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Abstract. This paper investigates the effect of structure-preserving perturbations on the eigen-
values of linearly and nonlinearly structured eigenvalue problems. Particular attention is paid to
structures that form Jordan algebras, Lie algebras, and automorphism groups of a scalar product.
Bounds and computable expressions for structured eigenvalue condition numbers are derived for
these classes of matrices, which include complex symmetric, pseudo symmetric, persymmetric, skew-
symmetric, Hamiltonian, symplectic, and orthogonal matrices. In particular we show that under
reasonable assumptions on the scalar product, the structured and unstructured eigenvalue condition
numbers are equal for structures in Jordan algebras. For Lie algebras, the effect on the condition
number of incorporating structure varies greatly with the structure. We identify Lie algebras for
which structure does not affect the eigenvalue condition number.
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1. Introduction. There is a growing interest in structured perturbation analysis
due to the substantial development of algorithms for structured problems. When
these algorithms preserve structure (see for example [2], [4], [13], and the literature
cited therein) it is often appropriate to consider condition numbers that measure
the sensitivity to structured perturbations. In this paper we investigate the effect of
structure-preserving perturbations on linearly and nonlinearly structured eigenvalue
problems.

Suppose that S is a class of structured matrices and define the (absolute) struc-
tured condition number of a simple eigenvalue λ of A ∈ S by

κ(A, λ; S) = lim
ǫ→0

sup
{ |λ̂ − λ|

ǫ
: λ̂ ∈ Sp(A + E), A + E ∈ S, ‖E‖ ≤ ǫ

}
,(1.1)

where Sp(A+E) denotes the spectrum of A+E and ‖ ·‖ is an arbitrary matrix norm.
Let x and y be the normalized right and left eigenvectors associated with λ, i.e.,

Ax = λx, y∗A = λy∗, ‖x‖2 = ‖y‖2 = 1.

Moreover, let κ(A, λ) ≡ κ(A, λ; Cn×n) denote the standard unstructured eigenvalue
condition number, where n is the dimension of A. Clearly,

κ(A, λ; S) ≤ κ(A, λ).

If this inequality is not always close to being attained then κ(A, λ) may severely
overestimate the worst case effect of structured perturbations. Note that the standard
eigenvalue condition number allows complex perturbations even if A is real. Our
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definition in (1.1) automatically forces the perturbations to be real when A is real
and S ⊂ Rn×n.

In this paper we consider the case where S is a smooth manifold. This covers linear
structures and some nonlinear structures, such as orthogonal, unitary and symplectic
structures. We show that for such S, the structured problem in (1.1) simplifies to
a linearly constrained optimization problem. We obtain an explicit expression for
κ(A, λ; S), thereby extending Higham and Higham’s work [11] for linear structures in
Cn×n.

Associated with a scalar product in Rn or Cn are three important classes of struc-
tured matrices: an automorphism group, a Lie algebra, and a Jordan algebra. We
specialize our results to each of these three classes, starting with the linear struc-
tures. We show that under mild assumptions on the scalar product, the structured
and unstructured eigenvalue condition numbers are equal for structures in Jordan
algebras. For example, this equality holds for real and complex symmetric matrices,
pseudo-symmetric, persymmetric, Hermitian, and J-Hermitian matrices. For Lie al-
gebras, the effect on the condition number of incorporating structure varies greatly
with the structure. We identify Lie algebras for which structure does not affect the
eigenvalue condition number, such as skew-Hermitian structures, and Lie algebras for
which the ratio between the unstructured and structured eigenvalue condition number
can be large, such as skew-symmetric or perskew-symmetric structures. Our treat-
ment extends and unifies recent work on these classes of matrices by Graillat [9] and
Rump [18].

