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Abstract 

The processes, rates, and controlling factors of basaluminite (Al4(SO4)(OH)10·4H2O) dissolution 

were assessed using batch dissolution experiments in both H2SO4 and HCl at pHs of 2.4, 2.9-3.1, 

3.5-3.6 and 4.0-4.1, and temperatures of c. 279, 293, 303 and 312 K. Basaluminite dissolution is 

incongruent over most of the studied pH range, giving generally a lower Al/S ratio in solution than 

in the pristine basaluminite sample. The lower Al/S ratio may be at least partially explained by the 

preferential release of sulfate compared to Al from the dissolving basaluminite. The dissolution 

rates range between 10–7.6 and 10–9.1 mol·m−2·s−1. At 291-293K, the slowest rates were observed 

at pH 4.1 in H2SO4 solutions, while at pH 3.0, the slowest rates were observed at 279 K in HCl 

solutions. Decreases in pH and increases in temperature increase dissolution rates. The influence 

of pH and temperature on the basaluminite dissolution rate, expressed as Al release, can be de-

scribed by the following expression: 

𝑟𝑎𝑡𝑒𝐴𝑙 = 107.3±0.5𝑎𝐻+
0.64±0.04𝑒−78±3 𝑅𝑇⁄  

Where rateAl is the basaluminite dissolution rate, based on the rate of Al release from dissolving 

basaluminite (in mol·m−2·s−1); aH+ is the activity of hydrogen ions in solution; R is the Universal 

gas constant (in kJ·mol−1·K−1) and T is temperature (in K). In light of the calculated value for the 

activation energy (78±3 kJ·mol−1), basaluminite dissolution appears to be surface-controlled. The 

reaction for basaluminite dissolution under the experimental conditions is proposed to be 

Al4(SO4)(OH)10·4H2O + 10 H+→ 4 Al3+ + SO4
2- + 14 H2O. 
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INTRODUCTION 

Basaluminite (Al4(SO4)(OH)10·4H2O) is one of the most common aluminum hydroxysulfates as-

sociated with acid mine drainage and acid sulfate soils1-5 and is one of the main minerals thought 

to control the solubility of Al in acid sulfate waters1. Basaluminite is a nano-sized to microcrys-

talline variety of felsöbányaite6,7 and was discredited by the International Mineralogical Associa-

tion in 2006. However, we retain the term ‘basaluminite’ in this manuscript, as others have8, be-

cause of its prevalence in the scientific literature and in thermodynamic databases. There has 

been some controversy about the mechanisms and products of basaluminite dissolution1,2,9 . Ad-

ams and Rawajfih1 proposed that basaluminite dissolved incongruently, producing Al hydroxide 

as a secondary product: 

Al4(OH)10SO4 + 2H2O ↔ 3Al(OH)3 + Al3+ + OH- + SO4
2-    (1) 

Nordstrom3 refuted this proposed equation because of the preferential formation of basaluminite 

from low pH waters, and because the aluminum ion cannot be independent of the solid phases 

present at chemical equilibrium9. Nordstrom3 proposed the following alternative reaction for in-

congruent basaluminite dissolution: 

Al4(OH)10SO4 + 2H2O ↔ 4Al(OH)3 + 2H+ + SO4
2-     (2) 

Excessive concentrations of aluminum can lead to toxicity in plants10, animals11, particularly 

fish12, and humans11,13. To protect environmental health and to better predict the controls on Al 

cycling in the surface environment, there is a need to understand the mechanisms, rates and prod-

ucts of the dissolution of Al-bearing minerals such as basaluminite. Previous studies have deter-

mined the dissolution kinetics of the Al oxyhydroxysulfate alunite14,15, but those for basaluminite 

remain unknown. To help bridge this knowledge gap, the kinetics of basaluminite dissolution un-

der conditions similar to those commonly found in low-temperature aquatic acid mine drainage 
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environments are assessed in this work. With this aim, batch dissolution experiments in both 

H2SO4 and HCl at pH values between 2.5 and 4, at temperatures between 279 and 312 K were 

carried out using pure synthetic basaluminite as a starting material. The evolution of dissolved 

concentrations and reacting solids during the experiments were monitored and interpreted, to-

gether with geochemical modelling and mineralogical analyses. Rate expressions including the 

influence of pH and temperature were obtained, and possible dissolution reactions are discussed. 

