native plants in both facilitating the establishment and 

persistence of non-native phytophagous invertebrates and as mediators in indirect 

interactions, using ecological communities within Cornwall, UK as study sites. 

1.4 Non-native phytophagous invertebrates in Cornwall, UK 

Cornwall is a long, effectively insular administrative county in the extreme southwest 

of the British Isles, bordered in the east by the River Tamar, which serves as both a 

physical and administrative boundary between Cornwall and the neighbouring county 

of Devon.  It covers an area of 3,546 sq. km, with 697 km of coastline  

The climate of Cornwall is Oceanic (maritime), meaning that it typically experiences a 

relatively narrow annual temperature range, with mild winters and cool summers, and 

with comparatively few occurrences of extreme temperatures.  Hours of sunshine 
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number more than the national average, and annual rainfall is slightly higher than 

average (www.metoffice.gov.uk). With its extensive coastline, Cornwall is noticeably 

affected by the presence of the Gulf Stream, which provides warmer waters and 

warmer air temperatures.  Cornwall’s climate, and in particular its associated 

microclimate, is especially conducive to the success of many non-native plant species 

that are unable to grow and prosper elsewhere in Britain – often unusual plants that 

are considered of botanical interest, desirable, attractive and/or rare (e.g. Pett 2006; 

Gamble 2014; Hubbard 2017).  Furthermore, the effect of climate change at a local 

scale has been evidenced in shifting plant communities (Maclean et al. 2015; Kosanic 

et al. 2018), suggesting that the overall presence of non-native plants is likely to 

increase as a consequence of climate-induced range expansion (e.g. Clements & 

Ditommaso 2011).  

Tourism is an economic mainstay of Cornwall, and is considered one of the county’s 

‘bedrock’ industries, providing over 10% of the county’s total Gross Value Added 

(GVA) – the highest ranked UK region in its importance to the local economy (Cornwall 

Council 2013).  Playing a significant role in the local tourism industry is the county’s 

rich, cultural heritage.  Landed estates, botanically significant gardens and world-

renowned attractions, many of which were borne from the results of Victorian plant 

hunting expeditions, play an important role in this heritage.  For example, in 2018, The 

Eden Project was the 13th most visited paid England attraction, with over 1 million 

visitors (VisitEngland 2019), and 35 of Cornwall’s parks/gardens are granted listed 

status by Historic England as being historically significant, with 2 being Grade I listed 

as being ‘of exceptional interest’ (https://historicengland.org.uk).  Similarly, Cornwall 

is home also to many smaller public/municipal gardens, specialist plant nurseries and 

other related enterprises.  It is therefore to be expected that a significant number of 

non-native phytophagous invertebrates are now present in the county, many of which 

are firsts for Britain (e.g. Powellia vitreoradiata (St. Mawes), Plagiotrochus 

quercusilicis, Agonoscena targionii and Coccus viridis (Eden Project, St. Austell), 

Acanthoxyla inermis (Treseders Nursery, Truro), and Cacopsylla fatsiae/Psylla 

tetrapanaxae (species awaiting clarification) (Morrab Gardens, Penzance but likely 

source is a nearby nursery), and all of which can be traced to the importation of plants 

from overseas. 
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1.5 Thesis outline 

Given that with any non-native invertebrate, there exists the potential for a negative 

impact, which might or might not be immediately recognised, the ability to predict how 

a non-native phytophagous invertebrate interacts within an ecological community, and 

how these interactions might be influenced by non-native plant presence is crucial in 

terms of anticipating and/or mitigating any impact.  With species embedded in food 

webs, there is potential for both direct and indirect effects to occur; however, while 

direct effects are widely reported, indirect effects seem less well-studied, and it is likely 

that their presence is potentially being overlooked (e.g. White et al. 2006). 

Here, I seek to examine the role of non-native plants in the integration of non-native 

phytophagous invertebrates in native food webs, and to find evidence in support of the 

presence of indirect interactions, as indirect effects mediated by a non-native 

invertebrate. 

In Chapter 2, with the expectation that phytophagous invertebrate species richness is 

correlated with plant species richness (e.g. Moeed & Meads 1985, 1992; Crisp et al. 

1998; Unsicker et al. 2006), I investigate the efficacy of straightforward measures of 

non-native plant presence and/or landscape parameters, as well as surrounding land 

use, as reliable predictors of non-native invertebrate presence.  Using data from 

comprehensive surveys of formally-planted gardens in West Cornwall, I test for a 

positive relationship between non-native plant species richness and non-native 

invertebrate species richness as a means of predicting non-native invertebrate 

richness within an ecological community.  Furthermore, I explore the influence of plant 

type, plant area coverage and level of plant presence in predicting non-native 

invertebrate presence.  Additionally, I examine the effects of landscape variables, such 

as size, age and surrounding landcover, and how they could potentially influence the 

non-native plant effects. 

In Chapter 3, with the expectation that proximity of a habitat patch, especially if already 

occupied by the focal invertebrate species, will predict invertebrate species presence 

(e.g. MacArthur & Wilson 1967; Prugh et al. 2008; reviewed Prugh 2009), I use 

metapopulation theory to examine how non-native plants facilitate the ability of a non-

native invertebrate to persist within a community, thus enabling it to potentially 

increase in population size to become problematic.  Using data pertaining to the 
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distribution of seven specialist non-native invertebrates and their respective host-

plants (the latter as potential habitat patches) within a defined geographical area, I test 

if patch occupancy can be predicted using measures of nearest habitat patch/nearest 

occupied habitat patch, strengthened by the effect of additional habitat variables, such 

as distance from sea and habitat type. 

In Chapter 4, with the expectation that the more closely related a plant pair, the more 

likely it is that they will share one or more common enemy (e.g. Gilbert & Webb 2007; 

Dawson et al. 2009; Ness et al. 2011), I examine the potential for apparent competition 

in the form of enemy-mediated negative indirect effects, by testing if phylogenetic 

relatedness of a native/non-native plant pair can predict the likelihood that the pair will 

share a natural enemy.  Using data from comprehensive surveys of formally-planted 

gardens in West Cornwall, I correlate phylogenetically ranked pairwise native/non-

native plant interactions with observed shared invertebrate interactions, thus testing 

for the potential for apparent competition, in the form of negative indirect interactions 

between native and non-native plants mediated by a shared invertebrate enemy, with 

the indirect interactions biased by plant relatedness.   

In Chapter 5, with the expectation that in heteroecious oak Cynipid gall wasps, non-

native host presence will have a positive effect on non-native gall density on a native 

host, and that non-native gall density will have a negative effect on native gall density 

(e.g. Collins et al. 1983; Cornell & Hawkins 1993; Schönrogge & Crawley 2000; 

Schönrogge et al. 2000; Keane & Crawley 2002; Torchin & Mitchell 2004; Naniagua 

et al. 2009; Verhoeven et al. 2009; Dostál et al. 2013), I test for the detectability of 

apparent competition in a gall wasp community.   Using data from repeated surveys 

of 40 transects in which oak trees are present, by examining the ability of density 

measures of non-native oak host-plants to predict non-native gall density on native 

host-plants, I test for presence of apparent competition in the form of the negative 

indirect effect of a non-native plant on a native plant, mediated by a non-native gall 

wasp.  Additionally, using density measures of non-native and native galls, I test for 

the presence of apparent competition in the form of the negative indirect effect of a 

non-native gall wasp on a native gall-wasp, potentially mediated by the modifying 

presence of one or more shared parasitoids. 
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1.6 Summary 

In summary, while only a relatively small proportion of non-native species are currently 

recognised as invasive, in that they have a negative ecological and/or economic effect 

within an ecosystem, all have the potential to be problematic.  With the impacts of 

invasive species widely acknowledged as one of the key drivers of biodiversity loss, 

and among the greatest threats to ecosystem stability, increased knowledge of the 

factors that determine and influence how a non-native species interacts within a food 

web is of paramount importance in contributing to the overall scientific knowledge 

base, informing management techniques and responsibilities, and potentially 

mitigating any unwanted effects.   
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Chapter 2: Variation in non-native phytophagous invertebrate 

species richness in formally-planted gardens is driven by non-native 

plant richness and plant type 

 

2.1 ABSTRACT  

While cultivated green spaces, such as parks and gardens, can bring benefit to an 

environment or to human society, they are often dominated by ornamental plantings, 

the latter potentially functioning in the presence of one or more potentially problematic 

non-native invertebrate species.  Here, data from comprehensive surveys of formally-

planted gardens in West Cornwall, UK is used to investigate the efficacy of 

straightforward measures of non-native plant presence and/or landscape parameters, 

as reliable predictors of non-native invertebrate presence.  This study demonstrates 

that a high non-native plant species richness likely corresponds to a high non-native 

invertebrate species richness, with woody plants having a greater effect, and while the 

probability of any one non-native invertebrate species becoming problematic may be 

relatively low, a higher richness of non-native invertebrate species in a community 

means that the likelihood of the presence of a problem species being among them is 

greater also.  Findings have implications for non-native species management, from 

the practical application of ground-level planting decisions to the development of 

reliable predictive tools. 

 

2.2 INTRODUCTION 

Cultivated community green spaces, such as formally-planted parks and non-domestic 

gardens, are an important landscape component.  Socially, they can provide an 

aesthetically-pleasing environment, historical and/or cultural interest, and with 83.14% 

of the UK population living in towns or cities (World Bank 2018), a significant means 

of increasing valuable human contact with nature (e.g. Kazemi et al. 2009).  

Furthermore, when managed effectively, they can play a valuable ecological role in 

the maintenance and enhancement of biodiversity (e.g. Cornelis & Hermy 2004; 

Colding 2007; Helden et al. 2012; Salisbury et al. 2015a; Su et al. 2015); however, as 

largely unnatural, man-made habitats, typically dominated by non-native, ornamental 
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plantings, they also function highly in the introduction and potential accelerated 

dispersal, increased propagule pressure and subsequent establishment of plant 

pathogens and diseases, and significantly, of non-native invertebrate species (Bradley 

& Altizer 2007; Brasier 2008; Goddard et al. 2010).  Accordingly, the recent Non-native 

Species Secretariat (NNSS) recommendations for ‘priority pathway’ management to 

better reduce the impact of non-native species in the UK (NNSS 2019) ranks 

ornamental plant contaminants (invertebrate species, and to a lesser extent, plant 

pathogens/diseases, of which the former are often vectors (Kluth et al. 2002; Tack & 

Dicke 2013; reviewed Stout et al. 2006)) as the third priority pathway overall, and the 

first (highest) priority pathway involving terrestrial invertebrates. 

Many ornamental plants arrive from overseas as seedlings, cuttings or bulbs rather 

than as seed (Jones & Baker 2007), and it is not uncommon for associated 

invertebrates from the plant’s native range to arrive with the plant itself (CBI 2005; 

Jones & Baker 2007).  As such, invertebrate contaminants are predominantly 

phytophagous species, those which utilise one or more plants as a food source at any 

stage in their lifecycle.  Phytophagy comprises the following feeding types: exophytic 

(external/surface feeders), endophytic (internal feeders), phyllophagous (leaf/foliage 

feeders, phloem/xylem (sap) feeders), zoophytophagous (both plant and animal 

material feeders), shelter builders (e.g. leaf rollers, tent builders, webbers), 

casebearers, leaf/needle miners, gall-causers, root feeders, borers (bark, flowers, 

fruits, pods, stem, etc.).  Nectar and/or pollen feeders are not considered 

phytophagous.  Phytophagous invertebrates typically include Hemipteran 

phloem/xylem-feeders (Aphididae, Cicadellidae, Psyllidae, Coccidae, etc.), leaf-

miners (Order: Lepidoptera, Hymenoptera, Coleoptera, Diptera), gall-causers (Order: 

Hemiptera, Diptera, Class: Arachnida, etc.).  These can be further defined as either 

specialist (monophagous – species that use a single plant genus or species, or 

oligophagous – species that use closely-related plants from the same family/tribe), or 

generalist (polyphagous – species that use plants in several/many plant families). 

While the majority of non-native terrestrial invertebrate species in Britain are not 

currently considered invasive, c.30% (116) of those known are recognised as having 

a negative ecological and/or socio-economic impact (Roy et al. 2014).  A relatively 

small number of non-native phytophagous invertebrates are strictly monophagous 
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specialist species, feeding only on the non-native host species with which they arrive, 

and as such, with exceptions, any negative impact is usually considered to be 

predominantly of economic/human concern, rather than ecological (Manchester & 

Bullock 2000; Roy et al. 2012, 2014; NNSS 2019); however, less strictly 

monophagous/oligophagous specialist species and polyphagous generalist species 

can be expected to feed either on closely-related plants or on any plant – native or 

non-native in origin – respectively, meaning that the chances of a native wild plant 

species or important crop species becoming a host-plant are greater in the presence 

of generalist invertebrate species.  The potential for a generalist invertebrate to 

become a problem species is comparatively high, and therefore such species might 

be more likely to be considered as having a negative ecological impact.  Examples of 

non-native generalist phytophagous invertebrates assessed as being of negative 

ecological impact include the following: Horse-chestnut Scale Pulvinaria regalis 

Canard, 1968, Potato Aphid Macrosiphum (Macrosiphum) euphorbiae (Thomas, 

1878), and Brown Soft-scale Coccus hesperidum Linnaeus, 1758. 

In order to maintain/improve a healthy functioning ecological community, efforts should 

be made to limit/reduce the presence of non-native invertebrates already recognised 

as having a negative ecological impact and also of those with the potential to become 

a problem species.  As the extent of the impact of every non-native invertebrate 

species cannot be fully known, especially when it comes to recent arrivals, a better 

awareness of factors contributing to an increased level of the overall presence of non-

native invertebrates is clearly advantageous in mitigating the impact of problem 

species, and in informing relevant decision-makers, such as garden-

designers/planners.  Given the potential unprecedented environmental change due to 

the projected impacts of climate change (latest climate change scenarios) and the 

current accelerated declines in biodiversity, this is now especially important, as the 

probability of ecological invasions will likely increase (Diez et al. 2012; Bellard et al. 

2013; Hulme 2017). 

2.2.1 Botanical diversity 

In formally-planted gardens/parks, numerous measurable ecological and physical 

factors can be considered as possible explanations for variation in non-native 

phytophagous invertebrate diversity between sites that otherwise seem similar.  
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Greater botanical diversity (e.g. species richness, taxonomic diversity, plant 

type/growth form, area coverage) in a community is likely to provide a greater variety 

of feeding opportunities for phytophagous invertebrates.  It is generally expected that 

there will be a positive relationship between the number of plant species and the 

number of invertebrate species present, i.e. the greater the species richness of plants 

present in a garden, the greater the species richness of invertebrates (e.g. Moeed & 

Meads 1985, 1992; Crisp et al. 1998; Unsicker et al. 2006).  Accordingly, it would be 

assumed that the greater the species richness of non-native plants present in a 

garden, the greater the species richness of non-native invertebrates present.   

Furthermore, genetic and physical differences in taxonomically diverse plants might 

allow for increased variety of niche feeding opportunities (e.g. Webb et al. 1984; 

Matsubayashi et al. 2010)  In contrast to the small number of niches afforded by low 

botanical diversity being likely dominated by a correspondingly small number of 

invertebrate species present in high numbers, it would be expected that a greater level 

of botanical diversity would mean an increased opportunity for establishment of a 

greater number of invertebrate species, particularly of generalist species, for which the 

provision of potential new (and available) hosts will be more numerous.  As such, it 

would be assumed also that the higher the taxonomic diversity in a garden, the greater 

the species richness of non-native invertebrates present.   

Likely due to their comparative robustness, longevity and year-round presence, woody 

plants (trees, shrubs, etc.) constitute a disproportionately high and substantial share 

of imported ornamental plants (CBI 2005; APHA 2016).  Likewise, the number of 

woody species in British non-native flora (introduced via all pathways, including 

established garden escapes) is disproportionately higher than that of other plant types 

(e.g. herbs, ferns, etc.) (Crawley et al. 1996; Stace 2019).  Given that the availability 

of a year-round food source for phytophagous invertebrates is better provisioned by 

woody plants than by other plant types, as is increased overall niche and resource 

availability, such as temporal shelter for overwintering species, thus improving 

opportunities for an invertebrate species’ establishment,  it would therefore be 

reasonable to expect that the number of associated non-native invertebrates present 

in a garden community will be disproportionately high also (Smith et al. 2007).  In their 

studies of garden biodiversity of 61 urban domestic gardens in Sheffield (BUGS 
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project) Smith et al. (2006a,b,c, 2007) found that invertebrate species richness was 

greater in gardens with a greater tree presence, and that a greater proportion of the 

non-native invertebrates present occurred on non-native trees or shrubs than on 

annual/biennial herbs (forb/graminoid species), whereas that native host-plants were 

more likely to be herb species than woody plants.  Therefore, it would be assumed 

that the greater the species richness and area coverage of non-native woody plants in 

a garden, the greater the species richness of non-native invertebrates.  Furthermore, 

it is expected that this effect will be stronger for specialist species that have arrived 

with their host, with generalist species better able to utilise a wider range of host-plant. 

2.2.2 Physical garden parameters 

In addition to the effects of botanical diversity, research suggests that 

environmental/landscape parameters bear influence over community species 

presence, both species richness and species density, with factors such as garden size, 

age and surrounding land use likely to have an effect.   

Island Biogeography theory (MacArthur & Wilson 1967) predicts that larger islands or 

habitat patches are associated with a greater species richness, therefore, it would be 

expected that a larger garden area would support a proportionally greater number of 

both plant species and invertebrate species.  Likewise, smaller islands or habitat 

patches are predicted to support fewer species (MacArthur & Wilson 1967; Davis & 

Glick 1978; Bastin & Thomas 1999; Guirado et al. 2006).  Accordingly, in urban 

biodiversity studies, it has been found that larger gardens exhibit greater plant species 

richness and greater invertebrate species richness/species density (e.g. McGeoch & 

Chown 1997; Miyashita et al. 1998). Assuming that non-native plant species richness 

is proportionally greater the larger the garden, it can be expected that accordingly, the 

larger the garden, the greater the presence of non-native invertebrates.  Furthermore, 

greater availability of space and potential area coverage of individual plant species 

might allow for larger, more persistent populations of an increased number of 

invertebrate species.  

Moreover, in a study of biodiversity of 12 bioretention basins in Melbourne, Australia, 

Kazemi et al. (2009) found that age, as well as size, was significant in explaining the 

diversity index of the basins.  The older a garden, the greater the opportunity for non-

native invertebrates to become established; this might be via direct introduction of an 
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invertebrate or via the accumulation over time of non-native novel enemies by non-

native plants.  Furthermore, as woody plants in gardens will mature over time, 

provision of resource availability for non-native invertebrates increases also. 

Wider variables, such as surrounding land use, are important when considering the 

impact of environment/landscape.  In larger, urban settings, numerous studies have 

found landscape variables associated with urbanisation, such as expansive residential 

areas, building cover, industrial areas, etc. to be have a negative influence on 

biodiversity levels (reviewed McKinney 2008).  For example, numerous studies 

indicate that while overall density of birds has been seen to increase with urbanisation, 

avian species richness decreases (e.g. Jokimäki 1999; Isaksson 2018; Kale et al. 

2018).  In other vertebrate groups, Germaine & Wakeling (2001), for example, found 

marked declines in the distribution, site occupation and assemblage of lizard species 

in Tucson, USA as residential density increased, and in Adelaide, Australia, Tait et al. 

(2005) found that species richness of mammals decreased as urbanisation increased. 

In contrast, a number of studies have found positive associations between 

urbanisation and biodiversity levels, notably in the presence of non-native species.  

This seems to especially be the case for non-native plants; e.g. Paudel et al. (2017) 

found that on San Clemente Island, USA, as distance from a major road decreased, 

non-native plant cover increased and native plant cover decreased, for which a 

number of explanations have been posited.  Plants require relatively small habitat 

patches to sustain a viable population (Gaston et al. 1998) and thus are able to 

successfully inhabit areas such as buildings, walls, pavements, road edges and waste 

ground.  Of these plants, it can be expected that many will be ‘escaped’ non-native 

species that have been intentionally introduced in domestic gardens, or as amenity 

plantings/horticultural displays, etc., or inadvertently introduced via human activity, 

such as in garden or landscaping materials (e.g. compost, soil, timber) (CABI 2009).  

It is expected, therefore, that land surrounding the gardens surveyed will include 

varying degrees of urban/suburban habitat ecologically similar to that of the gardens 

themselves, such as domestic gardens, amenity planting, and/or uncultivated 

wasteland, consisting of a significantly large proportion of non-native plants.  These 

habitat patches serve as a potential source for the immigration of non-native 

invertebrates, which might or might not already be present within the garden 
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community.  It is therefore anticipated that in gardens with a greater percentage of 

surrounding land classified as urban/suburban, non-native invertebrate species 

richness will be greater.  

2.2.3 Study model/hypotheses 

Drawing on the expectations posited above, by means of data acquired from in-depth 

plant/invertebrate surveys of seven formally-planted public gardens, the following 

specific hypotheses will be tested:  

i. Garden-level influence of non-native plants presence/physical garden parameters 

• that the greater the species richness of non-native plants present in a 

garden, the greater the species richness of non-native invertebrates 

present.   

• that the greater the taxonomic diversity of non-native plants present in a 

garden, the greater the species richness of non-native invertebrates 

present.   

• that the greater the species richness/area coverage of non-native woody 

plants (trees/shrubs) in a garden, the greater the species richness of non-

native invertebrates. 

• that the older the garden, the greater the species richness of non-native 

invertebrates.   

• that the larger the garden (area m2), the greater the species richness of non-

native invertebrates. 

• that the greater the proportion of surrounding land classified as 

urban/suburban, the greater the species richness of non-native 

invertebrates.  

ii. Species-level influence of non-native woody plants presence 

• that the greater the species-level presence of a non-native woody plant the 

greater the species richness of non-native invertebrates present. 
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2.3 METHODS 

2.3.1 Overview and study location 

During the period June to September 2015, seven formally-planted public gardens 

within a 3.5 km radius of Penzance, West Cornwall, UK were surveyed.  All plants and 

phytophagous arthropods (insect phloem/xylem-feeders, leaf-feeders, gall-causers, 

leaf-miners and case-makers, and arachnid gall-causers, henceforth referred to as 

‘invertebrates’) observed in association with the plants at the time of the survey were 

recorded.  Recording took place via 1 to 3 visits per garden, with visits of more than 

1-day duration occurring no more than 2 days apart per visit.  All visits were made in 

warm, sunny weather conditions, thus providing a comparable temporal snapshot of 

all species present, invertebrate host-plant and abundance, and plant area coverage 

within each garden.  Each garden’s location, size (area), and approximate year 

established was noted (Fig. 2.1, Table 2.1).  Gardens surveyed are each considered 

a separate ecological community, of varying age, size and primary function, and all 

are open freely to the public. 

 

 

Fig. 2.1. Location of seven formally-planted public gardens within a 3.5 km radius of Penzance, West 

Cornwall, UK – gardens were surveyed for plant and phytophagous arthropod presence.  Source: 

https://digimap.edina.ac.uk(a)  

 

 



Chapter 2: Variation in non-native phytophagous invertebrate species richness in formally-planted 

gardens is driven by non-native plant richness and plant type 

 

29 
 

Table 2.1. Details of gardens surveyed, including location, size (area, excluding mapped 

buildings/similar structures, etc.), approximate year of establishment, primary use of garden. 

Garden 

name 

Full name OS Nat. Grid 

Ref. (centre) 

Area 

(m2) 

Year est. 

(approx.) 

Primary use 

Alexandra  Alexandra Grounds SW4698929686 3457.4 1903 Landscaped 

children’s 

playground 

(equipped) 

Bolitho Bolitho Gardens SW4656429342 14563.1 1924 Pleasure gardens 

Gulval Gulval Churchyard SW4846531763 5965.5 1882 (grounds 

extended; 

consecrated 

1336) 

Landscaped 

churchyard 

Madron Madron War Memorial 

Garden/Garden of 

Remembrance 

SW4531831756 647.6 1918 Memorial garden 

Morrab Morrab Gardens SW4722429986 15512.8 1841 Municipal 

gardens 

Paul Paul Peace Garden SW4647626972 4176.8 1850 Landscaped 

churchyard 

St. Mary's St. Mary's Churchyard SW4749229991 6014.1 1832 (church 

built) 

Landscaped 

churchyard 

 

 

Cornwall’s most westerly major town, Penzance, is located within the 90 sq. km. 

geographic area of West Penwith (also known as the Land’s End Peninsula), a Natural 

England designated National Character Area (NCA) and Environmentally Sensitive 

Area (ESA), with Heritage Coast status, much of which lies within the Cornwall Area 

of Outstanding Natural Beauty (AONB) (https://www.cornwall-aonb.gov.uk/).  

Penzance is the 6th largest town/city in Cornwall, covering an area of c.28 km2, and 

with a 2018 population estimate of 17,965 (estimate for West Penwith is 39,300) (ONS 

2019).   

With its extensive Atlantic coastline, Cornwall’s climate is affected by the presence of 

the Gulf Stream, which provides warmer waters and warmer air temperatures.  Arriving 

first in the far southwest of the British Isles, these warmer temperatures mean that 

West Penwith experiences a sub-tropical microclimate.  Planting choices typically 
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reflect the climate, with many sub-tropical and hardy, coastal species common to all 

gardens surveyed. 

2.3.2 Data collection 

All vascular plants – those that were intentionally planted and those that arrived of 

their own accord – present within each garden at the time of the visit were recorded.  

Plants were identified to a minimum of genus level but to species level wherever 

possible.   

Each identified plant was subsequently allocated to a designated ‘Plant Taxonomic 

Unit’ (PTU), consisting of either a single species or a group of congeners of the same 

native or non-native status and plant type (e.g. small shrub, large tree, etc.); 

exceptions to this are 4 PTUs where 1 or more of the former congeners has 

subsequently undergone a taxonomic change or where a single species has 

subsequently been split into several novel genera (Table 2.2). Where known and 

where both were present, recognised cultivars/varieties were recorded as a separate 

PTU from the originating species – the reason being that potential differences in 

feeding preferences between the two by phytophagous invertebrates could be better 

highlighted.  

The abundance of each Plant Taxonomic Unit (PTU) was estimated by first recording 

the number of ‘Designated Plant Units’ (DPU) per PTU per m2.  The DPU was chosen 

to be a relatively constant unit of vegetation appropriate to the PTU, such as an 

individual plant (e.g. small, herbaceous species), a single leaf (e.g. large-leaved 

plants), 25cm2 of a ground-covering plant, or a single branch of a tree.  An estimate 

of abundance of each PTU (as m2) per garden was then made based on the number 

of DPU’s present per PTU.  DPUs are used only in the process of data collection as 

an aid to plant recording, and no data pertaining specifically to this measure is 

presented.  

At the same time as plant presence/area coverage was measured, an inventory of 

phytophagous invertebrates present on each PTU was created.  A minimum of 20 

DPUs or all units present per Plant Taxonomic Unit (PTU), whichever was smallest, 

per garden were visually inspected, up to a maximum of 300 where circumstances 

allowed (mean no. of DPUs inspected = 29.97, median = 20, mode = 20).  All visible 
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parts of the plant were examined: foliage, stems, trunks, bark, flowers, etc.; however, 

for consistency and practicality, visual inspection only was used to assess invertebrate 

presence, i.e. no beating, digging of roots, dissection of stems or similar was 

performed.  Where there was more than one occurrence of a PTU within a garden, a 

similar proportion of each occurrence was inspected.  For practical reasons and to 

standardise methodology, only foliage up to approx. 3m from the ground was 

inspected.  

Any individual exhibiting phytophagy was noted. Casual/incidental visitors were noted 

but disregarded for analysis purposes.  Due to difficulties in ensuring estimates of 

invertebrate density levels that would allow for meaningful comparison between 

contrasting species (e.g. those exhibiting large differences in body size, or those 

whose presence is based on the presence of galling, mines, etc. only), 

presence/absence only of invertebrate species was noted.  Invertebrates were 

identified to species level where possible, and life-stage was noted also.  Leaf-miners, 

case-bearers and gall-causers were identified mostly based on host-plant and 

mine/gall morphology, with identification of cryptic species confirmed by rearing.  

2.3.3 Additional data  

Post-survey, additional data were sought for each Plant Taxonomic Unit (PTU) and 

each invertebrate, as follows:  

Up-to-date plant nomenclature/taxonomic classification was determined using 

primarily Stace (2019) and POWO (2019) (plants), and individual sources 

(invertebrates), supplemented by Catalogue of Life: 2018 Annual Checklist (Roskov 

et al. 2018).  Post-survey changes have subsequently been incorporated, and noted 

accordingly, as have disputed/ambiguous names (Appendix I, Appendix II).  

Native/non-native status of each PTU/invertebrate was established using the Non-

native Species Secretariat (NNSS) GB Non-native Species Information Portal (NNSIP) 

(http://www.nonnativespecies.org/) as the primary authority, supplemented by 

interrogation of POWO (2019) for additional detail (plants), and consultation of 

individual sources for data-deficient invertebrate species.   

Each PTU was placed in one of the following plant type categories: fern/horsetail, herb, 

tree/shrub (woody).  A numerical measure of phylogenetic plant diversity per garden 
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was created by finding the mean value of a matrix of pairwise interactions of ranked 

relatedness between a) all PTUs present, and b) all non-native PTUs present.  The 

higher the mean value, the greater the diversity.  Rank values are as follows: same 

Subspecies = 0, same Species = 1, same Genus = 2, same Family = 3, same Order 

= 4, same Superorder = 5, same Subclass = 6, same Class = 7, same Kingdom = 8.   

Each invertebrate was further defined as monophagous, oligophagous or polyphagous 

– for species that host-switch, feeding type corresponding to plant on which it was 

recorded was used.  Whether the invertebrate is a vascular feeder (case-bearers, gall-

causers, leaf-miners, phloem/xylem (sap)-feeders) or non-vascular feeder (general 

leaf/vegetation-feeders) at the stage it was recorded was also noted. (Appendix II) 

Garden parameters: area, perimeter, etc. were measured using Digimap measuring 

tools (https://digimap.edina.ac.uk(a)). Area coverage was calculated as the entire 

garden area minus man-made/built buildings and structures present on the map (scale 

1: 500).  Land cover use for the 12 ha area (the minimum that encompasses the 

entirety of the largest study site (Bolitho)) in radius from approximate centre of each 

garden was calculated using the 2015 Land Cover Map (LCM2015) (released April 

2017), produced by the Centre for Ecology & Hydrology (CEH), and accessed via 

Digimap (https://digimap.edina.ac.uk(b)).  The area coverage of land classified as 

urban/was manually calculated using Digimap.   

 

2.3.4 Data analysis 

All statistical analyses and descriptive statistics were performed using R (v 3.6.1) (R 

Core Team 2019).    

Sequential stepwise selections of Generalised Linear Models (GLMs) were performed 

to produce Minimum Adequate Models (MAMs) addressing the above hypotheses.  

Significance of effects and model differences were evaluated using ANOVA Chi-

squared (χ2) test, and further assessed using AIC values and percentage deviance 

provided by the model, the latter calculated as: (null deviance – residual variance)/null 

deviance.   

i. Garden-level influence of non-native plant presence/physical garden 

parameters 
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For garden-level tests, due to the power of analysis limited by a low number of 

replicates (n=7), the response variable Species Richness of All non-native 

invertebrates only was used.  To test for the effect of non-native plants’ presence on 

species richness of non-native invertebrates, four explanatory variables were used: 

non-native PTU richness, non-native PTU phylogenetic diversity, non-native woody 

PTU richness, non-native woody PTU area coverage, while to test for the effect of 

physical garden parameters, three explanatory variables were used: garden age, 

garden size and proportion of surrounding urban/suburban land.   

Due to the low number of replicates (n=7), there were insufficient df to test all variables 

in a combined model; therefore, non-native plant presence was addressed first, and 

the effects of physical garden parameters added to the resultant MAM until the best-

performing model was achieved. 

ii. Species-level influence of non-native woody plant presence 

Using the full dataset of combined survey data, to test for the effect of woody PTU 

(trees/shrubs) presence on the presence/absence of non-native invertebrates, the 

following three explanatory variables were used: woody/non-woody PTU, PTU native 

status, no. of gardens in which PTU is present.  All three explanatory variables were 

entered into a binomial occupancy Generalised Linear Model (GLM) and tested for 

interaction effects, with presence/absence of all non-native invertebrate species (ALL), 

of generalist non-native invertebrate species (GEN), and of specialist non-native 

invertebrate species (SPEC) per PTU as response variables.  

 

2.4 RESULTS 

2.4.1 Descriptive statistics 

Plants 

A total of 410 individual PTUs were recorded (Appendix I), comprising a combined 

planted area of 80,865 m2.  Efforts were made to identify all plants present at the time 

of the garden visit(s); however, 22 of the 410 PTUs remain unidentified or only 

partially-identified.  Fully/partially-identified PTUs (n=408) represent 318 distinct 
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genera and 4 indistinct (mixed) genera (the above-mentioned exceptions), in 113 

families within 46 orders and 6 classes (Table 2.2).  

Table 2.2. Breakdown of Plant Taxonomic Units (PTUs) (n=410) by native status according to 

identification level. Total single species and total multiple species are provided, with the respective 

percentage of the total PTUs per native status category. 