Finally we show how to compute structured eigenvalue condition numbers when
S is the automorphism group of a scalar product. This includes the classes of uni-
tary, complex orthogonal, and symplectic matrices. We provide bounds for the ratio
between the structured and unstructured condition number. In particular we show
that for unitary matrices this ratio is always equal to 1. This latter result also holds
for orthogonal matrices with one exception: when λ is real and simple, the structured
eigenvalue condition number is zero.

Note that for λ 6= 0 a relative condition number, on both data and output spaces,
can also be defined, which is just κ(A, λ; S)‖A‖/|λ|. Our results comparing the struc-
tured and unstructured absolute condition numbers clearly apply without change to
the relative condition numbers.

The rest of this paper is organized as follows. Section 2 provides the definition
and a computable expression for the structured eigenvalue condition number of a
nonlinearly structured matrix. In Section 3, we introduce the scalar products and
the associated structures to be considered. Firstly, we treat linear structures (Jordan
and Lie algebras) in Section 4 and investigate the corresponding structured condition
numbers. Nonlinear structures (automorphism groups) are discussed in Section 5.

2. Structured condition number. It is well known that simple eigenvalues
λ ∈ Sp(A) depend analytically on the entries of A in a sufficiently small open neigh-
borhood BA of A [19]. To be more specific, there exists a uniquely defined analytic

function fλ : BA → C so that λ = fλ(A) and λ̂ = fλ(A+E) is an eigenvalue of A+E
for every A + E ∈ BA. Moreover, one has the expansion

λ̂ = λ +
1

|y∗x|y
∗Ex + O(‖E‖2).(2.1)
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Combined with (1.1) this yields

κ(A, λ; S) =
1

|y∗x| lim
ǫ→0

sup
{ |y∗Ex|

ǫ
: A + E ∈ S, ‖E‖ ≤ ǫ

}
.(2.2)

The difficulty in obtaining an explicit expression for the supremum in (2.2) de-
pends on the nature of S and the matrix norm ‖ · ‖. For example, when ‖ · ‖ is
the Frobenius norm or the matrix 2-norm and for unstructured perturbations (i.e.,
S = Cn×n), the supremum in (2.2) is attained by E = ǫyx∗, which implies the well
known formula [21]

κν(A, λ) = 1/|y∗x|, ν = 2, F.

Note that κν(A, λ) ≥ 1 always, but κν(A, λ; S) can be less than 1 for ν = 2, F .

When S is a smooth manifold (see [12] for an introduction to smooth manifolds),
the task of computing the supremum (2.2) simplifies to a linearly constrained opti-
mization problem.

Theorem 2.1. Let λ be a simple eigenvalue of A ∈ S, where S is a smooth real
or complex submanifold of Kn×n (K = R or C). Then for any norm, ‖ · ‖, on Kn×n

the structured condition number of λ with respect to S is given by

κ(A, λ; S) =
1

|y∗x| max {|y∗Hx| : H ∈ TAS, ‖H‖ = 1} ,(2.3)

where TAS is the tangent space of S at A.

Proof. We show that limǫ→0 βǫ = φ, where

βǫ := sup

{ |y∗Ex|
ǫ

: A + E ∈ S, ‖E‖ ≤ ǫ

}
, ǫ > 0,

φ := max {|y∗Hx| : H ∈ TAS, ‖H‖ = 1 } .

Let d denote the real dimension of S. By definition of a smooth submanifold of a
finite dimensional vector space there exist open neighborhoods U ⊂ Rd of 0 ∈ Rd and
V ⊂ Kn×n of A and a continuously differentiable map F : U → V with the following
properties.

(i) F (U) = S ∩ V.
(ii) F is a homeomorphism between U and S ∩ V.
(iii) If D0F : Rd → Kn×n denotes the differential of F at 0 ∈ Rd then

(a) for all ξ ∈ U , F (ξ) = A + D0F (ξ) + R(ξ) and the map R : U → Kn×n

satisfies

lim
ξ→0

‖R(ξ)‖/|||ξ||| = 0,(2.4)

where ||| · ||| is an arbitrary norm on Rd,
(b) D0F is an injective linear map, i.e. 0 < s := min|||ξ|||=1 ‖D0F (ξ)‖,
(c) TAS = range(D0F ).