Therefore, our study is the first to derive dissolution rate data for basaluminite that can be used to 

predict its environmental behavior.  

 

MATERIALS AND METHODS 

Analytical, mineralogical and other techniques. Elemental analyses (for Al and S) for all solu-

tions obtained in this study were obtained via Inductively Coupled Plasma Optical Emission Spec-

trometry (ICP-OES) on a Varian 720-ES (axial configuration) using a simultaneous solid-state 

detector (CCD). Calibration with sets of five standards was performed and laboratory standards 

were also analyzed after every 10 samples and any drift in the measurements (generally less than 

4%) was corrected accordingly. The quantification limits for Al and S were determined to be 3.7 

× 10-6 and 3.1 × 10-6 mol L-1, respectively. Sulfur concentrations were transformed to dissolved 

sulfate, which is the main stable species under the experimental conditions. 

XRD spectra were acquired using a PANalytical XPert Pro diffractometer with Co Kα1 

radiation and an ‘X’Celerator’ position-sensitive detector with the X-ray tube operated at 40 kV 

and 30 mA. Data were collected over the 2θ range from 5° to 110°, with a collection time of 13 h. 
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The surface area of the synthetic material was determined to be 55.6±0.2 m2·g-1 using the 

BET method16 in a Beckman Coulter SA3100 surface area analyzer using 5-point N2 adsorption 

isotherms. 

Variations of pH and temperature during the dissolution experiments were monitored by 

regular measurements using a Thermo Scientific Orion Star A121 pH meter with automated tem-

perature correction. The pH meter was calibrated and checked using certified pH 2, 4 and 7 buffer 

solutions. 

Synthesis and characterisation of basaluminite. Basaluminite was synthesized by titration using 

a modification of the method of Adams and Rawajfih1. For the synthesis, a 0.02 M Al2(SO4)3 

solution was titrated dropwise with 1 M NaOH while vigorously stirring to pH 4.2. The solution 

was decanted and filtered, thoroughly washed with deionized water and then filtered again and 

dried at room temperature for five days. 

The purity of the obtained synthetic mineral phase was confirmed by XRD spectra, which 

showed a typical basaluminite diffraction pattern without any other peaks or significant back-

ground from other phases (Figure S1).  

The composition of the synthetic precipitate was confirmed by ICP-OES after digestion 

with concentrated nitric acid. The formula of the resulting precipitate, based on the aluminum and 

sulfur proportions from the analyses, is Al3.98(SO4)(OH)10·nH2O. This corresponds to an almost 

perfectly stoichiometric basaluminite. 

Dissolution experiments. The effect of different pH values and temperatures on basaluminite dis-

solution kinetics was assessed by means of batch stirred experiments in H2SO4 solutions at pH 

values between 2.4 and 4.1 and at four different temperatures (around 279, 293, 303 and 312 K; 

see Table 1). This range of conditions is intended to represent the most usual conditions under 
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basaluminite dissolution may take place in natural systems. Although higher pH values were also 

explored in preliminary experiments, they led to oversaturated solutions with respect to basalu-

minite within a few minutes and, therefore, they have not been included in this study. The experi-

ments at the two lowest temperatures were carried out in a controlled temperature room and the 

rest were performed using a magnetic stirred heating plate. The effect of HCl solutions on the 

dissolution kinetics was also explored between 293 K and 295 K and under the same pH range 

(2.4 to 4.0) as for the H2SO4 experiments. All the reported conditions were addressed at least by 

triplicate (and in most cases by quadruplicate) experiments to ensure the reproducibility of the 

obtained results.  

