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A b stra c t

The upper solar atmosphere, the corona, is an example of a hot (10^ K), tenuous, structured plasma. 
This thesis concentrates on two main aspects regarding our understanding of the corona, namely the 
existence of oscillatory phenomena and their possible connection with explaining the high observed 
coronal temperatures. The oscillatory phenomena are interpreted in terms of magnetohydrodynamic 
(mhd) waves and the thesis investigates how the energy of such waves might be converted into heat 
by the dissipation mechanisms of ion viscosity, electron thermal conduction and radiation in an 
optically thin atmosphere. An overview of coronal features and the observational evidence for waves 
are given and coronal heating theories together with dissipative mechanisms are discussed. Detailed 
calculations of the energy carried by waves in structured media are given showing that the waves 
can carry sufficient energy to meet the coronal heating requirements provided that the waves are 
associated with large root-mean-square-velocity amplitudes. The lengths over which ducted waves 
lose their energy in a weakly dissipative environment for both warm and cold plasmas are calculated. 
The results show that fast waves with periods 2 - 10 s are likely to dissipate in regions of low magnetic 
field strength 15 G), and slow waves that are likely to dissipate have periods in the range 15 - 
225 s. Dissipation lengths and rates for waves propagating in slender structures are calculated by 
two methods. One method considers an isothermal environment; the other considers large Peclet 
number, and it is found that slow, symmetric waves are likely to dissipate with periods in the range 
2 - 80 s and 2 - 38 s, respectively. The final chapter compares the models with each other and with 
the models in the literature. Period ranges of dissipating and non-dissipating waves are compared 
with observed waves and it is proposed that waves of 2 - 10 s might contribute to coronal heating, 
whilst thœe waves that might survive dissipation have periods of a few and many tens of seconds.
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To describe the phenomena of nature, to explain their causes, to trance the relations and 
dependencies of those causes, and to enquire into the whole constitution of the universe, 
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C hapter 1

Introduction

Msmkind has always regarded the Sun as an object of beauty, fascination and worthwhile 
study. The Ancients worshipped the Sun as a god and early scientific questions centred on: W hat 
was it made of? How big was it? How far from the Earth was it? These questions have since been 
answered satisfactorily. We now know that the Sun is a slightly oblate sphere (radius, Rq,6.96  x  

10® km) of hot plasma, consisting mainly of hydrogen (~  90%) and helium (^  10%), held together 
by gravity. The Sun is divided into two main areas, the solar interior where nuclear. energy is 
converted into radiation and then convected into the solar atmosphere. However, it was not until 
the mid-nineteenth century, following a rapid increase in the knowledge of solar phenomena, that 
the true physical nature of the Sun and the features of the various regions of its atmosphere, the 
photosphere, chromosphere and corona, became clear. Magnetic fields were first detected on the Sun 
by Hale in 1908 but their origin is still unknown although dynamo theory (e.g. see Gilman, 1986) 
is attempting an explanation. The problem of explaining the extremely hot (10® K) corona, first 
realized by Edlén in 1940, still remains. It is not clear whether the upper atmospheric heating is due 
to waves, or due to the other major contender, topological-magnetic-field-change-related processes. 
In 1942 British Army radar operators, completely by accident, detected radio emission from the Sun. 
Nowadays information concerning the oscillatory nature of the Sun’s outer atmosphere mainly comes 
from radio-wave data. In the Sun, waves are of interest because firstly, they are able to transport 
energy from one location to another, and therefore have the ability to modify the solar atmospheric 
structure. Secondly, waves can effect the strengths, widths and shapes of spectral lines which are 
emitted by the Sun, and are a useful probe for gaining information about the solar atmosphere. 
Rocket and satellite observations during the last thirty years from missions such as Skylab, the 
Solar Maximum Mission, and N IX T  (Normal Incidence X-ray Telescope) have provided an ever- 
improving view of the Sun and have revealed much about the structuring of the solar atmosphere. 
Such observations have revealed that coronal structures are capable of supporting waves. Currently 
there are many instruments, both ground-based, and in space, with which the rich and diverse
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phenomena that our nearest star has to offer may be observed.

1.1 A  D escription  o f th e Solar A tm osphere

The solar atmosphere is traditionally classified into three regions, the thin surface layer 
of the photosphere, and the highly non uniform regiono of the chromosphere and corona which Eire 

only ever seen at the time of a solar eclipse. However, it must be borne in mind that, although 
such a classification is convenient for descriptive purposes, such a division is in fact only roughly 
appropriate. It must be stressed that the solar atmoopherc io a very dynamic atmosphère, and is 
highly structured, as well as stratified by gravity.

The photosphere is often loosely referred to as the Sun’s surface but unlike the Earth’s 
crust, it is not solid. Visible light is radiated from this thin (550 km) layer and the Sun is viewed as 
a disc in the day time sky (provided that there are no clouds overhead!). From detailed measurements 
of solar magnetic fields via the Zeeman splitting of spectral lines, Stenflo (1989) states that over 
90% of the magnetic field of this region is confined to sunspots ( 2 - 4  kG) and intense magnetic 
flux tubes (1.5 kG). Typically the photosphere has a density of 10”  ̂ kg m” ® and a temperature of 
0000 K which falls to about 1200 K at the top of the photosphere (the temperature minimum).

The region immediately above the temperature minimum is the highly inhomogeneous re
gion called the chromosphere within which the temperature rapidly increases with increasing altitude. 
The magnetic field from the intense magnetic flux tubes, located in the photosphere, expands into a 
near-horizontal canopy filling the whole of the chromosphere. A striking feature of the chromosphere 
is that of numerous fine jet-like structures known as spicules (e.g. Beckers, 1972). Essentially spicules 
are narrow tubes of plasma with diameters of 500 - 12 000 km which radially extend outwards to 
a height of 9000 km with velocities of about 30 km s” .̂ They are guided by the chromospheric 
magnetic field and cover about 1% of the solar disc. Viewed at the limb, spicules are seen every few 
hundred kilometres and give the impression of a ‘burning prairie’.

The corona is the Sun’s hot (10® K), tenuous outer atmosphere which in open-field regions 
expands outwards in the form of the solar wind, well beyond the Earth’s orbit. The corona is 
dominated by intense magnetic forces, which penetrate into it from the lower, denser regions of the 
solar atmosphere. Coronal gas accumulates around magnetized regions to produce the intriguing 
shapes and structures observed during a solar eclipse, with a coronagraph, or viewed in X-rays 
(wavelength < 10 x 10” ®̂ m), EUV (15 -  80 x 10” ®̂ m) or H« (656.3 x 10” ®̂ m).

A large part of the energy emission from the corona is concentrated along well-defined 
curved paths, called loops, but the precise mechanisms by which loops, and other coronal structures, 
are heated, are still uncertain. Typically the corona has a magnetic field strength of 10 - 100 G 
although fields of 1800 G have been reported (White, Kundu and Gopalswamy, 1992).

When the Sun is fairly inactive, the corona is viewed as a faint, uniform halo during an 
eclipse (Shklovskii, 1965). However, a great deal of structuring with large streamers extending
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Figure 1.1: X-ray image of the Sun obtained from the Soft X-ray Telescope on board the orbiting 

Yohkoh satellite on 8 May 1992 (Lockheed Missile and Space Co.).

radially outwards to distances of 10 R©, and the inhomogeneous nature of the corona can be seen 

at solar maximum (e.g. see the papers of Panel 1: Solar Eclipse Results in Rusin, Heinzel and Vial, 

1994).
The gases of the photosphere and chromosphere are too cool to emit X-rays but when viewed 

in the X-ray range of the electromagnetic spectrum, the corona is seen to be highly structured and 

inhomogeneous. A great deal of progress in understanding the structure of the corona has come 

from X-ray imagery. In addition to the large-scale structures of the corona there are also small 

( 6  -  9 X 10® km) point-like features, called X-ray bright points, of relatively bright soft X-ray 

emission. They occur throughout quiet regions and coronal holes and are not associated with active 

regions.
The Skylab mission highlighted the need to explain the importance of the confinement of 

the coronal plasma between magnetic field lines and the mechanisms for energy transfer in order 

to keep the plasma hot. Recent soft X-ray images (see Figures 1.1 and 1.2) of the solar corona 

taken with the Soft X-ray Telescope (SXT) on board the Yohkoh spacecraft (launched in 1991) have 

shown, besides a much more detailed X-ray view of the Sun, that the corona has a much higher time 

variability than appeared from previous space experiments. The corona is never static and transient 

phenomena occur on a variety of length scales (Hiei, 1994):

1. transient brightenings of small size (less than several tens of arcsecs^ occur in X-ray bright 

points in active regions;

2. flare loops, jets and bright points associated with prominence disappearances of medium size

 ̂1 a rc se c  =  726 k m .
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(0.1 to 0.5 Rq );

3. large-scale restructuring of the solar corona on a size larger than 0.5 R© occurs in coronal- 

mass-ejection events.

Prior to the Skylab mission in 1973, a decade of rocket experiments had shown that the 

corona is essentially composed of magnetic loops. Vaiana, Krieger and Timothy (1973) and references 

therein identified the following coronal structures: active regions, active-region interconnections 

(arches), coronal holes, large-scale, quiet coronal structures, coronal structures forming cavities, 

bright points and the identification of solar flares.

The solar-flare phenomenon is a manifestation of an explosive process of stored energy 

(10^2 - 10®® J) in the lower corona. The coronal plasma may be heated up to tem peratures of 

5 X 10^ K and the acceleration of charged particles gives rise to coronal emissions in radio through 

to gam m a ray wavelengths (see Priest, 1981).

W ith the exception of solar flares, active regions are the most noticeable features of the 

X-ray corona. Viewed at the limb of the Sun, they appear as complex tubular arches or loops of 

enhanced density and tem perature (see Figures 1.1 and 1.2 (B)). In addition, the many connecting 

loops within individual active regions, may extend from the active region itself to its peripheral 

area. Neighbouring active regions may be linked by large-scale arch structures (see Figure 1.2 (G)). 

Typical tem peratures associated with active regions are 2 — 3 x 10® K and electron densities of

0.4 — 1.8 X lOd® cm” ® (see Table 1.4).

X-ray images of the solar corona show clearly defined areas of reduced coronal emission, 

known as coronal holes, which are regions of open magnetic field, low densities and low temperatures. 

It is well known, e.g. see Parker (1991), that the expansion of the coronal plasma in the region of 

coronal holes is the source for the high-speed streams (400 - 600 km s” ^) in the solar wind. Typically, 

at their base, coronal holes have magnetic field strengths of 10 G , tem peratures of 1.5 x 10® K, and 

electron densities of 2.7 x 10® cm” ® (Krieger, Timothy and Roelof, 1973; Vaiana, Krieger and 

Timothy, 1973).
The quiet corona represents between 60% and 80% of the observed corona and can be 

regarded as regions which are free from coronal holes or active regions. In a quiet region there may 

be many loops, called ‘quiet loops’, often observed as an arcade and possessing a lower tem perature 

and density than loops in active regions.
In their comprehensive account of plasma loops in the solar corona, Bray ei al. (1991) have 

reviewed extensively the observed properties of loop structures in the upper solar atmosphere. Two 

distinct sub-classes of coronal loops have been identified, namely flare and non-flare loops.

Observations show that non-flare coronal loops, depending upon their tem perature, can be 

divided into two distinct categories. Loops with tem peratures in excess of 10® K are usually referred 

to as hot loops, while those formed at lower tem peratures are termed cool loops. The morphological 

and physical properties of the two types, listed in Tables 1.1 to 1.4, differ greatly.
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Figure 1.2: Menagerie of coronal loops obtained from the Soft X-ray Telescope on board the Yohkoh 

satellite from 3 October 1991 to 25 January 1992 (from Acton ei ai,  1992).

Quantity Value (km) Observed wavelength
Height 40 000 - 53 000 H«
Length 130 000 Ha

22 000 - 109 000 EUV
Separation of footpoints 71 000 - 109 000 Ha
Diameter 1 600 Ha

< 2000 - 22 000 EUV

Table 1.1: Morphological properties of cool loops (from Bray ei ai, 1991).
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It is seen that over the tem perature range characterizing cool loops (20 000 - 10® K), both 

the heights and lengths are comparable. However, there appears to be a small increase in loop 

diameter with increase in temperature. Bray ei ai (1991) note that the gas pressure is restricted 

to a small range (0.1 - 1.0 dyne cm"®), perhaps reflecting the fact th a t the stability of a loop 

depends upon pressure equilibrium being maintained with the surrounding coronal plasma and that 

tem perature is not a factor. Typical lifetimes of cool loops, along with those for hot ones, are given 

in Table 1.5.
Viewed overall, the data listed in Tables 1.1 and 1.2 indicate that, with the exception

of tem perature, all cool loops appear to have similar properties and can be thought of as being

manifestations of the same physical structure.

Hiei (1994) indicates that the SXT images of the solar corona show several kinds of loops 

of different sizes with a homogeneous background corona. The homogeneity of the background 

corona may well be due to any fine structure being smaller than the spatial resolution of the SXT 

telescope (3 arcsecs) (Yoshida ei ai,  1995). Observations of hot (>  10® K) loops lead to the following 

classification:

1. flare loops;

2. loops in active regions,

(a) occurring in the core of active regions (type a),

(b) surrounding the core of active regions (type b),

(c) loops connecting between active regions and their periphery (type c);

3. loops connecting two active regions (type d);

4. loops in a quiet region (type e).
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Quantity Value Observed wavelength
Temperature (electron) 2.1 X 10^ K Ha

7 X 10® - 2.5 X 10  ̂ K Visible
6.0 X lO'̂  - 10® K EUV

Density (electron) 5.6 X 10̂ ® cm"® Ha
3.0 X 10® - 6.0 X lOd® cm"3 Visible
4.0 X 10® - 3.0 X lOii cm"® EUV

Gas pressure 0.36 dyne cm"® Ha
0.14 - 0.58 dyne cm"® Visible

0.1 - 1.0 dyne cm"® EUV
Gas density 1.3 X 10"^® g cm"® Ha
Magnetic field strength 4 -  45 G Visible

Table 1.2: Physical conditions in cool loops (from Bray et ai,  1991).

Quantity Value (km) Observed wavelength Type of loop
Height 110 000 - 130 000 EUV d

45 000 21 cm -

Length 18 000 -29 000 EUV -
7 000 - 44 000 X-ray a

10 000 - 100 000 X-ray b
5 000 - 500 000 X-ray c
70 000 - 100 000 6, 20 cm -

Separation of footpoints 250 000 - 100 000 X-ray e
Diameter 3 000 - 500 000 530.3 nm -

3 000 - 18 000 EUV -

5 000 - 11 000 X-ray a
5 000 - 20 000 X-ray b
10 000 - 30 000 X-ray c

15 000 3.7 - 20 cm -

Table 1.3: Morphological properties of hot loops (from Bray et ai,  1991).

In Figure 1.2 a large helmet structure extending radially outwards from the Sun is seen in 

Panel (A). In Panel (B) an arcade of loops is viewed end-on. A dynamic eruption is shown in (C) 

and in (D) there is a flaring loop. Two cusped loops are seen in Panel (E) and there is a tightly 

beamed X-ray je t in (F). Panel (G) shows loops connecting active regions.

Hot loops (usually observed in X-rays and EUV) are typically thicker, longer, higher and 

longer-lived than cool loops (usually observed in H«). It is difficult to compare electron densities in 

the two types of loop, since both cover a wide range and there is considerable overlap. The values 

of gas pressure seem to be very much the same for cool and hot loops, covering the same range. 

This seems to suggest that, just like cool loops, hot loops are in pressure equilibrium with their 

surroundings. Bray ei a i  (1991) comment that there are not enough measurements of the total 

magnetic field to give a meaningful comparison between hot and cool loops. Overall, all hot loops
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Quantity Value Observed wavelength Type of loop
Tem perature (electron) 1.0 X 10® - 2.6 X 10® K Visible -

2.0 10® - 2.2 X 10® K EUV -

2.0 X 10® - 3.2 X 10® K X-ray -

1.7 X 10® - 3.0 X 10® K 20 cm -

Density (electron) 1.5 X 10® - 2.0 X 10® cm-® 530.3, 737.4 nm -

1.8 X 10® - 2.0 X lOd® cm-® EUV -

8.0 X 10® - 6.0 X 10® cm-® X-ray -

5.0 X 10® - 2.5 X 10® cm-® 20 cm -

Gas pressure 0.5 dyne cm” ® Visible a
0.7 - 16.6 dyne cm"® EUV -

2.4 dyne cm"® X-ray b
2.0 dyne cm"® 20 cm -

Magnetic field strength 130 - 200 G 20 cm -

Table 1.4: Physical conditions in hot loops (from Bray ei al., 1991).

appear to have similar properties regardless of the wavelength range in which they are observed.

The loops observed in the corona represent regions where the coronal gas has been trapped 

by magnetic field lines. Leblanc (1970), Foukal (1975) and Cheng (1980) estim ate th a t the sur

rounding medium may be 1/3, 1/4 and 2/3 as dense, respectively, as the loops. Stewart (1976) and 

Pick, T rottet and MacQueen (1979) state th a t measurements indicate that coronal loop structures 

are about 8 to 10 times more dense than the background corona. In other words, loops may be 

regarded as dense ducts.
Another im portant set of structures observed in the corona, as yet unmentioned, is that 

of prominences. Possessing temperatures of a hundred times lower and densities of a hundred or 

a thousand times greater than background coronal values, prominences can be classified into two 

basic types (Priest, 1982): quiescent prominences which are extremely stable in structure and may 

persist for many months in the corona; and active prominences, with lifetimes of minutes or hours, 

which are located in active regions and are associated with flares. Priest (1982) has summarized the 

observed properties th a t exist in prominences and has also given consideration as to their formation.

So, overall, the coronal magnetic field plays a m ajor role in shaping the morphology of the 

outer layers of the solar atmosphere. As each generation of X-ray instrum entation has improved, 

it has become clear that the solar magnetic field has a highly inhomogeneous structure which has, 

probably, yet to be resolved to its full extent.

1.2 Observed Wave Phenom ena in the Solar A tm osphere

It has already been mentioned that wave motions in the solar atmosphere have an effect 

on spectral lines and that a great deal of information concerning oscillatory motions in the corona 

comes from radio wave data.
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Type of loop Lifetime Observed wavelength
Cool, loop system 
Cool, single loop 
Hot, small loop 
Hot, large loop 
Hot loop 
d 
a 
d
Hot loop

3 - 6 hr 
~  15 mins 

hr 
days 

~  6 hr
> 31 hr
> 10 hr 

hours - days 
hours - days

Ha
Ha

530.3 nm
530.3 nm 

EUV 
EUV 
X-ray 
X-ray

microwave

Table 1.5: Lifetimes of coronal loops (from Bray ei al., 1991).

Velocity fluctuations, associated with density and tem perature fluctuations, can produce 

complicated and puzzling effects on spectral lines. Essentially a spectral line represents an integral 

over several hundred kilometres of depth of the solar atmosphere, and an average over an area 

typically greater than 250000 square kilometres. At each point in this region, the line profile 

function is shifted by an amount determined by the local line-of-sight velocity, and has a depth 

determined by the opacity which depends upon tem perature and density. The effects th a t a velocity 

field, such as a wave or a pulsation, can have on an observed spectrum are: a simple Doppler shift; 

broadening of the line, i.e. an increase in the frequency range of the line; change in line strength,

i.e. change in the integrated area under the line profile; and asymmetry of the shape of the line.

The corona is also observed to contain ubiquitous non-thermal motions which are inter

preted as waves but are unresolved both in space and time. Line-broadening measurements of 

optically thin emission lines provide a means of estim ating the amplitudes, Vrms, of these unre

solved, small-scale motions. There are values of Vrms of 3 - 10 km s“  ̂ given by Athay and W hite 

(1979), medium-sized values in the range 10 - 30 km s“  ̂ (e.g. Feldman and Behring, 1974; Leiben- 

berg, Bessey and Watson, 1975; Doschek, Feldman and Bohlin, 1976; Doschek and Feldman, 1977; 

Feldman and Doschek, 1977; Cheng, Doschek and Feldman, 1979; Hassler ei al., 1990) and values 

like these, and substantially larger ones of ~  60 km s“ \  given by Kjeldseth Moe and Nicolas (1977), 

Acton ei al. (1981) and Saba and Strong (1991).
Wave motions have been detected in all levels of the solar atmosphere. In the photosphere, 

oscillations in sunspots were first detected by Beckers and Tallant (1969). Sunspot penumbrae are 

also know to exhibit oscillations, typically with periods of 3 - 5 minutes (Lites, 1988). Coherent 

wave-fronts, typically with velocities of 20 - 35 km s " \  have been observed propagating outwards 

from sunspot umbrae into their penumbrae (Giovanelli, 1972; Zirin and Stein, 1972).

The chromosphere is known to exhibit oscillations with periods of many tens of seconds 

and of several minutes. Endler and Deubner (1983) detected wave periods in the range 40 - 140 s. 

Athay and W hite (1979) and W hite and Athay (1979) detected periods in the ranges 200 - 300 s and
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170 - 500 s, respectively, which were thought to be aissociated with acoustic waves. Kneer and von 

Uexkiill (1985) have reported waves with periods of 50 s and also periods of between 80 and 200 s.

Fast coronal oscillations, typically with periods of less than 10 s have been reported in the 

extensive literature cited by, for example, Edwin (1984), Aschwanden (1987) and Tsubaki (1988). 

Pasachoff and Ladd (1987) reported coronal oscillations with periods in the range 0.5 - 4 s  and Fu ei 

al. (1990) report oscillations over a similar range, namely 0.4 - 3  s. Li, Messerotti and Zlobec (1987) 

have detected pulsations of approximately 7 s and Mangeney and Pick (1989) give oscillations in the 

range 1 - 6 s, as do Zhao, Mangeney and Pick (1991). Pasachoff (1991) has further reported periods 

in the range 0.5 - 3 s. More recent work by Aschwanden and co-workers has seen the following wave 

periods detected: 1.6 and 1.7 s by Aschwanden ei al. (1993, 1994); and 2.3 s by Aschwanden, Benz 

and Montello (1994). Usually, magnetic field strengths are not quoted along with the observed wave 

periods but Zlobec ei al. (1992) have detected oscillations with a period of 12 s in a 67 G field and 

Wright and Nelson (1987) report periods of 180, 240 and 300 s in fields of 26 and 45 G.

Koutchmy, Zugzda and Locans (1983) have detected wave periods in excess of 43 s. An- 

tonucci, Gabriel and Patchett (1984) have reported oscillations with periods of 70, 117 and 141 s. 

There is also ample evidence for periods of 300 s such as reported by Leibenberg and Hoffmann 

(1974) and Tsubaki (1977).
Much longer periods have also been detected. Svestka (1994) has detected oscillations with 

periods of about 20 minutes and Harrison (1987) has detected oscillations of about 24 minutes.

Prominence structures are also known to exhibit wave motion with periods in the range of 

about 5 minutes to about 90 minutes.
Clearly, then, there is ample evidence for oscillatory motion in the upper solar atmosphere 

ranging from the sub-second periods, such as those detected by Takakura ei al. (1983), to periods 

of many minutes such as those reported by Harrison (1987).
As well as possessing wave motions on a local scale, as listed above, the Sun also possesses 

oscillations on a global scale, namely a 5 - minute oscillation of trapped, standing, small-amplitude 

acoustic waves. Thus, on a global scale, the Sun is akin to a vibrating drum. Detailed investigation 

of these standing acoustic waves has led to the area of Solar Physics known as Helioseismology.

1.3 W aves and D issipation in th e Solar Corona

The previous section has listed the wide range of oscillatory phenomena detected in the 

various layers of the solar atmosphere. One of the tasks of Solar Physics is to explain the observed 

wave motions from a theoretical point of view. Of course, it is of no surprise that the Sun is able 

to sustain oscillations of many kinds. Since the Sun is a compressible plasma, it is able to support 

sound waves. The presence of a magnetic field leads to magnetic pressure and iension forces (to 

be considered later) which further help to sustain wave disturbances. The effect of a gravitational 

field, lower in the solar atmosphere, would also appear to sustain wave motion. Thus, simply from
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a theoretical point of view alone, wave propagation is worthy of consideration.

One of the most puzzling aspects of solar physics is the existence of the hot (10® K) corona. 

As yet no well-accepted, convincing argument has been presented. Ever since Biermann (1946) 

pointed out th a t the turbulent kinetic motions of granulation must generate powerful sound waves, 

waves have been thought of having some contributory role in heating the solar atmosphere. They 

have the attraction that if they originate at low heights in the photosphere, then, in principle, they 

can heat the lower atmosphere as well as the corona. If we consider waves to be guided, or ducted, 

along the dense coronal loop structures, described in Section 1.1, then the idea of waves being 

ducted from their origins low in the photosphere and convective regions, to the corona, is appealing. 

However, what is less clear, is that once the waves reach the upper solar atmosphere, then how do 

they surrender their energies to maintain the hot corona? In reality, the solar atmosphere is probably 

far from an ideal situation (in which wave motions suffer no decay in amplitude or decrease in energy). 

It is only natural, then, to consider magnetic-type waves which might be damped due to dissipation 

and so heat the corona. Moreover, any mechanical heating process requires th a t the convection 

zone does work and that, as a result, the solar atmosphere must move. As it will be shown in the 

remainder of this chapter, most but not all of the motions, or disturbances, in the solar atmosphere 

obey hyperbolic equations which yield wave, or wave-like, solutions. Thus it is reasonable to think 

of motions as waves.

However, if wave dissipation is to explain the hot corona, or if an alternative view is taken 

- the fact th a t wave motions are detected at all may indicate that any damping on the waves is 

ineffective - then there still remains the unanswered question of how the waves dissipate. W hat 

precisely are the dissipative mechanisms, if any, operating on wave motion in the solar atmosphere? 

Here the task is to investigate some dissipative mechanisms upon ducted waves in the corona and 

to suggest likely wave candidates that might play a role in contributing towards explaining the hot 

corona, and those which might exist by surviving the dissipative mechanisms under consideration.

1.4 Coronal H eating

Cargill (1995) gives a résumé of the observational evidence for coronal heating. In fact 

there are two coronal-heating puzzles, namely the one of heating active regions (coronal loops) 

to tem peratures of 2 - 3 x 10® K and secondly the heating of coronal holes to 1.5 x 10® K. The 

coronal-heating problem is not merely confined to our nearest star; it is apparent from the results 

of the satellite mission, Einstein, and other missions, that many stars similarly possess hot coronae 

(Phillips, 1992; Haisch and Schmitt, 1996).

Hollweg (1990) stresses that the coronal-heating problem has been inappropriately empha

sized in the past and the energy requirements for the corona should not be treated separately from 

those of the chromosphere and the high-speed solar wind. So, questions concerning the heating of 

the solar chromosphere, and the high-speed solar wind, must also be addressed. Indeed, Hollweg
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Feature of atmosphere Required energy flux density (erg cm“  ̂s“ ^)
Quiet, corona 3 X 10®
Coronal hole with high-speed wind 8  X 10»
Chromosphere few X 10»
Spicules few X 10®
Active region loops 10^

Table 1.6: Required energy flux densities for the coronal heating problem (after Hollweg, 1990).

comments further that any theory of the heating of the solar atmosphere must account for the 
required energy flux densities given in Table 1.6.

In the coronal-heating literature it is believed that the energy source for heating the coronal 
goo io the kinetic energy of plaoma motions in the photosphere caused by sub surface convection; 
The coronal magnetic field is distorted by the continual movements of the magnetic foot points 
which anchor the field in the photosphere. As a result of Ampere's Law, currents are generated and 
consequently magnetic energy is stored in the corona which, in principle, can be dissipated by, for 
example, the Fourier heat law.

Browning (1991) suggests that wave theories and those involving topological changes in t^e 
magnetic field form two classes of heating mechanism. The relation between the time scale of the 
photospheric velocity field, ty, and the Alfvén transit time across a coronal structure, t^ ,  determines 
which theory is applicable. If a and / represent the radius and the length, respectively, of a coronal 
loop then ty and îa  are given by

where Vp is the photospheric speed, and va is the Alfvén speed. The two classai of heating mechanism 
are:

1. AC (Alternating Current) heating theories: if < ta , then the movements of footpoints 
launch mhd waves into the atmosphere;

2. DC (Direct Current) heating theories: if ty > tAt then the coronal magnetic field is always 
approximately in field-free equilibrium. The positions of the foot points constrain the magnetic 
field and DC currents are generated which may dissipate and release heat.

Unfortunately; the motions of the photospheric flmc tubeo are beyond current oboervablc 
resolutions and so are unknown. Therefore, it is unclear whether the Alfvenic time scale is greater 
than, or 1̂  than, the driving time scale of the photospheric motions and so probably both classes 
must remain viable candidates for coronal heating. The literature concerned with coronal heating 
contains mainly theoretical arguments. The observations for heating are usually cited in support of 
one coronal heating mechanism or another. It is quite clear that until there we improved diagnostics
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for observations of heating mechaniomo then the coronal-heating problem will remain unanswered. 
However, it is hoped that the CDS (Coronal Diagnostic Spectrometer) and SUMER (Solar Ultravi
olet Measurements of Emitted Radiation) instruments onboard the SOHO (SOlar and Heliospheric 
Observatory) spacecraft (launched in December 1995) will firmly establish the existence of mhd 
waves in the corona by detecting fluctuations in density smd temperature and will also allow the 
current wave-heating mechanisms to be critically tested.