A map F with all the properties (i)–(iii) is called a local parametrization of S at the
point A. The neighborhoods U and V can be chosen such that

(d) ‖R(ξ)‖ ≤ 1

2
s |||ξ||| for all ξ ∈ U .
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Suppose now that A + E ∈ S and 0 < ‖E‖ ≤ ǫ. If ǫ is small enough then, by (i)
and (ii), there is a unique nonzero ξ ∈ U such that A+E = F (ξ) = A+D0F (ξ)+R(ξ).
Hence

E = D0F (ξ) + R(ξ).(2.5)

By (b) and (d),

ǫ ≥ ‖E‖ ≥ ‖D0F (ξ)‖ − ‖R(ξ)‖ ≥ s

2
|||ξ|||.(2.6)

This implies

‖D0F (ξ)‖
ǫ

≤ ‖E‖
ǫ

+
‖R(ξ)‖

ǫ
≤ 1 +

2

s

‖R(ξ)‖
|||ξ||| ,(2.7)

and

|y∗R(ξ)x|
ǫ

≤ 2

s

|y∗R(ξ)x|
|||ξ||| ≤ 2 c

s

‖R(ξ)‖
|||ξ||| ,(2.8)

where c := max{ |y∗Mx| : M ∈ Kn×n, ‖M‖ = 1 }. Using (2.5), (2.7), (2.8) and (c)
we obtain the estimate

|y∗Ex|
ǫ

≤ |y∗D0F (ξ)x|
ǫ

+
|y∗R(ξ)x|

ǫ

≤ |y∗D0F (ξ)x|
‖D0F (ξ)‖

(
1 +

2

s

‖R(ξ)‖
|||ξ|||

)
+

2 c

s

‖R(ξ)‖
|||ξ|||

≤ φ

(
1 +

2

s

‖R(ξ)‖
|||ξ|||

)
+

2 c

s

‖R(ξ)‖
|||ξ||| .(2.9)

The relations (2.4), (2.6) and (2.9) yield limǫ→0 βǫ ≤ φ. In order to show equality

let Ĥ ∈ TAS be such that ‖Ĥ‖ = 1 and |y∗Ĥx| = φ. By (c) there exists a ξ̂ ∈ Rd

with D0F (ξ̂) = Ĥ. For t ≥ 0 let Et = D0F (t ξ̂) + R(t ξ̂) and ǫt = ‖Et‖. Then

A + Et = F (t ξ̂) ∈ S, limt→0 ǫt = 0 and limt→0 |y∗Etx|/ǫt = |y∗Ĥx| = φ. Thus,
limǫ→0 βǫ ≥ φ, and the proof is complete.

It is convenient to introduce the notation

φ(x, y; S) = max
{
|y∗Ex| : E ∈ S, ‖E‖ = 1

}
(2.10)

so that (2.3) can be rewritten as

κ(A, λ; S) = φ(x, y;TAS)/|y∗x|.(2.11)

In a similar way to [20], an explicit expression for κ(A, λ; S) can be obtained if
one further assumes that the matrix norm ‖ · ‖ under consideration is the Frobenius
norm ‖ · ‖F . Let us rewrite

y∗Ex = vec(y∗Ex) = (xT ⊗ y∗) vec(E) = (x ⊗ y)∗ vec(E),

where ⊗ denotes the Kronecker product and vec denotes the operator that stacks the
columns of a matrix into one long vector [8, p. 180]. Note that TAS is a linear vector
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space of dimension m ≤ n2. Hence, there is an n2 × m matrix B such that for every
E ∈ TAS there exists a uniquely defined parameter vector p with

vec(E) = Bp, ‖E‖F = ‖p‖2.(2.12)

Any matrix B satisfying these properties is called a pattern matrix for TAS, see
also [10], [20], and [6]. The relationships in (2.12) together with (2.10) yield

φF (x, y;TAS) = max {|(x ⊗ y)∗Bp| : ‖p‖2 = 1, p ∈ K
m} ,(2.13)

where K = R or C. We will use the subscripts F and 2 to refer to the use of the
Frobenius and matrix 2-norm in (2.10).