For each dissolution experiment, approximately 50 mg was quartered and split from of the 

synthetic basaluminite sample and placed in a beaker containing 200 mL of the target solution. All 

the solutions were prepared using deionized water (<18 MΩ·cm-1) by adding the required amounts 

of concentrated ultrapure H2SO4 or HCl to reach the target pH. The mixture was stirred by a piv-

oting stirring bar at 400 rpm at the desired temperature; this stirring procedure produced a homo-

geneous sample suspension while minimizing grinding during the experiments. 

The pH value was regularly monitored throughout the experiments and corrected to avoid 

drifting (i.e. pH deviations from the initial value larger than 0.1 pH units). This was only observed, 

as a pH increase, in some of the experiments at pH above 3. For those cases, pH drifting was 

avoided by dropwise adding ultrapure HCl 1M.  

During the dissolution experiments, 4 mL aliquots of the reacting suspension were sampled 

every 3 to 50 minutes (depending on the dissolution rates under different pH and temperature 

conditions, as determined in preliminary experiments), filtered through disposable syringe filters 

with a pore size below 0.2 µm and immediately acidified with ultrapure concentrated HNO3, before 
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storing them refrigerated for analysis of Al and S concentrations by ICP-OES. Some of the exper-

imental conditions explored in this study required less than one hour of dissolution, while several 

hours of interaction were necessary in other cases to obtain the reported rates. 

For the calculation of the dissolution rates, Al and sulfate concentrations were corrected by 

subtracting their values in the first suspension aliquot, sampled after 2 to 5 minutes of solid-solu-

tion interaction. This procedure, already used in earlier studies14,17, allows the sulfate concentra-

tions in most of the experiments carried out in H2SO4 solutions to be estimated. However, the 

uncorrected concentrations were retained for the speciation calculations. 

Speciation calculations were carried out using the PHREEQC code18 and the wateq4f.dat19 

thermodynamic database distributed with the code. 

Dissolution rates and rate equations. Dissolution rates were obtained from the slope of the linear 

fitting of concentrations vs time for each dissolution experiment and normalized with respect to 

the initial surface area of the synthetic basaluminite. After discarding any clear outliers, the exper-

imental dissolution rates were fitted as a function of pH and temperature by multiple linear regres-

sion. The significance of the fitted parameters was verified by using t-tests and the fitting residuals 

were examined to ensure the absence of statistical outliers in the dataset. 

 

RESULTS AND DISCUSSION 

Evolution of Al and S dissolved concentrations throughout the dissolution experi-

ments, and possible dissolution mechanisms. The main results obtained in the dissolution ex-

periments are displayed in Table 1. During the experiments, aluminum concentrations evolved 

linearly with time, which allowed us to obtain the rates of Al release from dissolving basaluminite. 

A similar trend was also observed for estimated sulfate contents in most of the experiments but 
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with a weaker linear correlation of sulfate concentrations versus time of experiment. Thus, the 

evolution of sulfate concentrations was only used to determine dissolution rates in the experiments 

with HCl. Moreover, the concentrations at the end of all the experiments were used to estimate the 

approximate Al/S molar ratios due to basaluminite dissolution. The amount of basaluminite dis-

solved during the experiments can be estimated from Al concentrations and using the initial stoi-

chiometry of the synthetic mineral. This dissolved weight represents less than 10% of the initial 

solid in all the experiments except for that at pH 3 and 312 K, for which a loss of around 30% of 

the initial sample is estimated. 

