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ABSTRACT 

 

Pathogens of livestock have proven to be a major concern, in terms of human 

health, economic sustainability and food availability. They have been shown to 

be a limiting factor in regard to these three factors and, as such, will become a 

growing problem as the global population continues to expand. Controlling and 

predicting pathogen outbreaks is vital to the sustained growth of populations and 

has become an important topic of study. However, it is a complex process with a 

multitude of varying factors, that cannot be solved through one method. 

A specific family of Microsporidia, the Enterocytozoonidae, has received a lot of 

attention in regard to their effect on human health and aquaculture. 

Enterocytozoonids are largely found in marine environments and mainly infect 

aquatic hosts. Many of the organisms infected by enterocytozoonids are 

economically important to aquaculture, with a number infecting wild-caught fish 

and farmed crustacea. Two species, in particular, have received a lot of academic 

and medical attention, Enterocytozoon bieneusi and Enterocytozoon 

hepatopenaei. However, the family as a whole is understudied and the diversity 

described is hypothesised not to be a true representation of the family’s diversity 

or distribution. 

The aim of this thesis is to assess the potential risk the Enterocytozoonidae have 

on aquaculture. This has been done in three different ways: i) it described and 

catalogued the current diversity and distribution in South West UK estuaries and 

a greater spatial scale using metagenomic databases, ii) using population 

genomics, it investigates the biogeography of, E. hepatopenaei, a pathogen of 

two shrimp (Penaeus vannamei and Penaeus monodon) widely farmed in South 

East Asia, with the aim to infer transmission routes into shrimp ponds, iii) and 

lastly, it investigated the loss and gain of orthogroups within the 

Enterocytozoonidae associated with the lineage wide host-shift to aquatic host 

from terrestrial hosts.  

Overall, this thesis found a greater distribution and abundance for Enterospora 

canceri and E. hepatopenaei in the locations sampled, and greater diversity 
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within the Enterocytozoondiae than was previously described. Suggesting an 

alternative host (s) for En. canceri, likely planktonic crustacea, as prevalence in 

the current described host was very low (3%). Use of metagenomic databases in 

this study also expanded upon the known distribution and diversity of the 

Enterocytozoonidae, showing a largely marine-based distribution. Suggesting an 

Atlantic-based radiation. It found that E. hepatopenaei is likely to be endemic to 

the countries examined, due to strong geographic signals. However, analysis 

suggests some transmission between Thailand India and China. Lastly, it 

identified candidate genes, unique to lineages within the Enterocytozoonidae, 

that could contribute to the family’s success in the invasion of their respective 

host cells. 

 

A greater diversity and abundance for novel sequences more related to the 

Enterocytozoon/Enterospora branch of the Enterocytozoondiae was also 

observed, suggesting, at least in estuaries in the Southwest of the United 

Kingdom, that this clade may be more diverse. Possibly due to their described 

main hosts being planktonic crustaceans. Which may lend to the success of the 

two most prevalent species in the family, E. hepatopenaei and E. bieneusi.  

 

This study found that the Enterocytozoonidae likely pose a continued threat to 

aquatic livestock, largely due to their widespread nature, overlapping with human 

influenced environments, and evident opportunistic propensity to host-shift. In 

addition, also being present inland in freshwater makes preventative measures 

difficult, as they could be found in a range of water sources. 
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Chapter 1: Current burden of the Enterocytozoondiae on aqua/agriculture 

 

1.1 The role of food in upcoming population growth 

With a global population increase of more than 2 billion estimated in the next 30 

years and the majority of the growth centered around food-deficit countries, the 

demand for global food production will increase with it  (Hangmann, 2009; Tomley 

& Shirley, 2009; United Nations, 2019). This will require food production to 

increase by 70% within the next 30 years, almost doubling the current production 

for food in developing countries, and this does not take into account the possible 

rise in agricultural products required for biofuels  (Hangmann, 2009). With 

terrestrial space being at a premium, and a global state of overfishing, the food 

industry has been expanding into fields that have historically received less 

investment. More investment is going into the farming of insects, a great source 

of fat, protein, and fibre; a system that does not take up much terrestrial space 

and is efficient in terms of energy requirement  (A. van Huis et al., 2013). Another 

system receiving more interest is aquaculture: Aquaculture is the fastest-growing 

livestock-sector, supplying 17% of the globally consumed protein in 2017, and 

will likely make up a large portion of the world's intake of protein in the coming 

decades  (Bayliss et al., 2017; Garcia & Rosenberg, 2010; G. D. Stentiford et al., 

2017; United Nations, 2015). It is also predicted that aquaculture will account for 

59% of global fish consumption  (FAO, 2020). This will make aquaculture 

indispensable in feeding a growing global population  (G. D. Stentiford et al., 

2013, 2017; Subasinghe et al., 2009). Farmed seafood will also lessen the stress 

that large-scale net fishing has on wild fish and cage caught crustacea, with 46% 

of the world's consumed seafood and 52% of the world's consumed fish having 

been from farms in 2016-2018,  (FAO, 2020). The rapid expansion of 

aquaculture-based farming has largely come about through need, with wild-

caught numbers decreasing (not rising to meet the population's needs)  (Bayliss 

et al., 2017; Garcia & Rosenberg, 2010). Most of the world's aquacultural produce 

comes from South-East Asia, producing 90%, with 60% of that coming from China 

alone  (Bayliss et al., 2017; G. D. Stentiford et al., 2017).  
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Of the globally produced seafood, tropical shrimp is becoming a far more 

successful venture in aquaculture than the farming of fish  (G. D. Stentiford, 

2012). An undertaking that is largely being pursued, successfully, by South-East 

Asia and Central America  (G. D. Stentiford, 2012), providing much-needed 

economic support to these areas. South-East Asia, China, and Central America 

made up 3.5 of the 4.3 million tons of the world’s exportation of shrimp, in 2017  

(GOAL 2019: Global Shrimp Production Review « Global Aquaculture Advocate, 

n.d.).  

 

1.1.1 The role of pathogens in upcoming population growth 

Inherent in the risk of a larger-scale monoculture of livestock and crops is a joint 

growth in pathogens that take advantage of these monocultures. Pathogens are 

already a major global problem to address, greatly reducing the efficiency of crop 

production with a ranging global loss of 8.1%-40.9% across five staple crops  

(Savary et al., 2019). The case is also very similar to animal-based foods, with a 

global loss of finfish ranging up to 5.8%-20%  (Shinn et al., 2015). There have 

been several global pathogens that have swept through and caused major 

problems for a number of different livestock species, for example, African swine 

fever, a virus affecting farmed pigs that has been attributed to the loss of 50% of 

exports in Eastern Europe  (Sánchez-Cordón et al., 2018). Even within more 

‘developed’ countries, outbreaks of pathogens can cause major loss of livestock; 

for example, the outbreak of foot and mouth disease in the UK, 2001 led to a loss 

of £3 billion  (Thomson et al., 2003). With globalization and the widespread export 

of livestock and crops making up a large portion of the economy of many 

countries, the spread of pathogens has become and will continue to be, an 

important issue. As such, threats from novel pathogens, as well as those thought 

to have been in decline (such as African swine fever) are a continual concern. 

 

The loss of animal-based stock is heavily felt in aquaculture, with an estimated 

$6 billion lost per annum, due to various pathogens  (G. D. Stentiford et al., 2017). 

For example, in 2016, a virulent strain of the gram negative bacterium, 

Aeromonas hydrophila, has caused a regional loss of 1.9 million catfish that 

amounts to a monetary loss of $2.6 million in East Mississippi alone  (Peterman 
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& Posadas, 2019). Also in 2016, an outbreak of the causative agent of 

proliferative kidney disease (PKD), Tetracapsuloisdes bryosalmonae, in 

Yellowstone River resulted in an estimated loss of $500, 000  (Hutchins et al., 

2021). This is likely to continue, especially given the bias towards research on 

terrestrial-based pathogens compared to that of aquatic pathogens.  (G. D. 

Stentiford et al., 2017). Due to this lack of knowledge of aquatic-based pathogens 

and parasites, many symptoms may be overlooked allowing many of these 

pathogens to spread. Coupled with this is a dramatic increase in the number of 

species farmed in aquaculture, compared to that in agriculture  (Bayliss et al., 

2017; FAO, 2016). Due to this influx of new species, such as the Atlantic halibut 

(Hippoglossus hippoglossus) and the pike perch (Sander lucioperca)  (Mylonas 

et al., 2019), depending on the state of biosecurity for the farm (s) in question, 

the introduction of new species to aquaculture can also come with inherent risk, 

in the form of pathogen spillover  (Power & Mitchell, 2004). Pathogen spillover is 

the transmission of a pathogen (s) from its reservoir host species to a new 

species. Though any pathogens present in new farmed species would not pose 

an immediate threat in single species ponds, pathogens introduced to an 

environment through aquaculture have been shown to have the capacity to 

transmit regionally to wildlife and non-infected farmed ponds by persisting in the 

environment  (Afonso et al., 2012; MG et al., 2015; Oidtmann et al., 2018). 

 

Due to farming environments not always being ideal for animal wellbeing, 

pathogens may also become more virulent in hosts they are ‘endemic’ to, as the 

host may become stressed/malnourished  (Earley et al., 2017; Manteca et al., 

2013). These emergent pathogens have the potential to be even more 

detrimental in intensive aquaculture, due to high densities of potential hosts which 

increase transmission  (Bayliss et al., 2017; Sundberg et al., 2016). Disease in 

certain crustacea, shrimp, for example, have sustained devastating losses 

estimated at over 40% of the global production of shrimp (G. D. Stentiford, 2012). 

There are a number of pathogens afflicting shrimp, largely viral and bacterial  

(Flegel, 2012), an example of some of the most impactful include Monodon 

baculovirus (MBV)  (Flegel, 2006), Yellow-head virus (YHV) (Boonyaratpalin et 

al., 1993), White-spot syndrome virus (WSSV)  (Flegel, 1997), Vibrio sp.  (Soto-

Rodriguez et al., 2015), and Flavobacterium sp.  (Sheu et al., 2011). The types 
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of viral infection affecting shrimp have changed over the years, with white spot 

syndrome virus and yellow head virus being the most lethal among them  (Flegel, 

2012). 

 

The problem with pathogens in animal-based foods is also compounded, as 

many pathogens of livestock are capable of zoonosis  (H. Li et al., 2019; Tomley 

& Shirley, 2009). Many of the pandemics afflicting humans have come from 

foodborne pathogens, with most introductions to these pathogens from ingestion 

(H. Li et al., 2019). Current known foodborne pathogens have resulted in 600 

million diseases in 2010 (Hoffmann & Scallan, 2017). The inherent risk to animal-

based foods is not equal among all food types, with different types of pathogens 

being a higher risk dependent on the countries they are farmed in (Hoffmann & 

Scallan, 2017). Another example of disproportionate risks in animal-based food 

types are that the majority of emerging human diseases come from mammals 

(Cleaveland et al., 2001; Han et al., 2016; Woolhouse & Gowtage-Sequeria, 

2005). However, this is not a trend that is seen in virus-based zoonotic infections, 

instead, displaying a host-neutral preference with greater infection rates seen in 

the diversity of viruses held by the reservoir group (Mollentze & Streicker, 2020). 

There is also a disproportionate burden/severity of pathogens on livestock and 

crops, with some crops less affected by their respective pathogens, likely due to 

the lack of resources in the food-deficit countries these crops are grown  (Savary 

et al., 2019). This is likely to become a problem, with much of the predicted 

population growth coming from food-deficit countries  (Tomley & Shirley, 2009). 

 

1.1.2 Prevention of pathogen transmission 

Prevention of outbreaks of the scale that have been seen many times in 

aquaculture and agriculture generally takes the form of computer-based 

modelling, vaccination, and control measures, for example, burning millions of 

cows to slow down the spread of the foot and mouth pandemic  (Prempeh, 2001; 

Thomson et al., 2003). Another preventative measure is producing genetically 

modified stock, more resistant to pathogens  (Pal & Chakravarty, 2020), and 

selective breeding of disease resistance (Pal & Chakravarty, 2020). Selective 

breeding for disease resistance has been used in aquaculture for close to 30 
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years (Gjøen & Bentsen, 1997). The general premise being that along with other 

beneficial characteristics, such as quick growth rates and greater 

retention/production of fat/muscle, they will also be resistant to a range of 

pathogens currently afflicting a range of similar livestock. Unfortunately, an 

element of human error and a lack of understanding of the diversity of pathogens 

and transmission routes often means biosecurity falls short. One of the elements 

is solved with continued surveys to discover new threats. One such way that is 

becoming widely used is metabarcoding for animal pathogens on environmental 

DNA (eDNA) (Huver et al., 2015; Peters et al., 2018). By identifying possible 

pathogens in the environment, this allows for more effective prevention of 

pathogens spread and vector control. Farmside detection methods are also being 

worked on for various known pathogens, as well as disseminating knowledge of 

known symptoms for particular harmful pathogens  (Minardi et al., 2019). 

Some preventative methods may prove to, in some cases, be detrimental in the 

future. For example, the use of cleaner fish has become quite useful in the 

removal of ectoparasites, like the salmon lice (Lepeophtheirus salmonis), the 

infection of which can lead to a reduction in growth, bodily fluids, and a raised 

susceptibility to secondary infections from other parasites  (Gargan et al., 1993; 

Thorstad et al., 2015; Thorstad & Finstad, 2018; Whelan, 2010). Pathogens could 

also come from the cleaner fish brought in to remove the ectoparasites, as they 

are known to hold opportunistic infections too  (Freeman et al., 2013; Hjeltnes et 

al., 2019). A danger that is likely to grow with the rising use of cleaner fish in 

aquaculture  (Winfield, 2018). 

 

1.1.3 Rise of opportunistic pathogens 

Opportunist parasites are organisms that primarily rely on susceptibility and the 

weakened immune system in the host to infect, and that are rarely found in 

healthy individuals  (S. P. Brown et al., 2012). Their ecological niches can vary 

widely, some largely being facultative, existing as commensal symbionts in the 

host-microbiome until such a time as the immune system is compromised  (Taur 

& Pamer, 2013), or acquired from the environment  (Anttila et al., 2015; S. P. 

Brown et al., 2012; Pamer, 2007). Opportunistic parasites make implementing 

preventative measures highly difficult, as they are non-specialist parasites, they 

can be found in a number of different hosts. This makes specific prevention 
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difficult, such as vaccination for endoparasites, as it would require prior 

knowledge of a parasite that has, as of yet, been described infecting the host in 

question. This would require in-depth research on individual parasites, which is 

extremely time and monetarily costly. Due to this, the majority of all bacterial 

diseases that arise in aquaculture are brought about by opportunist pathogens 

that are found in the marine environment  (De Schryver & Vadstein, 2014; 

Defoirdt, 2016). This is because many opportunist pathogens are environmentally 

ubiquitous and wide-ranging and can proliferate in aquaculture monocultures  

(Defoirdt, 2016). Another contributing factor to the high levels of infection in 

farmed monocultures is genomic plasticity, or the comparative lack thereof. It has 

been shown that populations with higher genomic diversity show a greater 

resistance to infection than those populations with lower genomic diversity  

(Ekroth et al., 2019; King & Lively, 2012). Unfortunately, though selective 

breeding programs do promote genomic diversity (Goecke et al., 2020), the 

complexity of how natural population diversity arises is a difficult model to employ, 

and thus the selective breeding programs need to be further developed  (Goecke 

et al., 2020; G. D. Stentiford et al., 2017). This also explains why the disease toll 

in food-deficit countries is higher, as they do not have the resources to properly 

test and filter the water, allowing opportunistic pathogens to enter the system. 

Through lack of resources, stress caused by suboptimal conditions is also more 

likely to occur in food-deficit countries. As is well known, stress can compromise 

the immune system which would allow the opportunistic pathogens that have 

found a way into the system to proliferate (Lafferty & Holt, 2003). Opportunistic 

pathogens also take advantage of hosts that are being weakened by a 

‘professional’ pathogen of that host leaving the door open for opportunistic 

pathogens (Karvonen et al., 2010; Louhi et al., 2015).  

 

1.2 Microsporidia, opportunistic pathogens 

Microsporidia are a group of obligate intracellular, parasites with 1300-1500 

described species across roughly 200 genera  (Weiss & Becnel, 2014), though it 

has been remarked that this is likely not representative of their diversity  (Ardila-

Garcia et al., 2013). Microsporidia have a fairly cosmopolitan distribution, and 

have been described on all continents, except Antarctica  (P. Keeling, 2009), and 

inhabit a number of diverse environments and hosts  (González-Tortuero et al., 
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2016; Klee et al., 2007; Lom & Dykoá, 2002; G. D. Stentiford et al., 2013). In 

humans, they cause varying conditions with varying symptoms, some more 

detrimental than others, ranging from AIDS-associated diarrhea and dysentery  

(Didier et al., 1995; Matos et al., 2012) to fatal deep tissue infections  (Coyle et 

al., 2004; Nadelman et al., 2020). Among their hosts are a number of 

commercially and environmentally important species, such as honey bees, 

salmon  (El Alaoui et al., 2006a; Klee et al., 2007; Palenzuela et al., 2014), pets 

(such as cats, dogs, or guinea pigs)  (Cama et al., 2007; Mathis et al., 1999), and 

farmed livestock  (Mathis et al., 1999; Q. Zhang et al., 2018). 

 

1.2.1 The history of microsporidian phylogeny 

The phylogenetic position of Microsporidia had been difficult to determine and 

they have been repositioned several times as a result. They were first considered 

to be a part of the Sporozoa, a group of parasitic protozoans, and then more 

specifically within the Sporozoa, in the Cnidosporidia  (P. Keeling, 2009; 

Vossbrinck et al., 2014). Due to the lack of observed mitochondria at the time, 

they were more recently considered to be Archezoa, a group of eukaryotes that 

diverged prior to the acquisition of a mitochondrion  (Cavalier-Smith, 1983). 

However, due to the discovery of their reduced mitochondrion, referred to as a 

mitosome  (B. A. P. Williams et al., 2002), and evidence from increasing 

molecular sequence data  (Capella-Gutiérrez et al., 2012; Vossbrinck et al., 2014; 

Vossbrinck & Debrunner-Vossbrinck, 2005) they are now positioned within a 

clade of divergent eukaryotes called the Opisthosporidia (including Cryptomycota 

and Aphelida), a sister group to true fungi (Figure 1.1)  (Karpov et al., 2013, 2014; 

Torruella et al., 2015). Historically, microsporidian taxonomy was heavily based 

on phenotypic, developmental, and ecological characters, and though useful, the 

phylogenetic importance of these characters is not yet known  (Vossbrinck et al., 

2014). They have a number of derived features that set them apart from other 

eukaryotes  (P. Keeling, 2009; Vossbrinck & Debrunner-Vossbrinck, 2005), 

though the most characteristic among them is a structure called a polar filament  

(Bigliardi & Sacchi, 2001; Franzen, 2005), a structure involved in the infection of 

host cells. 
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Figure 1.1: Position of Microsporidia within the Opisthosporidia. Phylogeny was 

inferred from 25 single-copy orthologs shared by all taxa (34 species) (Chapter 

5), built using maximum likelihood in RAxML-HPC (Stamatakis, 2006). 

1.2.2 Microsporidian transmission and ecology 

The polar filament is a unique structure crucial for infection of the host. It is used 

to pierce the host’s cell membrane, whereupon they extrude their sporoplasm in 

the host’s cell  (Bigliardi & Sacchi, 2001; Franzen, 2005) (Figure 1.2). Within the 

cell, the sporoplasm develops mature spores through a process called sporogony 

in which it undergoes multiple rounds of fission  (Bigliardi & Sacchi, 2001; 

Franzen, 2005). When enough mature spores are formed, they rupture the cell 

membrane moving on to infect a new host or new cells within the same host and 

to survive harsh periods out of a host  (Bigliardi & Sacchi, 2001; Franzen, 2005). 

These resistant chitinous spores are their sole means of propagation.  
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Figure 1.2: General life cycle of a microsporidian spore. A=free spore; B=spore 

comes into contact with the host cell, ejects polar filament and interacts with the 

host’s cell membrane, C/D= contents of spore (sporoplasm) is extruded though 

polar filament into host’s cell, E=proliferative stage whereupon sporoplasm 

undergoes fission, F= mature spores are formed, G= replicating spores disrupt 

cell membrane and are dispersed into the surroundings.  

These spores are transmitted in a number of ways, many species of Microsporidia 

have been shown to transmit horizontally  (Haag et al., 2019; Karthikeyan & 

Sudhakaran, 2019a; Tangprasittipap et al., 2013a; Wang-Peng et al., 2018), 

picked up from other hosts through ingestion or another interaction, though some 

species have been found to transmit vertically  (Haine et al., 2007; Poley et al., 

2017) and some are capable of both  (Haag et al., 2019). There are two ways 

(modes) that a parasite can be transmitted to a new host, either vertically or 

horizontally. Transmissions that are brought about through reproductive routes, 

parent-to-offspring transmission, are known as vertical  (Antonovics et al., 2017). 
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Horizontally is the broader of the two modes and includes transmission routes 

that are not from parent-to-offspring transmission. Though not exhaustive, some 

routes include environmental transmission (via food and water  (W. Li et al., 2017; 

Zhao et al., 2014)), from vectors (e.g. tsetse flies and bats  (Geiger et al., 2018; 

Wang-Peng et al., 2018), and through respiration  (Antonovics et al., 2017; Kutter 

et al., 2018). However, waterborne transmission is likely the most frequent route 

of transmission in human infecting species , as microsporidian infections are most 

reported in low-income countries with lower water health  (Javanmard et al., 2018; 

G. D. Stentiford et al., 2016), and there are a number of studies indicating the 

presence of spores in both raw and treated water  (Galván et al., 2013; Izquierdo 

et al., 2011; Javanmard et al., 2018). The proposed frequent route of 

transmission also concurs with a greater prevalence of microsporidian infection 

in lower-income countries  (Z. D. Wang et al., 2018), as the water quality in lower-

income countries is less regulated and more likely to contain pathogens  

(Deshpande et al., 2020). 

 

Transmission modes have large effects on the life-cycle of pathogens and host-

parasite dynamics and have even been found to dictate how virulent some 

Microsporidia are  (Dunn & Smith, 2001). The mode of transmission has also 

been attributed to bottlenecks in some species, which leads to inefficient purifying 

selection in some species of microsporidia  (Haag et al., 2019). Showing that 

microsporidia that have mixed-mode transmission are more likely to have large 

genomes, with more genes and longer intergenic regions (Haag et al., 2019). 

 

Host specificity is routinely observed within the Microsporidia, with many species 

only being found in certain groups of animals, like Nematocida (only described in 

nematodes- Caenorhabditis elegans)  (Luallen et al., 2016; Reinke et al., 2017; 

Wadi & Reinke, 2020) and some Nosema (honey bees- Apis mellifera and Apis 

cerena) species  (M. J. F. Brown, 2017; Klee et al., 2007; Pan et al., 2013). 

However, there are many instances of more generalist species that infect more 

than one host species  (Hinney et al., 2016; Jeong et al., 2007; Zhao et al., 2015), 

with some hosts possibly acting as vectors  (Wang-Peng et al., 2018). The range 

of hosts a microsporidian species has is rarely fully understood, due to the 
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difficulty of researching intracellular pathogens, especially those highly capable 

of host-switching.  

 

1.2.3 Microsporidia, emerging public health concern 

There are 17 known species on Microsporidia that infect humans, belonging to 

eight genera (Encephalitozoon  (Chabchoub et al., 2009; Didier & Khan, 2014), 

Enterocytozoon  (Desportes et al., 1985), Pleistophora  (Cali & Takvorian, 2003), 

Tachipleistophora  (Vávra et al., 1998), Nosema  (Cali et al., 2010), Vittaforma  

(Shadduck et al., 1990), Brachiola (synonym Nosema), and Microsporidium 

(Sharma et al., 2014)). One of the main reasons Microsporidia have received 

more attention, besides their interesting evolution and the greater access to more 

advanced biochemical methods, is their impact on human health. Many studies 

carried out on the phylum are based on human infecting species, contributing to 

the available genome sequence data. Although the species that have been found 

to infect humans have done so in an opportunistic fashion, infecting those that 

are immunocompromised, microsporidian infections are also found in individuals 

with healthy immune systems  (Tabatabaie et al., 2015). The majority of the 

species that affect humans cause intestinal problems  (Kotler & Orenstein, 1998; 

Weiss, 2014), but there are some that infect other organs, such as the kidney  

(Nagpal et al., 2013), the lungs  (Teachey et al., 2004), and the eyes  (Van Gool 

et al., 2004). Though the associated symptoms are generally not life-threatening 

while under care, diarrhea without treatment can and does lead to death. These 

species are suspected to be transmitted into humans through water sources or 

irrigation of vegetable farms, wild and domestic animals, and through livestock 

(Didier, 2005; Javanmard et al., 2018).  

 

1.2.4 Microsporidia in aquaculture/agriculture 

Besides the human-to-human transfer of Microsporidia and through 

environmental sources, like unsterilised drinking water, a possible route to human 

infection is through ingestion of infected tissue  (G. D. Stentiford et al., 2016). 

Microsporidia have been described in livestock as early as 1969, in aquaculture 

(salmonid fish  (PUTZ et al., 1965)) and from 1999 in agriculture (cattle  

(Halánová et al., 1999)and swine (Jeong et al., 2007)). With the expansion of 
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aquaculture and greater access to pathogen screening tools and methods, the 

last two decades have seen an increase in described cases of microsporidiosis. 

Microsporidia have been found to affect livestock in many different aquaculture 

methods. In net pen (off-shore farming of fishes in net-based enclosures) three 

microsporidian species, in particular, have become associated with mortality in 

the farming of salmonid fish: Nucleospora salmonis infects the hematopoietic 

cells of the Atlantic salmon (Salmo salar) and Chinook Salmon (Oncorhynchus 

tshawytscha), causing proliferation of cells which can lead to anemia  (Hedrick et 

al., 2012); Paranucleospora theridion infects the epithelial cells of Atlantic salmon 

and has been associated with 80% mortality in some farms, however, its role in 

mortality has not yet been confirmed  (Nylund et al., 2010); finally, Loma (formerly 

Pleistophora) salmonae infects the endothelial and pillar cells of the gills in 

Chinook salmon, which leads to inflammation and can cause proliferative 

bronchitis  (Becker & Speare, 2007). While microsporidian pathogens are still 

described in semi-intensive and intensive farming in fish (Glugea spp.  

(Naghashyan et al., 2018), for example, Pleistophora hyphessobryconis  (Winters 

et al., 2015)), Microsporidia are largely a problem for farmed crustacea 

(Thelohania spp.  (Bacela-Spychalska et al., 2018; Grabner, 2017; Moodie et al., 

2003; Voronin, 1986), Nosema spp.  (Quiles et al., 2019; Voronin, 1986), Perezia 

spp.  (Sokolova & Hawke, 2016; Voronin, 1986) and Pleistophora spp.  (MacNeil 

et al., 2003)). 

 

1.2.5 Microsporidia used as biological control 

Vector-borne pathogens have had a large impact on human health, with 

mosquito-based malarial death as high as 435,000 people in 2017 (CDC, 2019), 

and that is just one of the many highly impactful pathogens that mosquitoes are 

known to carry in one vector species. Due to the current and possible future 

burden of vector-borne pathogens (Dorn et al., 2017), and rising resistance to 

insecticides  (Denholm & Devine, 2013; Ranson et al., 2011), a relatively new 

research field is being explored, looking at biological ways to control vector 

populations and thus control the spread of vector-borne pathogens. There are a 

number of biological control methods used in controlling vectors (and thus vector-

borne pathogens): using natural competitors (predators or competitors in the 

same ecological niche) to control vector density  (Crowder et al., 2019), vector 
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transgenesis, a method used to genetically modify a vector species making them 

incapable as operating as vectors  (Shane et al., 2018), and a promising route of 

study investigating the effect other microbes have on transmission  (Frentiu et al., 

2014; Moreira et al., 2009; Walker et al., 2011). The use of Microsporidia as 

biological vector control has been considered for the last five decades (Becnel & 

Andreadis, 2014; Henry, 1971), as their infections can cause population decline 

and help in the regulation of pests (Becnel & Andreadis, 2014). Studies to this 

effect have been noted for pest grasshopper species  (Henry, 1971) and moths  

(Lynch & Lewis, 1976). Some research has also shown that vector-pathogen 

relationships can be affected by symbiotic Microsporidia. A recent study shows a 

large decrease in Plasmodium falciparum prevalence in the presence of 

Microsporidia MB within Anopheles gambiae  (Herren et al., 2020). 

 

1.2.6 Microsporidian genome evolution 

With the advances in sequencing technology and increased interest in the 

phylum, the rate at which microsporidian genomes are being sequenced is 

gaining speed. The first complete genome that was sequenced was that of 

Encephalitozoon cuniculi in 2001  (Katinka et al., 2001). A large source of interest 

in the Microsporidia is their reduced genomes; some species have some of the 

smallest known genomes of any eukaryote ranging from 2.3 Mb 

(Encephalitozoon intestinalis) - 51.38 Mb (Edhazardia aedis) (Desjardins et al., 

2015). Following the trend of many other obligate intracellular parasites, 

Microsporidia have reduced their genomes, instead, relying upon the host for 

many of its requirements, such as metabolic and transcriptional regulator 

pathways (Katinka et al., 2001; P. J. Keeling & Slamovits, 2004b; McNamara-

Bordewick et al., 2019; Vivarès et al., 2002). As a result, genes found within the 

Microsporidia have been shortened with a loss of most introns  (Katinka et al., 

2001), intergenic regions have been shortened or removed  (P. J. Keeling & 

Slamovits, 2004b), as well as a reduction in duplicated segments  (Katinka et al., 

2001)and (retro)transposable elements  (Heinz et al., 2012; Peyretaillade et al., 

2012). The presence/absence of these non-coding regions in the genome 

account more for genome size variation within Microsporidia than gene 

counts/size  (Cuomo et al., 2012). As an example, the genome size between Enc. 

intestinalis (2.3 Mb) and Ed. aedis (51.38 Mb) is greater than 20-fold, while the 
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difference in gene count is just above 2-fold (1,848 genes and 4,190 genes, 

respectively). Genes that remain are conserved genes associated with basic 

cellular functions; genes that are highly expressed in yeast and present 

throughout the Eukaryota, as a reduction of these genes would have negative 

effects on the organism (Nakjang et al., 2013). Recent genomic analysis has 

suggested that a bottleneck in the last common microsporidian ancestor (LCMA) 

may explain the genome reduction having lost 1,590 protein families (Nakjang et 

al., 2013), suggesting that only a small set of conserved genes made it through 

the bottleneck, with subsequent lineage-specific gene-family expansions. The 

lineage-specific gene-family expansions are shown by the novel gene families 

that are present in a large proportion in assembled microsporidian genomes 

(Nakjang et al., 2013). Another contributing factor to the reduction of the nuclear 

genome is the loss of a functional mitochondrion, and with it, the loss of many of 

the genes within the metabolic pathway that allow them to produce ADP/ATP 

(Embley & Martin, 2006). Instead, microsporidian genomes are rich in transporter 

proteins that allow them to take resources that they need from the host (P. J. 

Keeling & Corradi, 2011; Nakjang et al., 2013; Wiredu Boakye et al., 2017).  

 

Likely contributing to the rapid lineage-specific gene-family expansions are the 

high mutation rates attributed to the Microsporidia. Higher mutation rates would 

have a greater probability of producing errors in DNA replication and repair 

machinery, which would, in turn, produce more gene duplications, and gene 

duplications are strongly associated with gene diversification (Costello et al., 

2020; Hoekstra & Coyne, 2007). Mutation rates are estimated to be high in 

Microsporidia due to the lack of tumor-suppressing genes that repair DNA 

mutations  (Haag et al., 2014) and a reduction in DNA repair genes has also be 

noted in Enc. cuniculi  (Gill & Fast, 2007; Haag et al., 2014; P. J. Keeling & 

Slamovits, 2004a). These trends have also been found to be associated with 

reduced genomes brought about by population bottle-necks in bacteria  (Nilsson 

et al., 2005). 
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1.3 Economically important parasites, Enterocytozoonidae 

There are a number of key families and genera within the Microsporidia that have 

garnered more interest than others, due to their economically important hosts. 

The Nosema genus has long received attention due to the role they played in the 

collapse of the silkworm industry (Canning et al., 1999; Kellen et al., 1977; Solter 

et al., 2002) and their current association with the colony collapse disorder in 

honeybees (Antúnez et al., 2009; Bromenshenk et al., 2010; Pettis et al., 2012). 

Encephalitozoon has three species that infect humans, as well as other 

mammals, rabbits among them. Both of these genera have been well researched 

for a number of decades, but more recently a family of predominantly aquatic 

pathogens (Enterocytozoonidae) has emerged as a group of interest. The family 

Enterocytozoonidae comprises ten described species within a monophyletic 

clade of microsporidians that mostly infect crustaceans and fish  (Palenzuela et 

al., 2014), with the exception of Enterocytozoon bieneusi, which has only been 

observed infecting terrestrial vertebrates. Conversely, the Enterocytozoonidae 

are placed in a larger clade of microsporidian species (“Terresporidia”) that infect 

terrestrial hosts  (Vossbrinck et al., 2014; Vossbrinck & Debrunner-Vossbrinck, 

2005). This is particularly interesting, as the majority of described 

enterocytozoonids infect aquatic hosts, suggesting the Enterocytozoonidae are 

derived in their selection of host. Although the classification of this group is largely 

through molecular data, all currently described species have enlarged 

sporogonial syncitia, a structure in which the polar filament develops prior to 

sporoblast division  (Freeman & Sommerville, 2009). Also, in all species, infection 

has been found specifically in the gastrointestinal tract, and homologous 

structures (G. D. Stentiford et al., 2019). The reason for the raised awareness of 

this group is its emergence into species of economic importance. E. bieneusi 

(infections in livestock and humans) and Nucleospora salmonis (infections in 

farmed salmon) were the two first described species and have been described 

for a number of decades, however, subsequent species have continued to be 

described in farmed fish and crustacea (Freeman et al., 2013; G. D. Stentiford et 

al., 2007; Sveen et al., 2012; Tourtip et al., 2009). Though none of the infections 

have been reported as fatal, they siphon energy away from the host likely leading 

to more serious conditions, sometimes leading to a reduction in growth (Tourtip 

et al., 2009). They have been described as sentinels of animal health because of 

this  (G. D. Stentiford et al., 2019). This family, and other Microsporidia that infect 
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livestock, likely pose the greatest threat to commercial fisheries, where fish and 

crustacea are reared in high densities  (Foltz et al., 2009).  

 

1.3.1 Enterocytozoonidae phylogeny/diversity 

Broadly speaking, the Enterocytozoonidae are split into two clades, the 

crustacean/terrestrial vertebrate infecting clade (Enterospora/Enterocytozoon) 

and the fish (occasional crustacean) infecting clade ( 

(Para)Nucleospora/Obruspora). The most researched enterocytozoonids reside 

within the former clade, whereas many of the fish infecting species have only 

been noted in an initial description paper. The only species in the former clade to 

receive a moderate amount of research is N. salmonis  (El Alaoui et al., 2006a; 

Foltz et al., 2009; Sakai et al., 2009). Hepatospora eriocheir is tentatively included 

within the Enterocytozoonidae in some studies (including this thesis), although its 

intermediate features and greater genetic divergence suggest a more basal 

positioning among the Enterocytozoonidae. Some researchers have erected an 

intermediate clade between that of the Enterocytozoonidae and the 

Enterocytospora-like species called the Hepatosporidae. Currently, the 

Hepatosporidae is composed of H. eriocheir, Parahepatospora carcini, a recently 

discovered pathogen of Carcinus maenas (the European shore crab)  (Bojko et 

al., 2017), and an even more recently described, but unnamed, hepatosporid 

found in Nemertea (ribbon worms)  (Robbins et al., 2021).  

 

Variation within species or strains/genotypes is not well understood within the 

Microsporidia, due to the aforementioned difficulty in identifying host ranges for 

species and difficulty in culturing many of the species of interest. As mentioned, 

some work done on two species of enterocytozoonid, N. salmonis and E. 

bieneusi, has shown a multitude of host species. Sequencing of specific (ssu-

rDNA and the ITS gene respectively) markers in these two species have shown 

a wide diversity for both species  (El Alaoui et al., 2006b; Leelayoova et al., 2006). 

N. salmonis has received less research on this and a different, more conserved, 

marker is used, so it shows less variation than E. bieneusi.  
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1.3.2 Transmission routes within the Enterocytozoonidae 

So far, transmission in the Enterocytozoonidae has been largely inferred to be 

horizontal, and in the case of studies looking at the transmission in E. 

hepatopenaei, a pathogen of Penaeus vannamei (white legged shrimp), it has 

been proven in a number of studies to be transmitted horizontally in ponds  

(Karthikeyan & Sudhakaran, 2019b; Salachan et al., 2017a). Though the mode 

of transmission is not directly known, some species have also been found to 

parasitise both the crustacean parasites as well as the fish host (Diamant et al., 

2014; Freeman & Sommerville, 2009; Nylund et al., 2010). This may indicate a 

route of transmission to fish being through parasitic, crustacea, as their first two 

larval stages (nauplius 1 and 2) are planktonic  (Johnson & Albright, 1991) and 

would be widely dispersed by marine currents and likely to come into contact with 

pelagic fauna. 

 

1.3.3 Evolutionary novelties: Cellular and nuclear parasites 

Besides the economic importance of the family, it has also received a lot of 

interest for some evolutionary novelties within the Microsporidia if not throughout 

the animal kingdom. Outside of the Enterocytozoonidae, only one species has 

been described to develop within the nucleus, whereas there are six 

enterocytozoonids (Enterospora nucleophila (Palenzuela et al., 2014), 

Enterospora canceri (G. D. Stentiford et al., 2007), Paranucleospora theridion  

(Nylund et al., 2010), Nucleospora cyclopteri (Freeman et al., 2013; Mullins et al., 

1994), Nucleospora salmonis (Chilmonczyk et al., 1991) and Nucleospora 

secunda (Lom & Dykoá, 2002)). No work has been published looking at the 

genomic basis for this, and it promotes further biological queries. For example, 

given the high number of intranuclear species within the Enterocytozoonidae, on 

two separate clades within the family, is this an ancestral state that has been lost 

in some lineages or gained separately, and what genomic processes help 

facilitate this. 