When K = C the supremum is taken over all p ∈ Cm and consequently, from (2.11),

κF (A, λ; S) =
1

|y∗x| ‖(x ⊗ y)∗B‖2.(2.14)

Complications arise if K = R but λ is a complex eigenvalue or B is a complex
matrix. In this case, the supremum is also taken over all p ∈ Rm but (x ⊗ y)∗B may
be a complex vector. In a similar way as in [5] for the standard eigenvalue condition
number we can show that the real structured eigenvalue condition number is within
a small factor of the complex one in (2.14). To be more specific,

1√
2|y∗x|

‖(x ⊗ y)∗B‖2 ≤ κF (A, λ; S) ≤ 1

|y∗x| ‖(x ⊗ y)∗B‖2,(2.15)

see also [9], [18]. To obtain an exact expression for the real structured eigenvalue
condition number, let us consider the relation

|(x ⊗ y)∗Bp|2 =
∣∣ Re

(
(x ⊗ y)∗B

)
p
∣∣2 +

∣∣ Im
(
(x ⊗ y)∗B

)
p
∣∣2,

which together with (2.13) implies

κF (A, λ; S) =
1

|y∗x|

∥∥∥∥
[

Re
(
(x ⊗ y)∗B

)

Im
(
(x ⊗ y)∗B

)
]∥∥∥∥

2

.(2.16)

For a real pattern matrix B, this formula can be rewritten as

κF (A, λ; S) =
1

|y∗x| ‖[xR ⊗ yR + xI ⊗ yI , xI ⊗ yR − xR ⊗ yI ]
T B‖2,(2.17)

where x = xR + ıxI and y = yR + ıyI with xR, xI , yR, yI ∈ Rn. If additionally λ is
real, we can choose x and y real and (2.17) reduces to (2.14).

The difficulty in computing (2.14), (2.16) or (2.17) lies in characterizing the tan-
gent space TAS and building the pattern matrix B. We show in section 5 how these
tasks can be achieved when S is an automorphism group.

It is difficult to compare the explicit formula for κF (A, λ; S) in (2.14) or (2.16) to
that of the standard condition number κF (A, λ) = 1/|y∗x| unless S has some special
structure. Noschese and Pasquini [17] show that for perturbations having an assigned
zero structure (or sparsity pattern), (2.14) reduces to

κF (A, λ; S) = ‖(yx∗)|S‖F /|y∗x|,
where (yx∗)|S means the restriction of the rank-one matrix yx∗ to the sparsity struc-
ture of S. For example if the perturbation is upper triangular then (yx∗)|S is the
upper triangular part of yx∗.

Starting from (2.11) we compare in sections 4 and 5 the structured condition
number to the unstructured one for structured matrices belonging to the Jordan
algebra, Lie algebra, or automorphism group of a scalar product.
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Table 3.1
A sampling of structured matrices associated with scalar products 〈·, ·〉

M
, where M is the matrix

defining the scalar product.

Space M Automorphism Group Jordan Algebra Lie Algebra

G = {G : G⋆ = G−1} J = {S : S⋆ = S} L = {K : K⋆ = −K}

Bilinear forms

Rn I Real orthogonals Symmetrics Skew-symmetrics

Cn I Complex orthogonals Complex symmetrics Cplx skew-symmetrics

Rn Σp,q Pseudo-orthogonals Pseudo symmetrics Pseudo skew-symmetrics

Cn Σp,q Cplx pseudo-orthogonals Cplx pseudo-symm. Cplx pseudo-skew-symm.