Historically, wave theories have long played a role in trying to œcplain the coronal heating 
problem ever since Biermonn (1946) and Sehwarsschild (1018) independently suggested that sound 
waves, which are generated &om turbulent motions in the convection zone, would form shock wave 
fronts as they propagate upwards and so heat the chromosphere and corona. Osterbrock (1961) 
developed the ideas of Biermonn and Schwarzschild further and presented the flrst qualitative study 
on the heating of the solar chromosphere and corona by mhd waves. The ideas of Biermann, 
Schwarzschild and Schwarzschild were generally accepted until the 1970’s when it became apparent 
that the upper chromosphere and corona» and the solar wind, did not obtain their energies from 
sound waves or their shocks. Basri and Linsky (1979) and Vaiana et al. (1981) demonstrated that 
chromospheric emission in typical stars is connected with a magnetic-heating mechanism rather 
than a result of acoustic processes. Deubner and Fleck (1990) are also critical of acoustic heating. 
However, sound waves and waves of a similar nature like the slow magnetoacoustic waves, have been 
advocated as a possible source of energy by several authors over the years (e.g. Leibenberg, Bes%y 
and Watson, 1975; Ulmschneider and Bohn, 1981; Cram and Damé, 1983; Kneer and von UexkiiU, 
1985; Anderson and Athay, 1989; and Schrijver, 1992).

However, most workers agree that the magnetic field plays a vital role and that the likely 
heating phenomena in the chromosphere and corona (and indeed in stellar chromospheres and cqro- 
nac) cannot be explained by a single process but rather arc due to the action of a variety of mocha 
nisms.

As Hollweg (1990) points out, ‘the principal difficulty with wave theories is getting enough 
energy into the corona’. Dismissing the problems of how waves reach the corona in the first instance, 
or whether the waves shock, the energy being carried by these waves, and therefore available to be 
dissipated (for waves travelling in a spatially infinite atmosphere) is summarized as

Efd =  (1 1 )

(see Athay and White, 1978; and Hollweg, 1983, 1991). In Equation (1.1) p is the density of the 
medium, Vrma is the root-mean-square of the waves’ velocity (phase speed) and Vg represents the 
group speed of the waves. Now the valueo of p in the corona (interpreted as a particle density, N , 
for an electrically neutral, fully-ionized, hydrogen plasma) can range from about 10® cm“ ® to about 
5 X I Q i s  cm"® (see Section 1.1) and the group speed, Vg, will depend on whether the waves are 
mainly acoustic or magnetic ones. In turn, the speeds of these component waves will depend on the 
coronal temperatures, T, and magnetic field strengths» which» as was indicated in the previous
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chapter, may range, respectively, from 2 x 10  ̂ to 3 x 10® K and from a few gauss to as much 
as 1800 G. Thus applying the standard formulae for Alfvenic and acoustic speeds in the corona, 

namely va =  -Bo/(a*/>o)^^  ̂ and cq =  (tPo/Po)^^^ respectively, there is a range of speeds from about 
5 X 10® cm s“  ̂ to 10® cm s“ .̂ Note that /x represents the permeability of free space and p is the gas 
pressure.

The remaining parameter to be estimated in Equation (1.1) is Vrms aud in many ways the 
determination of this parameter is at the crux of the above argument concerning the magnitude of 
Efd. A range of values for Vrm$ has been given in Section 1.2. As a result, from Equation (1.1), it 
would appear that values of E{d can range from as low as 4 to as large as 1.5 x 10^  ̂ erg cm"® s 
"^. These are extrema, determined by the simple model of waves propagating in an unrestricted, 
homogeneous corona. So, superficially at least, in comparing with Table 1.6, it seems as though there 
could be waves in the corona supplying the energy requirements of the ‘coronal-heating problem‘.

However, many authors interpret observations of acoustic-type waves, not with the non- 
thermal line broadenings listed in Section 1.2, but with Doppler shifts which have velocity amplitudes 
of 3 - 7 km s"^ (Bruner, 1978; Athay and White, 1978; White and Athay, 1979). It is then evident 
from Equation (1.1) that the slow waves are unable to supply an adequate energy flux for even the 
smallest of the energy requirements. However, as Porter, Klimchuk and Sturrock (1994a) point out, 
Doppler shift measurements may greatly underestimate the values of Vrms since the measurements 
do not account for unresolved small-scale motions. Moreover, it must be emphasized that Athay 
and White (1978) indicate that their values may have been underestimated by at least a factor of 
10 because the observational instrument suffered a decrease in sensitivity.

Many authors are also swift to reject heating by fast waves. Assuming the plasma pressure 
to be small compared with the magnetic pressure (i.e. assuming the low-beta approximation), the fast 
mode dispersion relation is approximately w® ^  )b®v̂  where w is the angular frequency.. Splitting 
the wave number, k, into horizontal (h) and vertical (v) components Hollweg (1978) writes

V

He makes the point that w and are not free parameters but are determined by the structure for 
the known motions in the photosphere and corona. He further argues that, in the corona, va is 
large, and kh is expected to be large if the horizontal spatial scale is associated with the distance 
between magnetic flux tubes. Hollweg conjectures that for reasonable vlaues of w, t® < 0 and so 
fast mode waves in the corona should be evanescent. However, Hollweg himself states ‘the complex 
structure of the solar atmosphere could alter this conclusion’. Thus, the simple argument suggesting 
the total internal reflection of waves is invalid in a structured atmosphere, and one must be wary 
of the negative results of wave-heating relating to studies carried out on unstructured atmospheres 

(e.g. Schwartz and Leroy, 1982).
Although Alfvén waves also have sufficient energy to heat the corona (see the earlier dis

cussion concerning Equation (1.1)), there still remain the questions of how they are generated by
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photospheric motions and how subsequently they can propagate into the corona. Thus there re
mains the more difficult question of how they surrender their energy before propagating into the 
solar wind or bauJc down to the photosphere. Narain and Ulmschneider (1990, 1995) indicate that
Alfvén-wave-dissipation mechanisms such as resonant absorption, phase-mixing, turbulent heating 
and nonlinear interactions are the more promising ways by which Alfvén waves may dissipate their 
energy.

The rough arguments outlined above do not take into account the fact that the corona is 
not a homogeneous medium but is highly structured, partitioned into subregions by, for example, 
coronal loops. So, surface (and body) waves would appear to be excellent candidates for coronal 
heating since they are supported by the inhomogeneities that characterize the solar corona. One 
can pose the question, ‘Can the energy being carried by the ducted waves be converted into heat 
energy?’, that is, are there effective mechanisms, at the appropriate frequencies, to dissipate the 
waves? Before addressing this question in Chapters 3 and 4, the effects, if any, that a structured 
medium has on the energy flux density of magnetohydrodynamic waves, are examined. However, 
this task is left until Section 2.3.

Habbal, Leer and Holzer (1979) put forward the idea that coronal loops are heated by 
the collisionless damping of fast-mode waves. By representing coronal loops by dipole fields and 
using ray-tracing techniques they show that waves propagating outwards from the coronal base are 
refracted into regions of low Alfvén speed (i.e. high density). Further, they suggest that collisional 
damping of such waves is important in the formation and heating of the loops. Zweibel (1980) con
siders damping of fast modes by collisionless wave-particle interactions, electron thermal conduction 
and viscosity. Zweibel calculates the period ranges for which each of the dissipative mechanisms is 
important. It is found that the fastest growing instability occurs perpendicular to the field lines and 
it is concluded that the instability is important for producing the observed fine structure in coronal 
loops. Fla ei al. (1984) argue that Alfvén and slow waves, in the corona, are limited to transporting 
energy along the background magnetic field but fast modes can propagate in any direction relative to 
the background field (see Equations (1.32) and (1.36) and Figure 1.3). They suggest that fast-mode 
waves transport energy from magnetically closed regions to coronal holes by refraction and deposit 
most of their energy in the region of supersonic flow of high-speed solar wind streams.

A very popular and widely investigated heating mechanism for mhd surface waves is that 
of resonant absorption. lonson (1978) begins his analysis from a set of strictly non-dissipative, 
ideal mhd equations and subsequently obtains a non-zero value for the damping rate. Lee (1980) 
recognised that there can be no true dissipation in the system, and has suggested along with Rae 
and Roberts (1981) and Lee and Roberts (1986) that the wave decay rate of the surface Alfvén wave 
should be interpreted as a mode-conversion rate because the decaying surface wave is associated 
with the smooth interface at the boundary of the loop and is not a normal mode of the system. 
As a result the decay rate should not be viewed as a dissipation rate. However Lee and Roberts 
and Hollweg (1987) interpret the mode conversion rate as a plasma heating rate in cases where
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dissipative mechanisms are present -  as they will be in any real-world situation.
Using an incompreæible mhd approximation Steinolfson et al. (1986) studied analytically 

and numerically the viscous damping of Alfvén surface waves. They showed that the waves ex
perience very small damping below the chromosphere-corona transition layer. Waves with a high 
frequency were found to decay in the lower corona while waves with a low frequency decayed further 
out in the corona. Further, Steinolfson et al. showed that damping by viscosity was about two 
orders of magnitude faster than by resistivity. Steinolfson and Davila (1993) investigate numerically 
for a compressible, low-/9, resistive plasma the resonant absorption of Alfvén waves for the heating of 
active region coronal loops. They conclude that resonant absorption is an efficient heating process. 
Davila (1987) compares the results of the heating rate of the resonant absorption of Alfvén waves 
in the solar corona with observations and concludes that resonant absorption is an efficient heating 
mechanism. Grossmann and Smith (1988) have studied the effect of resonant absorption of Alfvén 
waves in a ‘twisted’ cylindrical coronal loop. They use an incident power spectrum in the form of 
300 s oscillations and they found that the energy was principally deposited towards the outside of 
the loop. Their overall conclusion is that the resonant absorption of Alfvén waves is a very efficient 
heating mechanism. Poedts, Goossens and Kerner (1990) model coronal loops as straight cylindrical 
columns with the background quantities varying only in the radial direction. Their investigation 
found that most of the energy supplied by the external driver (the photœphere) was dissipated. 
Advances in the analytical study of resonant absorption, providing a clearer physical insight into the 
mechanism, have come from Sakurai, Goossens and Hollweg (1991), Goossens (1994) and Goossens, 
Ruderman and Hollweg (1995). It is also found that the time scale of the dissipation is much 
smaller than the typical life-time of coronal loops. From all these investigations concerning resonant 
absorption it certainly appears that resonant absorption is a viable coronal heating process.

Returning to the idea of phase-mixing, many authors claim that the process enhances the 
damping of Alfvén waves and is a viable mechanism for coronal heating, Basically the difference 
between phase-mixing and resonant absorption is that the former is concerned with Alfvén waves 
with velocity fluctuations perpendicular to the gradient of the inhomogeneity, but the latter requires 
displacements parallel to the inhomogeneity gradient. Nocera, Leroy and Priest (1984) develop 
further the work of Hey vaerts and Priest (1983) and conclude that the propagation of phase-mixed 
waves is actually more complicated than the simple treatment presented in the original paper by 
Heyvaerts and Priest. However, Nocera, Leroy and Priest do find that the statement by Heyvaerts 
and Priest regarding enhanced damping is still valid and that phase-mixing does give rise to very 
effective dissipation. Browning and Priest (1984) find that the velocity gradients may also be subject 
to Kelvin-Helmholtz instability which further enhances the damping of the Alfvén waves by viscosity 
or ohmic dissipation, thus providing a viable heating mechanism. Browning (1991) cautions that, in 
reality, phase-mixing cannot take place in isolation from other processes such as resonant absorption 
and turbulence. (Priest, 1992 has summarized coronal heating by mhd turbulence.)

Although wave-heating theories seem to be attractive 2Uid be able to provide the necessary
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heating they still have their fierce critics, notably Parker (1987, 1990, 1992) who emphasises that 
the X-ray corona is not conducive to wave phenomena and the dissipation of any such waves plays 
only a small part. The many ideas involving non-wave theories are summarized in Narain and 
Ulmschneider (1990, 1995), Hollweg (1990), Browning (1991) and Zirker (1993).

1.5 Basic Equations o f M agnetohydrodynam ics

In describing the solar atmosphere (Section 1.1), the term plasma has been mentioned 
but no indication of its meaning has, as yet, been given. By the term plasma, one means the 
‘fourth’ state of matter (the other states being solid, liquid and gas) in which the heating of a gas 
leads to ionization of the gas’s molecules, or atoms, into its constituent neutral particles, ions and 
electrons (Sturrock, 1994). The term magnetohydrodynamical is understood to mean the study of 
fluid conductors in the presence of a magnetic field (Priest, 1982).

In adopting a magnetohydrodynamic (mhd) model to describe a plasma such as the solar 
atmosphere, several simplifying assumptions are made. First the plasma is regarded as a single fluid 
which, at each point in space, r(x, y, z), and at each time, t, has well-defined density, p, pressure, p, 
and velocity, v. Along with these hydrodynamical quantities is the magnetic induction field B (r,f). 
Secondly, a continuum description can be applied if the frequency, which is characteristic for the 
process under consideration, is appreciably smaller than the collision frequency of the separate 
particles. Put alternatively, the continuum description is valid if the mean free path of the particles 
is much smaller than a typical characteristic length scale of the object under study.

The idea of a continuum description of a plasma is well-known and is commonly used (see 
for example Ferraro and Plumpton, 1961; Roberts, 1967; Cowling, 1976; Parker, 1979; Priest, 1982; 
Sturrock, 1994). The equations of mhd (Priest, 1982) are the following (in SI units):

The equation of mass conservation is written

^  +  V ( p v )  =  0. (1.3)

The equation of motion is given by

p ( ^  +  v - V v )  = - V p  +  J x B  +  F „  (1.4)

where j  x B is the Lorentz force and F„ represents the effects of viscosity.
The current density, j ,  is calculated from Ampere’s Law:

i  =  i v  X B, (1.5)

where p  is the permeability of free space (4^ x 10“  ̂H m“ ^).
One of Maxwell’s Equations, namely,

V B  =  0, (1.6)
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requires that the magnetic induction field is solenoidal (i.e. there are no magnetic monopoles).
The electric field, Ë, may be calculated by using Ohm’s Law in the form:

E = j / < 7 - v x B ,  (1.7)

where <r is the (constant) electrical conductivity, measured in mho m ” .̂ For a fully ionized collision- 
dominated plasma. Priest (1982) gives the electrical conductivity as 

713/2
(T =  1.53 X 10-®— - ,  (1.8)

In Ac/
where T  is the temperature (in K) and In Ac/ is the Coulomb logarithm. Typically in the solar 
corona In Ac/ «  22 for 10® K temperatures (Priest, 1982), and thus it is seen from Equation (1.8) 
that, in the corona, a may range from 6.95 x 10® to 3.61 x 10® mho m“  ̂ for temperatures ranging 
from 1 X 10® — 3 X 10® K.

Using j  and Ê (Equations (1.5) and (1.7)), one can write the Maxwell Equation

= —V X Ë, (19)

as the mhd induction equation:

a s
dt
^  =  V x ( v x B )  +  flV’ B, (1.10)

where fj =  l/(/x(r) is the magnetic diffusivity measured in m® s“ .̂ From Equation (1.8) it is seen 
that fj may typically range from 0.22 to 1.14 m® s“  ̂ in the corona.

Many authors have considered different forms for the energy equation, see, for example, 
Braginskii (1965), Field (1965), Cowling (1976), Priest (1982) and Sturrock (1994). The energy 
equation given by Priest (1982) is

^  -I- V ' Vp — 7 ^  4- V - =  — (7  — 1) L, (1-11)

where > — 5/3 is the ratio of apccifio heats and L is the energj' loss function, which may bo written 
as the rate of energy loss minus the rate of energy gain. Equation (1.11) will be discussed in detail 
in Chapter 2 but it is noted here that when there are no dissipative mechanisms present, L =  0. 

For simplicity, the plasma is assumed to obey the ideal gas law

P = % pî'y  (112)

where T  is the temperature, R  is the gas constant (8.30 x 10® m® s-®K“ ^) and p= m/mp  is the mean 
atomic weight in terms of the mean particle mass, m, and the proton mass, nip (1.67 x 10“ ®̂ kg).

By replacing p =  p nipN  =  m N  and R= k^/nip, where kÿ  is the Boltzmann constant 
(1.38 X 10“ ®® J K“ )̂ in Equation (1.12), then for a fully-ionized hydrogen plasma, in terms of the
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total number of particles (electrons plus protons), N  =  Nei +  Np, per unit volume, the ideal gas law 

becomes

p = N k B T .  (1.13)

The ideal mhd equations, in which the dissipative effects in Equations (1.4), (1.7), (1.10) 
and (1.11) are neglected, will be employed for the remainder of this chapter. In brief, the ideal 
equations of mhd are Equations (1.3), (1.6) and (1.12) together with: 
the ideal momentum equation,

P ( ^  +  V • V v ) =  - V  (p  +  ^ )  +  i  (B . V) B , (1.14)

which may be derived using Equation (1.4) with F„ =  0 together with (1.5) and a vector identity; 
the adiabatic energy equation,

^  +  v .V p - t | ( ^  +  v . V ^ ) = O i (1.15)

and the ideal mhd induction equation,

^  =  V X (v X B ) . (1.16)

In writing the Lorentz (j x B) force as f

J x B  =  - v ( ^ )  +  i ( B - V ) B ,  ; (1.17)

in the right-hand side of Equation (1.4), it is seen that it has two important contributions: ^

1. The first contribution is the term — V(B®/(2/i)) which is analogous to the gas pressure^^gradient 
—Vp. Hence, the presence of a magnetic field in a plasma gives rise to a magnetic pressure 
force, in addition to the natural fluid pressure, p, of the plasma. An important parameter 
relating compressible and magnetic effects is the plasma beta, which is defined as the ratio:

gas pressure ^  p 
magnetic pressure B ^/2p

The plasma beta provides a convenient guide as to whether magnetic effects are weak (/3 ^  1), 
as is the case in the solar interior, or strong ()9 1), as in the corona.

2. The second contribution, namely (B • V )B //i, corresponds to a tension force which acts in a 
direction parallel to the magnetic field. Thus a magnetic field-line is like an elastic wire under 
tension, and if it is disturbed at some point, it behaves like an elastic wire and springs back, 
vibrating with a wave-like motion. So, waves can be associated with a magnetic field, both 
through the magnetic tension force and through the magnetic pressure force.

Thus, from just a  thoorotical view of the plasma of the solar atmosphère» waves are worthy 
of consideration, since it io clear that magnetic pressure and tension forces can help sustain any wave 

motion.
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1.6 W ave Propagation in an U nstructured A tm osphere

In order to describe mhd wave motion in the solar atmosphere, we must ultimately take 
into account the observed magnetic structuring. Eventually we shall consider simple models of the 
solar atmosphere for magnetic field configurations such as those shown in Figures 1.2 A, B, C and 
D, for example. However, in order to get a flavour for the physics we are trying to understand, 
we shall first give consideration to waves propagating in an atmosphere which is both uniform and 

unstructured.
Consider, then, a uniform magnetic field embedded in a uniform gas which has the (con

stant) equilibrium state:

B =  B qz, p = poy p =  Po, V =  0. (1.19)

The background magnetic field is assumed to be directed in only the z-direction. Further, 
only waves propagating in the direction of the background magnetic field will be assumed here. 
Since we shall be concerned with motions in the upper solar atmosphere, gravitational effects will 

be ignored.
A Cartesian coordinate system (x,y, z) orientated with the z-axis aligned along the back

ground equilibrium magnetic field is assumed.
In order to investigate wave motions, the equilibrium state (1.19) is perturbed and the 

behaviour of the perturbations is considered. If p, p, b  and v are small perturbations in density, 
pressure, magnetic induction and velocity fields respectively, about corresponding equilibrium values, 
so that

p = Po-\- p, p =  p +  Poi B =  B qz 4- b  and v =  v, (120)

then substituting in Equations (1.3), (1.6), (1.14), (1.15) and (1.16) and then linearizing by neglecting 
the products and squares of the perturbed quantities, we arrive at the linearized equations of ideal 

mhd:

^  4- PoA =  0, (1.21)

where, following Lighthill (1960), we have written

and in which

\ d z ' d y ’ d z j ’ 

and the velocity, v  =  (u*, Vy,w,), and
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V b  =  0, (1.23)

 ̂=  -A B qz +  (1.24)

where

and

P = ^ p T o  + §PoT. (1.26)
A* P

In Equation (1.26), Tq denotes the background temperature and it is seen from Equation (1.12) that 
Tq is related to the background pressure and density by

Po =  5 poTq.
P

Then, after some manipulation. Equations (1.21) to (1.25) may be written as the magnetoacoustic 
wave equation (Lighthill, 1960):

^  -  (C2 +  t - i ) ^  +  o lv \  ̂  =  0, (1.27)

where va is the Alfvén speed given by

and Cq is the sound speed given by 
1 /2

Cq = t e )  •
Following Roberts (1988) it is seen that one solution of Equation (1.27) is A =  0, i.e. 

V • V =  0. This is not a trivial solution but corresponds to the Alfvén wave. Close examination 
of Elquations (1.21) to (1.25) reveals that p =  p =  v, =  6,  =  0. Thus an Alfvén wave is incom
pressible, there is no perturbation in density, gas or magnetic (Bq6^/p) pressure, and there is no 
wave motion in the direction of the background magnetic field. Moreover, it is seen that the per
turbations in the magnetic field and flow are perpendicular to the background magnetic field, and 
from Equations (1.22) and (1.24), it is clear that the Alfvén wave satisfies the one-dimensional wave 
equation

for ^  any one of v®, Vy, 6* or 6y. .
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In very simple terms the Alfvén wave is like a wave propagating on an elastic string. It 
involves no compressions of the plasma, and since the perturbed total (gas plus magnetic) pressure 
is zero, the wave is driven entirely by tension forces.

Considering, more generally for the moment, waves propagating with wave number vector 
k =  (kg,ky,kg) (and not just confined to the direction of the background magnetic field) then 
introducing the Fourier representation for wave motions by writing

W =  (1.31)

for angular frequency, w, and constant wave amplitude, $o, into Equation (1.30), gives the dispersion 
relation for Alfvén waves:

w® =  k^v \  =  k^co8^{6)vA, (1.32)

where Q is the angle between the wave number vector, k, and the background magnetic field BqÊ. 
The highly anisotropic nature of the Alfvén wave is seen in Equation (1.32) and it is noted that 
the Alfvén wave is unable to propagate across magnetic field lines {6 =  ir/2) (see also Figure 1.3.) 
Note that when the wave number vector is entirely in the direction of the background magnetic field 

Equation (1.32) simply becomes

u;® =  ib®t;i. . (1.33)

Consider now the case A ^  0 of Equation (1.27). Introducing the Fourier representation

A =  (1.34)

where Aq is a constant amplitude, into Equation (1.27) (and noting that 5®/^® —► —w®, V® —*• —t®) 
yields the dispersion relation for magnetoacoustic waves (Roberts, 1988):

— (c® +  v^)w®t® 4- Cqvĵ t®*® =  0. (1.35)

Ekjuation (1.35) is a quadratic in w® and it can be solved for fixed k but varying 6, where 9 is again 
the angle between the wave number vector, k, and the background magnetic field, to obtain

=  2 (^0  +  ^a) ~  [(cq +  Va )^ — 4c®vj cos®(0)]  ̂ . (1.36)

The two solutions of Equation (1.36) are referred to as the fast magnetoacoustic wave and 
the slow magnetoacoustic wave. It is noted that both these waves are compressive. From Figure 1.3 it 
is seen that the fast wave is only mildly anisotropic. It propagates at all angles 9 and has its greatest 
phase speed when propagating across the magnetic field. It is also apparent that the slow wave is 
highly anisotropic and, like the Alfvén wave, it, too, is unable to propagate across the background 
magnetic field. The \ow-0 extreme of Equation (1.36) for the fast magnetoacoustic wave gives

u;®~ik®t;i, (1.37)
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Figure 1.3: Polar diagram for the phase velocities for the fast (F) and slow (S) magnetoacoustic 
waves and the Alfvén (A) wave propagating at an angle 6 to the equilibrium magnetic field, Bo 
(after Roberts, 1985).

and for the slow wave gives

cos^(tf)cy = k^c^, 

where the magnetoacoustic cusp speed, cy, is defined by

(1.38)

(1.39)

Hence, in a low-/? plasma, the fast magnetoacoustic wave propagates at the Alfvén speed and is 
essentially isotropic, but it is emphasized that it is quite distinct from the (incompressible) Alfvén 
wave. The slow wave propagates one-dimensionally approximately at the sound speed in the direction 
of the background magnetic field.

In summary, it is seen that the presence of a unidirectional magnetic field in a uniform 
medium introduces anisotropy into the wave motions. Along with the isotropic sound wave there 
is the incompressible Alfvén wave which propagates at the speed v a - Also, there is the slow mag
netoacoustic wave, which like the Alfvén wave, is unable to propagate acfcws the magnetic field. 
Additionally, there is the fast magnetoacoustic wave which is able to propagate in all directions. 
Both the fast and slow magnetoacoustic waves are driven by tension and pressure forces.
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Model B {G ) N  (cm T ( K ) a (cm) P e /P O
A 1 0 1 .0  X 1 0 ^^ 2.0 X 10® 5.0 X 10“ 0.50
B 1 0 5.0 X 10^ 2.0 X 10® 1.0 X 10“ 0.50
C 1 0 1.5 X 10"" 1.4 X 10® 1.0 X 10“ 0.25
D 1 0 1.5 X 10"" 1.9 X 10® 1.0 X 10“ 0.25
E 1 0 1.0 X 10"" 2.0 X 10® 1.0 X 10“ 0.25
F 1 0 1.0 X 10"" 2.5 X 10® 1.0 X 10“ 0.25
G 1 0 0 1.0 X 10"" 3.0 X 10® 5.0 X 10“ 0.50

Table 1.7: Parameters used in this thesis to model hot coronal loops.

T (K ) B (G ) N  (cm “)
5.0 xlO“ 5.0 xlO** 5.0 xlO""

1.0 X 10®
10 CH/QR CH/QR
50 HL HL
100 HL HL

2.0 X 10®
10 CH/QR CH/QR
50 HL HL HL
100 HL HL HL

3.0 X 10® 50 HL HL HL
100 HL HL HL

Table 1.8: Broad classification of typical solar coronal parameter ranges into hot coronal loops (HL), 
quiet region loops (QR) and coronal holes (CH).

1.7 W ave Propagation in a Structured A tm osphere

We now consider how the density enhancements of coronal loops might modify the effects 
of mhd waves in an unstructured medium.

To model the loop-like structures observed in the corona (Figure 1.2, Tables 1.1 to 1.4) 
we consider a coronal loop represented by a dense duct in a homogeneous corona. In other words, 
the loop is considered as a slab or a cylinder with background magnetic field. Bo, in which the 
coronal plasma contained inside the duct (with density po and of width 2a) is more dense than the 
surrounding (external) coronal plasma which has magnetic field B« and density p*. Further, we shall 
assume that the magnetic field is directed along the length of the slab or cylinder. In modelling the 
loop ao a olab (cylinder) j we oholl ignore any effects duo to curvature. Table 1.7 lists the parameters 
used in this thesis to naodel hot coronal loops and T^ble 1.8  indicates the typical parameter ranges 
for hot coronal loops, quiet region loops and coronal holes.
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x - a

P o
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X " + a
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\  P«, Pet Be, Te,

(1.40)

Figure 1.4: Equilibrium configuration of a magnetic slab.

1.7.1 Structuring in a Cartesian Geometry

A slab of uniform magnetic field B qz, confined to a region |z | <  a, where the gas pressure 
and density are po and po respectively, is now considered. In the region |x| >  a the magnetic field, 
gas pressure and density (all uniform) are B«z, p* and p« (see Figure 1.4). Thus the equilibrium 
state may be described by

\x\ < a, 

k l  > a,

in which the background temperature, Tq(x), is determined from the ideal gas law (1 .12).
Consider two-dimensional velocity disturbances, v, of the form

V =  (v ,,0 , V,), V* =  Vj =  (1.41)

where k is the wave number in the z direction and w is the angular frequency. Then, from the 
linearized momentum equation (1 .22 ), it is seen that the total (gas plus magnetic) pressure, p r , is 
uniform:

^ ( p o ( * ) + ^ ^ ) = 0 ,  (1.42)

that is

(1.43)2/i 2/i
Edwin and Roberts (1982) showed that linear perturbations about the equilibrium (1.40) give the 
following equation for the uniform region |z | <  a:

<Pv.
dx^

(1.44)
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where

dx^

where

<■«>
A similar set of equations holds in the uniform region |x| >  a, namely:

m ;6î  =  0, (1.46)

• “  (c2 + » L )(* ’ 4 . - " ’) '  ̂ ^
with

and the Alfvén and sound speeds in this external region given by 

and

Ce =  I (1.50)

respectively.
Further, using the linearized equations (1.21), (1.22), (1.24) and (1.26), Webb (1980) 

showed that the perturbed quantities v, b, p and p r , the total (gas plus magnetic) pressure in 

the interior, satisfy

- ik c l  d ^
V. = ( ( j ^ - k ^ 4 ) d x

(1.51)

6* =  Bo^Vg, (1.52)
w

_ % ( w » - j 'c 3 ) ^  ̂ (1.53)
W teg

P = -P o jV g , (1-54)

and

PT =  ; ; ; ^ ( 4  +  4 ) ( t ' 4 - w ' ) . . .  (155)

Similar expreœions are obtained for |x| > a, namely:

bi =  (1.57)
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j v l ,  (1.59)

and

PT =  +  v ie ) (P 4 e  “  (1.60)

In general solving Equations (1.44) and (1.46) results in 

Q,^gm.(»+o)  ̂ X < —a,

ao cosh(mox) + /?o 8inh(mox), |®| < a, (161)
X > a ,

where oq, /?q, a« and /?« are arbitrary constants and are related by requiring that and pr  are 
continuous across x = a and x =  —a. In writing the solutions of Equation (1.61) Edwin and 
Roberts (1982) assumed that m* > 0 so that v* —► 0 as |x| —► oo and the energy of the disturbance 
is essentially confined to the interior of the slab. Thus we are confining attention to disturbances 
that are evanescent in the region |x| >  a and so the dense coronal loop may be viewed as acting as 
a waveguide. ^

By matching the normal component of velocity, Equation (1.61), and the total pressure. 
Equations (1.55) and (1.60), across x =  ±a, Edwin and Roberts (1982) obtained the dispersion 
relation governing disturbances in a slab of magnetic field B qz embedded in an external field BgZ 
as:

2..2 , .2 \___J I 1 «./^ï.2.,2Pe(Pvie  -  w^)mo I  1 (moa) +  po(k^v^ -  w^)mg =  0 , (1.62)
[ coth J

where the tanh term corresponds to the sinh (symmetric) and the coth term corresponds to the cosh 
(asymmetric) solutions in Equation (1.61).