 

1.3.4 Evolutionary novelties: Loss of glycolysis 

One of the more unique characters of the Enterocytozoonidae is their puzzling 

loss of the glycolytic pathway (Wiredu Boakye et al., 2017). A further reduction in 
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metabolic pathways from a lack in the ability for Microsporidia to produce their 

own ATP, largely reliant on the host via glycolysis and ATP transport that 

accounted for 7% of ATP intake  (Berg et al., 2007; Richards et al., 2003; 

Tsaousis et al., 2008). The primary interest with this further loss is that it is 

unknown how enterocytozoonids could gather enough ATP to function, and how 

do they do so extracellularly. So far, only four enterocytozoonid genomes have 

been sequenced (H. eriocheir, E. bieneusi, E. hepatopenaei, and En. canceri 

(Desportes et al., 1985; G. D. Stentiford et al., 2007, 2011; Tourtip et al., 2009)). 

These sequenced genomes are of those enterocytozoonids that infect the most 

economically relevant hosts. Their genomes represent some of the smallest 

described Microsporidia, ranging from 3.1 Mb to 4.57 Mb. All published genomes, 

besides H. eriocheir, are from the Enterocytozoon/Enterospora clade. Though it 

is also likely that the fish infecting clade ( (Para)Nucleospora/Obruspora) has a 

similar loss of glycolytic pathways and a similarly reduced genome. This has been 

suggested as H. eriocheir has a more basal relationship within the 

Enterocytozoonidae (likely part of a sister clade) and shares in the loss of 

glycolytic characters. However, H. eriocheir only has a partial loss of the glycolytic 

genes that the remaining enterocytozoonids display  (Wiredu Boakye et al., 

2017). 

 

1.4 Aims and Objectives 

The overall aim of this thesis is to assess the potential risk the 

Enterocytozoonidae poses to aquaculture, and to a lesser degree, agriculture, 

looking at the factors that may facilitate their emergence into our current or future 

livestock. This is important, as, with a growing global human population, there will 

be a need for growth in stable sources of food  (Jennings et al., 2016; G. D. 

Stentiford et al., 2013). To help address this, this study was undertaken to aid in 

predicting new pathogenic species, which may arise either through zoonotic 

potential or expanding farms into environments that harbor potentially pathogenic 

organisms. Identification of possible threats and routes of transmission will allow 

for appropriate precautions to be made. This study approached this in three ways: 

• This was first investigated by screening the environment for the presence 

of enterocytozoonids. This has not been done before, and an understanding of 

how widespread the Enterocytozoonidae are will play a part in enabling 
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inferences about the pathogenic threat of this family; based on their overlap with 

human influenced areas, such as farms and thus their likelihood to come into 

contact with humans of farm life. This was investigated over two data chapters, 

(Chapter 2 and 3) both exploring the hypothesis that the Enterocytozoondiae are 

more diverse than previously described. Chapter 2 also addresses the use of the 

highly variable inter transcribed spacer (ITS1) region for assessing genotypes in 

E. bieneusi. 

• The second way this study aims to assess the risk of the 

Enterocytozoondiae is to investigate the possible transmission routes that 

facilitated the spread of E. hepatopenaei. In doing so, ascertain the recent 

geographic origin of E. hepatopenaei in shrimp ponds and highlight the ways in 

which undescribed enterocytozoonids may also infect farmed organisms. The 

hypothesis being tested is that the pathogen is endemic and naturally widespread 

but has not been noticed due to lower levels of infection (pathogenicity/ 

virulence), and a change in farming practices/ genetic variant has allowed the 

pathogen to become prevalent. An alternative hypothesis is that it represents a 

recent spread epidemic that has quickly become widespread. In either scenario, 

this will enable farmers of the best practices to stop the spread and inhibit their 

fast expansion. This chapter is a good opportunity to showcase what should likely 

be the next steps after the first and second data chapters, where possible 

pathogens have been identified before they have become a problem for 

aqua/agriculture. 

• The third way this study aims to assess the risk of enterocytozoonids is to 

investigate how readily the family has host switched in their lineage, looking at 

the genes that facilitated such an event. In so doing, this will help to predict the 

likelihood of further host-switching events. A secondary aim of this chapter is to 

look into the evolution of the small genome size within the Enterocytozoonidae. 

Although the Microsporidia, as a clade, display small genomes, some groups 

have taken this further. The Enterocytozoondiae have some of the smallest 

describe genomes, however, the evolution of this family has not been studied. 

• The overall aim of Chapter 6 is to bring together the results from the 

preceding 4 data chapters to make an assessment, based on the results, on the 

risk that the Enterocytozoonidae pose to aquaculture and human health. This 
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will enable risk assessments to be made on ways in which to mitigate the risk of 

this clade, enabling farmers to put in measures to minimise economic loss. 
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Chapter 2: Investigating the diversity of the Enterocytozoonidae using 

metagenomics 

 

2.1 Introduction 

 

Metagenomic analysis has been rising in use and application since 1998  

(Handelsman et al., 1998) and has revolutionised the way that ecological studies 

are carried out. Metagenomics has allowed for quicker more cost-effective ways 

to run ecological studies on diversity  (Deiner et al., 2017) or community 

assemblages/associations  (Willis & Gabaldón, 2020), primarily on 

microorganisms. Metagenomics is also used outside of ecological studies, now 

widely applied to medical (cancer  (Purcell et al., 2017) and immunological  

(Duplouy et al., 2020)) and agricultural (gut microbiome associated studies  

(Davis et al., 2016)) research. This has led to a rise in publicly available 

metagenome/metabarcoding databases, with more data from sequencing runs 

being produced than is needed to answer initial questions. This has allowed 

researchers to expand the type of research being undertaken and the range of 

data used  (Donovan et al., 2018), making more data accessible to a wider group 

of researchers.  

Metagenomic analysis has contributed hugely to biodiversity studies in a number 

of applied ways and is increasingly being applied to help solve/mitigate 

anthropogenic problems. Among many other ways, they are used in 

conservation, to investigate indicators of healthy environments  (Aylagas et al., 

2014; Vasselon et al., 2017) and are vital in understanding the role of 

microorganisms in carbon, nitrogen, and other biogeochemical cycles  (Hölker et 

al., 2015; Treonis et al., 2018). However, with the rise of high-throughput 

sequencing in the past 15 years  (Lightbody et al., 2019; Reuter et al., 2015), 

there is a greater push for use of metagenomics in many of the studies stated 

above. Diagnostic metagenomics, a term coined by Pallen  (Pallen, 2014), is the 

use of shotgun metagenomics in the discovery and detection of pathogens. The 

term was primarily concerned with clinical samples, though it is also applicable to 

non-human samples too  (Studholme et al., 2011). Diagnostic metagenomics has 

been used heavily to study organisms that are difficult to culture, so heavily used 

in virus discovery  (Alavandi & Poornima, 2012; Schulz et al., 2018). It has been 
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used to catalogue, in humans, a normal virome of species that have not been 

associated with disease  (Popgeorgiev et al., 2013). This has and will allow future 

research to use this as a baseline for any work looking at human-based viral 

infections that are not a part of the ‘healthy’ human virome. In the case of 

environmental pathogens, this same method could be used to assess the 

potential threats of pathogens to livestock. Cataloguing endemic endoparasitic 

species in an environment would allow for better assessments on potentially 

pathogenic, and invasive species and allow for investigation of ecological 

patterns. Pathogen discovery in the environment would also be informative to 

placement of farms and fisheries, as the presence of particular pathogens is likely 

to influence such decisions. 

Due to greater variation often found in universal markers  (Tedersoo et al., 2015), 

Microsporidia-based sequences tend not to get amplified in eukaryote-wide 

metabarcoding studies; so Microsporidia-specific primers are often needed  

(Ardila-Garcia et al., 2013). Even shotgun genomics may be inadequate unless 

specialized extraction methods are used, as microsporidians have a chitin-based 

cell wall, structures not easily ruptured by lysis buffers alone. Meaning that many 

metagenomic/metabarcoding studies are likely missing Microsporidia diversity. 

For Microsporidia, large-scale metabarcoding studies are lacking; an oversight 

as they likely have a great influence on ecological networks, like many 

pathogens. Microsporidia have been identified in some indirect studies from host-

based metagenomics: in honeybees, two of four fungal species (18s rDNA)  (Cox-

Foster et al., 2007), in giant pandas, where they made up 2% of the fungal 

diversity  (Yang et al., 2018) and in pigs  (Donovan et al., 2018) to name a few. 

However, host-based metagenomic studies miss any environmental occurrences 

of the pathogen, an equally important part of the parasite's life cycle. Especially 

if the microorganism is not an obligate parasite, and can feed and reproduce 

outside of a host. Single host-based metagenomics can also be more costly in 

terms of time and money to get a full picture of their distribution and abundance. 

More costly in terms of time, as taxonomic specific trapping techniques will need 

to be used to acquire host species, whereas environmental samples require less 

taxonomic expertise and time.  

Many widespread obligate pathogens require intermediate hosts for transmission 

into their ‘main’ hosts, to fulfill their lifecycle  (Balloux & van Dorp, 2017; Moore, 
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2010). Planktonic crustacea have been found to host many species of 

Microsporidia that have been described in a ‘main’ host  (Palenzuela et al., 2014; 

Sveen et al., 2012; Vossbrinck et al., 1998), indicating that planktonic crustacea 

may play a role as intermediate hosts  (Vossbrinck et al., 1998) promoting host-

shifting  (Quiles et al., 2019). Intermediate hosts have also been suggested to 

play a part in the radiation of Microsporidian species, as a result of the host going 

through diversification  (Bacela-Spychalska et al., 2018). 

There are currently ten species of Enterocytozoonidae described: 

Enterocytozoon bieneusi  (Desportes et al., 1985), Nucleospora salmonis  

(Chilmonczyk et al., 1991), Nucleospora secunda  (Lom & Dykoá, 2002), 

Enterospora canceri  (G. D. Stentiford et al., 2007), Paranucleospora theridion 

and its synonym Desmozoon lepeotherii (Freeman & Sommerville, 2009; Nylund 

et al., 2011), Enterocytozoon hepatopenaei  (Tourtip et al., 2009), Nucleospora 

cyclopteri  (Freeman et al., 2013), Enterospora nucleophila  (Palenzuela et al., 

2014), Obruspora papernae  (Diamant et al., 2014) and Nucleospora braziliensis 

(da Cunha et al., 2017). The only species with no 18s rDNA sequence data is N. 

secunda. The number of described species has more than doubled in size in just 

over a decade. Such a rapid discovery of species is suggestive of a greater 

diversity yet to be discovered in this family. This is a situation true of the 

Microsporidia as a whole  (Ardila-Garcia et al., 2013). There is already evidence 

for greater diversity from several species that have enterocytozoonid-like 18s 

rDNA sequences, but no histology to verify  (Arundell et al., 2015). Members of 

this family have a wide geographic distribution, having been described on every 

major continent, and throughout much of the Atlantic. But they have so far only 

been described in marine and estuarine environments, though there are a 

number of 18s rDNA sequences that are closely related to the 

Enterocytozoonidae but have been from freshwater (JN938583.1; KT777455.1-

unpublished)  (Arundell et al., 2015).  

The most researched enterocytozoonid is E. bieneusi, with ten papers published 

on their genotypes in sheep alone since 2015  (Fiuza et al., 2016; Jiang et al., 

2015; W. Li et al., 2014; Shi et al., 2016; Ye et al., 2015; Zhao et al., 2015). It is 

the most prevalent human infecting microsporidian  (Akiyoshi et al., 2009; 

Widmer et al., 2013), though mainly an opportunistic parasite in this respect, 

mostly infecting the immunocompromised  (W. Li et al., 2017). It infects the 
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intestinal epithelial cells, causing AIDS-associated diarrhoea  (Desportes et al., 

1985). It appears to be highly opportunistic in nature, having also been found to 

infect a plethora of other terrestrial vertebrates. These include live-stock  (Mathis 

et al., 1999; Zhao et al., 2014), pets (guinea pigs, cats and dogs)  (Cama et al., 

2007; Santín & Fayer, 2011; Y. Zhang et al., 2019), and wild animals  (Santín & 

Fayer, 2011). It has a very wide distribution, having been described on major 

continents, ranging from Africa to China and South America  (Espern et al., 2007; 

Rinder et al., 2000). Though no natural reservoirs or routes of infection have been 

found, some studies have inferred infection from pets  (Cama et al., 2007). 

So far, E. bieneusi has been described as having over 240 genotypes that have 

been sorted into nine genotype groups that have been associated with a host, 

using the ribosomal ITS1 region  (Q. Zhang et al., 2018). Genotype groups 

appear to be homoplastic in host choice, in that a genotype group will have 

genotypes from different, phylogenetically distant host species. However, many 

appear to be host-specific and have only been found to infect the organisms in 

which they were first described. There are several different human infecting 

genotypes  (Akiyoshi et al., 2009; Widmer et al., 2013), unsurprising, considering 

the number of domesticated animals infected, it is likely that humans would 

encounter many different genotypes. E. bieneusi is not the only enterocytozoonid 

to have been shown to have a propensity for opportunistic transmission. Both P. 

theridion and O. papernae infect the copepod parasite of their respective “main” 

hosts  (Diamant et al., 2014; Gunnarsson et al., 2017; Sveen et al., 2012), 

whereas N. salmonis infects several species of fish  (El Alaoui et al., 2006a; 

Hedrick et al., 2012; Sakai et al., 2009). E. bieneusi has also been found in 

mussels in the River Shannon, Ireland, though the infection was not verified with 

histology, so it could just be a result of filtering water. It is likely that many more 

unknown enterocytozoonid infections will be attributed to described species. 

Despite a great amount of research being carried out on the family (relatively), 

no work has been carried out investigating the diversity, distribution, or ecological 

role of the group. Primarily, descriptions of infections are in host species of 

economic importance, likely underestimating vast biodiversity in host species that 

are not farmed. The main aim of this study was to test the hypothesis that the 

Enterocytozoonidae were more diverse than currently described, using pre-

existing data, and to better understand the breadth of host types and 
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environments that they might inhabit. Existing metagenomic databases, like the 

National Center for Biotechnology Information (NCBI) and The Integrated 

Microbial Genomes and Microbiomes (IMG), are a great resource for studying 

the distribution of intracellular parasites, as the size and life cycle make it difficult 

and time-consuming to identify specimens by microscope analysis. It also allows 

for the investigation of worldwide patterns in a more time and supply-efficient 

manner. 

Another aim of this chapter was to look at the diversity found in the E. bieneusi 

genome and assess the appropriateness of using ITS as a marker to genotype 

“strains” of the species found in different hosts.  

 

2.2 Methods and analysis 

 

2.2.1 Metagenome screening 

To test the hypothesis that the biodiversity of the family is greater than described, 

publicly available metagenome databases were screened for matches to find 

evidence of enterocytozoonid-like sequences. The database predominantly used 

was the Integrated Microbial Genomes & Microbiomes database (IMG/MER)  

(Markowitz et al., 2012), which has an in-built BLASTN function  (Altschul et al., 

1990). An E. hepatopenaei 18s rDNA sequence (KF362129.1) was used as the 

query for BLASTN searches against different datasets, focusing on freshwater, 

marine, and aquatic invertebrate metagenomes. Terrestrial soil /invertebrate 

metagenomes were also screened, to get a better understanding of the 

distribution of Enterocytozoonidae. However, it was expected that the aquatic 

metagenomes would provide the majority of the positive enterocytozoonid 

sequences. The E-value threshold was set to ≤ 1E-50, as searches with a less 

strict E-value recovered non-enterocytozoonid-like nucleotide sequences. 

Though this may not be representative of the group, without histology, sequences 

omitted this threshold cannot be confidently included. 
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2.2.2 Data sets, alignment, and tree building 

Due to the varying lengths and locations of the recovered enterocytozoonid-like 

scaffolds relative to the 18s rDNA gene, three different datasets spanning 

different regions within the 18s rDNA region, with no overlap, were made (start, 

mid, end of 18s rDNA) to get a better idea of the biodiversity found in these 

datasets (Table 2.1). All sequences were initially aligned using MAFFT version 7 

(Katoh et al., 2018) under default parameters, viewed and trimmed by eye using 

Bioedit version 7.2.5 (Hall, 2013).  

 

Table 2.1: Three metagenomic datasets, split across the 18s rDNA to cover 

varying lengths of metagenomic scaffolds 

Dataset Aligned length Number of 

sequences 

Phylogenetically 

informative 

sites 

Conserved 

sites 

600-980 380 37 34.2% 39.5% 

985-1470 487 55 36.3% 44% 

1470-2109 540 26 36.5% 44.1% 

 

To ensure that the different datasets did not vary greatly in the phylogenetic signal 

that they gave, levels of phylogenetic signal were looked at in MEGAX (Kumar et 

al., 2018). Though this would not inform on whether these gave signals for the 

same evolutionary relationship, it would show any datasets that had much 

lower/higher levels of signal. Once trimmed into non-overlapping datasets, they 

were aligned again, using MAFFT ver 7 under default parameters and checked 

by eye using Bioedit ver 7.2.5. Phylogenies were built using maximum-likelihood 

implemented by RAxML-HPC version 8.2  (Stamatakis, 2016). The tree was built 

using the General Time Reversible rate of heterogeneity, with Gamma 

distribution (GTR-GAMMA) assessed with 1000 bootstrap replicates. The 

substitution model of best fit was assessed using MEGAX, by selecting the model 

with the lowest Akaike information criterion (AIC). Reference Enterocytozoonidae 

18s rDNA sequences from all ten described species were also added to the 

analysis. 

To investigate any relationship between genetic distance and geographic 

distance, and to look at the divergence of the novel sequences from the described 
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species, pairwise distance was assessed for each dataset using the Tajima-Nei 

model  (Tajima & Nei, 1984) implemented in MEGAX. The correlation between 

genetic distance and geographic distance between sites was tested using Mantel 

tests implemented in QIIME1 version 1.9.1 assessed over 1000 permutations  

(Caporaso et al., 2010). 

 

2.2.3 Operational Taxonomic Units (OTUs) and clustering 

To get a better understanding of the relative abundance of enterocytozoonid-like 

sequences, compared to that of other microsporidian clades, all novel sequences 

(725 sequences) were grouped based on sequence identity. Datasets were 

pooled and clustered using USEARCH version 11  (Edgar, 2010), to form 

operational taxonomic units (OTUs) based on a sequence identity of 97%, to get 

an estimate of the number of ‘species’ present in the metagenome. Although the 

sequence identity cut off of 97% is unlikely to represent the species delineations 

found within the Microsporidia, it offers a good starting point to start explaining 

the diversity and ecology of understudied groups. The representative OTUs were 

then clustered, using UCLUST version 11  (Edgar, 2010), with 43 18s rDNA 

reference sequences that were picked from throughout the known microsporidian 

diversity (Table 2.1-supplementary). A threshold of 80% nucleotide sequence 

identity was chosen to look at the diversity of species within family-like clusters, 

used as a proxy to see how diverse the enterocytozoonids are relative to other 

microsporidian “families”. Eighty percent was chosen, as this is the lowest 

sequence similarity found between described Enterocytozoonidae. This includes 

H. eriocheir, a species sometimes regarded as a sister/basal enterocytozoonid. 

This analysis was also carried out on four smaller datasets for the same reasons 

mentioned above, as many of the shorter sequence fragments may falsely inflate 

the number of OTUs. Some diversity may be lost, but it is a precaution against 

false inflation of diversity.  

 

2.2.4 ITS as a marker for genotyping E. bieneusi 

To look at the suitability of ITS1 as a marker for genotyping E. bieneusi, the E. 

bieneusi reference genome was downloaded (GCA_000209485.1) from NCBI. 

This is currently the only assembled genome available for E. bieneusi, and it is 
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based on spores isolated faecal samples from a single infected human. To test 

the variability of ITS1 of and E. bieneusi within a host, bioinformatically, BLASTN  

(Altschul et al., 1990) was used with an ITS1 sequence (AY237209.1) as the 

query against the published E. bieneusi genome, using CLC Genomics 

Workbench 11.0 (https://www.qiagenbioinformatics.com/). Any hits greater than 

1E-10 were taken and aligned with the published dataset the query sequence 

came from  (Baroudi et al., 2018). As variation is being looked at, the E-value 

cannot be too strict, otherwise, possible variants would be missed. To help make 

a direct comparison with the current diversity of E. bieneusi genotypes, 42 

sequences that were used in a recently published tree  (Baroudi et al., 2018), 

were downloaded and used in the analysis (Table 2.2-supplementary).  

 

2.2.5 Genetic/Genomic diversity 

To look at the genetic distance between the ITS1 sequences from the genome, 

as above, Tajima and Nei’s pairwise distance was assessed using MEGA X. To 

also give a measure of genomic diversity found among E. bieneusi spores within 

a host, as a comparison to the ITS1, the raw reads  (Leinonen et al., 2011) for 

the genome were mapped to a genome-wide subset of 128 single-copy genes 

(refer to OrthoMCL method Chapter 5) from the E. bieneusi reference genome, 

using BWA MEM version 0.7.17  (H. Li & Durbin, 2010)under default parameters. 

The raw reads were filtered using Sickle version 1.3  (Joshi & Fass, 2011) using 

default parameters, SNP calling was done using GATK version 4.1.8.0  

(McKenna et al., 2010) best practices. Intrapopulation diversity was estimated 

using nucleotide diversity (𝝅) as a proxy, estimated using VCFtools version 

0.1.16  (Danecek et al., 2011). This will give an estimate of how diverse the 

genomes are, relative to the pairwise estimates for ITS sequences.  

 

2.2.6 Tree building 

Alignment and tree building was carried out using the same parameter values as 

described in the Baroudi et al. (2018) paper, to avoid any variations that may 

result from using an alternative alignment and tree building algorithm. The final 

dataset, including the ITS sequences from the BLASTN analysis and the 

https://www.qiagenbioinformatics.com/
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published Baroudi et al. (2018) dataset. The tree was visualised in TreeGraph 

2.15.0  (Stöver & Müller, 2010). 

 

2.3 Results 

 

430 metagenome projects comprised of 7,641 datasets were screened using an 

E. hepatopenaei 18s rDNA query sequence using BLASTN. 176 from aquatic 

environments (2751 datasets), 128 from terrestrial environments (4043 datasets), 

and 126 from host-specific metagenomes (840 datasets). This identified 46 

metagenome projects (29 from aquatic metagenomes, 12 terrestrial 

metagenomes (Figure 2.1), and 0 host-associated metagenomes) (Table 2.2) 

containing scaffolds sharing at least 75% identity to the 18s rDNA query 

sequence and eight metagenome projects shared at least 85% identity to the 

query sequence.  

 

Figure 2.1: Locations of origin for metagenomic datasets with sequences highly 

similar (BLASTn ≤ 1E-50) to a E. hepatopenaei 18s rDNA sequence. (Yellow: 

marine; Blue: freshwater; Green: terrestrial) 
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Table 2.2 Positive blast metagenomes screened using the IMG database, E. 

hepatopenaei 18s rDNA as query 

IMG Study 

ID 

Location Metagenome 

type 

Sequencing 

platform 

Positives/ 

Enterocytozoonid-

like 

Gs0053074 Atlantic Ocean Marine Illumina 1/1 

Gs0053074 West of El 

Salvador, Pacific 

Ocean 

Marine Illumina 17/8 

Gs0116197 Illinois, USA Freshwater 

 

Illumina 22/0 

Gs0126301 Trout Lake, 

Wisconsin, USA 

Freshwater 

 

Illumina 8/0 

Gs0126301 Sparkling Lake, 

Wisconsin, USA 

Freshwater 

 

Illumina 23/0 

Gs0126301 Mendota Lake, 

Wisconsin, USA 

Freshwater 

 

Illumina 39/0 

Gs0114433 Delaware River, 

USA 

Estuarine 

 

Illumina 25/12 

Gp0156537 Lake Montjoie, 

Canada 

Freshwater 

 

Illumina 7/0 

Gs0114818 Cold Stream Run, 

Pennsylvania 

Freshwater 

 

Illumina 4/0 

Gs011481 Alex Branch, 

Pennsylvania 

Freshwater 

 

Illumina 4/0 

Gs011481 Straight Creek, 

Pennsylvania 

Freshwater 

 

Illumina 5/0 

Gs0114433 Chesapeake Bay, 

USA 

Marine 

 

Illumina 41/21 

Gs0118433 Oldwoman Creek, 

Ohio 

Freshwater 

 

Illumina 5/0 

Gs0053068 Lake Ontario, 

Ontario 

Freshwater 

 

Illumina 1/0 

Gs0118430 Lake Croche, 

Canada 

Freshwater 

 

Illumina 9/0 

Gs0118430 Lake Simoncouche, 

Canada 

Freshwater 

 

Illumina 9/0 

Gs0114443 Lake Erie, 

Pennsylvania 

Freshwater 

 

Illumina 4/0 
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Gs0103597 Klosterneuburg, 

Austria 

Freshwater 

 

Illumina 49/0 

Gs0017769 Twitch Island, 

California 

Freshwater 

 

Illumina 10/0 

Gs0063447 Adventfjord, 

Svalbard 

Archipelago, 

Norway, station 2 

Marine 

 

454 and Illumina 4/4 

Gs0110190 Louisana Shelf, 

Hypoxic Zone, Gulf 

of Mexico 

Marine 

 

Illumina 20/18 

Gs0114292 Southern Atlantic 

Ocean 

Marine 

 

Illumina 2/2 

Gs0114292 Southern Atlantic 

Ocean 

Marine 

 

Illumina 10/9 

Gs0121595 Arthur Harbor ice 

station, Antarctica 

Marine 

 

Illumina 1/1 

Gs0046785 Saanich Inlet, 

British Columbia 

Marine 

 

Illumina 17/7 

Gs0053074 Southern Atlantic 

Ocean 

Marine 

 

Illumina 18/11 

Gs0121595 Palmer Station, 

Antarctica 

Marine 

 

Illumina 1/0 

Gs0114511 Milwaukee, 

Wisconsin 

Freshwater 

 

Illumina 10/0 

Gs0126301 Wisconsin, USA Freshwater 

 

Illumina 30/0 

Gs0114516 Oregon, USA Freshwater 

 

Illumina 2/0 

Gs0116197 Asahikawa, Japan Freshwater 

 

Illumina 10/0 

Gs0063124 Bonanza Creek, 

Alaska 

Terrestrial 454, Illumina 5/0 

Gs0120350 Kohala Peninsula, 

Hawaii 

Terrestrial Illumina 1/0 

Gs0103008 Amazon Forest, 

Brazil 

Terrestrial Illumina 1/0 

Gs0110119 Angelo Coastal 

Reserve, California 

Terrestrial Illumina 6/0 

Gs0117433 Alaska, USA Terrestrial Illumina 21/0 
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Gs0085736 Massachusetts, 

USA 

Terrestrial Illumina 2/0 

Gs0135153 Indiana, USA Terrestrial Illumina 1/0 

Gs0053071 Weissenstadt, 

Germany 

Terrestrial Illumina 265/0 

Gs0134627 Abisko, Sweden Terrestrial Illumina 10/0 

Gs0114298 Alaska, USA Terrestrial Illumina 13/0 

Gs0135149 Colorado, USA Terrestrial Illumina 5/0 

Gs0128948 Maridalen valley, 

Oslo, Norway 

Terrestrial Illumina 7/0 

 

725 (398 from aquatic metagenomes, 337 from terrestrial metagenomes, and 0 

from host-associated metagenomes) scaffolds in total were returned from the 

BLASTN analysis, of these, 92 (92 from aquatic metagenomes, 0 from terrestrial 

metagenomes, and 0 from host-associated metagenomes) are ≥ 90% in identity 

with eight having a very high identity (94-100%) to the reference E. hepatopenaei 

sequence. Two sequences were 100% identical to the E. hepatopenaei sequence 

used as a query: one from Saanich Inlet, Canada (IMG accession number: 

Ga0008278_1196390) and one from the Atlantic Ocean, west of Cape Town, 

South Africa (IMG accession number: Ga0005504_1233069). The percentage of 

sequences that were highly Enterocytozoonidae like in relation to other 

microsporidian sequences was 12.7%. The proportion of locations screened that 

had evidence of enterocytozoonids using these search criteria was 17.4%.  

 

2.3.1 Assessment of suitability for each dataset 

The length of the three alignments ranged from 380-540bp long (Table 2.1), and 

the number of sequences ranged from 26-55 of a possible 92. Due to their short 

lengths, two datasets each lacked one of the enterocytozoonid representatives: 

the first dataset (dataset-600) lacks the newest addition, N. braziliensis, while the 

third dataset (dataset-1470) excludes E. bieneusi. The percentage of 

phylogenetically informative sites per dataset ranged from 36.3% - 38.9%, 

conserved sites ranged from 39.5% - 44.1%. With the datasets having similar 

levels of conservation and parsimony-informative sites, all were retained for 

subsequent analysis.  
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2.3.2 Enterospora/Enterocytozoon clade: more diverse? 

The evolutionary relationships in all three data sets displayed in this study concur 

with those found in previous phylogenies (Figure 2.1a-c). Forming two clades, 

En. canceri and En. nucleophila group with the Enterocytozoon species and the 

Nucleospora species groups more closely with P. theridion and O. papernae. 

However, in the first and third datasets (Figure 2.1a, c), the midlevel branch 

support was low and has collapsed the Enterocytozoon/Enterospora genera. The 

novel enterocytozoonid sequences identified in this study were phylogenetically 

diverse and were distributed throughout the Enterocytozoonidae phylogeny. 

They were found on both enterocytozoonid clades and have also produced two 

novel branches within the Enterocytozoon/Enterospora clade (Figure 2.1b), a mix 

of sequences from the Chesapeake Bay and the Gulf of Mexico. There was some 

phylogeographical grouping when looking at the novel sequence diversity, with 

the samples from the Gulf of Mexico (GM Louis) and Chesapeake Bay (Chesa) 

mainly grouping together. Whereas other datasets appear more diverse; the 

Saanich Inlet (Saan Can) and the South Atlantic Transect (SAlantran) ranging 

throughout Enterocytozoon/Enterospora clade and (Para)Nucleospora/ 

Obruspora clade (just SAtlantran). The majority of the newly discovered diversity 

is in the Enterocytozoon/Enterospora clade. Pairwise distance estimates for the 

latter dataset (dataset 1470) also support the relationship of the novel sequences 

being closer to the Enterospora/Enterocytozoon clade (6/8 datasets) (Table 

2.3c). However, the former two datasets show more of an even split between the 

two clades (5/8 and 4/8 datasets respectively) (Table 2.3a,b). Average pairwise 

distance between the metagenomic scaffolds and Enterospora/ Enterocytozoon 

clade over the three datasets is 0.154 (range 0.064-0.258), 0.163 (range 0.087-

0.220), 0.191 (range 0.104-0.475). While the average pairwise distance between 

the metagenomic scaffolds and the (Para)Nucleospora/Obruspora clade was 

greater for the first and last datasets being 0.167 (range 0.117-0.306), 0.157 

(range 0.094-0.225), 0.213 (range 0.111-0.527).  

2.3.3 The relationship between geographic distance and pairwise distance 

between enterocytozoonid-like metagenomic scaffolds 

Geographic distance between sample sites did not correlate with pairwise 

distance in any of the three datasets (Figure 2.2a-c -supplementary), with Mantel 

r statistics consistently close to zero (-0.142, -0.101, and -0.074) and no 
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significant p-values (0.716, 0.767, and 0.773 respectively). However, samples 

from Saanich Inlet were the most geographically and genetically divergent, with 

an average pairwise distance of 0.273 (range 0.247-0.306), 2.28 (range 0.208-

0.215), and 0.507 (range 0.451-0.571), across all three datasets (600, 985 and 

1470 respectively). Saanich Inlet samples also had the greatest intrapopulation 

pairwise distance 0.237 (range 0.225-0.249), Chesapeake Bay samples had the 

lowest intrapopulation distance estimates 0.037 (range 0.001-0.105). 
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Figure 2.2: a-c: Enterocytozoonidae phylogenies from three different datasets (a-600; b-985; c-1470), built in RAxML-HPC 
(GTRGAMMA), showing the diversity of the 37/55/26 newly discovered microsporidian sequences respectively, detected in 
this study from metagenome databases, which matched the same region of the 18s rDNA gene. Scale bar intervals represent 
0.01 substitutions per site for branch length. Numbers above nodes indicate bootstrap support values. Nodes with a value less 
than 50 were collapsed. (Red names: described species; Green names: from Delaware (Dela; Pale green names: from 
Chesapeake Bay (Chesa); Light blue names: Gulf of Mexico (GM); Dark blue names: Saanich Inlet (Saan Can); Purple names: 
South Atlantic (SAtlan); Light purple names: Adventfjord (Adven); Burgundy names: Pacific Ocean (DpMa); Grey names: 
Atlantic Ocean (Dpart)) 

 

Enterospora/Enterocytozoon 

Enterospora/Enterocytozoon 

 

(Para)Nucleospora/Obruspor

c) 
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Table 2.3a-c: Average pairwise distance between described enterocytozoonid taxa and enterocytozoonid-like sequences 

identified in this study, estimated in MEGAX from 18s rDNA for dataset 600 (Key: Saan=Saanich Inlet, USA; Dela=Delaware 

River, USA; GM=Louisana Shelf, USA; Dpma= West of El Salvador, Pacific Ocean; Chesa=Chesapeake Bay, USA; 

Satlan_tran=South Atlantic Ocean; Adven=Adventfjord, Norway) 

 
Enterocytozoon 

clade 

Nucleospora 

clade 

Saan Dela GM Dpma Chesa Satlan_tran Adven 

Enterocytozoon 

clade 

0.111 
        

Nucleospora clade 0.153 0.053 
       

Saan 0.258 0.306 0.249 
      

Dela 0.158 0.179 0.273 0.236 
     

GM 0.064 0.117 0.27 0.143 N/A 
    

Dpma 0.15 0.118 0.291 0.188 0.115 0.082 
   

Chesa 0.132 0.142 0.247 0.171 0.133 0.154 0.007 
  

Satlan_tran 0.124 0.12 0.26 0.172 0.1 0.122 0.108 0.146 
 

Adven 0.193 0.186 0.285 0.209 0.193 0.184 0.154 0.183 N/A 
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2.3b 

Average pairwise distance between described enterocytozoonid taxa and enterocytozoonid-like sequences identified in this 

study, estimated in MEGAX from 18s rDNA for dataset 985 (Key: Saan=Saanich Inlet, USA; Dela=Delaware River, USA; 

GM=Louisana Shelf, USA; Dpma= West of El Salvador, Pacific Ocean; Chesa=Chesapeake Bay, USA; Satlan_tran= South 

Atlantic Ocean; Adven=Adventfjord, Norway; Dpart=Atlantic Ocean) 

 
Enterocytozoon 

clade 

Nucleospora 

clade 

Saan Dela GM Dpma Chesa Satlan_tran Adven Dpart 

Enterocytozoon clade 0.141 
         

Nucleospora clade 0.168 0.061 
        

Saan 0.208 0.225 0.225 
       

Dela 0.184 0.167 0.221 0.188 
      

GM 0.131 0.153 0.215 0.172 0.047 
     

Dpma 0.176 0.094 0.227 0.170 0.146 0.112 
    

Chesa 0.146 0.149 0.217 0.18 0.119 0.172 0.001 
   

Satlan_tran 0.152 0.141 0.224 0.164 0.142 0.137 0.118 0.168 
  

Adven 0.22 0.169 0.244 0.189 0.206 0.176 0.235 0.2 0.039 
 

Dpatl 0.087 0.16 0.272 0.191 0.065 0.142 0.149 0.122 0.234 _ 
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2.3c  

Average pairwise distance between described enterocytozoonid taxa and enterocytozoonid-like sequences identified in this 

study, estimated in MEGAX from 18s rDNA for dataset 1470 600 (Key: Saan=Saanich Inlet, USA; Dela=Delaware River, USA; 

Satlan=South Atlantic Ocean GM=Louisana Shelf, USA; Dpma=South Atlantic Ocean; Chesa=Chesapeake Bay, USA; 

Satlan_tran=South Atlantic Ocean; Adven=Adventfjord, Norway) 

 
Enterocytozoon 

clade 

Nucleospora 

clade 

Saan Dela Satlan GM Dpma Chesa Satlan_tran Adven 

Enterocytozoon 

clade 

0.120 
         

Nucleospora 

clade 

0.172 0.121 
        

Saan 0.475 0.527 0 
       

Dela 0.123 0.191 0.504 0 
      

Satlan 0.171 0.111 0.571 0.174 0 
     

GM 0.123 0.166 0.513 0.129 0.143 _ 
    

Dpma 0.144 0.126 0.51 0.14 0.139 0.139 _ 
   

Chesa 0.155 0.181 0.526 0.149 0.173 0.165 0.156 0.105 
  

Satlan_tran 0.104 0.164 0.488 0.133 0.169 0.131 0.150 0.112 0.143 
 

Adven 0.234 0.239 0.451 0.205 0.241 0.215 0.221 0.244 0.219 _ 
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2.3.4 OTU dataset assessment 

As mentioned, five different datasets were compiled to capture the diversity of 

the varied coverage and length of all metagenomic scaffolds across the 18s rDNA 

region (Table 2.4). These were clustered into 27-167 OTUs (Table 2.4). The 

number of OTUs formed were closely associated with how many sequences were 

included in the dataset, showing a linear relationship between the two (Figure 

2.2-supplementary). This suggested no bias for a particular dataset (18s rDNA 

region), as such, all datasets were used in further analysis.  