Rn R Real perplectics Persymmetrics Perskew-symmetrics

R2n J Real symplectics Skew-Hamiltonians Hamiltonians

C2n J Complex symplectics Cplx J-skew-symm. Complex J-symmetrics

Sesquilinear forms

Cn I Unitaries Hermitian Skew-Hermitian

Cn Σp,q Pseudo-unitaries Pseudo Hermitian Pseudo skew-Hermitian

C2n J Conjugate symplectics J-skew-Hermitian J-Hermitian

Here, R =

"
1

. .
.

1

#
and Σp,q =

�
Ip 0
0 −Iq

�
∈ Rn×n are symmetric and J =

�
0 In

−In 0

�
is

skew-symmetric.

3. Structured matrices in scalar product spaces. In this paper a scalar
product refers to any nondegenerate bilinear or sesquilinear form 〈·, ·〉 on Kn, where
K = R or C. A real or complex bilinear form 〈·, ·〉 has a unique matrix representation
given by 〈·, ·〉 = xT My, while a sesquilinear form can be represented by 〈·, ·〉 = x∗My,
where the matrix M is nonsingular. We will denote 〈·, ·〉 by 〈·, ·〉

M
as needed. A

bilinear form is symmetric if 〈x, y〉 = 〈y, x〉, and skew-symmetric if 〈x, y〉 = −〈y, x〉.
Hence for a symmetric form M = MT and for a skew-symmetric form M = −MT .
A sesquilinear form is Hermitian if 〈x, y〉 = 〈y, x〉 and skew-Hermitian if 〈x, y〉 =
−〈y, x〉. The matrices associated with such forms are Hermitian and skew-Hermitian,
respectively.

The adjoint A⋆ of A ∈ Kn×n with respect to 〈·, ·〉
M

is the unique matrix satisfying

〈Ax, y〉
M

= 〈x,A⋆y〉
M

∀x, y ∈ K
n.

It can be shown that the adjoint is given explicitly by

A⋆ =

{
M−1AT M, for bilinear forms,
M−1A∗M, for sesquilinear forms.

It is well known [1] that the set of self-adjoint matrices

J =
{
S ∈ K

n×n : 〈Sx, y〉
M

= 〈x, Sy〉
M

}
=

{
S ∈ K

n×n : S⋆ = S
}

forms a Jordan algebra, while the set of skew-adjoint matrices

L =
{
L ∈ K

n×n : 〈Lx, y〉
M

= −〈x,Ly〉
M

}
=

{
L ∈ K

n×n : L⋆ = −L
}
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forms a Lie algebra. The sets L and J are linear subspaces, but they are not closed
under multiplication. A third class of matrices associated with 〈·, ·〉

M
are those pre-

serving the form, i.e.,

G =
{
G ∈ K

n×n : 〈Gx,Gy〉
M

= 〈x, y〉
M

}
= {G ∈ K

n×n : G⋆ = G−1}.

They form a Lie group under multiplication. We refer to G as an automorphism
group. Table 3.1 shows a sample of well-known structured matrices in L, J, or G

associated with some scalar products. In the rest of this paper we concentrate on
structures belonging to at least one of these three classes.

The eigenvalues of matrices in J, L and G have interesting pairing properties as
shown by the following theorem.

Theorem 3.1 ([15, Thm. 7.2 and Thm. 7.6]). Let A ∈ L or A ∈ J. Then the
eigenvalues of A occur in pairs as shown below, with the same Jordan structure for
each eigenvalue in a pair.

Bilinear Sesquilinear

A ∈ J “no pairing” λ, λ

A ∈ L λ,−λ λ,−λ

A ∈ G λ, 1/λ λ, 1/λ

There is no eigenvalue structure property that holds for Jordan algebras of all
bilinear forms. However for certain special classes of J there may be additional struc-
ture in the eigenvalues. For example, it is known that the eigenvalues of any real or
complex skew-Hamiltonian matrix all have even multiplicity [7]. More generally we
have the following result.