Category Total Native Non-native Unknown 

Species (single 

known species) 
288 103 185 - 

Genus (single 

unknown species) 
21 4 17 - 

Genus (multiple 

known species) 
21 16 5 - 

Genus (mixed known 

species/unknown 

species) 

4 - 4 - 

Genus (multiple 

unknown species) 
51 1 50 - 

Genera (mixed 

genera) 
3 1 2 - 

Unknown 

(Genus/species 

unknown) 

22 - 7 15 

Total 410 125 270 15 

Total single species 331 (81%) 107 (86%) 209 (77%) 15 (100%) 

Total multiple species 79 (19%) 18 (14%) 61 (23%) 0 (0%) 

 

Of the total 410 PTUs, 66% are non-native (n=270), representing 34% of total plant 

coverage (27,276 m2), while 30% are native (n=125), representing 66% of total plant 

coverage (53,403 m2), and <1% are of unknown native status (n=15), representing 

<1% of total plant coverage (236 m2); 49% are herbs (n=201), representing 63% of 

total plant coverage (51,198 m2), while 48% are trees/shrubs (n=197), representing 

36% of total plant coverage (29,482 m2), 2% are ferns/horsetails (n=8), representing 

< 1% of total plant coverage (224 m2), and 1% are unknown plant types (n=4), 

representing < 1% of total plant coverage (11 m2). 

Of the 125 native PTUs, 73% are herbs (n=91), representing 83% of total native plant 

coverage and 55% of total plant coverage (44,434 m2), while 22% are trees/shrubs 

(n=27), representing 16% of total native plant coverage and 11% of total plant 
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coverage (8,763 m2), and the remaining 5% are ferns/horsetails (n=7), representing 

<1% of both total native plant coverage and total plant coverage (206 m2). 

Of the 270 non-native PTUs, 58% are trees/shrubs (n=157), representing 75% of total 

non-native plant coverage and 25% of total plant coverage (20,491 m2), while 41% are 

herbs (n=110), representing 25% of total non-native plant coverage and 8% of total 

plant coverage (6,764 m2), and the remaining 1% consisting of ferns/horsetails (n=1) 

and unknown PTUs (n=2), representing <1% of both total native plant coverage and 

total plant coverage (21 m2). 

PTUs of unknown native status consist of trees/shrubs (n=13) and unknown plant 

types (n=2). 

Mean overall PTU richness per garden is 123 (SE 26.74), with the greatest PTU 

richness recorded in Morrab (n=268, 65% of total PTU richness), and the lowest PTU 

richness recorded in Madron (n=62, 15% of total PTU richness).  Mean native PTU 

richness is 51 (SE 4.23), with the greatest native PTU richness recorded in Bolitho 

(n=62, 50% of total native PTU richness), and the lowest native PTU richness recorded 

in Alexandra (n=30, 24% of total native PTU richness).  Mean non-native PTU richness 

is 70 (SE 22.71), with the greatest non-native PTU richness recorded in Morrab 

(n=197, 73% of total non-native PTU richness), and the lowest non-native PTU 

richness recorded in Madron (n=20, 7% of total non-native PTU richness).   

Garden level PTU data are depicted in Fig. 2.2. 

  



Chapter 2: Variation in non-native phytophagous invertebrate species richness in formally-planted 

gardens is driven by non-native plant richness and plant type 

 

36 
 

  

Fig. 2.2a. PTU native status (native, non-native, 

unknown) by garden, as PTU richness. 

 

Fig. 2.2b. PTU native status (native, non-native, 

unknown) by garden, as PTU area coverage m2. 

  

Fig. 2.2c. Plant type by garden/native status (N 

= native, NN = non-native, Unk = unknown), as 

PTU richness.   

Fig. 2.2d. Plant type by garden/native status (N 

= native, NN = non-native, Unk = unknown), as 

PTU area coverage m2. 

 

Fig. 2.2. Garden level depictions of Plant Taxonomic Unit (PTU) data, as species richness and as area 

coverage, according to a) and b) PTU native status and c) and d) plant type/native status.   

 

Pairwise interactions between PTUs were assigned a rank value according to their 

relatedness: same subspecies = 0, same species = 1, same Genus = 2, same Family 

= 3, same Order = 4, same Superorder = 5, same Subclass = 6, same Class = 7, same 

Kingdom = 8. Mean values of pairwise interactions of ranked PTU phylogenetic 

relatedness for all PTUs and for all non-native PTUs per garden ranged from 6.50 to 

6.82 (all PTUs) and 6.25 to 6.86 (non-native PTUs) (Table 2.3). 
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Table 2.3. Total Plant Taxonomic Unit (PTU) pairs, sum and mean ranked relatedness values for all 

PTUs and non-native PTUs per garden.  The higher the mean value, the greater the phylogenetic 

diversity present. 

    Total PTU pairs 
Sum ranked relatedness 

values 

Mean ranked relatedness 

value  

    All PTUs 
Non-native 

PTUs 
All PTUs 

Non-native 

PTUs 
All PTUs 

Non-native 

PTUs 

G
a

rd
e

n
 

Alexandra  1891 528 12391 3408 6.55 6.45 

Bolitho 10878 3741 72075 25154 6.63 6.72 

Gulval 7503 2346 50488 15922 6.73 6.79 

Madron 1891 190 12582 1295 6.65 6.82 

Morrab 31375 18528 213826 127172 6.82 6.86 

Paul 4753 820 30892 5126 6.50 6.25 

St. Mary's 4851 1128 32827 7546 6.77 6.69 

 

Invertebrates 

A total of 115 invertebrate species were recorded, 106 identified to species level, and 

3 identified to genus only, while 6 remain only partially-identified.  Fully/partially-

identified invertebrates (n=115) represent 72 distinct genera, in 27 families within 6 

Orders and 2 Classes.  85 invertebrate species are native, 23 non-native and 7 of 

unknown native status (Appendix II).  

Of the total 115 invertebrate species, 74% are native (n=85), 20% are non-native 

(n=23), and 6% are of unknown native status (n=7); 96% are insects (n=110) (3% 

Coleoptera (n=4), 23% Diptera (n=26), 49% Hemiptera (n=56), 5% Hymenoptera 

(n=6), 15% Lepidoptera (n=17), 1% Unknown (n=1)), and 4% are arachnids (n=5); 

24% are generalist feeders (polyphagous) (n=28), 70% are specialist feeders 

(monophagous or oligophagous) (n=80), and for 6% feeding type is unknown (n=7); 

93% are vascular feeders (n=107), and 7% are non-vascular feeders (n=8). 

Of the 85 native invertebrate species, 95% are insects (n=81) (4% Coleoptera (n=3), 

31% Diptera (n=26), 39% Hemiptera (n=33), 6% Hymenoptera (n=5), 16% 

Lepidoptera (n=14)), and 5% are arachnids (n=4), 24% are generalist feeders 

(polyphagous) (n=20), 76% are specialist feeders (monophagous or oligophagous) 

(n=65); 93% are vascular feeders (n=79), and 7% are non-vascular feeders (n=6). 
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Of the 23 non-native invertebrate species, 96% are insects (n=22) (78% Hemiptera 

(n=18), 4% Hymenoptera (n=1), 13% Lepidoptera (n=3)), and 4% are arachnids (n=1), 

35% are generalist feeders (polyphagous) (n=8) and 65% are specialist feeders 

(monophagous or oligophagous) (n=15); 96% are vascular feeders (n=22), and 4% 

are non-vascular feeders (n=1). 

Invertebrate species of unknown native status are insects (n=7), consisting of 

Coleoptera (n=1), Hemiptera (n=5), and Unknown (n=1), for which feeding type is 

unknown, 6 of which are vascular feeders and 1 a non-vascular feeder. 

Mean overall invertebrate species richness per garden is 27 (SE 4.75), with the 

greatest invertebrate species richness recorded in Morrab (n=54, 47% of total 

invertebrate species richness), and the lowest invertebrate species richness recorded 

in Alexandra (n=17, 15% of total invertebrate species richness).  Mean native 

invertebrate species richness is 18 (SE 2.91), with the greatest native invertebrate 

species richness recorded in Morrab (n=35, 41% of total native invertebrate species 

richness), and the lowest native invertebrate species richness recorded in Alexandra 

(n=11, 13% of total native invertebrate species richness).  Mean non-native 

invertebrate species richness is 7 (SE 1.70), with the greatest non-native invertebrate 

species richness recorded in Morrab (n=16, 70% of total non-native invertebrate 

species richness), and the lowest non-native invertebrate species richness recorded 

in both Madron and Paul (n=3, 13% of total non-native invertebrate species richness).   

Garden level invertebrate data are depicted in Fig. 2.3. 
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Fig. 2.3a. Species richness and native status of 

all invertebrates present and per garden. 

 

Fig. 2.3b. Species richness and native status of 

all invertebrates by Class/Order.   

  

Fig. 2.3c. Species richness and native status of 

all invertebrates by feeding type.  

Fig. 2.3d. Species richness and native status of 

all invertebrates present by feeding mechanism. 

 

Fig. 2.3. Garden level depictions of invertebrate species richness according to native status, as a) total 

presence per garden, b) by Class/Order, c) feeding type, and d) feeding mechanism.  

 

2.4.2 Statistical analyses 

i. Garden level influence of non-native plants presence/physical garden 

parameters on non-native invertebrate species richness 

Testing for the significance of non-native plants’ presence, both non-native woody 

PTU richness and non-native phylogenetic diversity were non-significant, and thus 

removed from the model.  Significant positive effects were observed for both non-

native PTU richness (GLM: ANOVA χ2
1,5: p < .001) and for non-native woody PTU 

area coverage (GLM: ANOVA χ2
1,4: p = 0.017).  The resultant MAM is as follows: non-

native PTU richness + non-native woody PTU area coverage (GLM: df 6, resid. df 4, 

null dev. 121.7143, resid. dev. 4.4394), with 96% deviance explained by the model.  

When tested independently, a significant positive effect was observed for the effect of 
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garden size (GLM: ANOVA χ2
1,5: p < .001); however, following addition of the physical 

garden parameters effects to the non-native plants presence MAM, no significant 

effects were observed for any of the additional variables, therefore, non-native PTU 

richness + non-native woody PTU area coverage was confirmed as the best-

performing MAM (Fig. 2.4).  Further tests revealed garden size to be significantly 

positively correlated with PTU richness (GLM: ANOVA χ2
1,5: p < .001). 

 

  

  

Fig. 2.4. Significant main effects of a) non-native Plant Taxonomic Unit (PTU) species richness (p < 

.001) and b) non-native woody PTU area coverage (p = 0.017) (with linear regression) in predicting 

non-native invertebrate species richness. 

 

ii. Species-level influence of non-native woody plants presence 

All non-native invertebrates  

For the response variable ‘ALL non-native invertebrate presence/absence’, PTU 

native status was not significant as a main or as an interaction effect, and was removed 

from the model.  As independent variables, a significant effect was observed for 

woody/non-woody PTU (GLM: ANOVA χ2
1,408 p < .001) and for no. of gardens in which 

PTU is present (GLM (binom): ANOVA χ2
1,407 p < .001).  A significant effect was 

observed also for woody/non-woody PTU and no. of gardens in which PTU is present 

as a 2-way interaction (GLM (binom): ANOVA χ2
1,406 p = 0.009).  Thus, MAM (ALL) is 

as follows: woody/non-woody PTU X no. of gardens in which PTU is present (GLM: df 

409, resid. df 406, null dev. 262.15, resid. dev. 203.41), with 22% deviance explained 

by the model.   
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Generalist non-native invertebrates 

For the response variable ‘GEN non-native invertebrate presence/absence’, PTU 

native status was not significant as a main or as an interaction effect, and was removed 

from the model.  As independent variables, a significant effect was observed for 

woody/non-woody PTU (ANOVA χ2
1,408 p < .001) and for no. of gardens in which PTU 

is present (GLM (binom): ANOVA χ2
1,407 p < .001).  A significant effect was observed 

also for woody/non-woody PTU and no. of gardens in which PTU is present as a 2-

way interaction (GLM (binom): ANOVA χ2
1,406 p = 0.016).  Thus, MAM (ALL) is as 

follows: woody/non-woody PTU X no. of gardens in which PTU is present (GLM: df 

409, resid. df 406, null dev. 199.08, resid. dev. 152.89), with 23% deviance explained 

by the model.  

Specialist non-native invertebrates 

For the response variable ‘SPEC non-native invertebrate presence/absence’, PTU 

native status was not significant as a main or as an interaction effect, and was removed 

from the model.  As independent variables, a significant effect was observed for 

woody/non-woody PTU (GLM (binom): ANOVA χ2
1,408 p = 0.001) and for no. of gardens 

in which PTU is present (GLM (binom): χ2
1,407 p = 0.011).  No significant effect was 

observed also for woody/non-woody PTU and no. of gardens in which PTU is present 

as a 2-way interaction.  Thus, MAM (ALL) is as follows: woody/non-woody PTU + no. 

of gardens in which PTU is present (GLM: df 409, resid. df 407, null dev. 147.73, resid. 

dev. 131.12), with 11% deviance explained by the model.  

For all response variables, a significant amount of variation is explained by the 

woody/non-woody distinction, with the mean x̅ presence of invertebrates being higher 

for woody (Fig. 2.5).  For non-woody plant types (n=213), ALL: x̅ = 0.03 SE 0.01 

(n=6); GEN: x̅ = 0.02 SE 0.01 (n=4); SPEC: x̅ = 0.01 SE 0.01 (n=3). For woody plant 

types, ALL: x̅ = 0.17 SE 0.03 (n=34); GEN: x̅ = 0.12 SE 0.02 (n=23); SPEC: x̅ = 0.08 

SE 0.02 (n=15).  Native/non-native PTU status was not significant for any response 

variable, thus separate means for native PTUs and non-native PTUs are not shown.  
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Fig. 2.5. Mean SE presence of non-native invertebrate species observed in association with non-

woody/woody Plant Taxonomic Units (PTUs).  Mean presence of invertebrates is higher for woody 

PTUs than for non-woody PTUs   

 

For ALL and GEN invertebrates, significant 2-way interaction effects between 

woody/non-woody PTU and no. of gardens in which PTU is present were observed.  

Plots are provided showing presence/absence of non-native invertebrate species 

observed in association with non-woody/woody PTUs according to the number of 

gardens in which the host-PTU is present, with fitted lines for both woody and non-

woody PTUs, showing a significant positive interaction for ALL invertebrates and for 

GEN invertebrates, and a non-significant positive interaction for SPEC invertebrates 

(Fig. 2.6).    
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Fig. 2.6a. All non-native invertebrates (ALL) – significant 

interaction 

  

 

Fig. 2.6b. Generalist non-native invertebrates (GEN) – 

significant interaction 

 

 

Fig. 2.6c. Specialist non-native invertebrates (SPEC) – non-

significant interaction 

  

Fig. 2.6. Non-native invertebrate species observed in association with non-woody/woody Plant 

Taxonomic Units (PTUs) according to presence(1)/absence(0) per no. of gardens in which the host-

PTU is present, with fitted lines for woody and non-woody PTUs for a) all (ALL), b) generalist (GEN) 

invertebrates, and c) specialist (SPEC) invertebrates, showing a significant interaction in ALL and GEN 

models.   
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2.5 DISCUSSION 

Expected results were garden level effects of non-native plant species richness, 

taxonomic diversity, species richness/area coverage of woody plants, garden age, 

garden size, and surrounding land classification, and a species level effect of non-

native woody plant presence.  Significant results were observed for the garden level 

effect of plant species richness and area coverage of woody plants, and for the species 

level effect of non-woody plant presence, thus providing partial support for the 

hypotheses. 

At species level, a greater presence of non-native invertebrates was observed on 

woody plants than on non-woody plants, irrespective of PTU native status.  

Accordingly, at garden level, greater area coverage of non-native woody plants is 

associated with greater non-native invertebrate species richness, as is greater non-

native PTU richness.  There was an effect of garden size but its addition to a model 

already containing non-native PTU richness did not improve the model.  Due to the 

presence of a strong correlation between the two variables, with a larger garden size 

meaning a greater PTU richness (e.g. MacArthur & Wilson 1967; Davis & Glick 1978; 

Bastin & Thomas 1999; Guirado et al. 2006) McGeoch & Chown 1997; Miyashita et 

al. 1998), it is presumed that the garden size effect was caused by the PTU richness 

effect.  No significant effects were observed for the effects of non-native woody PTU 

richness, non-native PTU phylogenetic diversity, garden age and proportion of 

surrounding land classified as urban/suburban. 

The expectation that non-native invertebrate species richness would be greater the 

greater the presence of non-native woody plants was partially met, in that at garden 

level, area coverage of non-native woody plants was significant as an effect but non-

native woody PTU richness was not.  This suggests that density of non-native woody 

plants is more important here than diversity.  This finding is in agreement with Smith 

et al. (2006a,b,c, 2007), who found that invertebrate species richness was greater in 

gardens with a greater tree presence.  Furthermore, at species level, more woody 

PTUs than non-woody PTUs were host to one or more non-native invertebrates but 

here, unlike the findings of Smith et al. (2006a,b,c, 2007), the native status of the plant 

was not significant.  Thus, it is presumed that woody area coverage per se would be 

significant at garden level, and that native status is not of particular importance.   
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Examining differences between generalist invertebrates and specialist invertebrates, 

using species level data, contrary to the expectation that the effect of woody plant 

presence (richness and/or area coverage), notably that of non-native woody plant 

presence, would be stronger for specialist non-native invertebrates (e.g. Smith et al. 

(2006a,b,c, 2007), due to their having arrived with the host with reduced opportunity 

to utilise a wider range of host-plant than generalist species, this was not the case; 

however, while the general trend shown by both generalists and specialists was 

similar, with mean presence higher on woody PTUs than on non-woody PTUs for both 

groups, there was a greater difference between the woody/non-woody mean presence 

values for generalist non-native invertebrates than for specialist non-native 

invertebrates (0.10 and 0.07 respectively).  Given that the combined presence of non-

native generalist invertebrates, as measured by number of PTUs on which one or more 

invertebrate was present (27 PTUs (23 woody, 4 non-woody)), was greater than the 

corresponding presence of non-native specialist invertebrates (18 PTUs (15 woody, 3 

non-woody)) (despite a greater number of individual specialist species (15) than 

generalist species (8)), it is presumed that this variation is likely a consequence of 

specialist invertebrate plant-host presence being comparatively lower in number, 

rather than anything of particular note.   

Additionally, for all and generalist species, the presence of one or more non-native 

invertebrates on a woody PTU increased as the number of gardens in which the host-

plant is present increased.  This might be due to an overall greater presence of the 

host-plant within the survey area contributing to a larger and/or more stable 

metapopulation of the invertebrate, as a consequence of more closely-linked habitat 

patches (Levins 1969; reviewed Hanski 1999), or it might be representative of the plant 

being more frequently imported, thus increasing the likelihood of the direct introduction 

of a non-native invertebrate (Levine & D’Antonio 2003; Brockerhoff et al. 2006; Jones 

& Baker 2007; Kenis et al. 2007; Smith et al. 2005, 2007; Brasier 2008; Hulme et al. 

2008; Roy et al. 2012, 2014; Bergey et al. 2014; Turbelin et al. 2016; NNSS 2019).  

Any similar effect in non-woody plants is negligible, suggesting that proximity of woody 

plants is potentially key to maintaining an effective non-native invertebrate 

metapopulation structure, while non-native invertebrates on non-woody plants persist 

in more isolated patches.  It could therefore be argued that the longevity of invertebrate 

species on non-woody plants might be shorter than that of those on woody plants, and 
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as a further study, it would be interesting to measure comparative density levels of 

non-native invertebrates on woody/non-woody plants as a means of assessing 

potential damage levels, to see if isolated non-woody plant patches support a greater 

number of individuals of a single species, to ‘compensate’ for reduced longevity.      

While the range of this study is limited, consisting of data from only 7 gardens located 

within a relatively small area, what it might lack in terms of geographic coverage and 

sample size, it makes up for in intensity of sampling effort, while also avoiding the 

potentially problematic confounding effects of additional variables, such as geographic 

variation, climate/microclimate effects, local flora/fauna differences that would be 

present in a wider-ranging design.  This allows for fine-scale, comprehensive datasets 

as a consequence of intensive, whole garden surveys, without the need to control for 

additional variables to those being evaluated.  Results are therefore considered to be 

suitably reliable and of particular relevance to the study locality.  Given the 

susceptibility of the region to the negative/potentially negative presence of non-native 

species from multiple taxonomic groups (e.g. Jones 2003; Williams et al. 2010; Turner 

et al. 2018), the advantages of obtaining superior knowledge specific to a particular, 

localised area is paramount in the ability to make better-informed, targeted decisions 

regarding management approaches, mitigation efforts, etc.  Thus, despite the limited 

geographic range of the study, there are clear benefits to maintaining a local focus.  

Furthermore, the implications of the study findings have applications within both the 

local arena and further afield, and it would be interesting to extend the study to 

encompass more formally planted gardens/landscape over a wider geographical area, 

and to observe the whether or not results are consistent, or if other trends can be 

detected.  Moreover, given its south-westerly location within the Gulf Stream, as well 

as via human-assisted introduction pathways, Cornwall is particularly prone to 

colonisation by non-native species due to climate-induced range-shifts (Parmesan & 

Yohe 2003; Hickling et al. 2006; Parmesan 2006; Chen et al. 2011; Cook et al. 2013; 

Kosanic et al. 2018), and, as such, it is hoped that significant findings from this study 

have the potential to be transferable globally as predictors in similar ecological 

communities in locations experiencing a warming climate. 

Implications of these study findings are manifold, from an improved awareness of what 

non-native invertebrates are present in formally-planted gardens and how they interact 
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with both native and non-native plants present, to the development of better-informed 

integrated management tools designed to help mitigate the potentially negative 

consequences of the presence of problematic non-native invertebrates, such as a 

targeted planting recommendations based on a more informed consideration of the 

effect of increasing plant species richness within a garden and/or of multiple plantings 

of the same species in nearby locations, and alternatives to chemical control of 

problematic species; however, it is advised that caution be heeded in the application 

of a blanket approach to managing non-native invertebrates, particularly those that are 

already present.  Given that the presence of a non-native species is not always 

negative or cause for concern (e.g. Manchester & Bullock 2000; Davis et al. 2011; 

Salisbury et al. 2015a), the effect of its removal (in this case either directly or by means 

of host-plant removal) could be more detrimental than beneficial (e.g. Zavaleta et al. 

2001; Bergstrom et al. 2009; Ballari et al. 2016).  As such, assessment of the individual 

impact of a species’ presence is always favourable, and, as always, the key goal is 

the persistence of a healthy, functioning ecological community.  What the findings of 

this study especially contribute to is an improved awareness of the factors associated 

with an increased non-native invertebrate presence, which is key to better/effective 

monitoring, etc. For example, simple approaches such as focused 

examination/monitoring of woody plants could prove particularly beneficial in enabling 

long-term assessments of the overall impact of non-native invertebrates.    

In conclusion, 23 non-native phytophagous invertebrate species, representing 20% of 

all phytophagous invertebrates species observed, were recorded from seven formally-

planted gardens in and around Penzance, Cornwall, with the invertebrates showing a 

clear preference for woody plants over non-woody plants.  This study demonstrates 

that a high non-native plant species richness likely corresponds to a high non-native 

invertebrate species richness, with woody plants having a greater effect.  Thus, while 

the probability of any one non-native invertebrate species becoming problematic may 

be relatively low, a higher richness of non-native invertebrate species in a community 

means that the likelihood of the presence of a problem species being among them is 

greater also.  As a preventative measure, it could perhaps be argued that a planting 

focus on non-woody native species over non-native plants should be encouraged; 

however, given the potentially positive attributes of non-native plant presence, 

realistically, the solution is unlikely to be straightforward.  
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Chapter 3: Nearest Source and habitat variables as predictors of 

patch occupancy in non-native invertebrate metapopulations 

 

3.1 ABSTRACT 

Understanding factors which enable a non-native species to persist in an ecological 

community is paramount to the development of effective management techniques that 

would contribute to mitigation of any negative effects.  Persistence of a phytophagous 

invertebrate species relies on the availability of a suitable host-plant.  In the context of 

metapopulation theory, the facilitative role of non-native plants in the ability of a non-

native invertebrate to persist within a community is tested.  As expected, where host-

plant habitat patches are closer together, it is found that the likelihood of a patch being 

occupied is greater, especially if the patch is occupied; however, this effect is not 

universal, with species-specific effects present also.  The potential exists for a non-

native invertebrate to become problematic, especially as its level of presence 

increases.  With particular regard to non-native species management, the role of 

metapopulation theory, including the use of simple Nearest Neighbour measures, in 

predicting how host-plant presence influences a non-native species’ ability to persist 

within an ecological community, is discussed. 

 

3.2 INTRODUCTION 

Persistence of a phytophagous invertebrate species relies on the availability of 

suitable habitat, which, in the case of the monophagous or narrowly oligophagous 

species, consists of a single suitable host-plant or small group of closely-related 

plants.  Furthermore, such invertebrates are predominantly static feeders, such as 

leaf-miners, gall-causers or scale-insects, and in more active feeders, such as aphids 

and psyllids, although wings are often present in adult forms, their dispersal 

capabilities are generally accepted as being limited by weak flight capabilities (e.g. 

Arakawa & Mivamolo 2007; Reynolds & Reynolds 2009; Döring 2014).  As a 

consequence, many phytophagous invertebrate species rely on passive dispersal 

mechanisms for inter-habitat movement (see Reynolds & Reynolds 2009).  This 

means that close proximity of the nearest host-plant is especially important in 
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maintaining healthy populations, facilitating (re)colonisation following events such as 

disease, local habitat loss, etc., as well as enabling effective immigration/emigration 

between populations.  In an urban/suburban environment, monophagous and 

oligophagous non-native invertebrates will largely be restricted to formal and domestic 

gardens containing their non-native plant-hosts.  As such, gardens represent distinct 

habitat patches, and the non-native invertebrate species are likely to exhibit a 

metapopulation structure.   

With the presence of a non-native species having the potential to have a negative 

effect on an ecological community, understanding factors which enable such species 

to persist is paramount to the development of effective management techniques that 

would contribute to mitigation of any negative effects.  By studying the factors that 

influence patch occupancy within these metapopulations, our understanding of the 

conditions under which non-native species can spread and persist in a novel 

environment can thus be improved.   

3.2.1 Metapopulation theory and population viability analysis 

A metapopulation is a group of connected but spatially isolated populations of the 

same species (Levins 1969; reviewed Hanski 1999) that facilitates the species’ 

persistence.  In a defined area, suitable habitat will support a number of distinct 

populations, and unoccupied suitable habitat will be present also.  The structure of 

metapopulations varies, e.g. a large/stable population might act as source of recruits 

for smaller, satellite populations (mainland-island structure), there might be several 

populations of a similar same size/stability (classical structure), or there might be a 

mix of variously-sized populations (patchy structure).  Interactions occur between the 

populations, such as immigration and emigration, while individual populations might 

be subject to stochastic events that could trigger changes in stability, leading to 

colonisation/re-colonisation of new habitats, or local extinctions (e.g. Hanski 1989).  

Such events will have a knock-on effect on other populations, thus potentially 

modifying a pre-existing structure. According to classical metapopulation theory 

(Levins 1969), while individual populations are subject to local extinction, as long as 

there is equilibrium in the form of a balance between extinction/colonisation, the 

metapopulation itself will remain stable; however, if extinction of local populations 

exceeds colonisation, a metapopulation will eventually become extinct.    
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Population viability analysis (PVA) utilises various tools to predict population 

dynamics, allowing assessment of the probability of extinction risk.  Such tools include 

species-specific biological and or ecological knowledge, theoretical models and 

statistical analysis.  Applications of PVA include but are not limited to informing the 

appropriate management of habitats for one or more focal species, informing the 

prioritising of conservation effort, and landscape design.  Metapopulation theory is 

fundamental to PVA, and in more recent years, simulation models/computer-based 

packages, such as the incidence function model (IFM), originally proposed by Hanski 

(1994) (see also Moilanen & Hanski 1998; Moilanen 1999), stochastic patch 

occupancy models (SPOM) (e.g. Harrison et al. 2011; Sutherland et al. 2014; Graham 

et al. 2015; reviewed Moilanen 2004), and stochastic ecological network occupancy 

(SENO) models (e.g. Lafferty & Dunne 2010) have been developed, which utilise a 

range of ecological data to model scenarios under various conditions/events, thus 

enabling better-informed predictions to be made regarding metapopulation stability 

and likelihood of extinction.  Likewise, robust statistical methods have been developed 

to better account for potential error caused by imperfect detection and/or by misapplied 

knowledge/misinterpretation of ecological relationships (evaluated Bini et al. 2009; 

Hawkins 2012). 

3.2.2 Predicting patch occupancy – population dispersal  

Forming the basis of all PVA techniques are simple occupancy models, such as the 

Nearest Neighbour measure.  Despite the development and popularity of more 

sophisticated modelling means, techniques such as these can be useful conservation 

tools in their own right, especially in that they are comparatively simple to apply, and 

assessment of their efficacy is relatively straightforward.  These habitat proximity 

indices describe presence/absence of patches inhabited by the focal species, using 

distance between patches within a connected habitat (reviewed Sjögren-Gulve & 

Hanski 2000).  Nearest Neighbour (NN) uses the distance from a patch to the nearest 

habitat (NH) and/or to the nearest source (patch occupied by the same species) (NS) 

to predict occupancy, without incorporating any other factors, such as patch size or 

shape.  While NH is considered one of the less reliable/poorer predictors (reviewed 

Moilanen & Nieminen 2002; Winfree et al. 2005; Prugh 2009), although a simple 

approach, NS has been shown to perform consistently reliably in predicting occupancy 
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(Bastin & Thomas 1999; Winfree et al. 2005; Prugh 2009).  The various pros, cons, 

applications, biological considerations, implications, comparisons, etc. of different 

occupancy modelling techniques have been widely evaluated (e.g. ter Braak et al. 

1998; Sjögren-Gulve & Hanski 2000; Moilanen & Nieminen 2002; Winfree et al. 2005; 

Prugh 2009; Bini et al. 2009). 

In addition to gardens, predominantly linear features, such as railways, waterways, 

etc. can function as habitat corridors, serving as direct links between ecological 

communities that might have historically been separate, thus further improving 

connectivity for species whose habitat requirements are duly met (e.g. Rudd et al. 

2002; Angold et al. 2006; Hulme 2009; Shi et al. 2018; reviewed Beier & Noss 1998).  

Furthermore, as anthropogenic features, increased human use of roads, both as 

vehicle-users and as pedestrians, is influential in the dispersal of plant 

seeds/propagule matter by means of attachment (Clifford 1959; Scott & Davidson 

1985; Schmidt 1989; Lonsdale & Lane 1994; Hodkinson & Thompson 1997; 

Zwaenepoel et al. 2006; Hulme 2009; Auffret & Cousins 2013), and by means of 

increased airflow produced by vehicular airflow (von der Lippe et al. 2013).  Thus, as 

a consequence of human-mediated plant dispersal, it is likely that host-plants will be 

present in locations other than domestic gardens/formally planted areas, such as on 

wasteland and road verges.  Similarly, it is likely that the dispersal of invertebrate 

species, particularly those that make use of passive dispersal mechanisms, will be 

subject to the same influence; for example, eriophyid gall-mites are known to rely on 

passive dispersal by wind (Washburn & Washburn 1984; Michalska et al. 2010; 

Kiedrowicz et al. 2017).  In accordance with a heavier traffic presence, it is presumed 

that these effects will most likely be of importance in the presence of principal roads 

rather than in quieter, residential streets.  

3.2.3 Potential variation in habitat suitability – distance from sea, elevation, 

habitat type 

In addition to the presence of a metapopulation structure based on patch occupancy, 

with roads as potential dispersal aids, abiotic factors such as microclimate will likely 

affect the likelihood of patch occupancy, with microclimate effects expected to 

correlate with distance from sea and/or patch elevation.   Similarly, differences in 
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habitat type, notably whether a habitat is managed or unmanaged, are likely to also 

be influential in patch occupancy. 

It is presumed that patch exposure to both salt (via, e.g. sea-spray, precipitation, soil 

content) and strong, coastal winds – abiotic factors that are recognised as inducing 

stress in plants (e.g. Vernieri et al. 2010) – will be greater the nearer a patch is to the 

sea.  Salinity tolerance in plants varies between species (e.g. Rozema et al. 1985; 

Sykes & Wilson 1989; Vernieri et al. 2010; reviewed Parvaiz & Satyawati 2008), with 

effects of salt stress ranging from mild osmotic effects, through biochemical/nutritional 

imbalances, to eventual chlorosis and necrosis of the leaf tissues (e.g. Cheplick & 

Demetri 1999; Munns 2002; Sánchez-Blanco et al. 2004; Munns & Tester 2008; 

Parvaiz & Satyawati 2008).  It can be surmised that salt-induced osmotic changes, 

plant nutritional imbalance, and changes in biochemistry will have a negative, indirect 

effect on a plant’s invertebrate associates.  In addition to requiring an adequate level 

of plant tissue water content, phytophagous invertebrates show a preference for plant 

tissue with a high nitrogen content (Mattson 1980), and as both water and nitrogen 

content decreases as salinity increases (Mittal et al. 2012; Deinlein et al. 2014; Ashraf 

2018), it might be expected that invertebrates would choose to not feed on a salt-

stressed plant.  Accordingly, feeding/oviposition cues might be altered or absent 

(Renault et al. 2016 and references therein).  In contrast, there is also the potential for 

positive effects associated with closer proximity to coast.  As a consequence of 

differences between the heat capacity of water and that of solid, land materials, in 

coastal areas, the sea helps to maintain warmer temperatures by taking longer to cool 

down (Adams et al. 2013).  Accordingly, as well as longer plant growing periods, the 

likelihood of frosts is reduced, meaning that plants are less prone to associated 

damage, and in turn, overwintering invertebrates have the advantage of remaining 

safely in situ.  