As displayed in Table 1 and Figure 1, the obtained Al release rates from dissolving basalu-

minite range between 10–7.6 and 10–9.1 mol·m−2·s−1,with the lowest values corresponding to the 

experiments with H2SO4 at 292 K and pH 4.1, and the highest to the experiments H2SO4 at 312 K 

and pH 3.1. Dissolution rates for the H2SO4 experiments are higher than those for the HCl exper-

iments (Table 1). This agrees with other dissolution studies involving Al phases, especially gibbs-

ite. For example, dissolution experiments carried out for gibbsite in different anionic environments 

at pH 3.5 by Mogollón et al.20 showed that dissolution rates in sulfate solutions are almost five 

times faster than in chloride solutions under otherwise identical conditions. Ridley et al.21 demon-

strated that the dissolution rate of gibbsite in sulfate solutions is approximately 10 times faster than 

in chloride solutions for experiments under constant pH and ionic strength, and a similar trend was 

noted by Dietzel and Böhme22. According to Mogollón et al.20, a possible explanation for this 

observation is the fact that monovalent anions such as Cl- may interact with the surface mainly as 

electrostatic outer-sphere complexes, whereas SO4
2- could act as a catalyst due to an inner-sphere 

interaction that could weaken Al-OH bonds at the gibbsite surface and thus increase dissolution 
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rates. A similar interaction between aqueous SO4
2- and Al-OH bonds in the basaluminite Al octa-

hedra (see below for discussion of basaluminite structure) could be operating in our dissolution 

experiments. 

Basaluminite dissolution seems to be an incongruent process under most of the target ex-

perimental conditions. As shown in Table 1 and Figure 2, the dissolved Al/S molar ratios are gen-

erally below 3.5, being therefore lower than the same ratio in the initial synthetic basaluminite 

(i.e., ratio of 4). This ratio is low for the HCl experiments (mostly below 4), particularly low (below 

3) for most of the experiments using H2SO4 solutions and it is even below 2 for the experiments at 

pH 4 using both H2SO4 and HCl solutions (Table 1; Figure 2). These observations imply that either 

that sulfate is being preferentially released to solution over aluminum or that aluminum is precip-

itating from the target solutions.  

To further evaluate the reason for the low Al/S molar ratios, speciation calculations were 

carried out with the PHREEQC code for the experimental solutions. The results show that, 

amongst the different aluminum phases present in the wateq4f.dat database, thermodynamic equi-

librium is only reached with respect to diaspore (AlO(OH)) and only for the experiments at pH at 

4.1 and 293K (Table S1). In light of these results, secondary precipitation of Al-bearing phases 

does not seem to be the general cause for the low dissolved Al/S molar ratios observed in the 

reacting solutions. Thus, a possible explanation for the observed incongruent dissolution in those 

cases would be the preferential release of SO4 relative to Al during basaluminite dissolution. Even 

for the experiments at pH 4, the hypothesis of diaspore precipitation does not fully explain the 

observed results. As displayed in Table 1 and Figure 2, even though both HCl and H2SO4 experi-

mental solutions at pH around 4 are similarly close to equilibrium with respect to diaspore, dis-
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solved Al/S molar ratios are much lower for the H2SO4 solutions. Thus, the hypothesis of a pref-

erential release of sulfate over aluminum from the dissolving basaluminite seems to be more con-

sistent with the observed dissolved molar Al/S ratios during the experiments. 

This behavior may be related to the structure of basaluminite, which is based on stacked 

octahedral sheet of aluminum hydroxide formed by zigzag ribbons extending along [010] that bond 

together to form Al8O22 layers6. Isolated sulfate tetrahedra and H2O groups occur in the interlayer 

between these sheets, and they are bonded to each other and to the sheets by H-bonding6,23. The 

preferential release of sulfate from dissolving basaluminite seems consistent with its interlayer 

structural position, which is more weakly bound within the mineral than the octahedrally-coordi-

nated Al atoms. Preferential release of sulfate during dissolution of other oxyhydroxysulfates, in-

cluding jarosite24, has also been observed and attributed to similar structural features. 