 

2.3.5 Enterocytozoonidae: a dominant, environmental microsporidian clade? 

To get a better representation of microsporidian diversity found within the 

metagenomes, and to give a comparative look at the abundance/ratio of the 

Enterocytozoonidae among the rest of the Microsporidia, sequences were 

clustered into operational taxonomic units (OTUs) based on identity as a 

threshold (97%). OTUs were then clustered into ‘family’-based clusters in 

UCLUST, also using an identity-based threshold (80%). The Enterocytozoonidae 

made up a relatively large proportion of OTUs, with an average of 18.04% of each 

dataset made up of enterocytozoonid-like sequences (Table 2.4). A proportion 

made starker, as enterocytozoonid-like ‘family’ clusters only made up, on 

average, 12.95% of all ‘family’ clusters in this study (Table 2.4). On average the 

enterocytozoonid-like clusters also show more diversity than the other clusters in 

the dataset, with the average number of enterocytozoonid-like OTUs across all 

five datasets (Table 2.4) in a ‘family’ cluster greater (3-10.5 OTUs) than the 

average number of OTUs in a non-enterocytozoonid ‘family’ cluster (range 2.3-

4.6 OTUs). 

Both the difference between the number of clusters and the number of OTUs in 

the cluster were explained by the size of the dataset (Figure 2.3 and 2.4-

supplementary), with a linear relationship between the number of OTUs in the 

dataset and the number/size of clusters. Showing that there was an even 

spread of diversity along the datasets, with no apparent bias. ‘Family’ clustering 

of representative, known species followed the known phylogeny for the 

sequences involved, adding support for the observations and clustering 

threshold made above.  
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Table 2.4: Summary of OTU and cluster analysis results for the five datasets, 

using USEARCH and UCLUST from all metagenome sequences from this 

study. Sequence identity threshold for OTU clustering was set to 80% identity. 

Based on 18s rDNA. 

Dataset Alignment 

length 

Unique 

sequences 

OTUs/of which are 

enterocytozoonid-

like (percentage) 

‘Family’ 

clusters/of which 

are 

enterocytozoonid-

like (percentage) 

Largest 

number of 

OTUs in 

‘family’ 

cluster/average 

largest 

enterocytozoonid-

like 

cluster/average 

300 180 126 65/11 (16.9%) 24 (46)/1 (4.16%) 11/2.3 3/3 

600 395 273 167/19 (11.4%) 28 (46)/2 (7.14%) 42/4.6 13/9.5 

900 295 308 114/18 (15.8%) 27 (45)/4 (14.81%) 25/3.5 15/10.5 

1200 300 191 79/13 (16.5%) 22 (39)/3 (13.63) 14/3.1 6/3.7 

1368 170 48 27/8 (29.6%) 8 (30)/2 (25%) 12/2.3 12/7 

All 1493 712 258/52 (20.1%) 36 (55)/4 (11.11%) 51/5.5 22/14.5 

 

For example, ‘family’ clustering using UCLUST (80% identity) clustered two 

Vairimorpha and Nosema species together and had clustered the species 

Vavraia culicis and Pleistophora typicalis. Species that have shown close 

relationships in prior phylogenetic analyses. However, not many of the known 

sequences are included in clusters with metagenome sequences, with the 

majority of the clusters including nothing but newly found sequences. 

2.3.6 E. bieneusi diversity and ITS variability 

To investigate the variation seen in the ITS1 regions of E. bieneusi within one 

host, BLASTN searches were performed against the published reference 

genome, using an ITS1 query sequence. This was done with the aim to assess 

whether ITS1 was an appropriate marker to genotype E. bieneusi. BLASTN 

searches using ITS1 against the E. bieneusi reference genome recovered 24 hits. 

The recovered BLASTN results were placed into a published dataset (Baroudi et 

al. 2018) of ITS1 sequences, to look at their position among known genotypes. 

The final dataset consisted of 66 sequences, with 422 sites, of which 273 are 

variable and 190 are parsimony informative. Although all 24 ITS1 sequences that 

were pulled from the published genome of E. bieneusi had grouped within 

genotype group 1  (Baroudi et al., 2018) (Figure 2.3), variation was seen between 

ITS1 sequences with the majority (13 sequences) forming a polytomy within the 

group. The overall relationship between the genotypes and genotype groups has 
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remained the same as Baroudi et al (2018), with the new addition of the ITS1 

sequences. However, some of the 24 ITS1 sequences did show grouping, six 

have joined the pre-existing group 1a  (Baroudi et al., 2018), with four sequences 

forming two more supported branches (71, 50 bootstrap support). Pairwise 

distance for the ITS1 sequences showed similar levels of variation (Table 2.6), 

ranging from 0% - 45.6%, with an average distance between the sequences 

being 6.6%. The sequence consistently most divergent from other ITS1 

sequences was ABGB01001610.1 ranging from 25% - 45.6% pairwise distance 

(average 29.2%). 

 

To examine whether the variation found in ITS1 sequences was representative 

of variation across the whole genome in E. bieneusi (therefore, if it was a good 

region for genotyping of E. bieneusi), within a single host, reads were mapped to 

128 single-copy genes. Within the host, genome-wide diversity for E. bieneusi in 

this study was very low, using a measure of nucleotide diversity (𝜋) as a proxy 

for within-population (within-host) diversity, within-population nucleotide diversity 

was on average 0.0015 (Table 2.5). Contrasting the high variability found for the 

ribosomal ITS1 pairwise distance estimates. 

 

Table 2.5: Single copy genes from OrthoMCL analysis, used for with SNP calling 

in E. bieneusi 

NCBI Reference  Characterisation SNP count Nucleotide diversity 

(𝝅) 

EDQ31221 DNA primase small 

subunit 

1 0.000 

EDQ31229 glycyl-tRNA synthetase 9 0.002 

EED43701 deoxyhypusine synthase 3 0.001 

EED43766 cation transport ATPase 18 0.003 

EED44056 ATP-dependent 26S 

proteasome regulatory 

subunit 

5 0.001 

EED44079 arginyl-tRNA synthetase 9 0.001 

EED44544 LSU ribosomal protein 

L3P 

5 0.001 

EED44563 protein kinase kin1 12 0.002 
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A relatively small number of reads were mapped to the single-copy genes 

(8.32%). E. bieneusi was conserved throughout the majority of the mapped 

reads, only showing 62 SNPs called along with eight (out of 128) single-copy 

reference genes. The eight genes were all described, though mainly 

characterised through homology-based analysis (Table 2.5). There was no bias 

in the distribution of reads over the single-copy genes, following a linear 

relationship (Figure 2.5a-supplementary), neither in SNP counts, also showing a 

linear relationship with reference length (Figure 2.5b-supplementary).  

 

Figure 2.3: Phylogeny showing the relationship between E. bieneusi genotypes, 

built-in RAxML-HPC (GTRGAMMA), using the ribosomal ITS. Scale bar 
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intervals represent 0.01 substitutions per site for branch length. Numbers above 

nodes indicate bootstrap support values. Nodes with a value less than 50 were 

collapsed. (Those highlighted blue are the sequences pulled from the published 

E. bieneusi genome) 
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Table 2.6: Pairwise distance matrix showing distance (p) between the sequences included in Baroudi et al (2018), and ITS1 

sequences included in this study from the E. bieneusi reference genome. 

 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 
                        

2 0.000 
                      

 

3 0.000 0.000 
                     

 

4 0.000 0.000 0.000 
                    

 

5 0.002 0.002 0.002 0.002 
                   

 

6 0.047 0.047 0.047 0.047 0.045 
                  

 

7 0.021 0.021 0.021 0.021 0.021 0.021 
                 

 

8 0.005 0.005 0.005 0.005 0.007 0.052 0.027 
                

 

9 0.005 0.005 0.005 0.005 0.007 0.052 0.027 0.000 
               

 

10 0.005 0.005 0.005 0.005 0.007 0.052 0.027 0.000 0.000 
              

 

11 0.005 0.005 0.005 0.005 0.007 0.052 0.027 0.000 0.000 0.000 
             

 

12 0.002 0.002 0.002 0.002 0.005 0.050 0.024 0.002 0.002 0.002 0.002 
            

 

13 0.013 0.013 0.013 0.013 0.013 0.022 0.027 0.008 0.008 0.008 0.008 0.011 
           

 

14 0.000 0.000 0.000 0.000 0.002 0.047 0.021 0.005 0.005 0.005 0.005 0.002 0.013 
          

 

15 0.015 0.015 0.015 0.015 0.017 0.055 0.027 0.020 0.020 0.020 0.020 0.017 0.024 0.015 
         

 

16 0.006 0.006 0.006 0.006 0.009 0.064 0.035 0.012 0.012 0.012 0.012 0.009 0.023 0.006 0.024 
        

 

17 0.021 0.021 0.021 0.021 0.025 0.102 0.072 0.029 0.029 0.029 0.029 0.025 0.049 0.021 0.046 0.021 
       

 

18 0.009 0.009 0.009 0.009 0.014 0.096 0.060 0.000 0.000 0.000 0.000 0.004 0.016 0.009 0.036 0.009 0.009 
      

 

19 0.025 0.025 0.025 0.025 0.029 0.094 0.067 0.032 0.032 0.032 0.032 0.028 0.048 0.025 0.046 0.004 0.021 0.009 
     

 

20 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.054 0.054 0.054 0.054 0.050 0.054 0.047 0.047 0.070 0.127 0.120 0.115 
    

 

21 0.091 0.091 0.091 0.091 0.091 0.091 0.097 0.097 0.097 0.097 0.097 0.094 0.097 0.091 0.091 0.116 0.165 0.170 0.175 0.088 
   

 

22 0.122 0.122 0.122 0.122 0.125 0.144 0.096 0.127 0.127 0.127 0.127 0.124 0.114 0.122 0.130 0.156 0.233 0.238 0.204 0.098 0.145 
  

 

23 0.073 0.073 0.073 0.073 0.073 0.073 0.070 0.080 0.080 0.080 0.080 0.077 0.080 0.071 0.077 0.104 0.185 0.186 0.160 0.096 0.112 0.096 
 

 

24 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.253 0.253 0.253 0.253 0.250 0.253 0.247 0.257 0.342 0.515 0.569 0.456 0.260 0.274 0.253 0.266  
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 (Key: ABGB01000374.1 = 1, ABGB01001290.1 = 2, ABGB01001369.1 = 3, ABGB01001147.1 = 4, ABGB01001626.1 = 5, ABGB01000947.1 = 6, 

ABGB01001084.1 = 7, ABGB01000781.1 = 8, ABGB01000732.1 = 9, ABGB01001533.1 = 10, ABGB01001612.1 = 11, ABGB01000756.1 = 12, 

ABGB01000820.1 = 13, ABGB01001462.1 = 14, ABGB01001242.1 = 15, ABGB01001534.1 = 16, ABGB01001482.1 = 17, ABGB01001406.1 = 18, 

ABGB01001496.1 = 19, ABGB01001498.1 = 20, ABGB01001206.1 = 21, ABGB01001053.1 = 22, ABGB01001211.1 = 23, ABGB01001610.1 = 24)
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2.4 Discussion 

 

This is the first systematic survey of Enterocytozoonidae diversity, using 

metagenome databases. The appropriateness of using the ribosomal ITS1 as a 

marker for genotyping E. bieneusi was also assessed. This study strongly 

suggests that the family is more diverse and widely distributed than is currently 

described. Furthermore, it reveals minimal variation between spores within a 

single host, implying that different methods/multiple regions need to be used 

when barcoding studies are carried out on some species.  

 

2.4.1 Distribution of undescribed Enterocytozoonidae 

With all the enterocytozoonid-like sequences coming from estuarine/marine-

based metagenomes (Figure 2.4), it suggests that the Enterocytozoonidae are 

primarily marine-based aquatic infecting parasites, which may have a large 

reservoir of diversity found around Atlantic-based coasts, except the Saanich 

Inlet (which was the most divergent). This may also be an artifact of sampling 

bias, as the majority of the institutions and sampling locations were North 

American. However, there is also evidence for this inference found in the already 

described species, with the only terrestrial instances of described 

enterocytozoonid infection being found in human-related infections: E. bieneusi 

infects humans/livestock (locations: Czech Republic  (Sak et al., 2010), Uganda  

(Akiyoshi et al., 2009), Switzerland  (Mathis et al., 1999), Haiti  (Desportes et al., 

1985), Peru  (Cama et al., 2007), China  (Zhao et al., 2014), Ireland  (Graczyk et 

al., 2004)) and E. hepatopenaei infects livestock (locations: Thailand  (Tourtip et 

al., 2009), China  (Y. M. Liu et al., 2018), India  (Rajendran et al., 2016a), Vietnam  

(Ha et al., 2010), Australia (possibly)  (Hudson et al., 2001), Venezuela  (Tang et 

al., 2017), Indonesia  (Tang et al., 2016a) and Brunei  (Tang et al., 2015a). The 

other described species were found in Atlantic-based hosts (Table 2.7), or Seas 

adjacent to (P. theridion-North Sea)  (Nylund et al., 2010). However, there are 

two species described from the Arabian Sea/Indian Ocean (O. papernae and N. 

secunda)  (Diamant et al., 2014; Lom & Dykoá, 2002), showing that there are 

estuarine/marine instances outside of the Atlantic.  
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Figure 2.4: Locations of enterocytozoonid occurrences. (Red: described, 

published species; blue: freshwater metagenome sequences; green: terrestrial 

metagenome sequences; black: positive enterocytozoonid-like sequences) 

 

2.4.2 Phylogenetic positioning 

The phylogenetic positioning of the novel sequences (Figure 2.2a-c) and on 

average smaller pairwise distance estimates for the Nucleospora clade compared 

to the Enterocytozoon/Enterospora clade (average p-distance across all 

datasets: Enterocytozoon/Enterospora 0.169; Nucleospora 0.179) may indicate 

a greater radiation within the Enterospora/Enterocytozoon clade (or a clade that 

is sister to). This is also suggested by the majority of the novel sequences being 

placed within the Enterospora/Enterocytozoon clade and not within the 

Nucleospora clade. However, this could also be partially explained by the filtering 

bias, as these filtering techniques are designed to filter passive dispersing 

planktonic organisms. Whereas it would be less likely that the filtering-based 

techniques used would capture as many active dispersers, such as fish. As the 

Nucleospora clade has been predominately described infecting fish, it’s unlikely 

that the diversity of this clade would be represented as well 

Enterospora/Enterocytozoon in these samples. This portion of the study did not 

reveal any sequences that were similar to E. bieneusi. This suggests, given that 

the diversity of the novel sequences span throughout the tree, that E. bieneusi 
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may have more terrestrial-based “intermediate” species and not be present in 

these geographic locations. This concurs with the evidence of E. bieneusi in the 

River Shannon  (Graczyk et al., 2004), as estuaries would be an intermediate 

environment between marine life and terrestrial life. 

 

2.4.3 OTU and clustering: the abundance of Enterocytozoonidae 

The rate at which the Enterocytozoonidae are being discovered (first species 

described in 1985, six species out of 10 described in the past decade) suggests 

a very diverse family. However, it is not known whether this has been the result 

of selective sampling, as many of the enterocytozoonid species described infect 

human-affected species or a large evolutionary radiation. Evidence for the latter 

is inferred from a strong representative biodiversity for enterocytozoonid-like 

sequences in this study, making up, on average across all datasets, 18.04% of 

the total OTUs. While taking up a smaller proportion of ‘family’ clusters that are 

enterocytozoonid (Table 2.4), with an average of 2.4 (range of 1-4) clusters per 

data set, making up an average of 12.91% (4.16%-25%) of the clusters per 

dataset. This suggests that the Enterocytozoonidae sequences are likely more 

diverse than non-enterocytozoonid sequences. This percentage has risen from 

the proportion the Enterocytozoonidae made up with all sequences before the 

OTU analysis (12.7%). As the OTU analysis groups sequences that are 97% 

similar, a rise in the proportion of enterocytozoonid-like sequences would suggest 

greater pairwise differences between these sequences. Mirroring this are the 

sizes of the clusters, with enterocytozoonid-like clusters having more OTUs in 

every dataset. Considering the only enterocytozoonid-like sequences were found 

in eight (of 46) estuarine/marine datasets, it suggests a very diverse family, in the 

locations sampled. However, it is likely that some diversity has not been 

accounted for, as the 18s rDNA in general shows less taxonomic resolution than 

other markers, such as ITS1,2  (Tedersoo et al., 2015). 

 

2.4.4 Spatial distance and genetic diversity 

A lack of correlation between geographic distance and pairwise distance (Figure 

2.2a-c-Supplementary) suggests that spatial distance is not a dominant factor in 

the genetic distance between locations sampled in this study. As is the case with 



61 | P a g e  
 

many marine systems, due to such wide dispersal capabilities in a marine 

medium  (Cooke et al., 2016). What is likely a factor in the genetic distance 

between these locations is host availability/marine currents  (Huyghe & Kochzius, 

2018; White et al., 2010). As the primary means through which many of these 

organisms transmit/disperse is likely zooplankton, they would heavily rely upon 

the ocean currents. However, the consistent relatively low-level p-distance (0.146 

average across all datasets) from sequences that originate from the Atlantic 

suggests a ‘local’ (local being the Atlantic) radiation. With the larger p-distances 

coming from the more isolated locations (Saanich Inlet, Canada, and Adventfjord, 

Svalbard Archipelago, Norway).  

 

2.4.5 Intermediate host/host range 

The current understanding of intermediate hosts for the Enterocytozoonidae is 

severely lacking. Currently, five described species have been noted in different 

species. E. bieneusi (humans and various vertebrates), Nucleospora salmonis 

(various species of salmon)  (El Alaoui et al., 2006a; Foltz et al., 2009; Sakai et 

al., 2009), P. theridion/D. lepeophtherii (Atlantic salmon (Salmo salar) and its 

copepod parasite (Lepeophtheirus salmonis) (Freeman & Sommerville, 2009), O. 

papernae (blotchfin dragonet (Callionymusfilamentosus) and its copepod 

parasite (Lernanthropuscallionymicola)) and E. hepatopenaei (Penaeus 

vannamei and Penaeus monodon  (Tang et al., 2015b). With all 

enterocytozoonid-like sequences found in this study coming from marine-based 

filtered water samples, this study suggests that marine environments may hold 

many undescribed hosts for the Enterocytozoonidae. This would also concur with 

the inference that copepods may act as a reservoir for this family  (Freeman & 

Sommerville, 2009; Nylund et al., 2010).  

 

2.4.6 Implications of the variability of ITS in the published genome 

The ITS1 region has been used extensively in genotyping studies for E. bieneusi 

in various different, largely vertebrate, organisms. For this reason, it was a good 

reference marker to use when looking at the intraspecific diversity that can be 

found in a single host. However, the variability inherent in ITS regions and the 

diversity found among the E. bieneusi genotypes calls into question its validity as 
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a marker for infraspecific variation. This study suggests high intraspecific 

variability with 24 blast results for the ITS1 region, which has a wide range of p-

distances from 0 to 0.456 (average 0.066). This is also shown through phylogeny, 

with four of the genome sequences forming two new groupings and six joining an 

already described genotype (Figure 2.3). The remaining 12 were too divergent to 

form groupings with either sequences from the Baroudiet al (2018) study, or the 

10 mentioned. However, all fall within the genotype group1, which has the 

majority of the human infecting genotypes  (Baroudi et al., 2018). This group 

shows a large amount of variability, it is the most diverse genotype group, holding 

most of the human infecting genotypes  (Baroudi et al., 2018). Using the ITS1 

estimates alone, it suggests that the individual was infected by multiple variants, 

with a small number of (if any) clones, shown by a high variability in the ITS1 

sequences pulled from the genome. However, single-copy genes show low 

variability for E. bieneusi within a host, with an average nucleotide diversity of 

0.0015 (Table 2.5). The analysis also only showed eight of 128 genes that have 

SNPs called (Table 2.5), suggesting high conservation, which could indicate a 

highly clonal sample with areas of low variance; likely showing a functional 

variance under selective pressure. The contrasting variation seen between ITS1 

pairwise estimates and single-gene copy nucleotide diversity suggests that ITS1 

mutates at a quicker rate than functional genes, which is to be expected. So, 

inferences drawn from genotyping of E. bieneusi should be cautious, and likely 

use a cloning/next generation sequencing approach to avoid overestimation of 

genotypes in one host. Though due to their apparent ability to host-shift, there is 

no reason to suppose that they would retain a host specific genotype, unless 

there are environmental barriers preventing further host-shifting. It is possible that 

genotype group 1 (majority human genotypes) is the result of humans coming 

into contact with other humans more frequently, leading to sequences that are 

similar and have mostly been described in humans. Further research into this 

should involve methods that allow a look at total DNA of a single spore or 

genetically identical spores, produced by one spore. Though this is not currently 

feasible, as E. bieneusi spores are nota viable option for culturing.  
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2.4.7 Enterocytozoonid risk to aquaculture 

With such a diverse group of novel sequences coming from American-based 

coastal samples, it is feasible that these enterocytozoonid-like organisms could 

pose a threat to mariculture (cultivation of marine organisms in the open ocean). 

Cases of enterocytozoonid infections have already been described in farmed 

Atlantic salmon (Salmo salar) in Scotland and Norway, causing an economic loss 

through associated gill diseases and growth retardation  (Freeman et al., 2013; 

Gunnarsson et al., 2017; Mullins et al., 1994; Nylund et al., 2011) and, though 

shown S. salar can be infected through spores in the water column, it has also 

been inferred that they may also acquire the infection through another parasite, 

the salmon lice (Lepeophtheirus salmonis), a salmon parasite that D. 

lepeophtherii hyperparasitise. Though crustacea are farmed to a lesser extent in 

North America, as they are primarily farmed indoors, the country is taking a bigger 

step towards sustained farming of crustacea  (Pulidindi & Pandey, 2020). These 

farmed animals are, however, caught in the wild and kept in indoor farms  (Zmora 

et al., 2005), which could facilitate the transmission of Microsporidia into a closed 

system. One such example is Callinectes sapidus (Chesapeake Blue Crab). As 

mentioned, these are wild-caught then raised to a sellable size in indoor farms  

(Zmora et al., 2005). The native range of this species is the West Atlantic Ocean 

namely the Gulf Mexico, Chesapeake Bay, and Delaware. Three regions that 

showed some of the greatest numbers of novel enterocytozoonid-like sequences, 

in this study. Though there has not been any recorded enterocytozoonid infection 

in C. sapidus, it has been shown that the family does infect crustacea, specifically 

crabs (H. eriocheir) and sometimes multiple crabs (En. canceri). There have also 

been past records of non-enterocytozoonid microsporidian infections in blue 

crabs, from Ameson michaelis and Glugea stephani (Sprague, 1965, 1970; 

Overstreet, 1977, 1988) (Overstreet, 1988; Overstreet & Howse, 1977; Sprague, 

1965, 1970). 

 

2.4.8 Summary 

Online metagenomes are a good resource for parasite-based risk assessment 

studies when looking at the various ways areas may be impacted. Though it is a 

resource that needs prior physical research to be utilised properly (making 

inferences about the rest of the Enterocytozoonidae and what they infect and how 
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that may relate to non-described species) and needs to be followed up with 

further collection of samples to verify these results. However, this study has 

suggested that the Enterocytozoonidae have a wide, Atlantic centred, 

distribution. It also suggests a greater diversity, than currently described, found 

in planktonic communities. There is some evidence to suggest that the evolution 

of the Enterocytozoonidae is linked to the Atlantic Ocean, however, some species 

have been described in non-Atlantic oceans and terrestrially. 

 

2.4.9 Future research and limitations of this type of study: 

Though this approach is useful in getting estimates of diversity and distribution, 

further research needs to be carried out collecting physical samples from the 

locations noted here and surrounding areas, in order to get that a better estimate 

of the threat this family may pose to the farming industry in these locations. The 

inferences made from purely metagenomic data are limited, especially when 

looking at intracellular parasites. Limitations of this type of study also lay with 

sampling locations, as data are limited to where prior researchers have shown 

interest and their sampling methods.  
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2.5 Supplementary tables and figures: 

 

Table 2.1 

Described representatives for UCLUST clustering. 

Species Accession Number 

Amblyospora stimuli AF027685.1 

Edhazardia aedis AF027684.1 

Amblyosporaopacita AY090052.1 

Hazardiamilleri AY090067.1 

Gurleya daphniae AF439320.1 

Vairimorpha sp. KP208681.1 

Hamiltosporidiummagnivora AJ302318.1 

Weiseria AF132544.1 

Polydispyreniasimuli AJ252960.1 

Paranosemaloctstae AY305324.1 

Amblyosporabracteata AY090068.1 

Pleistophoraanguillarum AJ278953.1 

Pleistophoramirandellae AJ295327.1 

Vavraiaculicis AJ252961.1 

Pleistophoratypicalis AF044387.1 

Glugeaanomala AF056016.1 

Pseudolomaneurophilia AF322654.1 

Loma salmonae HM626203 

Microsporidium prosopium AF151529.1 

Dictyocoelaberillonum AJ438957.1 

Spraguealophii AF104086.1 

Glugeaamericants AF056014.1 

Amesonmichaelis L15741.1 

Thelohaniacontejeani AF492593.1 

Nosema granulosis FN434087.2 

Nosema bombycis AY259631.1 

Nosema ceranae LC510190.1 

Nosema aespula U11047.1 

Vairimorpha imperfecta AJ131645.1 

Nosema apis U26534.1 

Encephalitozoon cuniculi L07255.1 

Ordospora colligata AF394529.1 

Cystosporogenesoperophterae AJ302320.1 

Vittaforma corneae U11046.1 
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Glugoidesintestinalis AF394525.1 

Hepatospora eriocheir HE584635.1 

Nucleospora salmonis AF185987.1 

Enterocytozoon bieneusi ABGB01000919.1 

Anncaliia algerae AY230191.1 

Janacekiadebaisieuxi AJ252950.1 

Pseudonosemacristatellae AF484694.1 

Trichonosemapectinatellae AF484695.1 

Schroederaplumatellae AY135024.1 

 

 

Table 2.2 

All sequences used for ITS1 tree, from BLASTN analysis and Baroudi et al study  

(Baroudi et al., 2018). 

Sample ID Accession Code Genotype Host Species 

N/A ABGB01001206.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001053.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001211.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001498.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001406.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001496.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01000732.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001533.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001612.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01000756.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01000820.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001462.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001242.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001482.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001610.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01000374.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001290.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001369.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001147.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001626.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01000947.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01001084.1 Group 1 Human *E. bieneusi genome 

N/A ABGB01000781.1 Group 1 Human *E. bieneusi genome 
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N/A ABGB01001534.1 Group 1 Human *E. bieneusi genome 

CHN4 HM992511 Group 1 Human *Baroudi study 

IV AF242478 Group 1 Human *Baroudi study 

Peru2 AY371277 Group 1 Human *Baroudi study 

CAF2 DQ683747 Group 1 Human *Baroudi study 

CAF1 DQ683746 Group 1 Human *Baroudi study 

HAN1 EF458627 Group 1 Human *Baroudi study 

EbpC AF076042 Group 1 Pig *Baroudi study 

Donkey 1 KJ941131 Group 1 Donkey *Baroudi study 

D AF101200  Group 1 Human *Baroudi study 

Linked-D DQ836345 Group 1 Cat *Baroudi study 

KB-3 JF681177 Group 1 Baboon *Baroudi study 

WL14 AY237222 Group 1 Muskrat *Baroudi study 

C AF101199  Group 1 Human *Baroudi study 

Q AF267147 Group 1 Human *Baroudi study 

Peru16 EF014427 Group 1 Human *Baroudi study 

BEB3 AY331007  Group 2 cattle *Baroudi study 

BEB6 EU153584 Group 2 cattle *Baroudi study 

BEB7 EU153585 Group 2 cattle *Baroudi study 

WL5 AY237213  Group 3 Muskrat *Baroudi study 

WL4 AY237212  Group 3 Muskrat *Baroudi study 

WL6 AY237214  Group 3 Muskrat *Baroudi study 

Nig4 JN997480 Group 7 Human *Baroudi study 

Nig3 JN997479 Group 7 Human *Baroudi study 

Gorilla 3 JQ837796 Group 8 Gorilla *Baroudi study 

Macaque1 JX000572 Group 8 Macaque *Baroudi study 

KB-5 JF681179 Group 8 Baboon *Baroudi study 

Horse 2 KX276713 Group 8 Horse *Baroudi study 

Horse 2 KJ941139 Group 8 Horse *Baroudi study 

Horse 2 GQ406054 Group 8 Horse *Baroudi study 

XJH1 KU194603 Group 8 Horse *Baroudi study 

YNH1 KX276712 Group 8 Horse *Baroudi study 

CE01 KU847350 Group 8 Squirrel *Baroudi study 

KB-6 JF681180 Group 5 baboon *Baroudi study 

CAF4 DQ683749 Group 5 Human *Baroudi study 

WL2 AY237210 Group 4 Raccoon *Baroudi study 

WL3 AY237211 Group 4 Raccoon *Baroudi study 

WL1 AY237209 Group 4 Raccoon *Baroudi study 

WL26 KF591687 Group 4 Raccoon *Baroudi study 

WW6 JQ863274 Group 6 Wastewater *Baroudi study 

WW7 JQ863275 Group 6 Wastewater *Baroudi study 
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AF059610 AF059610 N/A Dog *Baroudi study 

NED4 KM870518 N/A Dog *Baroudi study 

 

Figure 2.1a 

Geographic distance against pairwise distance estimates for dataset 600 

 

 

2.1b 

Geographic distance against pairwise distance estimates for dataset 985 

 

2.1c 

Geographic distance against pairwise distance estimates for dataset 1470 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2000 4000 6000 8000 10000 12000

P
ai

rw
is

e 
d

is
ta

n
ce

Kilometers

Geographic distance against pairwise distance

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2000 4000 6000 8000 10000 12000

P
ai

rw
is

e 
d

is
ta

n
ce

Kilometers

Geographic distance against pairwise distance



69 | P a g e  
 

 

Figure 2.2  

Correlation between number of sequences and OTUs 
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Figure 2.3 

 

 

 

Figure 2.4 
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Figure 2.5a 

 

 

2.5b 
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Chapter 3: Investigating the diversity of Enterocytozoonidae using 

environmental samples 

 

3.1 Introduction 

 

Plankton have been filtered from water samples for over a century, predominantly 

for classification and biodiversity studies (W. J. Clark & Sigler, 1963). These 

studies were often laborious, and time-consuming, as filtered plankton would 

need to be sorted and classified by experts in their field. However, with the 

advancement in molecular techniques and technologies, DNA barcoding has 

allowed researchers to amplify taxa-specific genetic regions  (Blanco-Bercial et 

al., 2014; Djurhuus et al., 2017). This has led to a great number of possibilities in 

the way that environmental samples can be analysed. It has allowed researchers 

to efficiently screen for organisms at a fraction of the cost and time when 

compared to direct observation, via surveys and sampling of whole organisms. 

Its uses include, but are not limited to, detecting invasive or rare species  (Furfaro 

et al., 2020; Madden et al., 2019) looking at distribution and diversity  

(Hartikainen, Ashford, et al., 2014; Ward et al., 2018) as well as community 

analysis  (Blanco-Bercial et al., 2014; Djurhuus et al., 2017). DNA barcoding is 

also used in a very applied manner too, and is also used to help make and police 

policy, critical in ecological studies  (L. F. Clark, 2015; Floyd et al., 2010). 

Environmental DNA (In this study, the term environmental DNA refers to the 

process of filtering environmental samples (soil or water for example) and 

extracting DNA from what remains on the filter (filtride)) has become very useful 

in studies looking at organisms that are otherwise difficult to study on a wide 

scale. For example, it is sometimes used to study the distribution of intracellular 

parasites  (Hartikainen, Ashford, et al., 2014; Hartikainen, Stentiford, et al., 2014; 

Ward et al., 2018). Research that historically would be undertaken via histological 

means. A process far more time consuming than sequencing of multiple species.  

 

Amplicon-based sequencing of environmental DNA and the rise of generic 

primers have proved useful in the investigation of intracellular parasites in the 

environment. As much of their lifecycle is linked and they are reliant on hosts to 

propagate, the spatial and temporal distributions of endoparasites are often 

strongly linked to those of their hosts  (Byers et al., 2019; González & Poulin, 
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2005). This allows parasitologists to get a good understanding of the ecology and 

distribution of some endoparasites by collection and pooling of possible hosts  

(Ward et al., 2018). This is also likely to be very useful for parasites that are able 

to infect multiple hosts, as collecting known hosts (that will have their own habitat 

ranges) of the parasite of interest would only give a partial understanding of the 

parasite’s role and effect on an ecosystem. This includes parasites like 

Microsporidia, frequently described as, and shown to be opportunistic with 

multiple hosts. 

 

Pooling of possible hosts is undertaken in a number of different ways, from 

filtering environmental samples, such as water or soil  (Ardila-Garcia et al., 2013; 

Hartikainen, Stentiford, et al., 2014), to using capture/lure based methods, such 

as a malaise traps  (Shimabukuro et al., 2016). However, filtering of 

environmental samples may also include propagules of pathogens in the 

environment  (Gunnarsson et al., 2017) which may, depending on the aim, falsely 

inflate pathogen diversity in hosts. Pooling also removes many of the limitations 

placed on single host-based metabarcoding, where samples can include 

hundreds to thousands of organisms. In many cases, intermediate hosts are 

integral in the transmission of pathogens to their ‘main’ host where they can 

reproduce  (Otranto et al., 2006), and in some cases multiple hosts are required 

to finish the pathogens life-cycle (obligate multi-host pathogens)  (Bowden, S. E. 

& Drake, 2013). In these cases, identification of intermediate hosts for pathogens 

of note would take time. Pooling can also be used to screen for intermediate hosts 

for pathogens of larger organisms as well as gain a better understanding of a 

pathogens full life-cycle.  

 

Routes of enterocytozoonid, and Microsporidia as a whole, discovery are 

predominantly through histological and molecular characterisations of infected 

economically important hosts  (Nylund et al., 2010; G. D. Stentiford et al., 2011; 

Tourtip et al., 2009). However, outside of initial descriptions of infection of a 

particular host of importance, enterocytozoonids are infrequently discovered in 

environmental studies. This is likely the result of no direct studies looking at 

enterocytozoonid distribution, and the aforementioned (Chapter 2) variation 

found in universal marker regions. This makes them unlikely to be picked up by 

broad eukaryotic, or even fungal primers. As a result, the current understanding 
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of the family’s distribution and abundance could be biased towards the locations 

of commercial hosts. The only two species to get a thorough investigation of 

abundance are Enterocytozoon bieneusi and Enterocytozoon hepatopenaei, 

though these studies are still based around human-influenced areas, leaving their 

‘wild’ distribution largely unknown. However, there have been studies 

investigating environmental biodiversity that have come across 

enterocytozoonid-like sequences  (Arundell et al., 2015; Shen et al., 2017) that 

were highly similar to described species. But considering how diverse and 

abundant they are likely to be (Chapter 2), the lack of more enterocytozoonid-like 

sequences in large-scale eDNA/generic amplicon studies showcases the need 

for direct/specialised study of this family and indeed, Microsporidia. 

 

Four enterocytozoonids (Hepatospora eriocheir, E. bieneusi, Desmozoon 

lepeotherii, and Enterospora canceri), have been described within UK waters  

(Freeman & Sommerville, 2009; Graczyk et al., 2004; G. D. Stentiford et al., 2007, 

2011). These four species are quite divergent, D. lepeotherii and En. canceri are 

on different branches of the two major enterocytozoonid lineages (Nucleospora-

like species and Enterocytozoon-like species, respectively), D. lepeotherii infects 

fish  (Freeman & Sommerville, 2009; Gunnarsson et al., 2017), E. bieneusi infects 

vertebrates  (Desportes et al., 1985; Jiang et al., 2015), and En. canceri infects 

crustacea  (G. D. Stentiford et al., 2007, 2011). Although H. eriocheir also infects 

crabs, it is considered a sister taxa/basal enterocytozoonid. With such divergent 

enterocytozoonid species described in UK waters, it is possible that there are 

undescribed intermediate species between H. eriocheir, E. bieneusi, D. 

lepeotherii, and En. canceri.  

 

The aim of this study is to investigate the unknown diversity and distribution of 

the Enterocytozoonidae in the South West of the UK. Primarily screening 

environments that could come into contact with humans. This will involve urban 

areas in which water bodies reside around or run through, or wild areas close to 

farms. This will help give a better idea of their distribution and any patterns 

therein, such as any associations with the type of environment/invertebrate host. 

The identification of environments and hosts associated with enterocytozoonids 

will also enable the prediction of possible future threats to aquaculture, and 

human health. Screening of human-influenced areas allows for more direct 
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predictions, as the pathogenic species identified would be the most likely to enter 

the human food-chain. The reason this study is being carried out in the South 

West of England is that two species of Enterocytozoonidae have been described 

on the South coast (En. canceri-Weymouth, UK; H. eriocheir-River Thames, UK). 

This provides a good starting place to look for diversity, as these species are 

quite genetically divergent, which would lead to reason that there may be greater 

diversity found between these two evolutionary points. A second reason for the 

location of sampling is that many of the species described and many of the 

undescribed sequences discussed in Chapter 2, are found in, or directly 

connected to the Atlantic Sea. The South West would be under the most influence 

from the Atlantic Sea. There is also a study that has identified, through 18s rDNA 

amplicon, an Enterocytozoonidae-like organism found in crustacea from River 

Seine, France  (Arundell et al., 2015). Showing that they are also found inland, in 

freshwater rivers.  

 

3.2 Methods and analysis 
 

Though the large majority of enterocytozoonid discovery has been based on 

direct histological identification  (Chilmonczyk et al., 1991; Desportes et al., 1985; 

Lom & Dykoá, 2002; Tourtip et al., 2009), due to the difficult nature of collecting 

endoparasites and the exploratory nature of this study, it would prove more time-

efficient and productive to extract DNA from water samples. To this end, a 

sampling plan was carried out that would enable efficient screening of 

enterocytozoonids in the aquatic environment. Enterocytozoonidae-like 

sequences from a previous unpublished freshwater study (KJ019847-50.1) from 

the UK were also added to downstream analysis to investigate if the species 

discovered were similar. 

 

3.2.1 Primer design 

To investigate enterocytozoonid biodiversity and distribution in South West UK, 

enterocytozoonid specific primers were designed with the aim of using them to 

detect the presence of the Enterocytozoonidae by PCR-screening filtered water 

samples. The primers were designed to amplify the 18s rDNA region, being the 

region most routinely used for microsporidian phylogenies, and would provide the 

best comparison. To pick the best region for a primer, an alignment was made of 



76 | P a g e  
 

all the described enterocytozoonids (Table 3.1-supplementary), novel sequences 

gained from the metagenome search (in Chapter 2), non-enterocytozoonid 

microsporidians found in aquatic organisms, enterocytozoonid hosts, and 

representatives from aquatic organisms. When appropriate regions were 

identified, primers were checked using Netprimer (http://www.premierbio 

soft.com/netprimer/netprlaunch/netprlaunch.html) to test for self-annealing and 

compatible annealing temperatures for primer pairs. 