Effects of elevation are typically evident in mountainous/high altitude environments or 

in environments containing a combination of elevation extremes, i.e. lows and highs, 

whereby types of plants that are able to grow can be limited as a consequence of 

altered availability of soil nutrients, strength/duration of sunlight and water absorption 

(e.g. Gale 2004; Dierig et al. 2006), which can lead to adaptations, such as those seen 

in alpine plants to successfully inhabit high altitudinous environments (e.g. small size, 
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protective growth-forms (rosettes, tussocks, low stature) (Körner 2007)).  Similarly, 

evidence suggests that atmospheric temperature decreases approximately 1°C for 

every elevation increase of 100m (Adams et al. 2013), meaning that as elevation 

increases, horticultural growing seasons would be shorter in duration, while the 

number/diversity of plants able to survive would reduce accordingly.  

While the presence of such pronounced effects are principally applicable to 

mountainous/high altitude environments, it is possible that some effects might still be 

observed in environments which exhibit only small-scale differences, or which provide 

opportunities for the presence of microclimate effects, such as frost-prone valleys, or 

drier, exposed hill-tops.  

Within an urban/suburban environment, in addition to formal and domestic gardens, 

suitable habitat for phytophagous invertebrates exists in several other key forms, 

notably as plants on unmanaged land, e.g., small areas of woodland, wasteland, 

footpaths, uncultivated roadside verges, etc., or in small-scale amenity planting, e.g. 

small flowerbeds, hanging baskets, planters, cultivated roadside verges, etc.  Habitat 

types can be broadly grouped into two categories:  managed or unmanaged.  As such, 

the likely utilisation of invertebrate control mechanisms, such as chemical insecticides 

and/or biological control agents, is potentially greater in managed habitats, whereas 

unmanaged habitats are more likely to remain relatively undisturbed (exceptions to 

this potentially being the use of chemical weed-killers on wasteland in some public 

areas).  Furthermore, as previously posited, the potential influence of principal roads 

on dispersal of seeds/plant matter means that it is very likely that host-plants will be 

present in unmanaged locations as well as gardens, etc.  Similarly, movement of plant 

material from one location to another, garden escapes, removal/transfer of plant waste 

and/or compost, and transfer via birds, mammals, etc. are all means of introducing 

seeds/plant matter into new environments, either intentionally or unintentionally (Mack 

& Lonsdale 2001).  It might therefore be expected that unmanaged habitats, such as 

footpaths, wasteland and roadside verges support a substantial number of patches, 

and that differences in patch occupancy rates will exist between managed and 

unmanaged habitats, with rates being greater in unmanaged habitats.  
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3.2.4 Study model/hypotheses  

Here, I use presence/absence of 7 monophagous/narrowly oligophagous non-native 

invertebrate species present within a 2 x 2 km coastal, suburban area of Penzance, 

Cornwall, UK to test Nearest Neighbour (NN) measures and proximity to principal road 

as predictors of invertebrate presence (patch occupancy).  In addition, the predictive 

capability of habitat suitability is tested using distance from sea, elevation and habitat 

type.  In the absence of prior experimental investigation, it is not possible to state 

definitively that these study systems are truly representative of metapopulations in the 

true sense of the given definition (e.g. it is not known to what extent factors such as 

the introduction of populations as a consequence of human action are facilitating the 

species’ persistence); however, given that populations of the selected species are 

spatially isolated within the study area, and also that connectivity between these 

populations is presumed to be serving to facilitate the species’ persistence, here, the 

presence of each species within the study area is considered a metapopulation. 

Importantly, by studying multiple independent species in the same geographical area, 

it is anticipated that both overall and species-specific patterns in patch occupancy will 

be discernible, helping to inform as to whether such patterns apply generally or 

whether they are ultimately applicable at species level only.  

Testing occupancy based on NN and roads as potential aids to dispersal:  It is 

expected that as distance between patches decreases, occupancy rate increases, and 

that the more isolated the patch, i.e., as the distance between patches increases, 

occupancy rate is reduced (e.g. MacArthur & Wilson 1967; Prugh et al. 2008; reviewed 

Prugh 2009).  Similarly, it is expected that availability of suitable habitats (patches) will 

increase as distance from a principal road decreases, and that there will be an 

increase in occupancy rate as distance from nearest road decreases.  Based on the 

premise that it is proximity to nearest population that determines colonisation rather 

than the availability of habitat or means of dispersal (Moilanen & Nieminen 2002; 

Winfree et al. 2005; Prugh 2009), it is hypothesised that NH and distance from road 

will be weaker predictors than NS of occupancy.   

Testing occupancy based on variation in habitat suitability:  In coastal areas, despite 

the potential for elevation to be closely correlated with distance from sea, as well as a 

potentially low elevational range, it is expected that due to the potential persistence of 
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microclimate effects granted by small variation in elevation between patches, both 

distance from sea and elevation will have an effect on patch occupancy.  The direction 

of the effect of distance from sea will likely depend on the host-plant and/or 

invertebrate’s salt stress tolerance, and/or the effect of reduced frost/warmer 

temperatures.  Similarly, due to an increased likelihood of frost due to lower 

temperatures, increased exposure, etc., as elevation increases, it is expected that 

occupancy of habitat patches will be reduced, and that this effect will be stronger in 

host-plant species with native ranges that experience a warmer climate than the study 

location, in this case, those from Japan and/or South America.  As a third habitat 

variable, due to the potential for reduced/no use of invertebrate control, it is expected 

that there will be a higher patch occupancy rate in unmanaged habitat types than in 

managed habitat types.  

In summary, it is expected that NS will be the most reliable predictor of patch 

occupancy, and that one or more habitat variables will strengthen any significant effect 

of NS, NH and/or distance from road.  

 
3.3 METHODS 

3.3.1 Overview and study location 

During August and September 2018, a 2 x 2km sq. area (tetrad), incorporating the 

following four 1km squares: SW4629, SW4630, SW4739, SW4730, of suburban/urban 

Penzance, Cornwall (Fig. 3.1) was surveyed for presence/absence of 7 

monophagous/narrowly oligophagous non-native invertebrate species on all 

observable occurrences of their respective host-plant (Table 3.1).  All publicly-

accessible land was visited on foot (e.g. main roads, residential roads/areas, 

footpaths, parks, public gardens, playgrounds, commercial areas, car parks, etc.) with 

plants present in private gardens/on private land recorded if they could be 

seen/examined without the need to trespass, i.e. if the gardens/lands/plants bordered 

public areas, such as pavements, footpaths, etc. or invertebrate presence could be 

assessed from a distance. As the plants surveyed were fairly substantial in size, and 

signs of invertebrate presence overt (e.g. galling, or presence of tell-tale soot 

moulds/waxy secretions indicative of presence), it was possible to detect occurrences 

with relative ease, from an maximum initial comfortable distance of c.10m (further if 



Chapter 3: Nearest Source and habitat variables as predictors of patch occupancy in non-native 

invertebrate metapopulations 

 

56 
 

binoculars were utilised).  Most private front/side gardens could be assessed easily 

but rear gardens were sometimes less accessible; however, for ease of detection 

reasons described above, areas that could not be surveyed at all were very minimal, 

and most private gardens were able to be adequately surveyed.  In total, the area 

surveyed constitutes 72.25% land and 27.75% water (source: 

https://www.brc.ac.uk/vcgrid) (Fig. 3.1). 

 

SW4630 

100% land 

0% water 

SW4730 

82.9% land 

17.1% water 

SW4629 

85.4% land 

14.6% water 

SW4729 

20.7% land 

79.3% water 

 

 
 

   

Fig. 3.1. Layout, percentage land/water cover and location of the four 1 km squares which form the 

tetrad in suburban/urban Penzance, Cornwall, surveyed for presence/absence of 7 non-native 

invertebrate species on all observable occurrences of their respective host-plant. Source: 

https://www.brc.ac.uk/vcgrid; https://digimap.edina.ac.uk(a)   

 

3.3.2 Data collection 

All observable separate occurrences (i.e. patches) of the following plants were 

recorded: Elaeagnus x submacrophylla, Fuchsia spp., Laurus nobilis, Phormium 

tenax, Pittosporum spp., and large-leaved bamboos (e.g. Arundinaria spp., Bambusa 

spp., Phyllostachys spp., Pseudosasa japonica, Sasa spp.).  Patches were considered 

separate if they were separated by a physical barrier, such as a fence, wall, road or 

path or if they were more than 10m apart.  Patch size was not noted; however, no 

patch was greater in size than 10m x 10m.  For each patch, presence/absence of 

specific associated invertebrates was noted: Cacopsylla fulguralis, Aculops fuchsiae, 

Lauritrioza alacris, Balanococcus diminutus, Powellia vitreoradiata/unknown 

Pittosporum scale, and Takecallis arundicolens respectively (details, Table 3.1).  

Presence/absence was recorded as either: 1 = occupied, or 0 = not occupied.  In most 

cases, the presence of the invertebrate was easily discernible, due to the presence of 
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galls, soot moulds, plant deformation, etc.; however, efforts were made to check 

particularly thoroughly for less conspicuous/more mobile species, notably C. fulguralis 

and T. arundicolens, to ensure occurrences were not overlooked.  For each 

metapopulation respectively (A to G), patches were considered occupied based on 

positive presence of the following (Fig. 3.2):   

• A Aculops fuchsiae on Fuchsia spp.– distinctive disfiguration (galling) of flowers 

and vegetative matter 

• B Balanococcus diminutus on Phormium tenax – individual adults, nymphs or 

eggs, white (epicuticular) wax at base of plant/in leaf axils 

• C Cacopsylla fulguralis on Elaeagnus x submacrophylla – individual adults, 

nymphs or eggs, mostly on undersides of foliage 

• D Lauritrioza alacris on Laurus nobilis – individual adults, nymphs or eggs, 

distinctive galling of foliage 

• E Powellia vitreoradiata on Pittosporum spp. – individual adults, nymphs or 

eggs, distinctive galling of foliage 

• F Takecallis arundicolens on large-leaved bamboos – individual adults, nymphs 

or eggs, usually on undersides of foliage 

• G unknown Pittosporum scale on Pittosporum spp. – individual adults, nymphs 

or ovisacs on trunk/branches  

Invertebrate species were selected due to their known prevalence in the survey area, 

their ease of detection, and their presence on host-plants that are of horticultural 

importance to the area, being widely planted in private gardens and as municipal 

floral/vegetative displays. Lauritrioza alacris, P. vitreoradiata, T. arundicolens and A. 

fuchsiae are recognised as having a negative economic impact, as serious 

horticultural ‘pests’ (Roy et al. 2012; Salisbury et al. 2014), while B. diminutus and C. 

fulguralis are acknowledged as horticulturally detrimental but as having less severe an 

impact (www.rhs.org.uk a,b), and not enough is known about the unid. Pittosporum 

scale for any assessment of its impact to have been made (C. Malumphy, pers. 

comm.).  Furthermore, the selected invertebrate species are not highly mobile, all 

having limited dispersal capabilities, thus allowing for data to be collected by means 

of single location visits, with only minimal likelihood of under-detection. 
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During the course of the survey, locations were marked on a large-scale 1:500 

Ordnance Survey (OS) map, and subsequently converted to a 10m OS grid reference.   

 

Table 3.1. Details of focal phytophagous invertebrate species A-G, recorded as present/absent within 

a tetrad in suburban/urban Penzance, Cornwall, their native range, feeding type: monophagous (M), 

oligophagous (O), known associated host-plant(s), and for interest, their earliest known GB and 

Cornwall records. 

 

* Unknown, presumed monophagous, species – awaiting ID confirmation via Fera Science Ltd.  
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A Invertebrate: Aculops fuchsiae Keifer (Arachnida: Trombidiformes, Eriophyidae); Host-plant: 

Fuchsia L.  

 

  

B Invertebrate: Balanococcus diminutus (Leonardi, 1918) (Insecta: Hemiptera, Pseudococcidae); Host-

plant: Phormium tenax J.R.Forst. & G.Forst. 

 

  

C Invertebrate: Cacopsylla fulguralis (Kuwayama, 1908) (Insecta: Hemiptera, Psyllidae); Host-plant: 

Elaeagnus × submacrophylla Servett.(syn. E. x ebbingei) 

 

  

D Invertebrate: Lauritrioza alacris (Flor, 1861) (Insecta: Hemiptera, Triozidae); Host-plant: Laurus 

nobilis L. 
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E Invertebrate: Powellia vitreoradiata Maskell, 1879 (Insecta: Hemiptera, Triozidae); Host-plant: 

Pittosporum Banks ex Sol. 

 

  

F Invertebrate: Takecallis arundicolens (Clarke, 1903) (Insecta: Hemiptera, Aphididae); Host-plant: 

large-leaved bamboos (e.g. Arundinaria Michx., Bambusa (L.) Voss, Phyllostachys Siebold & Zucc., 

Pseudosasa japonica (Siebold & Zucc. ex Steud.) Makino ex Nakai, Sasa Makino & Shibata)  

 

  

G Invertebrate: an unknown Pittosporum scale (Insecta: Hemiptera, Diaspididae); Host-plant: 

Pittosporum Banks ex Sol.  

 

Fig. 3.2. Invertebrates A-G and their associated survey host-plant(s).  Photo credits: E (photo 2) P. 

vitreoradiata nymph Adam Poledníček, F (photo 2) B. diminutus on Phormium tenax, David Fenwick: 

http://www.aphotofauna.com 

 

3.3.3 Additional data 

Distance from NH/NS.  For each metapopulation, UK Grid Reference Finder Batch 

Convert Tool (https://gridreferencefinder.com) was used first to convert OS grid 

references to lat./long. coordinates, and then to convert these lat./long. patch 
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coordinates to a distance matrix: 𝑑𝑖𝑗 = distance between focal patch 𝑖 and patch 

𝑗 where 𝑖 = focal patch, 𝑗 = any other patch in the defined area.  A matrix was produced 

for NH and NS patches respectively.  For each focal patch within a metapopulation, 

least distances from the nearest habitat (NH) and the nearest occupied patch (NS) 

were extracted.  

Distance from sea/distance from road.  Using Digimap measuring tools 

(https://digimap.edina.ac.uk(a)), shortest distance from each patch to the sea was 

manually measured.  For consistency, the OS mean high water (MHW) annotation 

was used to represent the boundary between land and sea, and thus used to 

determine the nearest point from which measurements were taken.  Similarly, shortest 

distance from each patch to the nearest principal road was manually measured, using 

the middle of the road as the point from which measurements were taken.  Principal 

roads were taken to be those denoted as main/secondary roads (primary/secondary 

‘A’ roads and ‘B’ roads). (Fig. 3.3) 

 

 

Fig. 3.3. Principal roads: primary/secondary ‘A’ roads (green) and ‘B’ roads (orange/yellow) within the 

2 km survey area of Penzance, Cornwall – to determine ‘distance from road’, the shortest distance from 

each patch to the nearest principal road was measured. Map details: OS VectorMap™ District/OS 

Terrain® 50, November 2017, accessed via Digimap (https://digimap.edina.ac.uk(a)). 

https://digimap.edina.ac.uk/webhelp/os/osdigimaphelp.htm#data_information/os_products/os_vectormap_district.htm
https://digimap.edina.ac.uk/webhelp/os/osdigimaphelp.htm#data_information/os_products/os_terrain50_vector.htm
https://digimap.edina.ac.uk/webhelp/os/osdigimaphelp.htm#data_information/os_products/os_terrain50_vector.htm
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Elevation.  Using the GPS Visualizer DEM (digital elevation model) lookup facility 

(https://www.gpsvisualizer.com/elevation), elevation data from NASA’s SRTM1 

database was acquired for each patch, based on the patch lat./long. coordinates. 

Habitat type.  Each patch was categorised as either managed or unmanaged, based 

on observed/assumed management type/intensity.  Managed – routine maintenance 

and/or attention from gardener(s), groundsperson(s), or similar, involving, e.g. the 

removal/addition of plants, alteration of planted displays, irrigation, mowing, pruning, 

weeding, etc. While chemical control is not believed to be used in public gardens, its 

use in private gardens is unknown.  Patches categorised as ‘managed’ are as follows: 

public/small-scale, amenity planting; domestic/privately managed garden; public 

parks, formally planted/managed gardens, churchyards, etc.  Unmanaged – no routine 

maintenance/intervention, with the exception of some occasional cutting-back along 

footpaths.  Patches categorised as ‘unmanaged’ are as follows: waste ground, small 

wooded areas, footpaths, etc.  

3.2.4 Data analysis 

All statistical analyses and descriptive statistics were performed using R (v 3.6.1) (R 

Core Team 2019).    For plotting interaction effects, the package interplot was used 

(Solt & Hu 2019). 

With both distance from sea and elevation being useful proxies for microclimate but 

likely to be significantly correlated, to test for the possibility of confounding variables, 

these two spatial measures were checked for correlation. As a significant correlation 

was found, in order to examine elevation as independent from distance from sea, 

model residuals (the distance between the actual elevation and the value predicted by 

the line equation) were used to represent elevation relative to the surrounding 

landscape. 

For each metapopulation A-G, logistic regression, by means of a binomial occupancy 

Generalised Linear Model (GLM) with a logit link, was used to test for the significance 

of the effects of independent dispersal variables: NH, NS and distance from road in 

predicting patch occupancy.  Similarly, logistic regression was used to test for 

significance of the effects of independent habitat variables: distance from sea, 

elevation and habitat type in predicting patch occupancy.  For each metapopulation 



Chapter 3: Nearest Source and habitat variables as predictors of patch occupancy in non-native 

invertebrate metapopulations 

 

63 
 

model in which a dispersal-based effect was significant, the effect of the addition of 

each of the habitat-based variables as an interaction effect was tested for significance.  

At each stage, stepwise selection of GLMs was used to achieve a Minimum Adequate 

Model (MAM).  For all tests, significance of effects and model differences were 

evaluated using ANOVA Chi-squared (χ2) test, with further assessment made using 

model AIC values and the percentage variation provided by the model, calculated as: 

(null deviance – residual variance)/null deviance. 

3.4 RESULTS 

3.4.1 Descriptive statistics 

A combined total of 821 separate habitat patches were recorded, representing 708 

individually mapped patches – with mapped patches not limited to a single focal host-

plant (619 patches featured 1 focal host-plant only, 70 featured 2 different focal host-

plants, 15 featured 3, 3 featured 4 and 2 featured 5).  92% of mapped patches were 

on managed land (68% of mapped patches were within domestic/privately managed 

gardens (n=481), 13% were within public/small-scale, amenity planting (n=90), 12% 

were within public parks, formally planted/managed gardens, churchyards, etc. 

(n=84)), while 8% were on unmanaged land (waste ground, small wooded areas, 

footpaths, etc.) (n=54).  Number of patches per focal host-plant ranged from 54 

patches (F) to 284 patches (A), with occupancy rates ranging from 5% (G) to 86% (D).  

For each metapopulation A-G, a dot distribution map (Fig. 3.4) is provided.   

 

  

Fig. 3.4a. A. Fuchsia/Aculops fuchsiae  Fig. 3.4b. B. Phormium tenax/Balanococcus 

diminutus  
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Fig. 3.4c. C. Elaeagnus/Cacopsylla fulguralis 

 

Fig. 3.4d. D. Laurus nobilis/Lauritrioza alacris 

  

Fig. 3.4e. E. Pittosporum/Powellia vitreoradiata 

 

Fig. 3.4f. F. Bamboo/Takecallis arundicolens  

 

Fig. 3.4g. G. Pittosporum/unknown Pittosporum scale  
 

Fig. 3.4. Dot distribution maps for metapopulations: a) A. Fuchsia/Aculops fuchsiae, b) B. Phormium 

tenax/Balanococcus diminutus, c) C. Elaeagnus/Cacopsylla fulguralis, d) D. Laurus nobilis/Lauritrioza 

alacris, e) E. Pittosporum/Powellia vitreoradiata, f) F. Bamboo/Takecallis arundicolens. g) G. 

Pittosporum/unknown Pittosporum scale within the 2 km survey area of Penzance, Cornwall. Red dots 

represent occupied patches, green dors represent unoccupied patches. Maps produced using Microsoft 

Excel add-in Mapcite. 

 

3.4.2 Statistical analyses 

Due to the possibility of confounding variables, spatial measures: distance from sea 

and elevation were checked for correlation.  A significant correlation was observed 
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(lm: R2 0.53 (adj. R2 0.53); ANOVA F1,707 = 797.61 p <.001) (Fig. 3.5).  In order to 

examine elevation as independent from distance from sea, model residuals (the 

distance between the actual elevation and the value predicted by the line equation 

y=0.0394x+9.0382) were used to represent differences in elevation relative to the 

surrounding landscape. 

  

 

Fig. 3.5. Significant correlation (lm: R2 0.53 (adj. R2 0.53); ANOVA F1,707 = 797.61 p <.001) of distance 

from sea and elevation of each patch location, with fitted regression line (y = 0.0394x + 9.0382).  

 

Independent models – occupancy based on dispersal methods: nearest habitat 

(NH), nearest source (NS)), and distance from road 

In metapopulations C, E, F and G, no significant effects were observed for NH, NS or 

distance from road.  A significant effect was observed for NS in metapopulations A 

(GLM (binom): ANOVA χ2
1,282 p < .001), B (GLM (binom): ANOVA χ2

1,135 p < .001) and 

D (GLM (binom): ANOVA χ2
1,211 p < .001), while in D, NH was significant also (GLM 

(binom): ANOVA χ2
1,212 p < .001) (Fig. 3.6). For A (NS only), 8% deviance is explained 

by the model, for B (NS only) 17%, and for D (NH + NS) 18%.  Distance from road 

was not significant in any of the metapopulation models. 
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Fig. 3.6a Metapopulation D: Lauritrioza alacris 
NH (GLM (binom): ANOVA χ2

1,212 p < .001)  
 

 

Fig. 3.6b Metapopulation D. Lauritrioza alacris 
NS (GLM (binom): ANOVA χ2

1,211 p < .001) 
 

 

  

Fig. 3.6c Metapopulation A. Aculops fuchsiae 

NS (GLM (binom): ANOVA χ2
1,282 p < .001) 

 

Fig. 3.6d Metapopulation B. Balanococcus 

diminutus NS (GLM (binom): ANOVA χ2
1,135 p < 

.001) 

 

Fig. 3.6. Significant occupancy plots for tests based on dispersion: Nearest Habitat (NH), Nearest 

Source (NS) and distance from road (1 = occupied, 0 = not occupied) with fitted curves: a) D Lauritrioza 

alacris NH, b) D Lauritrioza alacris NS, c) A Aculops fuchsiae NS, d) B Balanococcus diminutus NS 

 

Independent models – occupancy based on variation in habitat suitability: 

distance from sea, elevation, and habitat type 

In metapopulations A, C, F and G, no significant effects were observed for distance 

from sea, elevation, or habitat type. In B, a significant effect was observed for distance 

from sea (GLM (binom): ANOVA χ2
1,136 p < .001), in D, a significant effect was 

observed for elevation (GLM (binom): ANOVA χ2
1,212 p < .001), while in E, a significant 

effect was observed for habitat type (GLM (binom): ANOVA χ2
1,75 p = 0.020) (Fig. 3.7). 

For B (distance from sea only), 13% deviance is explained by the model, for D 

(elevation only) 6%, and for E (habitat type only) 5%. 
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Fig. 3.7a. Distance from sea occupancy plot with 
fitted curve for metapopulation B: Balanococcus 
diminutus (GLM (binom): ANOVA χ2

1,136 p < .001) 
  

Fig. 3.7b. Elevation occupancy plot with fitted 
curves for metapopulation D: Lauritrioza alacris 
(GLM (binom): ANOVA χ2

1,212 p < .001)  
 

 

 

Fig. 3.7c. Mean SE patch occupancy according to habitat type for metapopulation E. Powellia 
vitreoradiata (GLM (binom): ANOVA χ2

1,75 p = 0.020) 
 

Fig. 3.7.  Significant effects observed for habitat variables tested independently: a) for metapopulation 

B Balanococcus diminutus, distance from sea, b) for metapopulation D Lauritrioza alacris, elevation, c) 

for metapopulation E Powellia vitreoradiata, habitat type. 

 

Expanded models – adding habitat variables to significant NH, NS and distance 

from road models 

All four significant dispersal-based models were improved statistically by the addition 

of a habitat variable, as either a significant independent covariable or a interacting 

covariable.  As an interaction effect, the addition of distance from sea improved the 

metapopulation A NS only model, while as an independent effect, it improved the NS 

only model for B; the NH only model for D was improved by the addition of elevation 

as an independent variable, while as an interaction effect, habitat type improved the 

corresponding NS only model (Fig. 3.8); for D, NS X habitat type was a better-

performing model than NH + elevation (Table 3.2).  
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Table 3.2. Best performing (minimum adequate) models for metapopulations A, B and D a) before and 

b) after the addition of the significant covariables: distance from sea (sea), elevation, habitat type (hab).  

To enable direct comparison, for metapopulation D, the combined model (NH + NS) plus separate 

models (NH only, NS only) are provided for ‘before’ purposes. Significant results are highlighted in bold. 

a)  Metapopulation 

A B D D D 

model NS NS NH + NS NH NS 

  resid. 

dev. 

p-value resid. 

dev. 

p-value resid. 

dev. 

p-value resid. 

dev. 

p-value resid. 

dev. 

p-value 

  

NULL 312.64  163.66  177.06  177.06  177.06  

e
ff

e
c
t NH - - - - 158.59 < .001 158.59 < .001 - - 

NS 287.75 < .001 136.00 < .001 146.06 < .001 - - 146.47 < .001 

G
L

M
 

null 

deviance 

(df) 

312.64 (283) 163.66 (136) 177.06 (213) 177.06 (213) 177.06 (213) 

resid. 

deviance 

(df) 

287.75 (282) 136.00 (135) 146.06 (211) 158.59 (212) 146.47 (212) 

AIC 291.75 140.00 152.06 162.59 150.47 

% deviance 8% 17% 18% 10% 15% 

                        

b)  Metapopulation 

A B   D D 

model NS X distance 

from sea 

NS + distance 

from sea 

NH + elevation NS X habitat type 

  resid. 

dev. 

p-value resid. 

dev. 

p-value resid. 

dev. 

p-value resid. 

dev. 

p-value 

  NULL 312.64  163.66  177.06  177.06  

e
ff

e
c
t 

NH - - - - 158.59 < .001 - - 

NS 287.75 < .001 136.00 < .001 - - 146.47 < .001 

sea 285.89 0.172 131.72 0.038 - - - - 

elevation - - - - 154.15 0.035 - - 

hab - - - - - - - - 

NS X sea 270.74 < .001 - - - - - - 

NS X hab - - - - - - 140.92 0.019 

G
L

M
 

null 

deviance 

(df) 

312.64 (283) 163.66 (136) 177.06 (213) 177.06 (213) 

resid. 

deviance 

(df) 

270.74 (280) 131.72 (135) 154.15 (211) 140.92 (210) 

AIC 278.74 137.72 160.15 148.92 

% deviance 13% 20% 13% 20% 
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Fig. 3.8a. Interaction plot for the 2-way interaction effect of Nearest Source (NS) X distance from 

sea in metapopulation A model, showing that the effect of distance from sea is greater when NS 

is further away. 

 

 

Fig. 3.8a.) Mean SE patch occupancy according to habitat type in metapopulation D model 
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Fig. 3.8bii. The effect of habitat type on Nearest Source occupancy in metapopulation D model 

 

Fig. 3.8. Best performing (minimum adequate) models (MAMs) for a) metapopulation A, and b) 

metapopulation D after the addition of the significant covariables: distance from sea (sea), 

elevation, habitat type (hab).  For metapopulation B, best performing MAM remains as in Fig. 3.7a  

 

 

3.5 DISCUSSION 

It was expected that in each of the 7 metapopulations studied here, a significant effect 

of one or more Nearest Neighbour (NN) measures would be present, and that the 

effect would be strengthened by the addition of one or more habitat variables.  

Significant NN effects were observed for Nearest Source (NS) and/or Nearest Habitat 

(NH) in 3 of the 7 metapopulations.  In metapopulations A (Aculops fuchsiae), B 

(Balanococcus diminutus) and D (Lautitrioza alacris), NS was significant, and in D, NH 

was significant also.  For each significant model, the addition of a habitat variable 

improved the NN model, as either a significant independent covariable or a interacting 

covariable.  

A unique strength of this analysis is that by studying multiple, independent species in 

the same geographical area, between-species similarities and differences in 

occupancy patterns can be observed.   As expected, for all models in which a 
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significant NN measure was observed, NS was found to be the better predictor.  

Overall, for 3 of the 7 populations, patch occupancy can be predicted by proximity of 

nearest occupied patch – the closer the occupied patch (NS), the more likely that patch 

will be occupied.  These findings are consistent with metapopulation theory (Levins 

1969), as well as island biogeography theory (MacArthur &Wilson 1967), supporting 

the premise that it is proximity to nearest population that determines colonisation 

rather than the availability of habitat or means of dispersal (Moilanen & Nieminen 

2002; Winfree et al. 2005; Prugh 2009).  NS distances between occupied patches in 

significant models are relatively similar for each metapopulation, with most distances 

being within the 0-c.200m range.  Within the metapopulations for which the effect of 

NS was significant, it is the addition of habitat variables that reveals species-specific 

patterns. 

In metapopulation A, NS was improved by the interacting effect of distance from sea, 

with the plot indicating that the effect of distance from sea is stronger as the greater 

the distance from nearest source. Distance from sea was not significant as an 

independent variable.  There is a possibility that these results might indicate that 

distance from NS is correlated with microclimate suitability, with the presence of a 

nearby source also indicating microclimate suitability; however, any interpretation of 

the cause can only be speculative, and it could be due simply to the spatial structure 

of the metapopulations.  Thus, while distance from sea is potentially confounded with 

NS when distance to NS is low but not when distance to NS is high, any such 

interaction effect of distance from sea could be seen to not add any useful explanatory 

power here, with the significant NS variable being the key result.   

In metapopulation B, NS was improved by the addition of distance from sea as an 

effect, with patch occupancy shown to decrease as distance from sea increases.  The 

metapopulation B host-plant, Phormium tenax, is the only host within this study in 

which there was an expectation of comparatively  high salt tolerance (Bai et al. 2017), 

and it could be speculated that it is possible that it is has found a niche for itself in 

being able to tolerate conditions that other plants cannot, and that in order to exploit 

the plant as a food source/habitat, the mealybug B. diminutus has adapted accordingly 

to become a truly specialist phytophagous invertebrate, with its entire lifecycle being 

completed on the host-plant (Cox 1987; Williams & Malumphy 2012).  Unless B. 
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diminutus is now dependent on coastal conditions, it would be expected to see a fairly 

even spread of occupied patches across the range, which is the case (Fig. 3.7a).  It is 

possible that a bias towards coastal planting is influencing the results, with habitat 

patches further from the sea more widely spaced (Fig. 3.4).  In all scenarios, it would 

be interesting to test experimentally if increased patch occupancy with closer proximity 

to sea is being driven to a requirement of higher salt levels on the part of B. diminutus 

(e.g. Nkem et al. 2006).   

In metapopulation D, NS is improved by the interaction effect of habitat type, while NH 

is improved by the addition of elevation; however, here, the significant effects in the 

NH model are rendered redundant, due to NS being a stronger predictor of occupancy.   

Examination of the mean occupancy rates according to habitat type reveals a very 

slight difference between managed and unmanaged habitats, with the mean 

occupancy rate of managed habitats being the higher of the two, while the number of 

patches in managed habitats is nearly 9 times that of patches in unmanaged habitats.  

While the effect of habitat might be being swayed by this imbalance, the significant 

effect of habitat type should not be dismissed here.  An unmeasured variable here is 

the individual size of the patch, and a possible explanation for differences according 

to habitat type is that in unmanaged habitats, the host-plant Laurus nobilis typically 

consist of large, mature trees, where those in managed habitats are younger, smaller 

plants (pers. obs.), suggesting that there might be potential differences in occupancy 

according to tree age/size, with the invertebrate exhibiting a preference for younger 

trees (e.g. Moran & Buchan 1975; Liu & Trumble 2006).  An experimental approach 

would be required to corroborate this effect but if it is genuine, then a useful tool in 

mitigating the persistence of L. alacris populations might be in the restriction of 

production/trade of younger host specimens, thus over time, reducing available habitat 

as younger trees mature. 

While no effect for any NN measure was observed for metapopulations C, E, F and G, 

as an independent variable, a statistically significant effect of habitat variable was 

observed for E (Powellia vitreoradiata), with mean occupancy of patches in 

unmanaged habitat almost twice that of patches in managed habitat; however, given 

the comparatively low number of habitat patches in unmanaged habitat (n=5), and as 
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deviance explained by the model is 5% only, this result the level of ecological 

significance of this effect is questionable.   

The lack of significance of NN measures in 4 of the metapopulations further 

emphasises the species-specific nature of the effects.  Possible explanations for 

observed differences include individual species traits, such as a high dispersal level 

(e.g. Abbott 2011), or that the patch density is either too low or too high to provide a 

measurable effect, or that in species with low levels of occupancy (notably the 

unidentified Pittosporum scale, for which only four observations were made), there is 

insufficient data to provide statistical power to the results.    

In all of the metapopulations, it should be acknowledged that unknown variables are 

potentially at play also, such as source of host-plant, length of time in location, 

presence/absence of invertebrate at the time of plant arrival (e.g. is invertebrate 

presence due to the result of spread from a nearby existing patch, or is it due to the 

host-plant source, e.g. garden centre, nursery, etc.?), as well as the effect of stochastic 

events (e.g. Haydon & Steen 1997).  It is not known to what extent these factors are 

facilitating the species’ persistence, and, in the absence of this knowledge, in order to 

corroborate the results provided here, an experimental approach based on the findings 

would be required. 