Edwin and Roberts (1982) and Edwin (1984) have discussed, in detail, the rich spectrum 
of solutions that dispersion relation (1.62) possesses. The solutions of interest to us are those 
appropriate to a model of the dense coronal loops described in Section 1.1.

The quantity rug may be positive or negative. Roberts (1981) classifies solutions in Equar 
tion (1.61) with m§ > 0 as surface waves and solutions with mg(= -n g ) < 0 as body waves. The 
distinction relates only to the waves’ spatial structure within the slab. Putting Ug =  —mg in Equa
tion (1.62), it is seen that body modes satisfy the dispersion relation

P « (P 4 c  -  w^)»o I  I  (ngo) +  p g (P v i -  (j^)me =  0. (1.63)

So considering the case VAet^A > Ce, cq, and one in which the interior of the slab is denser 
than its surroundings, it is found that there are no surface (mg > 0 ) waves but only harmonics
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which are confined to two bands va < w /t  < vac and ct < w /t  <  ct« (see Figure 1.5). These 
bands of body waves (mg =  — ng < 0 ) correspond to the fast and slow magnetoacoustic waves of
the unstructured atmosphere. The horizontal lines (-----------) in Figure 1.5 represent the cut-offe at

w / k v A  =  V A e h A y  1 , C T t / v A  a n d  c t / v a , r e s p e c t i v e l y .

Additionally, waves are classified as sausage modes ( in Figure 1.5) or kink modes
(— in Figure 1.5) depending upon whether Vg in Equation (1.61) is an odd or even function of 
X  respectively. In the former case the slab undergoes symmetric oscillations and in the latter the
slab oscillates asymmetrically. More specifically, the sausage, or symmetric, mode solutions in
Equation (1.61) under coronal conditions may be written as

—a ,  sin(noa)e'” ‘(®‘*‘“\  x < —a,
Vg = < a,sin(nox), |x| < a, (1-64)

a , sin(noa)e“"**(®“ ®\ x > a,

and the kink, or asymmetric, solutions in Equation (1.61) as

ajb cos(noa)e'”*(®'*'“\  x <  —a, 
t)* =   ̂ a* cos(nox), |x| <  a, (1.65)

a* cos(noa), e-m .(f-o) x > a,

where a , and a t  are the (constant) amplitudes of the respective velocity perturbations.
Figure 1.6 shows the two lowest modes of oscillation for asymmetric and symmetric waves 

of a magnetic olab, in which the modes have been normalized againot axial values, It is clear that 
the axis of symmetry of the slab remains undisturbed for the sausage wave (Roberts, 1985, makes 
the analogy with a 'pulsating blood vessel’) and that in the kink wave case, the slab’s axis is moved 
back and forth during the wave motion.

Defining the root-mean-square-velocity, Vrms (an observable quantity) over the interior of 

the slab by
1 /2

Vrm. =  J _  (4(®) +  4(®)) dx (1.66)

where t)*(x) is given by Equations (1.64) or (1.65) and t),(x) is given by (1.51), with t), related to 
Vj by Equation (1.41). Then using Equations (1.64) and (1.66) gives

_ _  2m «a4J  ( l .g T )

where

and

fs i  =  rnea -  ^  sin(2noc), (1 .6 8 )

=  (W» -  k § ) >  ^  »m(2>.0«)) . (1.69)
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Figure 1.5: The normalized phase-speed u/kvA  as a function of ka under coronal conditions for a 
slab model (after Edwin and Roberts, 1982).
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Figure 1.6: Body modes in a slab of width 2a (a) lowest-order kink mode (b) lowest-order sausage 
mode (c) first-order kink mode (d) first-order sausage mode.
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for the sausage case.
Similarly, integrating Equation (1.66) for the kink waves gives

where

/ , 3  =  m«a +  ^  sin(2noa), (1.71)

and

=  (u > ^ -k ^ 4 y  ("*•“ ■ E i  “ “ (*"»“) )  • (1-^2)

1.7.2 Structuring in a Cylindrical Geometry

A cylinder of uniform magnetic field Bqz, confined to a region r  <  a, where the gas 
pressure and density are po and po respectively, is considered. In the region r  >  a  the magnetic 
field, gas pressure and density are B«z, p« and (see Figure 1.7). Thus the equilibrium state may 

be described by

P o ( r ) ,  po(r), Bo(r), ToW = (  ^^' (1.73)
I  P t ,  P e ,  B e ,  T e ,  V >  a ,

in which the background temperature, 7o(r), is determined from the ideal gas law (1.12).
We shall consider disturbances of the form

V . V =  R(r)e‘("*+"®+*^\ (1.74)

where V =3 (ur, w is the angular &equency; n is the azimuthal wave number and h io the wave
number in the z direction. From the linearized momentum equation (1.22), it is seen that the total 

(gas plus magnetic) pressure, pr, is uniform:

| ( p . ( r )  +  ^ ) = 0 .  (1.75)

and so Equation (1.43) again applies. Edwin and Roberts (1983) showed that linear perturbations 
about the equilibrium (1.73) give, in the uniform region inside the cylinder, the following Bessel 

equation of order n

where is given by Equation (1.45).
A similar set of equations holds in the external region r  >  a, namely:
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Figure 1.7: Equilibrium configuration of a magnetic cylinder, 

where m , is given by Equation (1.47). In cylindrical (r,d ,z)  coordinates, Equation (1.21) becomes

dp po d(rVr) Po dVff dVa
d i " ~ T ~ F r — T W " ! ? '

The components of Equation (1.22) are 

dvr d p  Bo f  dhr dbg \

dv$ ^ d  (  B o h g \ B odbfi

and

Po
dvg dp
dt dz^

and the components of Equation (1 24) are 

dbr „  dvr
■ft -  ^ " 1 7 '

dbg dv0 
■ft =  ô T ’

and
dbg _  Bo d{rvr) _  Bo dv$ 
dt r dr r do

(1.78)

(1.79)

(1.80)

(1.81)

(1.82)

(1.83)

(1.84)
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Further, using Equations (1.79) to (1.84), it may be shown (see e.g. Edwin, 1984) that the
perturbed quantities v, b , p and p r , the total (gas plus magnetic) pressure in the interior, satisfy

=  (1.85)
w ' ( w '  — K v j |)  o r

_  1»(cq ~i~ (̂ 3L)(w — k Cy) Â(r) ttut+nf+i*) / i  og\
* • - -  o - V ’ - t M )  r  '  ̂ ^

V, = A(r)e’("‘+"*+‘ ') . (1.87)

ir =  — (1. 88)w

bg = (1.89)
w

= (1.90)go(a;  ̂-  k^c§)

PoUi
p = -

and

p‘ =  - 4 r « î ,

and

(1.91)

M  (1.92)
UkCq

Similar expressions are obtained for the region r  > a, namely;

^fi«(r)e*(“*+"*+*»). (1.93)
5 W (̂w  ̂— « wjie) or

« _  *"(<=. +  ~
w»(w: -  r

(1.94)

A .(r)e‘<"*+"*+*'), (1.95)

=  — «Î, (1.96)
w

»î =  ^ » î .  (197)
W

=  _ J . ( ‘̂ ° -  **<=;) ̂ . (1,98)
’ wkci

(1.99)

PÎ, =  +  (1,100)
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Solutions of Equations (1.76) and (1.77) bounded on the axis of the cylinder, evanescent 

in its exterior (me > 0 ) and such that tig =  —mg are

Æ(r)-r (  ^ ^  (1101)
[ AeKn(mcr), r  > a,

where A q and Ae are constants, and Jn and Kn are Bessel functions (see Abramowitz and Stegun, 

1967) of order n.
Continuity of the radial velocity component, Vr, and the total pressure perturbation, pr,

across the cylinder’s boundary, r = a, yield the dispersion relationship governing body modes in a
cylinder (see also McKenzie, 1970; Meerson, Sasorov and Stepanov, 1978; Edwin and Roberts, 1983)

The sausage (symmetric) modes are given by n =  0 in Equation (1.102) and may be written

as

/ OCs,

”  I
A(r) =  ( (1.103)

",Ko(m«r), r  >  a.

where

is the (constant, small) amplitude of the Fourier perturbation in Equation (1.74), with

f  -  111041

The kink solutions in Equation (1.101) may be written as

={A(r) =  ( (1.105)
j^jkKi(m«r), r  > a.

where

JilEat
is the (constant, small) amplitude of the Fourier perturbation. Solutions with n > 2 are termed 
fluting modes.

Edwin and Roberts (1983) and Edwin (1984) have discussed, in detail, the rich spectrum 
of solutions that dispersion relation (1.102) possesses. Of interest to us are the solutions typical of 
circumstances representative of loops found in the corona. Considering the case in which the interior 
of the cylinder is denser than its surroundings, i.e. po/Pe < 1 , again it is found that there are no 
surface waves but only harmonics confined to the two bands va < u)/k < vao and ct < u)/k < CTe 
(see Figure 1.8). Again these bands correspond to the fast amd slow magnetoacoustic body waves 
of the unstructured medium. In Figure 1.8 the horizontal lines (----------- ) represent the cut-offs
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Figure 1.8: The normalized phase-speed u /k v x  as a function of ka for a cylindrical inhomogeneity 
of radius a under coronal conditions (after Edwin and Roberts, 1983).
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Figure 1.9: The phase-speed u /k  as a function of ka for fast and slow modes in a cylindrical 
inhomogeneity of radius a (after Evans and Roberts, 1990).
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at (jj/kvA =  VAe/vAi 1 , CTejvA and ct/ v a , respectively, and the full (—) and dashed (----- ) lines
represent the kink and sausage modes.

Evans and Roberts (1990) later found that the lowest-order kink mode possessed a hump 
as shown in Figure 1.9. Figure 1.9 shows the solutions of dispersion relation (1.102) according to 
Evans and Roberts (1990). Note that the characteristic speeds used by Evans and Roberts (not 
shown exactly to scale in Figure 1.9) are c r =  5.7 km s“ ,̂ c, =  6.4 km s“ ,̂ c* =  7.8 km s“ ,̂ 
c,e = 10.5 km s”  ̂ and va =  12.6 km s“ .̂ In reproducing the work of Edwin and Roberts (1983) 
and Edwin (1984) for this thesis the discrepancy in the curves’ shape was investigated and no turning 
point was found in the lowest-order kink mode. The results reproduced here are in agreement with 
those found by Edwin (1984). The discrepancy in the curves’ shapes would appear to be in the 
accuracy of the calculation of the iterative root-finding scheme used in the numerical codes for 
solving Equation (1.102). The work of Edwin and Roberts (1983) and Eklwin (1984) was reproduced 
by solving dispersion relation (1.102) numerically by employing Brent’s Method (Press ei a/., 1992) 
and the method of Bus and Dekker (NAG Ltd., 1988).

Brent’s method can be employed to find the root of a one-dimensional function, / ,  even 
if one cannot easily compute the function’s derivative. The method is guaranteed to converge, so 
long as the function can be evaluated within the initial interval known to contain a root. The 
method combines root bracketing, bisection and inverse quadratic interpolation to converge from the 
neighbourhood of a zero crossing. A root is said to be bracketed in the interval (a, 6) if /(a )  and 
f(b) have opposite signs. The bisection method is one that cannot fail. The idea is simple. Over 
some interval the function is known to pass through zero because it changes sign. The function is 
evaluated at the interval’s midpoint and its sign is examined. The midpoint replaces whichever limit 
of the interval has the same sign. After each iteration the bounds containing the root decrease by 
a factor of two, i.e. if after n iterations the root is known to lie within an interval size of e„, then 
after the next iteration it will be bracketed with an interval size of e„+i =  Cn/2. Inverse quadratic 
interpolation uses three prior points to fit an inverse quadratic function (a: as a quadratic function 
of y) whose value at y =  0 is taken as the next estimate of the root x. Brent’s method ensures that 
the root remains bracketed and the method combines the sureness of bisection with the speed of a 
higher-order method:

In a similar fashion to our consideration of Equation (1.66) we can define the root-mean- 

square-velocity, Vrmi I for a cylindrical volume as
1 /2

^rms = /  W (r)  +  t)J(r) + t)J(r)) rdrdO
[Tra Jr—o

(1.106)

where Or, v$ and 0, are given by Equations (1.85), (1.86) and (1.87), with Vr =  Or(r)e(*‘̂ *+”®+**), etc.. 
Thus, after integrating Equation (1.106) it is seen that the amplitude of symmetric perturbations 

can be expressed in terms of Vrm$ by,

«2     (1.107)
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with

and

f c 7  — *^0

Similarly, for asymmetric perturbations we have 

where

pK \{rn,a)[fc3  + k^4fcAy

/ J o ( n o a ) y  2
I j l w j nla?

and

/ c 4  — ^ 0
/ Jo(woa)y  2 Jo(noa)
VJi(noa)/

(1.108)

(1.109)

( 1.110)

( 1.111)

( 1.112)
non Ji(îioo)

1.7.3 Summary of Magnetic Structuring

In a dense coronal loop, the fast and slow magnetoacoustic waves of an infinite medium. 
Equation (1.36), manifest themselves as two sets of waves:

1 . the fast ones with phase speeds lying between va and VAe\

2 . the slow ones with phase speeds of approximately that of the tube, or cusp, speed, cy.

The waves may be regarded as sausage or kink modes depending upon whether the duct undergoes 
symmetric or asymmetric oscillations. Moreover, Equations (1.63) and (1.102) only possess solutions 
for nio(= —no) < 0 and so the modes are of oscillatory nature within the duct (see Figure 1.6).

1.8 O utline o f Thesis

This thesis is concerned with the dissipation of mhd waves in the solar atmosphere. The 
outer atmosphere of the Sun, the corona, is known to be structured (Section 1.1). Structuring is 
taken into account in modelling the wave motion. An attempt will be made at putting forward likely 
wave candidates that might play some role in contributing towards a hot (10^ K) corona and th(%e 
which might exist by surviving the dissipative mechanisms under consideration.

This introductory chapter has presented the general physical features observed in the 
corona, and the motivation for considering wave motions and dissipation. The basic equations
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of mhd have been given Equations (1.3) to (1.13) along with those describing ideal mhd wave prop
agation in an unstructured (Section 1.6) and a structured atmosphere (Section 1.7).

Chapter 2  presents a discussion of energy and its dissipation in the upper solar atmosphere. 
The non-ideal equations of mhd are presented and an overview of coronal heating and diraipative 
effects and mechanisms is given in this second chapter.

Chapter 3 considers a weakly dissipative model for fast and slow, ducted mhd waves, and 
the lengths over which waves dissipate are calculated.

Chapter 4 considers the nature of wave dissipation in slender structures, and the lengths 
and damping rates over which slow waves are damped, are calculated.

The final chapter compares the two methods studied in Chapters 3 and 4, along with models 
considered by other authors. The period ranges over which the waves are dissipated or not, according 
to the various models, are compared with recorded œcillation phenomena. Finally, suggestions as to 
which waves might contribute to coronal heating, or as to which waves might survive the dissipation 
mechanisms and so be observed, are made.
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C hapter 2

Energy and its Dissipation in the  
Upper Solar Atmosphere

2.1 Introduction

In the discussion in the previous chapter concerning mhd waves, the effects of wave dissipa
tion, as introduced by the non-ideal effects such as viscosity, thermal conductivity, resistivity, etc., 
have been ignored. Confining attention to the case of ideal mhd waves not only makes the mathemat
ical treatment easier but also gives an insight into the physical nature of mhd wave propagation in 
unstructured and structured atmospheres. However, it is reasonable to assume that the solar plasma 
is non-ideal and that the introduction of dissipative mechanisms into the description of mhd wave 
propagation is an. important consideration. Solving the mhd equations with consideration given to 
diœipative mechanisms is non-trivial and given the wealth of literature devoted to the problem, it 
is quite clear that it is a very complicated topic indeed. The heating of the solar coronal plasma, to 
temperatures ~  10® K compared with 6 600 K in the photosphere, remains an unsolved problem in 
solar physics; it may therefore be profitable to consider waves being damped due to dissipation and 
possibly heating up the atmosphere as a result. Although wave theories have long played a role in 
trying to explain the heating of the solar atmosphere it would be wrong to give the impression that 
they commanded a monopoly in the coronal-heating literature. A large number of models which do 
not involve waves have been proposed and their merits will also be discussed in this chapter which 
discusses non-ideal mhd equations and dissipative mechanisms in connection with the heating of the 

solar corona.
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2.2 N on-Ideal Equations o f M agnetohydrodynam ics

In general, the non-ideal equation of motion may be written (e.g. see Roberts, 1967; Priest, 

1982; as well as Equation (1.4))

p ( ^  +  v V v )  =  - V p + j x B  +  F „  (2.1)

where represents the effects of viscosity, and all other symbols have their usual meaning (see 
Chapter 1). Consistent with our assumptions in Chapter 1 (since we are concerned with wave 
motion in the upper solar atm(»phere) we shall again neglect gravitational forces in the term F&. 
The energy equation was given as Equation (1.11) and we repeat it here for convenience:

-I- V  • Vp — 7 ^  ( - ^  4- V  - Vp ) — —(7  — 1)1», (2.2)

{L is the energy loss function, which may be written as the rate of energy loss minus the rate of 
energy gain). Following the discussion in Priest (1982) it may be shown that Equation (2.2), for a 
perfect gas, may be written in the form(s)

m  ( ^ + v  V f ) + p V  v =  ^ ( ^  +  v . V f ) -  ( ^  +  v Vp)  = - i ,

where Cy and Cp are the specific heats at constant volume and pressure respectively. 
Now, the internal energy, ë, of an ideal, polytropic gas is given by 

P

(2.3)

e =
( T - I ) P ’

and on substituting for the gas pressure, p, in Equation (2.2) we have, on using the equation of 

continuity. Equation (1.3),

"2% 4" V • Vë -)- pV • V =  —L. (2.4)
ot

Taking the scalar product of v with the equation of motion (2.1) gives the rate of change of kinetic 
energy equation

p (vV2) 4- v . V(vV2)^ =  - v  . Vp-I- v .J  X B -I- V • Fft. (2.5)

The divergence of the Poynting flux, S =  B x B //i, may be written as

V S  =  - È J - ^ ( Â V 2 m) (2-6)

on using a vector identity and Equations (1.5) and (19).
The dot product of J with Ohm’s Law (Equation (1.7)) gives, on using a vector identity

Ê  j  =  V . j  X B 4 - ( 2 . 7 )

Combining Equations (2.6) and (2.7) gives the rate of change of magnetic energy

^ (B ’/2m) = - V S - v J x B-JV>’-- (2.3)at
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Rewriting Equations (2.4) and (2.5), we may obtain the rate of change of internal energy 
and the rate of change of kinetic energy in the forms

£ (p ê )  =  - V ( p ê v ) - p V ? - L ,  (2.9)

and

^ {p v ^ /2 )  =  - V  • {pv^\/2) -  V • Vp +  V • j  X B +  V • F j, (2.10)

and summing Equations (2.8), (2.9) and (2.10) gives

^ ( p c  4- pv^/2  +  B^/2p) =  - V  • {p€\ +  pw^v/2 +  pv +  S) +  v • F j -  (L +  ?/< r). (2.11)

Equation (2.11) states that the rate of change in total (internal plus kinetic plus magnetic) energy is 
due to the convective energy flux, p(c +  t;^/2 )v, the mechanical energy flux pv, the Poynting flux, S, 
and the dissipation mechanisms contained in the viscous force term Fv, L, and Similar forms 
to Equation (2.11) are given, for example, by Roberts (1967), Kuperus, lonson and Spicer (1981) 
and Priest (1982).

Considering the equilibrium state given by (1.19) and applying the perturbations (1.20) 
and neglecting cubed powers of the perturbed quantities in Equation (2.11) gives

^  =  _ V F  +  v - F j - ( L  +  iV<^), (2 .12)

where U = pe-\- B ^/2p  is the total energy due to internal and magnetic energies (i.e. kinetic energy 
effects have been neglected), and F  =  % ^pv +  S is the total (acoustic plus Poynting) energy flux.

Having considered what forms the non-ideal energy equation may take, we now give atten
tion to what dissipative terms make up F& and L.

2.2.1 Viscous Effects

In fluids, the transfer of momentum occurs in part by the transport of fluid volumes having 
different velocity, which is expressed by the advective (v * V) term in the equation of motion. 
Equation (1.4). However, additional transfer is caused by the internal friction due to collisions 
between particles moving with adjacent layers of the fluid having different velocities. The viscosity 
of a plasma in the presence of a magnetic field is very complicated because it is given by a tensor 
qumtity, For a strongly magnetized plasma, with the background magnetic field in the z-direction, 
the effects of viscosity, F y , may be written as

F 6 =  - V n ,  (2.13)

where II  is the viscosity stress tensor. Braginskii (1965) writes the components of the viscous stress 

tensor in the form

Rzj = -rioWzx, (2.14)
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Hirjr =  —rio{Wxx +  W^yy)/2 — fJl{Wxx ~  M^y)/2 — %M^y, (2.15)

Hyy =  —V o i W r x  +  M ^y ) / 2  — *?l(M^y “  W^ *® )/2  +  T fyW xy ,  ( 2 .1 6 )

n * y  =  H y , =  - T J i W x y  +  r fy {W xx  -  W ^yy)/2, (2 .1 7 )

n „  =  n „  =  - r f 2 W x z  -  V ^ W yzy  ( 2 .1 8 )

H y , =  n , y  =  - r j ^ W y z  — T)4WxZy ( 2 .1 9 )

where the rate of strain tensor, W a p ,  is given by

and V =  (v*, Vy, u,). The above expressions. Equations (2.14) to (2.19), show that the viscous stress 
is not a simple function of the velocity derivatives, d v a / d x p ,  but depends on combinations of these 
derivatives given by the rate of strain tensor, W a p -  Braginskii (1965) gives the expreœions for the 
ion viscosity coefficients (normalized against the Boltzmann constant) *7i, %, % and 774, namely

rjo =  0 .9 6 N io T io T io ,

O.ZNioTio .

Vi  =  r Z  » %  =  4t7i,

O.bNioTio f , _

% =  -------------, V4 =  2173,Wio

where Nio is the number of ions, Tio is the ion temperature (in electron volts),

(2.21)

is the ion collision time (with a Coulomb logarithm of 22 assumed -  see page 18 of Chapter 1), and 

Uio =  9.6 X 10®B (2.22)

is the ion cyclotron frequency. In Equation (2.22) B  is the magnetic field strength (in G). Here we 
have neglected the electron viscosity coefficients since they are smaller by a factor of (mi/m«)^/^ 
(m,- and rrie are the ion and electron maosoo rœpootivoly) and 00 viscosity is mainly due to the iens; 
Furthermore, 771 and 772 are smaller by factors of {uiioTio)~^ and 773 and 774 are smaller by factors of 
(wjoTfo)"^- Thus, for a fully-ionized hydrogen plasma, so that N^i — Nio, typical coronal values of 
B =  10 G, Nei =  10® cm” ® and Tei =  Tio =  86 eV (i.e. 2 x 10® K) say, then u;,rf =  7.4 x 10^, and 
so clearly 770 is the largest of the five ion viscosity coefficients. In cgs units 770 has the value

77 -  1 .0  X 1 0 ” 1®T®/^ (2 .2 3 )

where we have denoted 770 by 77 and have assumed that T  =  T«/ =  Tio.
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Braginskii (1965, Equation (2.28)) then computes the volumetric heating rate associated 
with the viscosity coefficient, 170, namely

n  n  Q .i. =

which may be written as

■i(V  v - 3 ^ )  . (2.24)

Hollweg (1986) states that studies of solar coronal dynamics usually assume scalar pressure 
and ignore viscosity but viscosity is important and its omission may give misleading results.

Hollweg (1985) gives an illuminating discussion on the physical interpretation of viscosity 
in a magnetized plasma. He stresses that the rjo terms in the viscous streœ tensor are simply a result 
of the plasma’s tendency to develop small anisotropies. The collisions which oppose the production 
of anisotropy tend to redistribute changes of internal energy which leads to a  healing of the plasma.

Hollweg (1985) also gives caution to the apparent importance of the 770 terms. Although 
the value of 770 is numerically larger than the other coefficients for the viscous stresses he warns 
that it is possible for the divergence of the 770 part of the viscous stress tensor to vanish and so 770 

plays no part in the equation of motion (e.g. Sonnerup and Priest, 1975). Also, in their treatmeht 
of resonant absorption of Alfven waves, OHnan, Davila and Steinol&on (1994) consider the effects 
of the full viscous stress tensor with the inclusion of the five dissipation coefficients, 770 to 774.

Ruderman (1991) investigates the propagation of surface waves on a magnetic interface 
in a cold plasma subject to the damping mechanism of ion viscosity. He restricts attention to 
weakly dissipative waves (i.e. ki kr where kr and ki are the real and imaginary parts of the wave 
number k = kr + *&$) and concludes that the viscous damping of surface waves depends heaVily 
upon the background plasma parameters as well as the direction of wave propagation. Further, 
he states that the damping is stronger in the case of magnetoacoustic type waves than is the case 
for Alfvénic behaviour. Building upon these results, Ruderman (1992) considers the propagation 
of small-amphtude, non-linear, Alfven waves on a single magnetic interface. Again a cold plasma 
and anisotropic viscosity are assumed. Ruderman investigates the wave damping numerically and 
his calculations show that when the wave profile is very steep, viscosity is small which leads to a 
strong acceleration of wave damping. Further, for small viscosity Ruderman finds that the wave- 
damping distance predicted by the non-linear approach can be an order of magnitude smaller than 
the damping distance predicted by the linear theory.

Several authors have considered Equation (2.24) in connection with ion viscous heating of 
the solar corona (Gordon and Hollweg, 1983; Sahyouni, Kiss’ovski and Zhelyazkov, 1987; Edwin and 
ZhelyazkoY, 1992; Edwin and Lwng, 1994; Laing and Edwin, 1994; Porter, Klimchuk and Sturrock, 
1994a, b; Laing and Edwin, 1995a, b). The viscous heating rate given by Equation (2.24) is valid for 
a collisiüual plasma which requires that the ions undergo many cyclotron orbits between collisions
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with 

^io'^io ^  1

Here, no is given by Equation (2.21). Note that by expressing the ion temperature, Tu, in Kelvins, 
we may reformulate Equation 2.22 in terms of cgs units, namely, r,® =  O.lbT^^^Nio) and hence we 
require periods, r ,  satisfying

, ( 2 .2 5 )

in order for the plasma to be regarded as coUisional (and assuming T  = Tei = Tio).
Turning our attention to the non-ideal energy equation. Equation (2.12), we now consider 

what dissipative effects may contribute to L.

2.2.2 Therm al C onduction Effects

It is usually assumed that the corona loses energy via heat conducted along magnetic field 
lines back down to the chromosphere (Hollweg, 1983). We may pose the question what happens to 
a particle travelling along a magnetic field line when it arrives at the footpoint of a coronal loop? 
If there were no collisions, the helical path taken by an electron (or an ion) eventually reverses on 
itself, that is to say the footpoint acts as a mirror for the particle. Since there is a greater density of 
other particles at the footponts, collisions become more frequent. Thus, a particle that has travelled 
largely unimpeded from the top part of the loop may impart much of its kinetic energy to the 
surrounding particles it collides with near the footpoint. Basically this is a microscopic description 
of the conduction of heat in a coronal loop - energy in the hot, upper parts of a loop is transported 
by electrons to the denser, cooler chromospheric layers. The loop, then, cools by loss of energy along 
magnetic field lines to the chromosphere. However, in contrast, heat conductivity perpindicular to 
the magnetic field lines is stongly inhibited since electrons are constrained to travel in their helical 

paths along the field.
The rate of energy loss by thermal conduction is given by (Priest, 1982)

Lr =  V q ,  (2 .2 6 )

where q is the heat flux due to particle conduction which, from Fourier’s law, may be written as

q =  - kV T , (2.27)

where « is the thermal conduction tensor. The divergence of the heat flux may be written as

V • q =  V|| • ( « I I  V ||f  ) +  Vx ■ (kxV xT). (2.28)

where the subscripts || and _L indicate values parallel and perpendicular to the background magnetic 
field, Boi. Braginskii (1965) gives the values for the thermal conductivities for electrons and ions as 

3.16We,re,rc 4.66We/Te,
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Z.9NioTioTio 2NioTio
m ,. ’

where r,<, and w.o are given by Equations (2.21) and (2.22), and

(2.29)

and

We =  1.76 X lO^B,

where B  is the magnetic field strength (in G). Note that the subscripts to and el denote ion and 
electron quantities, respectively, and that Tei and Tio are electron and ion temperatures in electron 
volts. In cgs units (erg cm“  ̂s~^ K“ )̂ the expressions for the electron and ion thermal conductivities 
become:

K|l,„ =  8.4 X lO - 'T f/’ , Kx,.i =  2.5 X 1 0 ' (2.30)

«II,i .  =  3.4 x l O - % / ' ,  and «x.i, =  3.2 x

and it is noted that, for coronal values of JB, N^i =  {Nio) and T (=  T^i =  Tio), «||,c/ >■ «||,»oi 
«J.,e/ ”C  «i.to and /C||,e/ >  «±,e/- Hence thermal conduction is carried out mainly by the
electrons, along the direction of the background magnetic field. Therefore Equation (2.28) may be 
approximated, for constant by

<PT
=  (2-31)

Further, if /C||,ei is assumed both constant and isotropic i.e. /C||,ej =  =  Q, then Equation (2.28)
is approximated by

V • q  =  QV®T. (2.32)

Van der Linden and Goossens (1991) argue that although the coefficient, x o f  thermal 
conductivity perpendicular to the magnetic field is typically some 12 to 15 orders of magnitude 
smaller than the coefficient /C||,eri for conduction along field lines, it nevertheless is non-zero and has 
an important role to play.