 

3.2.2 PCR optimisation 

Three primer sets (Table 3.1) were designed with the second two being nested 

to ensure specificity. They were first tested on an extraction of En. canceri and 

N. cyclopteri to see if they worked on a range of known enterocytozoonids. 

Primers were optimised using a temperature gradient (52.9oC, 53.7oC, 54.6oC, 

55.7oC, 56.6oC, 57.6oC, 58.6oC, and 59.3oC), to ensure the continued use of the 

best temperature for each particular primer pair. PCRs were carried out on 25µl 

reactions (12.5µl of gotaq master mix, from promega, 2µl of the forward, reverse 

 

Table 3.1: Novel Enterocytozoonidae specific primers designed to amplify the 18s 

rDNA region 

Primer ID Sequence 5’-3’ Expected length of 

amplicon (with erv1751) 

Efw118-2 GGCTCAGTAATRTTGCGVT 950bp 

 (Nested)Efw457 ATGGCTCCYACGTCCAA 787bp 

 (Nested) Efw691 TGYCYATKGTGGRTGCTGC 597bp 

Erv1751 ATTGTATTGCRCTTGCDGC N/A 

 

primers and the template and 6.5µl of sterile water), consisted of an initial 10 

minutes denaturing at 95oC, then 35 cycles of [denature at 95oC for 35 seconds, 

annealing at 55oC for 45 seconds and extension at 72oC for 1 minute 30 seconds], 

final extension at 72oC for 10 minutes and a rest period at 4oC. Amplicons were 

run on a 1.5 % agarose gel, at 100 volts for 30minutes, to verify amplification, 

and were stored at -20oC. Lastly, the sensitivity of the primers was tested by 

taking Six 1/10 serial dilutions of an En. canceri extraction, starting at a starting 

concentration of 8.5 ng/µl, as they were designed to be used on environmental 

samples, and any target DNA is likely to be of low concentration. To test their 
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efficacy on pooled filtered samples, they were tested on past UK environmental 

samples that were collected in 2011 (Table 3.2) for a separate project  (B. A. P. 

Williams et al., 2018) but have been collected and prepared using similar 

methods proposed for this study. The primers were also tested against other non-

enterocytozoonid microsporidian extractions to ensure they would not amplify 

more closely related organisms.  

 

Table 3.2: Table of ‘test’ samples screened in this study 

Location Sample ID Number of 

samples 

Sample type 

Pond, Exeter, UK PS 27 Invertebrates 

Burrator reserve, Dartmoor, UK O 11 Filtrate fresh water 

River Exe, Exeter, UK ES 35 Water 

Plymouth, UK CPR 30 Sediment 

Ria Formosa, Portugal ASW 32 Plankton 

Southampton, UK DB 16 Copepods 

 River Teign, Teignmouth, UK EST 11 Marine sediment 

Not available BW 9 Water 

Torquay, UK R 28 Marine water 

Exeter, UK PN 20 Pond water 

Burrator reserve, Dartmoor, UK BG 43 Bog water 

Not available ESC 16 Marine water 

 

3.2.3 Sampling sites 

To gather a better understanding of the range and distribution of the 

Enterocytozoonidae, samples were taken along an estuarine transect. The 

transect locations for this study focused on the five rivers running through the 

largest urban areas in the South West: Exeter/Exmouth-River Exe, Plymouth-

River Tamar/Plym, Teignmouth-River Teign, and Barnstaple-River Taw (Figure 

3.1). The River Exe is a 96 km river, that has a large fishing community centred 

around it. The River Exe has also garnered scientific interest over the years, with 

regards to the sustainability of salmon stocks  (Edbrooke, 2004; Nott & Beale, 

1968). The River Teign is a 50 km long river and used to be a commercially 

important fishing port for Teignmouth  (Bielby, 1963) but is still used for personal 

fishing for finfish and shellfish  (Inshore Fisheries and Conservation Authority, 

2019). The River Taw is a 72km river that is used for commercial fishing  (RTFA 

(River Taw Fishing Association), 2020), that supports trout and salmon all year-
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round. It also acts as one of only two refuges to the endangered freshwater pearl 

mussel  (West Country River Trust, n.d.), an indicator species on the decline. The 

River Tamar is a 98km river is one of the three index rivers in England and Wales, 

with a long record of salmon and trout fishing  (Environment Agency, n.d.). It is a 

SSSI (Site of Specific Scientific Interest) due to its unique conditions that support 

rocky reefs in low salinity conditions  (Plymouth Gov, n.d.). All rivers also support 

a large number of wildfowl and wader species, providing ample means of 

dispersal to surrounding water bodies. Primarily, this study aims to filter pelagic 

crustacea as, besides fish, most species of Enterocytozoonidae seem to infect 

crustacea as a primary host or intermediate host. For this reason, crustacea are 

likely the most important hosts in the life cycle and in the evolution of the group 

as a whole. Coastal plankton were also sampled, as all transect rivers mentioned 

above lead into the English Channel, which may show associations as a result. 

Here marine copepods were the main target of the sampling as they have been 

shown to be intermediate hosts for other species within the family (P. theridion 

and O. papernae). These samples were collected while on the CEFAS ship, 

Endeavour, as part of its annual PELTIC survey. This survey covers the Western 

Channel and part of the Celtic Sea (Figure 3.1). Samples were also collected 

from the North Sea, from Dowsing, Dogger, West Gabbard, and Warp. These 

were collected as part of a smaller survey, so fewer samples were collected. 

However, it offered the opportunity to extend the survey of enterocytozoonid 

diversity to the North Sea. 
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Figure 3.1: Sampling locations of major South West UK estuaries, and coastal 

transects. (Estuarine samples (green dots) include the River Taw, Tamar, Teign, 

Exe, and Plym. Coastal transects (red dots) follow around the “foot” of the UK) 

 

 

3.2.4 Transect sampling: 

 

3.2.4.1 Estuarine transects 

Water samples were collected in Autumn 2018, Spring, Summer, and Autumn 

2019, to try to capture the varying spawning times of different aquatic 

invertebrates. Transects moved up from the mouth of the estuary, with an initial 

sample at the mouth and subsequent samples were taken roughly after every 1 

km (terrain allowing) for 4 km (Table 3.3). 10 L of water were collected along the 

transect from approximately the top 30 cm of the water body, aiming for pelagic 

organisms and avoiding too much sediment, as this would clog the filter. This was 

then filtered through a 100 µm cell strainer, using a modified 50 ml falcon tube as 

a funnel (Figure 3.2). The filtrate on the cell strainer was then washed into a clean 

50 ml falcon tube, using absolute EtOH. Three samples were taken per sampling 

effort (12 in total for each estuary). Samples were stored at -20oC until DNA 

extraction. Due to the high sensitivity of environmental DNA methods, there is a 

high risk of false positives due to contamination. Additionally, while on the 

transect, when seen, larger invertebrates were collected to give a better 

understanding of the types of invertebrates the Enterocytozoonidae may be 

infecting in the same location as the transects. Larger invertebrates were only 

collected from two locations a shore crab (Carcinus maenas) from the River Exe 

and mussels (Mytilus sp.) from the River Tamar and the River Thames, due to 

availability.  

 

Several studies have looked at minimising these risks, by taking steps to avoid 

contamination in the field and the lab (Goldberg et al., 2016). To avoid 

contamination between transect sites, a new cell strainer was used for every site, 

and the falcon funnel was sterilised using a strong detergent, Virkon, and washed 

using absolute EtOH. To assess the risk of contamination through this method, 

sterile water was taken through every step per sampling effort. 
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Table 3.3: Estuarine transect coordinates of South West Rivers. 

Site Location 1st Transect 2nd transect 3rd transect 4th 

transect 

River Exe Exeter, UK 50.653758, -

3.455638 

50.656828, -

3.457201 

50.662887, -

3.467046 

50.627318, 

-3.447105 

River Teign Teignmouth, 

UK 

50.53861, -

3.575150 

50.539618, -

3.545451 

50.540356, -

3.525879 

50.540672, 

-3.517612 

River Taw Barnstaple, 

UK 

51.061599, -

4.181147 

51.068661, -

4.178822 

51.073233, -

4.167554 

51.075457, 

-4.160918 

River Tamar Plymouth, UK 50.389492, -

4.192594 

50.397406, -

4.203709 

50.407329, -

4.201536 

50.416634, 

-4.196347 

River Plym Plymouth, UK 50.360869, -

4.127425 

50.360846, -

4.116228 

50.365865, -

4.109044 

50.374796, 

-4.104569 

River 

Thames 

London, UK 51.487829, -

0.246872 

N/A N/A N/A 

Lumpini Park 

lake 

Bangkok, 

Thailand 

13.731659, 

100.540661 

N/A N/A N/A 

Queen Sirikit 

Lake 

Bangkok, 

Thailand 

13.806168, 

100.550150 

N/A N/A N/A 

 

 

 

 

Figure 3.2:Diagram showing filtration method employed in this study. 10L of 

estuarine water is passed through the adapted 50ml falcon tube (on the left) with 

a 100 µm filter attached, the filter is then placed on a regular 50ml falcon tube 

(right) and the filtride is washed into the tube with absolute EtOH. 

 

100 µm cell strainer 

Adapted 50ml falcon 
(funnel) tube 

100 µm cell strainer 
with filtered material 

Regular 50ml falcon 
tube with EtOH 
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3.2.4.2 Coastal transect 

All coastal plankton sampling was carried out between the 6th of October 2018 

and the 10th of November 2018. A weighted 0.5 m diameter ring net with a filter 

diameter of 80 µm was used to filter plankton from the water column (Figure 3.3). 

Once the ship (Endeavour) was stationary, the ring net was deployed to the 

maximum depth of the sampling location (Table 3.4) and pulled up at a quicker 

rate to capture the zooplankton in the water column. All sampling was done after 

12:00 am as that is when the zooplankton rise to the surface of the water column. 

When the ring net was brought to the surface, the outside of the net was washed, 

to push any plankton that may be stuck on the net down to the filter. The filtride 

was washed out of the filter using filtered seawater. The samples were then 

equally split using a Fulsom splitter, with one half being placed in absolute EtOH 

for DNA extraction and the other placed in Davidson's fixative for histology. The 

subset for histology was left in the Davidsons for 24h before being placed in 70% 

IDA. 

 

 

Figure 3.3: 0.5 m ring net used to filter zooplankton from the water column, 

attached with an 80 µm diameter filter. 

 

Table 3.4: Sampling locations and depth of PELTIC coastal transect 

Sample ID Station number Prime station Coordinates Depth (m) 

PEL 1 46 50 50.48035, -5.088 25 

PEL 2 48 79 50.70438, -4.932 37.6 

PEL 3 61 82 50.35027, -5.541 42.3 

PEL 4 140 23 50.16788, -4.602 56.6 

PEL 5 143 21 50.00543, -4.334 69 

PEL 6 151 20 50.32048, -4.332 21 

PEL 7 154 17 50.16042, -4.077 50.8 

PEL 8 214 15 50.1652, -4.802 53.8 

PEL 9 218 13 50.1646, -3.570 52.5 

PEL 10 228 10 50.33942, -3.303 50.5 

 

0.5 m 

80 µm 
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3.2.5 Additional estuarine/invertebrate sampling: 

 

Though out of the sample scope for this study, a chance arose to collect samples 

from the River Thames at Chiswick (Table 3.3) and freshwater sources in 

Bangkok, Thailand. Though it was not possible at the time to collect samples in 

a comparable way to the rest of the study, screening samples from waterbodies 

going through the most populated cities in the UK and Thailand (meaning a higher 

perceived risk, due to the density of people in the city leading to a raised likelihood 

of interaction and transmission to livestock), would be relevant to the study. Three 

water samples were taken from UK and Thai locations, using the same protocol 

mentioned above, along with 40 Gammarus sp., 20 Nereid worms, and five 

Chinese mitten crabs (Eriocheir sinensis) just from the UK. All were placed in 

absolute EtOH for DNA extraction.  

 

3.2.6 Sample preparation and DNA extraction 

50ml falcon tubes (with filtrates) were placed in a centrifuge for 10 minutes at 

3000 x g to pellet the filtrate. The supernatant was discarded and 500 µl of TE 

buffer was added. The re-suspended filtrate was then transferred to a 2 ml screw-

cap vial and placed back in -20oc, defrosting was a part of the tissue lysis. Crabs 

were dissected and the muscle tissue and hepatopancreas were taken. 

Gammarus sp. were homogenised using a sterile mortar and pestle with 2 ml 

10/1 TE buffer, and the resultant homogenate was placed in 2 ml screw-cap vials 

for extraction. Cross-sections were taken from mussels the same day as 

collection, placed into absolute EtOH immediately, and stored in -20oc for later 

extraction. All DNA from this study was extracted from 500 µl of samples using 

phenol-chloroform extraction. Samples were resuspended, and if needed, 

transferred to a 2 ml screw-cap tube along with 10 µlof 10% SDS, 2 µl of 10 mg/ml 

RNAse, 400 µl of (0.17 - 0.18 mm) glass beads (Fisher Scientific™), and 800 µl 

of pH 8.0 phenol. The samples were then placed into a tissue lyser at 4500 rpm 

for 45 seconds and centrifuged at 10000 x g for 10 minutes. The top aqueous 

layer was transferred to a fresh Eppendorf and 400 µl of chloroform was added. 

This was mixed by inversion (x5), and the mixture was centrifuged at 10000 x g 

for 10 minutes and the top aqueous layer was transferred to a new 1.5 ml 

Eppendorf.  
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3.2.7 EtOH precipitations 

1/10 of the final volume of 3M sodium acetate was added followed by 2/1 of the 

final volume of ice-cold absolute EtOH. The solution was mixed through 

inversion. This was stored on ice for 1hour and centrifuged (at -4oC) for 30 

minutes at 10,000 x g. The supernatant was discarded, and the pellet was 

washed in 300µl of ice-cold 75% EtOH. The solution was centrifuged for a further 

15 minutes at 10,000rpm (at -4oC). The supernatant was removed and spun at 

full speed to remove any residual EtOH. The pellet was left to dry for 10-20 

minutes in a 60oc incubator. The dried DNA was resuspended in 40 l of sterile, 

nuclease-free water. 

 

3.2.8 PCR purification, sequencing, and cloning: (Refer back to PCR 

optimisation) 

Positive amplicons were cut out of the gel at the size range expected and purified 

using QIAquick PCR Purification Kit and sent to Eurofins, for initial sequencing. 

Sequencing reactions were carried out in one direction, using the nested efw691-

erv1751 amplicons, giving a product that should be around 650bp. All sequences 

were assessed by eye in Sequencher version 5.4  (Nishimura, 2000) and viewed 

and edited in BioEdit version 7.2.5  (Hall, 2013). Those that were 

enterocytozoonid were cloned, to capture the full diversity found among the 

amplicons. Samples were ligated into a pGEM®-T Vector, following the Promega 

standard protocol for T4 DNA ligase, and transformed into One Shot TOP 10 

Escherichia coli competent cells. 50 μL of purified amplicon and 50 μL of X-Gal 

Solution (20 mg/mL) were then placed onto a 1% ampicillin (50 µg/ml) agar plate 

(1:1000) and left in a 37oc incubator overnight. Five colonies were taken from 

each plate and placed into separate vials of liquid media, in a rocking incubator 

at 37oC overnight. These were pelleted at 10,000 x, in a tabletop centrifuge and 

plasmids were isolated from cells using a QIAprep Spin Miniprep kit. Plasmids 

are sent for sequencing using T7 plasmid primers. 

 

3.2.9 Sequence analysis 

Initial sequence identification was carried out using BLASTN  (Altschul et al., 

1990), under default parameters using NCBI’s Nucleotide collection database. To 

better understand the relationship of these novel sequences to described 
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enterocytozoonids, all sequences produced in this study were aligned to 

published enterocytozoonid 18s rDNA (E. hepatopenaei, En. canceri, E. bieneusi, 

H. eriocheir, En. nucleophila, P. theridion, D. lepeotherii, N. cyclopteri, N. 

salmonis, O. papernae, and N. braziliensis) (Table 3.1-supplementary) 

sequences to create a phylogenetic tree. All sequences in this study were aligned 

in MAFFT version 7  (Katoh & Standley, 2013), under default parameters, and 

tested for the best fitting substitution model using MEGAX  (Kumar et al., 2018). 

Evolutionary relationships were inferred using maximum likelihood, implemented 

in RAxML-HPC ver 8.2.4  (Stamatakis, 2014) [Generalised time-reversible (GTR) 

with the GAMMA rate of heterogeneity and invariable sites (GAMMA+I)]; 1000 

bootstrap replicates were run on all trees. The tree GUI TreeGraph version 2.1.5  

(Stöver & Müller, 2010)was used to view the trees built. A pairwise divergence 

analysis was also done to assess the difference between closely related 

sequences, using the Tajima-Nei  (Tajima & Nei, 1984) model in MEGAX.  

(Kumar et al., 2016). 

 

3.3 Results 

 

In total, 232 of the 2011 test environmental samples (from twelve separate 

locations, a mix of both estuarine and fresh water and marine), 60 estuarine 

transect samples (from five different estuaries), and 14 coastal transect samples 

(from 14 different locations) and seven invertebrate samples (from two different 

locations) were screened (Table 3.6). 

 

3.3.1 Validation/optimisation of family-specific PCR primers 

To test the specificity and effectiveness of the primers, the primers were tested 

on enterocytozoonid, non-enterocytozoonid, and filtered environmental samples. 

The primers successfully amplified the En. canceri control, while not amplifying 

any product from any of the non-enterocytozoonid samples tested so far. They 

have amplified all DNA concentrations from the serial dilution series (Figure 3.4), 

and have currently amplified three described species, En. canceri, N. cyclopteri 

and E. hepatopenaei. Though the primer sets were successful over a range of 

annealing temperatures, the one that gave the greatest concentration of amplicon 
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across all primer sets was 55oc. This temperature was used for all PCRs in this 

study. 

 

 

Figure 3.4: Gel image of amplification of serial dilutions of En. Canceri DNA, 

using primer pair efw118-2 – erv1751, amplifying the 18s rDNA region. Run on 

a 1.5% agarose gel run at 100V for 30 minutes. 

 

3.3.2 Sequencing of negative controls 

To test for possible routes of contamination, negative controls (sterile water) were 

taken at each sampling effort and put through each step the filtered samples were 

(per sampling effort). All negative controls showed a lack of amplification for all 

sampling efforts (Figure 3.5). As such, all positives are taken as true positives for 

the rest of the analysis. 

 

 

Figure 3.5: Negative control amplicons for estuarine transects (left) and for 

PELTIC coastal transect (right) samples taken through the extraction and 

amplification. Run on a 1.5% agarose gel run at 100V for 30 minutes. 
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3.3.3 Prevalence of enterocytozoonids in the environment 

The prevalence of positive amplicons varied depending on the source/location of 

the samples. Larger invertebrate samples showed the highest percentage of 

enterocytozoonid-like amplicons, with four (57.1%) sequenced amplicons. 50 

(21.5%) were positive from the 2011 samples across twelve of the locations, nine 

(15%) from the estuarine transect samples across three locations (two rivers had 

no positive amplicons), three (28.6%) from the Celtic Sea/English Channel 

coastal transect and one (25%) from the Northern Sea transect. The River Exe 

transect showed the greatest number of positive amplicons (33.33% of River Exe 

samples), and diversity (three species). Cloning was largely unsuccessful, of the 

34 clones sequenced only four colonies were successfully sequenced. Time 

constraints prevented further cloning. Two of these (River Exe Exeter UK-Et2-

clone2, River Exe Exeter UK-Et2-clone4) are from the same isolate, so may 

provide some indication towards diversity found in one sample. 

 

3.3.4 Datasets composition 

As some sequences varied in length (sequencing errors), covering different 

regions of 18s rDNA, two final aligned datasets were constructed spanning the 

range of all sequences included in this study (Table 3.5). The aligned datasets 

(range: 241-395bp) showed a similar amount of phylogenetically informative and 

variable sites (Table 3.5), showing no bias for a particular region of the 18s rDNA. 

Datasets have ranging availability of certain sequences because of the variability 

in sequence lengths, even among the described species. As such E. bieneusi is 

not represented in the analysis of dataset 2. 

 

Table 3.5: Aligned datasets used for phylogeny and pairwise distance matrices 

Dataset Number of 

sequences 

Aligned 

length 

Phylogeny 

informative 

sites/percentage 

Conserved 

Sites/percentage 

Variable 

sites/percentage 

Dataset 

1 

57 395 116/29.37% 178/45.06% 195/49.37% 

Dataset 

2 

38 241 59/24.48% 132/54.77% 95/39.42% 
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3.3.5 Taxonomic composition of enterocytozoonids 

Sequences were BLASTN searched to ascertain the identity of sequences 

obtained in this study. Sequences fall most closely to two known 

enterocytozoonids, En. canceri and E. hepatopenaei (Table 3.6). The most 

prevalent is En. canceri, being found in 12 (66.67%) out of 18 positive locations. 

Both species show a greater distribution than previously described, notably, En. 

canceri-like sequences were also found in one of the samples from Thailand 

(Lumpini Park, Bangkok) and the shore crab (Carcinus maenas) from the River 

Exe (Table 3.6). E. hepatopenaei-like sequences were found in five (21.74%) UK 

estuarine, freshwater, marine samples (Sample ID: BW, ESC, River Exe, Thames 

River, English Channel) and one of the freshwater Thai samples (Queen Sirikit 

Park), marking the first instances of E. hepatopenaei-like sequences outside of a 

shrimp farm. En. canceri-like sequences showed more sequence similarity 

(range: 98.56%-100%) than E. hepatopenaei (range: 92.7%-100%). There were 

additional enterocytozoonid-like amplicons, E. bieneusi (River Exe, UK) and N. 

cyclopteri (English Channel, UK), though both were short sequences (<150bps) 

so were not included in the analysis. The records for the locations of some 

samples (Sample ID: BW, ESC), have been lost. However, they were included 

as it is known they were from the UK, and would still provide data on the diversity 

found in the UK. 

 

Table 3.6: Samples screened in this study and their sequence identity to 

described enterocytozoonids assessed using BLASTN on 18s rDNA 

sequences. (*denotes 2011 samples) 

Location Sample 

ID 

Number 

of 

samples 

Sample type Positive 

PCR 

Sequence 

similarity (I= 

Percent identity; 

C=Query cover ) 

*Pond, Exeter, UK PS 27 Filtrate-soil Yes En. canceri 

(I:100% C:100%) 

*Burrator 

reserve, 

Dartmoor, UK 

O 11 Filtrate-fresh 

water 

Yes N/A 

*River Exe, 

Exeter UK 

ES 35 Filtrate-brackish 

water 

Yes En. canceri 

(I:99.15-99.69% 

C:69-82%) 
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*Clyde Estuary, 

Plymouth, UK 

CPR 30 Filtrate-brackish 

water 

Yes En. canceri 

(I:99.45% C: 61%) 

*Ria Formosa, 

Portugal 

ASW 32 Filtrate-marine 

water 

Yes N/A 

*Southampton, 

UK 

DB 16 Filtrate-marine 

water 

No N/A 

* River Teign, 

Teignmouth, UK 

EST 11 Filtrate-brackish 

water 

Yes En. canceri 

(I:98.90-99.68% 

C:61-100%) 

*Not available BW 9 Water Yes E. hepatopenaei 

(I:94.41-99.55% 

C: 99-100%) 

*Torquay, UK R 28 Filtrate-marine 

water 

Yes N/A 

*Pond, Exeter, 

UK 

PN 20 Filtrate-fresh 

water 

Yes En. canceri 

(I:99.58% 

C:100%) 

*Burrator 

reserve, 

Dartmoor, UK 

BG 43 Filtrate-fresh 

water 

Yes En. canceri 

(I:99.46% 

C:100%) 

*Not available ESC 16 Filtrate-marine 

water 

Yes E. hepatopenaei 

(I:100% C:98%) 

Dowsing, North 

Sea UK 

DW1 4 Filtrate-marine 

water 

Yes En. canceri 

(I:99.4%/C:60%) 

River Tamar, 

Plymouth, UK 

P1-4 (a-

c) 

12 Filtrate-brackish 

water 

Yes En. canceri 

(I:94.67-99.66% 

C:58-100%) 

River Plym, 

Plymouth, UK 

S1-4 (a-

c) 

12 Filtrate-brackish 

water 

Yes En. canceri 

I:97.09-

99.31%/C:100%) 

River Exe, 

Exeter, UK 

Et1-4 (a-

c) 

12 Filtrate-brackish 

water 

Yes E. hepatopenaei 

(I: 92.7-99.5% 

C:98-100%); E. 

bieneusi 

(I:98.36%/C:96%); 

En. canceri 

(I:99.5%/C:41%) 

River Exe, 

Exeter, UK 

Etc1  1 Invertebrates Yes En. canceri 

(I:98.56%/C:41%) 

River Teign, 

Teignmouth, UK 

Tt1-4 (a-

c) 

12 Filtrate-brackish 

water 

No N/A 
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River Taw, 

Barnstaple, UK 

Tat1-4 

(a-c) 

12 Filtrate-brackish 

water 

No N/A 

English 

Channel/Celtic 

Sea, UK 

Pel1-10 10 Filtrate-marine 

water 

Yes E. hepatopenaei 

(I:98-99.56%C: 

78-97%); En. 

canceri (I:98.18-

98.82%/C:51-

52%); N. 

cyclopteri 

(I:100%/C:20%) 

Thames River, 

London, UK 

TM 1 Invertebrates Yes E. hepatopenaei 

(I:100%C: 94%) 

Thames River, 

London, UK 

TP 40 Invertebrates Yes En. canceri 

(I:99.4%/C:49%) 

Lumpini Parke, 

Bangkok, 

Thailand 

LP 5 Filtrate-fresh 

water 

Yes En. canceri 

(I:98.76% C: 96) 

Queen Sirikit 

Park, Bangkok, 

Thailand 

QS 3 Filtrate-fresh 

water 

Yes E. hepatopenaei 

(I:99.74% C: 99%) 

 

3.3.6 Phylogeny and pairwise estimates: diverse Enterospora genus 

In all datasets, the accepted relationship between described enterocytozoonids 

has remained the same (Figure 3.6 and 3.7). With the Enterocytozoon being more 

closely related to Enterospora (crustacean infecting enterocytozoonids), and 

Nucleospora being more closely related to Paranucleospora theridion (synonym: 

Desmozoon lepeotherii) and Obruspora papernae (fish infecting 

enterocytozoonids). As was noted with the BLASTN results (Table 3.6), the 

majority of the diversity found is around the En. canceri node (Figure 3.6 and 3.7). 

There was a lack of geographic-based grouping, the majority of the sequences 

forming a polytomy within the En. canceri group. There are low levels of genetic 

divergence observed between En. canceri and En. canceri-like sequences, with 

pairwise differences (p-values) ranging from 0-0.011 (average: 0.008) on dataset 

1 and ranging 0-0.041 (average: 0.014) on dataset 2. However, E. hepatopenaei-

like sequences showed a bit more genetic divergence from the described E. 

hepatopenaei sequence for dataset 1, p-values ranging from 0-0.040 (average: 

0.014), while average estimates for dataset 2 are similar ranging from 0.018-

0.019 (average:0.018).  
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Figure 3.6: Enterocytozoonidae phylogeny from dataset 1, built-in RAxML-HPC 

(GTRGAMMA), showing the relationships between environmental amplicons and 

described species. DNA was amplified based on the 18s rDNA gene. Scale bar 

intervals represent 0.01 substitutions per site for branch length. Numbers above 

nodes indicate bootstrap support values, assessed from 1000 bootstrap 

replicates. Nodes with a value less than 50 were collapsed. (The red names are 

Enterospora/ 

Enterocytozoon 

 (Para)Nucleospora 

/Obruspora 

Enterospora/Enterocytozoon 
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from described species while all others are coloured according to the location 

they were sampled from)  

 

 

A greater sequence divergence is also seen between E. hepatopenaei-like 

sequences ranging from 0-0.040 (average: 0.020) on dataset 1 and a p-value of 

0.019 for dataset 2, with only two E. hepatopenaei-like. Whereas the pairwise 

differences between En. canceri-like sequences range from 0-0.025 

(average:0.006) on dataset 1 and ranging from 0- 0.14 (average: 0.002) on 

dataset 2. Although p-values were largely low, there were outliers for En. canceri-

like and E. hepatopenaei-like sequences on both datasets. The sequence from 

Lumpini, Bangkok (LP) shows the greatest divergence from En. canceri (p-value: 

0.025), . Dataset 2, a clone amplicon from the River Exe (Et2-clone2) had the 

greatest divergence from En. canceri (p-value: 0.041) 0.025 more than the 

average. The isolate from the British Channel (PEL9) had the greatest divergence 

from E. hepatopenaei (p-value: 0.040). 
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Figure 3.7: Enterocytozoonidae phylogeny from dataset 2, built-in RAxML-HPC 

(GTRGAMMA), showing the relationships between environmental amplicons and 

described species. DNA was amplified based on the 18s rDNA gene. Scale bar 

intervals represent 0.01 substitutions per site for branch length. Numbers above 

nodes indicate bootstrap support values. Nodes with a value less than 50 were 

collapsed. (The red names are from described species 

while all other colours are according to the location they were amplified from)  

 

3.3.7 Genetic change in En. canceri over time 

The discovery of En. canceri in the 2011 ‘test’ samples and the 2018 transect 

samples in the same/close locations, provided an opportunity to look at possible 

temporal differences between En. canceri. Pairwise distances between En. 
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canceri sequences from the same estuaries, Tamar River, UK (EST (2011); P9 

(2018)) showed no divergence, with an average p-value of 0. However, samples 

from the River Exe, UK (Es33 (2011); Et2 (2018)) showed some divergence with 

an average p-value of 0.01. Dataset 2 showed the same trend for both Tamar 

River and River Exe; however, River Exe shows much less divergence (p-value: 

0.002). 

 

 

3.4 Discussion 

 

This is the first study looking at the distribution and diversity of the 

Enterocytozoonidae, in the South West of the UK. It primarily aims to catalogue 

any enterocytozoonid diversity present and assess the risk of the parasite's 

location in association with surrounding farms and human residence. Novel 

primers were designed and used in this study to address the proposed aims. 

Implicit in the study’s design is the assumption that the primers used are specific 

enough to make inferences about absence screenings. The validation steps 

suggest that the primers are capable of amplifying a range of available 

Enterocytozoonidae and DNA concentrations as low as 1/1000000 of 8.5 ng/ul, 

thus likely being able to amplify trace amounts of enterocytozoonid DNA in filtered 

samples.  

 

3.4.1 Enterocytozoonid prevalence and distribution 

The distribution of the Enterocytozoonidae displayed in this study is greater than 

that currently described. This has been shown from the widespread occurrence 

of En. canceri-like sequences, having prior only been described in Weymouth. 

Additionally, the prevalence of En. canceri-like sequences across the samples in 

this study were surprisingly high, considering prior observations. The described 

prevalence for En. canceri in the European edible crab (Cancer pagurus) in its 

original description was less than 4%, of 330 crabs  (G. D. Stentiford et al., 2007). 

Whereas in this study, sequences are highly similar to that of En. canceri are 

present in 66.67% of the successfully screened samples. This suggests that En. 

canceri could be far more prevalent than first estimated and that it is highly 

possible that European edible crabs are not its main host (which was suggested, 
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because of its low prevalence). The presence of E. hepatopenaei-like sequences 

in UK waters is novel and somewhat unexpected as this has previously solely 

been described from South East Asia and Central America. However, it has been 

found to infect other invertebrates  (Tang et al., 2015b), and there is evidence for 

its occurrence (if only similar sequences) in marine-based environments (Chapter 

2). In addition, its closest described relative (En. canceri) has only been described 

and characterised in the UK, so it is likely that E. hepatopenaei-like Microsporidia 

will be found in, if not endemic to, the UK. Despite this, the E. hepatopenaei-like 

sequences were less abundant and less conserved (average p-value: 0.020). E. 

hepatopenaei-like had nearly 3 x as many sequence differences with the 

described E. hepatopenaei sequence than is found between the described En. 

canceri sequence and the En. canceri-like sequences (average p-value: 0.006). 

This suggests a greater diversity in the E. hepatopenaei-like lineage, in the 

samples tested in this study. The occurrence of both En. canceri-like and E. 

hepatopenaei-like sequences in only one location (5.88% of positive locations) 

may suggest that there is not much of an overlap in host range/type. Although 

distribution has been shown to be quite wide for the Enterocytozoon/Enterospora 

clade of the Enterocytozoondiae, prevalence was not equally as high. Differences 

in prevalence between samples could be due to a number of factors, for example, 

host species abundance may not have been representative in sampling efforts. 

Prevalence found in this study may also indicate the actual prevalence of 

enterocytozoonids in the environment. More work, incorporating data on 

invertebrates in the transects samples, will have to be incorporated to control for 

the effect of the (possible) host-species composition of the transect. 

 

With regards to distribution, there did not appear to be any clear patterns based 

on substrate type (Freshwater or marine/estuarine water) or geography. For 

example, En. canceri-like sequences were found across all sample substrates 

and in all transects that were positive. This suggests, at least in the case of En. 

canceri, that it may have a wide range of hosts (adding more support for their 

opportunistic nature). The two samples that showed the greatest level of 

sequence difference were from a shore crab sample (River Exe, UK: Etc1) and 

from Thailand (Lumpini Park, Thailand: LP). This would make sense given the 

geographic distance; regarding the samples from the shore crab, it is possible 

that it indicates a shore crab infecting variant. Suggesting a possible change in 
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host range, allowing for a greater divergence in a conserved gene, possibly due 

to genetic drift due to less geneflow.  

 

The discovery of enterocytozoonid-like sequences in freshwater is also novel and 

it had been thought that this clade was an exclusively marine host-infecting 

parasite (with the exception of E. bieneusi). Previous studies have also found 

enterocytozoonid-like sequences in crayfish in France  (Arundell et al., 2015), 

though none were as similar to described species as the sequences identified in 

this study. This could mean that, though there was no sign of freshwater-based 

enterocytozoonids in Chapter 2 (metagenome analysis), the Enterocytozoondiae, 

in particular close relatives of En. canceri and E. hepatopenaei may also be 

capable of infecting freshwater invertebrates. This could vastly expand the 

possible distribution of the Enterocytozoonidae and would allow for expansion of 

the species inland.  

 

Finding En. canceri-like sequences so widespread and genetically variable (when 

using 18s rDNA), and E. hepatopenaei to a lesser extent, throughout human-

influenced areas, suggests a possible danger for both aqua/agriculture. Both are 

known to infect farmed or wild-caught crustacea, with E. hepatopenaei rapidly 

reaching a very high prevalence in farmed shrimp over recent years. This should 

be considered, as the UK starts to plan more farming of crustaceans. In addition, 

some of the rivers/estuaries sampled in this study are used for recreational use 

(Exe estuary has water sports facilities), which could facilitate passive ingestions 

of water and possibly spores. As mentioned above, these rivers are also used for 

recreational fishing, meaning that improper preparation of fish could also result 

in the ingestion of spores. The fact that many Microsporidian species have a 

broad host range and the potential to infect humans, opportunistically, adds to 

the possible dangers. 

 

3.4.2 Phylogenetic classification 

With the majority of identities falling in-between 97% and 100%, it is likely that 

these samples are highly similar in nature to two species of Enterocytozoondiae: 

E. hepatopenaei and En. canceri. Phylogenetic analysis (Figure 3.5 and 3.6) also 

suggests this, with all sequences retrieved by this study grouping within these 

two species. 
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The lack of (Para)Nucleospora-like sequences is likely the result of the sampling 

methods used which had the aim of collecting small filtered planktonic life. This 

strategy, as noted in Chapter 2, was not designed to sample fish, the described 

host species for the enterocytozoonids in that lineage. It could also suggest a 

lack of occurrence of members of this branch of the Enterocytozoonidae in SW 

UK estuaries, and perhaps less diversity in general. 

 

3.4.3 Summary 

In summary, this study has shown widespread En. canceri-like sequences, and 

with how widespread and close to human influence the Enterocytozoonidae are, 

they could become a greater risk to farming than they currently are. It is already 

likely that the Enterocytozoonidae infect a range of invertebrates around UK 

shores and estuaries. Their host-shifting propensity has been shown in numerous 

species within the Enterocytozoonidae, making it likely that the continued 

expansion of human populations and farming monoculture, will border on 

environments in which enterocytozoonids naturally occur.  

 

This study also suggests (given the sequence similarities) that there may be a 

frequent source of dispersal for these species, for them to have such high 

similarities across the South West, both in estuaries and coastal habitats. The 

presence of E. hepatopenaei-like sequences in the UK and En. canceri-like 

sequences in Thailand also suggest host assisted/anthropogenic dispersal 

between the two distant countries. 

 

The 18S rDNA is likely too conserved to be able to define novel species, in 

organisms that are as widespread and opportunistic as the Microsporidia. A new 

marker needs to be used when looking at environmental samples, as there may 

be missed diversity not being picked up by the 18S rDNA region. An example of 

this is the considerable amount of work using the ITS marker for genotyping E. 

bieneusi (though there are misgivings on how this is too widely used). However, 

comparing these environmental sequences to described species would require 

widespread use of alternative markers on described species, and the currently 

widely used region is 18S rDNA. Until this happens, a proper estimation of the 
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diversity of enterocytozoonid/Microsporidia, using amplicon-based methods, 

cannot truly be made. 

 

3.4.4 Further research and limitations 

Further research into the diversity of this family further inland in freshwater bodies 

would be able to tell us if the composition of the species of enterocytozoonid 

changes as there are more freshwater hosts. This would help assess the risk to 

terrestrial livestock that are given un-treated fresh water to drink. Though there 

has only been one reported enterocytozoonid species infecting terrestrial 

mammals, there are likely many more undescribed. The investigation into 

associated host species would also aid in assessing the risk to inland livestock. 