It should also be recognised that further limitations exist in the form of the study’s 

geographical scale, in that while the prescribed study area of 4 x 1km squares does 

incorporate most of the larger urban/suburban area in which it is located, it does not 

exist in isolation.  It is therefore possible that important effects of other nearby patches 

outside the area are being overlooked, although, in the most part, it is considered that 

the numbers of patches are sufficiently high to allow for reliable results.  What would 

be interesting, though, is to extend the geographic range of the study to better match 

the landscape variables present, e.g. to an entire, self-contained suburban/urban area, 

thus reducing the possibility of overlooked effects.  Furthermore, in expanding the 

study to a meta-metapopulation scale, it is possible that some variables would be 

elevated in their importance.  For example, it is likely that the effect of roads and other 

transportation means (e.g. canals, railways) as tools to dispersal will (e.g. Rudd et al. 

2002; Angold et al. 2006; Hulme 2009; Shi et al. 2018), as would the effect of elevation 

(e.g. Gale 2004; Körner 2007), where the range of values would likely by larger.  In 
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contrast, it is expected that the effect of distance from sea would be of significance 

within a certain distance of the coast, thereafter, no effect would be expected. 

In looking at the efficacy of NN measures when compared to those of more 

robust/sophisticated measures also based on simple occupancy models, such as 

those of Population viability analysis (PVA), which incorporates species-specific 

biological/ecological knowledge, often via the use of simulation models/computer-

based packages e.g. Hanski 1994; Moilanen 1999; Lafferty & Dunne 2010; Sutherland 

et al. 2014), the observation here that NN measures were significant also without any 

additional variable, adds further fuel to the argument that they remain a convenient 

tool in their own right (Bastin & Thomas 1999; Winfree et al. 2005; Prugh 2009). 

In conclusion, the hypothesis that patch occupancy can be predicted using NN 

measures is supported in 3 of the 7 metapopulations studied, and for each of these 3 

metapopulations, the addition of a habitat variable provides strength to the NN effect, 

suggesting that the predictive power of a NN measure has the potential to be more 

reliable when additional variables are included also.   As expected, where habitat 

patches are closer together the likelihood that a patch will be occupied is greater, 

especially if the patch is occupied; however, this effect is not universal, with species-

specific effects present also, and in studying multiple independent metapopulations 

within the same geographical area, similarities and differences between species have 

been indicated, both in the efficacy of NN measures and in the added habitat variable.  

This study thus provides further insight into the conditions required to enable an 

invertebrate to establish beyond its source, and for it to persist once established.  

Given the potential for a non-native invertebrate to become problematic, especially as 

its level of presence increases, with particular regard to non-native species 

management, the role of metapopulation theory, including the use of simple NN 

measures, in predicting how host-plant presence influences a non-native species’ 

ability to persist within an ecological community, has far-reaching, positive 

implications.  
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Chapter 4: Overlap in phytophagous invertebrate communities 

among native and non-native plants as a function of phylogenetic 

distance 

 

4.1 ABSTRACT 

An ecological community is shaped by its biotic interactions, both direct and indirect.  

As natural enemies of one or more host-plant species, with the exception of strictly 

monophagous species, phytophagous invertebrates are not confined to host-plants 

that align strictly with their individual native status.  In a community with both native 

and non-native plants present, it is predicted that the more closely related a plant pair, 

the more likely it is that they will share one or more common enemy.  Using data from 

comprehensive surveys of formally-planted gardens in West Cornwall, apparent 

competition, in the form of negative indirect interactions between native and non-native 

plants mediated by a shared invertebrate enemy, with the indirect interactions biased 

by plant relatedness, is tested.  Phylogenetically ranked pairwise native/non-native 

plant interactions are weakly correlated with observed shared invertebrate 

interactions, while a significant Mantel test results indicates a significant potential for 

apparent competition.  Findings here provide original insight into how invertebrates 

and plants interact in an ecological community, and how these interactions help to 

structure the community. 

 

4.2 INTRODUCTION 

An ecological community is shaped by its biotic interactions (e.g. Loreau et al. 2001; 

Bruder et al. 2019), and, in addition to the direct effect of one species on another (e.g. 

predation, parasitism, herbivory), the presence of indirect effects are widely 

recognised (e.g. Holt 1984; Wootton 1994; van Veen et al. 2006b; White et al. 2006), 

particularly the presence of negative indirect effects as apparent competition, whereby 

a species is negatively affected by a second species due to the actions of a third, 

mediating species (e.g. Wootton 1994; Menge 1995).   

As natural enemies of one or more host-plant species, with the exception of strictly 

monophagous species, phytophagous invertebrates are not confined to host-plants 
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that align strictly with their individual native status, i.e. a non-native plant might serve 

as a host for a native invertebrate, and a native plant might serve as a host for a non-

native invertebrate (Agosta 2006).  In either scenario, the involvement of a novel 

associate is required.  In the case of a native plant serving as a host for a novel non-

native invertebrate, a host shift or expansion on the part of the invertebrate has 

occurred.  Thus, in addition to the direct effect of acquiring a novel enemy, in the 

sharing of a natural enemy with a non-native plant species, there exists the potential 

for a negative ecological interaction, i.e. ‘apparent competition’, in the form of a 

negative indirect effect between the non-native invertebrate and the native plant, 

mediated by the presence of a non-native plant. 

4.2.1 Invertebrate-plant associations 

Numerous influences and concepts have been proposed/argued as explanations as 

to how specific invertebrate-plant associations arise.  Known influences include plant 

defences, biogeography, individual/population variation and host-plant phylogeny (e.g. 

Dethier 1941; Ehrlich & Raven 1964; Bernays & Chapman 1994; Beccera 1997; Janz 

& Nylin 1998; Percy et al. 2004; Joy & Crespi 2012), while concepts include ‘bi-/tri-

trophic niche hypotheses’ (see Singer & Stireman 2005), ecological fitting (Janzen 

1980, 1985), island biogeography (MacArthur & Wilson 1967), the ‘oscillation 

hypothesis’ (Janz & Nylin 2008), and the ‘parasite paradox’ (Agosta et al. 2010; Janz 

2011).  As such, it is generally accepted that invertebrate-plant associations are the 

consequences of dynamic combinations of various evolutionary and ecological 

processes, rather than solely the result of a shared, close evolutionary history, as 

traditionally perceived (e.g. Ehrlich & Raven 1964; Agrawal et al. 2006).  Although 

recent research has focused more on the utilisation of advances in the application of 

molecular data (e.g. Wirta et al. 2014; Ouvrard et al. 2015; see also Von Dohlen & 

Moran 2000; Percy et al. 2004), it would seem that there is still no ‘once size fits all’ 

mechanism in action.   

Plants possess a variety of cues/defence strategies, such as physical barriers, noxious 

chemicals and phenological constrictions, which serve as a deterrent/barrier to 

phytophagy from ‘the wrong invertebrate species’ by determining whether or not an 

invertebrate species is able to find, select or consume the particular plant (e.g. Dethier 

1941; Ehrlich & Raven 1964; Becerra 1997; Renwick 2001; Chapman 2003; Agrawal 
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2007; McCormick et al. 2012).  There is a proclivity for phytophagous invertebrates to 

have phylogenetically structured/restricted diets: specialist phytophagous 

invertebrates (monophagous and oligophagous species) feed on plants that are 

closely related (at a minimum of family level) and although considered generalists, 

host-plant choice in a polyphagous invertebrate species (defined here as those which 

feed on plants from 3 or more families) can still be fairly conservative in their host-

plant choice, with highly polyphagous species being relatively few (e.g. Ødegaard et 

al. 2005; Futuyma & Agrawal 2009).  The strength of a plant’s cues/defence strategies 

are recognised as being stronger for co-evolved specialist invertebrate species than 

for generalist species (Keane & Crawley 2002; Tanzentzap et al. 2011), and thus, plant 

defence has traditionally been considered key in determining an invertebrate’s ability 

to select a plant as a suitable host (e.g. War et al. 2018).    

4.2.2 Plant phylogenetic relatedness and invertebrate host shifts/expansions 

Plant phylogeny is representative of a species’ evolutionary history, and is deemed a 

reliable proxy for plant defence traits, roughly correlating with physical, chemical, 

and/or phenological characteristics (e.g. Webb et al. 2002; Cavender-Bares et al. 

2009; Dinnage 2013 but see e.g. Carmona et al. 2011; Schuldt et al. 2012, 2014).  

Thus, characteristics of closely phylogenetically related plant species are likely to be 

more similar than those which are phylogenetically distant.  With the ability of a non-

native invertebrate species to survive in a new environment being facilitated by 

resource and habitat suitability, the more closely phylogenetically related a potential 

new host-plant is to the invertebrate’s co-evolved host-plant, the more likely a 

successful move to that novel native host-plant will be (Janz & Nylin 2008).  As such, 

plants that are more closely phylogenetically related have a greater tendency to share 

phytophagous invertebrates than plants that are less closely phylogenetically related 

(e.g. Ness et al. 2011; Agrawal & Kotanen 2003; Percy et al. 2004; Ødegaard et al. 

2005; Agosta 2006; Winkler & Mitter 2008; Dawson et al. 2009; Futuyma & Agrawal 

2009; Gossner et al. 2009; Gilbert et al. 2015).   

While there are a number of examples of invertebrate host shifts/expansions observed 

between plants which are more distantly phylogenetically related, most recognised 

host shifts/expansions occur between congeners and confamilials (e.g. Dethier 1954; 

Mitter & Farrell 1991; Janz & Nylin 1998; Winkler & Mitter 2008).  As generalist species 
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have less restricted dietary requirements, opportunities for host shifts/expansions will 

normally be greater than for specialist species, especially in the absence of closely-

related native plant species to a specialist’s co-evolved host-plant (Keane & Crawley 

2002; Lau et al. 2008).   

4.2.3 Study model/hypothesis  

Thus, it is expected that in an ecological community with both native and non-native 

plants present, the more closely phylogenetically related native/non-native plant 

species there are present, the greater the opportunity for host shifts/expansions by 

both specialist and generalist invertebrate species, resulting in an overall greater 

likelihood of shared associated invertebrate species between native and non-native 

plants (e.g. Gilbert & Webb 2007; Dawson et al. 2009; Ness et al. 2011).  Thus, the 

likelihood of indirect interactions in a food web increases the more closely related the 

community (Elias et al. 2013; Carvalheiro et al. 2014).  It is therefore hypothesised 

that the likelihood of one or more natural enemies being shared by a native/non-native 

pair of plants increases, the more closely related the plants are to one another.  While 

there are numerous examples of studies demonstrating that a greater overlap in 

interaction partners occurs in more closely related taxa (e.g. Bersier & Kehrli 2008; 

Rezende et al. 2009; Cagnolo et al. 2011; Elias et al. 2013; Carvalheiro et al. 2014), it 

is believed that this is the first time that anyone has specifically investigated the 

potential for indirect interactions between native and non-native plants mediated by a 

shared invertebrate enemy, that are biased by plant relatedness.   

 

4.3 METHODS 

4.3.1 Data collection 

During the period June to September 2015, seven formally-planted public gardens 

within a 3.5 km radius of Penzance, West Cornwall, UK were surveyed (for garden 

details, see Chapter 2).  All plants and phytophagous arthropods (insect phloem/xylem 

(sap)-feeders, leaf-feeders, gall-causers, leaf-miners and case-makers, and arachnid 

gall-causers, henceforth referred to as ‘invertebrates’) observed in association with the 

plants at the time of the survey were recorded.  Recording took place via 1 to 3 visits 
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per garden, with visits of more than 1-day duration occurring no more than 2 days 

apart.  All visits were made in warm, sunny weather conditions.   

All vascular plants – both intentionally and unintentionally planted – present within 

each garden at the time of the visit were recorded.  Plants were identified to a minimum 

of genus level but to species level wherever possible.  Each identified plant was 

subsequently allocated to a designated ‘Plant Taxonomic Unit’ (PTU), consisting of 

either a single species or a group of congeners of the same native (N) or non-native 

(NN) status and plant type (e.g. small shrub, large tree, etc.); exceptions to this are 4 

PTUs where 1 or more of the former congeners has subsequently undergone a 

taxonomic change or where a single species has subsequently been split into several 

novel genera (Appendix I). Where known and where both were present, recognised 

cultivars/varieties were recorded as a separate PTU from the originating species – the 

reason being that potential differences in invertebrate-plant associations could be 

better accounted for.   

At the same time as plant presence/area coverage was measured, an inventory of 

phytophagous invertebrates present on each PTU was created.  Any individual 

exhibiting phytophagy was noted.  Invertebrates were identified to species level where 

possible, and life-stage was noted also.  Leaf-miners, case-bearers and gall-causers 

were identified mostly based on host-plant and mine/gall morphology, with 

identification of cryptic species confirmed by rearing.  All visible parts of the plant were 

examined for invertebrate presence: foliage, stems, trunks, bark, flowers, etc.; 

however, for consistency and practicality, visual inspection only was used to assess 

invertebrate presence, i.e. no beating, digging of roots, dissection of stems or similar 

was performed.  Where there was more than one occurrence of a PTU within a garden, 

a similar proportion of each occurrence was inspected.  To standardise methodology, 

only foliage up to approx. 3m from the ground was inspected.   

4.3.2 Additional data 

Post-survey, additional data were sought for each Plant Taxonomic Unit (PTU) and 

each invertebrate, as follows:  

Up-to-date plant nomenclature/taxonomic classification was determined using 

primarily Stace (2019) and POWO (2019) (plants), and individual sources 
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(invertebrates), supplemented by Catalogue of Life: 2018 Annual Checklist (Roskov 

et al. 2018).  Post-survey changes have subsequently been incorporated, and noted 

accordingly, as have disputed/ambiguous names (Appendix I, Appendix II).  

Taxonomic classification is presumed to be an accurate representation of plant 

phylogeny (see Hinchliff et al. 2015; Kozlov et al. 2016).  Native/non-native status of 

each PTU/invertebrate was established using the Non-native Species Secretariat 

(NNSS) GB Non-native Species Information Portal (NNSIP) 

(http://www.nonnativespecies.org/) as the primary authority, supplemented by 

interrogation of POWO (2019) for additional detail (plants), and consultation of 

individual sources for data-deficient invertebrate species.   

In order to remove possible error due to the presence of accidental/casual 

feeders/potential incidentals not previously disregarded, a flow-chart of non-subjective 

questions (Fig. 4.1) was used to refine observed PTU/invertebrate pairings by 

determining which pairings should be retained as reliable associations, and which 

should be removed from analyses as less reliable associations.   

Garden-level data was collated to form a single dataset.  For both the observed dataset 

and the refined dataset, details of every PTU-host/invertebrate association that 

occurred were extracted.  Using these data subsets, lists of all native/non-native (N-

NN) PTU pairings with a shared associated invertebrate (consumer overlap pairings) 

were used to create two matrices of pairwise associations between each native and 

non-native PTU, with numbers representing the total number of invertebrate species 

shared by a PTU pairing.  Similarly, a matrix of phylogenetic relatedness between each 

native and non-native PTU was created using the following rank values: same 

Subspecies = 0, same Species = 1, same Genus = 2, same Family = 3, same Order 

= 4, same Superorder = 5, same Subclass = 6, same Class = 7, same Kingdom = 8.   
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Fig. 4.1. Flow-chart of non-subjective questions used to determine which Plant Taxonomic Unit (PTU)/invertebrate pairings should be retained, and which 

should be removed from analyses due to possible incidental/casual feeding partnership. 
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4.3.3 Data analysis  

All statistical analyses were performed using R (v 3.6.1) (R Core Team 2019).  

Visualisation of shared invertebrate species via a consumer overlap graph was 

produced using igraph package (Csardi & Nepusz 2006).  To test for significance 

of association between each PTU-host/invertebrate associations matrix and the 

phylogenetic relatedness matrix, the Mantel test of matrix correlation was 

performed using vegan package (vegan 2.5.6) (Oksanen et al. 2019).  Results 

for both observed data and refined data were compared.  Mean phylogenetic 

relatedness ranking of all potential N-NN consumer overlap pairings and of all 

realised N-NN PTU pairings was calculated respectively for both observed data 

and refined data.   

 

4.4 RESULTS 

4.4.1 Descriptive statistics 

124 native (N) PTUs, 266 non-native (NN) PTUs, and 20 PTUs of unknown native 

status were recorded, while 86 native invertebrate species, 23 non-native 

invertebrate species, and 7 invertebrate species of unknown native status were 

observed in association with one or more PTU, resulting in 212 invertebrate-PTU 

pairs.  85 PTUs were observed sharing an invertebrate with 1 or more other 

PTUs, resulting in 858 consumer overlap pairings, involving 23 invertebrate 

species.  N-NN pairings (344) represented 40.1% of all (858) refined pairings, 

and involved 19 native PTUs and 34 non-native PTUs.  Following application of 

the data refining process for each invertebrate-PTU pair (Fig. 4.1), 48 

invertebrate-PTU pairs were disregarded; additionally, 8 invertebrate-PTU pairs 

involving the 7 invertebrate species of unknown native status were disregarded 

due to deficient data.  Consequently, 688 consumer overlap pairings were 

disregarded, leaving 57 PTUs sharing an invertebrate with 1 or more other PTUs, 

resulting in 170 pairings, involving 21 invertebrate species.  N-NN pairings (70) 

represented 41.2% of all (170) refined pairings, and involved 14 native PTUs and 

32 non-native PTUs.  Maximum possible distinct N-NN pairings (124 x 266) = 

32984, with realised observed pairings (344) representing 1.0%, and realised 

refined pairings (69) representing <1%.  (Table 4.1).  
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Table 4.1. Comparative summary of observed and refined data: a) Plant Taxonomic Unit (PTU) 

and invertebrate presence, b) All (ALL) and native-non-native (N-NN) consumer overlap pairings, 

and c) realised consumer overlap pairings as a percentage of maximum possible pairings. 

Table 4.1a. A summary of PTU richness, invertebrate species richness, invertebrate-PTU 

associations, and consumer overlap pairings. 

 Observed Refined 

PTU richness  no.(%) 

total=410 

no.(%) 

total=410 

native (N) 124 (30%) 124 (30%) 

non-native (NN) 266 (65%) 266 (65%) 

unknown status 20 (5%) 20 (5%) 

 

Invertebrate species 

richness  

no.(%) 

total=116 

no.(%) 

total=105 

native (N) 86 (74%) 82 (78%) 

non-native (NN) 23 (20%) 23 (22%) 

unknown status 7 (6%) - 

 

Invertebrate-PTU 

associations 

no.(%) 

total=212 

no.(%) 

total=156 

native invert/native PTU 75 (35%) 64 (41%) 

native invert/non-native 

PTU 

76 (36%) 41 (26%) 

non-native invert/native 

PTU 

8 (4%) 8 (5%) 

non-native invert/non-

native PTU 

45 (21%) 43 (28%) 

unknown invert/native PTU 1 (0%) - 

unknown invert/non-native 

PTU 

7 (3%) - 

 

PTUs in a consumer 

overlap pairing 

no.(%) 

total=85 

21% all PTU 

richness 

no.(%) 

total=57 

14% all PTU 

richness 

native  23 (27%) 19% all native 

PTU richness 

16 (28%) 13% all native 

PTU richness 

non-native  62 (73%) 23% all non-

native PTU 

richness 

41 (72%) 15% all non-

native PTU 

richness 
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Table 4.1b. Consumer overlap pairings – ALL pairings and N-NN pairings.  

PTU pairing consumer overlap 

pairings (distinct PTU 

pairs) – ALL 

invertebrates 

consumer overlap 

pairings (distinct PTU 

pairs) – native 

invertebrates 

consumer overlap 

pairings (distinct PTU 

pairs) – non-native 

invertebrates 
 

Observed Refined Observed Refined Observed Refined 

ALL 858 (852) 170 (169) 785 (785) 102 (102) 73 (73) 68 (68) 

N-NN 344 (344) 70 (69) 320 (320) 46 (46) 24 (24) 24 (24) 

 

Table 4.1c. Realised consumer overlap pairings as a percentage of maximum possible pairings. 

PTU 

pairing 

no. of 

PTU 

(ALL) 

no. 

of 

PTU 

(N) 

no. of 

PTU 

(NN) 

max. 

poss. 

pairings 

observed 

pairings 

%age 

max. 

pairings 

refined 

pairings 

%age 

max. 

pairings 

ALL 390 
  

151700 852 0.6% 169 <1% 

N-NN  124 266   32984 344 1.0% 69 <1% 

 

4.4.2 Consumer overlap graph and invertebrates shared 

Using refined data only, a consumer overlap graph was produced for all 

native/non-native PTU pairs that shared 1 or more invertebrate species (Fig. 4.2).  

The force-directed Fruchterman-Reingold layout algorithm, whereby nodes are 

positioned to enable as few crossing edges (lines) as possible, allows for clearer 

visualisation of potential patterns in invertebrate-sharing by PTUs. 
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Fig. 4.2. Consumer overlap graph for all native/non-native PTU pairs sharing 1 or more 

invertebrate species, produced using the force-directed Fruchterman-Reingold layout algorithm.  

Nodes represent PTUs and lines represent consumer overlap pairings.  

 

12 invertebrate species were shared by native/non-native PTU pairs: 6 native and 

6 non-native.  Of the 6 native species, 2 were aphids: Aphis (Aphis) fabae, 

Brachycaudus (Prunaphis) cardui, (Order: Hemiptera), 1 was a leafhopper: 

Eupteryx melissae (Order: Hemiptera), and 3 were leaf-mining flies: Aulagromyza 

cornigera, Chromatomyia 'atricornis', Scaptomyza flava (Order: Diptera).  Of the 
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6 non-native species, 3 were aphids: Macrosiphum (Macrosiphum) euphorbiae, 

Myzocallis (Myzocallis) boerneri, Myzus (Nectarosiphon) persicae (Order: 

Hemiptera), 2 were scales: Pulvinaria floccifera, Pulvinaria regalis (Order: 

Hemiptera), and 1 was a moth (larval form): Epiphyas postvittana (Order: 

Lepidoptera). 

4.4.3 Mantel test of matrix correlation 

For both observed data and refined data, results of the Mantel test are statistically 

significant; however, the correlation between the two is weak, as indicated by the 

low R coefficient (observed data: Mantel statistic based on Pearson’s correlation 

coefficient R: 0.0473, p = 0.004; refined data: Mantel statistic based on Pearson’s 

correlation coefficient R: 0.05806, p < .001). For each test, 9999 permutations 

were specified.  As a means of illustrating this result, a comparison of mean SE 

phylogenetic relatedness ranking of maximum possible N-NN pairings, observed 

realised N-NN pairings and refined realised N-NN pairings is shown (Fig. 4.3).  N-

NN consumer overlap pairings mean mean phylogenetic relatedness ranking of 

maximum possible N-NN consumer overlap pairings (n=32984) is 6.78 SE 0.01.  

For observed data, mean phylogenetic relatedness ranking of all realised N-NN 

PTU pairings (n=344) is 6.17 SE 0.08.  For refined data, mean phylogenetic 

relatedness ranking of all realised N-NN PTU pairings (n=69) is 4.61 SE 0.21. 
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Fig. 4.3. Comparison of mean SE phylogenetic relatedness ranking of all maximum possible 

N-NN consumer overlap pairings, all observed realised N-NN consumer overlap pairings, and 

all refined realised N-NN consumer overlap pairings. 

 

 

4.5 Discussion 

It was hypothesised that the likelihood of one or more natural enemies being 

shared by a native/non-native pair of plants increases, the more closely related 

the plants are to one another, and as such, it was expected that a statistically 

significant relationship between native and non-native plant pair relatedness and 

the presence/absence of a shared invertebrate would be seen.  While a 

significant Mantel test result was observed, a weak correlative effect was 

indicated.  This suggests that, importantly, while the mean predictive power of 

relatedness is limited, there does exist a significant potential for the presence of 

apparent competition between native and non-native plants, in the form of an 

(invertebrate) enemy-mediated negative indirect effect. 

Little is known regarding the influence of plant phylogenetic relatedness as an 

agent of bias in indirect interactions, and in order to verify the existence of such 

apparent competition here, a within-network experimental approach (e.g. 

Henneman & Memmott 2001; Morris et al. 2004) would be required, such as one 
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in which plant pairs are artificially manipulated to test for correlative effects of 

plant phylogenetic relatedness on host switching/expansion in native/non-native 

invertebrates.  Comparing these results with those of others who have 

investigated phylogenetic relatedness of a plant pair as an indirect effect, in their 

meta-analysis of 750 plant-pollinator networks, Carvalheiro et al. (2014) observed 

that the probability of a pair of plant species sharing a pollinator was lower the 

more distantly related the pair, although they found no effect of plant origin (native 

or non-native), while in a multi-trophic local network, Elias et al. (2013) found a 

positive correlation between plant species relatedness and aphid consumer 

overlap; however, in contrast with these results, in neither study was a distinction 

in the results given according to the native status of each plant within a pair.   

The single-visit method of data collection used here means that there is a 

possibility that invertebrates observed on plants were not actually feeding, 

leading to the question of how much error would there be in retaining all the data.  

After testing both observed data and a carefully refined dataset, the results were 

very similar, suggesting that the level of potential error is low.  For both observed 

and refined data, the Mantel test statistic was significant but correlation coefficient 

R values were low, indicating a weak correlation.  The R value for refined data is 

slightly higher than for observed data, and the corresponding mean PTU 

phylogenetic ranking value is lower for refined data than for observed data.  In 

both cases, PTU phylogenetic ranking values are lower than that pertaining to the 

maximum possible number of pairings.  Further examination of the mean 

phylogenetic ranking values reveals that, although there are between-group 

differences in the means, the ranking values are indicative of relatively low 

taxonomic relatedness, with the mean value for refined data (4.61) representing 

mean relatedness at the Order-Superorder level.  With most recognised host 

shifts/expansions reported as occurring between congeners and confamilials 

(e.g. Dethier 1954; Mitter & Farrell 1991; Janz & Nylin 1998; Winkler & Mitter 

2008), a lower mean phylogenetic ranking value might have been expected, and 

a possible explanation for the results seen here, is that at least some of the 

invertebrates involved here are extreme generalist species, and that this is what 

is driving the result.   
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Using the refined dataset, looking more closely at the mean phylogenetic ranking 

values according to PTU pairs sharing a single invertebrate species, mean and/or 

mode phylogenetic ranking values of the corresponding plant pairs for 6 of the 12 

invertebrate species are 3 or below, representing at least a confamilial 

relationship between the PTU pairs, while for the remaining invertebrate species, 

means and/or modes are above 3, representing a relationship at or above Order 

level.  For most invertebrates recognised as specialists, corresponding PTU pairs 

have mean/mode values 3 or below; however, the exception to this is the aphid 

Myzus persicae, for which the mean value is 4.5 (mode n/a).  The species, for 

which the corresponding PTU pairs have the highest mean/mode values (both 7) 

is the native generalist aphid Aphis fabae, representing two Class-level pairings.  

Furthermore, despite the same ratio of generalist and specialist invertebrates per 

native/non-native grouping, overall, PTU pairs sharing a native invertebrate have 

lower mean/mode values than those sharing a non-native invertebrate.  For one 

non-native invertebrate species only (the specialist aphid Myzocallis boerneri), 

the mean/mode of the corresponding PTU pairs is 3 or below.  This suggests that, 

although here, it is a native species that is associated with the highest 

mean/mode values, this is an exception, and it is non-native invertebrates that 

are exhibiting a more extreme generalist tendency than native species, and in the 

absence of directly comparable findings, it would be interesting to see if this 

pattern is replicated in future studies. 

The Fruchterman-Reingold visualisation of how invertebrates are being shared 

by N-NN PTU pairs, as provided by the consumer overlap figure (Fig. 4.3), is a 

helpful tool in further attempting to make sense of why the R value provided by 

the Mantel test is low, and in suggesting further lines of enquiry  (see Traud et al. 

2009).  Clear clusters/connected groups of PTUs are shown, mostly depicting 

radial groups of non-native PTUs connecting to a comparatively low number of 

native PTUs.  Close examination of the source data reveals that in all but two of 

the clusters/connected groups, it is a single invertebrate species being shared, 

the exceptions being #6 Lonicera periclymenum, which shares 1 invertebrate with 

1 non-native species and a second with 5 non-native species, and #2 Malva 

arborea, which shares 1 invertebrate with 1 non-native species and 1 with 

another.  In all cases, the number of non-native PTUs involved in the sharing of 
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a single invertebrate species is equal to or greater than the number of equivalent 

native PTUs involved, with the ratio of non-native to native being generally greater 

for shared non-native invertebrates than for native invertebrates.  For native 

invertebrates, 4 of the 6 species are each shared by a single N-NN PTU pair, 1 

is shared by 1 N/2 NN PTUs, and 1 is shared by 4 N/10 NN PTUs.  In contrast, 

for non-native invertebrates, 2 of the 6 species are each shared by a single N-NN 

PTU pair, 1 is shared by 1N/2NN PTUs, 1 by 1N/3NN PTUs, 1 by 1N/5NN PTUs 

and 1 by 1N/5NN PTUs.   

If PTU pairs sharing a native invertebrate are more closely phylogenetically 

related than those sharing a non-native invertebrate, extrapolating further from 

these observations, it can be reasoned that if more non-native invertebrates than 

native invertebrates exhibit extreme generalist behaviour, and if more non-native 

than native PTUs are involved in N-NN PTU pairs, that not only will this lead to 

an imbalance in the level of phylogenetic relatedness in the paired PTU data, with  

fewer native PTUs sharing fewer (extreme) generalist species) but that this 

imbalance will impact on mean/mode values also, thus negatively affecting any 

potential correlative effect.  What this suggests is that the predictive power of 

phylogenetic relatedness might be stronger when a native invertebrate rather 

than non-native invertebrate is being shared, and it would be interesting to 

address these potential differences in future studies. 

It is worth re-emphasising that this study is an examination of the potential for 

apparent competition in the form of a negative indirect effect mediated by a 

shared invertebrate, and that while the percentage of realised N-NN pairings here 

is 1% or lower, meaning that the probability of any given random N-NN PTU pair 

being engaged in apparent competition is comparatively low, importantly, 

because the number of maximum possible PTU pairings is itself high, the 

potential likelihood of apparent competition between N-NN PTU pairs occurring 

here is also high.  Furthermore, this study uses data from a single, whole 

community, enabling examination of the potential for invertebrate-sharing 

between co-occurring plants.  A similar study with a wider geographical scale 

would likely reveal native plants that are more closely-related to the non-native 

plants present, and as such, a greater chance of one or more invertebrates being 

shared might thus be provisioned; however, as the point of interest here is the 
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potential for indirect population interactions in an ecological community, rather 

than an examination e.g. of the risk of vectoring invasive invertebrates at a 

national scale (e.g. Brancatelli & Zalba 2018), for which a phylogenetic signal 

would also be expected (e.g. Chown et al. 2015; Roe et al. 2018), this study is 

deemed to be at the appropriate scale.  

Additionally, it is acknowledged that with taxonomic relatedness being used as a 

crude representation of phylogenetic relatedness, it could be argued that a more 

reliable alternative would be the use of genetic divergence as a measure; 

however, as taxonomy is considered a both a reliable proxy and more easily-

accessible, ‘user-friendly’  measure (see Hinchliff et al. 2015), with ranked 

relatedness calculated incorporating any recent changes  (e.g. Stace 2019), there 

is no reason to expect different results, and the use of a less crude method is 

considered unlikely to enhance the result’s R value(s). 

In conclusion, while the weak correlation coefficient(s) in the statistical analyses 

suggest that the mean predictive power of relatedness is limited, the Mantel test 

result(s) indicate that there is a significant potential for the presence of apparent 

competition.  Results from this study provide fuel for further investigations, 

including exploring patterns in resource overlap between native and non-native 

invertebrates, repeating the tests using observational data from comparable 

ecological communities to observe if statistical results and patterns shown here 

are replicated elsewhere, and, importantly, experimental manipulations of within-

network interactions to verify the presence of apparent competition.  Furthermore, 

implications of these findings in their potential to better predict host-

switching/expansion, particularly in non-native invertebrates, is far-reaching, 

contributing to an improved ability to reliably assess a plant’s susceptibility to 

herbivory, or to mitigate an invertebrate’s presence via removal or introduction of 

a plant, based on its relatedness to other plants present.  Of particular note, is 

that, while it is widely acknowledged that a greater overlap in interaction partners 

occurs in more closely related taxa (e.g. Bersier & Kehrli 2008; Rezende et al. 

2009; Cagnolo et al. 2011; Elias et al. 2013; Carvalheiro et al. 2014), the potential 

for indirect interactions between a native and a non-native plant mediated by a 

shared invertebrate enemy, that are biased by plant relatedness seems not to 

have been previously studied.  This means that the findings here provide original 
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insight into how invertebrates and plants interact in an ecological community, and 

how these interactions help to structure the community.   
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Chapter 5: Seeking evidence for indirect ecological effects in a 

gall wasp community   

 

5.1 ABSTRACT 

While the direct effect of a non-native species on a native species has been 

widely studied, indirect effects are less often considered.   Indirect effects can be 

negative or positive.  The presence of apparent competition in a gall wasp 

community is tested, in the form of the negative indirect effect of a non-native 

plant on a native plant, mediated by a non-native gall wasp, and in the form of 

the negative indirect effect of a non-native gall wasp on a native gall-wasp, 

potentially mediated by the modifying presence of one or more shared 

parasitoids.  No evidence is found to support the overall hypothesis of the 

presence of apparent competition; however, potential evidence for the 

unexpected occurrence of apparent mutualism is provided.  How these findings 

contribute to a better understanding of interactions within a gall wasp community, 

and the broader implications is discussed. 