Braginskii (1965) considers non-equilibrium, irreversible thermodynamics in which the en
tropy production (per unit volume) is given by the product of the thermodynamic flux and the 
force. The irreversible increase of entropy in a non-equilibrium system is called the entropy produc
tion which is always greater than zero. Braginskii statœ  that a flux, Im, (e.g. q) and a force, Xm,
(e.g. VT) are copjugate if the entropy production, 0 , can be expressed in the form

0  — ^   ̂ImXm-
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An important theroem in the thermodynamics of irreversible proceœes is the principle of symmetry 
of the knietic coefficients and Braginskii shows that the entropy production per unit volume is given 

by

^  _  —qV T _  Qther
Wtfter- j a  -  To ^

where the plasma heating rate due to heat conduction, Qther, is given by

=  ^ ( V | |T . , ) ’ +  (2.33)

and To represents the background temperature. Equation (2.33) may be approximated by

« .h .r =  ^ ( V | |T „ ) ’ (2.34)

since the heat conduction is due mainly to the electrons and is principally in the direction of the 
background magnetic field (see also Hollweg, 1983).

Plasma heating rates using Equation (2.34) have been considered by many authors, for
example Hollweg (1983), Gordon and Hollweg (1983), Sahyouni, Kiss’ovski and Zhelyazkov (1987),
Edwin and Zhelyazkov (1992), Ekiwin and Laing (1994), Laing and Edwin (1994), Laing and Edwin 
(1995a, b) and Porter, Klimchuk and Sturrock (1994a). Gordon and Hollweg (1983) (see also Edwin 
and Zhelyazkov, 1992) give Equation (2.34) as

where N  represents the background (total) particle density, T  represents the background temperar 

ture, v is the velocity and Ucond =  «||,«J^ ^ (7  — ^ ) /N k s , where w is the angular frequency, k is the 
wave number, 7  is the ratio of specific heats, and k s  is the Bolztmann constant.

Gordon and Hollweg note that the heating due to particle conduction is valid only if the 

electron mean free path, /«(= T^(tglk/y»e)^^®), is short enough so that

kle  <  1.

On using Equation (2.29) for we see that wave numbers must satisfy

However, there is no need to take Qther in terms of high and low w as considered by Gordon 
and Hollweg. Instead, the following argument may be considered. We shall suppose that the only 
dissipation term in L in Equation (2.2) io due t o  thermal conduction g o  that we are considering the 

energy equation

^  +  V • Vp -  7 ^  4- V • Vp^ =  - ( 7  -  (2.37)

Linearizing Equation (2.37) and combining with Equation (1.21) gives 

^  +  7 Po(V-v)  =  (7 - 1)/C ||,c/-^. (2.38)



O nAPTER 2. ENERG Y AND FTO DISSIPATION IN  THE UPPER SOLAR ATMOSPHERE  46

Using the ideal gas law in the form of Equation (1.13) in Equation (2.38) and Fourier analysing with 
respect to gives for the perturbed temperature, T,

^  =  (7 -  -  1) -  "JVotfl) , (2.39)

where No and To represent the total particle density and temperature at equilibrium (see Elqua- 
tion (1.19)). On substituting Equation (2.39) into Equation (2.34) we obtain 

_ ;v»tixii..,t»r(7-i)»(v.v)»

Note that in Equation (2.40) we have dropped the subscript 'O’ and write the background particle 
density and temperature as N  and T, respectively.

So, two different theories are available to estimate the temperature gradient, VT. Equan 
tions (2.31) and (2.32) represent the heat flux considered from a fluid approach and the thermal 
conduction heating rate given by Equations (2.33) and (2.34) is considered from the kinetic equations 

of Braginskii (1965).

2.2.3 R adiative Effects

The very fact that we observe coronal holes and coronal loops, particularly in X-rays, m ea ^  
that energy is being radiated away. It is well known that coronal holes and coronal loops lose energy 
via radiation (Hollweg, 1983). The radiative loss term in the term L of energy equation (2.2) is 

given by,

Lr = N 'P (T ) , (2.41)

where JV represents the total number of particles and P{T) (in ergs cm~^ s~^) is the radiative loss 
function. The fact that radiation loæ increases as the square of the particle density for a fully ionized 
plasma is due to the statistical nature of the collisional exicitations of particle-photon impacts (see 
for example Foukal, 1990). The function P{T) expresses the temperature dependence of radiative 
losses from the optically thin (i.e. T  > 2 x 10  ̂ K) coronal plasma. The calculation of this function 
requires knowledge of all the spectral lines and continua that contribute to radiation at a given 
temperature, density and chemical composition. Rosner, Tucker and Vaiana (1978) express P{T) as 
piecewise continuous functions in the form of power laws, namely,

P(T ) =  xT “ , (2.42)

where the temperature, T, determines the values for \  and a  - see Table 2.1. So, for the 1 x 10® -  
2 X 10® K coronal temperatures, it is seen that P(1 x 10® K) =  A, say, has the value (in ergs cm® s“ )̂

A -  1 X 10"®®. (2.43)

Note that the radiative loss function, T(T), has also been given by other authors, for example 
McWhirter, Thonemann and Wilson (1975) and Raymond and Smith (1977).
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Range of T  (K) a
1 0 ^  ® - 1 0 ^ ^  
104 6 _ 104-9 
1Q4.9 _ 1Q5.4 

10® 4 _ 105-76 
106-76 _ 1 0 6 .3  

10® ® -  1 0 ^  °

10—21.6b 
1 0 - 3 1 .0  

1 0 -® i.®  
1 0 - 1 0 .4  

1 0 -3 1 .9 4  

1 0 -1 7 .7 3

0
2
0
-2
0

-2/3

Table 2.1: The variation with temperature of x  and a  according to Rosner, Tucker and Vaiana (1978).

Thus, at coronal temperatures, the volumetric rate at which radiation extracts energy 
is given by (Gordon and Hollweg, 1983; Sahyouni, Kiss’ovski and Zhelyazkov, 1987; Edwin and 
Zhelyazkov, 1992; Laing and Edwin, 1995a, b)

Qrad — a n  ,

where N ,  here, represents the perturbed total number of particles. However, we have by the equation 
of continuity,

g + v ( w v ) = o .

where, following from the notation in Chapter 1, N  = N o N .  i.e. a constant background quantity 
plus a perturbed quantity. Linearizing this last equation yields 

d N
^  +  W o(V v) =  0.

Hence, after Fourier analyzing, we may estimate N  by |7V| =  N6|(V v)|/w . Thus, we may wirte the 
radiative loss term as

Qrad =  A ^ ( V  • V)®, (2.44)

where we have now dropped the subscript 'O’ from the term No in Equation (2.44) and now note that 
in later use of this equation, N  refers to the background number density in the interior or exterior 
of a coronal duct.

Wave damping due to optically thin radiation in a gravity-free, structured medium has 
been considered in detail by Webb and Roberts (1980). They assumed Newton’s law of cooling so 
that the radiative energy loss term in Equation (2.2) is of the form

r ^Lr =  PoCv ,
TA

(2.45)

where tr is the radiative decay time. They considered a cylindrical colunm (cf. Section 1.7.2) of 
uniform magnetic field, Bqz, in the region r < a embedded in a field-free exterior. By manipulating 
Equations (1.3), (1.5), (1.6), (1.12), (1.14), (1.16) and (2.2) Webb and Roberts obtain, for r  < a.
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the second-order ordinary differential equation for the amplitude, Vr, of the radial component of the 
velocity perturbation (cf. Equation (1.76) with n =  0):

where

and

_  iu -I- 1/7TR 
uj + I / j t r '

Similar equations to Equations (2.46) and (2.47) hold in the exterior (r >  a) where Be =  0 so that 

Ae is given by

Ae =  t® ^

with Oe being the corresponding expression to Qq for the external region. Solutions to Equar 
tion (2.46) and its external counterpart and the corresponding solutions for v, b  and pr  are given 
by Equations (1.85) to (1.100) with Aq and A« replacing mo and mg respectively. Webb and Roberts 
investigated the slow modes (essentially those shown in the lower band of Figure 1.8) propagating 
in a slender cylinder, i.e. one for which to  1. Webb and Roberts showed that the damped slow 
modes in a slender cylinder satisfied a simpler dispersion relation than (1.102), namely,

w®(coDq -I- v j)  =  E®CovjDo,

which, when written out in full, as a cubic in w is

(cq +  t̂ A)w® -  —  w® -  k^CQv\u -I- =  0- (2-48)

In considering a slender cylinder we are restricting attention to circumstances for which to  1. 
Eosenti^ly we reduce the cylinder to a lino and consider wavoo which propagate at approximately the 
kink speed, c*, or the tube (or cusp) speed, cr (see also Figure 1.8). Note that in the adiabatic limit, 
Tr  —*■ oo. Equation (2.48) gives either w =  0 or the characteristic tube speed c r =  covx/(c® +  t; )̂^^® 
(Equation (1.39)).

For the radiative decay time much greater than the acoustic period ( t5  •< t r ,  where 
Ts — 1/ibco is & typical time scale for acoustic waves), Webb and Roberts give the solutions to 
Equation (2.48) as

[  ~ (^) (®+ (S ]+̂  (^) %
and

w a c ï - i c o f — V  (2.50)
T \T R /
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Figure 2.1: The damping per period, Dp, plotted as a function of t s / t r  for c j /v j  =  0 (—), 
Cq/ v\  =  1(---------) and Cg/t;^ =  5 ( .. . )  (after Webb and Roberts, 1980).

Thus, Webb and Roberts showed that in the ts <[ tr limit, the solution given by Equation (2.49) 
is simply the tube wave, w =  t c r ,  with its propagation speed reduced below that of the adiabatic 
value. The imaginary term shows that this mode is damped in time. It is noted that the decay 
rate is greater for a stronger magnetic held. The solution given by Equation (2.50) corresponds to 
a purely damped mode.

Webb and Roberts define the quantity Dp =  |Re(«j)/Im(tw)| as the damping per period 
and it is seen that its behaviour is simply given by

(2.51)

Solving £k)uation (2.48) numerically for Dp as a function t s / t r  for three cases of the ratio, 
results in Figure 2.1. It is seen that the damping is greater for a stronger magnetic held and 

that there is a maximum in the damping per period.
Note that the opposite limit t s  t r  corresponds to the isothermal limit.
Alternatively, regarding the frequency, w, as real then Webb and Roberts recast Equar 

tion (2.48) in the form of a quadratic in k, namely

=  a +  »6,

where

(2.52)

(2.53)
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Figure 2.2: The damping per wavelength, D/, plotted as a function of t s / t r  for C q / v \  =  0 (—), 
Cq/ v\  =  1(--------- ) and Cq! v\  =  5 ( ... ) (after Webb and Roberts, 1980). ’ v

and

(2.54)

Since ib is a complex quantity we may write k = kr iki and thus from Equation (2.52) we have, 

tp -  ki =  a, (2.55)

and

2krki =  6. (2.56)

However, the sign of ki is undetermined by Equation (2.52). Thus for a  mode with Fourier form 
gi(w«+**) to describe a wave propagating in the positive z-direction, we require that ukr < 0, and so 
by Equations (2.52), (2.55) and (2.56) we must have ki >  0, so that the waves propagating in the 
z-direction are damped.

Solving Equation (2.52) for .the case when the radiative decay time is very much greater 

than the period of the waves { u t r  >  1) gives

* =  -  ^ 4 )  "  '2 ( V )
For this case, it is seen, as was found in the temporally damped case, that the speed of propagation 
of the tube wave is decreased, the wave decays vertically and that the damping is greater for a 

stronger magnetic field.
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In a similar manner to the definition of damping per period, Webb and Roberts define 
D\ = \ki/kr \ as the damping per wavelength and its behaviour is seen to be

00. (2.58)

Equation (2.52) is solved numerically and is plotted in Figure 2.2 in terms of £)/ as a function of 
utr  for three cases of Cq/ v\ .  The results of Webb and Roberts, namely Equations (2.49), (2.57), 
and Figures 2.1 and 2.2, show that the temporal and spatial damping coefficients have similar 
behaviour, that the damping reaches a maximum value when the acoustic and radiative time ocaleo 
are comparable and that the damping is stronger for a stronger magnetic field.

Bogdan and Knolker (1988) examine the effects of the propagation of linear, compressive 
waves in a homogeneous, unstratified, uniformly magnetized radiating fluid. They find that magne
toacoustic waves suffer significantly less radiative damping than a pure acoustic modo of the same 
frequency and Bogdan and Knolker explain that the magnetic field acts to suppress the temperature 
fluctuations in the rarefactions and compressions. Schmitz (1990) has considered the damping of 
one-dimensional plane waves in optically thin regions of stellar atmospheres and finds, in agreement 
with Webb and Roberts (1980), that radiative damping io very effective if the acoustic wave period 
is approximately that of the radiation decay time.

2.2.4 Other Dissipative Effects

Having introduced the dissipative mechanisms which will be discussed in the remainder of 
this thesis, we now discuss other dissipative effects which have been considered by other authors. 
Further, justification is given for concentrating only on ion viscosity, electron thermal conduction 

and optically thin radiation.
It must be said that we are ignoring any wave dissipation due to Landau damping because 

a fluid (i.e. a macroscopic) description of the solar plasma is being employed and we are not dealing 
with the full kinetic equations (e.g. Sturrock, 1994).

Now, let us for a moment consider the mhd induction equation (Equation (1.10)). By 
writing the induction equation in a non-dimensionlized form with B =  JBB*, v  =  vv*, t — rt* 
and V =  V*/f where the * denotes non-dimensionlized quantities, it is seen that Equation (1.10) 

becomes

where Rm — W /^(= vlpur) is the magnetic Reynolds number and v and I represent typical velocity 
and length scales respectively. Typically in the solar corona Rm >  1- For example, if we take a 
coronal loop of length, I =  10® m, temperature, T  =  2 x 10® K, and with a typical (Alfven) speed of 
10® ms“  ̂ then Rm =  2.4 x lÔ '*. This estimate of the Reynolds number suggests that, in the corona, 
we can essentially ignore the diffusive term (^V^B) and regard the coronal plasma as perfectly



CHAPTER 2. EN ERG Y AND ITS DISSIPATION IN  THE UPPER SOLAR ATMOSPHERE  52

conducting (i.e. ^ ► 0, <7- —► oo). Hence we can use only the convective term (V x (v x B)) in the 
mhd induction equation. In other words, we may employ the ideal form of the induction equation 

given by Equation (1.16).
However, it must be borne in mind that there can be important exceptions to the above 

argument. Although it is generally true to state that, in the solar atmosphere, the length scale over 
which the magnetic field varies is rather large there are situations, for example in current sheets, 
where the magnetic field changes rapidly. The length scales are then very small and diffusivity may 
be important. Resistivity can also be important in the phase-mixing of Alfven waves (Heyvaerts and 
Priest, 1983). Each magnetic field line in an inhomogeneous plasma oscillates independently with 
its own natural frequency, w(z) =  ibvx(®), which results in the build up of strong velocity gradients 
which eventually lead to very short length scales. So, even if there is a small amount of dissipation, 
(i.e. viscosity or resistivity) then the energy which has been transferred to the resonant magnetic 
field lines can be converted to heat.

Two closely related mechanisms by which electric currents can be dissipated are Joule heat
ing (i.e. ohmic dissipation), j^/(r (see Equation (2.11)), and magnetic reconnection. In simple Joule 
heating there are no topological changes in the magnetic fiux surfaces of the structure. Magnetic 
reconnection causes such topological changes which are aœociated with strong convective flows and 
Joule heating concentrated in current sheets. Many authors, for example Rosner, Tucker and Vaiana 
(1978), Hinata (1980, 1981) and those referenced in the remarkable review article by Narain and 
Ulmschneider (1990) support the idea of Joule heating. These authors claim that Joule heating can 
provide the necessary coronal heating if magnetic field changes and associated electric currents are 
concentrated in extremely intense, narrow current sheets.

However, we shall choose to ignore Joule heating since, for typical coronal values, the 
effect of Joule heating is much smaller than that of viscosity and thermal conduction. Consider 
the following argument which is based on that of Hollweg (1986). If A B  represents the change in 
magnetic field over a distance, /, then by Equation (1.5) j  ~  cAB/Anl  where c denotes the speed of 
light and all quantities are in cgs units. Hence the Joule heating term is of the order

o

where <r is the electrical conductivity (in cgs units). From Equation (2.24) the viscous heating is of 

the order

nQvi$ ~

where u is a typical velocity of the plasma. Hence it is seen that

(2.59)
Q^i, (Avvycrrj

For an almost adiabatic plasma it can be shown using the ideal gas law. Equation (1.12),



CHAPTER 2. ENERGY AND ITS DISSIPATION IN  THE UPPER SOLAR ATMOSPHERE  53 

that

where AT and A/> represent the changes in temperature and density, respectively, over the length, 
/. From the equation of mass conservation. Equation (1.3), we may estimate Ap/po by 

|Ap| _  |V -v |
po OJ '

Hollweg (1986) states that it is usually difficult to estimate the term (V||Te)^ in Equation (2.34) but 
by combining the last two equations, Hollweg notes that

-to Wpfc

where Vph is a typical phase velocity and, as before, v represents a  typical plasma velocity. Hence it 

follows that

(cAHt;pji)^To (2 60)
Qiker (4 T /t;(7 - l) )V x |,..r   ̂  ̂ ^

Inserting typical coronal values, for example A B  =  10, To =  10®, / =  10®, Vph =  10®, 
V =  3 X 10®, «II,ej =  8.4 X 10®, a  =  5.76 x 10̂ ®, rj =  0.1 and with c =  3 x 10̂ ®, into Equations (2.59) 
and (2.60) yields

~  1.09 X 1Q-» and ~  0.02.
Qviê Qther

Also we may estimate the relative importance of viscosity and conduction which, for the above

parameters, gives

and so it would appear that conduction is more important than viscosity.
In modelling coronal loops in the geometries of Section 1.7.1 and 1.7.2 we have assumed 

a homogeneous background magnetic field, Hqz {B^i  in the external region). The interfaces in the 
models in Chapter 1 are assumed to be tangential discontinuities separating two media with différent 
physical properties. In reality the spatial inhomogeneities are smooth rather than discontinuous and 
resonant absorption occurs. The idea of resonant absorption is that, when waves propagate in a 
medium with a  non-uniform Alfven speed, then the plasma at a resonant (or a  singular) point con 
absorb energy from the external forcing magnetic field. The resonance occurs when the frequency 
of an incident wave matches the local Alfvén frequency. The mode at the resonant point receives 
energy from the incident wave and its amplitude grows, but as a result, the incident mode undergoes 
a loss of energy and decays in amplitude. The point at which resonance occurs is defined as the 
spatial resonance point and the region about the spatial resonance point is defined as the resonant 

absorption layer (lonson, 1978).
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Roberts (1981) gives the governing equation for linear waves propagating in a structured 
medium with magnetic field in the z-direction and all equilibrium quantities varying with x  as:

r .  ( » . )

where mo(z) is given by 

with

and Vg is the amplitude of the x-component of velocity,

If there exists a distance from the boundary, x* say, where the local value of one of the natural 
frequencies (k^vx or k^cr) (see, for exapmle. Figure 1.5) matches the driving frequency then the 
coefficient of the second-order term in the differential equation (2.61) vanishes. The equation will 
be singular at that point and so a singular resonant absorption layer will form. Resonant absorption 
of Alfven waves is associated with the singularity u  = kjVx and the point at which the singularity, 
w =  kgOr, occurs is known as the cusp-resonance point. Sedlacek (1971) showed that the component, 
Vy, possesses a singularity and the component, v^, possesses a logarithmic singularity at which the 
plasma energy becomes infinite. As the wave energy builds up, the width of the resonant absorption 
layer decreases until a stationary state emerges in which all the quantities oscillate with the incident 
frequency and the energy flux can be dissipated viscously or ohmically.

However, resonant absorption will be ignored in the treatment of wave dissipation models 
contained in Chapters 3 and 4; only true tangential discontinuities of zero thickness will be consid
ered. Of course, if resonant absorption does occur then it will represent an additional dissipative 
mechanism to the ones studied here.

As the waves propagate upward (i.e. in the z-direction), the oscillations of neighbouring 
field linco that, are in phase at some altitude will become increasingly out of phase due to tfle non 
uniformity of the field, As a result, large magnetic-field and velocity gradients develop and, in the 
presence of viscosity and resistivity, this mechanism leads to enhanced dissipation and heating.

Dispersion relations (1.63) and (1.102) must be interpreted as meaning that waves are 
ducted by the loop (i.e. they are evanescent in the loop’s exterior) so that m* > 0 (see Equa
tions (1.64), (1.65), (1.103) and (1.105)) and solutions are zero at large <^tancœ from the loop. 
These finite solutions are in contrast to the waves being non-evanescent (sometimes described as 
leaky or partially guided waves) in the loop’s exterior ao considered by, for example, Meeroon, Sasorov 
and Stepanov (1978), Roberts and Webb (1979), Wilson (1980) and Spruit (1982) and all these ref
erences contain a detailed discussion on the choice of solutions in the loop’s exterior. The wave



CHAPTER  3. EN ERG Y AND IT S  DISSIPATION IN  THE UPPER SOLAR ATMOSPHERE  56

Z -  Z 2

X = X i

Figure 2.3: A rectangular box with volume V = {x2  — ®i)(y2 — %/i)(z2 — z\).

propagating in the loop’s exterior therefore carries energy away from the loop and so the motion 
of the loop must be damped. However, it must be stressed that there is no trut dissipation in the 
models of Meerson, Sasorov and Stepanov, Roberts and Webb, Wilson, or Spruit. The motion of the 
loop is damped but only because energy is leaking into the (UEternal medium. Spruit emphasises that 
the damping has nothing to do with dissipative processes, it is 'analogous to the acoustic damping 
of a vibrating membrane in air’.

2.3 Energy Carried by M H D W aves in Structured M edia

It is worth restating that the estimate of energy flux density given by Equation (1.1) is for 
a spatially inflnite atmosphere. However, since the corona is known to be structured, one must be 
wary of rejecting waves booed on ouch an energy flux-density argument. Consideration is now given 
as to how much energy the waves in a structured medium possess.

Let us examine first the amount of energy carried by foot and slow magnetoacoustic waves 
in a slab of inhomogeneity^ (see Section 1.7.1). The task in hand is to calculate the total energy 
(acoustic plus Poynting) flux, F, out of a slab of inhomogeniety. This is done in the following

1 Similar work to that in this section but which conoidcro the energy of ducted mhd waves in a cylindrical geometry 
is contmned in Laing and Eîdwin (1995a, b);
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way. Consider, first, a rectangular volume, V, with sides x  =  xi,X 2 ,y  =  y i,y 2, and z =  zi,za, 
where x i, X2, yi, ya. zi and Z2 are all constant (see Figure 2.3). Then the total energy (acoustic plus 
Poynting) flux, F , out of V  of the waves is given by

i
F dA,

cs
with clœed surface, surrounding V, and, as before (see Section 2.2), F is % ^pv +  S is the total 
(acoustic plus Poynting) energy flux and dA is directed out o i V . If dAj is an element of surface 
area on face i of the rectangular volume, V, then we may write

F • dA — Fx |x=xa dydz Fx |x=ci dydz Fy |y=y3 dxdz Fy |y=yi dxdz

■VF, dxdy -  Fj dxdy. (2.64)

We now suppose that the volume, V, has unit length in the y-direction and that x i ,2 —► ?oo. 
Further, we impose boundaries at x =  ± a  so that the slah model, am described in Section 1.7.1, is 
recovered (see, for exapmle. Figure 1.4).

Noting that S =  E x B / / i  may be written as S =  (J5^v — B ( B  • v ))/^ , on using the ideal
form of Ohm’s Law from Equation (1.7), and a vector identity, then it can be shown that F has
components

Fx =  —^ 2  d" P o ^A ^*  ~  2- — , (2.65)

Fy =  0, (2.66)

after using the expreœions for 6*, 6, and p  given by Equations (1.52), (1.53) and (1.54) in Chapter 1. 
Substituting v* =  t)*(x)c*(‘*'*+**) and Equation (1.51) for v,, with v*(x) given by Equation (1.64) 
or (1.65), depending upon whether symmetric or asymmetric disturbances of the slab are being 
considered, then the components of F (averaged over time) are given by

(2 .68)

and

F, =  - F (x )e - : '* '\  (2.69)

where

+  (2.T0)

Note that in F* and F, above, we have split the wave number, t ,  into real and imaginary parts so
that k =  kr-Viki where kr and ki are both real quantities. The waves which we have considered until
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now have been ideal, that is k = kr. We now imagine that the waves contain a small non-ideal part 
to the wave number (i.e. |t* /tr | <  1) brought about by the introduction of dissipative mechanisms 
(e.g. electron thermal conduction, ion viscosity and radiation) and so the ideal waves are modified 

slightly.
In considering what happens to the contributions from it is noted from Equations (1.64) 

and (1.65) that v*(x) —► 0 as x —► ±oo and so the contributions from F* vanish. Thus, the total 

energy of the waves out of y  is given by

-  /  F  • dA  =  J f .  \,=„ d x -  j r .  dx. (2.71)

After substituting for F, (Equation (2.69)) it is seen that for x —*■ Too Equation (2.71) becomes

/  F  . dA  =  / ,  I,, (2.72)
Jc s

where

I. I..=  r  H x )d x .  (2.73)
J  — OO

Denoting L, as the logarithmic decrement of the energy flux, F, then, in a distance,

. . L, = Z2 -  zi = l/2ki,

the energy flux of the waves at a height z =  zi, given by / , |,i , has diminished by a factor of 1/e.
The integral in Equation (2.73) represents the total (acoustic plus magnetic) energy carried 

by the waves and for a slab of width 2a, the integral is given by

+

where is given by Equations (1.64) and (1.65) for sausage and kink modes respectively.
In a similar fashion, it may be shown that for the ducted waves of Section 1.7.2 for a 

cylindrical (r, 6, z) volume, V, for r  —*• 0 0 , that

' C S

where

f  F  • dA  =  7c U, (2.75)
J c s

7 c L = e - " * '':  r F ( r ) r d r ,  (2.76)
Jo

with
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and R{r) is given by Equation (1.103) or (1.105) for sausage or kink modes respectively. The integral 
in Equation (2.76) represents the total (acoustic plus magnetic) energy carried by the wavoj and for 

a cylinder of radius a, the integral is given by

/  F(r)rdT =

+  { ;5 ^ /..c J (Æ * (r))’ } r d r

where R{r) is again given by Equation (1.103) or (1.105) for sausage or kink modes respectively. 
Note that the first term in each of the braces in Equation (2.74) represents the acoustic flux and the 
second term represents the Poynting (electromagnetic) flux.