Although pooling filtered environmental samples has many benefits, especially 

when regarding pathogens, there are limitations to the inferences that can be 

made on the origin of the spores sequenced due to a lack of direct histological 

work. As a result, host discovery is not directly possible, which makes it difficult 

to make further suggestions on how particular species may disperse using a host 

likely more well known distribution. Additionally, the 18s rDNA region is not the 

most variable region, as such, it may not be the best region to delimit species. 

However, it does provide for the best comparison, in terms of the species 

described. 
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3.5 Supplementary tables and figures 

 

Table 3.1: Enterocytozoonid reference species 

Species NCBI 

Accession 

Enterocytozoon hepatopenaei KX981865.1 

Enterocytozoon bieneusi KF148056.1 

Enterospora nucleophila JX101917.1 

Enterospora canceri HE584634.1 

Paranucleospora theridion FJ594982.1 

Desmozoon lepeotherii HM800847.2 

Nucleospora salmonis  AF186006.1 

Nucleospora cyclopteri KC203457.1 

Nucleospora braziliensis KT777455.1 
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Chapter 4: Biogeography of the shrimp pathogen, Enterocytozoon 

hepatopenaei: human-driven dispersal or repeated local acquisition? 

 

4.1 Introduction 

In the last ten years, thanks to decreasing costs of next-generation sequencing 

and a greater accessibility to population-based analyses, molecular ecologists 

have increasingly used population genomics to resolve more applied research 

problems. The application of next-generation sequencing technologies has 

revolutionised our understanding of molecular ecology across taxonomic scales, 

trophic levels, and temporal and geographic habitat gradients  (Lefort et al., 2017; 

Richardson et al., 2017; Saupe et al., 2019). Whereas in the past they have 

predominantly been used to explain the complexities of speciation  (McCormack 

et al., 2012; Wagner et al., 2013) and evolutionary processes  (Prunier et al., 

2016; Twyford & Ennos, 2012), they are now routinely used in a more applied 

fashion. Examples include the use of population genomics in investigating 

transmission routes, geographic origin, and distribution of parasites (Auburn & 

Barry, 2017; González-Candelas et al., 2018), and geographic patterns of 

susceptibility to drugs across populations (Heinz et al., 2019). The latter is 

especially important when looking at drug resistance in certain populations  

(Wilson, 2015).  

 

These techniques are also extensively used in studying the molecular ecology of 

pathogens, ranging from detection of pathogens in the environment and their 

contribution to host-based metagenomes  (Andersen et al., 2017; Andersen & 

Hoorfar, 2018) to monitor the global rise in antimicrobial resistance and the 

emergence of novel human pathogens  (Desjardins et al., 2017; Heinz et al., 

2019). 

 

Amongst Microsporidia, the Enterocytozoonidae are a particularly important 

group in terms of its economic impact. However, studies investigating molecular 

ecology/comparative genomics are severely lacking for species in the 

Enterocytozoonidae, and for the Microsporidia as a whole. Likely contributing to 

this dearth is that the study of intracellular parasites comes with a number of 

difficulties, identification of hosts chief among them. Studies that have used 

comparative genomics on species from this Phylum have done so to answer 
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related questions; looking at ploidy and sexual reproduction  (Selman et al., 

2013), interstrain diversity, in relation to diagnostics  (Pombert et al., 2013), and 

transmission mode and genome evolution (Haag et al., 2019). Despite so few of 

these studies directly addressing ecology and population structure, they have 

added knowledge on intraspecific diversity, showing, in the species studied, great 

diversity in the genomic variation within species  (Pombert et al., 2013; Selman 

et al., 2013). This type of research is economically important, as it aids in 

understanding the ecological dynamics and impact a parasite has. However, 

more work is needed to monitor the movement of particular species, especially 

when it comes to trying to control and mitigate further infection, as stated in Brown 

(2017) (M. J. F. Brown, 2017) in regard to Microsporidia in bees. 

 

Enterocytozoon hepatopenaei (Enterocytozoonidae: Microsporidia) has received 

a lot of attention. Originally detected as a rare and relatively inconsequential 

infection in farmed penaeid shrimp  (Tourtip S, 2005), it became a major 

production problem in Asian shrimp farm systems subsequent to its formal 

description in 2009  (Tourtip et al., 2009). Although it is also possibly described 

earlier than that, in Malaysia and Australia  (Hudson et al., 2001). It infects the 

hepatopancreatic epithelial cells of two species of farmed penaeid shrimp, 

Penaeus monodon (black tiger shrimp) and Penaeus vannamei (white leg 

shrimp), two major exports for Thailand  (Chaijarasphong et al., 2020) that 

contribute $5 billion and $19 billion (respectively) to global annual market sales  

(FAO, 2016). P. monodon used to be more prevalently farmed throughout South 

East Asia, however, a supposed ‘specific pathogen-free’ (SPF) (P. vannamei) 

broodstock from Hawaii was introduced (Wyban, 2003). It was first introduced to 

Taiwan and China in the 1990s and then to Thailand, India, and other coast-

based South East Asin countries in 2000-1 (Briggs et al., 2004). This change was 

due to a faster-growing time and lower rearing costs of P. vannamei, and due to 

the fact that the SPF status allowed brooding stocks to be imported. P. monodon 

had to be wild caught and grown, meaning stocks could likely facilitate spread of 

pathogens  (Briggs et al., 2004; Wyban, 2003). It is partly suspected that it was 

the change to P. vannamei from P. monodon that has allowed E. hepatopenaei 

to become so prevalent. E. hepatopenaei has been associated with a number of 

disorders that are affecting these farmed shrimps, chiefly monodon slow growth 

syndrome (MSGS)  (Tourtip et al., 2009), but also acute hepatopancreatic 
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necrosis disease (AHPND)  (Aranguren et al., 2017) and white faeces syndrome 

(WFS)  (Rajendran et al., 2016b). It has mainly been implicated in causing MSGS, 

which affects the rate at which the infected shrimp matures. As shrimp are sold 

in batches of the same size, batches of larger shrimp earn more, the presence of 

E. hepatopenaei has affected the potential income of infected harvests. Since its 

first description in Thailand, E. hepatopenaei has subsequently been detected in 

shrimp farmed in India  (Rajendran et al., 2016a), China  (Y. M. Liu et al., 2018), 

Vietnam  (Ha et al., 2010; Tang et al., 2017), Venezuela  (Tang et al., 2017), 

Indonesia  (Tang et al., 2016a), and Brunei  (Tang et al., 2015a). However, 

relatively low sequence similarity for spore wall protein 1 (91%) and B-tubulin 

(93%) for the Venezuelan isolate suggests pathogens that mimic the 

pathogenetic signs of E. hepatopenaei (but are taxonomically distinct parasites) 

may be present in shrimp from certain regions  (Chaijarasphong et al., 2020). 

Despite its distribution across Asia, it is not known how E. hepatopenaei has 

become so widespread, and though it has been suggested to be endemic to the 

Australasian region  (Salachan et al., 2017b), no definitive studies have been 

carried out to test this  (Chaijarasphong et al., 2020).  

 

Intraspecific transmission of E. hepatopenaei between farmed shrimp can be 

both vertical  (Vu-Khac et al., 2018) and horizontal  (Karthikeyan & Sudhakaran, 

2019a; Salachan et al., 2017a); the latter via spores shed through faecal matter 

to the water column, and through cannibalism  (Tang et al., 2016b; 

Tangprasittipap et al., 2013b). However, the route through which E. hepatopenaei 

is being (interspecifically) transmitted into shrimp ponds is not known. There are 

a number of viable routes, as many shrimp ponds are accessible to 

environmental/anthropogenic processes. Research looking at possible vectors 

has shown that lab-infected Artemia salina has been able to transmit the 

enterocytozoonid to P. vannamei  (Karthikeyan & Sudhakaran, 2019a). While 

work looking at possible pond reservoirs of E. hepatopenaei (in sediment) found 

through PCR and histology, that two species of polychaete worm were infected  

(Desrina et al., 2020). Although no route of transmission has been verified, some 

research suggests a possible endemic Australasian distribution for E. 

hepatopenaei in  (Salachan et al., 2017b), based on the parasite's widespread 

distribution and older studies describing similar histopathology in Penaeus 

japonicus from Australia  (Hudson et al., 2001). 
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Control of E. hepatopenaei (and other important pathogen hazards) in shrimp 

farming nations is based upon the application of appropriate biosecurity protocols 

that limit the likelihood of contact between the hazard and susceptible hosts  (E. 

Peeler, 2005; E. J. Peeler et al., 2015). Furthermore, for the efficient application 

of biosecurity protocols, an appropriate diagnostic strategy must be in place to 

ensure that the hazard under surveillance can be accurately detected and 

discriminated from other pathogens that may be present within the system  (G. 

D. Stentiford et al., 2014). The application of improved tools for pathogen 

detection (and discrimination), based on whole-genome analyses, has the 

potential to revolutionise our understanding of pathogen transmission (and 

translocation) in high-trade industries such as aquaculture. The resolution 

provided by these tools may discriminate between strains of the same pathogen 

species that may exist in different geographic regions  (Cissé et al., 2018) or show 

that the pathology associated with a certain disease state may be caused by 

taxonomically different pathogenic agents  (G. D. Stentiford et al., 2018). When 

applied to transmission/translocation questions such as for E. hepatopenaei in 

shrimp, more accurate assessments can be made on whether disease outbreaks 

occurring in one location are related to pathogen incursion from another region 

(e.g. via trade in live animals or products) or alternatively, due to exposure of 

susceptible hosts (in this case, shrimp) to local infected hosts or reservoirs. 

Furthermore, by improving diagnostic resolution, the investigation can be made 

into whether the disease state is described as ‘E. hepatopenaei’ may in fact be 

due to different pathogens that cause the same pathological outcome. Such 

knowledge has fundamental implications for the subsequent application of 

biosecurity strategies for controlling disease on farms.  

 

Since its description, E. hepatopenaei has become one of the most well-

researched enterocytozoonids, joining the more high-profile microsporidians 

infecting important organisms. However, publications have largely focused on 

new more sensitive, less invasive detection methods  (Cruz-Flores et al., 2019), 

associated conditions (as mentioned above), descriptions in new countries (as 

mentioned above), and studies looking at possible vectors (as mentioned above). 

None have looked at the population structure across different countries for this 

species, to give a broader understanding of geographic origin.  
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 The aim of this study is to, using populations genomics, identify the possible 

routes between three countries in Asia (China, India and Thailand) through which 

E. hepatopenaei is being dispersed. In so doing give a broader understanding of 

its geographic origin to ascertain its likely route of transmission into shrimp farms. 

Analysis of transmission routes will also enable the testing of three hypotheses: 

1. E. hepatopenaei is endemic in Asia but now visible due to a change in farming 

practice or a more pathogenic variant; 2. Translocation of E. hepatopenaei 

between shrimp farming nations has facilitated distribution and establishment 

from a single original point of origin, or 3. The disease associated with ‘E. 

hepatopenaei’ is not of single-agent aetiology – with numerous 

enterocytozoonids able to elicit disease in susceptible hosts. Defining the 

likelihood of these scenarios will aid farmers and managers to apply appropriate 

biosecurity practices to minimise the impact of E. hepatopenaei in shrimp 

aquaculture.  

 

4.2 Methods and analysis: 

4.2.1 Sample collection: 

Samples were collected from Thailand in 2018. They were collected from different 

P. vannamei farms from Chantaburi, Samut Sakhon, Suphan Buri, and Pathum 

Thani (Table 4.1). A single bucket of shrimp was drawn from each pond and 30 

shrimp were taken from each bucket for spore extraction. Further samples of 

hepatopancreas and gut (stomach and intestine) tissues were dissected from P. 

vannamei collected from farm sites in India (Table 4.1) in 2016 and 2017; these 

samples were processed whole for metagenomic analysis. 

 

Table 4.1: Isolates used in the final analysis, collected from Thailand, China, and 

India (*indicates isolates sequenced for this study, +indicates reads from the 

reference genome, and ^indicates reads from metagenomic studies) 

 

Isolate 

ID 

Region, 

Country 

Spore  

concentrati

on 

Total 

reads 

Reads 

mappe

d 

Unmapp

ed reads 

Average 

Coverage

% 

/depth 

SNPs 

pre-

calibrati

on 

SNPs 

post-

calibrati

on 

*Thai-

Chan1-

1 

Chantaburi, 

Thailand 

1.95*104 75836 59,462 16, 374 96.79/4.18 118535 118872 
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*Thai-

Chan1-

2 

Chantaburi, 

Thailand 

7.2*106 235268 232,792 2, 476 99.84/17.2

7 

418886 424296 

*Thai-

Chan2-

1 

Chantaburi, 

Thailand 

1.28*106 220871 217,608 3, 263 99.74/16.2

0 

353820 356415 

*Thai-

Pathun 

Pathum 

Thani, 

Thailand 

3.88*105 170566 151,383 19, 184 99.74/11.2

9 

302062 304561 

*Thai-

Suphan

1-1 

Suphan Buri, 

Thailand 

2.69*106 231500 211,573 19, 927 98.63/12.8

9 

156769 158289 

*Thai-

Suphan

1-2 

Suphan Buri, 

Thailand 

3.52*106 493900 471,081 22, 819 99.48/29.9

2 

185778 187419 

+Thai-

Chao 

Chachoengs

ao, Thailand 

 (Wiredu 

Boakye et 

al., 2017) 

7,218,58

3 

7,209,8

72 

8, 711 99.98/442.

47 

34820 34885 

^Indi-

Saf1 

Safale, India N/A 348, 232 335292 12, 940 83.29/4.27 12019 11807 

^Indi-

Saf2 

Safale, India N/A 242, 994 231793 11, 201 88.91/3.93 76378 75030 

^Indi-

Saf3 

Safale, India N/A 402, 372 387784 14, 998 98.67/8.85 214038 212239 

^Indi-

Dah 

Dahanu, 

India 

N/A 346, 876 329043 17, 833 87.64/4,34 8299 8069 

^Chin-

Qing1 

Qingdao, 

China 

N/A 57,803,2

33 

185330 57,617,9

03 

83.94/1.81 85144 87136 

^Chin-

Qing2 

Qingdao, 

China 

N/A 58, 966, 

483 

1, 289, 

365 

57, 677, 

118 

98.68/38.5

4 

389877 413378 

^Chin-

Qing3 

Qingdao, 

China 

N/A 62, 763, 

693 

317, 

061 

62, 446, 

632 

93.37/5.10 196175 202923 

^Chin-

Qing4 

Qingdao, 

China 

N/A 55, 738, 

161 

251, 

139 

55, 487, 

022 

88.74/2.88 132385 136687 

 

4.2.2 Purification of spores:  

For samples collected in Thailand, hepatopancreai were dissected from each set 

of 30 collected whole shrimp and pooled for each separate pond, and stored in 

ice for later processing. The pooled hepatopancreai were homogenised with a 

sterile glass pestle in a 15 ml falcon tube in 1 x PBS. The homogenised samples 

were transferred to a 50 ml falcon tube and topped up to 50 ml with 1 x PBS. 

These were then filtered, first through a sterile 100 µm cell strainer (Fisherbrand). 

The resulting filtrate was filtered a second time, with a 40 µm cell strainer to 

remove the remaining tissue debris. The spores were pelleted by centrifugation 

at 10,000 x g for 10 mins. The pelleted spores were resuspended in 500 µl of 1 x 

PBS. The pelleted spores were further purified through Percoll density gradient: 
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An 8ml discontinuous Percoll concentration (25%, 50%, 75%, 100%) was made 

to concentration with 1 x PBS. A volume of 1.3 ml of the resuspended, filtered 

spores was pipetted onto the Percoll solution. These were separated through 

centrifugation, using an ultracentrifuge at 40,000 x g for 30 mins at 15°C. The 

spore band was removed with a syringe and washed 3 times with 1 x PBS and 

spun down at 14,000 x g for 30 mins at 4°C. Purified spores were resuspended 

in a 1ml solution of 1 x PBS, 10% glycerol, 100µg/ml of ampicillin and kanamycin, 

and stored at -80oc. 

 

4.2.3 Cell lysis and gDNA extraction for spores from Thailand:  

Samples were washed three times with sterile water (spun down at 10, 000 x g 

for 10 mins and supernatant discarded) and resuspended in 400 µl of 10/1 TE 

buffer. The resuspension was transferred to a 2 ml screw-cap tube along with 

10µl of 10% SDS, 2ul of 10 mg/ml RNAse A and 400µl of (0.17 - 0.18 mm) glass 

beads. The spore solution was initially incubated on a heat block for 2 minutes at 

55°C and then bead beaten for 1 minute at 2000 rpm. The solution was then 

incubated for a further minute at 55°C and transferred back to the bead beater 

for 1 minute at 2000 rpm. This was repeated three times. A volume of 800µl of 

pH 8.0 phenol was added to the bead beaten cells and these were mixed by 

inversion (x5) and centrifuged at 10000 x g for 10 minutes. The top aqueous layer 

was transferred to a fresh Eppendorf and 400 µl of chloroform was added. This 

was mixed by inversion (x5), and the mixture was centrifuged at 10000 x g for 10 

minutes and the top aqueous layer was transferred to a new 1.5 ml Eppendorf. 

The sample was then cleaned using a standard EtOH precipitation protocol 

(Chapter 3). DNA from Indian samples was extracted from homogenised 

hepatopancreas and gut samples and purified using a CTAB/EDTA DNA 

extraction protocol  (Fontes et al., 2017). 

 

4.2.4 Sequencing and quality control:  

The genomic DNA was quantified using Qubit, dsDNA broad range (BR), which 

uses a fluorescent tag. Those that were of high enough concentration were run 

on a tape station, to ensure the DNA is not too degraded. Samples of high enough 

quality were sent off for library preparation, using Nextera XT and sequencing on 

the Illumina MiSeq platform, 300bp paired reads. The raw reads were sent 

through a pipeline to quality check the reads, removing/trimming low-quality 
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reads (reads with Phred score lower than 20/reads under a certain length) and 

adaptor sequences, using the default parameters on Sickle version 1.33  (Joshi 

& Fass, 2011). Samples from India were prepared usingNextSeq Series Mid-

Output kit (Illumina) sequence libraries and were sequenced on an Illumina 

NextSeq 500 sequencer (Illumina, San Diego, CA, USA; 2x150bp). Low-quality 

bases and remaining adapter sequences were removed using fastp version 

0.20.0  (S. Chen et al., 2018) (using the poly-G tail trimming and default 

parameters). 

 

4.2.5 Metagenomic screening:  

To help give a better picture of international population structure, further genome 

data for E. hepatopenaei was extracted from the publicly available online 

database, National Centre for Biotechnology Information (NCBI) SRA database  

(Leinonen et al., 2011; National Center for Biotechnology Information, 2020), and 

Integrated Microbial Genomes and Microbiomes (IMG)  (I. M. A. Chen et al., 

2019) database. Three genetic regions were initially used to screen these 

databases, 18s rDNA (KU179095.1), Spore Wall Protein1 (KX258197.1), and 

Beta-tubulin (KX258197.1). Hepatopancreatic metagenomes were selected on 

NCBI, using the search parameters “Penaeus vannamei AND hepatopancreas”. 

Any positive SRA datasets were downloaded using the SRA toolkit program  

(Leinonen et al., 2011), and then quality checked and filtered using Sickle 1.33, 

default parameters. IMG was screened in a similar fashion, screening datasets 

that were from aquatic samples, both marine, and freshwater, any positive results 

were treated as below. 

 

4.2.6 Mapping reads:  

Trimmed reads were aligned to the E. hepatopenaei reference genome 

(GCA_002081675.1)using the Burrows-Wheeler Aligner version 0.7.17 (BWA-

MEM) (H. Li & Durbin, 2010), under default settings. BWA-MEM was used as it 

was appropriate for the length of the reads used in this study. 

 

4.2.7 Assessment of “multiple strains” of E. hepatopenaei using 

Metaspades+CONCOCYT+Busco:  

As the spores that were collected for this study were collected from multiple 

individual shrimp there is a possibility that rather than being clonal and the result 
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of a single strain per pond and shrimp, multiple “strains” of E. hepatopenaei may 

be infecting a single shrimp pond or even single shrimp. To assess whether 

multiple or single strains were present, metagenomic contigs were assembled 

from each pond using MetaSPAdes version 3.11.1  (Nurk et al., 2017) under 

default parameters, designed to detect and assemble related strains of single 

cells. Contigs from this assembly were cut into segments 10,000 bp long and 

clustered into taxonomic units using the binning program CONCOCT version 

1.1.0  (Alneberg et al., 2014). The resultant number of clustered contigs (bins) 

were used as an estimate of the number of different taxonomic units in the 

sample. To test the validity of the bins (implicitly assuming that “completeness” 

infers valid bins), Busco version 3  (Seppey et al., 2019) was used to test the 

“completeness” of the bins as a means of checking the validity of the bins being 

taken as “strains”. As the analysis uses a database of known conserved single-

copy genes to assess genome completeness, both the eukaryotic and fungal 

datasets were used.  

 

4.2.8 Assessing ploidy level:  

The ploidy levels of each E. hepatopenaei sample were estimated using k-mer 

frequencies. Smudgeplot version 0.2.2  (Ranallo-Benavidez et al., 2020) was 

used to build a bar chart based on heterogenous k-mer pairs. K-mer counts were 

carried out using KMC version 3  (Kokot et al., 2017). 

 

4.2.9 SNP calling and initial analysis: 

Once aligned, variant calling was performed on a dataset of all isolates using 

Genome Analysis Toolkit version 4.0.2.1 (GATK)  (McKenna et al., 2010), 

following their best practices pipeline. To ensure that all likely genuine SNPs were 

identified, sequencing quality assessment was recalibrated using GATK using 

initial SNP calling as a reference. SNPs were counted using Samtools-BCFtools 

version 0.1.19  (H. Li et al., 2009) to see if there was an increase in the SNPs 

called per recalibration. This was done until recalibration stopped yielding 

increased SNP identification. Lastly, SNPs across all samples were filtered by 

missing genotype (20%), minor allele count (3), and quality Phred score of 20 

using VCFtools version 0.1.13  (Danecek et al., 2011) to reduce the effect of false 

positives.  

 



108 | P a g e  
 

4.2.10 Population history and selection patterns: 

As the samples in this study are essentially pooled, investigating the 

intrapopulation history and possible demographic events using conventional 

analysis would be inadequate. This was investigated using Popoolation 2 version 

1.2  (Kofler et al., 2011) to carry out Tajima’s D test of neutral evolution. 

Popoolation 2 was used, as it allowed for analysis of pooled populations. Tajima’s 

D and was carried out with a sliding window of 1000, step size of 500, minimum 

count of 2, minimum coverage of 4 (coverage has to be double of minimum 

count), and a variable pool size depending on the isolate. A negative genome-

wide Tajima’s D is indicative of an expansion after a bottleneck, whereas a 

positive D suggests a decrease in population size. 

 

 

4.2.11 Population structure: 

To look at population structure for the E. hepatopenaei isolates, principal 

components (PCA) analysis was carried out using the R package adegenet 

(glPCA) version 2.1.3  (Jombart, 2008) and a phylogeographic tree based on 

SNPs was built using Bayesian inference implemented in BEAST2 package 

version 2.6.2  (Bouckaert et al., 2019), SNAPP version 1.5.1  (Bryant et al., 2012). 

Coalescence and mutation rates (U and V) were set to 1, with a chain length 

(MCMC) of 50,000 (10% burn-in required for a plateau in posterior). Tracer 

version 1.7.1  (Rambaut et al., 2018) was used to view and analyse MCMC trace 

files. Analysis looking at genetic admixture was calculated using the three 

population test (f3), implemented in admixr version 0.9.1  (Petr et al., 2019). F3 

stats assess the admixture between three populations; one target population and 

two source populations. Fixation indices (Fst) and nucleotide diversity (π) 

estimates, per isolate, were used to investigate interpopulation and 

intrapopulation dynamics, respectively. Both were also implemented using 

Popoolation 2 version 1. 

 

4.2.12 Assessing intrapopulation diversity using single-copy genes analysis: 

Given the nature of sample collection, in that it is made up of millions of 

individuals collected from multiple host individuals, it is possible that the 

microsporidia in each sample could be either clonal or the result of multiple 

infecting spores. In either case, estimates of intrapopulation heterozygosity would 
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be unreliable, as multi-copy genes would add false heterozygosity. To account 

for this possibility heterozygosity was assessed using single-copy genes within 

each sample. For this, single-copy genes were identified using a collection of all 

available microsporidian genomes. Orthogroups were constructed using 

OrthoMCL version 2.0  (L. Li et al., 2003) and filtered for single-copy genes (refer 

to Chapter 5 for full method). Using the same protocol as above for genome-wide 

SNP calling reads from all isolates were then mapped to the single gene copy 

reference using BWA, making a single gene copy dataset, and SNPs were called 

using GATK. Missing genotypes were filtered at 20%, using VCFtools version 

0.1.13. Both interpopulation and intrapopulation divergence estimates diversity 

were assessed as above, using VCFtools version 0.1.13, using the het parameter 

to assess heterozygosity (He/Ho) on a per-sample basis, and Weir and 

Cockerham estimates of Fst.  

 

4.3 Results 

 

4.3.1 Dataset description: 

Sequencing and bioinformatic efforts resulted in 15 datasets being taken forward 

for analysis (Table 4.1). Four each from China and India and seven from 

Thailand. Depth of coverage and percentage coverage ranged from 1.81-442.47 

and 83.29%-99.98% respectively (Table 4.1). The Indian samples were among 

the ones that had the least coverage (Indi-Saf1), and Chinese with the least depth 

(Chin-Qing1). The distribution of reads mapped to contigs followed the same 

trend over most samples (Figure 4.1-supplementary). With the largest contigs 

having the most mapped reads, following a linear relationship. Two Thai samples 

from Suphan Buri (Thai-Suphan1-1/1-2) and all Indian samples varied from this 

at several datapoints, with two outliers with a greater number of mapped reads 

than would be expected following the trend (Figure 4.1B and C-supplementary).  

 

4.3.2 SNP calling and filtering: 

There was a linear relationship between the number of SNPs called and the size 

of the contig (Figure 4.2a-supplementary), with a similar correlation between the 

number of reads mapped and the number of SNPs called pre-base-recalibration 

(Figure 4.2b-supplementary). Showing no bias in the data, SNPs were called 

equally, on average, across the genome. Only three iterative base-recalibrations 
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were performed before the SNP calling no longer improved (Table 4.2). Filtration 

for a minimum allele count of 3 led to a reduction of more than 1000 SNPs, from 

1680 shared SNPs to 598 shared SNPs. Leaving 598 SNPs for further analysis. 

 

Table 4.2: SNP counts for before and after recalibration and filtering of missing 

genotypes for all datasets used in this study.  

Dataset SNPs pre-

calibration 

SNPs post-

recalibration 

SNPs 

30% 

missing 

genotype 

filtered 

SNPs 

20% 

missing 

genotype 

filtered 

SNPs 

10% 

missing 

genotype 

filtered 

SNPs 0% 

missing 

genotype 

filtered 

All 

combined 

dataset 

10768 10395 2826 1680 168 20 

Thai dataset 6345 6340 5263 4233 2867 2867 

Indian 

dataset 

4933 4583 624 79 79 79 

Chinese 

dataset 

3554 3553 1379 604 604 604 

Single copy 

dataset 

340 328 185 133 15 1 

 

4.3.3 Metaspades test for multiple strains in samples: 

Looking at the possibility of multiple strains in sample sets collected in this study, 

a combination of Metaspades, CONCOCT, and BUSCO were used to assess 

this. The number of contigs produced by Metaspades for each dataset ranged 

from 35 (Chin-Qing1) to 865 (Indi-Saf3) (Table 4.3). These were clustered into 

bins by CONCOCT for each isolate, based on operational taxonomic units 

(OTUs). The number of bins (each bin representing an OTU) per isolate, 

produced by CONCOCT ranged from 4 (Chin-Qing1) to 79 (Thai-Chao), with 

most bins containing a single sequence (Table 4.3).  

 

Table 4.3: MetaSPAdes, concoct and BUSCO results per isolate (*indicates 

isolates sequenced for this study, +indicates reads from the reference genome, 

and ^indicates reads from metagenomic studies 

Samples MetaSPAdes 

contigs 

Concoct 

bins 

Number of 

sequences in 5 

biggest bins 

Number of bins with 

complete BUSCO 

Number of 

complete 

BUSCO 

Number of 

complete 

BUSCO 
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genes 

(Eukaryotic/Fungal) 

genes-

eukaryotic 

genes-

fungal 

*Thai-

Chan1-1 

710 5 695/9/3/2/1 1/1 14 25 

Thai-

Chan1-2 

310 10 143/115/23/14/2 1/2 18 64/2 

*Thai-

Chan2-1 

261 46 108/76/12/9/3 1/2 19 76/1 

*Thai-

Pathun 

280 23 131/111/11/2/2 1/2 18 71/2 

*Thai-

Suphan1-

1 

773 7 640/88/41/1/1 1/1 6 20 

*Thai-

Suphan1-

2 

803 12 728/42/18/4/3 1/1 11 61 

+Thai-

Chao 

256 79 150/11/4/2/2 1/1 18 73 

^Indi-Saf1 - N/A N/A N/A N/A N/A 

^Indi-Saf2 - N/A N/A N/A N/A N/A 

^Indi-Saf3 865 11 576/266/9/5/3 1/2 7 6/4 

^Indi-Dah - N/A N/A N/A N/A N/A 

^Chin-

Qing1 

35 4 32/1/1/1 1/0 1 N/A 

^Chin-

Qing2 

638 8 344/288/1/1/1 0/2 N/A 3/1 

^Chin-

Qing3 

192 11 181/2/1/1/1 0/0 N/A N/A 

^Chin-

Qing4 

75 9 62/6/1/1/1 1/0 1 N/A 

All 250 23 104/101/17/2/2 1/3 18 77/2/2 

 

Using the eukaryotic database for Busco, no isolate had more than one bin that 

had complete copies of single-copy genes (Table 4.3). Of the 303 single-copy 

genes looked for in the eukaryotic database, only a maximum of 19 (Thai-Chan2) 

were found among the Thai samples, the others ranged from 6-18. There was a 

greater representation of the single-copy genes when using the fungal database, 

the number of complete genes ranged from 20-73, with 5 of 7 Thai samples 

having more than 60 (Table 4.3). Chinese and Indian samples had fewer 

complete BUSCO single-copy genes. The fungal database also showed more 

bins per sample that had complete copies of the single-copy genes. 5 out of 12 

samples had 2 bins with complete copies of single-copy genes from Busco’s 

database, however, the second bins have fewer copies, ranging from 1-4. As 

there was no evidence for multiple strains, having multiple bins (OTUs) with 

comparable numbers of complete reference genes, it has been assumed that the 
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isolates in this study are only composed of one E. hepatopenaei strain. Of the 

Indian isolates, only Indi-Saf3 passed the coverage threshold for Metaspades 

and was the only one carried forward with the rest of the multi-strain analysis. 

 

4.3.4 Estimates of ploidy levels: 

Ploidy estimates suggested that most (12 of 15) isolates were diploid, although 

two may be triploid (Thai-Chan2-1 and Indi-Saf3) and ploidy could not be 

confidently determined for several others (Table 4.4). As the majority of the 

isolates were diploid, for analyses that required a ploidy level, diploid was 

selected. 

 

Table 4.4: Ploidy estimates per isolate (*indicates isolates sequenced for this 

study, +indicates reads from the reference genome, and ^indicates reads from 

metagenomic studies) 

Isolate Portion of kmer pairs 

/Dominant ploidy 

Portion of kmer pairs 

/Secondary ploidy 

Kmer 

pairs 1n 

*Thai-Chan1-1 0.39/AB 0.31/AAB 31 

*Thai-Chan1-2 0.37/AB 0.24/AABB 32 

*Thai-Chan2-1 0.51/AAB 0.2/AB 30 

*Thai-Pathun 0.45/AB 0.26/AAABB 28 

*Thai-Suphan1-1 0.45/AB 0.16/AAB 36 

*Thai-Suphan1-2 0.83/AB 0.08/AAABB 36 

+Thai-Chao 0.79/AB 0.08/AAABBB 176 

^Indi-Saf1 0.91/AB 0.06/AAAABB 40 

^Indi-Saf2 0.96/AABB 0.04/AAABB 50 

^Indi-Saf3 0.37/AAB 0.25/AB 43 

^Indi-Dah 0.34/AB 0.22/AAB 37 

^Chin-Qing1 0.48/AB 0.18/AAB 56 

^Chin-Qing2 0.84/AB 0.07/AAABBB 59 

^Chin-Qing3 0.54/AB 0.21/AABB 51 

^Chin-Qing4 0.72/AB 0.14/AAAB 55 

 

4.3.5 Endemic population structure: 

PCA and phylogeographic analysis (Figures 4.1a, b) for the dataset 

encompassing all isolates showed some clustering based upon geographic 

location. There was strong support for the tree, posterior probabilities ranged 

from 0.7-1 (average 0.9). An isolate from both China and India grouped more 
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closely with Thai isolates, Chin-Qin2 forming a group with Thai-Chao and Indi-

Saf3 more distantly forming a group with the Thai isolates. A combination of both 

PC1 (explaining 36% of the variance observed) and PC2 (explain 16% of the 

variance observed) separated the three countries. PC1 alone only separated 

Thailand from China, and only partially from India. Where PC2 separated 

Thailand and India, but cluster with the Chinese isolates. Thai isolates were 

however clustered much more densely and showed less divergence than either 

the Indian or the Chinese isolates.  

 

Figure 4.1: Patterns of geographic structure: A) Bayesian tree built in BEAST2 

using package SNAPP, B) principal components analysis (glPCA) both analyses 

carried out with 598 SNPs. *China (in red), Thailand (in green), and India (in blue). 

 

The Thai only dataset showed some clustering by provinces, both in the tree 

(Figure 4.2a) and the PCA (Figure 4.2b). PC1 (explaining 41% of the variance 

observed) separated by region, with Thai-Chao and Thai-Pathun as 

intermediates. However, Thai-Chan 1 (EHP18) did not cluster most closely with 
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the other samples from Chantaburi (Thai-Chan1 (38), Thai-Chan2 (29)). 

Estimates of interpopulation genetic divergence showed a similar trend, with Fst 

ranging from 0.138-0.223 (average 0.183) (Table 4.5). The greatest divergence 

was between Thailand and India (0.223) the least between China and Thailand 

(0.138). 

 

 

Table 4.5: Matrix of Weir and Cockerham’s mean interpopulation estimates of Fst 

- by country, estimated from 598 genome-wide SNPs 

 Thai India 

Thai   

India 0.223  

China 0.138 0.2187 

 

Estimates within countries (Table 4.6) between regions showed a greater range 

of divergence for Thailand, in between regions ranging from 0.025-0.116 

(average 0.078), (not applicable with Chinese samples, from one region) than 

between Indian regions (0.057). Divergence from Thai regions mirror results from 

the PCA and tree, showing Suphan was the most divergent among the regions 

sampled. Estimates from regions in different countries were more pronounced, 

as would be expected. Ranging from 0.09-0.507 (average 0.147), the Indian 

region, Dahanu, showing the greatest divergencies ranging from 0.204- 0.507.  
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Figure 4.2: Patterns of Thai geographic structure: A) Bayesian tree built in BEAST 

using package SNAPP, B) principal components analysis (glPCA) both analyses 

carried out with 4233 SNPs.* Chachoengsao (in light blue), Pathum Thani (in brown), 

Suphan Buri (green), and Chantaburi (in dark blue) 

 

Table 4.6: Weir and Cockerham’s mean interpopulation estimates of Fst - by 

region estimated from 598 genome-wide SNPs 

 Thai-

Chanta 

Thai-

Pathun 

Thai-Chao Thai-

Suphan 

Chin-

Qing 

Indi-

Safale 

Indi-

Dahanu 

Thai-

Chanta 

       

Thai-

Pathun 

0.025       

Thai-

Chao 

0.035 0.019      

Thai-

Suphan 

0.116 0.103 0.114     

Chin-

Qing 

0.170 0.085 0.039 0.201    

Inidi-

Safale 

0.159 0.009 0.031 0.198 0.227   

Indi-

Dahanu 

0.348 0.204 0.197 0.507 0.234 0.057  

 

The sample sites Thai-Pathun and Thai-Chacho have the lowest divergence 

estimates for any Thai isolate against a non-Thai isolate ranging from (0.009). 
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4.3.6 Population history: E. hepatopenaei in shrimp ponds  

). Across all 15 isolates, nucleotide diversity (π) was moderate to high for the 

dataset encompassing the whole genome (ranging from 31.3% (Indi-Saf1) - 

42.5% (Thai-Pathun)) (Table 4.7). The samples from India did not have enough 

coverage to be tested for Tajima’s D. The average results of the analysis from 

the remaining isolates, genome-wide, ranged from --0.002 (Thai-Chan2-1) to 

0.131 (Thai-Chao ) (average 0.004) (Table 4.7). Of the eleven isolates, eight had 

positive Tajima’s D, with both countries having positive and negative Tajima’s D. 

Though for all samples, Tajima’s D was fairly neutral. 

 

Table 4.7: Intrapopulation indices per isolate, estimated from 598 genome-wide 

SNPs isolate (“Sc” indicates analysis on 126 single-copy genes, *indicates 

isolates sequenced for this study, +indicates reads from the reference genome 

and ^indicates reads from metagenomic studies) 

Isolate π π (sc) Tajima’s D 

*Thai-Chan1-1 0.406 0.187 0.000 

*Thai-Chan1-2 0.408 0.195 0.002 

*Thai-Chan2-1 0.401 0.164 -0.002 

*Thai-Pathun 0.425 0.188 -0.001 

*Thai-Suphan1-1 0.414 0.191 0.008 

*Thai-Suphan1-2 0.414 0.199 0.025 

+Thai-Chao 0.398 0.181  0.131 

^Indi-Saf1 0.313 0.126 N/A 

^Indi-Saf2 0.356 0.190 N/A 

^Indi-Saf3 0.367 0.164 N/A 

^Indi-Dah 0.367 0.155 N/A 

^Chin-Qing1 0.409 0.217 0.002 

^Chin-Qing2 0.410 0.173 0.006 

^Chin-Qing3 0.413 0.157 0.003 

^Chin-Qing4 0.378 0.216 -0.001 

 

4.3.7 Population admixture-F3 statistics: 

F3 statistics were applied to populations on a large geographic scale (by country), 

failed to show any admixture between the populations tested in this study (Table 

4.8), as all values were positive. F3 values ranged from 0.070 (Thailand)-0.170 

(India) (standard deviation range 0.004-0.021). 
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Table 4.8: Three population admixture analysis (F3 statistics), implemented in 

admixr 

Source populations  Target populations   

  Thailand India China 

Thailand India   0.084 (+-

0.0215) 

China Thailand  0.167 (+-

0.0212) 

 

India China 0.070 (+-0.004)   

 

4.3.8 Single copy gene analysis: 

The single-copy gene dataset still showed geographic divergence shown by Weir 

and Cockerham Fst (Table 4.9) following the same trend as in the dataset 

incorporating all SNPs. The greatest divergence was found between Thai and 

Indian isolates, and the least between Thai and Chinese Isolates (ranging from 

0.035-0.126 (average 0.07)).  