 

5.2 INTRODUCTION  

An ecosystem persists by means of the dynamic effect of a multitude of biotic and 

abiotic interactions.  Interspecific biotic interactions are either direct, e.g. a plant-

pollinator relationship or a predator-prey relationship, or indirect – whereby the 

presence of one species affects the presence of another species but only when 

mediated by a third species.   

While the direct effect of a non-native species on a native species has been 

widely studied, indirect effects are less often considered (reviewed White et al. 

2006).  For example, the presence of a non-native species within an ecological 

community might give rise to ‘apparent competition’ by causing an increase in the 

native species’ natural enemies, or by negatively altering the native species’ 

habitat requirements (e.g. Wootton 1994; Chaneton & Bonsall 2000; 

Dangremond et al. 2010).  In phytophagous invertebrate communities, an 

increase in a species’ susceptibility to parasitoid attack might be caused by the 

arrival of a second host, with the latter increasing overall availability of resources 
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for the parasitoid, which, in turn, leads to an increase in the parasitoid’s numbers, 

subsequently leading to an increase in parasitoid attack of both hosts  (e.g. Holt 

1977, 1984; Settle & Wilson 1990; Wootton 1994; Denno et al. 1995; reviewed 

Bonsall & Hassell 1999; Chaneton & Bonsall 2000; van Veen et al. 2006a, 2006b; 

Kaser & Ode 2016).  While indirect effects such as those mediated by a shared 

enemy, are often reciprocally negative (apparent competition), effects can 

alternatively be positive (apparent mutualism) or neutral (amensalism), or a 

combination thereof (Kaser & Ode 2016 and references therein).  Thus, indirect 

interactions play a fundamental role in ecosystem structure, and, as well as 

leading to the exclusion of the less dominant species, can, alternatively, beget 

coexistence between species (e.g. Sanders & van Veen 2012).   

5.2.1 Gall wasps  

Gall wasps (Hymenoptera: Cynipidae, Tribe Cynipini) are a large group of gall 

causers (c. 1000 species worldwide (Abe et al. 2007)), members of which induce 

gall growth in plants from the Fagaceae family, with most species being 

associated with one or more species of oak (Quercus spp.).  Gall wasps exhibit 

heterogony, in that, for the most part, two distinct generations of each species 

are recognised: sexual (sx.) and agamic/asexual (ag.) (see Pujade-Villar et al. 

2001)).  The galls of each generation are morphologically distinct, and in some 

species (Gen. Andricus Hartig 1840 and Callirhytis Förster 1869 only), heteroecy 

(host alternation) occurs, whereby different Quercus spp. are utilised by the 

sexual and agamic generations respectively (Pujade-Villar et al. 2001; Williams 

2010).  In Britain, galls of both sexual and agamic generations of native gall 

wasps are induced on native oaks Q. robur/petraea only, while for non-native 

species, a non-native oak (Q. cerris or Q. ilex) is utilised by at least one 

generation.  Distributions of gall wasps are tied to those of their associated oak 

host(s), with the arrival of most non-native species inextricably linked to the 

human-mediated range expansion of Q. cerris throughout the past four centuries 

(Schönrogge et al. 1998; Stone et al. 2002, 2007; Nicholls et al. 2010).  As such, 

49 separate gall wasps species are currently recognised as present on oak in 

Britain (Williams 2010; Redfern & Shirley 2011; Forshage et al. 2017; Leach, in 

press), 16 of which are considered non-native (Appendix III).   
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5.2.2 Indirect interactions and apparent competition 

Heteroecy in oak gall wasps provides the ideal model to test for the presence of 

apparent competition in an ecological assemblage.  Firstly, there is a potential for 

an enemy-mediated indirect interaction between Q. cerris and Q. robur/petraea, 

whereby the non-native Q. cerris is the source of non-native gall wasps, which, 

in order to complete their lifecycle, exploit the native Q. robur/petraea also.  The 

greater the presence of Q. cerris, the greater the opportunity for host penetration 

by the non-native gall wasp, thus, the greater the expected density of non-native 

gall wasps present on Q. robur/petraea also.  Secondly, there is a potential for an 

enemy-mediated indirect interaction between non-native and native gall wasps, 

via the modifying presence of shared parasitoids.  Non-native species arrive in a 

novel environment either with or without a natural enemy, and three (non-

exclusive) scenarios exist to explain the mechanism by which a parasitoid is 

either retained or acquired: The Host Pursuit Hypothesis (the non-native gall 

wasp will be pursued by its natural enemies from the same range), the Host Shift 

Hypothesis (parasitoid recruitment is made over time from local parasitoid 

populations), and the Introduction Hypothesis (a natural enemy arrives with the 

gall wasp, potentially via trade in galls) (Nicholls et al. 2010 and references 

therein, Schönrogge et al. 2012).  Knowledge of parasitoid retention/acquisition 

in non-native gall wasps remains fairly limited (e.g. Schönrogge et al. 1996, 

2012).  There exists only two known examples of Host Pursuit: Megastigmus 

stigmatizans (Fabricius, 1798) with Andricus kollari (Nicholls et al. 2010), and 

Pediobius rotundatus (Fonscolombe, 1832) with Plagiotrochus quercusilicis 

(McCormack 2017), and thus it is presumed that in other non-native species 

present, parasitoids are, or have been, recruited via Host Shift (Cornell & Hawkins 

1993; Stone et al. 1995; Schönrogge et al. 1996, 1998, 2000, 2012).  Known 

recruitment time is variable, with examples of a single generation-only lag 

(Schönrogge et al. 2000) contrasting with lags of 20+ years (Collins et al. 1983; 

Hails et al. 1990). In all cases, it is expected that the diversity of a enemies 

pertaining to a non-native species will increase over time (e.g. Cornell & Hawkins 

1993). 

With non-native gall wasps (mostly) arriving without their natural enemies, 

populations can be expected to establish/grow relatively uninhibited (Keane & 
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Crawley 2002; Torchin & Mitchell 2004; Verhoeven et al. 2009; Dostál et al. 

2013).  Thus, in addition, the greater the density of non-native gall wasps present 

on Q. robur/petraea, the greater the  potential for a negative effect on native gall 

wasps to be observed via one or more forms of resource competition, such as a 

reduction in the availability of suitable oviposition sites, or the interaction of 

multiple species triggering the induction of biochemical tree defences, e.g. 

herbivore‐induced plant volatiles (HIPVs) (Paré & Tumlinson 1999; Dicke & 

Baldwin 2010) and/or phenolic compounds (notably tannin, quercetin and 

kaempferol) (Salminen & Karonen 2011; Kant et al. 2015 but see Taper & Case 

1987; Tooker et al. 2008).  It is expected that such effects will be especially 

prominent in native/non-native pairs that share the same host niche, i.e. bud-

gallers, leaf-gallers, acorn-gallers, etc.  If parasitoid recruitment increases over 

time (Collins et al. 1983; Cornell & Hawkins 1993; Schönrogge et al. 2000), then 

it is expected that in more established non-native species, parasitoids will be 

playing a larger role in limiting populations, and that negative effects will therefore 

be greater the more recent the arrival of the non-native gall wasp.   

Not all non-native gall wasps exhibit heteroecy; e.g. both sexual and agamic 

forms of Plagiotrochus spp. use Q. ilex (and potentially other closely-related 

species) for the completion of their lifecycles, while Pseudoneuroterus saliens 

uses Q. cerris only.  While, in these examples, resource competition of oviposition 

sites is not relevant, apparent competition could still be present as negative  

indirect effects mediated by shared parasitoids, again, with negative effects of the 

presence of these non-native gall wasps on native gall wasps being greater the 

greater the non-native presence and the more recent its arrival. 

5.2.3 Study model/hypotheses  

Drawing on the expectations posited above, with gall density as a proxy for gall 

wasp presence, utilising data acquired from repeated surveys of 40 Quercus spp. 

transects in Cornwall, UK, it is hypothesised that: 

i) the density of Q. cerris will have a corresponding positive effect on the density 

of non-native gall wasps on Q. robur/petraea, and that therefore a significant 

relationship between Q. cerris density and each non-native gall-wasp density is 

expected. 
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ii) the density of individual non-native gall wasp species will negatively affect the 

density of individual native gall wasp species on Q. robur/petraea, and that 

therefore a significant relationship between each non-native density and each 

native gall-wasp density is expected. 

 

5.3 METHODS 

5.3.1 Data collection 

From May to September 2018, gall wasp-induced galls on Quercus spp. in 

Cornwall (VC1), UK were systematically counted.  Potentially suitable sites for 

data collection were identified using personal knowledge and via consultation of 

the local biological records database: ERICA 

(http://www.cornishbiodiversitynetwork.org), based on presence of native and 

non-native Quercus spp., ease of access and wide geographical spread of the 

sites.  Sites were selected from four geographically separate areas (Zones): 

Camborne, Helston, Penryn, Penzance (Fig. 5.1).  Selected sites were visited to 

assess suitability, noting factors such as species and number of trees present, 

and ease of access to both trees and their foliage.  

 

 

Fig. 5.1. Location of four geographic ‘zones’ in Cornwall, UK.  Within each zone, 10 transects 

were surveyed for presence of gall wasp-induced galls on Quercus spp.  Surveying took place 

from May to September 2018.   
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Linear transects of 50m were measured, ideally following an established path, 

with minimal requirements per transect considered to be at least 6 individual oak 

trees or a minimum 2000mm total circumference of all trunks measured at 1m 

above ground.  Where necessary, permissions to collect data were sought and 

obtained (Cornwall Wildlife Trust, National Trust/Natural England, Cornwall 

Council).   

Within each area, 10 transects were determined from a minimum of 2 and 

maximum of 5 separate sites, providing a total of 40 transects, as follows:  

Camborne 

Red River Valley Local Nature Reserve (LNR) (3 transects) - a former 

industrialised mining valley, now partially wooded valley with heathland, lakes 

and ponds; a mix of Quercus spp., dominated by native species, including mature 

trees.  Duchy College Rosewarne (2 transects) – a former experimental 

horticultural station set in 65 ha. of horticultural/semi-natural habitat; a mix of 

Quercus spp., with field borders dominated by medium-sized Q. ilex.  Tehidy 

Country Park (5 transects) – a former family estate, now Cornwall Council owned 

country park, consisting of 100 ha. of mature woodland, lakes and rides; a mix of 

Quercus spp., including mature trees. 

Helston 

Degibna Wood (5 transects) – mature woodland bordering Loe Pool on the 

eastern side of the National Trust Penrose Estate, a 620 ha. estate featuring 

farmland, woodland, willow carr, a large freshwater pool, beach and mining 

heritage; a mix of Quercus spp., dominated by mature Q. robur/petraea and Q. 

cerris.  Penrose Estate (5 transects) – the western side of Penrose Estate, 

bordering a SSSI-designated oak woodland; mostly Q. robur/petraea with a mix 

of young and large, mature trees adjoining a wide, public path.  

Penryn 

Devichoys Wood (5 transects) – a Cornwall Wildlife Trust reserve, consisting of 

18 ha. of ancient, semi-natural woodland, dominated by mature Q. petraea, with 

smaller Q. cerris and Q. ilex trees; the site is undergoing restoration by Working 

Woodlands Cornwall CIC, by means of a revival of traditional woodland 
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management techniques, including coppicing, charcoal burning and horse 

logging.  Penryn Campus (5 transects) – the former historic estate of Tremough 

House, now a campus shared by University of Exeter and Falmouth University; 

an important horticultural site, featuring a variety of habitats; a mix of Quercus 

spp. present, including mature Q. robur/petraea and Q. cerris, and Q. ilex 

hedging. 

Penzance 

King’s Road (1 transect) – a residential street with mature Q. ilex mature trees 

and hedging.  Long Rock Industrial Estate (1 transect) – a small industrial estate 

on the edge of Penzance, featuring amenity planting, including a row of 

established Q. ilex.  Mound Wood (Newlyn Carne)/Mount Misery (2 transects) – 

a small, steep-sided mature woodland, with mostly Q. robur/petraea, and a 

nearby small, scrubby copse adjoining a main road, with a mix of Quercus spp. 

present, including large Q. cerris trees.  Paul (3 transects) – a semi-natural area 

on the outskirts of a rural village, with existing woody patches and willow carr, 

supplemented with newer plantings; Quercus spp. present include young Q. 

robur/petraea and more established Q. ilex.  Tesco (3 transects) – amenity 

plantings bordering a supermarket car park and adjoining a small stream; 

stretches of Q. ilex trees and hedging present. 

For each transect, location and start coordinates were noted.  All oak trees 

present within 5m either side of the transect line were recorded by means of 

noting their native or non-native status, and their species (non-native only).  As a 

proxy for both individual tree age and overall tree coverage (density), a 

measurement of each tree’s trunk circumference at 1m above ground was taken. 

Where trees were less than 1m in height, the maximum circumference was used.   

Over a continual period of 18 weeks separated into 3 blocks of 6 weeks, each 

transect was visited a total of 3 times, once per 6-week block.  On each occasion, 

trees were searched manually for galls using visual inspection to locate gall 

presence.  To standardise data collection, only galls within human reach were 

counted, and mechanical means of collection (e.g. tree shaking, use of saws to 

remove higher branches) were not employed.  Anecdotal evidence (J. Bowdery, 

R. Maidstone, pers. comm.) suggests that preference for the tree canopy is 

exhibited by some species, notably Andricus quercusramuli and A. 
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quercusradicis (the latter is usually considered a root galler but has occasionally 

been found in tree canopies, especially in continental Europe), while results of 

previous studies looking at gall distribution – albeit within a tree height range 

range of 0 to c.2m only (Askew 1962, Ejlersen 1978, K. Schönrogge, pers. 

comm.) – suggests that vertical stratification of galls is likely, and it is therefore 

possible that one or more species of gall-wasp present were undetected as a 

consequence of the limitations of the methodology; however, the standardisation 

of data collection means that the data collected is considered consistent between 

transect, and the possible omission of potentially overlooked data is not 

considered detrimental to the study.  Galls were counted for 30 minutes per 

transect or until no more galls were found.  For each transect, the number of 

individual galls per species/generation counted from Quercus petraea/robur, Q. 

cerris and Q. ilex respectively were recorded. 

 

5.3.2 Data analysis 

All statistical analyses and descriptive statistics were performed using R (v 3.6.1) 

(R Core Team 2019).    

For all gall wasps, density per transect was determined by means of gall 

presence, calculated as total galls per mm circumference host tree (at 1m), where 

tree circumference is a proxy for tree density.  For all Quercus spp., proxy 

measures of tree density (total tree circumference at 1m) and tree age (mean tree 

circumference at 1m) were checked for association.  A significant association was 

observed for all (Q. cerris: GLM ANOVA F1,38 = 88.821 p < .001; Q. ilex: GLM 

ANOVA F1,38 = 7.5522 p = 0.009; Q. robur/petraea: GLM ANOVA F1,38 = 17.748 

p < .001), thus tree density only was used to represent tree presence). 

Sequential stepwise selections of Generalised Linear Models (GLMs) were 

performed to produce Minimum Adequate Models (MAMs) addressing the above 

hypotheses, as follows: 

i) Using gall density as the response variable, for each non-native gall wasp, a 

GLM was used to test for the significance of the tree density (total circumference 

at 1m per transect) of the non-native hosts (Q. cerris, Q. ilex) and native hosts 
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(Q. robur/petraea) respectively, with the expectation that Q. cerris only would be 

significant.  

ii) Using gall density as the response variable, for each native gall wasp, a GLM 

was used to test for a significant relationship with the density of non-native gall 

wasps respectively.  In order to test for density dependence of the native host, Q. 

robur/petraea was included in the model.   

For each model, the additive effect of geographic location (zone) was tested also.  

Use of a mixed effects model is not appropriate here due to there being 4 zones 

only, which is fewer than the 5 levels of random variables required to achieve 

robust estimates of variance (Harrison 2015; Harrison et al. 2018).  Significance 

of effects/relationships and model differences were evaluated using ANOVA 

Type II test, using the car package in R (Fox & Weisberg 2019), and further 

assessed using AIC values and percentage deviance provided by the model, the 

latter calculated as: (null deviance – residual variance)/null deviance.   

 

5.4 RESULTS 

5.4.1 Descriptive statistics 

Galls of 16 gall wasp species were observed (8 native, 8 non-native), a single 

generation of 13 species, and both agamic and sexual generations of 3 species 

(Fig. 5.2a-b).  Galls were found on Q. robur/petraea and Q. ilex but not on Q. 

cerris. 
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Fig. 5.2a. Native gall wasp species/forms (l-r): Row 1 Andricus curvator (Hartig 1840) sx., 

Andricus curvator (Hartig 1840) sx. (twig form), Andricus foecundatrix (Hartig 1840) ag.; Row 2 

Andricus seminationis (Giraud 1859) ag., Cynips quercusfolii Linnaeus 1758 ag. (tuberculate 

form) [Neuroterus numismalis also present], Cynips quercusfolii Linnaeus 1758 ag. (smooth 

form); Row 3 Neuroerus albipes (Schenck 1863) ag., Neuroterus anthracinus (Curtis 1838) ag., 

Neuroterus anthracinus (Curtis 1838) (gall flaps) ag.; Row 4 Neuroterus numismalis (Fourcroy 

1785) ag., Neuroterus numismalis (Fourcroy 1785) sx., Neuroterus politus Hartig 1840 sx.; Row 

5 Neuroterus quercusbaccarum (Linnaeus 1758) ag., Neuroterus quercusbaccarum (Linnawus 

1758) sx., Neuroterus quercusbaccarum (Linnaeus 1758) sx. 
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Fig. 5.2b. Non-native gall wasp species/forms (l-r): Row 1 Andricus aries (Giraud 1859) ag., 

Andricus aries (Giraud 1859) ag., Andricus grossulariae Giraud 1859 ag.; Row 2 Andricus 

infectorius (Hartig 1843) ag., Andricus kollari (Hartig 1843) ag., Andricus lignicola (Hartig 1840) 

ag.; Row 3 Andricus quercuscalicis (Burgsdorf 1783) ag., Andricus quercuscalicis (Burgsdorf 

1783) ag., Plagiotrochus quercusilicis (Fabricius 1798) ᴕ; Row 4 Plagiotrochus quercusilicis 

(Fabricius 1798) ♀♂, Plagiotrochus quercusilicis (Fabricius 1798) sx., Pseudoneuroterus saliens 

(Kollar 1857) ag. 

Fig. 5.2. Gall wasp species/forms (ag. = agamic, sx. = sexual) observed by means of gall 

presence on Quercus spp: a) native species/forms, b) non-native species/forms. 

 

Where gall wasps were present in fewer than 10% (i.e. <4) all transects, data was 

disregarded as numbers were considered too low to allow for meaningful 

analysis.  Thus, 5 gall wasps were removed due to low occurrence: Andricus 

grossulariae ag., A. infectorius ag., Neuroterus numismalis sx., N. politus sx. and 

Pseudoneuroterus saliens ag.  Similarly, Plagiotrochus quercusilicis ag. was 

disregarded, as exit holes in twigs/branches, indicating presence only, were 
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observed, rather than any galls.  Remaining gall wasps used for analyses are as 

follows: native: Andricus curvator sx., A. foecundatrix ag., Cynips quercusfolii ag., 

Neuroterus albipes ag., N. anthracinus ag., N. numismalis ag., N. 

quercusbaccarum ag., N. quercusbaccarum sx.; non-native: Andricus aries ag., 

A. kollari ag., A. lignicola ag., A. quercuscalicis ag., P. quercusilicis sx.  Mean 

SE density of each gall per mm host trunk circumference at 1m is shown (Fig. 

5.3), calculated as total galls per mm circumference host tree (at 1m), where tree 

circumference is a proxy for tree density.  No accounting is made for relative size 

of individual gall nor for the number of gall wasp occupants per gall. 

 

 

Fig. 5.3. Mean SE density of native/non-native gall wasps per mm host trunk circumference at 

1m, calculated as total galls per mm circumference host tree, where tree circumference is a proxy 

for tree density.   
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5.3.2 Statistical analyses 

i. Effect of non-native host density on non-native gall density 

No significant results were observed for the effect of Q. cerris density on non-

native gall density on native hosts; however, a negative significant relationship 

between Q. ilex and A. lignicola ag. density was observed (GLM ANOVA χ2 = 

10.23 p = 0.001), with zone significant also (GLM ANOVA χ2= 26.42 p < .001).  

The relationship between Q. ilex density and A. lignicola ag. with the additive 

significant effect of zone is shown in a scatterplot with regression lines (Fig. 5.4).  

A negative significant relationship between Q. robur/petraea and A. kollari ag. 

density was observed (GLM ANOVA χ2 = 6.15 p = 0.013).  No significant results 

were observed in models with the response variables: A. aries ag. or P. 

quercusilicis sx., while in the A. quercuscalicis ag. model, zone only was 

significant (GLM ANOVA χ2 = 7.82 p = 0.05).  Percentage deviance provided by 

each of the significant models is as follows: A. kollari ag. 16%, A. lignicola ag. 

49%, A. quercuscalicis ag. 21%. 

 

 

Fig. 5.4. The significant relationship between Q. ilex density and Andricus lignicola ag. (GLM 

ANOVA χ2 = 10.23 p = 0.001) with the additive significant effect of zone (GLM ANOVA χ2= 26.42 

p < .001).  N.B. the Penryn regression line is obscured by the Penzance regression line. 
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ii. Effect of non-native gall density on native gall density 

The effect of the gall density of each of the five non-native gall wasps: A. aries 

ag., A. kollari ag., A. lignicola ag., A. quercuscalicis ag. and P. quercusilicis sx., 

as well as zone and native Q. robur/petraea tree host density on the gall density 

of each of the eight native gall wasps: A. curvator sx., A. foecundatrix ag., C. 

quercusfolii ag., N. albipes ag., N. anthracinus ag., N. numismalis ag., N. 

quercusbaccarum ag., N. quercusbaccarum sx. was tested.   

Significant relationships between non-native and native gall density were 

observed in models with the response variables: N. albipes ag., N. anthracinus 

ag., N. quercusbaccarum ag. and N. quercusbaccarum sx.  No significant results 

were observed in models with the response variables: A. curvator sx., A. 

foecundatrix ag., C. quercusfolii and N. numismalis ag.  For N. albipes ag., N. 

anthracinus ag., N. quercusbaccarum ag. and N. quercusbaccarum sx., positive 

significant relationship with A. aries ag. was observed.  In the model with N. 

albipes ag. as the response variable, also observed was a significant positive 

relationship with A. quercuscalicis ag. (GLM ANOVA χ2  = 14.20 p < .001), and a 

negative significant relationship with A. kollari ag. (GLM ANOVA χ2  = 16.01 p < 

.001); however, when tested as single variables in independent models, A. 

quercuscalicis ag. was not significant (GLM ANOVA χ2  = 0.04 p = 0.847), and a 

positive relationship rather than negative relationship was observed with A. kollari 

ag. (GLM ANOVA χ2  = 2.48 p = 0.040).  This suggests the presence of 

multicollinearity in the combined model, potentially caused by correlation 

between two or more explanatory variables.  As it is the relationship of the 

predictors to the outcome, rather than the relationship between predictors, that is 

of interest here, results from the separate models are reported.  No significant 

results were observed for the effect of non-native gall wasp species A. lignicola 

ag. or P. quercusilicis sx. on any native gall wasp species.  Neither Q. 

robur/petraea nor Zone was significant in any of the models.  Details of the MAM 

for each model in which significant results were observed are provided (Table 

5.1), and displayed as scatterplots with regression lines (Fig. 5.5).    
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Table 5.1. Details of the best performing (minimum adequate) model for the effect of non-native 

gall density on native gall density for each model in which significant results were observed, with 

Type II ANOVA χ2 and p-values.  Due to the effects of multicollinearity, for Neuroterus albipes ag., 

significant explanatory values (Andricus aries ag. and A. kollari ag.) were tested individually in 

separate models.   

Response variable 
Explanatory 

variable 

GLM 

chi p-value 
(direction 
of effect) 

null 
deviance 

(df) 

resid. 
deviance 

(df) 

% 
deviance 

N. albipes ag. A. aries ag. 119.95 < .001(+) 1.39695 (33) 0.05002 (32) 96 

N. albipes ag. A. kollari ag. 4.57 0.033(+) 1.39695 (33) 1.22240 (32) 12 

N. anthracinus ag. A. aries ag. 708.98 < .001(+) 0.95313 (33) 0.04121 (32) 96 

N. q’baccarum ag. A. aries ag. 119.95 < .001(+) 2.47434 (33) 0.52109 (32) 79 

N. q’baccarum sx. A. aries ag. 19.25 < .001(+) 0.00620 (33) 0.00387 (32) 38 

 

 

 

Fig. 5.5a. The significant relationship between Andricus aries ag. density and Neuroterus 

albipes ag. density (GLM ANOVA χ2  = 119.95 p < .001) 
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Fig. 5.5b. The significant relationship between Andricus aries ag. density and Neuroterus 

anthracinus ag. density (GLM ANOVA χ2  = 708.98 p < .001). 

 

 

Fig. 5.5c. The significant relationship between Andricus aries ag. density and Neuroterus 

quercusbaccarum ag. density (GLM ANOVA χ2  = 119.95 p < .001). 
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Fig. 5.5d. The significant relationship between Andricus aries ag. density and Neuroterus 

quercusbaccarum sx. density (GLM ANOVA χ2  = 19.25 p < .001). 
 

 

 

Fig. 5.5e. The significant relationship between Andricus kollari ag. density and Neuroterus albipes 

ag. density (GLM ANOVA χ2  = 4.57 p = 0.033). 

 

Fig. 5.5. Significant positive relationships between of non-native gall wasp density and native 

gall wasp density. 
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Although data values were deemed to be correct, with no reason to suspect 

errors, due to the presence of an extreme value for A. aries ag. gall density, 

models were rerun with the corresponding datapoint removed from the dataset.  

A. aries ag. remained significant in the N. anthracinus ag. model only, while in 

the N. albipes ag. model, A. quercuscalicis ag. only was significant (Table 5.2, 

Fig. 5.6).  No other significant relationships were observed. 

 

Table 5.2. Details of the best performing (minimum adequate) model for the effect of non-native 

gall density on native gall density for each model in which significant results were observed, 

following removal of the extreme Andricus aries ag. datapoint, with Type II ANOVA χ2 and p-

values.    

Response 
variable 

Explanatory 
variable 

 GLM 

chi p-value 
(direction 
of effect) 

null 
deviance 

(df) 

resid. 
deviance 

(df) 

% 
deviance 

N. albipes ag. A. q’scalicis ag. 1.16 < .001(+) 0.03127 (32) 0.01998 (31) 36 

N. a’racinus ag. A. aries ag. 16.31 < .001(+) 0.06040 (32) 0.03958 (31) 34 

 

 

 

Fig. 5.6a. The significant relationship between Andricus quercuscalicis ag. density and 

Neuroterus albipes ag. density (GLM ANOVA χ2  = 16.31 p < .001). 
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Fig. 5.6b. The significant relationship between Andricus aries ag. density and Neuroterus 

albipes ag. density (GLM ANOVA χ2  = 1.16 p < .001). 

  

Fig. 5.6. Significant positive relationships between non-native gall wasp density and native gall 

wasp density, using data with the extreme A. aries ag. datapoint removed.   

 

5.5 DISCUSSION 

Expected results were a positive relationship between Q. cerris density and non-

native gall density on Q. robur/petraea, and a negative relationship between non-

native gall density and native gall density, consistent with a positive effect of a 

non-native host on a non-native gall-wasp on a native host, and a negative effect 

of a non-native gall-wasp on a native gall-wasp, respectively.  Neither of these 

relationships were observed, with patterns in the effect of non-native gall density 

opposite to the above expectation.  Thus, the results provide no evidence to 

support the overall hypothesis of the presence of apparent competition in the form 

of the negative indirect effect of a non-native plant on a native plant, mediated by 

a non-native gall wasp, or in the form of the negative indirect effect of a non-

native gall-wasp on a native gall-wasp, mediated by the modifying presence of 

one or more shared parasitoids, nor do they provide evidence of resource 

competition for oviposition sites.  

In the A. lignicola ag. model, while no significant relationships with Q. cerris were 

observed, a significant negative relationship with Q. ilex was observed, with zone 
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being significant also.  The effect of zone could indicate an underlying 

microclimate effect or other unmeasured environmental variable influencing gall 

production; however, what is of particular interest here, is the significant 

relationship between Q. ilex and A. lignicola ag. itself.  Potential explanations 

include something as straightforward as reduced A. lignicola host density as a 

direct consequence of greater Q. ilex density; however, if this were having an 

effect, then results would be expected in other non-native gall wasps.  An 

alternative explanation is that an indirect effect of the Q. ilex gall wasp P. 

quercusilicis on A. lignicola, mediated by a shared parasitoid is occurring.  While 

there are numerous examples of parasitoid species documented as associated 

with both of the gall wasp species here (Williams 2010; McCormack 2017, Noyes 

2019), in the absence of parasitoid data, here, the level of parasitoid attack and 

distribution of parasitoids between host species cannot be tested, and robust field 

data combined with an experimental approach would be required to determine 

parasitoid-sharing and/or the presence of indirect effects (Schönrogge & Crawley 

2000; Naniagua et al. 2009) or to test for the effect of other potential contributory 

variables. 

Significant positive relationships between A. aries ag. density and native gall 

density were observed in 4 of the 8 native gall wasps, with an additional weaker 

relationship between A. kollari ag. and native gall density observed in one of the 

models only.  In models re-run after the removal of the corresponding datapoint 

for an extreme value in the A. aries ag. data, a significant positive relationship A. 

aries ag. and native gall density continued to be significant in one model only, 

whereas where the relationship between A. kollari ag. and native gall density was 

previously significant, the relationship between A. quercuscalicis ag. and native 

gall density was now significant, with all effects still positive.    

There are several possible explanations for the presence of positive relationships 

rather than the expected negative relationships.  Firstly, it is important to note that 

results here represent correlational relationship from observed field data rather 

than from experimental data.  Despite standardised data collection, for reasons 

not obvious from the data available, there were clear differences in gall presence 

between transects, with the presence of an extreme value effectively producing 

two-point regressions.  As such, a positive correlation is not always 
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representative of a cause and effect relationship, and, it is unwise to interpret 

these relationships as ecologically significant, as any apparent effect is 

contingent on a single outlier.  That aside, it remains possible that a positive 

correlation is caused by both the non-native and native gall wasp responding 

equally to one or more favourable external variables, such as the presence of 

quality habitat, which could potentially be obscuring any negative interaction also 

occurring; however, this raises further questions, such as why the same result is 

not observed for all native/non-native gall wasp pairings.  Another possible 

explanation is the spatial scale of the study, in that results might be seen to differ 

if the spatial approach were altered, e.g. by examining effects at tree level in one 

direction, or examining effects at a wider landscape level in the other direction 

(Heads & Lawton 1983; Wiens 1989; Levin 1992; Tack et al. 2011), or by 

increasing the sample size.  Similarly, altering the temporal scale of the study to 

better incorporate all lifecycle stages of the interacting species and/or the effects 

of population cycling might produce different results (e.g. Abrams et al. 1998; van 

Veen et al. 2006a).  Of particular relevance here is the potential effect of the 

absence of data pertaining to the early spring generation galls, missed by the 

timing of the study (Stone et al. 2002; Williams 2010).  

A further, more interesting explanation is that the results are representative of a 

real effect, that of apparent mutualism (Holt & Lawton 1994), whereby, rather than 

in apparent competition, where the indirect effect of one species on another via 

a mediating species is negative, here the indirect effect is positive, i.e. of benefit 

to the recipient.  Despite substantial evidence for apparent competition within 

food web structures, apparent mutualism is less frequently reported, especially 

with regard to gall causer-host dynamics.  Indirect effects within food web 

structures are most often studied via host-parasitoid interactions, with a distinct 

difference between the two systems being that the presence of a gall causer does 

not kill its host, the latter a big driver in host-parasitoid interactions (e.g. Hawkins 

1994; Quicke 2015).  Thus, caution should be heeded when making direct 

comparisons between the two systems; however, in the absence of evidence 

pertaining to gall causer-host interactions, information garnered from host-

parasitoid systems can still be useful.  
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In host-parasitoid interactions, for apparent mutualism to be present, a given 

requirement is for the shared enemy (the parasitoid) to be satiated or to switch to 

more abundant prey (the host) (Holt 1977).  In an attempt to translate this 

mechanism to a host-gall wasp study system, this would suggest that, as the gall 

wasps are tied to the same host-plant, in order for the non-native gall wasp to be 

‘satiated’, it would have needed to have attained the optimum level of oviposition 

sites, thus making available at least an equally sufficient level of oviposition sites 

for the native gall wasp.  What this also requires is for the shared gall wasps to 

be utilising the same parts of the host-plant for oviposition.  While oviposition 

behaviour have been widely theorised (e.g. Larsson et al. 1995; van Loon 1996; 

Bonebrake et al. 2015), information pertaining to Cynipids remains limited (Kato 

& Hijii 1993; Atkinson et al. 2002; Panzavolta et al. 2012), and thus, very little is 

known about the existence of optimum oviposition levels in gall wasps.  