The energy flux density for waves propagating along a slab representing a coronal loop may 

be readily calculated by evaluating

£fd =  ^  (2-79)

where F{x) is given by Equation (2.70). For the sausage waves of dispersion relation (1.63) with 
t)j,(®) =  a ,  sin(nox), the integration of Equation (2.79) gives

Etd — PO*̂ rm«̂ «g»» (2.80)

where

_ V»2/(7 -  1)} (0 g l\

with / , i  and /a j given by Equations (1.68) and (1.69) respectively. Similarly, integrating Equar
tion (2.79) for the kink modes with t)*(x) =  ajt cos(nox) yields

Lkd — (2.82)

where

., -  - 1)} M o ,\

with / , 3  and / , 4  given by Equations (1.71) and (1.72) respectively.
In a similar fashion, the energy flux density for waves propagating along a cylinder of radius 

a representing a coronal loop may be calculated by evaluating

E f d  —  — 2  f  F{r)rdr, (2.84)xa jQ

where F (r) is given by Equation (2.77).
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Figure 2.4: The ratio of the external to internal energy terms as a function of x (as given by terms 
on the right-hand-side of Equation (2.74) integrated between 0 and x) for slow (—) and fast (— ) 
kink waves for the parameters of Model A of Table 1.7.
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Figure 2.5: The ratio of the external to internal energy terms as a function of r  (as given by terms 
on the right-hand-side of Equation (2.78) integrated between 0 and r) for slow (—) and fast ( -- -)  
kink waves for the parameters of Model A of Table 1.7 (after Laing and Edwin, 1995b).
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Figure 2.6: The ratio of the external to internal energy terms as a function of x  (as given by terms 
on the right-hand-side of Equation (2.74) integrated between 0 and x) for slow (—) and fast (—  ) 

sausage waves for the parameters of Model A of Table 1.7.
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Figure 2.7: The ratio of the external to interned energy terms as a function of r  (as given by terms 
on the right-hand-side of Equation (2.78) integrated between 0 and r) for slow (—) and fast (— ) 
sausage waves for the parameters of Model A of Table 1.7.
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For the sausage waves of dispersion relation (1.102), Laing and Edwin (1995b) have shown 
that the integration of Equation (2.84) with R(r) given by Equation (1.103) yields

E fd  — PO^rm*^cg*» (2 .8 5 )

where

_  H ^Afci  +  Vc2/(7 -  1)} m
+ k^4fc2}  ’ ^

with /cl and /c2 given by Equation (1.108) and (1.109) respectively. By integrating Equation (2.84)
in a similar manner, Laing and Edwin (1995b) show the energy flux density for the kink modes is

E fd  =  PoV^ma^cgk (2 .8 7 )

where

_  k{«Af<a +  Cq'>"^/.4/(7 -  1)) r t  i,4\

with /c3 and fc4  given by Ek^uation (1.111) and (1.112) respectively.
It is noted that Equations (2.85) and (2.87) are similar in form to their counterparts in 

a slab geometry (Equations (2.80) and (2.82)). In a ‘cold’ plasma, one in which co =  c« =  0 (and 
therefore one in which the slow waves do not exist) Equations (2.80), (2.82), (2.85) and (2.87) all 

reduce to

Efd= pov^^,kv\/uj. (2.89)

So, for an approximately uniform medium in which u / k  w va «  VAe (see Figures 1.5 and 1.8), we 
recover Equation (1.1) for the energy flux density of fast waves travelling with Alfven-type speeds 

in an inflnite medium.
The factors Vgga and Vsgk for the Cartesian case, and Vcgs and Vcgk for the cylindrical case, 

are functions of w and k and other parameters such as B , N , T  etc. where w and k are linked by 
the dispersion relations given in Section 1.7, Equations (1.63) and (1.102) respectively. So, any 
effect of the structuring should be apparent from the variations of and Vggk (vcgs and Vcgk). 
Figures 1.5 and 1.8 show that whereas the fast waves are obviously dispersive, the slow waves are 
not, being confined to the narrow band between ct and ctc- Thus we expect very little difference to 
omorgo from oonoidoring the slow waves propagating in a structured medium compared with those 

propagating in an infinite atmosphere.
The mhd waves that we are considering are ducted by the slab (or cylinder); they are 

evanescent in the duct’s exterior. We now give consideration to the total energy carried by the 
waves. That is to say we shall examine how much energy the waves possess in the exterior of the 
duct. The ratio of the energy in the external region of the slab, as given by the integration of the 
first and third terms of Equation (2.74) over the region |a| to |x|, to the energy in the interior, as 
given by the integration of the second term in Equation (2.74), is shown in Figures 2.4 and 2.6 for
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the slow and fast, kink and sausage waves, respectively. (Figures 2.5 and 2.7 are the corresponding 
diagrams for a cylindrical geometry with the ratio of the energy in the external region, given by the 
integration of the third and fourth terms in Equation (2.78) over the region a to r, to the first and 
second integrals in Equation (2.78) which represent the energy in the cylinder).

Figures 2.4 and 2.5 show that, for the slow and fast kink waves, the proportion of the total 
energy in the external region (from |a| to |x|) is very small (~  10“ ^). Most of the energy is confined 
to the duct but there is a small proportion of the total energy in the external region. Similarly, most 
of the energy is confined to the duct for slow and fast sausage waves (Figures 2.6 and 2.7). Therefore 
the energy of the sausage and kink waves of the slab and cylindrical models is confined mainly to 
the duct. Hence the slab and cylindrical models (of density enhancements in the solar corona) are 
acting as ‘waveguides’ which channel the energy of the waves in the direction of the background 

magnetic field.
Furthermore, a comparison between the acoustic and electromagnetic (Poynting) contribu

tions to the total flux in Equations (2.74) and (2.78) shows that, for slow ducted waves, most of the 
energy is acouBtic energy (Figure 2.8). Figure 2.9 shows that most of the energy, for the fast ducted 
wave, comes from the electromagnetic terms of Equations (2.74) and (2.78). Of course, these results 
are not unexpected given that (Chapter 1) the slow, ducted waves (with phase velocity ~  cr) are 
acoustic-type waves and the fast, ducted waves are Alfvénic in nature.

Having considered the total energy flux of the waves, we now return to the energy flux 
density equations. In order to compare the energy carried by the waves in a structured situation 
(Equations (2.80), (2.82), (2.85) and (2.87)) with those in an unstructured medium we use the 
parameters of Table 1.7, and insert the details into these equations. The resulting energy flux 
densities for a structured medium are also compared with the requirements given in Table 1.6.

The energy flux density for fast kink waves propagating along a slab with Vrma =  50 km s”  ̂
and the parameters of Model D of Table 1.7 is shown by the solid line (—) in Figure 2.10. Clearly, 
calculating the energy flux density for waves associated with a smaller value of Vrmt results in a 
smaller value for Efd (decreasing Vrmt by a factor of 10 results in Efd decreasing by a factor of 
100). The unstructured energy flux density calculation using Equation (1.1) gives ej =  7.89 x 10® 
erg cm”  ̂ s“  ̂ (shown by the dotted line (...) in Figure 2.10) and c/ =  7.89 x 10  ̂ erg cm“  ̂ s"^ for 

large and small values of Vrmt respectively.
Figure 2.11 shows the energy flux density, calculated by Equation (2.82), plotted against 

period for slow and fast waves propagating along a slab. The slow and fast waves are represented
by the solid (—) and dashed (-----) lines respectively in Figure 2.11. The parameters used in the
calculation are those of Model E in Table 1.7 with a small (5 km s“ ^) value for the root-mean-square 
velocity, Vrm$ • The figure shows that the energy flux density is not constant but varies slightly with 
the variation greater for the fast waves. This variation is present because a structured situation 
is being considered. The waves are ducted and hence are subjected to dispersion. For comparison 
with an unstructured medium the values for the slow and fast wave energy flux densities, €, and €j
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Figure 2.8: The acoustic to total energy flux ratio versus ka for slow sausage (—), and slow kink 
(—  ) waves propagating in a slab ((a) and (c)) and in a cylinder ((b) and (d)) for the parameters 

of Model A of Table 1.7.
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Figure 2.9: The Poynting to total energy flux ratio versus ka for fast sausage (—), and fast kink 
(—  ) waves propagating in a slab ((a) and (c)) and in a cylinder ((b) and (d)) for the parameters 

of Model A of Table 1.7.
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Figure 2.10: The energy flux density versus period for fast kink waves ducted by a slab (—) and 
for fast waves propagating in an unstructured medium (...). The pareûneters are for Model D of 
Table 1.7 with a  large root-mean-squ^e velocity amplitude Vrm* (50 km s“ ^).

respectively, as given by Equation (1.1), are shown in the figure. In the unstructured situation for 
the parameters of Model E, c, =  3.90 x 10  ̂ erg cm“  ̂s“  ̂ and f / =  6.47 x 10  ̂ erg cm” * s” .̂

Figure 2.12 displays the energy flux density for slow kink waves propagating along a slab 
with the parameters of Model G and with Vrm$ =  50 km s“ .̂ The calculation for an unstructured 
medium gives e, =  5.76 x 10  ̂erg cm” * s” .̂

In carrying out the energy flux density calculations for the sausage mode waves it was found 
that Equation (2.80) produced very similar results to those given in Figures 2.10 to 2.12 and so the 
results are not presented. The corresponding energy flux calculations for kink waves propagating 
along a magnetic cylinder are also similar and were presented in Laing and Edwin (1995b).

From Figures 2.10 to 2.12 it is clearly seen that the energy flux density for a  spatially infinite 
medium, given by Equation (1.1), is a very good cotimato for the energy flux density ef a structured 
situation. Thus, estimates of the required cimouuts of energy given by the simple arguments of 
Athay and White (1979) and Hollweg (1990) (listed in Table 1.6) are appropriate to the structured 
situation described here.

Thus we see that if the parameters of Model E were representative of the quiet corona, 
then both the fast and slow ducted waves could supply enough energy (see Figure 2.11) to meet 
the necessary requirements of a few times 10® erg cm” * s” .̂ Clearly, if the parameters of Model 
E are applied to a hot coronal loop, then the waves need to be associated with a root-mean-square
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Figure 2.11: The energy flux density versus period for slow (—) and fast ( - - - )  kink waves ducted by 
a slab. The upper and lower dotted lines (labelled 6/ and epsilon,) represent the energy flux density 
versus period for fast and slow waves propagating in an unstructured medium. The parameters are 
for Model E of Table 1.7 with a small root-mean-square velocity amplitude Vrm* (5 km s” ^).

velocity amplitude in excess of 50 km s”  ̂ in order for the energy flux density requirements of 10  ̂
erg cm” * s”  ̂ to be satisfied. Figures 2.10 and 2.12 show that, given a large enough Vrmtt there is 
enough energy available to the waves to heat the hot loops of Models D and G.

So, from the energy flux density calculations undertaken in this section, we conclude that 
provided the fast and slow ducted waves can be associated with large enough root-mean-square 
velocity amplitudes then the ducted waves can supply enough energy to heat the corona.

Having established that the ducted waves can possess sufficient energy to meet the coronal 
heating requirements given in Table 1.6, two models are investigated in the following two chapters in 
order to see how the ducted waves may best surrender their energies to the upper solar atmosphere. 
Before pursuing such models it is important to say how dissipation is measured in this thesis.

2.4 A  M easure o f D issipation  Lengths

The question of what is meant by dissipating waves is now asked, i.e. what measure is 
goiug to be used in order to determine whether waves dissipate or do not dissipate? Is it the length 
over which they dissipate that is appropriate or the length measured in wavelengths? If dissipation 
lengths are measured in wavelengths then how many wavelengths are required? One may pose the
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Figure 2.12; The energy flux density versus period for slow kink waves ducted by a slab ( - )  and 
for slow waves propagating m an unstructured medium (...). The parameters are for Model G of 
Table 1.7 with a  large root-mean-square velocity amplitude Vrm, (50 km s"*).

question: Are ‘a few wavelengths' of propagation enough? Rosnqr, in the discussion foUowing the
paper by Hollweg (1991), points out that dissipation in a few wavelengths is a rather general property 
of wave-scattering in random media.

Part of the problem is providing an appropriate length scale (other than the wavelength)
against which the dissipation lengths of the waves may he measured. Gordon and HoUwëg (1983)
chose to express results in fractions of the solar radius (7 x 10‘« cm) as their criterion. The pressure
scale height m the corona (10‘»cm) is another measure; waves travelling at least this distance could
be regarded as dissipStionless. Similon and Sudan (1989) do calculations with respect to radii of
curvature of loops, data on which, from Thble 1.3, would seem to range from 5 000 km to 50 000 km
for hot loops. On the other hand, the model of a coronal loop as a relatively long, thin structure
with correspondingly anisotropic variables assumes its length (and thus dissipation length for waves
travelUng along the loop) to be greater than its radius, ftom  Thble 1.3 it would appear that radii
of 1000 km to 15 000 km are appropriate sizes to bear in mind and lengths of the order of 10 times
these values are possible damping lengths. Given that there is variation in the criteria for measuring
dissipation, we shall assume that mhd waves are dissipated eflSciently if the dissipation lengths are 
less than 4 x 10° cm.



CHAPTER 2. ENERGY AND ITS DISSIPATION IN  THE UPPER SOLAR ATMOSPHERE 67

2.5 Sum m ary

This chapter has reviewed some of the ideas regarding dissipative mechanisms in mhd wave 
theories for coronal heating. The non-ideal equations of mhd have been presented and a ‘measure of 
dissipation’ for waves in the upper solar atmosphere has been given. Energy-flux-density calculations 
for ducted waves have shown that the waves can carry sufficient energy to meet coronal heating 
requirements but only if the waves are associated with large root-mean-square velocity amplitudes. 
It has been argued why the dissipative mechanisms for ion viscosity, electron heat conduction and 
radiation are important in the upper solar atmosphere and why they have been included in the 
models to be studied in the remainder of this thesis. In the following chapter the merits of a ‘weakly 
diœipative’ environment are considered.
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C hapter 3

MHD Waves in a W eakly 
D issipative Environment

3.1 Introduction

This chapter concentrates on ducted magnetohydrodynamic waves in a weakly dissipative 
environment subject to ion viscosity, electron thermal conduction and optically thin radiation. The 
discussion in Chapter 2 saw the problem of dissipation linked to a set of non-ideal equations. In 
general, it is a non-trivial task to solve the non-ideal equations. The scheme presented now tackles 
dissipative effects but in a way that the non-ideal effects can be neglected from the equations under 
consideration, i.e. a weakly dissipative model scheme is to be considered. A definition of what is 
meant by ‘weak dissipation’ will be made in due course in this chapter. ^

The scheme adopted, although not a new one, is simple yet ingenious. The underlying 
principle is to simply calculate the energy of the ideal waves (discussed in Chapter 1), i.e. the 
energy being carried by the waves described by the dispersion relations (1.63) and (1.102) in the 
absence of dissipation, and then, quite separately, to imagine that this energy is used up, converted 
by the various dissipative mechanisms. The method then yields the length over which the waves 
surrender a factor of 1/e of their energy to dissipation. Such a simple scheme allows dissipation to 
be investigated, but avoids a dispersion relation with dissipative terms.

3.2 A  W eakly D issipative Approach

In Section 2.2, which discussed the non-ideal mhd equations, it was shown that the non
ideal equations of motion (Equation (2.1)) and energy (Equation (2.2)) together with the Poynting 
flux, S, may be combined to yield Equation (2.12). Neglecting dissipative effects, i.e. ignoring the 
diooipativo mochoniomo, viscous and ohmic dissipation, which make up L, yields the adiabatic form
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of Equation (2.12), namely

=  —V • F, (3.1)

where, as before, U =  is the total (internal plus magnetic) energy (kinetic energy effects
have been neglected) and F  =  : ^ p v  -|- S is the total energy (acoustic plus Poynting) flux.

Consider now that any energy passing into a fixed volume, V, is dissipated, i.e. U is 
converted to heat duo to the diooipativo mochaniomo of ion viocosity, electron thermal conduction, 
and radiation in an optically thin atmosphere and can be equated to the sum of their volumetric 
energy loss rates. That is,

=  Qtotal, (3-2)

where Qtotal =  Qvi$-\-Qther -\-Qrad, and Qvi„ Qther, and Qrad are given by Equations (2.24), (2.40) 
and (2.44) respectively. So combining Equations (3.1), (3.2) and applying Gauss’ Theorem we have

f Q t o t a i d V = - f  F d A ,  (3.3)
Jv  J c s

for a  fixed volume, V,  with closed surface, CS. Then, averaging over time and by using Equar 

tions (2.71) and (2.72) we may write Equation (3.3) as

r  r  Quteidxdz =  r  F(x)dx, (3.4)
Jzi J — oo J — oo

for some z\ and Z2 - The left-hand-side of Equation (3.4) is the energy (averaged over time) dissipated
in the volume, V, with the assumption that ®i,®2 —*■ Too (see Figure 2.3). The right-hand-side of
Equation (3.4) is the (time averaged) energy flux passing into V.

As remarked in Chapter 2, the energy flux of the waves, at a height z = z\, diminishes by
a factor of 1/e over a distance, L, = Z2  — zi =  1/2^,-. Thus, we determine the height of volume,
V, by writing z^ — zi = L,  and so the logarithmic decay, or dissipation length, for the waves in a

Cartesian geometry is given by

= è S l d x '

where F(x) is given by Equation (2.70) so that the numerator can be written as

l _ J ( x ) d x  =  { / _  ( ^ )  <<* +  /  ( ^ )  <<*}

+ { / . .  )  ''*}
+  v j(x )d x |. (3.6)
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The denominator may be expressed as

where

A nt =  w^do +  — 3^*0*)*, (3.8)

D e x t  =  W^de +  ^(w° — 3t*c*)*, (39)

rj is given by Equation (2.23) and the terms do and d« are given by

for values of N  inside (N  = Nq for |x| < a) and outside {N =  N,  for |x| >  a) the slab respectively.
The investigation of ducted wave energy in Section 2.4 indicated that, for both the fast and

slow and symmetric and asymmetric modes, most of the wave energy was confined to the duct (see 
Figures 2.4 and 2.6). Nevertheleœ, for completeness, we include both internal and external contri
butions to the energy in all our subsequent calculations regarding the amount of energy available to 

be dissipated by the waves.
We note also, that for a cylindrical volume, V, Equation (3.5) becomes

where F(r)  is given by Equation (2.77) so that the numerator becomes

I  n r ) r d r  =  [  A \ r ) r d r  + R \ r ) r d r

+  P o ^ A ^ ' ^  „4 I  

The denominator of Equation (3.11) becomes
f C O   1 fC 1 foo

/  Qtotai^dr=—  A n tÂ * (r)rd r-h —  / A ,*E *(r)rd r, (3.13)
J o  tu J q  w J a

where A „ t and D e x t  are given by Equations (3.8) and (3.9) respectively.
Since we have effectively neglected any dissipative effects in arriving at the dissipation- 

length equations (3.5) and (3 11) we must impose that, the waves are weakly dissipative (see Chap
ter 2) in the sense that

I  <  1, (3.14)



CHAPTER 3. MHD WAVES IN  A W EAKLY DISSIPATIVE ENVIRONM ENT  71

where ki is the imaginary part of the wave number and k is the real part of the wave number 
component along the background magnetic field (i.e. in the z direction). In other words, the number 
of wavelengths of the ideal waves, ha, travelled by the waves before being dissipated in the distance 
Lg must satisfy n \  ^  1/4?.

3.3 C alculations o f D issipation  Lengths

If the energy being carried by the waves is to contribute to the heating of the solar corona 
then it must be dissipated as heat. Here, the dissipative mechanisms of ion viscosity, electron thermal 
conduction and radiation in an optically thin atmosphere as described by Equations (2.24), (2.40) and 
(2.44) are considered. Performing the integrations for Equation (3.5) yields the dissipation length, 
L,f for the fast and slow magnetoaicoustic sausage modes, propagating along a slab of half-width a:

k |po  [«x/ii +  :^Cou;*/,2 +  pe vL/»5 +  J
L, =  — (3.15)

W {/»2An« +  fasDext) 

where f , \  and f , 2  are given by Equations (1.68) and (1.69) respectively, and

/a6 =  sin*(noa), (3.16)

and

A similar expression for Ljb, the length over which the energy flux of the fast and slow kink waves 
falls to 1/e of its original value, is given by

(3.18)
W {fa^Dint +  fasDest} 

where / , 3  and f , 4  are given by Equations (1.71) and (1.72) respectively, and

f , 7  =  cos*(noa), (3.19)

and

m?

Integration of Equation (3.11) (Laing and Edwin, 1995a, b) shows that the dissipation 
length, L,,  for the fast and slow magnetoacoustic sausage modes propagating along a cylinder of 

radius a, is given by

k {pomj/* v \ f e l  +  +  Pe^l [ v \ j e B  +  }
L,  =  -

W {m*/*/c2Ant T  nlfcsDext}
(3.21)
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where / ,  f d  and are given by Equations (1.104), (1.108) and (1.109) and

and

/c6 =  m i (3.23)Ko(m«

Laing and Eklwin (1995a, b) also give the corresponding expression for Lt,  the length over which 
the energy flux of the fast and slow kink modes falls to 1/e of its original value:

t{ p o ro 2 /* [» J /^  +  ;j54^cîw*/c4]+/>.no[»x./«7 +  : , î î c X /c 8 ] }
^  ^  : o,{m îP fctD ,„, + n y a D „ ,}  '

where / ,  fes and f , 4  are given by Equations (1.104), (1.111) and (1.112) respectively, and with

.2^2a2 2 f Ko{m.a)\ ‘
*a* \K i(m «a)y

-:[(eS )

(3.26)

(3.26)

and Dint and Dext given by Equations (3.8) and (3.9) respectively.
Equations (3.15), (3.18), (3.21) and (3.24) are of the form

L§,k — Lg^kiy î kf pof Pet a, Bof Bet Nof Ne,T), (3.27)

where w and h are linked by the dispersion relations, Equation (1.63) for the slab case, and Equa 

tion (1.102) for the cylindrical case. Here, No and Nt  denote the (total) particle density inside 
and outside the duct, respectively. It is seen from Equations (1.11) and (1.16) that the plasma 
beta, 0, links B, N  and T. The assumption of a fully-ionized hydrogen plasma links p and N  (e.g. 
po =  Nomp/2). Further, since dense coronal loops are being modelled we recall from Chapter 1 that 
the density ratio, p«/po, must satisfy 0 < p«/po < 1.

At this point it is important to point out the constraints inherent in this weakly diooipativo
model. The method of estimating the dissipation lengths, L ,  and L k , in the previous section, the 
limitations of the model for the coronal structure and the criteria for efficient dissipation, as discussed 
in Section 2.5, mean that several constraints have to be satisfied.

1. The model is only valid for weakly dissipative situations in the sense that n^, the number of
wavelengths (of the ideal waves) travelled by the waves before being dissipated must satisfy 
n \  3» 1/(47t). Thus to ensure this criterion is fulfilled only dissipation lengths of at least one 
wavelength are allowed.

2. On the other hand, if the dissipation lengths are too long the waves will escape from the corona 
before their energy can be converted into heat. We require that the dissipation lengths are 
less than 4 x 10° cm for efficient dissipation (see Section 2.5).
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3. The model relies on its being valid for a collisional plasma and so the criteria given by Braginskii 
(1966), i;C; Equations (2.25) and (2.36) must bo satisfied, namely wave periods, r, must satisfj' 
r  > 4.7T®/*/Ao and wave numbers, k satisfy k < Nei/{4:.9 x 10*7’*). It turns out that this is 
not a restriction for the slow waves.

4. We wish to confine our attention to the coronal situation of Figures 1.5 and 1.8 in which the 
fast and slow waves (of a spatially infinite medium) are manifest as two bands of waves. Thus, 
as stated in Chapter 1, this will be ensured if we consider the range 0 <  ~  1, or stated 

alternatively. SirN ksT /B^ < 1.

These constraints mean that it is not always poœible to use the model to investigate all 
variations of the parameters pertinent to hot loops, quiet coronal loops and coronal holœ which were 
discussed in Chapter 1. It was found that the coUisional criteria given in 3 above, fail easily for low 
density (10° cm”*), high temperature (3 x 10° K) situations for the fast waves.

Computer programs in the C language (Kernighan and Ritchie, 1988) were written to 
compute the diraipation lengths of Equations (3.15), (3.18), (3.21) and (3.24). Firstly, the ideal 
dispersion relations (1.63) and (1.102) were solved numerically by employing Brent’s Method (Press 
ei ai, 1992) in order to relate w to t  for the various modes of Figures 1.5 and 1.8. Then the 
dissipation lengths of the various modes were computed by inserting the solved values of w and k 
into Equations (3.15), (3.18), (3.21) and (3.24).

The task is to examine the variation of L,^k as the parameters of Equation (3.27) vary. 
However, it is important to remember that Equations (3.15), (3.18), (3.21) and (3.24) are subject 
to constraints.

These constraints mean that it is not always possible to use the model to investigate all 
variations of the parameters pertinent to hot loops, quiet coronal loops and coronal holes which were 
discussed in Chapter 1, It woo found that the coUisional criteria given in 3 above, fail easily for low 
density (10° cm” *), high temperature (3 x 10° K) situations for the fast waves.

3.4 D issipation  o f D ucted  Fast M agnetoacoustic W aves

The ideal dispersion relations (1.63) and (1.102) were solved numerically for the fast waves, 
i.e. for the modes lying in the band va < w /k  < VAe of Figures 1.5 and 1.8. The resulting values of 
w and k were substituted into Equations (3.15), (3.18), (3.21) and (3.24) and the lengths over which 
the ducted fast magnetoacoustic waves dissipated were calculated^.

The results of the lowest-order kink, L*o, and lowest-order sausage, L,o, fast magnetoa- 
coustic modes with the parameters of Model B from Table 1.7 are shown in Figures 3.1 to 3.4. In 
general it was found that the dissipation length, when measured in wavelengths, appeared to possess 
a minimum (sec Figures 3.3 and 3.1): The existence of a minimum in the dissipation length when

^The work in thin section forms the basis for Laing and Edwin (1995a).
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Figure 3.1: The dissipation length versus period for the fast modes Lko (—) and L ,q (— ) propar 
gating in a slab with the parameters of Model B of Table 1.7.
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Figure 3.2: The diœipation length versus period for the fast modes Ljto (—) and L,o (— ) propar 
gating in a cylinder with the parameters of Model B of Table 1.7.
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moaouFod in wavelengths is duo to the fact that the wavelength of the waves has a dependaney 
proportional to 1/k.  Moreover, what is more apparent from the figures is that the minimum for 
the lowest-order kink mode occurs at about 20 wavelengths for waves with periods of about 10 s 
in the slab case, and in the cylindrical case this minimum occurs at about 7 s when the dissipa
tion length is approximately 55 wavelengths. An analytical investigation into this problem is rather 
unwieldy especially when one considers, for example, the intricate way in which w and k of Equa
tions (3.15) and (3.18) are interlinked by the dispersion relation (1.63). On the whole there seems 
to be a significant difference in dissipation lengths between coronal loops modelled as ducted slabs 
and cylinders. However, as is seen from Figures 3.1 and 3.2, the dissipation lengths of the ducted 
fast, kink, magnetoacoustic waves, in terms of a true distance and not on wavelength (which has 
1/k  spatial dependence), are seen to be of the same order of magnitude (10^° cm) for the slab and 
cylindrical geometries. The dissipation lengths of the fast, sausage, magnetoacoustic waves are also 
seen to be of the same order (10^ cm) for the two geometries. Since it was remarked in Section 2.5 
that measurement of dissipation lengths in terms of wavelengths was one way of giving a ‘measure of 
dissipation’, it will prove convoniont to quote the dissipation lengths of fast magnetoacoustic waves 
in terms of wavelengths. Thus, the conditions, e.g. magnetic field strength, density, etc., which give 
rise to the shortest dissipation lengths may be easily found.

Figures 3.1 and 3.2 demonstrate that the lowest order fast magnetoacoustic wave has a 
dissipation length of about one order of magnitude greater than the lowest-order sausage mode. The 
left-hand cut-offs of the figures mark where the coUisional criteria of Equations (2.25) and (2.36) 
fail, that is to say only periods of more than 2 s are valid for this weakly dissipative model. The 
right-hgmd çut-offe of the sausage modes represent the üj/kv^e cut-offs of the dispersion curves (e.g. 
see Figures 1.5 and 1.8).

The relative importance of the three diœipation mechanisms of ion viscosity, electron ther
mal conduction, and radiation, given by Equations (2.24), (2.40) and (2.44), for a coronal loop 
treated as a magnetic slab and cylinder are shown in Figures 3.5 and 3.6 respectively. It is seen that 
for ka values of less than about 0.1 (i.e. wave periods > 10 s), electron thermal conduction is the 
moot important of the three dissipative terms conoidorod hero. The ratio of the volumetric radiation 
loss to the total energy loœ is too small to be seen in Figures 3.5 and 3.6.

The dissipation lengths for fast magnetoacoustic waves propagating along a magnetic slab 
and cylinder representing a coronal loop were investigated for the parameter ranges of Table 1.8. 
The results, in terms of the minima (expressed both in wavelengths and as a true distance), for 
the lowest-order, Luo, and first-order, Lki, kink and lowest-order, L,o, sausage modes are shown in 
Tables 3.1 and 3.3 for two values of the magnetic field strength of 10 and 50 G for the slab case. Here 
a =  5 X 10® cm and po/pe = 0.5. The corresponding tables for the cylindrical case are Tables 3.2 and 
3.4. The gaps in the tabloo indicate regions whore no reasonable combinations of temperature and 
pressure density could be found so that the plasma could be considered coUisional. Also, in order to 
ensure that the plasma is representative of the corona (/? < 1), some entries in Tables 3.1 and 3.2
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Figure 3.3: The dissipation length (in wavelengths) versus period for the fast modes Lko ( —) and 
If$o (— ) propagating in a  slab with the parameters of Model B of "^ble 1.7.
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Figure 3.4: The dissipation length (in wavelengths) versus period for the fast modesZ&o (—) and 
(— ) propagating in a  cylinder with the parameters of Model B of Table 1.7.
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Figure 3.5: Relative importance of the dissipative terms: QtherlQtotai (—) and Qvia/Qtotài (----- )
for fast waves propagating in a slab with the parameters of Model B of Table 1.7.
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Figure 3.6: Relative importance of the dissipative terms: Qthar/Qtotal (—) and Qvia/Qtotal (----- )
for fast waves propagating in a cylinder with the parameters of Model B of Table 1.7.
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T (K ) mode N  (cm -“)
5.0 xlO« 5.0 xlO« 5.0 xlO""

1.0 X 10«

L k o 4.5 x 10" 
(360.0)

2.5 X 10" 
(200.0)

(B =  15 G) 
1.0 X 10"" 

(5.5)
LaO 1.2 X 10“  

(98.0)
5.8 X 10"" 

(63.0)
4.9 X 10" 
' (3.7)

L k i 2.0 X 10"" 
(35.0)

4.2 X 10" 
(5.4)

2.0 X 10®

L k o * 3.4 X lÔ o 
(25.0)

(N =  1.0x10"®) 
8.7 X 10" 

(3.7)
LaO 1.0 X 10"" 

(8.6)
2.5 X 10" 

(2.2)
L k i ' 3.8 X 10" 

(5.4)
1.4 X 10" 

(1.9)

3.0 X 10®

I>kQ 2.2 X 10̂ ® 
(11.0)

(N =  1.0 X 10"") 
4.0 X 10" 

(3.7)
L«o 5.8 X 10" 

(4.3)
2.5 X 10" 

(2.2)
L k i 2.9 X 10" 

(3.6)
1.4 X 10" 

(1.9)

Table 3.1: Minimum dissipation lengths (in cm) of the modes Lko, L ,q, and Ljbi for fast waves 
propagating in a 10 G magnetic slab. The lengths, as measured in wavelengths, are shown in 
parentheses.

have to be changed to those values of magnetic held strength and density given in parentheses.
It was found that when B  is increased the dissipation length increases so that the damping 

lengths become unrealistically large if B is a few tens of gauss. It was also found that the dissipation 
length decreases with mode order. This is encouraging hrom the point of view of effective dissipation,
i.e. very short dissipation lengths, but as is seen from the tables there are very few instances in which 
the weakly dissipative theory holds for these higher-order modes and for which the plasma may be 
regarded as coUisional. Further, it is unlikely that, in the upper solar atmosphere, the higher-order 
modes will be excited as readily as the lower- order ones. From these calculations, however, it is 
clear that the sausage waves have much shorter dissipation lengths than have the lowest-order kink 
waves - in fact the next higher-order kink waves have dissipation lengths comparable with the lowest 
order symmetric ones.