 

Table 4. 9: Weir and Cockerham’s mean interpopulation estimates of Fst – for 
single-copy genes by country, estimated from 133 single-copy gene SNPs 

 Thai India 

India 0.126   

China 0.035 0.040 

 

However, the single-copy gene dataset showed less divergence than the Weir 

and Cockerham analysis on the genome-wide 598 SNPs. Similar to the Weir and 

Cockerham Fst estimates, the nucleotide diversity (π) observed in the single-

copy gene dataset was lower than that of the genome-wide dataset (ranging from 

12.6% (Indi-Saf1) - 21.7% (Chin-Qing1) (average 18%)). 

 

4.4 Discussion 

 

Little is known about the ecology and transmission routes of E. hepatopenaei, as 

studying the ecology of microorganisms is difficult, and in parasitic 

microorganisms, further still. Here, the goal was to improve the knowledge of the 
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routes through which E. hepatopenaei may be being transmitted into shrimp 

farms and its biogeographical origin. With three main hypotheses (endemic, 

anthropogenically dispersed or different causative enterocytozoonid species) 

explored. Thailand, India, and China were focused on as these were among the 

first countries where E. hepatopenaei was detected also major shrimp producers, 

with the majority of the subsequent papers coming from these three countries.  

 

4.4.1 Biogeography of E. hepatopenaei 

The SNPs obtained in this study, through both a phylogenomic tree, principal 

components analysis, and population differentiation, predominantly showed 

separated lineages based on geography (Figure 4.1a, b and Table 4.5). 

Suggesting populations mostly restricted to local transmission. It is likely that 

dispersal was also infrequent enough to show within-country spatial structure 

(Figure 4.2a, b and Table 4.6). This suggests that E. hepatopenaei could be 

endemic to countries observed in this study and already abundant and 

widespread across South East Asia. It is unlikely that this is by anthropogenic 

means, as even though Microsporidia may be fast-evolving  (Cuomo et al., 2012), 

the process by which they were initially spread would likely be ongoing, so less 

geographic-based population structure would be evident.  

 

A slightly lower fixation index (Fst=0.138) between isolates from China and 

Thailand suggests slightly greater levels of population connectivity between these 

countries (Table 4.5). This is also shown in the unrooted tree (Figure 4.1a), with 

the grouping formed between Chin-Qin2 and Thai-Chao and the lower population 

differentiation with Indian and Chinese isolates (Fst=0.039, 0.085, 0.170 

and0.201). Levels of differentiation are similar to and lower than between some 

Thai isolates (Thai-Suphan x Thai-Chao (Fst=0.116). Suggesting that some 

regions between China and Thailand have similar or greater levels of gene flow 

with regions within Thailand. Indi-Saf3 also grouped with Thai samples (Figure 

4.1a), also suggesting some population connectivity between India and Thailand. 

Whether this dispersal is through natural means of dispersal, via migratory birds, 

or anthropogenic means, like trade, is unknown. This suggests that there may 

have been movement from Thailand to China and India, at least from an area 

close to the Chachoengsao (Thai-Chao) region to the Qingdao region of China. 

However, Chachoengsao (Thai-Chao) used to be one of the biggest hatcheries 
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in Thailand in the 1970s  (Patmasiriwat et al., 1998). So, it is possible that, in this 

case, the dispersal of E. hepatopenaei was facilitated through anthropogenic 

means. This has been suggested, as, if it was dispersed through a natural 

medium, the means through which they were dispersing (either through a vector 

or zoochory) would likely have occurred for a longer time than more recent 

anthropogenic-based dispersal. As such, non-native genotypes would be more 

likely to be found in native isolates. With the Thai-Chao isolate being the closest 

related (in terms of fixation indices and being grouped on the tree) Thai sample 

to the Indian and Chinese isolates, it is possible that the widespread dispersal of 

this regions shrimp may have facilitated the spread of E. hepatopenaei to some 

regions in India and China. 

 

Thai-Chanta’s consistent divergence from non-Thai isolates suggests that the 

farms sampled from Chantaburi may be the most secluded, receiving the least 

amount of gene flow. Similarly, Thai-Suphan, has equally high levels of 

differentiation with Thai samples, with a more pronounced differentiation from 

Indian samples (Fst=0.507). A naturally occurring vector for E. hepatopenaei has 

yet to be discovered, so it is not yet known how it disperses between countries. 

As this species has been found to infect A. salina under lab conditions and 

polychaete worms in shrimp ponds  (Desrina et al., 2020; Tang et al., 2015b), it 

may have many aquatic vectors. So, it could possibly be through migratory birds 

that feed on these vectors that have helped in the initial spread of E. 

hepatopenaei and continued the spread in some cases. In the case of within 

region transmission, it is likely that isolates are the results of local 

distribution/transmission, as, if spores were from a region reservoir, the structure 

would reflect this and would not cluster regionally.  

 

4.4.2 Intrapopulation diversity and population bottlenecks 

It seems feasible that with a moderate level of genomic diversity (evidenced with 

the estimates of nucleotide diversity (π) found), that isolates analysed in this 

study are either likely receiving continual gene flow from wild reservoirs or a 

particularly diverse set of spores initially entered the ponds. Both inferences are 

also backed up by fairly neutral Tajima’s D values for ten out of eleven isolates, 

which also suggest a ‘stable’ population, with mutations largely explained by 

neutral genetic drift. This would make sense, as the ponds sampled in this study 
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were ‘open’ (not indoors), and would allow for frequent opportunities for 

transmission of E. hepatopenaei from the wild into ponds. Alternatively, if there is 

no ongoing gene flow from outside shrimp ponds, the populations may have 

settled long enough for stabilising selection to have taken effect. Though the latter 

seems less likely, given that the shrimp are harvested 2-6 times yearly  (Crespi 

& New, 2009). In the former scenario, these results also suggest that this may be 

a true representation of the genotypes found within the surrounding wild 

population. Whatever the source of the gene flow in shrimp ponds sampled in this 

study, the levels of nucleotide diversity and neutral Tajima’s D suggest it may be 

universal among all isolates. Likely meaning that the spores were introduced to 

ponds in a similar fashion, with similar amounts of geneflow (if any) from the ‘wild’ 

population. However, there may also be build up of genomic reservoirs of E. 

hepatopenaei in shrimp ponds, as many of the isolates obtained in this study 

were from earthen ponds, which would allow spores to build up in the sediment 

over time. Although Thai farming practices do generally incorporate sediment 

treatment between harvests  (Yuvanatemiya et al., 2011), these are unlikely to 

be 100% effective as sediment has been shown to partially protect some 

microorganisms from disinfection methods  (Rokunuzzaman et al., 2016; Y. 

Wang et al., 2021). The genetic effects on these isolates may be quite transient, 

as incoming geneflow from the surrounding environment may be ever-present, 

like many natural systems. However, it is less likely that gene flow from these 

ponds is reciprocated as frequently, so pond-based sequences may become 

more and more divergent from ‘wild’ populations. This is because, as mentioned 

above, shrimp are harvested 2-6 times a year, meaning that there would not be 

a long-standing population. This would reduce the chance for farm-based spores 

to be transmitted back into the ‘wild’ host species, and thus reduce the chance of 

farm-based genotypes making their way into ‘wild’ populations. 

 

4.4.3 Connectivity 

Estimates of admixture (f3 statistics) between countries suggest a lack of 

significant admixture between the three countries involved, overall (from a larger 

geographic scale). This is in line with PCA, SNP tree, and Fst estimates, indicating 

to relatively isolated populations without any recent, significant (as in enough 

geneflow to affect genomic structure) movement between those of any other 

‘ancestral’ populations. The much lower f3 estimates for Thailand and China as 
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the target populations, (China, India: Thailand; Thailand, India: China 

respectively) is likely due to the isolate Chin-Qing2 being very similar to two Thai 

Isolates (Thai-Pathun, Thai-Chao). This also suggests, if only minimal, that there 

might be some dispersal between China and Thailand. A better understanding of 

dispersal routes (whether they are anthropomorphic or not) may give a clearer 

picture. 

 

4.4.4 Varying ploidy of E. hepatopenaei 

The ploidy of many Microsporidia is unknown, largely due to isolated nuclei 

through the lifecycle of such taxa, making it difficult for microscopy-based 

methods  (Cali et al., 2017). High heterozygosity has been described in some 

Encephalitozoon species, indication polyploidy in those species  (Selman, 2014), 

and other species have also been suggested to be diploid  (Cuomo et al., 2012; 

Haag, Sheikh-Jabbari, et al., 2013; Haag, Traunecker, et al., 2013). Although it 

is not known whether this is a biological feature shared among all Microsporidia. 

The consistent (12/15) diploid identification for the isolates used in this study, 

using kmer distribution, does suggest that E. hepatopenaei is also diploid. 

However, in some cases (Thai-Chan1-1; Thai-Chan1-2; Thai-Pathun, Indi-Dah; 

Indi-Saf3) the proportion of kmers with a diploid distribution is comparable to the 

second highest estimated ploidy. Interestingly, the second highest ploidy 

represented in the kmer distribution varies among the samples, with no visible 

pattern. One possibility for this, is that during different cell stages, E. 

hepatopenaei cells vary in ploidy (depending on the cell's developmental stage). 

A state described in other pathogenic organisms, especially when dealing with 

stress  (Y. Li et al., 2017), though not one yet described in Microsporidia. 

 

4.4.5 Conclusions and applications in aquaculture 

In conclusion, this study shows that it is unlikely that E. hepatopenaei’s recent 

“expansion” across South East Asian P. vannamei farms was due to recent 

(2009) anthropogenic movement. More likely that, given the geographic structure 

seen between isolates, E. hepatopenaei was widespread prior to P. vannamei 

and P. monodon being used in aquaculture; and it is possible that the change to 

the more susceptible P. vannamei in 2000/1 allowed it to become so prevalent. 

This has implications for the continued farming of penaeid shrimp. However, 

there may be signs of dispersal between Thailand, China and India. To prevent 
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continued infection of existing ponds or infection in new ponds, methods will have 

to be enforced that prevent outside environmental factors from influencing the 

farm. This also should inform the aquaculture industry, as Microsporidia, among 

many other intracellular parasites, are opportunistic. So, without sufficient prior 

screening of potential farming locations, for either expansion or new farms, 

farmers run the risk of picking up new infections. This is important, as the 

intermediate hosts of E. hepatopenaei have not been characterised. So, it is not 

yet known how spores get into ponds, or disperse between countries. Knowledge 

that would be required for more targeted prevention. 

 

Though the route of transmission into ponds from local environments is still 

unknown, the fact that it is occurring across several countries indicates that it is 

via a medium that is very widespread but local enough for there to be population 

structure within countries. Spores may enter the pond through the water that is 

locally sourced, the soil (wide microsporidian diversity in soil  (Ardila-Garcia et 

al., 2013)) of inland shrimp ponds and may be transmitted via an intermediate 

host that is widespread but does not range far (like insects/small birds, that would 

occur through all of these countries). As E. hepatopenaei has been found in 

polychaetes and crabs, it is possible that there are multiple aquatic vector 

species. The initial spread of E. hepatopenaei could have been facilitated by 

migratory birds that feed on these vectors, as is the case for many pathogenic 

species  (Okamura et al., 2019). 

 

4.4.5 Further research and limitations 

Further research should be carried out on the rate of sexual reproduction (if not 

asexual), as it is not yet known whether these organisms solely reproduce 

asexually, and if sexually, in what proportion. The patterns observed in this study 

could be less pronounced depending on the predominant mode of reproduction. 

For example, if they primarily reproduce asexually the pattern seen could just be 

from a low number of clonal individuals from genetically divergent individuals. 

Though it is unlikely to be caused by a few initial introductions into ponds (unless 

they have been subsequently distributed in a local fashion, thus keeping similar 

genotypes just between ponds) as isolates are still closely related within countries 

on a basis of distance. 
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Another line of investigation that should follow this work is if there is a difference 

between farm-based isolates and “wild” isolates and if there is a greater selective 

force on those infecting shrimps. Thus, allowing for greater variability found in the 

“wild” types. This would help inform on the type of genomic variants that are able 

to thrive in shrimp ponds (if there is a variant), and whether these variants could 

be a danger to other farmed crustaceans. To do this, more environmental 

samples need to be collected from around the areas that have been selected in 

this study from a true comparison. The single-copy set of PCR regions will also 

help with this, to consider evolutionary origins. 

 

A limiting factor in this chapter is that the spores had to be pooled in order to get 

enough gDNA for sequencing. The pooling puts limitations on the type of analysis 

that can be carried out on these samples, due to not being able to attribute 

genomic characters to individuals. Due to this, although the analysis carried out 

was designed for pooled-seq, the population genomic indices estimated in this 

study are conservative and likely underestimates the complexity found between 

these isolates. Single cell sequencing would be a better tool to answer these 

questions more thoroughly. 
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4.5 Supplementary tables and figures 

 

Figure 4.1a-c 

Relationship between number of reads mapped and contig size 

1a 

4.1b 
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4.1C 
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Figure 4.2 a, b  

4.2a). SNPs called against contig size 

 

4.2 b). Relationship between the amount of SNPs called and reads mapped  
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Chapter 5: Patterns in Enterocytozoonidae infection and evolution  

 

5.1 Introduction 

 

Multi-gene phylogenies are very useful, adding greater resolution and confidence 

to phylogenies  (Gontcharov et al., 2004) They have become very commonplace 

in the last two decades. They provide a more stable base for evolutionary 

assumptions, as inferences are being drawn from the plethora of varied evolution 

rates across loci all contributing to a more reliable picture of the evolutionary 

relationships between taxa under study. Multi-gene phylogenies are frequently 

used in resolving deep evolutionary histories, like eusociality in vespid wasps  

(Hines et al., 2007), diversification of plants on land  (Finet et al., 2010), and 

evolution of tetrapod olfactory receptor genes  (Kishida, 2008). It is the greater 

deep branch evolutionary resolution and reliability that make multi-gene analysis 

especially relevant to microsporidians. However, phylogenomic datasets can still 

result in incongruent trees, depending on the genes used for the phylogeny  

(Huang et al., 2010; Rosenberg & Tao, 2008). Conflicting results that would likely 

be minimised by using a set of conserved single-copy genes. More recently, 

within the last 10 years, multigene phylogenies investigating the relationship 

between Microsporidia and Microsporidia-like organisms have given new insight 

into the relationship of the phylum to other eukaryotes  (Haag et al., 2014; Quandt 

et al., 2017).  

The reduced costs in next-generation sequencing and advances in bioinformatics 

(more expertise and greater accessibility to high-performance computers) have 

allowed researchers to also investigate the evolution of proteins within the 

Microsporidia. Understanding the changes that have made this phylum of 

intracellular parasites so successful is of interest from both an academic and 

clinical perspective. This type of research has shown a set of Microsporidia-

specific genes that are core across all species of Microsporidia, and likely 

associated with their parasitic lifestyle  (Heinz et al., 2012). This addition of 

Microsporidia-specific gene families was accompanied by a loss of metabolic 

pathways and gene length reduction, attributed to the phylum-wide genome 

reduction (Heinz et al., 2012). Some of the core gene families that were novel to 

the microsporidia have bacterial-like nucleotide transport domains, likely 
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associated with ADP/ATP sequestration from the host (Cuomo et al., 2012; Heinz 

et al., 2012) and hexokinases with secretion signal sequences shown to be able 

to export proteins out of the cell  (Cuomo et al., 2012; Pombert et al., 2012). 

Host-shifting, an event when a parasite manages to infect and establish itself in 

a new host species, is a well-studied interaction in the evolution of parasitic taxa  

(Marston et al., 2017; Sakwinska et al., 2011). A large factor in the success of 

host-shifting, is the close proximity of two phylogenetically related organisms, as 

the probability of host shifting decreases with increased phylogenetic distance 

between hosts  (Braga et al., 2020; Engelstädter & Fortuna, 2019). This is why 

the emergence of pathogens that influence humans, are generally either through 

agriculture (livestock) (D’Agostino & Cook, 2015; Mughini-Gras et al., 2018)or 

environmental/domestic interactions with mammals (cats and dogs)  (Baneth et 

al., 2016; Damborg et al., 2016; Tan, 1997). Largely, host-shifting studies looking 

at parasite trends, are carried out on RNA viruses, due to their high propensity to 

jump hosts, a trait that is associated with high mutation rates  (Longdon et al., 

2014; Loverdo & Lloyd-Smith, 2013). However, it is a widespread phenomenon 

occurring across both eukaryotic (Giraud et al., 2010; Navaud et al., 2018) and 

bacterial life  (Bonneaud et al., 2019; Mrochen et al., 2018). Gene mutations 

associated with host-shifts are gaining more attention  (Anishchenko et al., 2006; 

Linster et al., 2014; Loverdo & Lloyd-Smith, 2013; Woolhouse et al., 2005), as a 

better understanding of them could impact therapeutics and enable researchers 

to better predict pathogenic host-shifts that could become problematic (Pimentel 

et al., 2021). For example, research done on the Avian A/H5N1 influenza virus 

showed that only five amino acid changes are required to be able to transmit 

between different host ferret species  (Linster et al., 2014). 

Opportunistic parasites are also more likely to have a host-shifting event, but this 

is a different process to the one posed for the parasites mentioned above, dubbed 

as ‘professional’ pathogens  (Martínez, 2014). For opportunistic parasites, it is 

the host's inability to stop an infection, that allows it to proliferate, while 

professional pathogens may actively inhibit or evade host immune responses. 

This can come about due to a suppressed immune system as a result of ill health, 

or temporary effects, like prolonged stress due to non-optimal environment 

conditions, or lack of nutrients  (Glaser & Kiecolt-Glaser, 2005; Webster Marketon 

& Glaser, 2008). Generally, opportunistic parasites are picked up from the 
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environment and many are able to parasitise the host asymptomatically. It is the 

reduction in the immune system that allows them to take advantage of a 

weakened host. This allows opportunistic pathogens to take a broader approach 

to infection, in terms of infection-based genes and pathways. For example, 

Candida albicans binds to phospholipids  (Tams et al., 2019), molecules that are 

widely found across many epithelial cell types  (Shewan et al., 2011), allowing it 

to infect a large range of hosts once immunocompromised. All members of the 

Enterocytozoonidae (Microsporidia: Enterocytozoondiae) follow a similar 

opportunistic pattern, all infecting the easily accessed epithelial/enterocyte cells 

of the digestive tract  (G. D. Stentiford et al., 2019). Infection in all species of the 

Enterocytozoonidae have not been shown to progress to other organs/tissue 

types within the host, showing a transmission strategy to infect the tissue of first 

contact. 

With the well-described presence of multi-host infections discussed above, it has 

been shown frequently that some microsporidian species have a number of 

different hosts  (Quiles et al., 2019; K. Snowden et al., 1999; K. F. Snowden et 

al., 2009). However, it is not yet known if there is a drastic change in infection 

dynamics when microsporidian taxa change host. There are two possible reasons 

why they are able to host-shift so effectively: one being that due to the high 

mutation rates, they are able to adapt quickly to new host cells, a factor found to 

be associated with emerging pathogens  (Alexander & Day, 2010); second, the 

fact that they are largely generalist parasites and infect similar tissue types in 

different species, for example, C. albicans. The Enterocytozoonidae is a family 

that generally infects the same tissue and host types: with exception of E. 

bieneusi, they infect aquatic hosts, and these are generally crustacea. With the 

Enterocytozoonidae in a largely terrestrial infecting clade (Terrasporidia), this 

family may represent a good group in which to investigate the molecular basis of 

any change in infection processes in a relatively more homogeneous background 

(in terms of host and tissue preference) compared to other lineages.  

To investigate how genomics can be used to try to identify the molecular basis of 

changes in infection strategy this study investigates the proteins associated with 

host-shifting in the Enterocytozoondiae, using patterns of loss and gain of protein 

families (orthogroups) within the Enterocytozoonidae, at the level of the whole 

clade and for the individual. The analysis will focus on previously described genes 
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associated with pathogenicity. Genes associated with pathogenicity are typically 

geared in one of two ways: to enable quicker invasions of the host  (Josling et al., 

2015) or to better resist or evade host immunity  (Thammavongsa et al., 2015). 

Linked to the parasite's ability to proliferate in a new host is the host’s 

susceptibility to the novel pathogen  (Beldomenico & Begon, 2010). A 

phylogenomic approach to analyse whether there are any particular protein 

families gained that are associated with infection will be adopted, looking for 

patterns between the nodes they were gained on and the hosts of the 

enterocytozoonids in that lineage. There are currently no published genomes 

sequences from the second fish infecting branch of the Enterocytozoonidae ( 

(Para)Nucleospora/Obruspora), as such this clade is omitted from this study.  

With the Enterocytozoondiae having some of the most reduced genomes among 

Microsporidia that have an available genome, besides those in the 

Encephalitozoon genus, another aim of this study is to investigate the 

orthogroups associated with the reduction of genome size within the 

Enterocytozoonidae. Genome reduction is a widely researched phenomenon 

within the Microsporidia, and this study may identify characteristics of particular 

enterocytozoonid lineages in which gene loss has been more extreme than in 

others. 

 

5.2 Method and analysis 

 

5.2.1 Building the species tree/orthogroups assignment 

To build a robust phylogeny, microsporidian proteomes were acquired from the 

NCBI genome database (Table 5.1-supplementary). However, the genome 

sequence of the aphelid Paraphelidium tribonemae was acquired from a private 

database  (Karpov et al., 2017). Some of the genomes are partially assembled 

(Amphiamblys sp.); those of the Encephalitozoon species are assembled to 

chromosome-level. Fungal outgroups were taken from major fungal clades (Table 

5.1-supplementary).  
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OrthoMCL version 2.0  (Fischer et al., 2011) was then used to assign all proteins 

from all proteomes (Table 5.1-supplementary) into orthogroups. 

orthomclFilterFasta was used to filter out poor quality proteins (less than 20 

amino acids long) from all proteomes, the remaining set of proteins were used for 

the rest of the analysis. To create the all-versus-all blast file that is needed for 

OrthoMCL, a database was made from the dataset output produced by 

orthomclFilterFasta, using BLAST+ (makeblastdb) version 2.6.0  (Altschul et al., 

1990; Camacho et al., 2009) under default parameters. This database was then 

used to perform a BLASTP search against the filtered proteomes used to make 

the database, using BLAST+ (blastall) with a tabulated output [-m 8]  (Altschul et 

al., 1990; Camacho et al., 2009). The output from OrthoMCL was used to build 

the species tree, using only single-copy genes. To get only single-copy genes, a 

custom script was used on the tabulated file outlining the frequency of that gene 

per species per orthogroup. Only genes that were single copy and present in all 

species in the dataset were selected. The PSI-Coffee version 11.0  (Floden et al., 

2016)algorithm was used to align the individual data sets using homology 

extension. trimAl version 1.2  (Capella-Gutiérrez et al., 2009), using the [-

gappyout] (a more lenient trimming algorithm, as the sequences, are so 

divergent) was used to remove the highly heterogeneous sections in all 

orthogroups. Model selection tests were carried out using IQ-TREE version 1.6.1  

(Nguyen et al., 2015). Models were selected using the Akaike information 

criterion (AIC) (Table 5.2-supplementary). The ortho-groups were then 

concatenated into one dataset for partitioned analysis. A partition file was 

subsequently made for the analysis. Maximum likelihood trees were built using 

RAxML-HPC version 8.2  (Stamatakis, 2014) assessed with 1000 bootstrap 

replicates, using the partitioned model file created previously. The tree was 

viewed and edited in TreeGraph version 2.0  (Stöver & Müller, 2010). 

 

5.2.2 Mapping orthogroups to a species tree 

Investigation of protein families gained and lost in the enterocytozoonid lineage 

was carried out by mapping the loss and gain of protein families to the species 

tree. All protein families produced from the OrthoMCL analysis, prior to the single-

copy gene filtering, were mapped onto the tree using amalgamated likelihood 

estimation (ALE) version 0.4  (Szöllosi et al., 2013). ALE uses likelihood 
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estimation to amalgamate gene trees to estimate their probabilities, testing 

different ways to map gene trees onto a selected species tree. ALE requires 1000 

trees per orthogroup as burn-in for the analysis, as such, to produce the gene 

trees that will be mapped on the species tree, IQ-TREE was used to build 4000 

trees for each orthogroup. All of which are mapped to the species tree to best 

estimate that orthogroups gain and loss among different lineages. Datasets for 

tree building were prepared using MAFFT version 7.310  (Katoh & Standley, 

2013) to align sequences under default parameters, instead of PSI-Coffee, due 

to computing/time restrictions (the number of trees required), and trimAl [-

gappyout] was used to mask the highly heterogeneous regions. The analysis was 

run following the protocol outlined on the ALE GitHub webpage 

(https://github.com/maxemil/ALE), the ALE objects were built using the script 

ALEobserve discarding 1000 trees (1/4 of the trees in the tree list). ALEdated 

was used to reconcile the trees, with outgroups included nodes were ordered 

relative to each other. The reconciliation event files were compiled using a custom 

script, and the gain and loss events were then mapped onto the species tree by 

eye. Gene duplications events and gene copy number were also assessed in 

ALE, as duplication events have a strong association on the size of genomes  

(Sheridan et al., 2020). 

 

5.2.3 Novel enterocytozoonid orthogroups 

To look at the possible functional distribution of orthogroups gained in the 

Enterocytozoonidae, orthogroups that were gained or lost at and after the node 

representing a common ancestor for H. eriocheir, E. bieneusi, En. canceri and E. 

hepatopenaei were put into multiple datasets depending on the node at which 

they were gained or lost. There are seven node-dependent datasets in total, one 

incorporating all members, then one without H. eriocheir, one without H. eriocheir 

and E. bieneusi and four separate detests for each individual species (Table 5.2). 

InterProScan version 5.36  (Jones et al., 2014) was used to search for protein 

domains against a number of protein domain databases with the aim of inferring 

possible functions for any gained and lost protein orthogroups of interest. 

However, it is also likely that none of the enterocytozoonid genome assemblies 

are complete, which could result in false negatives for lost/gained orthogroups, 

in regard to an absence of a gene (s). To help better understand the function of 
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these selected orthogroups, subcellular localisation was predicted using WoLF 

PSORT version 0.2 (runWolfPsortSummary)  (Horton et al., 2007), run against 

the fungal database. Only results with a confidence value of 10 and above were 

considered. WoLF PSORT is an extension of PSORT 2, which uses amino acids 

to predict protein localisation based on amino acid composition, functional motifs, 

and sorting signals. 

 

5.3 Results 

 

There was a total of 132571 protein sequences from all species involved in this 

study. The filtering for the protein database only removed one sequence that was 

less than 20 amino acids long. The OrthoMCL analysis resulted in 15,369 ortho-

groups. The biggest (OG1000) was solely composed of Amphiamblys sp. 

proteins and consisted of 544 uncharacterised proteins. These likely represent 

the repetitive elements spoken about in  (Mikhailov et al., 2016). A large portion 

of orthogroups were not like this, however, with 7590 of 15, 369 orthogroups 

being made up of two or fewer genes. The single-copy gene script used on the 

ortho-groups resulted in 125 single-copy gene orthogroups that appeared in 

every species used in this study (Table 5.2-supplementary). The gene identity 

and models were chosen for each orthogroup can be seen in Supplementary 

Table 5.1. Across all seven enterocytozoonid nodes (datasets), 728 orthogroups 

in total were estimated to have been gained and 2, 401 lost at different nodes 

throughout the enterocytozoonid clade. The number of gained/lost orthogroups 

varied among the seven nodes (Figure 5.1). The greatest number of novel ortho-

groups gained for a single enterocytozoonid species is H. eriocheir, with 215 

gains and the least was E. hepatopenaei, gaining 55 orthogroups (Figure 5.1). 

There is evidence for a greater relatedness, based on patterns of shared 

orthogroups, between the enterocytozoonids excluding H. eriocheir; The node 

experiencing the greatest number of lineage-specific of orthogroups within the 

Enterocytozoonidae was the node encompassing En. canceri, E. hepatopenaei, 

and E. bieneusi (193) (Figure 5.1). In all nodes, more orthogroups were lost than 

gained. The greatest loss was seen from H. eriocheir (447). This was followed by 

E. bieneusi (403) and then by the node estimated to be the enterocytozoonid 

ancestor (393). 
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5.3.1 History of Genomic reduction in Enterocytozoonidae: 

A phylogeny (Figure 5.1) based on 125 genes (Table 5.2-supplementary) from 

34 taxa showed strong support (>70 bootstrap support on all nodes (average 98)) 

for the current understanding of microsporidian phylogenetic relationships, based 

on phylogenomics  (Mikhailov et al., 2016; Quandt et al., 2017; Torruella et al., 

2018)) and the 18s rDNA  (Vossbrinck et al., 2014; Vossbrinck & Debrunner-

Vossbrinck, 2005).  

 

To investigate the role the rate of orthogroup gain and loss has in genome 

reduction, a relative measure of how many orthogroups were gained and lost was 

taken relative to the evolutionary rate as inferred by the number of substitutions 

(branch length). This was done by dividing the cumulative (cumulative from the 

ancestral polar tube forming microsporidian, marked on Figure 5.1*) orthogroups 

gained/lost by the cumulative branch length (cumulative from the same point), 

which was multiplied by ten ( (orthogroups gained/branch length) x 10). The 

resultant value represents the number of orthogroups gained/lost per 0.1 

substitutions (Table 5.1), which was chosen as the species tree (Figure 5.1) scale 

bar has intervals representing 0.1 substitutions. When looking at nodes including 

genera/families, of the taxa included in this tree, the Enterocytozoonidae showed 

the most conservation, gaining the fewest orthogroups with 54.06 orthogroups 

gained per 0.1 substitutions, the remaining
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Figure 5.1: Gain and loss of orthogroups of microsporidian genomes. The ancestral state of orthogroups were estimated using 

Amalgamated likelihood estimation (ALE). Gains (green underlined) and losses (red underlined) are mapped onto a species tree based 

on 125 single-copy orthologs shared by all taxa (34 species). Inferred using maximum likelihood in RAxML-HPC (Stamatakis, 2006). All 

nodes have bootstrap values of 100 unless marked with a star (90-99), a circle (80-89), or a square (70-79). *Polar filament-forming 

ancestral node marked with a diamond
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taxa (Nematocida, Nosema, and Encephalitozoon) ranged from 72.69-13.98 

(Table 5.1). The inverse is true for orthogroups lost, with the Enterocytozoonidae 

having lost the most, losing 365.26 orthogroups per 0.1 substitutions, the 

remaining taxa ranging from 170.60-360.19. The same pattern is maintained 

looking at the relative gain at a per species level (Figure 5.2, Table 5.3-

supplementary), though the relative loss of orthogroups is not as pronounced 

among the Enterocytozoonidae. 

Despite being the most genetically divergent (longest branch length) 

family/genera in this study, in terms of the genetic distance from the 

Microsporidian polar filament-forming root, the Enterocytozoonidae show some 

of the lowest rates of orthogroup gain. However, there did not appear to be a 

positive correlation, if any, between orthogroup gain and the length of the branch 

(divergence of that taxa) (Figure 5.1a-supplementary). Whereas orthogroup loss 

showed a linear positive correlation (Figure 5.1b-supplementary). When the 

outliers are removed (Nematocida), the relationship between orthogroups lost 

and branch length remained positive (Figure 5.1c-supplementary), whereas that 

between orthogroups gained and branch length seem to show no relationship 

(Figure 5.1d-supplementary). 

 

5.3.2 Genome expansion 

To get a better understanding of whether enterocytozoonid genomes are 

continuing to reduce in size, a measure of duplications per 0.1 substitutions (a 

relative measure of duplications and gene copies were also taken in the same 

way as above, with orthogroups gained and lost) was taken. Duplications per 0.1 

substitutions varied widely across nodes and taxa (range: 0-0.28 duplications per 

0.1 substitutions) (Figure 5.2, Table 5.3-supplementary). Comparatively, across 

the four clades represented in this tree, the Enterocytozoonidae had the highest 

duplication rates averaging at 0.12 (range: 0.05-0.25) (Figure 5.2, Table 5.3-

supplementary). The lowest were those of the Nematocida (average: 0.01, range: 

0-0.04),and Encephalitozoon (average: 0.01, range: 0-0.03), with Nosema 

(average: 0.13, range: 0.05-0.23) in between. Conversely, across the four clades 

being compared in this tree, the Enterocytozoonidae had the lowest number of 

gene copies (average: 0.08, range: 0.06-0.11), relative to branch length and 
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Nematocida has the greatest (average: 0.26, range: 0.23-0.29) (Figure 5.2, Table 

5.3-supplementary). 

 

Table 5.1: Number of accumulative orthogroups gained for each clade 

being compared. Orthogroup loss and gain were assessed using the 

Amalgamated likelihood estimation (ALE)  

 

Clade Branch 

length  

Gained 

orthos 

Orthos 

lost 

Relative 

orthos 

gained 

Relative 

orthos 

lost 

Relative 

duplication 

Relative 

gene 

copy 

Enterocytozoonidae 0.62 333 2250 54.06 365.26 0.00 0.07 

Encephalitozoon 0.66 567 2073 85.52 312.67 0.01 0.10 

Nosema 0.52 378 1873 72.69 360.19 0.01 0.10 

Nematocida 0.45 624 766 138.98 170.6 0.00 0.22 
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Heatmap scale: Branch length: 0.69-1.17; Gained orthos: 321-1346; Orthos lost:818-2802; Relative orthos gained: 40.53-189.82; 

Relative orthos lost: 119.24-310.51; Relative duplication: 0-0.28; Relative gene copy: 0.06-0.29; Genome size: 2.19-51.31Mbp 

 

Figure 5.2: Heatmap representing orthogroups gained and lost for each microsporidian species included in this tree, relative to the 

accumulative branch length. (Heatmap key: factor dependent scale of relative values represented by a range of colours between red and 

green: red= relatively low; green= relatively high). Heatmap values are relative to each factor (column) being considered (for example, 

Nematocida displodere, relatively, has the shortest branch length but has on the highest values for relative gen copies). Clades being 

compared are emboldened to highlight clade-based patterns. Orthogroup loss and gain were assessed using the Amalgamated likelihood 

estimation (ALE). 
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5.3.3 Enterocytozoonid Structural Characterisation of orthogroups (proteins) 

(SCOP) 

To investigate any signatures of enterocytozoonid pathogenicity, InterPro was 

used to analyse the functional and structural domains of the gained and lost 

orthogroups. To further categorise the gained and lost genes in the orthogroups, 

the seven general Structural Characterisation of Protein (SCOP) functional 

categories were implemented  (Vogel, n.d.), across all lineages. This was also to 

allow for inferences on the function of the genes lost, in relation to genome 

reduction. Characterisation of genes gained within the Enterocytozoonidae 

followed similar patterns of lineage-specific gene family expansions (LSEs), 

including a large number of structural (SCOP characterisation: general), 

nucleotide-binding proteins, and kinases (SCOP characterisation: regulation)  

(Lespinet et al., 2002) (Figure 5.3). There were 155 different characterisations for 

functional/structural domains/motifs gained across all enterocytozoonid nodes, 

with 132 of these being unique to a single lineage, 23 were found in multiple 

lineages (Table 5.4-supplementary). Domains/motifs that are described as ‘like’, 

having a similarity to other described domains, made up a greater percentage in 

gained orthogroups (20%-34.4%) than orthogroups lost (14.4%-20.6%). Many of 

the domains gained but unique to a lineage are largely predicted to be 

housekeeping regulatory proteins, in the form of ribosomal proteins, cell surface 

channels/pumps, DNA replication, and membrane proteins; Indeed, the majority 

of the orthogroups gained are regulatory (Figure 5.3a). SCOP characterisation of 

InterPro analysis was largely automated, however, not all domains have been 

included in the SCOP database. For the domains missing from the SCOP 

database, manual searches for functional characterisation were carried out using 

the EMBL-EBI domain search webpage  (Madeira et al., 2019), with the domain 

as the search criteria. Per dataset, proportionally, the base node of the 

Enterocytozoonidae had the greatest addition of intracellular process domains 

(41.7%, other enterocytozoonid nodes: 0%-29.8%).  
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5.3.4Genome reduction through the loss of (retro)transposable elements and 

metabolic genes 

The loss of transposable elements has been associated with reduced genomes, 

and therefore the loss of transposable elements was investigated in this study. 

There were 23 (retro)transposable elements lost (Table 5.4-supplementary) 

throughout the enterocytozoonid lineage. A small number of domains associated 

with (retro)transposable elements were gained by one enterocytozoonid lineage, 

H. eriocheir. H. eriocheir gained a further four domains associated with 

(retro)transposons (Reverse transcriptase/ retrotransposon-derived protein, 

RNase H-like; Tc1-like transposase, DDE domain; Transposase InsF-like, 

Transposase, Tc1-like) (Table 5.4-supplementary). Across all lineages, the 

majority (range: 24.43%-41.80%) of domains lost were metabolism associated 

and mainly domains involved with energy production, transportation, and ‘other’ 

metabolic enzymes. The second-highest losses through all nodes were genes 

categorised as ‘Information’ (range: 23.71%-39.68%), in the form of genes that 

are associated with translation and DNA repair. Genes categorised as metabolic 

made up a much smaller percentage of orthogroups gained (0%-16.67%), with 

the largest percentage from E. hepatopenaei (16.67%). 