Furthermore, looking here at the non-native/native gall wasp pairs for which 

significant results were observed, in all cases, contrasting oviposition sites are 

used: non-native gall wasps A. aries ag. and A. kollari ag. are bud-gallers, and A. 

quercuscalicis ag. an acorn-galler, while native gall wasp N. albipes ag., N. 

anthracinus ag., N. quercusbaccarum ag. and N. quercusbaccarum sx. are all 

leaf-gallers, with the latter being a catkin-galler also.  Thus, a more likely scenario 

would be that the non-native gall wasp is being limited by an unmeasured effect, 

such as reduced availability of oviposition sites, or a disproportionately high level 

of parasitoid attack (Holt & Lawton 1994).  For example, Stone et al. (2002) 

observed that population sizes and galling rates of A. quercuscalicis ag. are 

driven by oak masting (acorn crop levels) cycles, indicating that reduced 

availability of oviposition sites can be limiting, thus potentially conferring a 

competitive advantage to the native gall wasp; however, it is not known if similar 

patterns apply in other gall wasp species (K. Schonrogge, pers. comm.).  For all 

scenarios, a manipulative experimental approach would be required to verify the 

genuine presence of such effects (e.g. Morris et al. 2004; Tack et al. 2011; Frost 

et al. 2016). 

While the findings here are in contrast to the majority of similar/related studies, 

which tend to focus on and provide support for the important role of apparent 

competition in structuring ecological communities (e.g. Memmott et al. 1994; van 

Veen et al. 2008; Müller et al. 1999; Morris et al. 2004), empirical evidence of 



Chapter 5: Seeking evidence for indirect ecological effects in a gall wasp community  

 

115 
 

apparent mutualism is provided by a handful of more recent studies (e.g. Tack et 

al. 2011; Long et al. 2012; Van Maanen et al. 2012), with additional indications of 

its presence coming from observational studies also (e.g. Teder & Tammaru 

2003; Hambäck et al. 2006); however, despite suggestions that its prevalence is 

being overlooked (Tack et al. 2011; Frost et al. 2016), this evidence remains in 

relative short supply. 

Additional study limitations to those already discussed include the unknown effect 

of missing data, notably, as a consequence of out-of-reach galls, or galls that are 

difficult to detect due to their size and/or location.  Ideally, all parts of trees would 

have been surveyed; however, this was impractical here.  Furthermore, as 

referred to above, extending the temporal range of the study to better incorporate 

the spring gall season would hopefully allow for the detection of sexual generation 

non-native galls on Q. cerris, which, in addition to improving the reliability of the 

results by means of a more complete dataset, would enable testing for correlative 

effects of host and gall density, thus helping to verify that Q. cerris density is a 

reliable proxy for gall wasp density levels.   

In conclusion, while the study hypotheses are not supported here, the results 

have provided interesting food for thought, in that they provide potential evidence 

for the occurrence of apparent mutualism rather than apparent competition;  

however, as the results are based on observational data, in order to test for the 

genuine existence of apparent mutualism, it is necessary for all findings and 

predictions to be corroborated by means of a manipulative experimental 

approach.  Overall, this study contributes to a better understanding of how the 

presence of one non-native gall wasp might affect a non-native gall wasp via 

indirect interactions.  What the findings especially indicate is that indirect effects 

mediated by non-native gall wasps have the potential to be positive as well as 

negative, and that a blanket approach based on the stance that the impact of a 

non-native species within an ecological community will either be negative or 

neutral, is ill-advised.  In terms of practical applications, e.g. in biological control, 

landscape planning or site management, these findings could help in enhancing 

the ability to successfully mitigate any predicted negative effect of a potentially 

invasive species, or in contrast, to effectively utilise any positive effect that has 

been indicated. 
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Chapter 6: General Discussion 

 

6.1 Synopsis of the results 

With invasive species widely acknowledged as one of the key drivers of 

biodiversity loss, and among the greatest threats to ecosystem stability (Mack et 

al. 2000; Sala et al. 2000; Duraiappah et al. 2005), and given that the probability 

of ecological invasions will likely increase as consequence of the projected 

impacts of climate change and the current accelerated declines in biodiversity 

(Diez et al. 2012; Bellard et al. 2013; Hulme 2017), having the means to predict 

and ultimately manage how non-native species integrate in native food webs is 

now especially important.  Such knowledge is key to being able to both predict 

and/or mitigate any potential negative impact of their presence.  Non-native 

species arrive via numerous pathways, and for non-native terrestrial 

invertebrates, the ‘ornamental plant contaminant’ pathway is recognised as the 

principal means of introduction (NNSS 2019).  For a non-native phytophagous 

species, a particular non-native ornamental plant could thus be its initial route of 

entry into a novel ecosystem, while the continued presence of the plant and/or 

the presence of other suitable host-plants within an ecological community is 

fundamental to how the invertebrate interacts within that community, and whether 

or not it will become established.   

Here, using observational field data, and utilising a number of statistical methods, 

I sought to examine the role of non-native plants in how non-invertebrates 

integrate in native food webs, both facilitating the establishment and persistence 

of non-native phytophagous invertebrates and as mediators in indirect 

interactions, hypothesising that: 

• in formally-planted gardens, non-native plant richness and/or other 

garden/landscape variables would predict non-native invert presence 

(Chapter 2) 

• in a non-native invertebrate metapopulation, a Nearest Neighbour 

measure would predict patch occupancy, and that this would be 

strengthened by an additional habitat variable (Chapter 3) 
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• in a local community, phylogenetic relatedness of a native/non-native plant 

pair would predict the likelihood that the pair will share a natural enemy, 

thus indicating potential for apparent competition (Chapter 4) 

• in a gall wasp community, there would be evidence of apparent 

competition in the form of the negative indirect effect of a non-native plant 

on a native plant, mediated by a non-native gall wasp, and in  the form of 

the indirect effect of a non-native gall-wasp on a native gall-wasp, 

mediated by the modifying presence of one or more shared parasitoids 

(Chapter 5) 

Overall, hypotheses were at least partially supported, with the key exception 

being Chapter 5, in which the results provided no evidence for the presence of 

apparent competition. 

In Chapter 2, significant results were observed for the garden level effect of plant 

species richness, with, as predicted, a greater non-native PTU richness observed 

to be associated with a greater non-native invertebrate species richness (e.g. 

Moeed & Meads 1985, 1992; Crisp et al. 1998; Unsicker et al. 2006),  This 

demonstrates that a high non-native plant species richness likely corresponds to 

a high non-native invertebrate species richness, and importantly, while the 

probability of any one non-native invertebrate species becoming problematic may 

be considered relatively low (e.g. Roy et al. 2014), a higher richness of non-native 

invertebrate species in a community means that the likelihood of the presence of 

a problem species being among them is greater also.  At species level, a greater 

presence of non-native invertebrates was observed on woody plants than on non-

woody plants, irrespective of the plant’s native status, with invertebrate presence 

on woody plants (and all plants), being greater for generalist than for specialist 

species – despite a greater number of individual specialist species (15) than 

generalist species (8). Additionally, the presence of one or more non-native 

invertebrates on a woody PTU increased as the number of gardens in which the 

host-plant is present increased, and while this effect might be due to more 

frequent importation of the plant, increasing the likelihood of its direct introduction 

(Levine & D’Antonio 2003; Brockerhoff et al. 2006; Jones & Baker 2007; Kenis et 

al. 2007; Smith et al. 2005, 2007; Brasier 2008; Hulme et al. 2008; Roy et al. 

2012, 2014; Bergey et al. 2014; Turbelin et al. 2016; NNSS 2019), it might also 
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be due to an overall greater presence of the host-plant within the survey area 

contributing to a larger and/or more stable metapopulation of the invertebrate, as 

a consequence of more closely-linked habitat patches (Levins 1969; reviewed 

Hanski 1999).  As any similar effect in non-woody plants is negligible, this pattern 

suggests that proximity of woody plants is potentially key to maintaining an 

effective non-native invertebrate metapopulation structure, while non-native 

invertebrates on non-woody plants persist in more isolated patches. 

The findings here link fittingly with the notion that distribution/number of habitat 

patches within an area play a crucial role in enabling the persistence of a species 

within a community (e.g. MacArthur & Wilson 1967; Prugh et al. 2008; reviewed 

Prugh 2009), thus enabling it to potentially increase in size to become 

problematic, and in Chapter 3, metapopulation theory was used to test if the 

ability of a non-native invertebrate to persist within a community can be predicted 

by proximity of habitat patch, especially if that patch is already occupied by the 

focal invertebrate species.  For 3 out of 7 metapopulations, significant Nearest 

Neighbour effects were observed with Nearest Source being better than Nearest 

Habitat at predicting patch occupancy, findings that are consistent with both 

metapopulation theory (Levins 1969) and island biogeography theory (MacArthur 

& Wilson 1967), in that it is reasoned that it is proximity to nearest population that 

determines colonisation rather than the availability of habitat or means of 

dispersal (Moilanen & Nieminen 2002; Winfree et al. 2005; Prugh 2009).  For 

each of the 3 metapopulations, the strength of the effect was improved by the 

addition of a different habitat variable: an interaction effect of distance from sea, 

an additive effect of distance from sea, and habitat type. A particular strength of 

this analysis is that by studying multiple, independent species in the same 

geographical area, between-species similarities and differences in occupancy 

patterns can be observed.  These differences, as well as the lack of significant 

Nearest Neighbour measures in 4 of the 7 metapopulations, serve to reinforce 

the species-specific of the effect of both Nearest Neighbour measures and other 

habitat variables.  

In Chapters 4 and 5, the role of non-native plants in how the presence of indirect 

effects within an ecological community, particularly in apparent competition, could 

be used to make predictions regarding the potential impact of a non-native 

invertebrate was examined.  



Chapter 6: General discussion 

 

120 
 

In Chapter 4, using a comprehensive dataset of garden survey data, ranked 

relatedness of 32,984 possible pairwise native/non-native plant interactions was 

correlated with all observed invertebrate interactions (344), by means of a Mantel 

test, thus testing for the potential for apparent competition, in the form of a 

negative indirect interaction between the native and non-native plant, mediated 

by a shared invertebrate enemy, with the indirect interactions biased by plant 

relatedness.  To examine the effect of possible error caused by including 

observations where host-feeding could not be confirmed, the test was repeated 

with a carefully refined set of invertebrate interactions (69).  It was predicted that 

the more closely related a plant pair, the more likely it would be that they shared 

one or more common invertebrate enemies (e.g. Gilbert & Webb 2007; Dawson 

et al. 2009; Ness et al. 2011).  A significant Mantel rest result was observed for 

both observed and refined data, thus indicating potential for the presence of 

apparent competition; however, a weak correlative effect, as indicated by a low 

Pearson’s R value, suggests that here, the mean predictive power of relatedness 

is limited.  Findings here provide a springboard for further studies, importantly, 

experimental manipulations of within-network interactions to further test for the 

presence of apparent competition. Additionally, while evidence from comparable 

resource overlap studies suggests that phylogenetic relatedness in consumers is 

not significant (e.g. Elias et al. 2013), patterns in level of sharing according to the 

native/non-native status of the invertebrate here seem present, and it would be 

interesting to add to the finds here by further examining resource overlap between 

native and non-native invertebrates.  Furthermore, there appears a lack of similar 

studies examining the potential for interactions between a native and a non-native 

plant mediated by a shared invertebrate enemy, being biased by plant 

relatedness. Thus, importantly, the findings here provide original insight into how 

invertebrates and plants interact in an ecological community, and how these 

interactions help to structure the community.   

While Chapter 4 addressed the potential for the presence of apparent 

competition, Chapter 5 sought evidence of its existence by examining how 

indirect interactions can help to shape an oak gall-wasp community.  It was 

expected that in a community where both native and native gall-wasps are 

present, and in which the non-native gall-wasps exhibit heteroecy, that non-native 

host presence would have a positive effect on non-native gall density on a native 
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host, and also that non-native gall density would have a negative effect on native 

gall density (e.g. Collins et al. 1983; Cornell & Hawkins 1993; Schönrogge & 

Crawley 2000; Schönrogge et al. 2000; Keane & Crawley 2002; Torchin & 

Mitchell 2004; Naniagua et al. 2009; Verhoeven et al. 2009; Dostál et al. 2013).  

Although none of the expected effects were observed, in direct contrast to the 

expected results, findings suggest the possible presence of apparent mutualism 

(Holt & Lawton 1994), rather than apparent competition.  With apparent 

mutualism being either less well-studied or genuinely less common in ecological 

communities (e.g. Tack et al. 2011), the possibility of its presence here is 

especially interesting, and warrants further investigation. 

6.2 Synthesis 

What is clearly shown here is that it is possible to make predictions about a non-

native invertebrate’s presence and how it interacts with other species within an 

ecological community, using measures of non-native plant presence.  Non-native 

plant richness, type and level of presence facilitates the establishment of a non-

native invertebrate, while the distribution of a non-native plant within a community 

can have a predictable effect on a non-native invertebrate’s ability to persist and 

potentially increase in population size to become problematic.  Furthermore, a 

greater taxonomic diversity of plants present within a community could reduce 

the likelihood of host-switching or host-expansion by a non-native invertebrate, 

thus negatively impacting the invertebrate’s ability to establish and persist.  Also 

demonstrated is evidence for the potential predictive ability of indirect effects, and 

that these are not always in the direction expected.  Importantly, while there are 

discernible patterns in how non-native invertebrates respond to non-native plant 

presence, such as non-native plant species richness driving non-native 

invertebrate species richness, or an invertebrate preference for woody plants, it 

is clear that responses to effects can also be species-specific, indicating that in 

some cases, an individual investigative approach might be of benefit.   

There are clear benefits in maintaining a local focus, such as producing reliable 

findings that can make a scientifically-informed contribution to the development 

of local management approaches to invasive species management.  Additionally, 

findings here are potentially globally transferable, notably as predictions in similar 

ecological communities elsewhere, such as those particularly prone to the effects 
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of climate change (Parmesan & Yohe 2003; Hickling et al. 2006; Parmesan 2006; 

Chen et al. 2011; Cook et al. 2013; Kosanic et al. 2018).  Here, the overall local 

focus of this study is an important factor in the interpretation of its findings. In 

particular, the comprehensive sampling intensity of the study means that 

confidence in the results are high.  Furthermore, while the geographical breadth 

of the studies here is small, any potential weaknesses that this might confer are 

balanced by avoiding the presence of potentially problematic confounding effects 

of additional variables, such as flora/fauna differences, climate effects, 

geographic variation, etc.   

6.3 Further research 

In all studies, observational field data was used to test hypotheses, and thus, the 

use of manipulative experimental studies to corroborate the findings is clearly 

important.  For example, studies such as those that test the negative effect on 

invertebrate occupancy levels in a metapopulation via removal of habitat patches, 

or those that aim to demonstrate the limiting effect of the reduction of woody plant 

presence in a community, or how an increase in plant taxonomic diversity limits 

the level of host-switching/expansion by a non-native invertebrate.  Furthermore, 

such experimental approaches would enable more robust disentanglement of the 

indirect interactions indicated by the results.  In particular, verification of the 

presence of apparent mutualism rather than apparent competition in gall wasp 

interactions could pave the way for the discovery of such findings in similar study 

systems. 

While the benefits of locally-focused studies such as this one have been justified, 

it would be interesting to repeat these studies at a wider geographical scale 

and/or to extend the area in which local-scale studies are carried out, as well as 

more closely considering the temporal aspects of such studies.  This would 

enable a direct comparison of results, and to seek explanations for similarities 

and differences indicated, thus serving to establish what might be driving these 

differences, and how that relates to the overall bigger picture. 

6.4 Implications and the bigger picture 

The implications of these findings are far-reaching, from new knowledge that will 

enable the prediction of how non-native plant presence influences non-native 
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invertebrate presence, to further insight into how species interact in ecological 

communities, in particular, how indirect effects help to shape those interactions.  

In addition to informing further research, practical applications of these findings 

are many, including having the ability to mitigate the presence of a potentially 

problematic non-native invertebrate species via planting decisions, such as 

reducing the number of non-native plant species present, particularly the number 

of and area coverage of non-native woody plants, and minimising the introduction 

of non-native plants that are closely-related to native plants present.   Importantly, 

given that species-specific responses to effects are indicated, assessment of the 

individual impact of a species’ presence is always favourable, especially 

considering that the presence of a non-native species is not always negative or 

cause for concern (e.g. Manchester & Bullock 2000; Davis et al. 2011; Salisbury 

et al. 2015a), and, ultimately, the key goal is the persistence of a healthy, 

functioning ecological community.  While the ecological impacts of a non-native 

invertebrate are emphasised here, the employment of any targeted management 

effort should have an economic knock-on effect also, with a perceived reduction 

in costly intervention needs, such as those involved in the control or removal of a 

problematic invertebrate.  

Overall, results of this study provide fresh insight into the role of non-native plants 

in how non-native invertebrates interact in native food webs, addressing 

questions such as: What makes one ecological community more likely to have a 

non-native invertebrate presence than another, and what factors serve to 

influence that presence by increasing species numbers or enabling their 

persistence and population growth?  How does the presence of indirect 

interactions involving a non-native invertebrate species help shape an ecological 

community?  And fundamentally, why is the knowledge important? 

The principal issue here is that globally, invasive species are widely 

acknowledged as one of the key drivers of biodiversity loss, and among the 

greatest threats to ecosystem stability.  Therefore, having the scientific 

knowledge granted by increased understanding of the factors that determine and 

influence how a non-native species interacts within a food web, in order to better 

predict and consequently prevent invasiveness or to mitigate its effects, is crucial.  

Findings here clearly show that non-native invertebrate species are already 

prevalent in ecological communities, and while not all non-native invertebrates 
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are recognised as invasive, all species have the potential to become a problem, 

e.g. if population levels reach a certain size, or if host-switching/expansion to an 

important native plant occurs.  Importantly, as the extent of the impact of every 

non-native invertebrate species cannot be fully known, especially when it comes 

to recent arrivals, a better awareness of factors contributing to an increased level 

of the overall presence of non-native invertebrates is clearly advantageous in 

mitigating the impact of problem species, and in informing relevant decision-

makers.   Furthermore, given that the probability of ecological invasions will likely 

increase as a consequence of climate change and the current accelerated 

declines in biodiversity, the importance of insights gained from studies such as 

this one are vital.  
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Appendix I: Garden survey – detailed combined inventory of PTUs present (Chapters 2 and 4).  

Abbreviations: 

Status: N = native; NN = non-native; Unk = Unknown.   

Plant type: F = fern/horsetail; H(f) = herb (forb); H(g) = herb (graminoid); W = tree/shrub  

 

Species Notes Common Name Genus Family Order Class Status Plant 
type 

Acacia Mill.  Unid. Acacia sp(p). Acacia Fabaceae Fabales Magnoliopsida NN . 

Acanthus mollis L.  Bear's Breech Acanthus Acanthaceae Lamiales Magnoliopsida NN H(f) 

Acca sellowiana (O. Berg) Burret  Feijoa Acca Myrtaceae Myrtales Magnoliopsida NN W 

Acer negundo L.  Ash-leaved Maple Acer Sapindaceae Sapindales Magnoliopsida NN W 

Acer pseudoplatanus L.  Sycamore Acer Sapindaceae Sapindales Magnoliopsida NN W 

Achillea millefolium L.  Yarrow Achillea Asteraceae Asterales Magnoliopsida N H(f) 

Actinidia chinensis var. deliciosa (A.Chev.) 
A.Chev. 

 Chinese Gooseberry Actinidia Actinidiaceae Ericales Magnoliopsida NN W 

Aegopodium podagraria L.  Ground-elder Aegopodium Apiaceae Apiales Magnoliopsida NN H(f) 

Aeonium Webb & Berthel.  Unid. Aeonium sp(p). Aeonium Crassulaceae Saxifragales Magnoliopsida NN W 

Aesculus hippocastanum L.  Horse-chestnut Aesculus Sapindaceae Sapindales Magnoliopsida NN W 

Aethusa cynapium L.  Fool's Parsley Aethusa Apiaceae Apiales Magnoliopsida N H(f) 

Agapanthus praecox Willd.  African Lily Agapanthus Amaryllidaceae Asparagales Liliopsida NN H(f) 

Agave americana L.  Century Plant Agave Asparagaceae Asparagales Liliopsida NN W 

Agrostemma githago L.  Common Corncockle Agrostemma Caryophyllaceae Caryophyllales Magnoliopsida NN H(f) 

Agrostis stolonifera L.  Creeping Bent Agrostis Poaceae Poales Liliopsida N H(g) 

Ailanthus altissima (Mill.) Swingle  Tree-of-Heaven Ailanthus Simaroubaceae Sapindales Magnoliopsida NN W 

Alchemilla mollis (Buser) Rothm.  Lady's-mantle Alchemilla Rosaceae Rosales Magnoliopsida NN H(f) 

Allium moly L.  Yellow Garlic Allium Amaryllidaceae Asparagales Liliopsida NN H(f) 

Allium triquetrum L.  Three-cornered Garlic Allium Amaryllidaceae  Asparagales Liliopsida NN H(f) 

Alnus cordata (Loisel.) Duby  Italian Alder Alnus Betulaceae Fagales Magnoliopsida NN W 

Aloiampelos striatula (Haw.) Klopper & 
Gideon F.Sm, Aloidendron (A.Berger) 
Klopper & Gideon F.Sm., Kumara Medik., 
Aloiampelos Klopper & Gideon F.Sm., Aloe 
L., Aristaloe Boatwr. & J.C.Manning, 
Gonialoe (Baker) Boatwr. & J.C.Manning 

Form. Aloe  Hardy Aloe, unid. aloe(s) Aloe, Aloiampelos, 
Aloidendron, 
Aristaloe, Kumara, 
Gonialoe 

Asphodelaceae Asparagales Liliopsida NN W 

Amicia zygomeris DC.  Yoke-leaved Amicia Amicia Fabaceae Fabales Magnoliopsida NN H(f) 

Anigozanthos Labill.  Kangaroo Paw Anigozanthos Haemodoraceae Commelinales Liliopsida NN H(f) 

Anthriscus sylvestris (L.)  Cow Parsley Anthriscus Apiaceae Apiales Magnoliopsida N H(f) 
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Species Notes Common Name Genus Family Order Class Status Plant 
type 

Anthyllis vulneraria L.  Kidney Vetch Anthyllis Fabaceae Fabales Magnoliopsida N H(f) 

Aquilegia L.  Unid. Aquilegia sp(p). (NN) Aquilegia Ranunculaceae Ranunculales Magnoliopsida NN H(f) 

Aralia elata (Miq.) Seem.  Chinese Angelica-tree Aralia Araliaceae Apiales Magnoliopsida NN W 

Araucaria araucana (Molina) K. Koch  Monkey Puzzle Araucaria Araucariaceae Pinales Pinopsida NN W 

Arctium minus (Hill) Bernh.  Lesser Burdock Arctium Asteraceae Asterales Magnoliopsida N H(f) 

Argyranthemum frutescens (L.) Sch.Bip.  Marguerite Argyranthemum Asteraceae Asterales Magnoliopsida NN W 

Armeria maritima (Mill.) Willd.  Thrift Armeria Plumbaginaceae Caryophyllales Magnoliopsida N H(f) 

Armoracia rusticana P. Gaertn., B. Mey. & 
Scherb. 

 Horseradish Armoracia Brassicaceae Brassicales Magnoliopsida NN H(f) 

Arrhenatherum elatius (L.) P.Beauv. ex 
J.Presl & C.Presl. 

 False Oat-grass Arrhenatherum Poaceae Poales Liliopsida N H(g) 

Arum italicum subsp. neglectum (F.Towns.) 
Prime 

 Italian Lords-and-Ladies Arum Araceae Alismatales Liliopsida N H(f) 

Arum maculatum L.  Lords-and-Ladies Arum Araceae Alismatales Liliopsida N H(f) 

Asplenium adiantum-nigrum L.  Black Spleenwort Asplenium Aspleniaceae Polypodiales Polypodiopsida N F 

Asplenium scolopendrium L.  Hart's-tongue Fern Asplenium Aspleniaceae Polypodiales Polypodiopsida N F 

Asplenium trichomanes L.  Maidenhair Spleenwort Asplenium Aspleniaceae Polypodiales Polypodiopsida N F 

Astelia chathamica (Skottsb.) L.B.Moore  Silver Spear Astelia Asteliaceae Asparagales Liliopsida NN W 

Aucuba japonica Thunb.  Spotted Laurel Aucuba Garryaceae Garryales Magnoliopsida NN W 

Banksia L.f.  Unid. Banksia sp(p). Banksia Proteaceae Proteales Magnoliopsida NN W 

Begonia cucullata var. hookeri (A.DC.) 
L.B.Sm. & B.G.Schub. 

 A begonia Begonia Begoniaceae Cucurbitales Magnoliopsida NN H(f) 

Bellis perennis L.  Common Daisy Bellis Asteraceae Asterales Magnoliopsida N H(f) 

Berberis aquifolium Pursh Syn. Mahonia 
aquifolium 

Oregon Grape Berberis Berberidaceae Ranunculales Magnoliopsida NN W 

Berberis darwinii Hook., Berberis L.  Darwin's Barberry, Unid. 
Berberis sp(p). 

Berberis Berberidaceae Ranunculales Magnoliopsida NN W 

Berberis thunbergii DC.  Japanese Barberry Berberis Berberidaceae Ranunculales Magnoliopsida NN W 

Bergenia crassifolia (L.) Fritsch  Elephant-ears Bergenia Saxifragaceae Saxifragales Magnoliopsida NN H(f) 

Beschorneria yuccoides K.Koch  Yucca-leaved Beschorneria Beschorneria Asparagaceae Asparagales Liliopsida NN H(f) 

Betonica officinalis L. Syn. Stachys 
officinalis 

Betony Betonica Lamiaceae Lamiales Magnoliopsida N H(f) 

Betula L.  Unid. Betula sp(p.) (NN) Betula Betulaceae Fagales Magnoliopsida NN W 

Betula pendula Roth, Betula pubescens 
Ehrh. 

 Silver Birch, Downy Birch Betula Betulaceae Fagales Magnoliopsida N W 

Brachyglottis × jubar P.D.Sell  Shrub Ragwort Brachyglottis Asteraceae Asterales Magnoliopsida NN W 

Brassica napus L. Brassica 
napus subsp. napus  

Oilseed Rape Brassica Brassicaceae Brassicales Magnoliopsida NN H(f) 

Buddleja Houst. ex L.  Unid. Buddleja sp(p). Buddleja Scrophulariae Lamiales Magnoliopsida NN W 

Buddleja davidii Franch.  Butterfly-bush Buddleja Scrophulariae Lamiales Magnoliopsida NN W 

Buddleja globosa Hope  Orange-ball Tree Buddleja Scrophulariae Lamiales Magnoliopsida NN W 

Buxus sempervirens L.  Common Box Buxus Buxaceae Buxales Magnoliopsida N W 
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Species Notes Common Name Genus Family Order Class Status Plant 
type 

Calendula officinalis L.  Pot Marigold Calendula Asteraceae Asterales Magnoliopsida NN H(f) 

Callianthe megapotamica (A.Spreng.) Dorr  Syn. Abutilon 
megapotamicum 

Trailing Abutilon Callianthe Malvaceae Malvales Magnoliopsida NN W 

Calluna vulgaris (L.) Hull  Ling (cultivars) Calluna Ericaceae Ericales Magnoliopsida N W 

Calystegia sepium (L.) R.Br.  Hedge Bindweed Calystegia Convolvulaceae Solanales Magnoliopsida N H(f) 

Camellia japonica L., Camellia L.  Camellia, unid. Camellia sp(p). Camellia Theaceae Ericales Magnoliopsida NN W 

Campanula portenschlagiana Schult., 
Campanula poscharskyana Degen 

 Adria Bellflower, Trailing 
Bellflower 

Campanula Campanulaceae Asterales Magnoliopsida NN H(f) 

Canna indica L.  Canna Canna Cannaceae Zingiberales Liliopsida NN H(f) 

Capsella bursa-pastoris (L.) Medik.  Shepherd's-purse Capsella Brassicaceae Brassicales Magnoliopsida NN H(f) 

Cardamine flexuosa With., Cardamine 
hirsuta L. 

 Wavy Bittercress, Hairy 
Bittercress 

Cardamine Brassicaceae Brassicales Magnoliopsida N H(f) 

Carex L.  Unid. Carex sp. (NN) Carex Cyperaceae Poales Liliopsida NN H(g) 

Carex pendula Huds.  Pendulous Sedge Carex Cyperaceae Poales Liliopsida N H(g) 

Carpobrotus edulis (L.) N.E.Br.  Hottentot-fig Carpobrotus Aizoaceae Caryophyllales Magnoliopsida NN W 

Castanea sativa Mill.  Sweet Chestnut Castanea Fagaceae Fagales Magnoliopsida NN W 

Catalpa × erubescens Carrière  Indian Bean Tree Catalpa Bignoniaceae Lamiales Magnoliopsida NN W 

Cedrus atlantica (Endl.) Manetti ex Carrière  Atlantic Blue Cedar Cedrus Pinaceae Pinales Pinopsida NN W 

Centaurea cyanus L.  Cornflower Centaurea Asteraceae Asterales Magnoliopsida NN H(f) 

Centaurea nigra L.  Common Knapweed Centaurea Asteraceae Asterales Magnoliopsida N H(f) 

Cerastium fontanum Baumg.  Common Mouse-ear Cerastium Caryophyllaceae Caryophyllales Magnoliopsida N H(f) 

Cerastium tomentosum L.  Snow-in-Summer Cerastium Caryophyllaceae Caryophyllales Magnoliopsida NN H(f) 

Ceratostigma Bunge  Unid. Ceratostigma sp. Ceratostigma Plumbaginaceae Caryophyllales Magnoliopsida NN W 

Cestrum parqui (Lam.) L'Hér.  Chilean Jessamine Cestrum Solanaceae Solanales Magnoliopsida NN W 

Chaenomeles japonica (Thunb.) Lindl. ex 
Spach 

 Maule's Quince Chaenomeles Rosaceae Rosales Magnoliopsida NN W 

Chamaecyparis Spach  Unid. Chamaecyparis sp(p). Chamaecyparis Cupressaceae Pinales Pinopsida NN W 

Chamaenerion angustifolium L.  Rosebay Willowherb Chamaenerion Onagraceae Myrtales Magnoliopsida N H(f) 

Chamaerops humilis L.  Mediterranean Dwarf Palm Chamaerops Arecaceae Arecales Liliopsida NN W 

Chasmanthe bicolor (Gasp.) N.E.Br.  Chasmanthe Chasmanthe Iridaceae Asparagales Liliopsida NN H(f) 

Chenopodium album L.  Fat-hen Chenopodium Amaranthaceae Caryophyllales Magnoliopsida N H(f) 

Circaea lutetiana L.  Enchanter's-nightshade Circaea Onagraceae Myrtales Magnoliopsida N H(f) 

Cirsium vulgare (Savi) Ten.  Spear Thistle Cirsium Asteraceae Asterales Magnoliopsida N H(f) 

Cistus L.  Unid. Cistus sp(p). Cistus Cistaceae Malvales Magnoliopsida NN W 

Clematis vitalba L.  Travellers-joy Clematis Ranunculaceae Ranunculales Magnoliopsida N W 

Cordyline australis (G.Forst.) Endl.  Cabbage-palm Cordyline Asparagaceae Asparagales Liliopsida NN W 

Cornus kousa Bürger ex Hance, Cornus 
mas L., Cornus L. 

 Cornelian Cherry, Chinese 
Dogwood, Unid. Cornus sp(p). 
(NN) 

Cornus Cornaceae Cornales Magnoliopsida NN W 

Correa backhouseana Hook.  Tasmanian-fuchsia Correa Rutaceae Sapindales Magnoliopsida NN W 

Cortaderia selloana (Schult. & Schult.f.) 
Asch. & Graebn. 

 Pampas Grass Cortaderia Poaceae Poales Liliopsida NN H(g) 

https://en.wikipedia.org/wiki/Endl.
https://en.wikipedia.org/wiki/%C3%89lie-Abel_Carri%C3%A8re


Appendices 

 

128 
 

Species Notes Common Name Genus Family Order Class Status Plant 
type 

Corylus avellana L., Corylus avellana var. 
avellana (Bean) Rehder. 

 Hazel, Contorted Hazel Corylus Betulaceae Fagales Magnoliopsida N W 

Cotinus coggygria Scop.  European Smoketree Cotinus Anacardiaceae Sapindales Magnoliopsida NN W 

Cotoneaster Medik.  Unid. Cotoneaster sp(p). (NN) Cotoneaster Rosaceae Rosales Magnoliopsida NN W 

Crassula multicava Lem.  Fairy Crassula Crassula Crassulaceae Saxifragales Magnoliopsida NN W 

Crataegus L.  Unid. Crataegus sp. (NN) Crataegus Rosaceae Rosales Magnoliopsida NN W 

Crataegus crus-galli L.  Cockspurthorn Crataegus Rosaceae Rosales Magnoliopsida NN W 

Crataegus monogyna Jacq.  Hawthorn Crataegus Rosaceae Rosales Magnoliopsida N W 

Crepis capillaris (L.) Wallr.  Smooth Hawksbeard Crepis Asteraceae Asterales Magnoliopsida N H(f) 

Crocosmia × crocosmiiflora (Lemoine) 
N.E.Br. 

 Montbretia Crocosmia Iridaceae Asparagales Liliopsida NN H(f) 

Cryptomeria japonica (Thunb. ex L. f.) D. 
Don 

 Japanese Cedar Cryptomeria Cupressaceae Pinales Pinopsida NN W 

Cymbalaria muralis G.Gaertn., B.Mey. & 
Schreb. 