It is difficult to make general statements about the variation of effective dissipation with 
temperature and density. However if the plasma beta is increased then the damping increases in 
the main. Since is proportional to both density and temperature this usuaUy means that the
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T (K ) mode N  (cm ^)
5.0 xlO" 5.0 xlO" . 5.0 xlO""

1.0 X 10®

Lko 3.2 X 10" 
(470.0)

1.6 X 10" 
(250.0)

(B  = 15 G) 
2.0 X 10"" 

(13.0)
L,o b.3 X 10"" 

(61.0)
3.3 X 10"" 

(46.0)
4.2 X 10"

(4.7) ^
Lki 1.6 X 10"" 

(30.0)
3.8 X 10® 

(5.5)

2.0 X 10®

Lko 3.6 X 10"® 
(39.0)

(N  =  1.0 X 10"®) 
8.5 X 10" 

(12.0)
L$o 5.5 X 10® 

(6.4)
2.3 X 10" 

(3.6)
Lki 3.1 X 10" 

(4.7)
1.5 X 10" 

(2.8)

3.0 X 10®

Lko 3.0 X 10"® 
(23.0)

{N  =  1.0 X 10"") 
3.9 X 10" 

(5.3)
Lso 3.5 X 10" 

(3.9)
1.7 X 10" 

(1.7)
Lki 2.4 X 10" 

(3.3)
1.2 X 10" 

(1.8)

Table 3.2: Minimum dissipation lengths (in cm) of the modes Lko, L,o, and Lki for fast waves 
propagating in a 10 G magnetic cylinder. The lengths, as measured in wavelengths, are shown in 
parentheses (from Laing and Edwin, 1995a).
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r ( K ) mode N  (cm-®)
5.0 XlO® 5.0 XlO " 5.0 XlO""

Lko 8.0 X 10"-* 
(6500)

1.1 X 10"' 
(260)

1 .0  X 10® L,o 2.1 X 10"' 
(1700)

2.1 X 10" 
(160)

Lki 1.5 X 10 '' 
(180)

Lko 1.2 X 10"^ 
(1 0 0 0 )

7.8 X 10“  
(230)

2.0 X 10® L$o 3.2 X 10"" 
(280)

1.3 X 10“  
(1 0 0 )

Lki 6.0 X 10*" 
(83)

Lko 2.4 X 10“
(140)

3.0 X 10® L,o 5.7 X 10"" 
(47)

Lki 1.7 X 10"" 
(28)

T^ible 3.3: Dissipation lengths in a slab as for Table 3.1 but for a magnetic field strength,of 50 G.

T (K ) mode N  (cm-®)
5.0 XlO® 5.0 xlO" 5.0 XlO""

Lko 4.8 X 10"' 
( 8 1 0 0 )

1.9 X 10"' 
( 9 1 0 )

1.0 X 10® LaO 9.5 X 10"" 
(1100)

1.6 X 10"" 
(180)

Lki • 1.3 X 10"" 
(170)

Lko 7.6 X 10" 
(1300)

6.6 X 10"" 
(580)

2.0 X 10® LaO 1.5 X 10" 
(170)

8.4 X 10"" 
(94)

Lki 4.7 X 10"" 
(74)

Lko 1.3 X 10"" 
(200)

3.0 X 10® LaO 2.8 X 10"" 
(37)

Lki 1.3 X 10"" 
(24)

Table 3.4: Dissipation lengths in a cylinder as for Table 3.2 but for a magnetic field strength of 50 G 

(from Laing and Edwin, 1995a).
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T (K ) N  (cm ®) mode Dissipation length (cm) k a period (s)

1.4 X 10® 1.5 X 10"° 0.73

L k o 1.5 X 10® 
(7.2)

3.0 7.4

LaO 8.7 X 10® 
(3.5)

2.5 7.5

L k i 3.6 X 10® 
(2.0)

3.6 4.1

0.00 L k o { c o ld ) 5.4 X 10® 
(11.9)

1.4 21.3

1.9 X 10® 1.5 X 10"° 0.99

L k o 1.4 X 10® 
(3.8)

2.0 9.8

L ,o 5.1 X 10® 
(1.5)

1.9 13.3

L k i 2.9 X 10® 
(1.0)

2.7 4.4

0.00 L k o { c o ld ) 4.0 X 10® 
(7.3)

1.2 24.7

2.0 X 10® 1.0 X 10"° 0.69

L k o 2.7 X 10® 
(7.0)

1.7 9.7

LaO 1.0 X 10*̂  
(2.3)

1.5 8.1

L k i 3.4 X 10” 
(1.3)

2.4 4.0

0.00 L k o { c o ld ) 6.0 X 10” 
(10.0)

1.0 21.8

2.5 X 10® 1.0 X 10"° 0.87

L k o 2.8 X 10” 
(6.1)

1.4 11.1

LaO 8.0 X 10” 
(1.1)

1.5 7.7

L k i 3.1 X 10” 
(1.5)

2.2 4.0

0.00 L k o { c o ld ) 6.3 X 10” 
(8.4)

0.8 26:0

Table 3.5: Four sets of coronal parameters for which dissipation of fast waves would be possible in 
a 10 G magnetic slab of half-width 10® cm and density ratio 0.25.
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T (K ) N  (cm mode Dissipation length (cm) ka period (s)
I>kO 1.6 X 10« 

(9.5)
3.8 5.9

1.4 X 10® 1.5 X 10̂ ® 0.73
L,o 4.6 X 10® 

(2.4)
3.3 4.8

Lki 1.3 X 10“ 
(1 .8 )

5.0 2.3

0 .0 Lko{cold) 5.3 X W  
(2 1 )

2.5 13

L*o 9.7 X 10̂  
(5.9)

3.8 5.8

1.9 X 10® 1.5 X lÔ o 0.99
Lgo 3.9 X 10** 

(1.5)
2.4 5.4

Lki 1 .1  X 10® 
(0 .8 )

4.5 2.3

0 .0 Lko{cold) 5.4 X lO*' 
(17)

1.9 16

Lko 3.3 X lO'' 
(13)

2.4 7.3

2.0 X 10® 1.0 X lÔ o 0.69
L s Q 4.9 X 10® 

(1.5)-
1.9 5.2

Lki 2.7 X 10® 
( 1 .1 )

2.6 3.5

0 .0 Lko{cold) 8 .8  X 10**
(25)

1 .8 14

Lko 3.7 X 10" 
(14)

2.4 7.0

2.5 X 10® 1.0 X lÔ o 0.87
Lso 4.6 X 10** 

( 1 .2 )
1.7 5.1

Lki 2.5 X 10® 
( 1 .0 )

2.5 3.3

0 .0 Lko{cold) 9.3 X 10" 
(25)

1.7 15

Table 3.6: Four sets of coronal parameters for which dissipation of fast waves would be possible in 
a 10 G magnetic cylinder of radius 10  ̂ cm and density ratio 0.25 (firom Laing and Edwin, 1995a).
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Figure 3.7: The dissipation length (in cm) versus period for the fast modes Lko (— ), Z'ti( - Lgo 
(....) and Lko{cold) (—) for a magnetic slab. The parameters are for the third case of Table 3.5.
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Figure 3.8: The dissipation length (in cm) versus period for the fast modes Lko (— ), L ti( .-  .-), L,o 
(....) and Lko{cold) (—) for a magnetic cylinder. The parameters are for the third case of Table 3.6.
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higher the temperature and density the shorter is the dissipation length. When the loop radius a 
was increased, it was found, for example, that the curves of Figures 3.1 and 3.2 were shifted to the 
right and so it is only the waves with longer periods that experience more effective dissipation.

A systematic variation of parameters led to a set of ‘best case’ scenarios (see Tables 3.5 and 
3.6) for which the parameters (satisfying the criteria of Braginskii) provided the most efficient (in 
the sense of shortest) dissipation lengths. The corresponding minimum dissipation lengths for the 
lowest-order sausage and the first-order kink modes are shown in Tables 3.5 and 3.6. The dissipation 
length, both in wavelengths and as a true distance, for the lowest-order kink modes in ‘cold’ plasma 
(in which cq =  c« =  0) are also shown in Tables 3.5 and 3.6. Figures 3.7 to 3.14 show the dissipation 
lengths both in terms of true distances and in wavelengths, for the two lowest-order kink modes and 
the lowest-order sausage mode, for a set of parameters for which dissipation appears possible (the 
third case of Tables 3.5 and 3.6) plotted as functions of period, and of wave number k. Figures 3.7 
to 3.14 also show the corresponding curves for a ‘cold’ plasma, i.e. one with /? =  0. From the ‘best 
case’ scenarios it can be seen that the only possible candidates for dissipation are waves with periods 
of about 2 to 10 s in fields of less than 15 G. In this period range the dissipation is more effective in 
the warm plasma situation (see, for example. Figures 3.7 - 3.10).

3.5 D issipation  o f D ucted  Slow M agnetoacoustic W aves

Having considered the lengths over which fast ducted waves dissipate, attention is now given 
to the dissipation lengths of slow ducted waves^. The ideal dispersion relations (1.63) and (1.102) are 
now solved numerically for the slow waves, i.e. the modes lying in the narrow band cp <  w /t  <  ope 
of Figures 1.5 and 1.8. The resulting values ofw and k are, in turn, substituted into Equations (3.15), 
(3.18), (3.21) and (3.24), and the lengths over which the ducted slow magnotoacouotic waves dissipate 
are calculated.

Since the ducted slow waves are confined to such a narrow band between cp and cpe, we 
shall consider only the lowest-order kink and sausage modes because the higher-order modes show 
very little variation as compared with these principal modes. Intuitively, the higher-order slow modes 
should possess very similar dissipation lengths to the lowest-order slow modes, and this was indeed 
found to be the case. Moreover, the investigation into the dissipation lengths of the ducted slow 

magnetoacoustic waves found

1. very little variation between the dissipation lengths of the first-order kink and sausage modes 
(this again is to be expected given the narrow bands of Figures 1.5 and 1.8 in which the slow 

modes exist);

^The work in this section forms the basis for Laing and Eîdwin (1995b).
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Figure 3.9: The dissipation length (in wavelengths) versus period for the fast modes Lko (— ), Lki 
L,o (....) and Lko{cold) (—) for a magnetic slab. The parameters are for the third case of 

Table 3.5.
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Figure 3.10: The dissipation length (in wavelengths) versus period for the fast modes Lko (— ), Lki 
( .- .- ) , L,o (....) and Lko{cold) (—) for a magnetic cylinder. The parameters are for the third case 

of Table 3.6 (after Laing and Edwin, 1995a).
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Figure 3.11; The dissipation length (in cm) versus wave number for the fast modes Lko (— ), Lki 
L,o (....) and Lko(cold) (—) for a magnetic slab. The parameters are for the third case of 

Table 3.5.
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Figure 3.12: The dissipation length (in cm) versus wave number for the fast modes Lko (— ), Lki 
( .- .- ) , Lto (....) and Lko{cold) (—) for a magnetic cylinder. The parameters are for the third case 
of Table 3.6.
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Figure 3,13s The dissipation length (in wavelengths) versus wave number for the fast modes Z-to 
(___), Lki (.- .-), L,o (....) and Lko{col<£) (—) for a magnetic slab. The parameters are for the third 

case of Table 3.5.
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Figure 3.14: The dissipation length (in wavelengths) versus wave uuinber for the fast modes Lko 
(___) and Lki ( - .- ) , L,o (....) and Lko{cold) (—) for a magnetic cylinder. The parameters are for 

the third case of Table 3.6 (after Laing and Edwin, 1995a).
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Figure 3.15: Graphs showing the variation of dissipation length with period for various values of 
the plasma beta, for slow waves propagating in a cylindrical duct of radius 5 x 10® cm and 

external to internal density ratio of 0.5. The dissipation lengths are in cm, periods are in s and 
P — 0 .1 ,0 .2 ,.. ,0.9 (after Laing and Edwin, 1995b).

2. very little difference between the dissipation lengths of slow ducted waves in loops modelled by 
Cartesian or cylindrical geometries (again a not-unexpected result given that the slow modes 
are confined the narrow bands of Figures 1.5 and 1.8).

Hence, only the results for the slow kink wave propagating along a cylindrical duct will be presented 
in the remainder of this section.

Firstly, the values of the plasma beta were varied between 0 and 1. From Figure 3.15 it 
is seen that, for dissipation to take place (according to the criteria given in Section 3.3), waves are 
limited to having periods lying in the range of a few seconds to 225 s. For the slow-wave investigation 
the dissipation length increases with increase in which is the opposite behaviour to that shown 
for the fast waves for small p. Perhaps this result is not so surprising when we consider that P 
represents the ratio of the gas to magnetic pressure and this behaviour will be oppositely orientated 
for slow and fast waves since the gas and magnetic pressures are in (out of) phase for the fast (slow) 
magnetoacoustic waves (see Section 1.6).

The dissipation length, both as a true distance and in wavelengths, for the lowest-order 
slow kink mode is shown in Figures 3.16 and 3.17 for the parameters of Model B in Table 1.7 (see 
Figures 3.2 and 3.4 for the corresponding results for the fast waves). In contrast to the fast waves
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possessing a minimum when the dissipation length is plotted in terms of wavelengths, the slow 
waves have a maximum. However, it must be borne in mind that when the dissipation length is 
plotted in such a way (as shown Figure 3.17) then a l/&  spatial dependence is introduced into the 
dissipation length. It is noted from Figure 3.17 that the slow waves possess dissipation lengths of a 
few wavelengths, and so it seems that efficient dissipation is possible.

The relative importance of the three dissipative mechanisms is shown in Figures 3.18 and 
3.19 and again it is seen that electron thermal conduction is the most dominant term. Figure 3.18 
shows the relative importance of the dissipative terms plotted as a function of dimensionless wave 
number, ka, over the range 0 < to  < 1. The parameters of model B of Table 1.7 have been 
used to compute Figure 3.18. Figure 3.19 also shows the relative importance of the dissipative terms 
hut plotted as a  function of period. Note that a low value of ka corresponds to a large value for 
the period (i.e. ka =  0.1 corresponds to a wave period of 300.0 s and a ka =  10.0 corresponds to a 
wave period of 3.0 s) and so Figure 3 19 represents the relative importance of the dissipative terms 
plotted over the range 10 > ka > 0. For ka C  1 it is noted that electron thermal conduction and 
radiation are the important dissipation mechanisms.

When the external to internal density ratio (pe/po) is varied between the values 0 and 1, 
it is found that there is no noticeable variation in dissipation length. Hence the ratios of 0.25 or 0.5 
are used in the subsequent examination.

Investigating the variation of dissipation length with loop radius, a, it is found that, in 
general, the length increases with increase in radius implying that, in an unstructured medium, 
when the radius of the cylinder is infinitely large, there is no dissipation taking place. However, 
the infinite-medium situation is actually represented by a scaled value of the radius that takes into 
account the allowable wavelengths, i.e. ka >  1. A comparison between the results of the diœipation 
lengths for slow waves in an unstructured medium and in the ka 1 limit of the structured case is 

left until Chapter 5.
It was found that the dissipation decreased (weakly) with increase in magnetic field strength 

(see Figure 3.20), a result that is not anticipated given the effect of variation in p. The pattern is 
however, consistent with that of the fast waves, that is, the stronger is the field the less likely are 
the waves to lose their energy.

As shown in Figure 3.21 an increase in the density resulted in the dissipation length being 
increased. This behaviour is consistent with the variation of dissipation length with /?, since P is 

directly proportional to density.
For wave periods ~  80 s, it was found that the dissipation length decreased with increase in 

temperature (see Figure 3.22), which is not as expected from the P variation. Also, the dissipation 
length was not monotonie with increase in temperature for waves with periods 80 s. For periods 

~  225 s, the dissipation length increases with increase in temperature.
In Ihble 3.7 we give the values of the parameters B, N  and T  for which, according to our 

model, and the four criteria given in Section 3.3, the slow waves are dissipated. The loop is modelled
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Figure 3.16; The diooipation length versus period for the lowest-order slow kink mode propagating 
in a cylinder with the parameters of Model B of Table 1.7.
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Figure 3.17: The dissipation length (in wavelengths) versus period for the lowest-order slow kink 
mode propagating in a cylinder with the parameters of Model B of Table 1.7.



CHAPTER 3. MHD WAVES IN A W EAKLY DISSIPATIVE ENVIRONMENT 91

0.8

0.6

0.4

0.2

0.0
0.8 1.00.4 0.60.20.0

ka

Figure 3.18: Relative importance of the dissipative terms plotted as a function of dimensionless wave

number: Qther/Qtotai (—), Qvis/Qtotai (-----), and Qrad/Qtotai (•••) for slow waves propagating in
a cylinder with the parameters of Model B of Table 1.7.
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Figure 3.19: Relative importance of the dissipative terms plotted as a function of period (s): 

Qiher/Qtoiai{— ), Qvi,/Qtotai (- - "), and Qrad/Qiotai ( . ) fo: slow waves propagating in a cylinder 
with the parameters of Model B of Table 1.7.
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Figure 3.20: Dissipation length versus period for the slow waves with the parameters of Model A of 
Thble 1.7 with B =  10 G (—) and 100 G (- - -).
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Figure 3.21: Dissipation length versus period for the slow waves with the parameters of Model A of 
Table 1.7 with N  =  10® cm“ ® (—), 10^° cm“ ® (---- ) and 10^  ̂ cm“ ® (...).
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Figure 3.22: Dissipation length versus period for the slow waves with the parameters of Model A of 
m i e  1.7 with T  =  1 X 10« K (—). 2 x 10® K (- - -) and 3 x 10® K (...).

as a cylinder of radius 5 x 10® cm and the density inside the cylinder is twice that in its exterior. 
The gaps in the table appear where not all the four criteria are satisfied. In general, and in keeping 
with the patterns of B, N  and T  variation given above, the most effective dissipation is for lower N  

and lower T  but smaller B.

3.6 D issipation  o f W aves in a Cold P lasm a

The dissipation of fast magnetoacoustic waves in a  cold plasma® using the model presented 
in this chapter has been previously studied by Gordon and Hollweg (1983), Sahyouni, Kiss’ovski and 
Zhelyazkov (1987) and Edwin and Zhelyazkov (1992). For a cold plasma in which cq =  c« =  0 (and 
therefore one in which the slow waves do not exist) the dissipation lengths for the fast sausage and 
kink magnetoacoustic modes, as given by Equations (3.15) and (3.18) for the Cartesian case, reduce 

to

and

L, =

Lk =

kpov\a^{Bm^{noa) +  -  g^sin(2noa)}
w{(noa)®(do +  *?/3)(meO +  ^  sin(2noa)) +  (mga)3(dg +  t } /3) sin^(noa)} '

____________ fcpov^a^{cos^(noa) +  mgU +  ^ s in (2 n o a )} _____________
w{(noa)2(do +  7?/3)(m«a -  ^  sin(2noa)) +  {rriea)^{de +  rj/3) cos^(noo)} '

(3.28)

(3.29)

^The work in this section forms the basis for Edwin and Laing (1994) and Laing and Edwin (1994).
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T (K ) N  (cm”"®)
1.0 xlO» 1.0 xlO '" 1.0 xlO“

1.0 X 10®

10 G : 25 - 225 s 
25 G ; 26 - 210 s 
50 G : 26 - 200 s 
75 G : 27 - 200 s 
100 G : 27 - 180 8

25 G : 15 - 30 8 
50 G : 15 -2 3  8 
75 G : 15 - 21 s 
100 G : 15 - 21 s

2.0 X 10®

10 G : 70 - 150 s 
25 G : 80 - 140 s 
50 G : 80 - 140 s 
75 G : 80 - 140 s 
100 G : 80 - 140 8

50 G : 15 - 50 8 
75 G : 15 - 40 s 
100 G : 15 - 40 8

3.0 X 10® 50 G : 15 - 75 s 
75 G : 15 - 60 s 
100 G : 1 5 -6 0 s

Table 3.7: Period ranges over which slow waves propagating in a coronal loop are dissipated (from 

Laing and Edwin, 1995b).

on noting that pe/po = for a cold plasma (see Equations 1.28 and 1.49). Similarly Equar
tions (3.21) and (3.24) reduce to the dissipation lengths for fast sausage and kink magnetoacoustic 

modes in a cold plasma, namely:

L, —
kv\poa? Cn 

w C /

where

Cn = (noa)2

1
{rrieCiy

/ Ji(noa)\ ^   ̂ ^ ___2 Ji(noa)
VJo(noa)/ noaJo(noa)

2 Ki(mea)
m«a Ko(mea) +  1

_  / K i(m .u)Y 
\K o(m .a)y

and

Cd =  (do +  *?/3)

for the sausage modes, and 

kv^poa^ Cn

where

(3.30)

Cn = 1 + 1 -  - L .
(noa)2 VJi(noa)y {meay

2 . / Ko(m .g)\
m |a2 V K i(m ea)/

21

(3.31)

(3.32)

(3.33)

(3.34)
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and

r / Ko(m.d)Y
[VKi(mea)y

(3.35)

for the kink modes, respectively.
Equations (3.28) and (3.29) are simply the equations given by Gordon and Hollweg (1983) 

for their consideration of the weakly dissipative model in a slab of cold plasma (see also Edwin 
and Zhelyazkov, 1092). Equation (3.33) has previously been given by Edwin and Zhelyazkov (1093) 
correcting the expression given by Sahyouni, Kiss’ovski and Zhelyazkov (1987) for a cylinder of cold 

plasma. Equation (3.30) has not been discussed previously.
The model used by Gordon and Hollweg for dissipating the waves by electron thermal 

conduction could only be implemented satisfactorily in the extremes of high and low frequency of 
the waves. As a result of describing Qther by Equation (2.35), the term d in Equations (3.28) and 
(3.29) is no longer given by Equation (3.10). Instead Gordon and Hollweg give it as

f «11,6/( j )  ^ ( 7 - 1 )̂ » w < Wcond,
”  I

(3.36)
JNr2jb|ri:-2/C-;, w > Wcond,

where Wcond = «||,e/t^(7 -  l ) /N k s  (see also Edwin and Zhelyazkov, 1992).
Gordon and Hollweg concluded that efficient dissipation occurred if the wave periods were 

less than a few tens of seconds and if the background magnetic field were less than about 10 G. In 

particular, Case TV of their paper considers the propagation of kink waves in a duct formed by a 
slab of cold plasma.

Sahyouni, Kiss’ovoki and Zhelyazkov uood this same method to evaluate the damping of 
kink waves ducted in a cylinder of plasma and found, surprisingly, despite only a change in geometry, 
that efficient dissipation occurred if the wave periods were longer than 200 s and the background 

magnetic field were smaller than 5 G.
Edwin and Zhelyazkov investigated the reasons behind these two differing conclusions 

and resolved the m atter in favour of Gordon and Hollweg observing that the paper by Sahyouni, 
Kiss’ovski and Zhelyazkov had erred in several ways:

It only a low fruquuncy model for Qther wao assumed) itCt only dissipation lengths of waves with 
frequencies w < ufcond in Equation (2.35) were used;

2: the waves were not regarded as diopersionless and no account was taken of the variation of 

Qther with frequency;

3. the factor d in Equation (3.36) was taken to be the same inside and outside the duct even 

though the density ratio Pe/po was not unity.
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Further, the expression given by Sahyouni, Kiss’ovski and Zhelyazkov for the dissipation lengths 
of the fast waves has been calculated incorrectly. Edwin and Zhelyazkov thus concluded that the 
dissipation length of the waves increases with magnetic field strength and decreases with increase in 
density, and is a few wavelengths for waves with periods of several seconds in the active corona.

Although Equations (3.28), (3.29) and (3.33) have been previously obtained by Gordon 
and Hollweg (1983), Sahyouni, Kiss’ovski and Zhelyazkov (1987) and Edwin and Zhelyazkov (1992), 
there have been flaws in all of their work (Laing and Edwin, 1994; Edwin and Laing, 1994). The 
flaw is a consequence of Gordon and Hollweg describing the electron thermal conduction term in 
terms of low and high frequency: Whilst this in itself gave on adequate description in the extremes 
of high and low frequency of the waves, it did not describe the dissipation mechanism correctly for 
all frequencies. Gordon and Hollweg considered the limits of a quantity, i.e. frequency, which is a 
function of wave number. Consider Equation (2.40) written in the non-dimensionlized form:

where W  — u/kvA  and K  = ka axe dimensionless variables, and C\ =  K||_g,T('y — \ Ÿ / v \  and 
Cg =  «||,e/(7 — \)/NkaVA<^ are constants for a given set of coronal parameters. Equation (3.37) 
then replaces Equations (42b) and (43b) of Gordon and Hollweg (1983) in the low {K  -+ 0) and 
high {K  —»■ oo) wavenumber limits, respectively. Similarly it replaces E)quation (5) of Edwin and 
Zhelyazkov (1992) in these limits. It is noted that since the waves are dispersive and that 1 < W < 
VAe/vA, for the bands of fast waves in Figures 1.5 and 1.8, then, from these figures, W  —*■ vxb/va as 
K  whilst W -+ 1 as K  —* oo. These limits are not the low- and high-frequency limits referred 
to in Gordon and Hollweg (Equation (2.35)). Further, Gordon and Hollweg were self-contradictory 
in their description of the Qther term as the figures in their paper wore not computed using the low 
and high-frequency descriptions in the text of that paper (see Figures 3.23 and 3.24).

The results for the lowest order, fast, kink wave propagating in a cold plasma slab for the 
parameters of Model B of Table 1.7 are shown in Figures 3.23 and 3.24. Curves A and A’ show 
the dissipation length in terms of distance and wavelength respectively, using Equation (2.40) as 
the expression for Qther- They show that the dissipation length, is at least of the order of the 
coronal ocale height and that in terms of wavelengths the minimum dissipation length is about 20.

Curve B’ is essentially the uppermost curve of Figure 2 (d) of Gordon and Hollweg (1983) 
(i.e. the curve represented by Curve B in Figure 3.23) but here expressed in terms of wavelengths 
and not on a logarithmic scale. However it must be noted that Gordon and Hollweg were self
contradictory and that this curve was not drawn using the low- and high-frequency descriptions 
of Equation (2:35): The curve correctly represents the low and high wavonumb or limits of Equa 
tion (3.37). Indeed Curves C and C’ are the ones that would result were the low- and high-frequency 
descriptions of Gordon and Hollweg (Equation (2.35)) to be implemented. Thus Curves C and C’, 
together with the figures in Edwin and Zhelyazkov (1992), are erroneous ones.
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Figure 3.23: Dissipation lengths versus period for the fast magnetoacoustic kink mode ducted by a 
slab of cold plasma are shown for three different models of the thermal conduction rate: that given 
by Equation (2.40) (—, Curve A); limiting form of (3.37) (..., Curve B) and (2.35)(-----, Curve C).
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Figure 3.24: Dissipation lengths (in wavelengths) for the fast magnetoacoustic kink mode ducted by 
a slab of cold plasma are shown for three different models of the thermal conduction rate: that given 
by Equation (2.40) (—, Curve A’); limiting form of (3.37) (..., Curve B’) and (2.35)(-----, Curve C’).
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Comparison of Curves A and B, and A’ and B’ thus shows that taking the limiting forms for 
Qther does not reveal the dissipative behaviour at intermediate frequencies. The dissipation lengths, 
which are of the order of the coronal scale height when using these limiting forms, are shown to be 
unacceptably long (i.e. more than a few wavelengths) if Equation (2.40) is used as a more accurate

description of Qther-
So by expressing the electron thermal conduction by Equation (2.40) all frequencies can 

be accurately described. Further, Gordon and Hollweg’s inconsistency in describing the electron 
thermal conduction term was not appreciated by Sahyouni, Kiss’ovski and Zhelyazkov (1987) and 
Edwin and Zhelyazkov (1992). Both of these papers computed the dissipation lengths using the 
low- and high-frequency expressions given by Gordon and Hollweg. Therefore the previously known 
results for a cold plasma cylinder are in error.

As a final comment on the cold-plasma results we note that whilst it is generaJly accepted 
that the magnetic pressure dominates over the gas pressure in the corona, then the assumption 
of a  cold plasma is a reasonable one but it does lead to anomalies when one is considering the 
temperature-dependent, dissipative mechanisms. On the one hand the plasma is considered to be of 
zero degrees Kelvin, on the other it has a temperature of a million degrees Kelvin! By considering a 
warm plasma, one is able to avoid these difficulties. Given that there have been flaws in all of these 
papers on the dissipation of magnetoacoustic waves in a cold plasma, using a weakly dissipative 
method, the results contained in Section 3.5 for a warm plasma supersede those given by Gordon 
and Hollweg (1983), Sahyouni, Kiss’ovski and Zhelyazkov (1987), and Edwin and Zhelyazkov (1992).

3.7 Sum m ary

The model presented in this chapter for the dissipation of mhd waves in a weakly dissipative 
environment propagating along a coronal loop, regarded as a slab and as a cylinder, is a simple one. 
The corona was regarded as a warm, collisional plasma and the mhd waves were considered to be 
in a non-ideal environnment that was subjected to diœipation by ion viscosity, electron thermal 
conduction and optically thin radiation. The investigation found that electron thermal conduction 
was the most important of the three dissipative terms.