Proposition 3.2 ([15, Prop. 7.7]). Let J be the Jordan algebra of any skew-
symmetric bilinear form on Kn. Then for any A ∈ J, the eigenvalues of A all have
even multiplicity. Furthermore, all Jordan blocks of a fixed size appear an even number
of times.

Hence we will not consider matrices in these algebras since they cannot have
simple eigenvalues.

Many of the results presented in the next two sections require the scalar product
defining the structure to be unitary and orthosymmetric: a scalar product 〈·, ·〉M is
unitary if αM is unitary for some α > 0; a scalar product is said to be orthosymmetric
if

M =

{
βMT , β = ±1, for bilinear forms,
βM∗, |β| = 1, for sesquilinear forms.

We refer to [15, Definitions A.4 and A.6] for a list of equivalent properties. Note that
the classes of structured matrices listed in Table 3.1 are all associated with a scalar
product which is both unitary and orthosymmetric with α = 1 and β ± 1.

Remark 3.3. For a sesquilinear form 〈x, y〉M = x∗My, orthosymmetry means
that M = βM∗ for some β ∈ C with |β| = 1. Then the matrix H := β̄1/2 M is
Hermitian and 〈x, y〉

H
= β̄1/2 〈x, y〉

M
, for all x, y ∈ Cn. Hence

〈Ax, y〉
H

= 〈x,Ay〉
H

⇔ β̄1/2 〈Ax, y〉
M

= β̄1/2 〈x,Ay〉
M

⇔ 〈Ax, y〉
M

= 〈x,Ay〉
M

showing that the Jordan algebra of 〈·, ·〉
H

is identical to the Jordan algebra of 〈·, ·〉
M
.

Similarly the Lie algebra of 〈·, ·〉
H

and 〈·, ·〉
M

are identical. Consequently results for or-
thosymmetric sesquilinear forms just need to be established for Hermitian sesquilinear
forms.
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4. Jordan and Lie algebras. Let S be the Jordan algebra or Lie algebra of
a scalar product on Kn. Since S is a linear subspace of Kn×n, the tangent space at
A ∈ S is S itself. Hence (2.11) becomes

κ(A, λ; S) =
1

|y∗x|φ(x, y; S) =
1

|y∗x| max {|y∗Ex| : E ∈ S, ‖E‖ = 1} .(4.1)

Clearly, if there exists E ∈ S such that Ex = y and ‖E‖ = 1 then κ(A, λ; S) = κ(A, λ).
When S is the Lie or Jordan algebra of an orthosymmetric scalar product, the next
theorem gives necessary and sufficient conditions on two given vectors x and b for
there to exist E ∈ S mapping x to b .

Theorem 4.1 ([16, Thm. 3.2]). Let S be the Lie algebra L or Jordan algebra J of
an orthosymmetric scalar product 〈·, ·〉

M
on Kn. Then for any given pair of vectors x,

b ∈ Kn with x 6= 0, there exists E ∈ S such that Ex = b if and only if the conditions
given in the following table hold:

Bilinear forms Sesquilinear forms
S

Symmetric Skew-symmetric Hermitian

J always bT Mx = 0 b∗Mx ∈ R

L bT Mx = 0 always b∗Mx ∈ ıR

Mackey, Mackey and Tisseur show that when the scalar product is both orthosym-
metric and unitary, and S = {E ∈ S : Ex = b} 6= ∅ then minE∈S ‖E‖2 = ‖b‖2/‖x‖2

[16, Thm. 5.10]. The minimal 2-norm structured mapping in S is in general not
unique. An explicit characterization of the set M = {E ∈ S : ‖E‖2 = minA∈S ‖A‖2}
is given in [16, Thm. 5.10] and it is shown that minE∈M ‖E‖2 ≤

√
2‖b‖2/‖x‖2. The

next result follows.
Lemma 4.2. Let S be the Lie or Jordan algebra of a scalar product 〈·, ·〉

M
which

is both orthosymmetric and unitary and let x, b ∈ Kn of unit 2-norm be such that
the relevant condition in Theorem 4.1 is satisfied. Then there exists E ∈ S such that
Ex = b with ‖E‖2 = 1 and ‖E‖F ≤

√
2.