In the H2SO4 dissolution experiments at c. 292K, the dissolved Al/S molar ratio is low at 

pH 4.0 (0.7-0.9), and increases with decreasing pH (pH 3.6: 0.5-2.1; pH 2.9: 1.7-3.0; Table 1; 

Figure 2). This may be related to the increasing positive charge of basaluminite surfaces due to 

protonation with the pH decrease. Although no published data about the pH of potential of zero 

charge (PZC) for basaluminite have been found, this value has been reported to be between 6 and 

9 in other aluminum oxides and hydroxides25,26. If similar values are assumed for basaluminite, 

this would imply the existence of positively charged surfaces under the whole range of conditions 

explored in this work, with the positive net charge increasing with the pH decrease. The increase 

of surface positive charge is expected to enhance the retention of sulfate groups linked to the sur-

face, which would be consistent with the higher dissolved Al/S molar ratios with increasing acid-

ity. A similar trend has been proposed in earlier studies for other types of minerals (e.g. goethite27) 

and for variable surface charged soils28-30. Although the adsorption mechanisms of sulfate ions to 
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aluminum phases under low pH conditions are not completely understood, both electrostatic at-

traction on positive sites and inner-sphere complexation via a ligand exchange mechanism31,32seem 

to be possible.  

The trend of increasing dissolved Al/S molar ratio with decreasing pH in the experiments 

with H2SO4 at 292K does not continue with the pH 2.4 experiments, when the ratio decreases to 

0.6-1.0 (Table 1; Figure 2). Unfortunately, we cannot offer a fully-supported explanation for this 

observation with the currently available data. We hypothesize that this may be related to the change 

in sulfur aqueous speciation and with the increasing activity of bisulfate (HSO4
-) at low pH33. In 

this case, a fraction of the available hydrogen ions would bond with sulfate to form bisulfate. This 

may reduce the protonation of the basaluminite surface and contribute to increase the release of 

sulfate ions from the basaluminite structure. . Some of the aqueous sulfate would also form AlSO4
+ 

aqueous complexes, which dominate the Al speciation under these experimental conditions (Table 

2). In any case, the question of the non-linear evolution of Al/S dissolved ratios for the basalu-

minite dissolution experiments with H2SO4 remains open. 

Overall, the molar Al/S ratios are lower for the experiments with H2SO4 solutions com-

pared to those with HCl solutions (Table 1; Figure 2). We hypothesise that this is related to the 

weakening of the Al-OH bonds by SO4
2- which would destabilize the basaluminite structure20. 

This would allow dissolution to proceed by both release of Al and preferential release of SO4 (as 

described above). This would occur to a greater degree than in the HCl experiments where there 

would be no weakening of the Al-OH bonds by sulfate. Thus, although it would at first appear that 

such destabilization of the Al-OH bonds in the H2SO4 experiments would lead to increased release 

of Al to solution, this is not recorded due to the preferential release of sulfate from the dissolving 

basaluminite. 
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Basaluminite dissolution rates. The data in Table 1 and Figure 1 indication that Al release rates 

from dissolving basaluminite increase in a linear fashion with decreases in pH and increases in 

temperature (Figure 1; Table 1). The rate expression obtained by multiple linear regression of the 

experimental rates is: 

𝑟𝑎𝑡𝑒𝐴𝑙 = 107.3±0.5𝑎𝐻+
0.64±0.04𝑒−78±3 𝑅𝑇⁄   (3) 

where rateAl is the Al release rate from dissolving basaluminite (in mol·m−2·s−1); aH+ is the activ-

ity of hydrogen ions in solution; R is the Universal gas constant (in kJ·mol−1·K−1) and T is tem-

perature (in K). As shown in Eq. 3, the value of the activation energy, which represents the de-

pendence of basaluminite dissolution rate on temperature, is approximately 78±3 kJ·mol−1 for pH 

values between 2.5 and 4.1. This energy value is similar to that proposed by Elwood-Madden et 

al.34 for jarosite dissolution (79 kJ·mol−1), and higher than the values usually considered to corre-

spond to diffusion-controlled dissolution kinetic mechanisms (less than around 20 kJ·mol−1 35,36). 

Thus, basaluminite dissolution kinetics seem to be surface-controlled in light of the obtained ac-

tivation energy value. 