Diœipation lengths for fast and slow, sausage and kink modes have been calculated. The 
expressions for the dissipation lengths of waves in a cold plasma previously studied by other authors 
could be recovered. Moreover, it has been shown that these previous studies were all flawed and 
that wave dissipation is more effective in a warm plasma.

It was found that as the mode-order of the ducted waves increased, then the dissipation 
length was reduced. For fast waves it was found that dissipation was favoured in regions of low 
magnetic field (~15 G) which have high temperatures (3.0 x 10® K) and high densities (5.0 x 
10^° cm“ ®). For slow waves, dissipation was favoured in regions of low densities (10® cm” ®), low 
temperatures (1.0 x 10® K), with smaller magnetic field strengths (10 G).
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It was found that there was very little difference between the dissipation lengths of slow 
ducted waves in coronal loops modelled by Cartesian or cylindrical geometries. It was found that the 
dissipation lengths of fast ducted waves in loops modelled by Cartesian and cylindrical geometries 
were of the same order of magntitude but, on the whole, loops modelled as a slab produced longer 
dissipation lengths than loops modelled as a cylinder.

Fast waves which are likely to dissipate efficiently have periods of 2 to 10 seconds duration 
and slow waves that are likely to dissipate have periods that range from tens to hundreds of seconds 

(15 - 225 s).



100

C hapter 4

Dissipative Effects In Slender 
Structures

4.1 Introduction

The investigation in the previous chapter centred on ducted waves in a weakly dissipatiye 
environment. Although the method in that chapter was straight-forward, it was seen that not all 
coronal conditions could be sensibly described by the model. However, as well as yielding dissipation 
lengths and giving period ranges for which fast and slow waves would/would not dissipate, the 
investigation found that electron thermal conduction was the mcxit important of the dissipative 
mechanisms considered. Moreover, in the situations for which ka ~  0.15 and ka ~  0.2 (see Figures 3.5 
and 3.18), that is to say for slender structures, it was found that conduction was important for the 
fast wavra and that for the slow waves, both thermal conduction and radiation were important 
dissipative mechanisms.

The task undertaken in this chapter is to build upon the results of Chapter 3 by including 
the dissipative effects of thermal conduction and optically thin radiation in the mhd equations from 
the outset. Thus a fully dissipative dispersion relation may be obtained and damping rates and 
dissipation lengths may be evaluated. In turn, suggestions as to the sorts of waves and wave-periods 
which may be relevant to coronal heating, or indeed may be associated with recorded oscillatory 
phenomena, can be inade. As in the previous chapters, we shall model a coronal loop by using 
Cartesian and cylindrical geometries.
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4.2 D issipative M odes

In Chapter 2 we have shown that the energy equation may take the form (see Equar 

tion (2,3)):

^  ^ ^  +  (v V ) ^ r - ( ^  +  (v V ) ^ p = - I ,  (4.1)

where p, p, T  and v  have their usual meanings and L  is the energy loss function which may be written 
as the rate of energy loss minus the rate of energy gain. If we now specify L by

L = - Q V ^ f - p C { p , f ) ,  (4.2)

where Q is a (uniform) heat transport coefficient which takes into account the effect of thermal 
conduction (i.e. we are no longer considering anisotropic thermal conduction as described by Equa
tions (2.26) and (2.27)) and C{p, T) represents the heat loss exclusive of thermal conduction (Field, 
1965), then by describing radiative effects by Equation (2.41), we can attempt to pursue a non-ideal 
dispersion relation. In particular, we describe the energy equation in the form:

^  ^ " ( s   ̂̂  (4 3)
where we have assumed isotropic thermal conduction and that the term models the heat
loss through radiation in an optically thin atmosphere. The coefficients, % (% denotes x  modified 
by a factor of l/p^m®) and a, are temperature-dependent and are given as piecewise-continuous 
functions (see Table 2.1). To maintain an energy balance at equilibrium p =  po,p =  poi v  =  0 and 
T  = Tq (where po, po and To are all constants), a heating term, oq, is included.

We shall again use the Cartesian (cylindrical) representation given in Section 1.7.1 (1.7.2) 
to model a  coronal loop. From Equation (4.3) we see that for there to be equilibrium.

i.e. the heating term takes a different value in the two regions. So for coronal (10® K) temperatures 
X =  1.0 X 10” ®® (x =  1.6 X 10®® and a  =  0).

Perturbing the equilibrium state by writing p =  po +  Pi P =  Po +  Pi B =  B qe 4- b  and 
T  =  Jo 4- T, and expanding the term p/I(p, T) (i.e. p®xT®) in a Taylor series and linearizing, yields 
Equation (4.3), for |x| <  a:

PoCp*^ ~  ~  ~  PoX^o* “  PoX«r^~^T’ — 2popxTq + po^o +  P^o- (4.5)

Now noting that Oo =  poxJo*i we may rewrite Equation (4.5) as

&P ôv T
Po<V ^ ~  ~ÔÏ ~  ■” ®oPo<»^ — poo- (4.6)
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The equations of continuity (1.3), solenoidal constraint (1.6), momentum (1.14) and induction (1.16) 
and ideal gas law (1.12), for |z| <  a, may be written as

^  +  / , o V v  =  0, (4.7)

V b  =  0, (4.8)

« ^  =  - v ( p + 2 ^ )  +  i ( B „ V ) b ,  (4.9)

^  =  ( B o V ) v - ( V v ) B o ,  (4.10)

and

f  =  £ -  +  f .  (4.11)Po Po io 
respectively.

Here, as in Section 1.7.1, we are considering a Cartesian geometry with the perturbed 
quantities p(z), p(z), etc.. having the Fourier form We may Fourier analyze Equations (4.6)
to (4.10) to yield the following relationships between the perturbed quantities (for |z | <  a):

where k  =  Q/poCp is the (constant) thermal diffusivity,

*wp -|- po*3— h ipokvg =  0; (4.13)
ax

+  ikbjt =  0, (4.14)

(p +
upoVg =  - t p ,  (4.16)

w6% =  kBoVgj (4.17)

and

iuhg =  —Bq-j ^ .  (4.18)
ax

It can then be shown, after some algebra, that combining Equations (4.13) to (4.18) with 
Equation (4.11) results in

where
2 ( t®r^-w®)(t®cg/7-w®)
“  "  (eS/r +  t<J)(i’ c j,-u ,2 )  ■
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and

oci = ic l/7  + v\)(w^ -k ^ c j^ y

Eliminating p(z) between Equations (4.12) and (4.19) gives, a fourth-order differential equation in 
T{x) {cf. Edwin 1984), namely

-  +  (ci* +  Kmgj +  (o -  1)(7 -  1 ) ^  -  ^ (« u  -  ^ ) |

+  (« .m 2 , +  «t'm 2, +  m 2 ,(. -  1)(7 -  -  (^ ~  D ~ ^
L Cq 7 Cq J io
=  0, (4.20)

where

and the four boundary conditions, continuity of U a.,pr,r and /c ^ ,  require to be satisfied across the 
boundary at z =  ±a.

In theory, one can solve for T{x) in Equation (4.20). Then it can be shown from Equa^ 

tion (4.12) that p(z) is given by 

-7Pop(z) =
(7 -  l)(*w -  Tflo/co)

From Equations (4.11), (4.13), (4.16) and (4.18) we see that

(4.21)

V. =  ■ -t:  (p(*) +  Bob. (*)//»). (4.23)

and from Equations (4.17) and (4.15) we have 
—iu> d 

Po{k^v\ -  w^) dx

Note that Equation (4.20) is the Cartesian counterpart to Equation (5.17) of Edwin (1984) 
which was derived for an axisymmetric cylindrical geometry (i.e. no 6 component). However, the 
two equations differ in the r^pect that Edwin (1984) considered a Newton’s Law of Cooling (see 
Equation (2.45)) for the form of the radiative lœs term whereas Equation (4.20) models radiative 
effects through the piecewise-continuous function given by Rosner, Tucker and Vaiana (1978).

Using Equation (4.3) and the cylindrical counterparts to Equations (4.12) through to (4.19) 
it ma) be shown that the fburth-ordcr differential equation in T (r) for an axisymmetric cylindrical 

geometry is given by Equation (4.20) with jD® given by d®/dr® 4- r~^d/dr.
To investigate the solutions of Equation (4.20) we can consider the two simpler, separate 

cases of radiative, non-conducting modes and conducting, non-radiative modes.
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4.3 R adiative, N on-C onducting M odes

When thermal conduction is neglected (« =  0) but radiative effects are considered, explicit 
mention of temperature can be removed from Equations (4.12) and (4.19) so that the velocity 
perturbation satisfies:

-  |«u- +  (or -  1)(7 -  1 ) ^  -  -  Z ^ ) o r . l  D \ , ( x )
I ^0 y  ^0 )

+  I iu m li  +  mgd(o -  1)(7 -  1)%  -  ^  \ iu  -  ^ ) a i |  « .(* )
I % I "A ^0 )
=  0, (4.24)

where D® =  d®/dz® in a Cartesian geometry and D® =  d®/dr® +  r~^d/dr in a cylindrical geometry. 
Note that in removing explicit mention of temperature from the problem we need only concern 
ourselves with the boundary conditions of continuity of v* and py. Note further that the pressure 
perturbation, also satisfies Equation (4.24) so that p(x) and, in turn v(z), satisfies:

(D® -  A®) V. =  0, (4.25)

where

° -  w®(vj +  cgf/o) ’

vo = -tw +  Wo 
*w +  fio *

Cq

Do — ocy{j — 1 ) ^ ,
Cq

and the other field variables p, b etc. may be related to Vx by Equations (1.51) to (1.55). Note 
that in the adiabatic limit, i/q =  1, we recover thé ideal equations in Sections 1.7.1 and 1.7.2 for the 

Cartesian and cylindrical geometries respectively.
An equation similar to Equation (4.25) holds in the exterior of the duct, namely

(D®-A®)t;« = 0 ,  (4.26)

where

X2 ( k ^ V A e  -  W®)(A?®C®|/e -  W®)

* f:®c®t>i.i/« -  w2(t;® .  +  cjve) ’

iu+ U e

and
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where Og =  peXTg If we now write =  -Aq and assume that Tle{(po) > 0 then Equation (4.25) 

has the solution

V* =  C l  s i n ( y o z )  +  C'a co s(y > o z), ( 4 2 7 )

where Ci and Ca are constants.
Confining attention to disturbances that are evanœcent in the exterior, |x| >  a, Equar 

tion (4.26) has the solutions

where C3 is a constant and we have assumed that %e(A«) > 0.
Matching the normal component of velocity and the total pressure acroæ the boundaries 

at z =  ± a  gives the dispersion relation for symmetric waves (i.e. we suppose that Ca =  0 in 

Equation (4.27)) travelling in a radiative slab, namely

-  Pe -  w®) (po tan(yoo) +  Po -  w®) A« =  0. (4.29)

For the axisymmetric (i.e. no 9 component) cylindrical case, it may easily be shown that 

R(r) satisfies an equation such as Equation (4.25), namely

r  ^  ■ ■ '0

where A® is as before and the other field variables p, b etc. may be related to R(r) by Equations (1.85) 
to (1.92). An equation similar to Equation (4.30) holds in the exterior.

For the axisymmetric solution bounded on the axis (r =  0) of the cylinder, we take for

r  <  a,

R(r) = AoJo((por), (4.32)

where Aq is a constant. In the external region, attention is confined to disturbances that are 
evanescent so that for r  > a,

Â ' ( r )  =  A iK o ( A .r ) ,  (4 .3 3 )

where Ai is a constant and again we have assumed that %e(A#) > 0 .
Matching the radial component of velocity and the total pressure across the cylinder bound

ary yields the dispersion relation for a ‘radiative cylinder’, namely

Equations (4.29) and (4.34) are the Cartesian and cylindrical counterparts of the dispersion 
relation obtained by Webb and Roberts (1980) for a cylindrically structured medium subject to
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radiative loss by Newton’s law of cooling (see Equation (2.45)). Note that the radiative loss term 
in the model considered here is that of Rosner, Tucker and Vaiana (1978), shown in Table 2.1, with 
X =  1.0 X 10“ ®® and a  =  0 (x =  1.6 x 10®®) for coronal (10® K) temperatures.

4.3.1 Consideration of Slender Structures

In order to investigate further the complicated dispersion relations (4.29) and (4.34) we ' 

shall suppose that the slab and cylinder arc slender and oo attention is confined to circumstances for 
which ka is small. If it is assumed that 'Re{(pQa) —+ 0 and %e(Ago) —̂ 0 as to  —» 0 then for ka 1 
it may be shown, in a similar fashion to the work of Roberts and Webb (1979), Webb and Roberts 
(1980) and Edwin (1984), that for body waves Equation (4.34) reduces to

(c®i/Q +  t>J)w® -  k^clt/Qv\ =  0, (4.35)

whidb, when written out in fùll with vq given as before, is a cubic equation in w:

(c® +  vj)w® -  i(v^Do +  c®wo)w® -  k^clv^u) +  tt®c®t;ia;o =  0. (4.36)

Inserting the expression for wq yields the cubic:.

(cj +  vî)w® -  i 4- oo(a -  1)(t -  1)^ w®

-k^CQv\u 4- tt®vj|(7 -  l) (a  -  l)oo 

=  0. (4.37)

Identifying ?%, the non-dimensionlized radiative heating decay time, with c l/y {y  — l)oo, then Equa

tion (4.37) may be written as:

(cq 4- — — {a v \ 4- (or — l)-^)w® — k^CQv\u 4- -— ------ “ =  0, (4.38)

and in the adiabatic limit {vh —̂ oo) Equation (4.38) gives w =  0 or w =  t®Cy, where cy is the 
characteristic tube speed of the cylinder (see Chapter 2).

The dispersion relation (4.38) may be analyzed from two points of view. As suggested by 
Webb and Roberts (1980) we may specify the wave number, t ,  as a given real quantity and solve 
for complex frequency, w. Alternatively, and of interest here so that we may investigate spatial 
damping, we solve Equation (4.38) for k given w.

4.3.2 Investigation of Spatial Damping

FoUowing from the discussions in Chapter 2 (Sections 2.4 and 2.5), the dissipation length 
of the waves is taken as the c folding distance l/2ib,* and only assumed to be a diœipation length if 

~  4 X 10® cm.
The parameters of magnetic field strength, B, density, N  and temperature, T, were varied 

over the coronal ranges given in Table 1.8. It was found that increasing the magnetic field otrcngth
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Figure 4:1; The diesipation length versuo period for waves in a slender structure with magnetic field 
strength of 10 G (—), 50 G (---) and 100 G (....) subject to radiative damping. The parameters 
other than the magnetic field strength are those of Model B of Table 1.7.

resulted in a decrease of the dissipation length (see Figure 4.1). Moreover, in keeping with the 
fact that ducted slow magnetoacoustic waves are under investigation here, there is only a weak 
dependence on the magnetic field. As is shown in Figure 4.2 increasing the density produced a 
docreoso in the dissipation length and increasing the background temperature of the plasma results 
in an increase in the dissipation length (Figure 4.3).

These rcsultS j of varying the magnetic field strength, density and temperature, suggest that 
slow, ducted magnetoacoustic waves radiate their energy more easily in regions of high magnetic 
field strength (100 G), high density (10^^ cm” ®) and low temperatures 1 x 10® K. Further, the 
investigation found that the waves only underwent efficient dissipation when they had

1. periods of less than 100 s in a region of low magnetic field strength (10 G), high density 
(10^^ cm” ®) and low temperature (1 x 10® K).

2. periods of less than 130 s in a region of high magnetic field strength (50 G), high density 
(10^^ cm” ®) and low temperature (1 x 10® K).

3. periods of less than 120 s in a region of high magnetic field strength (50 G), high density 
(10^  ̂ cm” ®) Mid a temperature of (2 x 10® K).

Thus, this model demonstrates that the waves in a slender structure are reluctant to sur
render their energy to radiation alone; there are relatively few circumstances under which the waves
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Figure 1.2: The disoipation length vorous period for wavco in a olcndcr otructure with denoity otrength 
of 10® cm“ ® (—), 10̂ ® cm” ® (---) and 10^  ̂cm” ® (....) subject to radiative damping. The parameters 
other than those of density are those of Model B of l^b le  1.7.
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Figure 1.3: The diraipation length versus period for waves in a slender otructure with background 
temperature 1 x 10® K (—), 2 x 10® K (---) and 3 x 10® K (....) subject to radiative damping. The 
parameters other than those of temperature are those of Model B of Table 1.7.
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dissipate in distances of less than 4 x 10® cm (i.e. those listed in 1, 2 and 3 above). Clearly then, it 
is very difficult for the waves to dissipate their energy efficiently and the results suggest that, in the 
limited number of situations described, only waves with periods of less than about 100 s are able to 
overcome the threshold of radiative energy loss.

Having considered thê radiative effects upon waves in a slender structure we now turn to 
the conducting, non-radiating solutions of Equation 4.20.

4.4 C onducting, N on-R adiating M odes

In Chapter 3, thermal conduction was shown to be more important in damping the waves 
than was radiation, so we must be wary of relying upon the results of the previous section for giving 
us information about conditions under which waves would or would not dissipate in the corona. 

Neglecting terms involving radiative losses. Equation (4.20) becomes

K c r a D * ^ ^ ^  -  +  Kcrak^  +  KcTaml^ -

+  {iwmg, +  I  ^  .  Q, (4.39)

where we have written K  =  Kfcra as the non-dimensionalized thermal conductivity. Note that 
=  (Pfdx^ in a Cartesian geometry and D^ =  <P/dr^-\-r~^d/dr in a cylindrical geometry (Edwin 

1984). Since the coefficients in the differential equation are all constant, T{x) =  exp(iAx) is a 
solution with A satisfying:

K c r a X ^  +  Â  |»u; 4- K c r a k ^  +  K c t o u i q ^ — -I-

_  (4.40)
y«A ,

4.4.1 Dispersion Relation For Waves Travelling in a Dense Loop

In general, the solution to Equation (4.39) is

T =  -I- (4.41)

where Ai ^  Ag and i4i,Aa,i43 and A4  are constants. We consider disturbances of the slab with 

solutions of the form

T  =  Ai(e*^^* 4- c - ‘̂ ^*) 4- 4- e” *^»*), (4.42)

so that we may examine symmetric disturbances of the slab. Using Equations (4.42), (4.21), (4.22)
and (4.23) results in expressions for the heat flux, the total pressure and the normal component of

velocity, namely:

=  t / c ( A iA ,( e * “  -  e - ^ " )  +  A , 4 , ( e * ’ * -  « - * ’ * ) ) ,  ( 4 .4 3 )
dx
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and

V* =
p o { k ^ v

where
„  ipoJ^i-fiXj -  Kk^ -  *w)(cJ/7 +  v\){w^ -  Bg
f  j = ------------------------------ ------------------------------------------ -pTo’

(4.44)

(4.45)

(4.46)

and

2 _  cWa 
' ’ ■ (<^ +  7« 'J’

for j  =  1,2. (Note that it is actually Equation (4.45) that determines the form of solution taken,
i.e. the velocity perturbations are fixed on the axis.)

In the exterior of the slab, an equation similar to Equation (4.39) holds and w e  se e k  solutions 
of the form of Equation (4.41) i.e. T* =  i4eie^*‘* +  Ae2C” ^*‘® +  ^«36 *̂=*® +  but in which
the disturbances decay as x —» ± 0 0  and for which Agi /  Ag2 with %e(Agi) >  0  and %e(Ag2) >  0 .

By matching Equations (4.42) to (4.45) for the temperature, heat flux, total pressure and 
normal component of velocity in |x| <  a to a similar set in the region |x| >  a gives the dispersion 

relation in the determinant form:

1 1 —1 —1

xAi$i xA2$2 «eAgl KgAg2
Fi F2  —di —d^
XiF\9i A,i di X»ad;Aai 01 A«aoa

PrK PrVa

=  0. (4.47)

where

d j  =
*Pe7^(««Aj - -  Kgk® -  *w)(c2/7 +  vïg)(w® -  B j c L —

(7  -  l)Jbw®c3 /iTo ’

=  tan(Aj-a), Va =  (k®vj -u;®), Ve =  ( k \ \ ^  -w®) and pr =  pe/poy

for j  =  1 , 2 .
Edwin (1984) has already considered the cylindrical case of Equation (4.39) and showed 

that, for symmetric disturbances, the dispersion relation may be cast in the form of a determinant, 

namely

1 1 —1 —1

kAi ^ I  fcA2$2 XgAgi^i /cAg2^2
Fi F2  —di —d2
Aifi^i AaJa^a —AaidiŸi —A«ada$a

Va Va f r V .  PrV,

=  0, (4.48)

where Ai, A2 , Agi, Ag2, F i, F2,d i ,^2, Va, Ve and pr are as before but now
Kl(AejQ)
Ko(Agjfl)
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In considering the dominant terms of Equation (4.40) with üf <  1 results in the charac
teristic equation (4.40) having the solutions (Edwin, 1984)

and

Before exsmining Equations (4.47) and (4.48), we may recover two special cases, namely

1. When K  and #fg(= Kg/cyo) both —+ 0 then

(a) Equation (4.47) has either the degenerate roots w® =  ib®Cy and w® =  or

-  -  w*)wo tao(noa) 4- p(\{k^v\ -  w®)m« =  0, (4.51)

and hence the symmetric dispersion relation for waves propagating in a Cartesian slab 
(Section 1.7.1) is recovered.

(b) Equation (4.48) has either the degenerate roots w® =  ib̂ Cj. and w® =  jb®c§,g or

=  (4.52)

and hence the symmetric dispersion relation for waves propagating in a  cylinder (Section 
1.7.2) is recovered.

2. In the limit of ÜC >  1 and iC« >  1, then

(a) Equation (4.47) reduces to one in which either w® =  0 or the isothermal equivalent of 
Equation (4.51) is recovered, namely

-  w®)»od tan(modo) 4- po(k®vJ -  w®)mgj =  0, (4.53)

where and

,  ( t ' v L - w W c ; / 7 - w ' )
"  ( ' i / 7 + « L ) ( t ' 4 . -  w ') '

J  -  < « 1 /7  
'« • - c J / T  +  v J.-

(b) Equation (4.48) yields either w® =  0 or the isothermal equivalent of Equation (4.52), 
namely
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Following the discussion in Edwin (1984), if it is assumed that the environment of the loop 
is isothermal so that |Aei|a 0 , |Ae2 |a -► 0 as \k\a 0 (and so the perturbations of velocity and 
temperature in the environment are small), then taking the \k\a <  1 limit of Equation (4.47) results 

in
Ke cos(Aia) co8(A2o)(Fi -  F2)(di -  da) _  q ggx

PrVeO^
In the case when Fi =  Fa we have from Equation (4.46) either equal roots A% =  Aa or the spurious 
solution We can also similarly rule out the case when di =  da- Further, it may be shown
that only the case cos(Aao) =  0 produces roots. On using Equation (4.50) for the case when F  <  1, 

we obtain

(eg +  « Ï K  -

where m =  0 , 1 , 2 , —
Edwin (1984) showed that if the environment is isothermal so that |Aei|a —*■ 0, |Aca|a —► 0 

as |ib|a —► 0 (and so the perturbations of velocity, total pressure and temperature in the environment 
are small), then taking the |t |a  <  1 limit of Equation (4.48) results in

(eg +  ( à  + -  t»cgvi« +  ÿ ^ K l b ’cgvÜ =  0, (4.57)

where in(0) are the zeros of the Bessel function Jo (ji(0) =  2.40, ja(0) =  5.52, etc..)
Dispersion relations (4.56) and (4.57) have the same form, i.e. they are cubic equations 

in w, and are similar to the equation considered for the radiative case of the previous section 
(Eîquation (4.37)), and the cubic equation (2.48) investigated by Webb and Roberts (1980).

In arriving at Equations (4.56) and (4.57), it is important to take note of the assump
tions which have been made in deriving them from the general dispersion relations given by Equar 
tions (4.47) and (4.48). The assumptions lead to a restriction upon the range of periods to which 

the model is applicable.

1. Firstly we have assumed that üra C  1. Given that we are describing slow modes, and so 
w «  kcT, then it follows that w cy/a; in other words we have a lower bound on the period.

2. Secondly we have assumed that F  1.

3. The environment of the duct has been considered to be isothermal and so the velocity, total 
pressure and temperature fluctuations in the environment have been neglected.

In pursing the investigation further, we only consider dispersion relation (4.57) and note 
that the corresponding solutions in the Cartesian case will be similar in nature. Further, we are 
primarily interested in spatial damping of Equation (4.57) and so we shall assume that w is a known 

real quantity and we shall solve for k.
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Figure 4.4: Damping per wavelength, | t ( / t r | ,  versus P© for solutions given by the exact solution of 
dispersion relation (4.57) (---) and by the approximate expression (4.58) (—).
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Figure 4.5: The dissipation length versus period for waves in a  slender structure with magnetic field 
strength of 10 G (—), 50 G (---) and 100 G (... ) according to Equation (4.57). The parameters 
other than the magnetic field strength are those of Model B of Table 1.7 but with Pe/po undefined.
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Figure 4.6: The dissipation length versus period for waves in a slender structure with density strength 
of 10® cm” ® (—), IQi® cm” ® (---) and 10^  ̂cm” ® (....) according to Equation (4.57). The parameters 
other than those of density are those of Model B of Table 1.7 but with Pe/po undefined.
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Figure 4.7: The dissipation length versus period for waves in a slender structure with background 
temperature 1 x 10® K (—), 2 x 10® K (---) and 3 x 10® K (....) according to Equation (4.57). 
The parameters other than those of temperature are those of Model B of Table 1.7 but with Pe/po 

undefined.
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Figure 4.8: The dissipation length versus period for waves in a slender structure with radius of loop 
10  ̂ cm (—), 5 X 10® cm (---) and 1 x  10® cm (....) according to Equation (4.57). The parameters 

are those of model B of Table 1.7 but with Pc/po undefined.

Identifying l /y rR  of Equation (2.48) with j„(0)®«/a^ of Equation (4.57) and following the 
analysis of Webb and Roberts (1980) (see Chapter 2), the analytical solution of Equation (4.57) for 
utTR >  1, i.e. a^w/7j„(0)^« >  1, i.e. Pe >  1 where =  a®w/x is the Peclet number, is given by

(4.58)

Equation (4.57) is investigated for large P@ (P@ >  1). Figure 4.4 shows the variation of the 
damping per wavelength (defined as by Webb and Roberts, 1980, where kr is the real part of
the wave number and ki is the imaginary part of the wave number) with P@. From this figure it is 
evident that the solution given by Equation (4.58) represents a very good approximation to the exact 
solution of Equation (4.57). However, for the results which now follow, we solve Equation (4.57) 

exactly.
The constant thermal diffiisivity, /c, has the value

7^/2
/c =  8.4 X 10"^——  cm ^s"\

pocp
where To is given by the temperatures of Table 4.1. So, from the parameters of Table 1.8, it is seen 
that, typically, k ranges from 2.43 x  10̂ ® to 3.80 x  10̂ ® cm® s”  ̂ in the solar corona.

The lengths over which the slow waves would dissipate were investigated for the parameters 
of T^ble 1.8. Varying the magnetic field strength (Figure 4.5) results in the dissipation length 
decreasing with an increase in magnetic field strength. It is noted that there is a weak dependence
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T (K ) N  (cm ®)
1.0 xlO* 1.0 xlO '" 1.0 xlO“

1.0 X 10®
10 G : 3.4 - 7.6 s 
50 G : 3.8 - 7.7 s 
100 G : 3.8 - 7.7 s

10 G : 4.3 - 23 s 
50 G ; 3.8 - 24 s 
100 G : 3.8 - 24 s

10 G : 7.5 - 63 s 
50 G : 4.0 - 78 8 
100 G : 3.8 - 80 s

2.0 X 10®
10 G : 2.8 - 3.2 s 
50 G : 2.7 - 3.2 s 
100 G : 2.7 - 3.2 s

10 G : 3.4 -  9.4 s 
50 G : 2.7 -  10 s 
100 G : 2.7 - 10 s

10 G : 7.0 -  22 s 
50 G : 3.0 -  31 s 
100 G : 2.8 -  33 s

3.0 X 10®
10 G : 3.0 - 5.5 s 
50 G : 2.2 - 6.0 s 
100 G : 2.2 - 6.1 s

10 G : 6.8 - 12 s 
50 G : 2.5 - 18 s 
100 G : 2.3 - 20 s

Table 4.1: Period ranges over which slow waves propagating in a coronal loop are dissipated according 

to Equation (4.57).

on the magnetic field and this is consistent with the fact that we are investigating slow waves. (Note 
that this result is easily seen from the approximate solution (4.58).) Figure 4.6 shows that when the 
density was increased then the dissipation length decreased and that an increase in temperature saw 
the dissipation length increasing (Figure 4.7). It was found that increasing the width of the duct 
caused an increase in the dissipation length (see Figure 4.8) (a result which is easily seen from the 

approximate solution (4.58)).
Thus, from the investigation of the variation of the magnetic field strength, B, density, 

N ,  temperature, T  and loop radius, a, it is apparent that the conditions most favourable to the 
dissipation of slow waves are regions of high (100 G) magnetic field strength, high (10^^ cm"®) 
density and low temperatures (1 x 10® K) in a loop of small (10? cm) radius.

Table 4.1 gives the period ranges for which the waves would damp in a distance of less than 
4 X 10® cm for a coronal loop with a =  10? cm. The lower bound of the period in each cell represents 
the restriction that w CT/o and the upper bound gives the periods for which the dissipation length 
is 4 X 10® cm. From Table 4.1 it is seen that slow waves with periods of less than 80 s can damp in 
a distance of less than 4 x 10® cm, and so may contribute to coronal heating.