 

 

 

a 
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Figure 5.3: Functional annotation (7 SCOP general definitions) of orthogroups 

gained (a) and lost (b) throughout the Enterocytozoonidae 

 

5.3.5 Ricin B lectins and extracellular protein orthogroups, integral for infection? 

Ricin B- (like) lectin domains were focused on for orthogroups gained, as they 

have been associated with infection in Microsporidia (N. bombycis), as they were 

differentially regulated after spore germination  (H. Liu et al., 2016). Lectins are 

also associated with binding in multiple parasites (Loukas & Maizels, 2000; Petri 

et al., 2002). Nine orthogroups returned with a Ricin B- (like) lectin domain, all of 

which were Enterocytozoonidae lineage-specific in that the orthogroups do not 

include species outside of the Enterocytozoonidae (Table 5.2, Figure 5.4a). 

However, this may also represent high genetic divergence instead of novel, 

specific proteins; one orthogroup (OG9557) had a 24-35% identity with N. 

bombycis Ricin-B Lectins. 55.5% were also species-specific, while 66.6% were 

specific to the exclusion of H. eriocheir (Figure 5.4). 

 

To further characterise the orthogroups gained and lost within the 

Enterocytozoonidae, subcellular localisation was predicted using WoLF PSORT. 

The aim was to identify pathogenic genes possibly associated with a change in 

host-type. Working on the assumption that many of the changes to infection-

based tools were likely to involve extracellular proteins (not always), this part of 

b 
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the study mainly focused on gained and lost orthogroups comprised of proteins 

predicted to be extracellular. 

 

 

Figure 5.4 a, b: Ricin B-Lectins (a) and extracellular (b) orthogroups gained and 

lost (1) throughout the enterocytozoonid lineage. (Green boxes=gained, red 

boxes=lost and white boxes=not present) 

As most orthogroups were made up of multiple protein sequences, localisation 

predictions were only considered if the prediction was in the majority (>50%) of 

the genes in the orthogroup. Gained gene domains characterised and predicted 

to be extracellular made up a very small percentage of (SCOP) InterPro 

characterised proteins (range:0.00%-16.67, average: 5.08%), and the WoLF 

PSORT predicted (0.00%-3.45%, average: 0.88%) proteins. These domains 

were also largely uncharacterised on NCBI and via InterPro (Table 5.2), with the 

exclusion of three orthogroups (OG5226, OG9682, and OG9678). These three 

orthogroups, though were not characterised using InterPro likely due to them 

being too genetically divergent. Although they have been described in previous 

studies and have been associated with infection (OG9682:Enp1- has been 

reported to be involved in host adherence; OG9678: PTP3- function not entirely 

known, though has no proven adherent ability so probably structural). Although 

all of the orthogroups estimated to be localised extracellularly were estimated to 

be lineage-specific to the Enterocytozoonidae, as with the Ricin-B Lectin, it is 

likely that the two orthogroups (OG9678 and OG9682) were homologous to their 

respective BLAST results, but were too genetically divergent to be grouped in 

orthogroup analysis. Especially as Enp1 has not been described for the 

Enterocytozoonidae.  

b 

a 



145 | P a g e  
 

 Table 5 2: Gained enterocytozoonid orthogroups predicted to be 

extracellular/Ricin B lectins, using WoLF PSORT and InterPro. 

Orthogrou

p ID 

NCBI 

accession 

(s) 

Node/taxa 

that have 

Gained 

orthogroup 

Node/taxa 

that have 

lost 

orthogroup 

Blast 

similarities/ 

characterisati

on (% 

identity) 

InterPro 

Domain/m

otif 

WoLF 

PSORT 

Localisation 

OG9522 EED43039.1 

EED44094.1 

OQS54814.1 

Enterocytozo

on/ 

Enterospora 

En. canceri Same as 

queries/ 

uncharacterise

d 

Ricin B, 

lectin 

domain 

Mitochondrial 

OG7845 EED44527.1 

ORD92901.1 

ORD93447.1 

OQS55637.1 

Enterocytozo

on/ 

Enterospora 

N/A Same as 

queries/ 

uncharacterise

d 

Ricin B-like 

lectins 

Cytoplasmic/

Nuclear 

OG7879 ORD94928.1 

ORD93353.1 

En. canceri N/A Same as 

queries/ 

uncharacterise

d 

Ricin B-like 

lectins 

Nuclear 

OG8012 OQS54094.1 

OQS54098.1 

E. 

hepatopenae

i 

N/A Same as 

queries/ 

uncharacterise

d 

Ricin B-like 

lectins 

Nuclear 

OG13751 ORD94924.1 

OQS54085.1 

E. 

hepatopenae

i and En. 

canceri node 

N/A Same as 

queries/ 

uncharacterise

d 

Ricin B-like 

lectins 

Cytoplasmic/

Nuclear 

OG9557 OQS54829.1 

ORD95179.1 

E. 

hepatopenae

i and En. 

canceri node 

N/A Nosema 

bombycis/ 

Ricin B lectin 

(24%-35%) 

Ricin B-like 

lectins 

Nuclear 

OG14085 ORD98380.1 H. eriocheir N/A Same as 

queries/ 

uncharacterise

d 

Ricin B-like 

lectins 

Nuclear 

OG4037 ORD98562.1 

ORD99258.1 

ORD98371.1 

H. eriocheir N/A Same as 

queries/ 

uncharacterise

d 

Ricin B, 

lectin 

domain 

Nuclear 
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OG9851 ORD95215.1 

ORD99256.1 

H. eriocheir N/A Same as 

queries/ 

uncharacterise

d 

Ricin B-like 

lectins 

Nuclear 

OG9682 ORD93056.1 

ORD94312.1 

OQS54765.1 

E. 

hepatopenae

i and En. 

canceri node 

N/A Various taxa/ 

EnP1 (29%-

100%) 

N/A Extracellular 

OG9514 EED43108.1 

EED42011.1 

EED42639.1 

E. bieneusi N/A Same as 

queries/ 

uncharacterise

d 

N/A Extracellular 

0G13675 ORD93086.1 

ORD94353.1 

En. canceri N/A Same as 

queries/ 

uncharacterise

d 

N/A Extracellular 

OG5226 ORD93182.1 

ORD93203.1 

ORD93455.1 

ORD93603.1 

ORD94121.1 

ORD94676.1 

En. canceri N/A Various taxa/ 

M2K4 (25%-

100%) 

Protein 

kinase 

domain 

Extracellular 

OG9678 ORD92812.1 

OQS53456.1 

OQS53386.1 

En. canceri 

and E. 

hepatopenae

i node 

N/A E. 

hepatopenaei/ 

PTP3 

(98.48%) 

N/A Extracellular 

OG14015 ORD93180.1 

ORE00586.1 

H. eriocheir N/A Same as 

queries/ 

uncharacterise

d 

N/A Extracellular 

OG140147 ORD95562.1 

ORD98663.1 

H. eriocheir N/A Same as 

queries/ 

uncharacterise

d 

N/A Extracellular 

OG14120 ORD99456.1 

ORD99458.1 

H. eriocheir N/A Same as 

queries/ 

uncharacterise

d 

N/A Extracellular 
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The lack of gained extracellular orthogroups is similarly the case with lost gene 

domains for (SCOP) characterised (range:1.36%-4.23%, average:2.88%) and 

localised domains (range:0.00%-4.55%, average: 1.28%). This is contrasted by 

the most commonly localised cellular substrate across all seven nodes, for both 

gained and lost proteins, the nucleus (Table 5.3, Figure 5.5). Conversely, the 

second most frequent localisation predictions among the datasets were 

‘mitochondria’, with the exception of genes lost for the H. eriocheir node and the 

node representing the ancestor of all enterocytozoonids.  

Table 5.3: Predicted percentage of total orthogroups gained or lost among 

different nodes, for the two most predicted localisations. 

Node Nucleus 

gained 

Nucleus lost ‘Mitochondria’ 

gained 

‘Mitochondria’ lost 

E. hepatopenaei 62.5% 72.44% 22.5% 11.02% 

E. canceri 63.79% 70.23% 17.24% 111.83% 

E. bieneusi 51.79% 62.72% 19.64% 10.09% 

H. eriocheir 75.32% 62.82% 17.09% 8.33% 

E. hepatopenaei + 

En. canceri 

43.24% 51.52% 16.22% 16.67% 

E. hepatopenaei + 

En. canceri + E. 

bieneusi 

63.31% 70.95% 13.67% 10.14% 

E. hepatopenaei + 

En. canceri + E. 

bieneusi + H. 

eriocheir 

 75%/74.1% 13.64%/5.40%  
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Figure 5.5: Predictions of subcellular localisation for orthogroups gained (a) and 

lost (b) within the Enterocytozoonidae, using WoLFPSORT 

 

5.4 Discussion 

This study bioinformatically investigated the proteins gained in the 

enterocytozoonid lineage, with a view to identify candidates that may be 

associated with infection and the host-shift to aquatic hosts in a clade composed 

largely of terrestrial infecting parasites. This study secondarily aimed to shine 

light on genome reduction in the Enterocytozoonidae, by investigating general 

trends in novel proteins gained/lost since the emergence of the enterocytozoonid 

clade. Important, as the Enterocytozoonidae, like the intensively studied 

a 

b 
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Encephalitozoon genus, have similarly drastically reduced genomes. Recent 

multi-gene phylogenies that include an extensive range of Microsporidia are 

currently lacking. Although the one shown here was primarily produced as a 

means to provide a robust tree to look at evolutionary processes (orthogroup gain 

and loss), to date (to the best knowledge) it includes the most single-copy protein-

coding genes across the largest selection of microsporidian species, providing a 

strong framework for further research on within microsporidian evolution. 

 

 

5.4.1 Genetically divergent infection pathways 

Ricin B-lectin has been suggested in N. bombycis to play a role in infection, 

showing that inhibition of Ricin B-lectins lowers infection rates  (H. Liu et al., 

2016). With putative Ricin B- (like) lectins present throughout the 

Enterocytozoonidae (Table 5.2, Figure 5.5a), it may have a similar role in infection 

in the clade. Nine orthogroups were estimated to have Ricin B- (like) lectin 

domains being unique to the Enterocytozoonidae (not forming orthogroups with 

any Ricin B-like lectins in any non-enterocytozoonid species and not having any 

similar BLAST results). However, BLASTP results for one orthogroup (OG9557) 

showed genetic similarity to a Ricin B-Lectin identified in N. bombycis (Table 5.2). 

This suggests, at least in the case of this orthogroup, that these proteins may be 

homologous and that it is likely that the enterocytozoonid Ricin B-Lectin is 

genetically divergent. It is possible, though, that the remaining eight Ricin B- (like) 

lectins found in this study are Enterocytozoonidae lineage-specific and gained as 

a way to infect their respective hosts. The presence of Ricin B-lectins in the 

Enterocytozoonidae, Nosema, and Encephalitozoon  (Brosson et al., 2005, 2006) 

also adds support for the suggestion that these may be ancestrally retained and 

were present in an ancestor  (Campbell et al., 2013).  

 

Analysis also identified eight orthogroups predicted to be localised extracellularly, 

that were gained at/throughout the Enterocytozoonidae lineage (Table 5.2 Figure 

5.5b). As with the Ricin B-Lectin orthogroups, three have BLASTP results that 

show similarity to genes that have been previously described (M2K4, EnP1, and 

PTP3). This suggests that similar to the Ricin B- (Like) proteins, some of these 
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‘gained’ orthogroups may represent homologous and retained but highly 

divergent proteins, so have appeared as ‘novel’ in the analysis as they have not 

been grouped in their respect ancestral orthogroups. However, again, with no 

BLASTP results, the remaining extracellular proteins could be 

Enterocytozoonidae lineage-specific. EnP1 has been found to play a major role 

in adhesion to host cells for infection  (Southern et al., 2007), and PTP3 is one of 

a small number of structural proteins that make up the polar filament  (Peuvel et 

al., 2002). This provides support for the inference that remaining extracellular 

genes within the gained orthogroups may also play a role in infection. As with 

such a genetically conserved (in terms of ‘superfluous’ genomic regions) phylum, 

it is unlikely that genes gained and retained are vital to the parasite’s survival. 

Homologous representatives for neither EnP1 nor PTP3 have been found in vitro 

for members of the Enterocytozoonidae and only PTP3 has been identified in E. 

hepatopenaei in silico through genome annotation (Wiredu Boakye et al., 2017). 

It is possible that if both of these proteins are involved in infection, the large 

divergence found from these homologous representatives may also be linked to 

a change in host type. This is also shown in the orthogroup for non-

enterocytozoonid EnP1 (orthogroup ID: OG4002), which has representatives 

from taxa surrounding the Enterocytozoonidae: from Ordospora, 

Encephalitozoon, Vittaforma, and Nosema. Likewise, PTP3 (orthogroup ID: 

OG2282) has an even wider representation of species within the PTP3 

orthogroup. The lack of enterocytozoonid EnP1 and PTP3 genes in the 

orthogroups of the wider range of species for their respective homologous 

representatives of these genes is likely because of such a large genetic 

divergence. Given the position of E. bieneusi within the Enterocytozoonidae, it is 

believed that it has secondarily shifted back to infecting terrestrial vertebrates, as 

it is the most parsimonious theory. In this regard, E. bieneusi may present another 

interesting host-shift from what would have likely been aquatic hosts to a plethora 

of terrestrial hosts. However, there is only one orthogroup (OG9514: 

uncharacterised and no BLASTP results) that is unique (Table 5.2, Figure 5.5b) 

to E. bieneusi that is predicted to be extracellularly localised. As OG9514 is the 

only extracellular identified orthogroup not possessed by the remaining described 

Enterocytozoonidae, all of which are aquatic-based, it is possible that the gene 

could be involved in the host-shift from aquatic hosts back to terrestrial 
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vertebrates. Possibly involved with interacting with different cell surfaces. 

However, further research on this candidate gene would need to be carried out 

in vitro, likely in the form of a gene knockout. Although this is currently not 

feasible, as E. bieneusi has not been successfully cultured and Microsporidia are 

lacking a protocol for genome modification. 

Another domain found that may be involved in infection for E. hepatopenaei are 

putative hemolysins. Hemolysins have been hypothesised to be a mechanism of 

host cell lysis in Microsporidia (B. A. P. Williams, 2009), facilitating the rupture of 

cells to allow for the release of mature spores  (Leonard, 2013). It has also been 

described in O. colligata  (Pombert et al., 2015) and in Nosema species  (Chetia 

et al., 2017). In terms of orthogroups gained that point at a shift towards 

crustacean/aquatic-based hosts, the hemolysin orthogroup gained within this 

lineage appears to be E. hepatopenaei specific. This suggests that if hemolysin 

proteins are involved in infection dynamics, that the hemolysin gained in this 

lineage was not a result of the clade’s initial host type-shift.  

With the Enterocytozoonidae monophyletically grouped within the Terresporidia 

(one of the five microsporidian branches, largely made up of parasites that infect 

terrestrial hosts), it would be expected that among the proteins gained at the node 

representing the ancestral enterocytozoonid, would be those that indicated at a 

major host shift from mammals to aquatic invertebrates. None of the orthogroups 

of interest (extracellular, Ricin B- (like) Lectins) were present in all 

enterocytozoonids at the base enterocytozoonid node (Figure 5.4a, b), indicating 

that the ancestral enterocytozoonid did not possess all the genes identified in this 

study. Suggesting that the host change is largely opportunistic in nature (not 

‘specialised’) and that more specialised species-specific Ricin B- (like) Lectins, 

hemolysin, and extracellular genes were gained subsequently. An inference that 

concurs with the opportunistic nature of the clades infection route, as all the 

enterocytozoonids included in this study have only been noted infecting epithelial 

cells in the digestive tract  (G. D. Stentiford et al., 2019), infecting the cells they 

first come into contact with. However, this pattern could also be indicative of fast-

evolving infection-based genes that are present across the phylum. As such, 

these genes would differ greatly between lineages not infecting similar hosts and 

would likely result in a lack of conserved infection-based genes, as seen in 

enterocytozoonids. 
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5.4.2 Evolution of the Enterocytozoonidae: ancestral genome reduction and 

current genome expansion 

Given how divergent enterocytozoonid species are from the ‘ancestral’ 

microsporidian node (Figure 5.2, Table 5.3-supplementary) (node after 

Amphiamblys sp. (Figure 5.1)) as illustrated by branch lengths, it would be 

expected that under neutral evolution, they would have gained the most 

orthogroups of the species included in this study. This however does not seem 

to be the case, with some of the lowest figures orthogroups gained (47.32-

56.86), relative to their nearest, short branched relative (Vittaforma corneae) 

having 70.43 (Figure 5.2, Table 5.3-supplementary). The only species in this 

study with fewer orthogroups gained per 0.1 substitutions are S. lophii and Ed. 

aedis (40.53 and 43.54 respectively). However, this assumes similar mutation 

rates across Microsporidia, and the difference in substitution rates across 

Microsporidia has not been investigated. This suggests that in the evolution of 

the enterocytozoonid lineage, despite being the most genetically divergent on 

this tree, they were more conserved in terms of gene duplications. This possibly 

reflects differences in the repertoire and efficiency of DNA mismatch repair 

mechanisms (see below). This is also shown by a relatively low gene copy 

count, among enterocytozoonids (average Enterocytozoonidae: 0.08; Nosema: 

0.11; Encephalitozoon: 0.9; Nematocida: 0.26) (Figure 5.2, Table 5.3-

supplementary). It is likely that the factors involved in the gain and loss of genes 

are lineage-related, as closely related species have similar relative gains/losses 

of orthogroups. Ne. displodere and N. bombycis being the only two outliers from 

their respective clades, where both (No. displodere: 0.04; N. bombycis: 0.23) 

estimated gene duplication rates are more than double (Nematocida range: 0-

0.01; Nosema range: 0.05-0.12) the rates in their respective clades.  

Despite evidence above for the history of genome reduction in this family, with 

historically low duplication rates evidenced by relatively low gene copy numbers 

(Figure 5.2, Table 5.3-supplementary), the lineage may be undergoing a genome 

expansion. This is shown with the relatively high rate of duplications in the 

members within the family being double that of other microsporidians in this study 

(enterocytozoonid average: 0.12; average of remaining Microsporidia: 0.06), 

especially in E. bieneusi (0.25). A similar trend has also been described in plants, 
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the hypothesis being that functional changes to proteins are more likely to happen 

with recent duplications  (Costello et al., 2020). This suggests that the gain and 

loss of protein families is higher after a recent duplication. 

 

5.4.3 Reduction in genome size through the loss of transposable elements and 

conservation 

The loss of 23 (retro)transposable elements throughout the Enterocytozoonidae 

follows the trends in genome reduction found in other microsporidian species  (De 

Albuquerque et al., 2020; B. A. P. Williams et al., 2008). However, there is still 

evidence of active (retro)transposable elements within the Enterocytozoonidae. 

For example, the integrases, retrotransposon gag, and reverse transcriptases 

domains gained in En. canceri and H. eriocheir lineages (Table 5.4-

supplementary). Reverse transcriptases have also been found in S. lophii by 

Hinkle et al. (1997) being associated with retrotransposons  (Hinkle et al., 1997). 

Since Hinkle’s paper, retrotransposons have also been found in Anncaliia algerae 

(previously Brachiola algerae), Edhazardia aedis  (Gill et al., 2008; B. A. P. 

Williams et al., 2008), Nosema bombycis (Xu et al., 2006), and V. corneae  

(Mittleider et al., 2002). The presence of (retro)transposons in the 

Enterocytozoonidae also concurs with the hypothesis posed by Gill and 

Fast,2008; Williams et al, 2008, that the genome of Enc. cuniculi has lost these 

elements, as surrounding sister lineages (now including the Enterocytozoonidae) 

have it present. What is surprising is that it was supposed that Enc. cuniculi had 

lost it due to compaction of the genome  (Gill et al., 2008) (Encephalitozoon 

having the smallest recorded genomes), however, enterocytozoonid genomes 

are also some of the most compact (though not as compact as Encephalitozoon). 

Suggesting that the remaining (retro)transposons may have been lost in the slight 

further compaction the Encephalitozoon have gone through and that more may 

have been lost in the course of enterocytozoonid evolution. Adding to this 

inference is that, of the Enterocytozoonidae, only H. eriocheir (having the largest 

genome in the family) has gained retrotransposon gag.  
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5.4.4 MMR DNA repair 

It has been noted that during the process of compaction of the Microsporidian 

genome, DNA repair genes  (Gill & Fast, 2007; Haag et al., 2014; P. J. Keeling & 

Slamovits, 2004a) and tumour suppressing genes  (Haag et al., 2014) have been 

lost and this loss has been suggested as the reason for the hypothesised high 

mutation rates in the phylum. However, the node including E. hepatopenaei and 

En. canceri has been predicted to have gained DNA mismatch repair proteins 

(MMR), noted as partially missing Enc. cuniculi. This suggests that in this lineage, 

there may be a selection to retain more genes involved in DNA repair in these 

two species, at least DNA mismatch repair. Which, as stated above, could explain 

the low relative orthogroups gained. 

 

5.4.5 Selective pressure on the addition and loss of genes 

There is no correlation between the number of orthogroups gained and genetic 

divergence (branch length) (Figure 5.1a, c-supplementary), suggesting a role for 

adaptation in the retention of new orthogroups rather than being the result of a 

clock-like accumulation of new copies. It seems intuitive that for a group of 

organisms where there is potentially a strong selective pressure driving genomic 

reduction, the gaining of new proteins would have to have a positive effect on 

fitness to be retained/fixed. However, there seems to be no such effect on loss of 

orthogroups (Figure 5.1b, d-supplementary), suggesting that the loss of 

orthogroups is less affected by selective pressures in most cases, apart from the 

Nematocida outliers. 

 

5.4.6 Enterocytozoonid evolution relationships 

As would be expected, orthogroups are more frequently shared by species that 

had the closest shared ancestor (Table 5.2, Figure 5.5a, b). Both Ricin B-Lectins 

and predicted extracellular orthogroups support a closer split for En. canceri and 

E. hepatopenaei to the exclusion of E. bieneusi. However, H. eriocheir shows a 

very different evolutionary history, in terms of the proteins focused on in this 

study, with no shared gaining of proposed infection-based orthogroups. 

Supporting suggestions that H. eriocheir not be included within the 

Enterocytozoondiae  (Bojko et al., 2017). 
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5.4.7 Summary 

In conclusion, the addition of at least eight putative (Ricin B-lectins) genes 

associated with infection throughout the Enterocytozoonidae could show 

species-specific genes used for infection in new host types. This is similarly the 

case with the addition of at least five out of eight extracellular localised genes, 

two (EnP1 and PTP3) of which are possibly homologous to genes that have also 

been associated, in vitro, with infection. However, under the search criteria used 

in this study, the majority of the infection-based orthogroups were not retained by 

all enterocytozoonids and therefore presumed not to be present in the ancestral 

enterocytozoonid lineage. So, it is possible that the initial host shift to crustacea 

was not accompanied by an initial expansion/evolution of gene families 

specialised for pathogenicity in crustaceans. This is also a trait seen in the 

bacterial opportunistic pathogen Pseudomonas aeruginosa, that the gain and 

loss of genes were not required for virulence in this opportunistic pathogen  

(Martínez, 2014); a species that is capable of infecting different kingdoms of life  

(Carilla-Latorre et al., 2008; Mahajan-Miklos et al., 2000; Navas et al., 2007). This 

suggests that it is possible that the virulence-based genes that allowed the 

Enterocytozoonidae to infect phylogenetically divergent hosts evolved earlier in 

Microsporidian evolution  (Martínez, 2014). 

This study has generated a robust phylogenetic framework with which to 

investigate patterns of loss and gain of genes and gene families in the 

microsporidia., Here it has been used to investigate general trends of loss and 

gain of orthogroups within the Enterocytozoonidae. Whilst this has highlighted 

several orthogroups of interest further research to verify the validity of the 

candidates highlighted in this study could both improve understanding of the 

evolution of this unique phylum and help identify pathogenic genes that could be 

used to predict pathogenicity within species. This would also allow for targeted 

preventative drugs, and shed further light on how some Microsporidia are able to 

host-shift. As is done widely with better known pathogenic species. 
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5.4.8 Further research and limitations 

Due to a lack of sequencing data, this study does not include any of the fish 

infecting species ( (Para)Nucleospora). Interestingly, there is also one fish 

infecting species, Enterospora nucleophila, that is found with the crustacean 

infecting (Enterospora/Enterocytozoon) clade. Next steps should involve 

sequencing these species to investigate if the (Para)Nucleospora lineage has 

genes that are unique to infecting fish, and if so, are they orthologous to those 

possessed by En. nucleophila.  

 

As with many forms of in silico research (especially when involving the prediction 

of gene function), analysis carried out in this study will need to be verified in vitro 

for further research. However, as mentioned, this is not currently feasible with 

Microsporidia. Leaving further in silico work to verify findings made in this chapter, 

such as transcriptomics, which would allow for the identification of genes that are 

upregulated during infection.  

 

As theorised and observed in Chapter 2 and partially, Chapter 3, the 

Enterocytozoonidae are very likely to be more diverse than the ten species 

currently described for the family. As a result, there are limitations on the 

inferences that can be made about the patterns observed in this study, based on 

the small number of enterocytozoonids sequenced. For example, if the predicted 

extracellular gene unique to E. bieneusi is identified in novel aquatic 

enterocytozoonid species, it would be unlikely to be involved in the host-shift to 

terrestrial hosts. 
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5.5 Supplementary tables and figures: 

Table 5.1: Reference genomes used in OrthoMCL and species tree building 

Species GenBank 

Accession 

Amphiamblys sp. GCA_001875675.1 

Anncaliia algerae GCA_000385875.2 

Aspergillus fumigatus+ GCF_000002655.1 

Cryptococcus neoformans+ GCF_000149245.1 

Enterocytozoon bieneusi GCA_000209485.1 

Enterocytozoon hepatopenaei  GCA_002081675.1 

Enterospora canceri GCA_002087915.1 

Edhazardia aedis GCA_000230595.3 

Encephalitozoon cuniculi GCA_000091225.2 

Encephalitozoon hellem GCA_000277815.3 

Encephalitozoon intestinalis GCA_000146465.1 

Encephalitozoon romaleae GCA_000280035.2 

Hepatospora eriocheir GCA_002087885.1 

Magnaporthe oryzae+ GCA_000002495.2 

Mitosporidium daphniae GCA_000760515.2 

Nosema apis GCA_000447185.1 

Nosema bombycis GCA_000383075.1 

Nosema ceranae GCF_000988165.1 

Nematocida displodere GCA_001642395.1 

Nematocida sp. 1 ERTm2 GCA_000250695.1 

Nematocida sp. ERTm5 GCA_001642415.1 

Nematocida sp. 1 ERTm6 GCA_000738915.1 

Nematocida parisii ERTm1 GCA_000250985.1 

Nematocida parisii ERTm3 GCA_000190615.1 

Ordospora colligata GCA_000803265.1 

Paramicrosporidiumsaccamoebae GCA_002794465.1 

Paraphelidium tribonemae N/A 

Pseudolomaneurophilia GCA_001432165.1 

Rozella allomycis GCA_000442015.1 

Saccharomyces cerevisiae+ GCF_000146045.2 

Spraguealophii GCA_001887945.1 

Trachipleistophora hominis GCA_000316135.1 

Vavraiaculicis subsp. GCA_000192795.1 

Vittaforma corneae GCA_000231115.1 

*+denotes fungal outgroups 
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Table 5.2 

Orthogroups (arbitrary ID), gene ID (inferred from homologous Saccharomyces 

cerevisiae genes),and models of best fit 

Orthogroup 

ID 

Gene Best Model 

0G2_1109 Deoxyhypusine synthase LG+G4 

0G2_1120 Ribosomal 60S subunit protein L3 LG+I+G4 

0G2_1147 Glycine--tRNA ligase LG+I+G4 

0G2_1150 Ribosomal 60S subunit protein L26B LG+R3 

0G2_1180 Serine/threonine-protein kinase KIN2 LG+F+I+G4 

0G2_1183 Putative aminophospholipid-translocating 

P4-type ATPase NEO1 

LG+F+I+G4 

0G2_1187 DNA primase subunit PRI1 LG+G4 

0G2_1189 Proteasome regulatory particle base subunit 

RPT3 

LG+I+G4 

0G2_1191 Gamma-tubulin LG+I+G4 

0G2_1198 Arginine--tRNA ligase MSR1 LG+F+I+G4 

0G2_1200 Phenylalanine--tRNA ligase subunit beta LG+F+I+G4 

0G2_1202 Hsp90 family chaperone HSC82 LG+F+I+G4 

0G2_1216 Proliferating cell nuclear antigen LG+F+R3 

0G2_1218 S-adenosylmethionine-dependent 

methyltransferase 

LG+I+G4 

0G2_1219 Xdj1p LG+I+G4 

0G2_1223 Transcription factor TFIIIB subunit BDP1 LG+G4 

0G2_1224 Ribosomal 60S subunit protein L12A LG+G4 

0G2_1231 ATPase-activating ribosome biosynthesis 

protein 

LG+G4 

0G2_1241 Transcription factor TFIIIB subunit BRF1 LG+G4 

0G2_1246 Hap5p LG+G4 

0G2_1256 Serine/threonine-protein kinase CDC7 LG+G4 

0G2_1257 Ribosomal 40S subunit protein S4B LG+I+G4 

0G2_1263 Utp7p LG+I+G4 

0G2_1267 DNA-directed DNA polymerase alpha 

subunit POL12 

LG+F+I+G4 

0G2_1269 Arc1p LG+I+G4 

0G2_1276 CCR4-NOT core exoribonuclease subunit 

CCR4 

LG+I+G4 

0G2_1286 Ribosomal 60S subunit protein L16A LG+G4 

0G2_1287 Ribosomal 60S subunit protein L20A LG+I+G4 

0G2_1288 Gdi1p LG+I+G4 
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0G2_1289 Cyclin-dependent serine/threonine-protein 

kinase CDC28 

LG+I+G4 

0G2_1294 NuA4 histone acetyltransferase complex 

catalytic subunit ESA1 

LG+I+G4 

0G2_1296 Ribosomal 60S subunit protein L15A LG+G4 

0G2_1298 TATA-binding protein-associated factor 

TAF6 

LG+I+G4 

0G2_1299 tRNA (guanine) methyltransferase LG+I+G4 

0G2_1300 DNA- (apurinic or apyrimidinic site) lyase 

APN1 

LG+I+G4 

0G2_1309 3'-5'-exodeoxyribonuclease LG+G4 

0G2_1313 TPA: H (+)-transporting V0 sector ATPase 

subunit d 

LG+G4 

0G2_1317 AAA family ATPase SEC18 LG+F+I+G4 

0G2_1318 Cleavage polyadenylation factor subunit 

YSH1 

LG+I+G4 

0G2_1319 Septin SPR3 LG+G4 

0G2_1323 14-3-3 family protein BMH1 LG+I+G4 

0G2_1324 Chaperonin-containing T-complex subunit 

CCT7 

LG+F+I+G4 

0G2_1327 Signal recognition particle receptor subunit 

alpha 

LG+F+I+G4 

0G2_1328 TFIIH/NER complex ATPase/helicase 

subunit SSL2 

LG+I+G4 

0G2_1332 Ribosomal 40S subunit protein S2 LG+I+G4 

0G2_1335 Phosphoacetylglucosamine mutase PCM1 LG+G4 

0G2_1336 DNA ligase (ATP) CDC9 LG+I+G4 

0G2_1337 Ribosomal 40S subunit protein S16A LG+R3 

0G2_1338 Ribosomal 60S subunit protein L13A LG+I+G4 

0G2_1341 Alpha-tubulin TUB1 LG+I+G4 

0G2_1344 rRNA-processing protein MPP10 LG+I+G4 

0G2_1345 Ribosomal 60S subunit protein L8A LG+G4 

0G2_1346 tRNA (guanine26-N2)-dimethyltransferase LG+F+I+G4 

0G2_1349 Diphthine synthase LG+I+G4 

0G2_1352 Proteasome core particle subunit beta 3 LG+I+G4 

0G2_1353 Methionine aminopeptidase LG+G4 

0G2_1354 Aurora kinase LG+I+G4 

0G2_1355 Chaperonin-containing T-complex alpha 

subunit TCP1 

LG+I+G4 

0G2_1356 Ribosomal 40S subunit protein S0A LG+I+G4 

0G2_1358 Asparagine--tRNA ligase DED81 LG+I+G4 
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0G2_1364 Ribosomal 60S subunit protein L1A LG+G4 

0G2_1368 Chaperonin-containing T-complex subunit 

CCT4 

LG+I+G4 

0G2_1376 Proteasome core particle subunit alpha 1 LG+I+G4 

0G2_1377 Putative AAA family ATPase RIX7 LG+R4 

0G2_1378 Putative dimethyladenosine transferase LG+G4 

0G2_1380 Phosphomannomutase SEC53 LG+I+G4 

0G2_1381 Pseudouridine synthase CBF5 LG+I+G4 

0G2_1382 Bifunctional dITP/dUTP diphosphatase LG+I+G4 

0G2_1384 Cysteine desulfurase LG+G4 

0G2_1386 Calmodulin LG+I+G4 

0G2_1387 1-phosphatidylinositol 4-kinase LG+F+G4 

0G2_1391 Condensin subunit SMC2 LG+I+G4 

0G2_1393 Arf family GTPase SAR1 LG+I+G4 

0G2_1395 Polo kinase CDC5 LG+F+I+G4 

0G2_1397 Chaperonin-containing T-complex subunit 

CCT3 

LG+G4 

0G2_1399 Ribosomal 60S subunit protein L18A LG+R4 

0G2_1400 TATA-binding protein LG+I+G4 

0G2_1401 H (+)-transporting V1 sector ATPase subunit 

A 

LG+F+I+G4 

0G2_1405 Serine/threonine-protein kinase HRR25 LG+G4 

0G2_1408 Translation initiation factor eIF2 subunit 

alpha 

LG+R3 

0G2_1409 Nuclear protein localization protein 4 LG+G4 

0G2_1416 Ribosomal 60S subunit protein L5 LG+G4 

0G2_1418 Recombinase RAD51 LG+I+G4 

0G2_1419 Proteasome regulatory particle base subunit 

RPN10 

LG+I+G4 

0G2_1422 tRNA adenylyltransferase LG+F+R5 

0G2_1423 Mismatch repair ATPase MSH2 LG+F+I+G4 

0G2_1424 Proteasome regulatory particle lid subunit 

RPN7 

LG+I+G4 

0G2_1425 Palmitoyltransferase YKT6 LG+G4 

0G2_1426 Rab family GTPase YPT31 LG+F+G4 

0G2_1428 Syntaxin-binding protein LG+F+I+G4 

0G2_1430 Lhp1p LG+I+G4 

0G2_1431 rRNA (cytosine-C5-)-methyltransferase 

NOP2 

LG+F+I+G4 

0G2_1433 Proteasome regulatory particle lid subunit 

RPN3 

LG+I+G4 
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0G2_1438 Iron-sulfur cluster assembly protein CIA2 LG+G4 

0G2_1442 DNA-directed RNA polymerase III subunit 

C34 

LG+I+G4 

0G2_1443 Transcription elongation factor DST1 LG+G4 

0G2_1444 Ribosomal 40S subunit protein S11A LG+F+I+G4 

0G2_1448 Glutamate--tRNA ligase GUS1 LG+I+G4 

0G2_1449 DNA primase subunit PRI2 LG+F+G4 

0G2_1451 TFIIH/NER complex ATP-dependent 5'-3' 

DNA helicase subunit RAD3 

LG+I+G4 

0G2_1454 Lysine--tRNA ligase KRS1 LG+F+G4 

0G2_1457 Translation elongation factor EF-1 alpha LG+G4 

0G2_1463 Ribosomal 40S subunit protein S22A LG+I+G4 

0G2_1467 Proteasome core particle subunit beta 4 LG+I+G4 

0G2_1468 Chromatin-remodeling protein SPT16 LG+I+G4 

0G2_1471 Histone acetyltransferase GCN5 LG+I+G4 

0G2_1472 2- (3-amino-3-carboxypropyl)histidine 

synthase 

LG+F+I+G4 

0G2_1479 Coatomer subunit alpha LG+I+G4 

0G2_1486 tRNA (guanine46-N7)-methyltransferase LG+I+G4 

0G2_1488 TATA-binding protein-associated factor 

TAF11 

LG+R3 

0G2_1490 Ribosome biosynthesis protein NIP7 LG+I+G4 

0G2_1491 Translation initiation factor eIF3 subunit i LG+I+G4 

0G2_1516 Ribosomal 40S subunit protein S3 LG+I+G4 

0G2_1519 rRNA methyltransferase NOP1 LG+G4 

0G2_1528 MCM DNA helicase complex subunit MCM5 rtREV+F+I+G4 

0G2_1531 snoRNA-binding rRNA-processing protein 

IMP4 

LG+I+G4 

0G2_1532 RNA-processing protein NOP58 LG+I+G4 

0G2_1542 Translation initiation factor eIF2 subunit beta LG+G4 

0G2_1544 DNA-directed RNA polymerase II core 

subunit RPB3 

LG+I+G4 

0G2_1549 Ribosomal 40S subunit protein S5 LG+I+G4 

0G2_1556 Alanine--tRNA ligase LG+I+G4 

0G2_1560 Peptide alpha-N-acetyltransferase complex 

B subunit NAT3 

LG+F+I+G4 

0G2_1587 Guanine nucleotide exchange factor SDO1 LG+I+G4 

0G2_1595 Kar3p LG+G4 

0G2_1596 Transcription factor TFIIE subunit TFA1 LG+I+G4 
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Table 5.3 Number of accumulative orthogroups gained for each microsporidian 

species included in this tree, relative to the accumulative branch length 

Species Branch 

length  

Gained 

orthos 

Orthos 

lost 

Relative 

orthos 

gained 

Relative 

orthos 

lost 

Relative 

duplication 

Relative 

gene 

copy 

Genome 

size 

Nosema apis 0.84 514 2497 61.19 297.26 0.12 0.09 8.57 

Nosema ceranae 0.8 482 2481 60.33 310.51 0.05 0.07 5.69 

Nosema bombycis 0.88 697 2279 79.38 259.57 0.23 0.16 15.7 

Encephalitozoon 

hellem 

0.74 574 2194 77.67 296.89 0.01 0.09 2.25 

Encephalitozoon 

romaleae 

0.74 573 2250 77.43 304.05 0.00 0.08 2.19 

Encephalitozoon 

intestinalis 

0.78 570 2213 72.98 283.35 0.00 0.09 2.22 

Encephalitozoon 

cuniculi 

0.72 573 2199 79.47 304.99 0.03 0.09 2.5 

Ordospora 

colligata 

0.75 488 2175 65.07 290 0.00 0.08 2.3 

Vittaforma 

corneae 

0.83 586 2219 70.43 266.71 0.04 0.08 3.21 

Enterocytozoon 

bieneusi 

1.07 604 2674 56.45 249.91 0.25 0.11 3.86 

Enterospora 

canceri 

1.15 655 2802 56.86 243.23 0.05 0.06 3.1 

Enterocytozoon 

hepatopenaei 

1.17 629 2637 53.85 225.77 0.05 0.07 3.25 

Hepatospora 

eriocheir 

1.16 548 2644 47.32 228.32 0.14 0.08 4.57 

Edhazardia aedis 0.86 374 2235 43.54 260.19 0.16 0.10 51.31 

Spaguea lophii 0.79 321 2313 40.53 292.05 0.09 0.08 5.76 

Anncaliia algerae 0.8 687 2342 85.88 292.75 0.28 0.16 12.16 

Vavraia culicis 0.89 911 2393 101.9 267.67 0.02 0.10 6.12 

Trachipleistophora 

hominis 

0.9 949 2398 105.8 267.34 0.02 0.10 8.49 

Pseudoloma 

neurophilia 

1.03 607 2412 59.16 235.09 0.12 0.10 5.25 

Nematocida 

displodere 

0.69 649 818 94.61 119.24 0.04 0.24 3.1 
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Nematocida sp. 