 Alunite dissolution rates between 10-10 and 10-11 mol·m−2·s−1 14,15 are more than one order 

of magnitude slower than basaluminite dissolution rates under similar conditions. This is consistent 

with the much lower crystallinity of basaluminite (cf., the broad diffraction peaks in Figure S1), 

and confirms field and laboratory observations of the metastability of basaluminite and the fact it 

recrystallizes into phases such as alunite and gibbsite2,3,37. Alunite dissolution rates also increase 

with decreases in pH and increases in temperature but the dependence is much weaker than for 

basaluminite14. Like alunite dissolution below pH 4.814, there is increasing formation of Al-SO4
+ 

complexes with decreasing pH in the basaluminite experiments with H2SO4 (Table 2).  
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Overall dissolution reaction. Basaluminite dissolution is generally incongruent at the pH condi-

tions described by this study (pH 2.4 to 4.1). According to solubility calculations (Table S1), 

basaluminite dissolution under these conditions does not seem to lead to the precipitation of any 

secondary product. Thus, a plausible overall reaction expressing basaluminite dissolution under 

the conditions explored in this study could simply be: 

Al4(SO4)(OH)10·4H2O + 10 H+→ 4 Al3+ + SO4
2- + 14 H2O      (4) 

This reaction would lead to the consumption of 10 mol of H+ for each mole of dissolved basalu-

minite. Therefore, basaluminite dissolution under unbuffered conditions within this pH range 

could lead to a pH increase. It was not possible to observe this in our experiments because pH 

drift was avoided by dropwise addition of HCl. The reverse of reaction 4 would involve the pro-

duction of 10 moles of H+ for each mole of basaluminite precipitated, leading to a pH decrease. 

As previously reported by Sánchez-España et al.8, this would represent an important buffering 

mechanism during natural neutralization in AMD systems and during titration experiments. 

 The dissolution equation described by Eq. 4 differs from those of Adams and Rawajfih1 

and Nordstrom3 (Eqs. 1 and 2, respectively), largely because of our observed pH dependence for 

basaluminite dissolution.  The lack of a solid product in this equation and in our experiments can 

be explained by the fact that Al hydrolyses only above the pH range of our experiments (c. pH 

4.55,38,39), when the dissolved Al species changes from Al3+ to Al(OH)2
+ 5,40.  

 

SUPPORTING INFORMATION 
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The XRD pattern of the initial synthetic basaluminite sample, and the table of calculated satura-

tion index values for main possible aluminum secondary phases. This material is available free 

of charge via the Internet at http://pubs.acs.org 
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Table 1. Summary of results from dissolution experiments. Stdev log rate corresponds to the 

standard deviation of the set of replicate experiments carried out for each set of studied condi-

tions.  

pH Solution 

type 
T (K) Approxi-

mated mo-

lar Al/S ra-

tio1 

Log rate 

Al 

(mol/m2.s) 

Log rate 

SO4 

(mol/m2.s) 

Stdev log 

rate Al 
Stden log 

rate SO4 
 

3.0 H2SO4 279 n/a -9.06 n/a 0.05 n/a  

3.1 H2SO4 293 1.7-3.0 -8.65 n/a 0.04 n/a  

3.0 H2SO4 303 2.3-4.1 -8.03 n/a 0.04 n/a  

3.1 H2SO4 312 2.4-4.6 -7.62 n/a 0.07 n/a  

2.4 H2SO4 291 0.6-1.0 -8.12 n/a 0.02 n/a  

3.5 H2SO4 292 0.5-2.1 -8.92 n/a 0.06 n/a  

4.1 H2SO4 292 0.7-0.9 -9.09 n/a 0.02 n/a  

3.6 HCl 294 2.3-3.2 -8.94 -9.38 0.10 0.07  

4.0 HCl 293 1.6-2.3 -8.94 -9.21 0.05 0.05  

2.9 HCl 295 3.3-4.5 -8.86 -9.45 0.02 0.05  

2.4 HCl 294 3.3-4.0 -8.70 -9.30 0.03 0.02  

1 Estimated at the end of the experiments. 
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Table 2.Distribution of Al dissolved species (in %) under the different conditions assessed in 

this study, as obtained from PHREEQC speciation calculations using the wateq4f.dat thermody-

namic database. Species representing less than 1% of total Al are not displayed. 