4.4.2 Equations Describing a Slender Loop

By considering the slender flux tube equations of Webb and Roberts (1978) we can adopt 
a different approach to the problem in hand, one employed by Edwin (1984) in her investigation 
of waves in conducting, magnetic flux tubes. By introducing the variable (  =  x /a  Equations (1.3), 
(1.14), (1.16) and (4.3) become, after linearizing and Fourier analyzing:

(4.59)iuip +  — +  ipokv, =  0, 
a C/Ç

1 Ô f ikBobi (4.60)
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wpoVf =  - k p ,  (4.61)

ubx =  kBoVg, (4.62)

iub, =  “  — (4. 63)a C/Ç

and

where we have considered only the effects of thermal conduction in Equation (4.3) and as defined 
previously, k =  Q/poCp is the constant thermal diffusivity. Further, we have on linearizing the ideal 

gas law (1.12)

P  =  ^ P o T  +  ^ p T o .  (4.65)

It may be shown) for a slender slab with zero total preooure perturbation in its environment 
that Equation (4.60) becomes

Combining Equations (4.59) to (4.65) yields 

/  \

T(z), (4.67)1 a® . Kt® t(7 -  1)
w

V
1 4 . ^

where P@ =  a®w/K is the Peclet number.
At this point it is convenient to summarize the assumptions which have been made in order 

to arrive at Equation (4.67).

1. First of all, we are considering a slender slab, i.e. |ib|a 1 such that the total pressure 
perturbation across the slab is zero.

2. Attention is confined to only the slow modes, i.e. w /t  cy and so w cy/u.

In order to solve Equation (4.67) we assume that Pe >  1 and so the temperature does not 
vary across across the structure. In terms of 1 and 2 above this implies that k/ oct 1 must hold. 
Neglecting the left-hand side of Equation (4.67) gives

(cj +  vj)w® -  iAr®K7 (co/ 7  +  uï)w® -  fc®c®t;Ja> +  ik^Kclv\ =  0. (4.68)

Once more, a dispersion relation in the form of a cubic in u  has been obtained. As before, 
we are primarily concerned with the spatial damping and 00 we may specify w in Equation (4,68) as 
a given real quantity and solve for k which will then be inherently complex due to the presence of 
the dissipative terms.
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Rewriting Equation (4.68) as

(co +  u^)w® -  ik^KcTay{cl/y  +  v\)u)^ -  k^clv^w +  ik*Kcraclv\  =  0, (4.69)

where K  — k/ cto, it can be shown in the adiabatic limit (^K ^  1) that Equation (4.69) has the 

approximate solution

* -
Equation (4.69) is investigated for small K  {K 1). Figure 4.9 shows the variation 

of the damping per wavelength {ki/kr) with K. Figure 4.9 indicates that the solution given by 
Equation (4.70) reprooente a very good approximation to the exact solution of Equation (1:69), For 

the following results, we solve Equation (4.69) exactly.
Again, the lengths over which the slow waves would dissipate was investigated for the 

parameters of Table 1.8 (with the thermal diffusivity given by k =  8.4 x 10~?Tj^^/poCp). Figure 4 10 
shows that varying the magnetic field strength results in the dissipation length decreasing with an 
increase in magnetic field strength. An increase in density results in a decrease in the diœipation 
length (Figure 4.11) and increasing the background temperature causes an increase in the dissipation 
length (Figure 4=12), It wao found that increasing the width of the duct caused an increase in the 
diissipation length (see Figure 4.13).

It is then apparent that conditions most favoured for dissipation are loops of small (10? cm) 
radii with a high (100 G) magnetic field strength, high (10^^ cm"®) density and low (1 x 10® K) 

temperature.
Table 4.2 gives the period ranges for which the waves would damp in a distance of less than 

4 X 10® cm for a coronal loop with a =  10? cm. Note that the lower bound of the period in each 
cell represents the restriction that w <C c r/o  and the upper bound gives the periods for which the 
dissipation length is 4 x 10® cm. From Table 4.2 it is seen that slow waves with periods of less than 
38 s can damp in a distance of less than 4 x 10® cm, and so may contribute to coronal heating.

Wc note at this stage that qualHaiively the results of varying the magnetic field strength) 
etc. for the two models described in Sections 4.4.1 and 4.4.2 are similar. However, we leave the 
comparison of Table 4.1 with Table 4.2 (and with Table 3.7) until Chapter 5.

4*5 Sum m ary

This chapter has investigated the dissipative effects of optically thin radiation and isotropic 
conduction on a slender structure, By including the effects of radiation and conduction in the 
equation of energy it was shown that dispersion relations (e.g. Equations (4.34) and (4.47) which 
contains dissipative terms could be obtained. To further simplify matters the investigation was 
restricted to slender (ira <  1) structures. In effect the duct is to reduced to a line and since slow 
waves were being investigated, essentially one considers the tube wave, w ~  kcr  (see Equation (1.38).
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Figure 4.9: Damping per wavelength, versus K  for solutions given by the exact solution of
dispersion relation (4.69) (— ) and by the approximate expression (4.70) (—).
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Figure 4.10: The dissipation length versus period for waves in a slender structure with magnetic 
field strength of 10 G (—), 50 G (— ) and 100 G (....) for >  1. The parameters other than the 
magnetic field strength are those of Model B of Table 1.7 but with Pe/po undefined.
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Figure 4.11: The dissipation length versus period for waves in a slender structure with density 
strength of 10® cm“ ® (—), 10^° cm” ® (---) and 10“  cm"® (....) for Pe > 1. The parameters other 
than those of density are those of Model B of Table 1.7 but with Pe/po undefined.
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Figure 4.12: The diœipation length versus period for waves in a slender structure with background 
temperature 1 x 10® K (—), 2 x 10® K (---) and 3 x 10® K (....) for > 1. The parameters other 
than those of temperature are those of Model B of Table 1.7 but with pt/po undefined.
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Figure 4.13: The dissipation length versus period for waves in a slender structure with radius of 
loop 10^ cm (—), 5 X 10® cm (---) and 1 x  10® cm (....) for Pe > 1. The parameters are those of 

Model B of Table 1.7.

T (K ) N  (cm” ®)
1.0 X10^ 1.0 xlO '" 1.0 xlO“

1.0 X 10®
10 G : 3.8 - 38 s 
50 G : 3.8 - 36 s 
100 G : 3.8 - 36 s

10 G : 4.3 - 29 s 
50 G : 3.8 - 27 s 
100 G : 3.8 - 27 s

10 G : 7.5 - 21 s 
50 G : 4.0 - 17 s 
100 G : 3.8 - 15 s

2.0 X 10®
10 G : 2.8 - 28 s 
50 G : 2.7 - 27 s 
100 G : 2.7 - 27 8

10 G : 3.4 - 18 s 
50 G : 2.7 - 16 s 
100 G : 2.7 - 16 s

10 G : 7.0 - 14 s 
50 G : 3.0- 11 s 

100 G : 2.8 - 9.7 s

3.0 X 10®
10 G : 2.3 - 23 s 
50 G : 2.2 - 22 s 
10 G : 2.2 - 21 s

10 G : 3.0 - 13 s 
50 G : 2.2 - 12 s 
100 G : 2.2 - 21 s

10 G : 6.8 - 11 8 
50 G : 2.5 - 8.6 s 
100 G : 2.3 - 7.9 s

Table 4.2: Period ranges over which slow waves propagating in a coronal loop of radius 10^ cm are 

dissipated for P* > 1.



CHAPTER 4. DISSn>ATIVE EFFECTS IN SLENDER STRUCTURES 122

In effect we are considering left-most-part of the dispersion diagrams 1.5 and 1.8. Equations (4.58) 
and (4.70) shows that the tube wave is modified slightly by thermal conduction effects. The effects of 
radiation and conduction were treated separately. It was found that the waves subject to radiation 
would dissipate more easily in regions of high (100 G) magnetic field strength, high (10“  cm“ ®) 
density and low (1 x 10® K) temperatures. However, it was found that there were very few cases 
in which the waves would dissipate in distances of less than 4 x 10® cm (our criterion for efficient 
dissipation). Two approaches to the investigation of the dissipation of slow waves in a slender 
{ka 1) structure, subject to isotropic conduction, were considered. Both approaches concluded 
that the conditions most favourable for dissipation were loops of small (10^ cm) radii with high 
(100 G) magnetic field strength, high (10^^ cm” ®) density and low (1 x 10® K) temperatures. One 
approach (Section 4.4.1) considered the environment of the loop to be isothermal and so neglected 
velocity, temperature and total pressure perturbations in the environment. It was found that wave 
periods in the range 2 - 80 s were likely to dissipate effectively. The other approach (Section 4.4.2) 
considered the slender-flux-tube equations with zero total pressure perturbation in the environment 
and large Peclet number. This second method found that waves in the period range 2 - 38 s were 

likely to dissipate.
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C hapter 5

Observed or D issipated Waves?

5.1 T hesis Sum m ary

This thesis has examined several dissipation mechanisms in the context of the dissipation 
of magnetohydrodynamic waves in the upper solar atmosphere. The work contained in the thesis is 
of importance because it attempts to correlate coronal waves that are observed with those that are 
not dissipated. This correlation permits suggestions as to which waves might dissipate and so heat 
the coEona and which waves which might survive the dissipation mechanisms and so bo observed. 
This final summary is made in Section 5.4.

A review of coronal features has been made in the introductory chapter together with 
the observaliouol evidence for oscillatory phenomena. The basic equations of mhd were presented 
and since the upper solar atmosphere is known to be highly structured, a review of mhd wave 
propagation in structured media has been presented. Table 1.8 gives the broad classification of how 
coronal features fit with the parameter ranges used in this thesis. Comment is now made upon what 
the parameter models (see Table 1.7) considered in this thesis mean in terms of observed coronal 
features. Model G, with its large values for magnetic field strength, density and temperature, is 
fairly typical of a  hot coronal loop. Models A - F are also fairly representative of hot coronal loops 
but with a  weak (10 G) magnetic field. However, if one insists that hot coronal loops possess large 
(~100 G) magnetic field strengths as Table 1.4 suggests, then the 10 G models, A to F, need to be 
associated with other coronal feature. Perhaps then, Models A to F should be catagorized in the 
following way.

•  Model A - quiet region loop.

•  Model B - quiet region loop.

•  Model C - no feature with these parameters.

e Model D - quiet region loop.
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• Model E - quiet region loop.

•  Model F - no feature with these parameters.

Models A and G were chosen to represent quiet region loops and active region loops, 
respectively. The investigation of dissipation lengths for the weakly dissipative model in Chapter 3 
found that the parameters of Models B to F produced the shortest dissipation lengths, i.e. these 
were the parameters for which coronal heating was likely to occur. Thus, Models B to F are a 
consequence of the investigation carried out in Chapter 3. On comparing the parameters of these 
models to typical coronal features, one finds that Models C and F are not representative of any 

coronal situations.
Chapter 2 was concerned with energy and its dissipation in the upper solar atmosphere. The 

non-ideal equations of mhd were presented and coronal heating theories together with dissipation 
mechanisms were discussed. Detailed calculations of the energy carried by waves propagating in 
structurod media wore given and it was shown that the energy flux density for a spatially infinite 
medium is a  very good estimate to the structured situation. Moreover, the energy calculations in 
this chapter show that reliable measurements of velocity amplitudes will be invaluable in deciding 
whether the dissipating waves (satisfying dissipation lengths of less than 4 x 10® cm) of Chapters 3 
and 4 can contribute to heating the corona.

Chapter 3 considered the dissipation of mhd waves in a weakly dissipative environment. A 
coronal loop was modelled both as a slab and as a cylinder. The ducted waves were subject to dissi
pation by ion viscosity, electron thermal conduction and optically thin radiation. The investigation 
found that, on the whole, electron thermal conduction was the most important of the three dissipar 
tion terms. The scheme described in this chapter, as described by Gordon and Hollweg (1983), is an 
ingenious one because, although it is dissipation that is under investigation, consideration of a fully 
dissipative dispersion relation can be avoided. The basic principle involved was simply to calculate 
the energy of the ideal mhd waves (presented in Chapter 1) and then quite separately to imagine that 
this energy is used up, converted by the diœipative mechanisms. The lengths over which the fast 
and slow, symmetric and asymmetric waves dissipate, are calculated. Chapter 3 pointed out errors 
in the previous known studies which used this weakly dissipative ochomo regarding the dissipation 
of waves in a cold plasma. It was shown that wave dissipation is more effective in the warm plasma 
situation. The investigation found that fast waves are likely to dissipate in regions of low (~  15 G) 
magnetic field strength with periods of 2 to 10 s. Slow waves which are likely to dissipate have 
periods that range from about 15 - 225 s duration. Although the method adopted in Chapter 3 is a 
simple one, requiring only the energy and the dissipated fluxes to be calculated, it is limited in only 
being applicable to doocribing a collisional plaoma. Since dissipative terms have not been included 
in the mhd equations used to derive the dispersion relation, the method is further restricted in only 
being able to describe weak dissipation. Such restrictions were shown to limit the number of coronal 

situations which could be described.
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The investigation in Chapter 3 showed that electron thermal conduction (and radiation) 
were important at small values of ka, i.e. iba 1, where k is the wave number and a represents the 
radius of the loop. By considering a slender structure, the analysis carried out in Chapter 4 allowed 
the dissipation mechanisms of radiation and conduction to be included in the mhd equations (i.e. 
the non-ideal equations) and so a dispersion relation which included dissipation could be obtained. 
In order to simplify matters, the mechanisms of optically thin radiation and isotropic conduction 
were considered separately. It was found that on the whole, the effect of radiation acting alone 
was insufficient to damp the slow symmetric waves under investigation in a distance of less than 
our criterion value of 4 x 10® cm. Two situations for the dissipation of slow waves in a slender 
structure subject to isotropic thermal conduction were investigated. In one method, the loop was 
considered to have isothermal boundaries, and so by assuming that the temperature, total pressure 
and velocity fluctuations, in the exterior of the loop were negligible, a dispersion relation (containing 
dissipative effects) in the form of a quadratic in the wave number, k, could be obtained A subsequent 
investigation of the spatial damping of this quadratic found that wave periods in the range 2 - 80 s 
could be dissipated efficiently. The second method, in which the slender-flux-tube equations were 
used, assumed a large Peclet number (Pe =  wa®/« > 1 )  which allowed the temperature to be 
decoupled &om the other equations and resulted in a quartic equation for the wave number. This 
method found that, in general, waves with periods 2 - 38 s were likely to diœipate.

5,2 Com parison o f D issipative M odels

So far, nothing has been said about how the results of the wave dissipation models of 
Chapter 3 and 4 compare with each other and with other models in the literature. Therefore it is 
the task in this section to compare the models with each other and with similar work considered by 
other authors.

In comparing the results for the fast waves of Chapter 3 with the dissipation of fast waves in 
a cold plasma, as considered by Gordon and Hollweg (1983), one must bear in mind that Gordon and 
Hollweg only estimated the electron thermal conduction term, Qther, for intermediate frequencies, 
i.e. for frequencies, w «  /C||,e/^^(T — l )/NkB-  However, the results obtained by Gordon and Hollweg 
are in line with those found for the dissipation of fast waves in a warm plasma given in Chapter 3, 
namely:

1. When the magnetic field strength is increased the dissipation length increases so that damping 
lengths become unreahstically large if B is more than a few tens of gauss, i.e. waves dissipate 
much less efficiently in regions of strong magnetic field.

2. It is difficult to make general statements about the variation of dissipation length with density 
and temperature since increasing the density (or temperature) did not always result in a 

decrease in the dissipation length.
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3. As a is mcieased it is only the waves with longer periods that (acperienee more effective dissi 

pation.

It is clear from both investigations of the weakly dissipative model of Chapter 3 applied 
to both warm and cold plasmas that dissipation is efficient if the periods of the ducted waves are 
shorter than a few tens of seconds (i.e. 2 - 10 s) and only if the background magnetic field is less 

than about 15 G.
Porter, Klimchuk and Sturrock (1994a) found in their model of waves propagating in an 

unstructured atmosphere, subject to electron thermal conduction, ion viscosity and radiation, that 
increasing the magnetic field strength caused a decrease in the damping rate of the fast magnetoar 
coustic waves. This result is in agreement with 1 above. Further, Porter, Klimchuk and Sturrock 
weie unable to make a general statement of how the damping rate was effected by changing the 
density but they did find a clear variation of the damping rate with temperature, namely increasing 
the temperature resulted in the damping rate increasing. Porter, Klimchuk and Sturrock found that, 
typically, fast waves with periods less than 75 s propagating in an unstructured medium representar 
tive of quiet regions would dissipate, which is in agreement with 1 and 3 above. For active regions 
they find that only fast waves with periods of less than 1 s would dissipate. As a consequence of 
using the volumetric loss rate due to viscosity, as given by Equation (2.24) (from Braginskii, 1965), 
the plasma has been assumed collisional and, as has been shown, the scheme in Chapter 3 is limited 
to describing wave dissipation for fast waves which have periods in excess of 2 s. Therefore one 
cannot use the model to predict whether fast waves with periods of less than 1 s are dissipated 
or not. Porter, Klimchuk and Sturrock also use the Braginskii form for ion viscosity but for small 
periods they only calculate the fast mode damping rate due to electron thermal conduction and 
hence are not restricted to describing wave periods greater than 2 seconds. Considering fast ducted 
waves, subject only to ion viscosity and radiation. Porter, Klimchuk and Sturrock (1994b) find that 
only waves with periods of less than 1 s are damped efficiently. In examining Table 3.7 for a weakly 
dissipative environment, we see that slow waves with periods 15 - 140 s can dissipate efficiently in 
hot loops and that in quiet regions the waves which experience efficient dissipation have periods in 
the range 15 - 225 s. These ranges are approximately those given by Porter, Klimchuk and Sturrock 
(1994a), namely wave periods less than 100 s and 300 s are dissipated efficiently in active regions 

and quiet regions respectively.
The weakly dissipative model of Chapter 3 and the work by Porter, Klimchuk and Sturrock 

(1994a, b) are different in the respect that

1. the two approaches used to investigate dissipative effects are different - Porter, Klimchuk and 
Sturrock (1994a, b) manipulate the linearized equations of mhd to obtain a dispersion relation 
which contains dissipative terms. The method in Chapter 3 calculates quantities of ideal waves 
and determines a dissipation length in the form of a logarithmic decrement by supposing that 
the energy of the (ideal) waves is converted to heat through volumetric energy loss rates;
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Figure 5.1: The ratio of slab to cylinder dissipation lengths versus ka using Equations (3.18) and 

(3.24) using the parameters of Model B of Table 1.7.

2. the model in Chapter 3 was applied to a structured medium; Porter, Klimchuk and Sturrock 
(1994a) investigate dissipation in an unstructured medium;

3. the criteria for effective dissipation are different; wave dissipation in the model of Chapter 3 is 
regarded as being efficient if the waves dissipate in distances of less than 4 x 10® cm whereas 
Porter, Klimchuk and Sturrock (1994a, b) derive a required minimum damping rate by equating 
the volumetric wave heating rate with the optically thin radiative cooling rate. (Indeed Porter, 
Klimchuk and Sturrock give their results mainly in the form of damping rate as a function 
of wave period whereas this thesis has presented the results mainly in the form of dissipation 
length versus wave period.)

One would expect close agreement between the results of Chapter 3 for the Cartesian and 
cylindrical cases in the large, t c  1, limit, since the waves are unable to sense that they are ducted 
and essentially the waves are propagating in an unstructured medium. Further, one would expect 
that these should be similar to the corresponding results of dissipation in an unstructured medium. 
Figure 5.1 shows the ratio of the slab-to-cylinder dissipation lengths for the lowest-order kink mode 
plotted against ka. It is seen that for large ka (> 5) the dissipation lengths are approximately 
the same. Figure 5.2 can be compared to Figure 5b of Porter, Klimchuk and Sturrock (the one 
case in which they do give a plot of damping length versus period for fast waves in an unstructured 
medium). As is shown in Figure 5.2, large ka values {ka >  1) for the Cartesian and cylindrical ducts
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Figure 5.2: The dissipation length versus period for the lowest-order fast mode propagating in a slab 
(—) and cylinder (---) with the parameters of Model B of Table 1.7. The dissipation length given 
by Porter, Klimchuk and Sturrock (1994a) is approximated by (....).

produce similar dissipation lengths to the unstructured situation considered by Porter, Klimchuk 
and Sturrock (1994a). Further, in considering large ka (ka >  1) values Figures 3.19 shows that 
ion viscosity is the more dominant dissipation term at high frequencies. This is consistent with the 
statements of Gordon and Hollweg (1983) and Porter, Klimchuk and Sturrock (1994a, b).

Moreover, it can be shown that in a cold plasma, for ka >  1, the dissipation lengths of the 
asymmetric waves as given by Equations (3.29) and (3.33) reduce to

SvApoa^Lk = (5.1)Tf(kay(uf^/k^v\ -  1)'

By considering the dissipation lengths for large values of ka (see Figure 5.3) we can recover 
approximately the dissipation lengths given by Porter, Klimchuk and Sturrock (1994a) for the slow 
waves of Chapter 3. It is of no surprise that we can recover the 'unstructured' situation given that 
in Chapter 1 we saw that the ducted slow waves are essentially propagating at the tube speed, cy, 
and are effectively dispersionless. It is noted that the variation of dissipation length with magnetic 
field strength and density for the slow waves of Chapter 3 are consistent with the findings of Porter, 
Klimchuk and Sturrock (1994a). Porter, Klimchuk and Sturrock (1994a) found that the damping 
was more effective with increase in temperature. This is again consistent with results in Chapter 3 
but only for waves with periods less than 80 s.

The investigation of dissipation of slow, symmetric waves subject to isotropic thermal
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conduction in the two models of Sections 4.4.1 and 4.4.2 found that, qualitatively, the models had 
similar behaviour for the dependence of magnetic field strength, density, temperature and loop 
radius. It was found that the dissipation length increased when either the magnetic field strength 
was increased, the density was decreased, the temperature was increased or the loop radius was 
decreaocd. It is noted that the behaviour of the dissipation length with density and temperature for 
the models in Chapter 4 is similar to that found for the weakly dissipative scheme used in Chapter 3 
and the models also find that there is a weak dependence on dissipation with magnetic field strength.

Tables 4.1 and 4.2 give the period ranges over which slow, symmetric waves are dissipated 
according to the models in Sections 4.4.1 and 4.4.2 for the coronal parameters of Table 1.8. In of 
both the tables of Chapter 4, the lower bound of the period in each cell represents the restriction 
w ^ c x j a  (see page 109). Since the values of magnetic field strength, density, temperature and loop 
radius are the same for the corresponding cells of Tables 4.1 and 4.2, then the lower bound of the 
period for corresponding cells is the same. The upper bound of the period in each cell gives the 
periods for which the dissipation length is 4 x 10  ̂ cm. The dissipation length, l/2k,*, is found by 
solving the quadratic (in k) equation (4.57) of Section 4.4.1 and the quartic (in k) equation (4.68) 
of Section 4.4.2 and so the upper bounds on the periods are different.

Three different models for the dissipation of slow waves propagating along a coronal loop 
have boon presented. Tablo 3.7 givoo tho period ranges over which slow waves propagating along a 
loop of radius 5 x 10® cm are dissipated for the weakly dissipative scheme of Chapter 3. Tables 4.1 
and 4.2 give the period rangoo for which slow waves are dissipated in slender structures and have 
been calculated for a  small loop size (10^ cm). The difference in period ranges over which dissipation 
occurs in Tables 3.7 and Tables 4.1 and 4.2 is a  result of considering slender (i. e. ka 1) structures 
for the models in Chapter 4.

5.3 Suggestions for Further Work

Clearly, the model presented in Chapter 3 for calculating the dissipation lengths of ducted 
waves is a  simple one. Unfortunately the model is unable to describe satisfactorily all coronal 
conditions due to the constraints outlined in Chapter 3. However, the model did give an insight into 
the kinds of waves which were favourable for coronal heating and these waves were explored further 

in Chapter 4.
The area for further work concerning the model in Chapter 3 centres on, not the calculation 

of the volumetric energy loss rates, but on how the dispersion relation (i.e. the relationship between 
the angular frequency, w, and the wave number, k) influences the dissipation lengths of the waves. 
The equations for computing the dissipation lengths are given by Equations (3.15), (3.18), (3.21) 
and (3.24) and are of the form

I ^ $ ,k  —  I > t ^ k ( ^ i  P O i  P e t  ®j H q i  H t y  N o y  W ,, T ) ,
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Figure 5.3: The dissipation length versus period for the slow, symmetric waves of Chapter 3 propa
gating in a cylinder (—) with the parameters of Model B of Table 1.7. The dissipation length given 
by Porter, Klimchuk and Sturrock (1994a) is approximated by (....).

The investigation in Chapter 3 revealed the variation of the dissipation length when the magnetic 
field, density etc. was varied. Of course, varying these parameters modifies the dispersion diagram 
for the ducted waves in the sense that the size of the bands of fast and slow waves are either enlarged 
or are reduced, i.e. the regions va < u / k  < va» and c t  < u / k  < ct« of Figure 1.5. However, one 
may consider a different ducted situation and thus solve its associated dispersion relation for w imd 
k. In principle one could feed these values of w and k  into L,,* and compute a dissipation length. 
One could then ask how are the results for Chapter 3 changed when one

1. uses a smooth density profile to model the duct;

2. takes into account the observed curvature of coronal loops;

3. takes into account the observed twisting magnetic field lines in some coronal loops.

Thus the simple model in Chapter 3 could be used to gain some insight to the dissipation of waves 
in a  more realistic coronal loop situation.

The results of Chapter 3 were given terms of a dissipation length. There is no need to
restrict attention to only finding lengths over which the wav% surrender their energy. One may
equally recast the problem in terms of temporal damping and thus provide dissipation rates of the 
various ducted wave modes.
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In Chapter 4, only the dissipation of slow waves propagating in slender structures was 
considered because the model in Chapter 3 indicated that the dissipation of fast was unfavourable, 
except in regions of low magnetic field strength. However, there is no need to restrict attention to 
only slow waves because the investigation could be pursued in a similar for fast waves, i. e. waves 

propagating at approximately va for ka <  1.
In principle it could be possible to solve Equations (4.47) and (4.48) numerically. Of 

course, this would be a non-trivial task given the complicated way in which w and k are linked 
by the variables dj etc. and that, when written out fully, the left-hand-side of Equations (4.47) 
and (4.48) contains 24 terms. However, such an investigation would simply require a  root-solving 
procedure (e.g. Brent’s method) and would be worth while pursuing in order to provide information 
regarding the nature of the dissipation of the slow waves at all values of ka.

5.4 W aves in th e U pper Solar A tm osphere

The results in Chapters 3 and 4 have mainly been illustrated in the form of dissipation 
length varying with periodicity; wave period is a quantity which may be measured as a result of 
observations. A comparison is now made between the results of the investigations pursued in this 
thesis and the results &om work carried out by other authors and with the observed oscillations 
listed in Chapter 1. Further, suggestions as to which waves are likely to be observable, and which 
dissipated, and so perhaps contribute to coronal heating are made.

Figure 5.4 gives a comparison of the period ranges of dissipating and non-dissipating waves 
of the models of Chapters 3 and 4, and the work of Porter, Klimchuk and Sturrock (1994a) with 
observed periods of oscillation in the upper solar atmosphere. The figure clearly indicates that 
waves with periods in excess of 300 s are likely to escape dissipation and so do not contribute to 
coronal heating. Thus, the many-minute period oscillations detected by Harrison (1987) and Svestka 
(1994) are not candidates for coronal heating. One may argue that the reason why waves with these 
periods are detected is that the waves easily survive the dissipation mechanisms (i.e. the waves are 
not dissipated efficiently). Of course, if this is the case, then many more coronal oscillations in the 
period range 300 - 1000 s should be detected. As Figure 5.4 indicates, there have not been, as yet, 
any reported coronal oscillations of 300 - 1000 s. For very short wave periods, i.e. waves with periods 
of less than one second, one may argue similarly that the many reports of fast coronal oscillations 
suggest that waves with very short periods are not subject to efficient dissipation. The model in 
Chapter 3 is unable to describe fast waves with periods of less than 2 s but Porter, Klimchuk and 
Sturrock (1994a) indicate that fast waves with short periods can be associated with coronal heating. 
According to Figure 5.4 periods in the range 40 - 300 s can be associated with both dissipating and 
non-dissipating waves. Given that fast waves have a larger energy flux density than slow waves, 
and so have more energy available to be dissipated (Chapter 2), it is then proposed that waves with 
periods of 2 to 10 s are likely to contribute to coronal heating and that waves with periods of a few
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and many tens of seconds are likely to survive dissipation.

From the results in this thesis ‘windows’ of period ranges have been identified in which waves 

may contribute to coronal heating or in which the waves are likely to be observable. Moreover from 

Figure 5.4 it is evident that the observations are not consistent with the principle that dissipating 

waves are unlikely to be observed. The very fact that there has been a great wealth of fast (1 - 

2 s) pulsations reported in the literature seems to be more suggestive that fast mhd waves do not 

contribute to coronal heating! For slow waves to contribute they certainly need to be associated 

with large velocity amplitudes. As remarked in Chapter 2 it is clear that until there are improved 

diagnostics for observations of waves, the coronal heating problem will remain unanswered. However, 

it is hoped that more convincing arguments will be given when the results of the CDS and SUMER 

instruments, currently undergoing calibration, on board the orbiting SOHO spacecraft, are known. 

Indeed until we have more detailed measurements it is difficult to progress very much further from 

the statem ents of Wentzel (1977): ‘It seems difficult for heating by hydromagnetic waves to meet 

simultaneously the requirements of a large enough heating rate, an approximate dissipation length 

comparable to the loop length, a field-aligned heating characterised by smaller widths than lengths, 

and finally a velocity amplitude that agrees with observations.’
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