 Ivy-leaved Toadflax Cymbalaria Plantaginaceae Lamiales Magnoliopsida NN H(f) 

Cynara cardunculus L.  Cardoon Cynara Asteraceae Asterales Magnoliopsida NN H(f) 

Cyperus longi-involucratus Lye  Umbrella Sedge Cyperus Cyperaceae Poales Liliopsida NN H(g) 

Cytisus × praecox Bean  Warminster Broom Cytisus Fabaceae Fabales Magnoliopsida NN W 

Dactylis glomerata L.  Cock's-foot Dactylis Poaceae Poales Liliopsida N H(g) 

Dahlia Cav.  Unid. Dahlia sp(p). Dahlia Asteraceae Asterales Magnoliopsida NN H(f) 

Datisca cannabina L.  Cretan Hemp Datisca Datiscaceae Cucurbitales Magnoliopsida NN H(f) 

Davidia involucrata Baill.  Dove-tree Davidia Nyssaceae Cornales Magnoliopsida NN W 

Delairea odorata Lem.  Cape Ivy Delairea Asteraceae Asterales Magnoliopsida NN H(f) 

Dianella caerulea Sims  Blue Flax-lily Dianella Asphodelaceae Asparagales Liliopsida NN H(f) 

Dianthus barbatus L., Dianthus 
caryophyllus L. 

 Sweet William, Carnation Dianthus Caryophyllaceae Caryophyllales Magnoliopsida NN H(f) 

Dicksonia antarctica Labill.  Tree-fern Dicksonia Dicksoniaceae Cyatheales Polypodiopsida NN W 

Digitalis purpurea L.  Foxglove Digitalis Plantaginaceae Lamiales Magnoliopsida N H(f) 

Diplotaxis muralis (L.) DC.  Annual Wall-rocket Diplotaxis Brassicaceae Brassicales Magnoliopsida NN H(f) 

Dimorphotheca ecklonis DC., 
Dimorphotheca jucunda E.Phillips 

Syn. Osteospermum Cape Marguerite, African Daisy Dimorphotheca Asteraceae Asterales Magnoliopsida NN H(f) 

Dipsacus fullonum L.  Wild Teasel Dipsacus Caprifoliaceae Dipsacales Magnoliopsida N H(f) 

Dodonaea viscosa Jacq.   Purple Hop Bush Dodonaea Sapindaceae Sapindales Magnoliopsida NN W 

Dryopteris dilatata (Hoffm.) A. Gray, 
Dryopteris filix-mas (L.) Schott 

 Broad buckler-fern, Male-fern Dryopteris Dryopteridaceae Polypodiales Polypodiopsida N F 

Echinops bannaticus Rochel ex Schrad.  Blue Globe-thistle Echinops Asteraceae Asterales Magnoliopsida NN H(f) 

Echium candicans L.f.  Pride of Madeira Echium Boraginaceae Boraginales Magnoliopsida NN H(f) 

Echium pininana Webb & Berthel.  Giant Viper's-bugloss Echium Boraginaceae Boraginales Magnoliopsida NN H(f) 

Elaeagnus × submacrophylla Servett. Syn. E. x ebbingei Elaeagnus × submacrophylla Elaeagnus Elaeagnaceae Rosales Magnoliopsida NN W 

Elegia L.  Unid. Elegia sp(p). Elegia Restionaceae Poales Liliopsida NN H(g) 

Embothrium coccineum J.R. Forster & G. 
Forster 

 Chilean Firebush Embothrium Proteaceae Proteales Magnoliopsida NN W 
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Species Notes Common Name Genus Family Order Class Status Plant 
type 

Eomecon chionantha Hance  Snow-poppy Eomecon Papaveraceae Ranunculales Magnoliopsida NN H(f) 

Epilobium hirsutum L.  Great Willowherb Epilobium Onagraceae Myrtales Magnoliopsida N H(f) 

Epilobium montanum L., Epilobium 
parviflorum Schreb. 

 Broad-leaved Willowherb, 
Hoary Willowherb 

Epilobium Onagraceae Myrtales Magnoliopsida N H(f) 

Equisetum L.  Unid. Equisetum sp. Equisetum Equisetaceae Equistales Equisetopsida N F 

Erica arborea L.  Tree Heath Erica Ericaceae Ericales Magnoliopsida NN W 

Erigeron L. Form. Conyza Unid. Erigeron sp(p). (NN) Erigeron Asteraceae Asterales Magnoliopsida NN H(f) 

Erigeron glaucus Ker-Gawl.  Beach Aster Erigeron Asteraceae Asterales Magnoliopsida NN H(f) 

Erigeron karvinskianus DC.  Mexican Fleabane Erigeron Asteraceae Asterales Magnoliopsida NN H(f) 

Eriobotrya japonica (Thunb.) Lindl.  Loquat Eriobotrya Rosaceae Rosales Magnoliopsida NN W 

Eriocapitella × hybrida (L.H.Bailey) 
Christenh. & Byng [artificial hybrid], 
Anemone L., Eriocapitella Nakai 

Form. Anemone  Japanese Anemone, unid. 
Anemone sp(p)., unid. 
Eriocapitella sp(p). 

Eriocapitella Ranunculaceae Ranunculales Magnoliopsida NN H(f) 

Erodium cicutarium (L.) L'Hér.  Common Storksbill Erodium Geraniaceae Geraniales Magnoliopsida N H(f) 

Erysimum cheiri (L.) Crantz  Wallflower Erysimum Brassicaceae Brassicales Magnoliopsida NN H(f) 

Escallonia rubra var. macrantha (Hook. & 
Arn.) Reiche 

Syn. Escallonia 
rubra 

Chilean Gum-box Escallonia Escalloniaceae Escalloniales Magnoliopsida NN W 

Eschscholzia californica Cham.    California Poppy Eschscholzia Papaveraceae Ranunculales Magnoliopsida NN H(f) 

Eucalyptus L'Hér.  Unid. Eucalyptus sp(p). Eucalyptus Myrtaceae Myrtales Magnoliopsida NN W 

Eucalyptus cinerea F.Muell. ex Benth.  Grey Eucalyptus Eucalyptus Myrtaceae Myrtales Magnoliopsida NN W 

Euonymus L.  Unid. Euonymus sp(p). (NN) Euonymus Celastraceae Celastrales Magnoliopsida NN W 

Euonymus japonicus Thunb.  Evergreen Spindle Euonymus Celastraceae Celastrales Magnoliopsida NN W 

Euphorbia characias subsp. wulfenii 
(Hoppe ex W.D.J.Koch) Radcl.-Sm. 

 Mediterranean Spurge Euphorbia Euphorbiaceae Malpighiales Magnoliopsida NN H(f) 

Euphorbia mellifera Aiton  Honey Spurge Euphorbia Euphorbiaceae Malpighiales Magnoliopsida NN H(f) 

Euphorbia peplus L.  Petty Spurge Euphorbia Euphorbiaceae Malpighiales Magnoliopsida N H(f) 

Euryops chrysanthemoides (DC.) B.Nord.  African Bush-daisy Euryops Asteraceae Asterales Magnoliopsida NN W 

Fagus sylvatica L.  European Beech Fagus Fagaceae Fagales Magnoliopsida N W 

Fascicularia bicolor (Ruiz & Pav.) Mez    Fascicularia Fascicularia Bromeliaceae Poales Liliopsida NN W 

Fatsia japonica (Thunb.) Decne. & Planch.  Japanese Aralia Fatsia Araliaceae Apiales Magnoliopsida NN W 

Festuca Tourn. ex L.  Unid. Festuca sp. Festuca Poaceae Poales Liliopsida N H(g) 

Ficus carica L.  Fig Ficus Moraceae Rosales Magnoliopsida NN W 

Foeniculum vulgare Mill.  Fennel Foeniculum Apiaceae Apiales Magnoliopsida NN H(f) 

Fragaria vesca L.  Wild Strawberry Fragaria Rosaceae Rosales Magnoliopsida N H(f) 

Francoa appendiculata Cav. Syn. Francoa 
sonchifolia 

Bridalwreath  Francoa Francoaceae Geraniales Magnoliopsida NN H(f) 

Fraxinus excelsior L.  Ash Fraxinus Oleaceae Lamiales Magnoliopsida N W 

Fremontodendron 'California Glory' (F. 
californicum (Torr.) Coult. x F. mexicanum 
(Davidson)) 

 Flannel Bush Fremontodendron Malvaceae Malvales Magnoliopsida NN W 

Fuchsia magellanica Lam.  Fuchsia Fuchsia Onagraceae Myrtales Magnoliopsida NN W 

Fuchsia splendens Zucc.  A fuchsia Fuchsia Onagraceae Myrtales Magnoliopsida NN W 
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Fumaria Tourn. ex L.  Unid. Fumaria sp(p). Fumaria Papaveraceae Ranunculales Magnoliopsida N H(f) 

Galinsoga quadriradiata Ruiz & Pav.    Shaggy Soldier Galinsoga Asteraceae Asterales Magnoliopsida NN H(f) 

Galium aparine L.  Cleavers Galium Rubiaceae Gentianales Magnoliopsida N H(f) 

Gaultheria Kalm ex L.  Unid. Gaultheria sp. Gaultheria Ericaceae Ericales Magnoliopsida NN W 

Gazania rigens (L.) Gaertn.  Treasure Flower Gazania Asteraceae Asterales Magnoliopsida NN H(f) 

Geranium Tourn. ex L.  Unid. Geranium sp(p). (NN) Geranium Geraniaceae Geraniales Magnoliopsida NN H(f) 

Geranium dissectum L., Geranium molle L., 
Geranium robertianum L. 

 Cut-leaved Cranesbill, Dove's-
foot Cranesbill, Herb-robert 

Geranium Geraniaceae Geraniales Magnoliopsida N H(f) 

Geum urbanum L.  Wood Avens Geum Rosaceae Rosales Magnoliopsida N H(f) 

Ginkgo biloba L.  Ginkgo Ginkgo Ginkgoaceae Ginkgoales Ginkgoopsida NN W 

Gladiolus Tourn. ex L.  Unid. Gladiolus sp(p). Gladiolus Iridaceae Asparagales Liliopsida NN H(f) 

Glechoma hederacea L.  Ground Ivy Glechoma Lamiaceae Lamiales Magnoliopsida N H(f) 

Grevillea R.Br. ex Knight  Unid. Grevillea sp(p). Grevillea Proteaceae Proteales Magnoliopsida NN W 

Griselinia littoralis (Raoul) Raoul  Kapuka Griselinia Griseliniaceae Apiales Magnoliopsida NN W 

Gunnera manicata Linden ex André  Giant Rhubarb Gunnera Gunneraceae Gunnerales Magnoliopsida NN H(f) 

Hedera helix L., Hedera hibernica Poit.  Common Ivy, Atlantic Ivy Hedera Araliaceae Apiales Magnoliopsida N W 

Hedychium J.Koenig  Unid. Hedychium sp(p). Hedychium Zingiberaceae Zingiberales Liliopsida NN H(f) 

Helichrysum italicum (Roth) G.Don  Curry Plant Helichrysum Asteraceae Asterales Magnoliopsida NN W 

Helleborus foetidus L.  Stinking Hellebore Helleborus Ranunculaceae Ranunculales Magnoliopsida N H(f) 

Helminthotheca echioides (L) Holub Syn. Picris 
echioides 

Bristly Ox-tongue Helminthotheca Asteraceae Asterales Magnoliopsida NN H(f) 

Hemerocallis fulva (L.) L.  Orange Day-lily Hemerocallis Asphodelaceae Asparagales Liliopsida NN H(f) 

Heracleum sphondylium L.  Hogweed Heracleum Apiaceae Apiales Magnoliopsida N H(f) 

Hippophae rhamnoides L.  Sea Buckthorn Hippophae Elaeagnaceae Rosales Magnoliopsida N W 

Holcus lanatus L.  Yorkshire Fog Holcus Poaceae Poales Liliopsida N H(g) 

Houttuynia cordata Thunb.  Fish Mint Houttuynia Saururaceae Piperales Magnoliopsida NN H(f) 

Hydrangea Gronov. ex L.  Unid. Hydrangea sp(p). Hydrangea Hydrangeaceae Cornales Magnoliopsida NN W 

Hypericum androsaemum L.  Tutsan Hypericum Hypericaceae Malpighiales Magnoliopsida N W 

Hypericum calycinum L.  Rose-of-Sharon Hypericum Hypericaceae Malpighiales Magnoliopsida NN W 

Hypericum calycinum L. 'Hidcote'  Hypericum Hidcote Hypericum Hypericaceae Malpighiales Magnoliopsida NN W 

Hypericum perforatum L.  Perforate St John's-wort Hypericum Hypericaceae Malpighiales Magnoliopsida N H(f) 

Hypochaeris radicata L.  Catsear Hypochaeris Asteraceae Asterales Magnoliopsida N H(f) 

Ilex aquifolium L.  Holly Ilex Aquifoliaceae Aquifoliales Magnoliopsida N W 

Impatiens Riv. ex L.  Unid. Impatiens sp(p).  Impatiens Balsaminaceae Ericales Magnoliopsida NN H(f) 

Iris Tourn. ex L.  Unid. Iris sp(p). (NN) Iris Iridaceae Asparagales Liliopsida NN H(f) 

Iris foetidissima L.  Stinking Iris Iris Iridaceae Asparagales Liliopsida N H(f) 

Jacobaea vulgaris L., Senecio vulgaris L. Form. Senecio  Common Ragwort, Groundsel Jacobaea, Senecio Asteraceae Asterales Magnoliopsida N H(f) 

Jasminum L.  Unid. Jasminum sp(p). Jasminum Oleaceae Lamiales Magnoliopsida NN W 

Juncus effusus L.  Soft-rush Juncus Juncaceae Poales Liliopsida N H(g) 

Juniperus L.  Unid. Juniperus sp(p). (NN) Juniperus Cupressaceae Pinales Pinopsida NN W 

Kniphofia Moench  Unid. Kniphofia sp(p). Kniphofia Asphodelaceae Asparagales Liliopsida NN H(f) 
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Kunzea ambigua (Sm.) Druce  White Kunzea Kunzea Myrtaceae Myrtales Magnoliopsida NN W 

Laburnum anagyroides Medik.  Laburnum Laburnum Fabaceae Fabales Magnoliopsida NN W 

Lamium purpureum L.  Red Deadnettle Lamium Lamiaceae Lamiales Magnoliopsida N H(f) 

Lampranthus roseus (Willd.) Schwantes  Rosy Dewplant Lampranthus Aizoaceae Caryophyllales Magnoliopsida NN H(f) 

Lapsana communis L.  Nipplewort Lapsana Asteraceae Asterales Magnoliopsida N H(f) 

Larix decidua Mill.  European Larch Larix Pinaceae Pinales Pinopsida NN W 

Laurus nobilis L.  Bay Laurus Lauraceae Laurales Magnoliopsida NN W 

Lavandula angustifolia Mill.  Lavender Lavandula Lamiaceae Lamiales Magnoliopsida NN W 

Lechea Kalm ex L. Form. Gaura  Unid. Lechea sp(p).  Lechea Onagraceae Myrtales Magnoliopsida NN H(f) 

Lepidium didymum L.  Lesser Swinecress Lepidium Brassicaceae Brassicales Magnoliopsida NN H(f) 

Leptospermum scoparium J.R.Forst. & 
G.Forst., Leptospermum J.R.Forst. & 
G.Forst. 

 Manuka, unid. Leptospermum 
sp(p). 

Leptospermum Myrtaceae Myrtales Magnoliopsida NN W 

Leucadendron R.Br.  Unid. Leucadendron sp(p). Leucadendron Proteaceae Proteales Magnoliopsida NN W 

Leucanthemum vulgare Lam.  Oxeye Daisy Leucanthemum Asteraceae Asterales Magnoliopsida N H(f) 

Leucothoe axillaris (Lam.) D. Don 'Curly 
Red' 

 A leucothoe Leucothoe Ericaceae Ericales Magnoliopsida NN W 

Leycesteria formosa Wall.  Himalayan Honeysuckle Leycesteria Caprifoliaceae Dipsacales Magnoliopsida NN W 

Libertia Spreng.  Unid. Libertia sp(p). Libertia Iridaceae Asparagales Liliopsida NN H(f) 

Ligustrum ovalifolium Hassk.  Garden Privet Ligustrum Oleaceae Lamiales Magnoliopsida NN W 

Linaria purpurea (L.) Mill.  Purple Toadflax Linaria Plantaginaceae Lamiales Magnoliopsida NN H(f) 

Linaria vulgaris Mill.  Common Toadflax Linaria Plantaginaceae Lamiales Magnoliopsida N H(f) 

Liquidambar styraciflua L.  American Sweetgum Liquidambar Altingiaceae Saxifragales Magnoliopsida NN W 

Liriodendron tulipifera L.  Tulip-tree Liriodendron Magnoliaceae Magnoliales Magnoliopsida NN W 

Lobelia erinus L.  Garden Lobelia Lobelia Campanulaceae Asterales Magnoliopsida NN H(f) 

Lolium perenne L.  Perennial Rye-grass Lolium Poaceae Poales Liliopsida N H(g) 

Lonicera periclymenum L.  Honeysuckle Lonicera Caprifoliaceae Dipsacales Magnoliopsida N W 

Lotus corniculatus L.  Common Bird's-foot Trefoil Lotus Fabaceae Fabales Magnoliopsida N H(f) 

Luma apiculata (DC.) Burret  Chilean Myrtle Luma Myrtaceae Myrtales Magnoliopsida NN W 

Lupinus polyphyllus Lindl.  Garden Lupin Lupinus Fabaceae Fabales Magnoliopsida NN H(f) 

Luzula DC.  Unid. Luzula sp. Luzula Poaceae Poales Liliopsida N H(g) 

Lysimachia arvensis (L.) U.Manns & 
Anderb. 

Syn. Anagallis 
arvensis 

Scarlet Pimpernel Lysimachia Primulaceae Ericales Magnoliopsida N H(f) 

Magnolia grandiflora L., Magnolia Plum. ex 
L. 

 Southern Magnolia, unid. 
Magnolia sp(p). 

Magnolia Magnoliaceae Magnoliales Magnoliopsida NN W 

Malus domestica (Suckow) Borkh. Syn. Malus pumila Apple Malus Rosaceae Rosales Magnoliopsida NN W 

Malus sylvestris (L.) Mill.  Crab Apple Malus Rosaceae Rosales Magnoliopsida N W 

Malva arborea (L.) Webb & Berth. Syn. Lavatera 
arborea 

Tree Mallow Malva (form. 
Lavatera) 

Malvaceae Malvales Magnoliopsida N H(f) 

Malva sylvestris L.  Common Mallow Malva Malvaceae Malvales Magnoliopsida NN H(f) 

Matricaria discoidea DC.  Pineappleweed Matricaria Asteraceae Asterales Magnoliopsida NN H(f) 

Medicago arabica (L.) Huds.  Spotted Medick Medicago Fabaceae Fabales Magnoliopsida N H(f) 



Appendices 

 

132 
 

Species Notes Common Name Genus Family Order Class Status Plant 
type 

Melaleuca L. Form. Callistemon Unid. Melaleuca sp(p).  Melaleuca Myrtaceae Myrtales Magnoliopsida NN W 

Melissa officinalis L.  Lemon Balm Melissa Lamiaceae Lamiales Magnoliopsida NN H(f) 

Mentha spicata L.  Spearmint Mentha Lamiaceae Lamiales Magnoliopsida NN H(f) 

Miscanthus sinensis Andersson  Zebra Grass Miscanthus Poaceae Poales Liliopsida NN H(g) 

Musa basjoo Siebold & Zucc. ex Iinuma  Hardy Banana Musa Musaceae Zingiberales Magnoliopsida NN H(f) 

Myosotis sylvatica Ehrh. ex Hoffm.  Wood Forget-me-not Myosotis Boraginaceae Boraginales Magnoliopsida N H(f) 

Nassella trichotoma (Nees) Hack. & 
Arechav. 

 Serrated Tussock Grass Nassella Poaceae Poales Liliopsida NN H(g) 

Neopanax laetus (Kirk) Allan  A neopanax Neopanax Araliaceae Apiales Magnoliopsida NN W 

Nothofagus obliqua (Mirb.) Oerst.  Roble Beech Nothofagus Nothofagaceae Fagales Magnoliopsida NN W 

Nymphaea L.  Unid. Nymphaea sp(p). (NN) Nymphaea Nymphaceae Nymphaeales Magnoliopsida NN H(f) 

Oemleria cerasiformis (Torr. & A.Gray ex 
Hook. & Arn.) 

 Oso Berry Oemleria Rosaceae Rosales Magnoliopsida NN W 

Oenothera L.  Unid. Oenothera sp(p). Oenothera Onagraceae Myrtales Magnoliopsida NN H(f) 

Olea europaea L.  Olive Olea Oleaceae Lamiales Magnoliopsida NN W 

Olearia macrodonta Baker, Olearia 
paniculata Druce, Olearia traversiorum 
(F.Muell.) Hook.f., Olearia Moench 

 New Zealand Holly, Akiraho, 
Chatham Island Akeake, unid. 
Olearia sp(p). 

Olearia Asteraceae Asterales Magnoliopsida NN W 

Olearia semidentata Decne. ex Hook.  Daisy Bush Olearia Asteraceae Asterales Magnoliopsida NN W 

Olearia solandri Hook.f.  Coastal Daisy-bush Olearia Asteraceae Asterales Magnoliopsida NN W 

Ophiopogon planiscapus Nakai  Black Mondo Grass Ophiopogon Asparagaceae Asparagales Liliopsida NN H(f) 

Oxalis acetosella L.  Wood-sorrel Oxalis Oxalidaceae Oxalidales Magnoliopsida N H(f) 

Oxalis L.  Unid. Oxalis sp(p). (NN) Oxalis Oxalidaceae Oxalidales Magnoliopsida NN H(f) 

Ozothamnus R.Br.  Unid. Ozothamnus sp(p). Ozothamnus Asteraceae Asterales Magnoliopsida NN W 

Paeonia delavayi Franch. Syn. Paeonia lutea Tree Peony Paeonia Paeoniaceae Saxifragales Magnoliopsida NN W 

Paeonia L.  Unid. Paeonia sp(p). Paeonia Paeoniaceae Saxifragales Magnoliopsida NN W 

Papaver rhoeas L.  Common Poppy Papaver Papaveraceae Ranunculales Magnoliopsida N H(f) 

Papaver somniferum L.  Opium Poppy Papaver Papaveraceae Ranunculales Magnoliopsida NN H(f) 

Parietaria judaica L.  Pellitory-of-the-Wall Parietaria Urticaceae Rosales Magnoliopsida N H(f) 

Parthenocissus heptaphylla (Planch.) 
Britton 

 Sevenleaf Creeper  Parthenocissus Vitaceae Vitales Magnoliopsida NN W 

Passiflora caerulea L.  Common Passion-flower Passiflora Passifloraceae Malpighiales Magnoliopsida NN W 

Pelargonium L'Hér. ex Aiton  Pelargonium sp(p). Pelargonium Geraniaceae Geraniales Magnoliopsida NN H(f) 

Penstemon Schmidel  Unid. Penstemon sp(p). Penstemon Plantaginaceae Lamiales Magnoliopsida NN H(f) 

Pentaglottis sempervirens (L.) Tausch ex 
L.H.Bailey 

 Green Alkanet Pentaglottis Boraginaceae Boraginales Magnoliopsida NN H(f) 

Persicaria Mill.  Unid. Persicaria sp. (NN) Persicaria Polygonaceae Caryophyllales Magnoliopsida NN H(f) 

Petasites pyrenaicus (Loefl.) G.López Syn. Petasites 
fragrans 

Winter Heliotrope Petasites Asteraceae Asterales Magnoliopsida NN H(f) 

Phalaris canariensis L.  Canary Grass Phalaris Poaceae Poales Liliopsida NN H(g) 

Philadelphus L.  Unid. Philadelphus sp. Philadelphus Hydrangeaceae Cornales Magnoliopsida NN W 

Philadelphus coronarius L.  Sweet Mock-orange Philadelphus Hydrangeaceae Cornales Magnoliopsida NN W 
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Phlomis fruticosa L.  Jerusalem Sage Phlomis Lamiaceae Lamiales Magnoliopsida NN H(f) 

Phoenix canariensis H.Wildpret.  Canary Island Date Palm Phoenix Arecaceae Arecales Liliopsida NN W 

Phormium tenax J.R.Forst. & G.Forst.  New Zealand Flax Phormium Asphodelaceae Asparagales Liliopsida NN W 

Photinia Lindl.  Unid. Photinia sp. Photinia Rosaceae Rosales Magnoliopsida NN W 

Picea A.Dietr.  Unid. Picea sp. Picea Pinaceae Pinales Pinopsida NN W 

Pinus L.  Unid. Pinus sp(p). (NN) Pinus Pinaceae Pinales Pinopsida NN W 

Pittosporum crassifolium Banks & Sol. ex 
A.Cunn., Pittosporum tenuifolium Gaertn. 

 Karo, Kōhūhū Pittosporum Pittosporaceae Apiales Magnoliopsida NN W 

Pittosporum tobira (Thunb.) W.T.Aiton  Japanese Pittosporum Pittosporum Pittosporaceae Apiales Magnoliopsida NN W 

Plantago coronopus L., Plantago 
lanceolata L., Plantago major L. 

 Buck's-horn Plantain, Ribwort 
Plantain, Greater Plantain 

Plantago Plantaginaceae Lamiales Magnoliopsida N H(f) 

Platanus L.  Platanus sp. Platanus Platanaceae Proteales Magnoliopsida NN W 

Poa annua L.  Annual Meadow-grass Poa Poaceae Poales Liliopsida N H(g) 

Podocarpus L'Hér. ex Pers.  Unid. Podocarpus sp(p). Podocarpus Podocarpaceae Pinales Pinopsida NN W 

Podocarpus salignus D. Don  Willow-leaf Podocarp Podocarpus Podocarpaceae Pinales Pinopsida NN W 

Polygonum aviculare L.  Common Knotgrass Polygonum Polygonaceae Caryophyllales Magnoliopsida N H(f) 

Polypodium interjectum Shivas, 
Polypodium vulgare L. 

 Intermediate Polypody, 
Common Polypody 

Polypodium Polypodiaceae Polypodiales Polypodiopsida N F 

Populus L.  Unid. Populus sp. Populus Salicaceae Malpighiales Magnoliopsida N W 

Potentilla reptans L., Potentilla sterilis (L.) 
Garcke 

 Creeping Cinquefoil, Barren 
Strawberry 

Potentilla Rosaceae Rosales Magnoliopsida N H(f) 

Primula vulgaris Huds.  Primrose Primula Primulaceae Ericales Magnoliopsida N H(f) 

Prostanthera Labill.  Unid. Prostanthera sp. Prostanthera Lamiaceae Lamiales Magnoliopsida NN W 

Prunella vulgaris L.  Self-heal Prunella Lamiaceae Lamiales Magnoliopsida N H(f) 

Prunus L.  Unid. Prunus sp(p). (NN) Prunus Rosaceae Rosales Magnoliopsida NN W 

Prunus laurocerasus L.  Cherry Laurel Prunus Rosaceae Rosales Magnoliopsida NN W 

Prunus persica (L.) Batsch  Peach Prunus Rosaceae Rosales Magnoliopsida NN W 

Prunus spinosa L.  Blackthorn Prunus Rosaceae Rosales Magnoliopsida N W 

Pseudopanax K.Koch  Unid. Pseudopanax sp(p). Pseudopanax Araliaceae Apiales Magnoliopsida NN W 

Pseudosasa japonica (Siebold & Zucc. ex 
Steud.) Makino ex Nakai 

 Arrow bamboo Pseudosasa Poaceae Poales Liliopsida NN W 

Pteridium aquilinum (L.) Kuhn  Bracken Pteridium Dennstaedtiaceae Polypodiales Polypodiopsida N F 

Pulicaria dysenterica (L.) Bernh.  Common Fleabane Pulicaria Asteraceae Asterales Magnoliopsida N H(f) 

Puya alpestris (Poepp.) Gay  A puya Puya Bromeliaceae Poales Liliopsida NN H(f) 

Quercus cerris L.  Turkey Oak Quercus Fagaceae Fagales Magnoliopsida NN W 

Quercus ilex L.  Holm Oak Quercus Fagaceae Fagales Magnoliopsida NN W 

Quercus pubescens Willd.  Downy Oak Quercus Fagaceae Fagales Magnoliopsida NN W 

Quercus robur L.  Pedunculate Oak Quercus Fagaceae Fagales Magnoliopsida N W 

Ranunculus repens L.  Creeping Buttercup Ranunculus Ranunculaceae Ranunculales Magnoliopsida N H(f) 

Raphanus raphanistrum subsp. maritimus 
(Sm.) Thell. 

 Sea Radish Raphanus Brassicaceae Brassicales Magnoliopsida N H(f) 

Restio Rottb.  Unid. Restio sp(p). Restio Restionaceae Poales Liliopsida NN H(g) 
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Reynoutria japonica Houtt. Syn. Fallopia 
japonica 

Japanese Knotweed Reynoutria Polygonaceae Caryophyllales Magnoliopsida NN W 

Rhododendron L.   Unid. Rhododendron sp(p). Rhododendron Ericaceae Ericales Magnoliopsida NN W 

Rhododendron L. [Azalea]  Unid. Rhododendron sp(p).  
(Azalea) 

Rhododendron Ericaceae Ericales Magnoliopsida NN W 

Rhus typhina L.  Staghorn Sumac Rhus Anacardiaceae Sapindales Magnoliopsida NN W 

Ricinus communis L.  Castor-oil Plant Ricinus Euphorbiaceae Malpighiales Magnoliopsida NN H(f) 

Rodgersia podophylla A. Gray  Rodgers' Bronze-leaf Rodgersia Saxifragaceae Saxifragales Magnoliopsida NN H(f) 

Roldana petasitis (Sims) H. Rob. & Brettell  Velvet Groundsel Roldana Asteraceae Asterales Magnoliopsida NN W 

Rosa L.  Unid. Rosa sp(p). (NN) Rosa Rosaceae Rosales Magnoliopsida NN W 

Rosa rugosa Thunb.  Japanese Rose Rosa Rosaceae Rosales Magnoliopsida NN W 

Rubus fruticosus agg.  Bramble Rubus Rosaceae Rosales Magnoliopsida N W 

Rumex acetosa L., Rumex acetosella L., 
Rumex crispus L., Rumex obtusifolius L., 
Rumex pulcher L., Rumex sanguineus L. 

 Common Sorrel, Sheep's 
Sorrel, Curled Dock, Broad-
leaved Dock, Fiddle Dock, 
Wood Dock 

Rumex Polygonaceae Caryophyllales Magnoliopsida N H(f) 

Ruscus aculeatus L.  Butcher's-broom Ruscus Asparagaceae Asparagales Liliopsida N W 

Sagina apetala Ard., Sagina procumbens L.  Annual Pearlwort, Probumbent 
Pearlwort 

Sagina Caryophyllaceae Caryophyllales Magnoliopsida N H(f) 

Salix L.  Unid. Salix sp(p). (NN) Salix Salicaceae Malpighiales Magnoliopsida NN W 

Salix caprea L., Salix cinerea L.  Goat Willow, Grey Willow Salix Salicaceae Malpighiales Magnoliopsida N W 

Salvia elegans Vahl  Pineapple Sage Salvia Lamiaceae Lamiales Magnoliopsida NN H(f) 

Salvia rosmarinus Spenn. Syn. Rosmarinus 
officinalis 

Rosemary Salvia Lamiaceae Lamiales Magnoliopsida NN W 

Sambucus nigra L.  Elder Sambucus Adoxaceae Dipsacales Magnoliopsida N W 

Saxifraga × urbium D.A.Webb  London Pride Saxifraga Saxifragaceae Saxifragales Magnoliopsida NN H(f) 

Schefflera J.R.Forst. & G.Forst.  Unid. Schefflera sp. Schefflera Araliaceae Apiales Magnoliopsida NN W 

Scrophularia auriculata L.  Water Figwort Scrophularia Scrophulariae Lamiales Magnoliopsida N H(f) 

Scrophularia nodosa L.  Common Figwort Scrophularia Scrophulariae Lamiales Magnoliopsida N H(f) 

Sedum album L.  White Stonecrop Sedum Crassulaceae Saxifragales Magnoliopsida N H(f) 

Sedum anglicum Hudson  English Stonecrop Sedum Crassulaceae Saxifragales Magnoliopsida N H(f) 

Sedum kimnachii V.V.Byalt, Sedum 
spectabile Boreau 

S. kimnachii = S. 
confusum 

Lesser Mexican-stonecrop, 
Butterfly Stonecrop 

Sedum Crassulaceae Saxifragales Magnoliopsida NN H(f) 

Senegalia Raf., Vachellia Wight & Arn. Form. Acacia Senegalia or Vachellia sp.   Senegalia or 
Vachellia 

Fabaceae Fabales Magnoliopsida NN W 

Sidalcea A.Gray ex Benth.  Unid. Sidalcea sp(p). Sidalcea Malvaceae Malvales Magnoliopsida NN H(f) 

Silene coronaria (L.) Clairv.  Rose Campion Silene Caryophyllaceae Caryophyllales Magnoliopsida NN H(f) 

Silene dioica (L.) Clairv.  Red Campion Silene Caryophyllaceae Caryophyllales Magnoliopsida N H(f) 

Sisyrinchium striatum Sm.  Pale yellow-eyed-grass Sisyrinchium Iridaceae Asparagales Liliopsida NN H(f) 

Skimmia Thunb.  Unid. Skimmia sp(p). Skimmia Rutaceae Sapindales Magnoliopsida NN W 

Solanum L.  Unid. Solanum sp(p). (NN) Solanum Solanaceae Solanales Magnoliopsida NN H(f) 

Solanum nigrum L.  Black Nightshade Solanum Solanaceae Solanales Magnoliopsida N H(f) 
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Soleirolia soleirolii (Req.) Dandy  Mind-your-own-business Soleirolia Urticaceae Rosales Magnoliopsida NN H(f) 

Sonchus asper (L.) Hill, Sonchus oleraceus 
L. 