pH Solution 

type 

Al 

(mMol·L-

1) 

Sulfate 

(mMol·L-

1) 

 T 

(K) 

Al3+ 

(%) 

AlSO4
+ 

(%) 

Al(OH)2
+ 

(%) 

Al(SO4)2- 

(%) 

   

3.0 H2SO4 0.111 0.437  279 56.3 43.2 0.2 0.4    

3.1 H2SO4 0.093 0.468  293 50.2 48.9 0.3 0.5    

3.0 H2SO4 0.241 0.531  303 47.5 51.3 0.7 0.5    

3.1 H2SO4 0.853 0.781  312 46.2 52.1 1.2 0.5    

2.4 H2SO4 0.222 2.062  291 23.2 74.2 0.0 2.5    

3.5 H2SO4 0.056 0.156  292 72.2 26.2 1.5 0.1    

4.1 H2SO4 0.030 0.047  292 83.7 9.9 6.1 0.0    

3.6 HCl 0.048 0.023  294 72.2 26.2 1.5 0.1    

4.0 HCl 0.048 0.031  293 86.8 6.7 6.2 0.0    

2.9 HCl 0.111 0.031  295 93.7 5.7 0.6 0.0    

2.4 HCl 0.067 0.022  294 96.3 3.5 0.2 0.0    
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Figure 1. Basaluminite dissolution rates (in logarithmic scales) obtained in this study vs. pH and 

for different temperatures (a) and vs 1000/RT for the pH 3 experiments with H2SO4 (b).  
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Figure 2. Ranges of molar Al/S ratios for basaluminite dissolution experiments conducted in 

H2SO4 and HCl solutions at T = 291-295 K (data from Table 1). 
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SUPPLEMENTARY INFORMATION 

Figure S1. XRD of initial synthetic basaluminite sample. D-spacings and hkl assignments based 

on Farkas and Pertlik1.  
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Table S1. Saturation indices in the final solutions from the different experimental conditions ex-

plored in this study with respect to the main possible aluminum secondary phases, calculated for 

the end of the experiments. Positive values correspond to theoretical oversaturation (precipitation 

thermodynamically favoured) and negative values indicate theoretical oversaturation (precipita-

tion thermodynamically hindered). For the calculations, the largest concentrations achieved in 

any of the replicate experiments for each set of conditions have been selected. 

pH Solution 

type 

T 

(K) 

Al(OH)3(a) Basaluminite Diaspore 

(AlOOH) 

Gibbsite 

(Al(OH)3) 

Jurbanite 

(AlSO4(OH).5H2O) 

Boehmite 

(AlOOH) 
   

3.0 H2SO4 279 -7.43 -13.43 -3.42 -4.56 -1.58 -5.30    

3.1 H2SO4 293 -6.66 -13.89 -2.71 -3.91 -1.67 -4.47    

3.0 H2SO4 303 -5.53 -12.38 -1.63 -2.88 -1.31 -3.29    

3.1 H2SO4 312 -4.43 -10.52 -0.57 -1.87 -0.92 -2.15    

2.4 H2SO4 291 -8.43 -19.23 -4.48 -5.68 -1.72 -6.24    

3.5 H2SO4 292 -5.21 -9.52 -1.26 -2.46 -1.65 -3.02    

4.1 H2SO4 292 -3.75 -5.25 0.20 -1.00 -1.77 -1.56    

3.6 HCl 294 -4.85 -9.66 -0.91 -2.12 -2.38 -2.65    

4.0 HCl 293 -3.58 -5.07 0.37 -0.84 -1.80 -1.38    

2.9 HCl 295 -6.42 -14.76 -2.48 -3.70 -2.66 -4.22    

2.4 HCl 294 -8.25 -21.13 -4.31 -5.52 -3.65 -6.05    
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