ERTm2 

0.72 1196 893 167.04 124.72 0.01 0.28 4.7 

Nematocida sp. 

ERTm6 

0.71 1182 931 166.01 130.76 0.00 0.25 4.28 

Nematocida sp. 

ERTm5 

0.71 1274 869 180.71 123.26 0.01 0.29 4.39 

Nematocida parisii 

ERTm1 

0.71 1342 1062 189.82 150.21 0.00 0.23 4.1 

Nematocida parisii 

ERTm3 

0.71 1346 1001 189.58 140.99 0.00 0.27 4.15 
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Table 5.4 

Interpro characterisation of enterocytozoonid orthogroups 

*Colour key: Black= domains/motifs unique to that species/node; colours outline domains/motifs between species and nodes 

E. bieneusi En. canceri E. hepatopenaei H. eriocheir E. hepatopenaei 

En. canceri 

 

E. hepatopenaei 

En. canceri 

E. bieneusi 

 

E. hepatopenaei 

En. canceri 

E. bieneusi 

H. eriocheir 

-Armadillo-type 

fold  

-Beta tubulin  

-Beta tubulin, 

autoregulation 

binding site  

-Chitin synthase  

-Coils  

-Nuclear pore 

complex protein 

NUP98-NUP96 

-Nucleotide-

diphospho-sugar 

transferases  

-Peptidase C19, 

ubiquitin carboxyl-

terminal hydrolase  

-P-loop containing 

nucleoside 

-ATPase, AAA-type, 

core 

-Cation efflux 

protein  

-Cation efflux 

transmembrane 

domain -superfamily  

-Coils 

-Endonuclease/ 

exonuclease/ 

phosphatase  

-Endonuclease/ 

exonuclease/ 

phosphatase 

superfamily  

-Integrase zinc-

binding domain  

-Integrase, catalytic 

core  

-Bacterial hemolysins 

superfamily 

-Coils 

-Snare region 

anchored in the 

vesicle membrane C-

terminus 

-Malarial early 

transcribed 

membrane protein 

(ETRAMP) 

-Prokaryotic 

membrane lipoprotein 

lipid attachment site 

profile 

- Ribonuclease H like 

-Alpha/Beta 

hydrolase fold  

-Armadillo-type 

fold 

-Aspartic 

peptidase domain 

superfamily  

-Coils 

-Enolase  

-Enolase, C-

terminal TIM 

barrel domain  

-Glycosyl 

hydrolase family 

32, N-terminal  

-Integrase, 

catalytic core  

-MCM domain  

-AAA+ ATPase 

domain  

-ABC transporter 

type 1, 

transmembrane 

domain superfamily 

-Arrestin, C-terminal  

-Coils 

-DNA mismatch 

repair protein MutS, 

core domain 

-DNA mismatch 

repair protein MutS, 

C-terminal 

-Histone 

H2A/H2B/H3  

-Histone H3/CENP-

A  

-Histone-fold  

-ADP/ATP carrier 

protein  

-Amino 

acid/polyamine 

transporter I  

-Aquaporin 

transporter  

-Armadillo-type fold  

-ATPase, AAA-type, 

core 

-Chaperone J-

domain superfamily  

-Coils 

-Cullin homology 

domain superfamily  

-DnaJ domain  

-Dopey, N-terminal  

-E3 ubiquitin-protein 

ligase listerin 

-AH/BAR domain 

superfamily  

-Alpha/Beta 

hydrolase fold  

-Amino acid 

transporter, 

transmembrane 

domain 

-Aminoacyl-tRNA 

synthetase, class 

Ia, anticodon-

binding 

-Coils 

-E3 ubiquitin ligase 

Bre1  

-LIS1 homology 

motif  

-Methionyl/Leucyl 

tRNA synthetase  
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triphosphate 

hydrolase  

-Ribonucleotide 

reductase small 

subunit family  

-Ribonucleotide 

reductase small 

subunit, active site 

-Ribonucleotide 

reductase small 

subunit  

-Ribosomal 

protein L22/L17  

-Ribosomal 

protein S3Ae  

-Ribosomal 

protein L22/L17, 

eukaryotic/archae

al  

-Ribosomal 

protein L22/L17 

superfamily  

-Signal 

transduction 

response 

regulator, receiver 

domain 

-Signal 

transduction 

-LSM domain 

superfamily  

-Mechanosensitive 

ion channel MscS 

-Mechanosensitive 

ion channel MscS 

domain superfamily 

-

Phosphoribulokinas

e/uridine kinase  

-P-loop containing 

nucleoside 

triphosphate 

hydrolase 

-Protein kinase 

domain  

-Reverse 

transcriptase 

domain 

-Ribosomal protein 

L10e  

-Ribosomal protein 

L10e/L16  

-Ribosomal protein 

L10e/L16 

superfamily  

-SCAN domain  

-SCAN domain 

superfamily  

-Membrane bound 

O-acyl 

transferase, 

MBOAT  

-Methionyl/Leucyl 

tRNA synthetase  

-Mini-

chromosome 

maintenance 

protein  

-Myb domain  

-Nop domain 

superfamily  

-Nucleic acid-

binding, OB-fold  

-

Phosphoribulokina

se/uridine kinase  

-P-loop containing 

nucleoside 

triphosphate 

hydrolase 

-Pseudouridine 

synthase, catalytic 

domain 

superfamily  

-PUA domain  

-PUA domain 

superfamily  

-Immunoglobulin E-

set  

-MFS transporter 

superfamily  

-OTU domain  

-Peptidase C65, 

otubain, subdomain 

1  

-Peptidase C65, 

otubain, subdomain 

2  

-

Phosphatidylinositol 

N-

acetylglucosaminyltr

ansferase subunit C  

-P-loop containing 

nucleoside 

triphosphate 

hydrolase 

-THUMP domain  

-Type I protein 

exporter  

-WD40-repeat-

containing 

domainsuperfamily  

- ABC transporter-

like 

-EF-hand domain  

-ER lumen protein 

retaining receptor 

-GIT, Spa2 

homology (SHD) 

domain  

-Homeobox domain  

-Leucine-rich repeat  

-LSM domain 

superfamily  

-Major intrinsic 

protein  

-Major intrinsic 

protein, conserved 

site  

-Matrin/U1-C, 

C2H2-type zinc 

finger  

-Mechanosensitive 

ion channel MscS 

-Mechanosensitive 

ion channel MscS 

domain superfamily 

-Mediator complex 

subunit 15, KIX 

domain 

-MFS transporter 

superfamily  

-Nucleic acid-

binding, OB-fold  

-Peptidase C50, 

separase 

-Protein kinase 

domain  

-Protein kinase, 

ATP binding site 

-SEPARIN core 

domain  

-Serine/threonine-

protein kinase, 

active site  

-Spc7 kinetochore 

protein domain  

-SUN domain  

-Tetratricopeptide 

repeat-containing 

domain  

-Tetratricopeptide 

repeat  

-Thioredoxin 

domain  

-Thioredoxin, 

conserved site  

-TIP49, P-loop 

domain  

-Zinc finger, RING-

type  
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response 

regulator, C-

terminal effector 

-Transcription 

regulator LuxR, C-

terminal  

-Transcription 

factor, GTP-

binding domain  

-Tubulin  

-Tubulin/FtsZ, 

GTPase domain  

-Tubulin/FtsZ, 

GTPase domain 

superfamily  

-Ubiquitin specific 

protease domain  

-WD40-repeat-

containing domain 

superfamily  

-CheY-like 

superfamily 

-Ferritin-like 

superfamily 

-Galactose-

binding-like 

domain 

superfamily 

-Serine/threonine-

protein kinase, 

active site  

-Ulp1 protease 

family, C-terminal 

catalytic domain 

- ERAP1-like C-

terminal domain  

-Papain-like 

cysteine peptidase 

superfamily  

-Protein kinase-like 

domain superfamily 

-Ribonuclease H-

like superfamily 

-Ricin B-like lectins  

-SNase-like, OB-

fold superfamily 

-Retrotransposon 

gag domain  

-Reverse 

transcriptase 

domain 

-Ribosomal 

biogenesis NSA2 

family  

-Ricin B, lectin 

domain  

-SANT/Myb 

domain  

-Serine/threonine-

specific protein 

phosphatase/bis 

(5-nucleosyl)-

tetraphosphatase 

-SRP-independent 

targeting protein 

2/TMEM208  

-Tetratricopeptide 

repeat-containing 

domain  

-Tetratricopeptide 

repeat  

-Thymidylate 

synthase/dCMPhy

droxymethylase 

superfamily  

-FAR-17a/AIG1-like 

protein  

-Arrestin-like, N-

terminal  

-ISXO2-like 

transposase domain  

-Ricin B-like lectins  

-Rnp2-like domain 

superfamily  

-Papain-like 

cysteine peptidase 

superfamily 

-Nucleotide-binding 

alpha-beta plait 

domain superfamily  

-

Palmitoyltransferas

e, DHHC domain  

-P-loop containing 

nucleoside 

triphosphate 

hydrolase 

-PNPase/RNase PH 

domain superfamily  

-Protein dopey  

-Recombination 

protein RecR 

-Ribonuclease 

P/MRP, subunit p29  

-Ribonuclease 

P/MRP, subunit p29 

superfamily  

-Ribosomal protein 

L10P  

-Ribosomal protein 

S5 domain 2-type 

fold 

-Ricin B, lectin 

domain  

-RNA recognition 

motif domain  

-Zinc finger, RING-

CH-type  

-Zinc finger, 

RING/FYVE/PHD-

type 

-Zinc finger, RING-

type, conserved site 

-Zinc/iron permease  

- FAR-17a/AIG1-like 

protein  

-Fungal lipase-like 

domain  

-Galactose-binding-

like domain 

superfamily  

-

Polymerase/histidin

ol phosphatase-like  

-Protein kinase-like 

domain superfamily 

-Quinoprotein 

alcohol 

dehydrogenase-like 

superfamily 

-Rossmann-like 

alpha/beta/alpha 

sandwich fold  

-RuvB-like  
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-Nucleoporin 

peptidase S59-like  

-Papain-like 

cysteine 

peptidase 

superfamily  

-Quinoprotein 

alcohol 

dehydrogenase-

like superfamily 

-Ribonucleotide 

reductase-like 

 

-Transcription 

Factor IIF, 

Rap30/Rap74, 

interaction  

-tRNA 

pseudouridine 

synthase B family  

-tRNA 

pseudouridylate 

synthase B, C-

terminal  

-Type IIA DNA 

topoisomerase 

subunit A, alpha-

helical domain 

superfamily 

-Zinc finger C2H2-

type 

-ABC transporter-

like 

-Armadillo-like 

helical  

-Calcineurin-like 

phosphoesterase 

domain, ApaH 

type  

-DNA 

topoisomerase, 

type IIA-like 

-RNA-binding 

domain superfamily  

-SUI1 domain  

-SUI1 domain 

superfamily  

-Target SNARE 

coiled-coil 

homology domain  

-Tetratricopeptide 

repeat  

-Tetratricopeptide 

repeat-containing 

domain  

-Translocation 

protein Sec66  

-Ubiquilin 

-Vacuolar (H+)-

ATPase G subunit 

-WD40-repeat-

containing 

domainsuperfamily  

-Zinc finger C2H2 

superfamily  

-Zinc finger C2H2-

type  

-Zinc finger, double-

stranded RNA 

binding  

-Tetratricopeptide-

like helical domain 

superfamily 

-WD40/YVTN 

repeat-like-

containing domain 

superfamily 

-RuvB-like helicase 

2, domain II 

-Thioredoxin-like 

superfamil 



168 | P a g e  
 

domain 

superfamily  

-Enolase-like, C-

terminal domain 

superfamily  

-Homeobox-like 

domain 

superfamily  

-Metallo-

dependent 

phosphatase-like 

-PUA-like 

superfamily  

-Reverse 

transcriptase/retro

transposon-

derived protein, 

RNase H-like 

-Ribonuclease H-

like superfamily 

-Ricin B-like 

lectins  

-Tc1-like 

transposase, DDE 

domain  

-Tetratricopeptide-

like helical domain 

superfamily 

-Zinc finger, 

RING/FYVE/PHD-

type  

-Zinc finger, RING-

CH-type 

-Zinc finger, RING-

type  

- Rhodanese-like 

domain  

-ABC transporter-

like 

-Major facilitator, 

sugar transporter-

like  

-FAR-17a/AIG1-like 

protein  

-Rad21/Rec8-like 

protein, C-terminal, 

eukaryotic  

-Rad21/Rec8-like 

protein, N-terminal  

-Homeobox-like 

domain superfamily  

-UBA-like 

superfamily  

-Longin-like domain 

superfamily  

-Quinoprotein 

alcohol 
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-Transposase 

InsF-like  

-Transposase, 

Tc1-like 

dehydrogenase-like 

superfamily 

-Tetratricopeptide-

like helical domain 

superfamily 

-Mg2+ transporter 

protein, CorA-

like/Zinc transport 

protein ZntB 

-WD40/YVTN 

repeat-like-

containing domain 

superfamily 

-Cullin repeat-like-

containing domain 

superfamily 

-Aquaporin-like  

-Rof/RNase P-like 

te 

-Ubiquitin-like 

domain superfamily  

-Ricin B-like lectins  

-SKP1-like, 

dimerisation domain 

superfamily  

-Rhodanese-like 

domain superfamily  

-Cyclin-like 

superfamily 
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Figure 5.1a-d 

Relationship between branch length (substitutions per nucleotide) and 

orthogroups gained (a) and lost (b). Figures c and d show relationships, 

respectively, with the Nematocida outliers, removed.  
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Chapter 6: General Discussion 

 

Microsporidians have been shown to have a diverse set of transmission routes, 

and an array of mixtures of transmission modes  (Haag et al., 2019; Quiles et al., 

2019; Vu-Khac et al., 2018), as well as being widespread and ubiquitous ( (Ardila-

Garcia et al., 2013) Chapters 2 and 3). The relationships shared between 

enterocytozoonids and their hosts are not well known, but they are likely to be 

complex given their broad assemblage of described hosts  (Fiuza et al., 2016; 

Foltz et al., 2009; Sakai et al., 2009; Tabatabaie et al., 2015), and ability to host-

shift. It has been proposed that the presence of these pathogens likely poses a 

threat to modern agriculture and aquaculture via their ability to infect a range of 

immunocompromised and susceptible hosts when animals are reared under high 

density/high-stress conditions. 

 

The aim of this thesis was to assess the risk posed to aquaculture, agriculture, 

and ultimately, human health by this clade (Enterocytozoonidae) of Microsporidia. 

This thesis covered this in three broad themes in four data chapters. The first 

theme addressed the investigation of undescribed enterocytozoonid diversity in 

the environment (Chapters 2 and 3), focused around areas under human 

influence, to better understand the distribution of uncharacterized pathogens with 

the potential to infect livestock. The second theme addressed this by examining 

the transmission routes and possible endemicity of the shrimp parasite, 

Enterocytozoon hepatopenaei (Chapter 4), to better understand how an 

enterocytozoonid has and may continue to enter and thrive in aquaculture. The 

third looked at trends in the evolution of the Enterocytozoonidae, focusing on the 

identification of potential gene families involved with host-shifting and virulence 

(Chapter 5), to better understand the changes that underlie the jump from 

terrestrial animals to marine crustacea. 
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6.1 Summary of chapters 

 

To characterise undescribed diversity and distribution of the Enterocytozoonidae, 

this thesis involved surveying samples for enterocytozoonid-like sequences using 

metagenomes databases (Chapter 2) finding 92enterocytozoonid-like novel 

sequences. This research was continued in a more focused fashion in Chapter 

3: by screening transect samples from estuaries in South West UK. This found a 

greater abundance and a wider distribution for Enterospora canceri than previous 

studies indicated, uncovering the first instance of freshwater enterocytozoonids 

and Enterocytozoonidae hepatopenaei-like sequences in the UK. Although 

Chapter 2 showed no evidence of enterocytozoonid-like sequences in freshwater 

metagenomes. The novel enterocytozoonid-like sequences found in Chapter 2 

showed a skew towards the crustacean infecting clade 

(Enterospora/Enterocytozoon), with far less for the fish infecting clade, 

(Para)Nucleospora/Obruspora and sequencing of transect samples in Chapter 3 

lacked sequences for the fish-infecting clade all together, with the majority of the 

diversity found around En. canceri and to a lesser extent, E. hepatopenaei. The 

results of Chapters 2 and 3 suggested both greater diversity and distribution for 

the Enterocytozoonidae than currently described. This work showed that though 

they can be found in freshwater, a far greater proportion of the diversity seems to 

be found in marine/estuarine environments. Which confirmed that the 

Enterocytozoonidae seem marine-based. The widespread prevalence of En. 

canceri suggests a more ubiquitous ‘primary’ host than adult crabs, likely finding 

widespread intermediate host (s) in planktonic crustacea. 

 

In Chapter 4, genome-wide population genomics were employed to analyse the 

biogeography of E. hepatopenaei. Samples collected from shrimp ponds in 

China, India, and Thailand revealed geographically structured populations for the 

shrimp pathogen, with some evidence of migration between shrimp ponds in 

Thailand and India. Within country region-based population structure was also 
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observed within Thailand, the best sampled country in this study, with 

differentiation between samples less than 75 km (the shortest distance between 

Pathum Thani and Suphan Buri) away. Intrapopulation diversity was moderate, 

with an average observed heterozygosity of 20.4%. Greater estimated observed 

(Ho) than expected (He) suggested a recent bottleneck for E. hepatopenaei in 

the shrimp ponds samples in this study. It was concluded that it was likely that E. 

hepatopenaei had endemic populations, long-standing enough to have within-

country structure; with what is likely to be repeated local transmission into ponds. 

 

Analysis looking at the addition of gene families to investigate changes in genes 

associated with host-shifting and infection (Chapter 5) showed minimal addition 

of lineage-specific genes (2 out of 17 orthogroups) associated with extracellular 

activity (i.e host affecting). Orthogroups gained were largely undescribed, without 

any functional annotation: BLASTP analysis of the Ricin B-like Lectin families 

added within the Enterocytozoondiae showed no results, except a Ricin B-Lectin 

described in the microsporidian, Nosema bombycis. Results from BLASTP 

analysis on predicted extracellular orthogroups produced results for 3 (EnP1, 

PTP3, and M2K4) out of 8. With Ricin-B-lectin domains, EnP1 and PTP proteins 

repeatedly associated with cell binding and germination of spores, the 

Enterocytozoonid specific gene families with Ricin-B-lectin domains suggest 

these proteins may be associated with the host-shift of host type (terrestrial 

vertebrates to marine invertebrates and crustaceans). The lack of lineage-wide 

conserved genes suggests two evolutionary strategies: as the 

Enterocytozoonidae have only been observed infecting the epithelial cells of the 

gastrointestinal tract, that only a small number of ‘new’ extracellular genes are 

required to infect phylogenetically distant hosts; or infection-based genes are fast 

evolving, resulting in genetically divergent, homologous genes that appear in the 

analysis as ‘gained’ genes. 
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Genome reduction within the Enterocytozoonidae was also explored in Chapter 

5, finding the clade had some of the lowest relative rates of orthogroup addition 

and gene copy counts compared to other clades included in this analysis. 

Suggesting a more conserved rate of evolution, in terms of gaining of new gene 

families, compared to the other taxa included in this study. Characterisation of 

domains of orthogroups lost showed the majority of the genes lost throughout the 

lineage were metabolic and information (DNA replication/repair, 

translation/transcription, etc) based, as well as a number of (retro)transposable 

elements. These results corroborate those of Wiredu Boakye et al., showing a 

loss of many of the genes involved in glycolysis as well as fatty acid metabolism  

(Wiredu Boakye et al., 2017). The analysis also showed relatively high rates of 

gene duplication, compared to other microsporidian lineages compared in this 

study, contrasting with the lower rate of orthogroup gain, as gene duplication has 

been strongly associated with gene family expansion. However, as gene copy 

counts are relatively low, suggesting historically low gene duplication in the 

lineage, this may show the enterocytozoonid genomes are expanding. 

 

6.2 (Para)Nucleospora/Obruspora Less diverse clade? 

As mentioned above, screening of both metagenome datasets (Chapter 2) and 

estuary samples (Chapter 3) found more novel diversity in crustacean-infecting 

Enterospora/Enterocytozoon clade than other groups within the 

Enterocytozoonidae. It was initially suggested that this could be due to filtering 

bias (Chapter 2, 3), as both types of dataset were obtained from filtering 

zooplankton, as such, it would not include many (if any) adult fish. Considering 

fish appear to be the host of ‘choice’ in the (Para)Nucleospora/Obruspora 

radiation of enterocytozoonids  (Diamant et al., 2014; El Alaoui et al., 2006b; 

Freeman et al., 2013; Lom & Dykoá, 2002; Nylund et al., 2010; Vaz Rodrigues et 

al., 2017), it is unlikely that these sampling methods would come across them. 

However, two species within this clade have also been found to infect crustacea 

(Obruspora papernae and Paranucleospora theridion (Synonym: Desmozoon 
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lepeotherii)), albeit parasitic crustacea. The larvae of many parasitic crustacea 

are pelagic/planktonic until they find a host , so it is likely that parasitic crustacea 

are also included in the screening of pelagic marine samples (Chapter 2)  (E. 

Williams & Bunkley-Williams, 2019). This suggests one of two things: firstly, that 

of the two clades, the fish pathogens could be far less diverse, which could be 

due to a number of factors: for example, the life cycle of parasitic crustacea may 

not be optimal for widespread dispersal and transmission, as a large part of its 

(successful) lifecycle is spent attached to a host and in general only has one 

developmental stage (copepodid I) that is free swimming  (E. Williams & Bunkley-

Williams, 2019). As such, it is unlikely that Paranucleospora/Obruspora would 

have as many opportunities for transmission as the enterocytozoonids that infect 

free-living planktonic crustacea. Alternatively, it may be that fish are the primary 

hosts of this clade, so infection of parasitic crustacea is secondary after they have 

attached themselves to the gills and do not serve as intermediate hosts between 

fish and other aquatic life. The research undertaken on Paranucleospora 

theridion also suggests this, showing infection of Atlantic salmon (Salmo salar) 

through water-borne spores  (Sveen et al., 2012). The latter inference is lent 

support by a lack of described infections of these pathogens, in planktonic 

crustacea not parasitising on fish. In line with this reasoning is the lack of 

(Para)Nucleospora/Obruspora-like sequences in any of the freshwater samples 

from either Chapter 2 or 3. Although this may also suggest that they only infect 

marine fish. If their transmission routes involved crustacea as an intermediate 

host, as suggested with Enterospora/Enterocytozoon clade, they would likely 

have a wider distribution/diversity of hosts. As planktonic life supports much of 

the pelagic food web  (Winder & Jassby, 2011) and therefore more opportunities 

to transmit to a greater diversity of potential hosts. However, other species of 

Microsporidia have been described hyper-parasitising crustacea as a route of 

transmission between hosts  (G. Stentiford et al., 2017). Further research is 

needed. 
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6.3 Significance to aquaculture 

Taken together, the results of the research undertaken over the four data 

chapters in this study, it is concluded that the Enterocytozoonidae are in the 

position (both geographically and in possession of the infection-based tools) to 

be a possible threat to the future of outdoor aquaculture in the UK. It is a 

combination of factors that has led to this inference, but namely, it is based on 

the apparent widespread nature of the group (Chapter 2 and 3), with there being 

evidence of endemic widespread enterocytozoonids becoming an international 

problem for shrimp ponds (Chapter 4). This has been suggested as widespread 

occurrences of pathogens makes preventative measures difficult to put in place, 

which has allowed transmission of various pathogens  (Elder et al., 2000; Gerba 

& Smith, 5005; Plowright et al., 2017). In addition, their presence in freshwater 

(Chapter 3), would allow them further access inland to possibly infect inland 

aquatic livestock, as enterocytozoonids would be exposed to a greater range of 

aquatic livestock (inland ponds), than is accessible in coastal-based aquaculture 

(net-based fishing and offshore open-net pens). This is primarily the way in which 

a number of pathogens infect livestock and humans  (Lejeune et al., 2001; 

Lewerin et al., 2019), for example Leptospira interrogans is most frequently 

transmitted from the environment through ingestion or wounds  (Bierque et al., 

2020). This would potentially facilitate further transmission from their wild range 

of hosts to aquatic animals farmed inland, such as inland fish and crustacean 

farms. Causing further economic loss, and possibly unsustainable farming. This 

dispersal inland would most heavily affect farmers in low-income countries, as 

low-income countries have been shown to provide lower levels of biosecurity, due 

to a lack of implementation of mitigating measures  (Kambey et al., 2021), which 

would allow environmental transmission into ponds. This could also explain the 

presence of E. hepatopenaei so far inland, as seen in Thai shrimp ponds. Having 

viable spores would also allow for enterocytozoonids to more readily come into 

contact with terrestrial host (livestock), likely through intake of water from bodies 
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of water exposed to the environment. As is already seen with E. bieneusi in cattle 

and pigs  (Leelayoova et al., 2006; Santín & Fayer, 2011). 

 

The trend for there to be so few species in both the transect study (Chapter 3) 

and metagenome study (Chapter 2) that were closely related to the fish infecting 

clade ( (Para)Nucleospora/Obruspora), with most of the diversity found on the 

Enterospora/Enterocytozoon branches, suggests that the latter clade may pose 

a greater threat, in terms of pond-based aquaculture. Although this may be 

sampling bias, as this study largely sampled filtered pelagic life in inland rivers, 

to date, only Enterocytozoon and Enterospora species have been described 

infecting inland/estuarine species, farmed or wild  (Santín & Fayer, 2011; G. D. 

Stentiford et al., 2007, 2011; Tourtip et al., 2009). It would be expected that if the 

(Para)Nucleospora clade were as widespread inland they would have been 

observed. Further evidence that Enterospora/Enterocytozoon may have a greater 

distribution inland and in estuaries, than (Para)Nucleospora taxa. This greater 

diversity, distribution, and abundance, is likely brought about by the fact that they 

infect planktonic crustacea (or effectively use them as intermediate hosts), which 

would suggest the Enterospora/Enterocytozoon clade would likely come into 

contact more frequently with livestock through several different routes. This is 

also a trend that has been noticed in a diverse set of Microsporidia that infect 

gammerids, suggesting that the host and parasites may have gone through co-

radiations  (Bacela-Spychalska et al., 2018), allowing for a widespread 

distribution. This is perhaps already displayed with the ‘success’ of E. bieneusi 

and E. hepatopenaei, two pathogens that are doing very well in human and 

human-influenced organisms. No enterocytozoonid from the 

(Para)Nucleospora/Obruspora clade has been so well represented in farmed/ 

fished species. For example, E. hepatopenaei has been described in over six 

countries in Asia (India  (Rajendran et al., 2016a), China (Y. M. Liu et al., 2018), 

Vietnam  (Ha et al., 2010; Tang et al., 2017), Venezuela  (Tang et al., 2017), 

Indonesia  (Tang et al., 2016a), and Brunei  (Tang et al., 2015a)), in multiple 

instances. Whereas, besides Nucleospora salmonis, the other described species 
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in the (Para)Nucleospora/Obruspora clade do not seem to be as widespread and 

have only been described infecting farmed fish, in the location they have been 

initially described  (Diamant et al., 2014; Freeman & Sommerville, 2009; 

Gunnarsson et al., 2017; Lom & Dykoá, 2002; Sveen et al., 2012). However, there 

is also a possibility that though the primers have shown they can amplify 

Nucleospora cyclopteri, there may be preferential amplification of the 

Enterocytozoon/Enterospora clade. Due to a lack of sufficient amounts of 

(Para)Nucleospora/Obruspora, this was not tested. 

 

Currently, aquaculture in the UK is mainly skewed towards salmon, mussels, and 

oyster farming  (Callaway et al., 2012), with little in the way of farmed crustaceans 

and with only two indoor shrimp farming facilities  (Holland, 2020). This means 

that the presence of enterocytozoonids across South West estuaries may not be 

an immediate cause for concern in terms of transmission into aquaculture, as 

enterocytozoonids have yet to be described to infect bivalves. However, the 

segments of aquaculture, in the UK (and other developed countries that have 

their inland farming in closed facilities), most likely to be impacted by 

enterocytozoonids, are inshore/offshore farming in cages and pens. As these 

populations are farmed in the presence of marine life, they frequently encounter 

both endo and ectoparasites  (González Poblete, 2015; Peacock et al., 2019), 

possibly allowing for transmission from wild reservoirs to farmed fish kept in pens. 

This is likely how N. salmonis became a pathogen of farmed Atlantic salmon 

(Salmo salar) in Scotland and N. cyclopteri a pathogen of farmed lumpfish 

(Cyclopterus lumpus) in Iceland, Canada, and Norway. Pathogen spill over into 

marine net-pens has also been described in other pathogen species, with strong 

affect, showing increased infections of parasitic crustacea closer to marine pens  

(Baskin, 2006). A long term study also showed the presence 39 species of 

salmon pathogens close to salmon farms  (Shea et al., 2020). 
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With continued consumption of infected aquatic life, bivalves and fish being one 

of the animal-based foods frequently eaten raw in some dishes e.g. oysters and 

sushi, this could lead to further zoonotic events infecting the 

immunocompromised. Although some raw fish dishes are frozen prior to being 

eaten, some spores may still be viable  (Maddox & Solter, 1996), though freezing 

up to -20oc does inactivate most spores  (Fenoy et al., 2009; Leiro et al., 2012). 

Although no offshore/inshore fisheries are held in South West UK, there are 

several blue mussel (Mytilus edulis) and Pacific oyster (Magallana gigas) farms 

with plans for expansion  (Adamson et al., 2018; Black & Hughes, 2017). Though 

mussels have, as of yet, not been shown through histology to be infected, they 

may act as a reservoir for the Enterocytozoonidae through filter feeding. As has 

been shown with E. bieneusi in zebra mussels (Dreissena polymorpha) in the 

River Shannon, Ireland  (Graczyk et al., 2004).  

 

A good way to mitigate environmental-based infections is to farm stock in indoor 

tank cultures, which allows for more consistent levels of biosecurity and isolation  

(Yanong, 2013). As mentioned, two attempts have been made at starting indoor 

farming of shrimp (Penaeus vannamei) in Stirlingshire (and Great British Prawns 

(GBP) in Stirlingshire, UK) and Lincolnshire (FloGro Fresh in Lincolnshire, UK) in 

the last few years. As these are indoor facilities, it will be easier to maintain 

biosecurity, not having to worry about the environmental transmission of 

pathogens. However, with such a widespread abundance of Enterocytozoonidae 

in the UK (Chapter 3), there could be many routes through which to introduce 

infection into their farms. Many older indoor farms supply their ponds with water 

from natural streams and ponds (other flow through ref  (Bregnballe, 2015)), 

which would allow for spores in the river to be circulated though these ponds (ref). 

However, new recirculating systems decrease this issue by using less water that 

is recirculated in the ponds through filters  (Bregnballe, 2015). 
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6.4 Implications for biosecurity and policy 

As well as informing government and local farmers on potentially problematic 

pathogens, so that the right steps can be taken towards minimising risks and 

planning detection strategies/techniques, this research may also impact upon 

importation/exportation policy. For example, if the UK had a large shrimp farming 

industry, there may be a reluctance to import shrimp from countries affected by 

E. hepatopenaei and any future enterocytozoonid shrimp infections. However, 

evidence that the pathogen is possibly endemic to/present in the UK (Chapter 3) 

would likely mean that the export/import of possibly EHP infected shrimp would 

be less problematic. 

 

6.5 Widespread abundance and possible origins of the enterocytozoonid clade 

The methods used between Chapter 2 and Chapter 3 differ in terms of sample 

collection and sequencing, so it would be unreliable to make anything but 

tentative comparative inferences on diversity and distribution. However, these are 

the first two studies to date looking at the diversity and distribution of this family. 

Comparisons made between these studies, though tentative, may help in 

understanding the factors that contribute to the diversity and distribution of this 

family. 

Within a smaller spatial scale (South West UK: smallest and largest distance 

between transects is 9.7 km and 75.6 km, respectively), species distribution was 

largely uniform (Chapter 3), in that En. canceri-like sequences were present 

across all transects and E. hepatopenaei-like sequences to a lesser extent. As 

would be expected, this differed over greater spatial scales, a feature also noted 

in pathogenic fungi (Stukenbrock, 2014) (East Coast USA: smallest and largest 

coastal distance between sampling sites is 57.52 km and 9917.22 km, 

respectively), also shown through the geographic specificity of sequences 

throughout the metagenome data (Chapter 2). This suggests a lower level of 

dispersal of enterocytozoonids between the USA-based coastal sites than the 
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UK-based estuary transect sites (Chapter 3). This could be due to a number of 

factors, for example, freshwater samples from Chapter 3 showed the presence 

of En. canceri-like sequences, meaning possible transmission through inland 

freshwater bodies. In contrast, metagenomes from USA-based freshwater 

environments showed no evidence of enterocytozoonid-like sequences, 

suggesting a lower abundance of enterocytozoonids in the freshwater locations 

sampled in this study. The difference in species distribution could also be due to 

the much larger spatial distances between sites in the USA/Atlantic samples, than 

the UK sites, which could limit the dispersal of species between sites 

(Stukenbrock, 2014). However, the statistical analysis (Chapter 2) showed no 

association between genetic distance and geographic distance. Meaning other 

factors (including the difference in collection and sequencing methods) may 

explain the difference in genetic distances between sites, like the hypothesis 

stated above. The family’s distribution and abundance suggest they appear to 

have an efficient means to distribute widely, likely through planktonic crustacea.  

 

Looking at the greater diversity observed within the USA-based 

enterocytozoonid-like sequences (average: 13.8 OTUs) (Chapter 2), with the 

described diversity found in the UK mainly centred around the 

Enterospora/Enterocytozoon clade, it is likely that the USA-based regions 

investigated in this study had a greater diversity than those located in the South 

West of the UK (4 OTUs). However, due to the way errors are produced in the 

two different amplification processes (main errors in Taq polymerase-based 

PCRs are substitution errors during amplification  (Potapov & Ong, 2017), while 

errors from various steps in Illumina can cause errors from miss identification of 

fluorophores in bridge amplification to enrichment PCR  (Schirmer et al., 2015)), 

error rates of the two methods differ, with error rates for NGS technologies 

reported as higher  (Glenn, 2011). So, this could account for some of the diversity 

observed in the USA-based metagenome sequences. Despite this, error rates 

seen in NGS technologies are improved through filtering and high depth and 

coverage of reads  (Ma et al., 2019). So, with the caveat that further studies need 
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to be carried out using comparable methods to know for sure, it is still possible 

that there is greater diversity in the reservoir of enterocytozoonid-like organisms 

on the eastern USA coast/North Atlantic. Evidence of intermediate (intermediate 

between Enterocytozoonidae and all other Microsporidia) species 

(Parahepatospora carcini n. gen. n. sp.) in the Atlantic coast of Canada (Nova 

Scotia) adds further evidence for this hypothesis (Bojkoet al. 2017).  

 

6.6 Prevention 

Possibly the best way to deal with potentially harmful and costly parasites is to 

prevent, as much as possible, the parasite from coming into contact with the host. 

The knowledge of how this emergent family spreads and routes they may take 

into farms would affect the way preventative measures are put in place. Inhibition 

of microsporidian infection, at an environmental level, is still not a well-studied 

topic, due to a lack of understanding of the diversity and abundance of 

Microsporidia. However, some chemical procedures have been devised, aimed 

at getting spores to expel their polar tubes prior to contact with possible hosts. 

For example, it has been found that freezing at -20oc for 2h inactivates spores, or 

applying highly alkaline chemicals, such as KMnO4, are able to get spores to 

expel polar tubes in E. hepatopenaei  (Aldama-Cano et al., 2018). This was 

primarily inferred to be able to be used on incoming feed for shrimp ponds, by 

adding agents to raise the pH of the feed. However, with it being likely that E. 

hepatopenaei and other enterocytozoonids spores are local and endemic, a 

different approach may have to be taken. To prevent further emerging parasites 

from becoming pathogenic problems, a better understanding of host ranges is 

required. On top of that, host-species geographic boundaries need to be better 

understood. Further to this, maximising the health of livestock would also help to 

prevent infection from opportunistic pathogens  (G. D. Stentiford et al., 2019), 

which could facilitate further infections from other pathogens  (Aranguren et al., 

2017). 
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In summary, this Ph.D. has shown the power of using a combination of 

molecular and bioinformatic approaches to improve the understanding of 

parasite diversity, transmission (molecular ecology), and evolutionary history. 

This approach can lead to a more well-informed risk assessment of pathogens 

in the environment, in a phylum of emerging pathogens, of ever increasing 

interest to the food industry. 
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