 Prickly Sow-thistle, Smooth 
Sow-thistle 

Sonchus Asteraceae Asterales Magnoliopsida N H(f) 

Sorbus L.  Unid. Sorbus sp. (NN) Sorbus Rosaceae Rosales Magnoliopsida NN W 

Sorbus aucuparia L.  Rowan Sorbus Rosaceae Rosales Magnoliopsida N W 

Stachys palustris L.  Marsh Woundwort Stachys Lamiaceae Lamiales Magnoliopsida N H(f) 

Stachys sylvatica L.  Hedge Woundwort Stachys Lamiaceae Lamiales Magnoliopsida N H(f) 

Symphyotrichum Nees  Unid. Symphyotrichum sp(p). Symphyotrichum Asteraceae Asterales Magnoliopsida NN H(f) 

Symphytum officinale L.  Common Comfrey Symphytum Boraginaceae Boraginales Magnoliopsida N H(f) 

Syringa vulgaris L.  Lilac Syringa Oleaceae Lamiales Magnoliopsida NN W 

Tamarix gallica L.  Tamarisk Tamarix Tamaricaceae Caryophyllales Magnoliopsida NN W 

Tanacetum parthenium (L.) Sch. Bip.  Feverfew Tanacetum Asteraceae Asterales Magnoliopsida NN H(f) 

Taraxacum officinale agg.  Dandelion Taraxacum Asteraceae Asterales Magnoliopsida N H(f) 

Taxus L.  Unid. Taxus sp. (NN) Taxus Taxaceae Pinales Pinopsida NN W 

Taxus baccata L.  Yew Taxus Taxaceae Pinales Pinopsida N W 

Tetrapanax papyrifer (Hook.) K.Koch 'Rex'  Chinese rice-paper plant 'Rex' Tetrapanax Araliaceae Apiales Magnoliopsida NN W 

Teucrium hircanicum L.  Iranian Wood Sage Teucrium Lamiaceae Lamiales Magnoliopsida NN H(f) 

Tibouchina Aubl.  Unid. Tibouchina sp(p). Tibouchina Melastomataceae Myrtales Magnoliopsida NN W 

Tilia cordata Mill., Tilia platyphyllos Scop., 
Tilia × europaea L. 

 Small-leaved lime, Large-
leaved lime, Common lime 

Tilia Malvaceae Malvales Magnoliopsida N W 

Trifolium dubium Sibth., Trifolium pratense 
L., Trifolium repens L. 

 Lesser Trefoil, Red Clover, 
White Clover 

Trifolium Fabaceae Fabales Magnoliopsida N H(f) 

Tripleurospermum maritimum (L.) 
W.D.J.Koch 

 Sea Mayweed Tripleurospermum Asteraceae Asterales Magnoliopsida N H(f) 

Triteleia laxa Benth.  Common Triteleia Triteleia Asparagaceae Asparagales Liliopsida NN H(f) 

Ulex europaeus L.  European Gorse Ulex Fabaceae Fabales Magnoliopsida N W 

Ulex europaeus L. 'Flore-pleno'  Double-blossomed Gorse Ulex Fabaceae Fabales Magnoliopsida N W 

Ulmus minor Mill.  Field Elm Ulmus Ulmaceae Rosales Magnoliopsida N W 

Umbilicus rupestris (Salisb.) Dandy  Wall Pennywort Umbilicus Crassulaceae Saxifragales Magnoliopsida N H(f) 

Urtica dioica L.  Common Nettle Urtica Urticaceae Rosales Magnoliopsida N H(f) 

Valeriana rubra L. Syn. Centranthus 
ruber 

Red Valerian Centranthus Caprifoliaceae Dipsacales Magnoliopsida NN W 

Valerianella carinata Loisel., Valerianella 
locusta (L.) Laterr. 

 Keel-fruited Cornsalad, 
Common Cornsalad 

Valerianella Caprifoliaceae Dipsacales Magnoliopsida N H(f) 

Verbascum thapsus L.  Great Mullein Verbascum Scrophulariae Lamiales Magnoliopsida N H(f) 

Verbena bonariensis L.  Argentinian Vervain Verbena Verbenaceae Lamiales Magnoliopsida NN H(f) 

Veronica L. form. Hebe sp(p). Unid. Veronica sp(p). (NN)  Veronica Plantaginaceae Lamiales Magnoliopsida NN W 

Veronica catarractae G.Forst. Syn. Parahebe 
catarractae 

A parahebe Veronica Plantaginaceae Lamiales Magnoliopsida NN W 

Veronica chamaedrys L., Veronica 
serpyllifolia L. 

 Germander Speedwell, Thyme-
leaved Speedwell 

Veronica Plantaginaceae Lamiales Magnoliopsida N H(f) 

Veronica persica Poir.  Common Field-speedwell Veronica Plantaginaceae Lamiales Magnoliopsida NN H(f) 
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Viburnum L.  Unid. Viburnum sp(p). (NN) Viburnum Adoxaceae Dipsacales Magnoliopsida NN W 

Viburnum rhytidophyllum Hemsl.  Wrinkled Viburnum Viburnum Adoxaceae Dipsacales Magnoliopsida NN W 

Vicia hirsuta (L.) Gray  Hairy Tare Vicia Fabaceae Fabales Magnoliopsida N H(f) 

Vicia sativa L.  Common Vetch Vicia Fabaceae Fabales Magnoliopsida N H(f) 

Vinca major L.  Greater Periwinkle Vinca Apocynaceae Gentianales Magnoliopsida NN H(f) 

Viola riviniana Rchb.  Common Dog-violet Viola Violaceae Malpighiales Magnoliopsida N H(f) 

Watsonia borbonica (Pourr.) Goldblatt  Cape Bugle-lily Watsonia Iridaceae Asparagales Liliopsida NN H(f) 

Watsonia pillansii L.Bolus  Bugle-lily Watsonia Iridaceae Asparagales Liliopsida NN H(f) 

Weigela Thunb.  Unid. Weigela sp. Weigela Caprifoliaceae Dipsacales Magnoliopsida NN W 

Weigela florida (Bunge) A. DC.  A weigela Weigela Caprifoliaceae Dipsacales Magnoliopsida NN W 

Wollemia nobilis W.G.Jones, K.D.Hill & 
J.M.Allen 

 Wollemi Pine Wollemia Araucariaceae Pinales Pinopsida NN W 

Woodwardia radicans (L.) Sm.  European Chain Fern Woodwardia Blechnaceae Polypodiales Polypodiopsida NN F 

Xanthorrhoea johnsonii A.T.Lee  Johnson's Grass Tree Xanthorrhoea Asphodelaceae Asparagales Liliopsida NN W 

Yucca gloriosa L.  Spanish-dagger Yucca Asparagaceae Asparagales Liliopsida NN W 

Zantedeschia aethiopica (L.) Spreng.  Arum Lily Zantedeschia Araceae Alismatales Liliopsida NN H(f) 

Unknown species A  Unknown Unknown Unknown Unknown Unknown Unk Unk 

Unknown species B  Unknown bamboo Unknown Poaceae Poales Liliopsida NN H(g) 

Unknown species C  Unknown cactus Unknown Cactaceae Caryophyllales Magnoliopsida NN W 

Unknown species D  Unknown tree/shrub Unknown Unknown Unknown Magnoliopsida Unk W 

Unknown species E  Unknown tree/shrub Unknown Unknown Unknown Magnoliopsida Unk Unk 

Unknown species F  Unknown succulent Unknown Unknown Unknown Magnoliopsida Unk Unk 

Unknown species G  Unknown conifer Unknown Unknown Unknown Pinopsida Unk W 

Unknown species H  Unknown shrub Unknown Unknown Unknown Magnoliopsida Unk W 

Unknown species I  Unknown palm Unknown Unknown Unknown Liliopsida Unk W 

Unknown species J  Unknown shrub Unknown Unknown Unknown Magnoliopsida Unk W 

Unknown species K  Unknown tree/shrub Unknown Unknown Unknown Magnoliopsida Unk W 

Unknown species L  Unknown tree Unknown Unknown Unknown Magnoliopsida Unk W 

Unknown species M  Unknown tree/shrub Unknown Unknown Unknown Magnoliopsida Unk W 

Unknown species N  Unknown tree/shrub Unknown Unknown Unknown Magnoliopsida Unk W 

Unknown species O  Unknown tree Unknown Unknown Unknown Magnoliopsida Unk W 

Unknown species P  Unknown tree/shrub Unknown Unknown Unknown Magnoliopsida Unk W 

Unknown species Q  Unknown tree Unknown Unknown Unknown Magnoliopsida Unk W 

Unknown species R  Unknown tree Unknown Unknown Unknown Magnoliopsida Unk W 

Unknown species S  Unknown tree Unknown Unknown Unknown Magnoliopsida Unk W 

Unknown species T  Unknown shrub Unknown Unknown Unknown Magnoliopsida Unk W 

Unknown species U  Unknown Unknown Unknown Unknown Unknown Unk Unk 

Unknown species V  Unknown tree Unknown Unknown Unknown Magnoliopsida Unk W 
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Appendix II: Garden survey – detailed combined inventory of phytophagous invertebrate species (insect 

phloem/xylem (sap)-feeders, leaf-feeders, gall-causers, leaf-miners and case-makers, and arachnid gall-

causers) present on each PTU (Chapters 2 and 4).   

 

Abbreviations: 

Status: N = native; NN = non-native; Unk = Unknown.   

Feeding method: CB = case-bearer; GC = gall-causer; LF = leaf-feeder; LM = leaf-miner; SF = phloem/xylem (sap)-feeder; PF(GC) = 

phloem/xylem (sap)-feeder/part gall-causer 

Feeding type: M = monophagous; O = oligophagous; NO = narrowly oligophagous; P = polyphagous; BP = broadly polyphagous; NP= 

narrowly polyphagous; Unk = Unknown.   

 

 

Species Notes Common 
name 

Family Order Class Status Feeding 
method 

Feeding 
type 
(GB&I) 

Host plants (GB&I) 

Aceria ilicis (Canestrini, 
1890) 

 A gall-
causing 
mite 

Eriophyidae Trombidiformes Arachnida N GC M Gen. Quercus 

Acrocercops 
brongniardella 
(Fabricius, 1798) 

 Brown Oak 
Slender 

Gracillariidae Lepidoptera Insecta N LM M Gen. Quercus 

Aculops fuchsiae Keifer  Fuchsia 
Gall Mite 

Eriophyidae Trombidiformes Arachnida NN GC M Gen. Fuchsia 

Acyrthosiphon 
(Acyrthosiphon) malvae 
(Mosley, 1841) 

 Geranium 
Aphid, 
Pelargoniu
m Aphid 

Aphididae Hemiptera Insecta N SF O Fam. Geraniaceae 

Agromyza abiens 
Zetterstedt, 1848 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM O Fam. Boraginaceae 

Agromyza demeijerei 
Hendel, 1920 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM M Laburnum anagyroides 
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Species Notes Common 
name 

Family Order Class Status Feeding 
method 

Feeding 
type 
(GB&I) 

Host plants (GB&I) 

Agromyza nana 
Meigen, 1830 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM O Fam. Fabaceae 

Amauromyza 
flavifrons (Meigen, 
1830) 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM NP Fam. Caryophyllaceae, 
Chenopodiaceae 

Amauromyza 
labiatarum (Hendel, 
1920) 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM NP Fam. Lamiaceae, Verbenaceae 

Amauromyza 
morionella (Zetterstedt, 
1848) 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM O Fam. Lamiaceae 

Aphis (Aphis) fabae 
Scopoli, 1763 

 Black Bean 
Aphid 

Aphididae Hemiptera Insecta N SF BP 
 

Aphis (Aphis) farinosa 
J.F. Gmelin, 1790 

 Small 
Willow 
Aphid 

Aphididae Hemiptera Insecta N SF M Gen. Salix 

Aphis (Aphis) gossypii 
Glover, 1877 

 Melon 
Aphid, 
Cotton 
Aphid 

Aphididae Hemiptera Insecta NN SF BP 
 

Aphis (Aphis) ilicis 
Kaltenbach, 1843 

 Holly Aphid Aphididae Hemiptera Insecta N SF M Ilex aquifolium 

Aphis (Aphis) ruborum 
(Börner, 1932) 

 Bramble 
Aphid 

Aphididae Hemiptera Insecta N SF M Gen. Rubus 

Aphis (Bursaphis) 
epilobii Kaltenbach, 
1843 

 Willowherb 
Aphid 

Aphididae Hemiptera Insecta N SF M Gen. Epilobium 

Aphis sp. 1  An aphid Aphididae Hemiptera Insecta Unk SF Unk 
 

Aphis sp. 2  An aphid Aphididae Hemiptera Insecta Unk SF Unk 
 

Aspidiotus nerii 
Bouché, 1833 

 Oleander 
Scale 

Diaspididae Hemiptera Insecta NN SF BP 
 

Aulacorthum 
(Aulacorthum) solani 
Kaltenbach, 1843 

 Glasshouse
-potato 
Aphid, 
Foxglove 
Aphid 

Aphididae Hemiptera Insecta N SF BP 
 

Aulagromyza cornigera 
(Griffiths, 1973) 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM O Fam. Caprifoliaceae 

Aulagromyza 
hendeliana (Hering, 
1926) 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM O Fam. Caprifoliaceae 
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Species Notes Common 
name 

Family Order Class Status Feeding 
method 

Feeding 
type 
(GB&I) 

Host plants (GB&I) 

Balanococcus 
diminutus (Leonardi, 
1918) 

 Phormium 
Mealybug 

Pseudococcidae Hemiptera Insecta NN SF M Phormium tenax 

Brachycaudus 
(Acaudus) klugkisti 
(Börner, 1942) 

 A campion 
aphid 

Aphididae Hemiptera Insecta N SF M Gen. Silene 

Brachycaudus 
(Prunaphis) cardui 
(Linnaeus, 1758) 

 Plum-thistle 
Aphid 

Aphididae Hemiptera Insecta N SF O Fam. Asteraceae 

Cacopsylla fatsiae 
(Jensen, 1957)/Psylla 
tetrapanaxae Yang, 
1984 

 A psyllid Psyllidae Hemiptera Insecta NN SF O Fam. Araliaceae 

Cacopsylla fulguralis 
(Kuwayama, 1908) 

 Elaegnus 
Sucker 

Psyllidae Hemiptera  Insecta  NN SF M Gen. Elaeagnus 

Cacopsylla peregrina 
(Förster, 1848) 

 A psyllid Psyllidae Hemiptera Insecta N SF(GC) M Gen. Crataegus 

Calaphis flava 
Mordvilko, 1928 

 Yellow 
Dark-veined 
Birch Aphid 

Aphididae Hemiptera Insecta N SF M Gen. Betula 

Cameraria ohridella 
Deschka & Dimic, 1986 

 Horse 
Chestnut 
Leaf-miner 

Gracillariidae Lepidoptera Insecta NN LM NP Fam. Sapindaceae (Gen. Acer, 
Aesculus) 

Capitophorus elaeagni 
(del Guercio, 1894) 

 Common 
Oleaster 
Aphid 

Aphididae Hemiptera Insecta N SF O 
(prim.host)
, O (sec. 
host) 

Fam. Elaeagnaceae (primary 
host), Fam. Asteraceae 
(secondary host) 

Cavariella (Cavariella) 
aegopodii (Scopoli, 
1763) 

 Willow-
carrot Aphid 

Aphididae Hemiptera Insecta N SF M (prim. 
host), O 
(sec. host) 

Gen. Salix (primary host), Fam. 
Apiaceae (secondary host) 

Cecidophyes rouhollahi 
Craemer, 1999 

 A gall-
causing 
mite 

Eriophyidae Trombidiformes Arachnida N GC M Gen. Galium 

Chirosia histricina 
(Rondani, 1866) 

 A gall-
causing fly 

Anthomyiidae Diptera Insecta N LM NP Fam. Dennstaedtiaceae, 
Dryopteridaceae 

Chromatomyia 
'atricornis' (Meigen, 
1838) 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM O Fam. Asteraceae 

Cionus 
scrophulariae (Linnaeu
s, 1758) 

 Figwort 
Weevil 

Curculionidae Coleoptera Insecta N LM NP Fam. Buddlejaceae, 
Scrophulariaceae  
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Species Notes Common 
name 

Family Order Class Status Feeding 
method 

Feeding 
type 
(GB&I) 

Host plants (GB&I) 

Coccus 
hesperidum Linnaeus, 
1758 

 Brown Soft-
scale 

Coccidae Hemiptera Insecta NN SF BP 
 

Coleophora 
flavipennella 
(Duponchel, [1843])  

 Tipped Oak 
Case-
bearer 

Coleophoridae Lepidoptera Insecta N CB M Gen. Quercus 

Cosmopterix 
pulchrimella Chambers, 
1875 

 Beautiful 
Cosmopteri
x Moth 

Cosmopterigida
e 

Lepidoptera Insecta NN LM M Parietaria judaica 

Craesus septentrionalis 
(Linnaeus, 1758) 

 Birch 
Sawfly, 
Hazel 
Sawfly 

Tenthredinidae Hymenoptera Insecta N LF BP 
 

Crypturaphis grassii 
Silvestri, 1935 

 Italian Alder 
Aphid 

Aphididae Hemiptera Insecta NN SF M Alnus cordata 

Cucullia verbasci 
(Linnaeus, 1758)  

 The Mullein Noctuidae Lepidoptera Insecta N LF NP Fam. Buddlejaceae, 
Scrophulariaceae  

Dasineura plicatrix 
(Loew, 1850) 

 Blackberry 
Leaf Midge 

Cecidomyiidae Diptera Insecta N GC M Gen. Rubus 

Dasineura pteridicola 
(Kieffer, 1901) 

 A gall-
causing 
midge 

Cecidomyiidae Diptera Insecta N GC O Fam. Polypodiaceae 

Depressaria radiella 
(Goeze, 1783)  

 Parsnip 
Flat-Body 

Oecophoridae Lepidoptera Insecta N LF O Fam. Apiaceae (Gen. Heracleum, 
Pastinaca) 

Drepanosiphum 
platanoidis (Schrank, 
1801) 

 Common 
Sycamore 
Aphid 

Aphididae Hemiptera Insecta N SF M Gen. Acer 

Dynaspidiotus 
britanicus (Newstead, 
1898) 

 Holly Scale Diaspididae Hemiptera Insecta N SF BP 
 

Edwardsiana sp.  A 
leafhopper 

Cicadellidae Hemiptera Insecta N SF Unk 
 

Enteucha acetosae 
(Stainton, 1854)  

 Sorrel 
Pigmy 

Nepticulidae Lepidoptera Insecta N LM M Gen. Rumex 

Epiphyas postvittana 
(Walker, 1863)  

 Light Brown 
Apple Moth 

Tortricidae Lepidoptera Insecta NN LF BP 
 

Eriophyes similis 
(Nalepa, 1890) 

 A gall-
causing 
mite 

Eriophyidae Trombidiformes Arachnida N GC M Gen. Prunus 

Eucallipterus tiliae 
(Linnaeus, 1758) 

 Common 
Lime Aphid 

Aphididae Hemiptera Insecta N SF M Gen. Tilia 

Euceraphis sp.  An aphid Aphididae Hemiptera Insecta N SF M Gen. Betula 
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Species Notes Common 
name 

Family Order Class Status Feeding 
method 

Feeding 
type 
(GB&I) 

Host plants (GB&I) 

Euleia heraclei 
(Linnaeus, 1758) 

 Celery Fly Tephritidae Diptera Insecta N LM O Fam. Apiaceae 

Eupteryx melissae 
Curtis, 1837 

 Sage 
Leafhopper 

Cicadellidae Hemiptera Insecta N SF NP Fam. Lamiaceae, Malvaceae 

Eupteryx urticae 
(Fabricius, 1803) 

 A 
leafhopper 

Cicadellidae Hemiptera Insecta N SF O Fam. Urticaceae  

Gracillaria syringella 
(Fabricius, 1794) 

 Common 
Slender 

Gracillariidae Lepidoptera Insecta N LM NP Fam. Caprifoliaceae, Oleaceae 

Hayhurstia atriplicis 
(Linnaeus, 1761) 

 Chenopodiu
m Aphid 

Aphididae Hemiptera Insecta N SF O Fam. Chenopodioideae 

Heterarthrus aceris 
(Kaltenbach, 1856) 

 A leaf-
mining 
sawfly 

Tenthredinidae Hymenoptera Insecta N LM M Acer pseudoplatanus 

Lauritrioza alacris (Flor, 
1861) 

Syn. Trioza 
alacris 

Bay Sucker Triozidae Hemiptera Insecta NN SF(GC) NO Fam. Lauraceae (Gen. Laurus, 
Persea) 

Liriomyza congesta 
(Becker, 1903) 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM O Fam. Fabaceae 

Liriomyza strigata 
(Meigen, 1830) 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM BP 
 

Lygocoris (Lygocoris) 
pabulinus (Linnaeus, 
1761)  

 Common 
Green 
Capsid 

Miridae Hemiptera Insecta N SF BP 
 

Macrosiphum 
(Macrosiphum) 
euphorbiae (Thomas, 
1878) 

 Potato 
Aphid 

Aphididae Hemiptera Insecta NN SF BP 
 

Macrosiphum 
(Macrosiphum) 
euphorbiellum 
Theobald, 1925 

Syn. 
Macrosiphum 
(Macrosiphum) 
amygdaloides 

Euphorbia 
Aphid 

Aphididae Hemiptera Insecta N SF M Gen. Euphorbia 

Macrosiphum 
(Macrosiphum) 
hellebori Theobald & 
Walton, 1923 

 Hellebore 
Aphid 

Aphididae Hemiptera Insecta N SF M Gen. Helleborus 

Macrosiphum 
(Macrosiphum) rosae 
(Linnaeus, 1758) 

 Rose Aphid Aphididae Hemiptera Insecta N SF NP Gen. Rosa (primary host), Fam. 
Dipsaceae, Valerianaceae 
(secondary host) 

Metallus lanceolatus 
(C.G. Thomson, 1870) 

 A leaf-
mining 
sawfly 

Tenthredinidae Hymenoptera Insecta N LM M Gen. Geum 

Microlophium carnosum 
(Buckton, 1876) 

 Common 
Nettle Aphid 

Aphididae Hemiptera Insecta N SF M Urtica dioica 
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Species Notes Common 
name 

Family Order Class Status Feeding 
method 

Feeding 
type 
(GB&I) 

Host plants (GB&I) 

Myzocallis (Myzocallis) 
boerneri Stroyan, 1957  

 Turkey Oak 
Aphid 

Aphididae Hemiptera Insecta NN SF M Gen. Quercus 

Myzocallis (Myzocallis) 
coryli (Goeze, 1778) 

 Hazel Aphid Aphididae Hemiptera Insecta N SF M Gen. Corylus 

Myzocallis (Myzocallis) 
schreiberi Hille Ris 
Lambers & Stroyan, 
1959 

 Holm Oak 
Aphid 

Aphididae Hemiptera Insecta NN SF M Gen. Quercus (principally Q. ilex) 

Myzus (Nectarosiphon) 
persicae Sulzer, 1776 

 Peach-
potato 
Aphid 

Aphididae Hemiptera Insecta NN SF M (prim. 
host), P 
(sec. host) 

Gen. Prunus (primary host) 

Orchestes (Salius) fagi 
(Linnaeus, 1758)  

 Beech Leaf-
miner 

Curculionidae Coleoptera Insecta N LM M Gen. Fagus 

Orgyia antiqua 
(Linnaeus, 1758) 

 The 
Vapourer 

Lymantriidae Lepidoptera Insecta N LF BP 
 

Orthochaetes insignis 
(Aubé, 1863) 

 A weevil Curculionidae Coleoptera Insecta N LM P 
 

Pegomya laticornis 
(Fallén, 1825) 

 A leaf-
mining fly 

Anthomyiidae Diptera Insecta N LM M Gen. Arctium 

Pegomya solennis 
(Meigen, 1826) 

 A leaf-
mining fly 

Anthomyiidae Diptera Insecta N LM M Gen. Rumex 

Periphyllus 
testudinaceus (Fernie, 
1852) 

 Common 
Periphyllus 
Aphid 

Aphididae Hemiptera Insecta N SF NO Fam. Sapindaceae (Gen. Acer, 
Aesculus) 

Philaenus spumarius 
(Linnaeus, 1758) 

 Common 
Froghopper 

Aphrophoridae Auchenorrhynch
a 

Insecta N SF BP 
 

Phyllaphis fagi 
(Linnaeus, 1767) 

 Beech 
Woolly 
Aphid 

Aphididae Hemiptera Insecta N SF M Gen. Fagus 

Phyllocolpa leucosticta 
(Hartig, 1837) 

 A sawfly Tenthredinidae Hymenoptera Insecta N LF M Gen. Salix 

Phyllocoptes 
goniothorax (Nalepa, 
1889) 

 A gall-
causing 
mite 

Eriophyidae Trombidiformes Arachnida N GC M Gen. Crataegus 

Phyllonorycter 
maestingella (Müller, 
1764) 

 Beech 
Midget 

Gracillariidae Lepidoptera Insecta N LM M Gen. Fagus 

Phyllonorycter 
messaniella (Zeller, 
1846) 

 Garden 
Midget 

Gracillariidae Lepidoptera Insecta N LM NP Fam. Betulaceae, Fagaceae, 
Rosaceae 
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Species Notes Common 
name 

Family Order Class Status Feeding 
method 

Feeding 
type 
(GB&I) 

Host plants (GB&I) 

Phyllonorycter 
oxyacanthae (Frey, 
1856)  

 Common 
Thorn 
Midget 

Gracillariidae Lepidoptera Insecta N LM O Fam. Rosaceae (Gen. Crataegus, 
Cydonia, Sorbus) 

Phyllonorycter 
spinicolella (Zeller, 
1846)  

 Sloe Midget Gracillariidae Lepidoptera Insecta N LM M Gen. Prunus 

Phytomyza aquilegiae 
Hardy, 1849 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM O Fam. Ranunculaceae (Gen. 
Aquilegia, Thalictrum) 

Phytomyza chaerophylli 
Kaltenbach, 1856 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM O Fam. Apiaceae 

Phytomyza ilicis Curtis, 
1846  

 Holly Leaf-
miner 

Agromyzidae Diptera Insecta N LM M Ilex aquifolium 

Phytomyza minuscula 
Goureau, 1851 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM O Fam. Ranunculaceae (Gen. 
Aquilegia, Thalictrum) 

Phytomyza plantaginis 
Robineau-Desvoidy, 
1851 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM M Gen. Plantago 

Phytomyza ranunculi 
(Schrank, 1803) 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM M Gen. Ranunculus 

Phytomyza spondylii 
Robineau-Desvoidy, 
1851 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM O Fam. Apiaceae (Gen. Astrantia, 
Heracleum, Pastinaca) 

Phytomyza vitalbae 
Kaltenbach, 1872 

 A leaf-
mining fly 

Agromyzidae Diptera Insecta N LM M Gen. Clematis 

Plagiotrochus 
quercusilicis (Fabricius, 
1798) 

 A gall-
causing 
wasp 

Cynipidae Hymenoptera Insecta NN GC M Gen. Quercus (Q. coccifera, ilex) 

Pontania (Pontania) 
bridgmanii (Cameron, 
1883)  

Syn. Euura 
bridgmanii 

A gall-
causing 
sawfly 

Tenthredinidae Hymenoptera Insecta N GC M Gen. Salix 

Powellia vitreoradiata 
Maskell, 1879  

Syn. Trioza 
vitreoradiata 

Pittosporum 
Psyllid 

Triozidae Hemiptera Insecta NN SF(GC) M Gen. Pittosporum 

Psyllopsis fraxinicola 
(Förster, 1848) 

 A psyllid Psyllidae Hemiptera  Insecta  N SF(GC) M Gen. Fraxinus 

Pulvinaria floccifera 
(Westwood, 1870) 

 Cottony 
Camellia 
Scale 

Coccidae Hemiptera  Insecta  NN SF BP 
 

Pulvinaria regalis 
Canard, 1968 

 Horse 
Chestnut 
Scale 

Coccidae Hemiptera  Insecta  NN SF BP 
 

Ribautiana ulmi 
(Linnaeus, 1758) 

 A 
leafhopper 

Cicadellidae Hemiptera Insecta N SF BP 
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Species Notes Common 
name 

Family Order Class Status Feeding 
method 

Feeding 
type 
(GB&I) 

Host plants (GB&I) 

Scaptomyza flava 
(Fallén, 1823) 

 A leaf-
mining fly 

Drosophilidae Diptera Insecta N LM P Principally Fam. Brassicaceae 

Stigmella aurella 
(Fabricius, 1775)  

 Golden 
Pigmy 

Nepticulidae Lepidoptera Insecta N LM O Fam. Rosaceae 

Stigmella hybnerella 
(Hübner, 1796)  

 Greenish 
Thorn 
Pigmy 

Nepticulidae Lepidoptera Insecta N LM M Gen. Crataegus 

Stigmella plagicolella 
(Stainton, 1854) 

 Scrubland 
Pigmy 

Nepticulidae Lepidoptera Insecta N LM M Gen. Prunus 

Takecallis arundicolens 
(Clarke, 1903) 

 Black-tailed 
Bamboo 
Aphid 

Aphididae Hemiptera Insecta NN SF O Fam. Poaceae (Gen. 
Arundinaria, Bambusa, Phyllostac
hys, Phragmites, Pseudoasa, 
Sasa) 

Toxoptera aurantii 
(Boyer de 
Fonscolombe, 1841) 

 Camellia 
Aphid, 
Black Citrus 
Aphid 

Aphididae Hemiptera Insecta NN SF BP 
 

Trioza urticae 
(Linnaeus, 1758) 

 Nettle 
Psyllid 

Triozidae Hemiptera Insecta N SF(GC) M Gen. Urtica 

Uroleucon (Uromelan) 
sonchi (Linnaeus, 
1767) 

 Large Sow-
thistle Aphid 

Aphididae Hemiptera Insecta N SF O Fam. Asteraceae (principally Gen. 
Sonchus) 

unid. Pittosporum scale  
 

Diaspididae Hemiptera Insecta NN SF M Gen. Pittosporum 

unid. aphid 
(Rhododendron) 

  Aphididae Hemiptera Insecta Unk SF Unk  

unid. aphid 
(Pittosporum) 

  Aphididae Hemiptera Insecta Unk SF Unk  

unid. aphid 
(Fatsia/Ficus) 

 
 

Aphididae Hemiptera Insecta Unk SF Unk 
 

unid. flea beetle 
(Fuchsia) 

 
 

Chrysomelidae Coleoptera Insecta Unk LF Unk 
 

unid. mine (Prunus)  
 

Unk Unk Insecta Unk LM Unk 
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Appendix III: Non-native oak Cynipid gall wasps in order of arrival.  

 

Species First known record and location Author Sexual generation host Agamic generation host 

Andricus kollari (Hartig 1843) 1834 Exe Valley, Devon  Smith (1854) Q. cerris Q. robur/petraea 

Andricus quercuscalicis (Burgsdorf 
1783) 

1961 Salcey Wood, East Anglia Claridge (1964) Q. cerris Q. robur/petraea 

Andricus lignicola (Hartig 1840) 
 

1972 Wiggonholt, West Sussex Hutchinson (1974) Q. cerris Q. robur/petraea 

Andricus corruptrix (von Schlechtendal 
1870) 

1972 Wiggonholt, West Sussex Hutchinson (1974) Q. cerris Q. robur/petraea 

Andricus lucidus (Hartig)* 1992 Richmond, London Stone & Sunnucks (1993) Q. cerris Q. robur/petraea 

Andricus aries (Giraud 1859) 1997 Maidenhead, Berkshire Crawley (1999) Q. cerris (induced in captivity) Q. robur/petraea 

Aphelonyx cerricola 1999 Hampstead, London Leach & Shirley (1999)  not known Q. cerris 

Andricus grossulariae Giraud 1859 2000 Windsor, Greater London Walker (2001) Q. cerris Q. robur/petraea 

Plagiotrochus quercusilicis 2004 Eden project, Cornwall Hancy & Hancy (2004) Q. ilex Q. ilex 

Pseudoneuroterus saliens (Kollar 1857) 2006 Hackney, London 
 

Redfern (2006) Q. cerris Q. cerris 

Plagiotrochus australis 2007 Glamorgan, Wales Robbins (2007)  Q. ilex Q. ilex 

Plagiotrochus coriaceus** 2007 Glamorgan, Wales Robbins (2007)  Q. ilex Q. ilex 

Andricus gemmeus (Giraud 1859) 2008 Bowdery (2009) Q. cerris Q. robur/petraea 

Andricus singularis Mayr 1870 2010 Cuxton, Kent Jennings (2014) Q. cerris, ilex, suber not known 

Andricus infectorius 2013 Penzance, Cornwall Leach (2020) Q. cerris Q. robur/petraea 

Andricus ?cryptobius Wachtl 1880*** 2015 Dunwich Heath, East 
Suffolk 

Bowdery (2015) Q. cerris not known 

*   single record 1893 (Loch Lomond) 

**  potentially misidentified 

*** presumed ID 
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