The next lemma will also be useful when S ⊂ Rn×n is a real algebra but the right
and left eigenvectors are complex.

Lemma 4.3 ([18, Lem. 2.5]). Let x ∈ Cn with ‖x‖2 = 1 be given. Then there
exists a real symmetric matrix S such that Sx = µx with µ ∈ C, |µ| = 1 and ‖S‖2 = 1,
‖E‖F =

√
2.

4.1. Jordan algebras. Graillat [9] and Rump [18] show that for the structures
symmetric, complex symmetric, persymmetric, complex persymmetric and Hermitian,
the structured and unstructured eigenvalue condition numbers are equal for the 2-
norm. These are examples of Jordan algebras (see Table 3.1). The next theorem
extends these results to all Jordan algebras of a unitary and orthosymmetric scalar
product. Unlike the proofs in [9] and [18], our unifying proof does not need to consider
each Jordan algebra individually.

Theorem 4.4. Let λ be a simple eigenvalue of A ∈ J, where J is the Jordan
algebra of an orthosymmetric and unitary scalar product 〈·, ·〉

M
on Kn. Then, for the

2-norm,

κ2(A, λ; J) = κ2(A, λ).
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Proof. Since the scalar product 〈·, ·〉M is unitary, αM is unitary for some α > 0.
Let x and y be right and left eigenvectors of A associated with λ normalized so that
‖x‖2 = ‖y‖2 = 1. From (4.1) and since φ2(x, y;λ) ≤ 1, we just need to find E ∈ J of
unit 2-norm such that |y∗Ex| = 1.

For bilinear forms, orthosymmetry of 〈·, ·〉M means that M = ±MT . Suppose first
that M = MT , that is, the bilinear form is symmetric. When K = C, Lemma 4.2 says
that there exists E ∈ J such that Ex = y and ‖E‖2 = 1. Hence |y∗Ex| = |y∗y| = 1.

When K = R, A is real but if λ is complex then x, y ∈ Cn and we cannot use
Lemma 4.2 to say that there exists a real E ∈ J of unit 2-norm sending x to y.
However A ∈ J implies A = A⋆ = M−1AT M so that

Ax = λx ⇐⇒ x∗AT = λx∗ ⇐⇒ x∗MA = λx∗M

so that we can take y = (αM)∗x as a normalized left eigenvector for A associated to
λ. From Lemma 4.3 we know there exists a real symmetric S such that Sx = µx,
|µ| = 1 and ‖S‖2 = 1. Let E = αMS ∈ Rn×n. Since αM is real orthogonal and
M = MT we have

E⋆ = M−1ET M = (αM)−1S(αM)T (αM) = αMS = E

showing that E ∈ J. Moreover ‖E‖2 = ‖αMS‖2 = ‖S‖2 = 1 and Ex = αMSx =
µαMx so that |y∗Ex| = |µxT (αM)T (αM)x| = |µxT x| = 1.

We do not need to consider the the skew-symmetric bilinear case (M = −MT )
since from Proposition 3.2 the eigenvalues of matrices in Jordan algebras of skew-
symmetric bilinear forms all have even multiplicity.

When 〈·, ·〉 is an orthosymmetric sesquilinear form, Remark 3.3 says that we just
need to establish the result for M = M∗, that is, for Hermitian sesquilinear forms.
Let µ ∈ C, |µ| = 1 be such that (µy)∗Mx ∈ R. Then from Lemma 4.2 there exists
E ∈ J such that Ex = µy and ‖E‖2 = 1.

The proof above also shows that for the Frobenius norm,

1√
2

κF (A, λ) ≤ κF (A, λ; J) ≤ κF (A, λ).

For Jordan algebras J of sesquilinear forms, eigenvalues come in pairs λ and λ̄ and
if λ is simple so is λ̄ (see Theorem 3.1). For unitary scalar products, αM is unitary
for some α > 0, and, if x and y are normalized right and left eigenvectors associated
with λ then αMy and αMx are normalized right and left eigenvectors associated with
λ̄. Hence, |(αMx)∗(αMy)| = |x∗y| so that

κ(A, λ; J) = κ(A, λ̄; J).

4.2. Lie algebras. We show that, with the exception of symmetric bilinear
forms, incorporating structure does not affect the eigenvalue condition number for
matrices in Lie algebras of scalar products that are both orthosymmetric and unitary.
These include as special cases the skew-symmetric, complex skew-symmetric, and
skew-Hermitian matrices considered by Rump [18].

Theorem 4.5. Let λ be a simple eigenvalue of A ∈ L, where L is the Lie algebra
of an orthosymmetric and unitary scalar product 〈·, ·〉

M
on Cn.
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• For symmetric bilinear forms,

κ2(A, λ; L) =


 max

b∈(Mx)⊥

‖b‖2=1

|y∗b|


 κ2(A, λ),

• For skew-symmetric bilinear forms or sesquilinear forms,

κ2(A, λ; L) = κ2(A, λ).

Proof. Since the scalar product 〈·, ·〉
M

is unitary, αM is unitary for some α > 0.
Let x and y be right and left eigenvectors of A associated with λ normalized so that
‖x‖2 = ‖y‖2 = 1.

For bilinear forms, orthosymmetry implies M = ±MT . Suppose first that M =
MT , that is, 〈·, ·〉

M
is a symmetric bilinear form. From (4.1) we just need to show

that

η := max
{
|y∗b| : b ∈ (Mx)⊥, ‖b‖2 = 1

}

is equal to φ2(x, y; L). Let E ∈ L be of unit 2-norm and such that |y∗Ex| = φ2(x, y; L).
Let b = Ex. Theorem 4.1 implies that bT Mx = 0, i.e., b ∈ (Mx)⊥. Also, ‖b‖2 =
‖Ex‖2 ≤ 1. Hence φ2(x, y; L) ≤ η. Let b ∈ (Mx)⊥ be of unit 2-norm and such that
|y∗b| = η. Lemma 4.2 then implies that there exists E ∈ L such that Ex = b and
‖E‖2 = 1. Hence φ2(x, y; L) ≥ |y∗Ex| = |y∗b| = η.

Now for skew-symmetric bilinear forms, Lemma 4.2 implies that there exists E ∈
L such that Ex = y and ‖E‖2 = 1 so that |y∗Ex| = |y∗y| = 1 and equality between
structured and unstructured eigenvalue condition number follows.

Finally when 〈·, ·〉M is an orthosymmetric sesquilinear form, Remark 3.3 says that
we just need to prove the result for an Hermitian sesquilinear form (M = M∗). Let
µ ∈ C, |µ| = 1 be such that 〈µy, x〉

M
= µ̄y∗Mx ∈ ıR. Then from Lemma 4.2 there

exists E ∈ L such that Ex = µy and ‖E‖2 = 1. Hence |y∗Ex| = |µy∗y| = 1. The
result follows then from (4.1).

With a very similar proof we can show that for Lie algebras of orthosymmetric
and unitary scalar products and for perturbations measured in the Frobenius norm,

1√
2

γL κF (A, λ) ≤ κF (A, λ; L) ≤ γL κF (A, λ),

where γ
L

= max b∈(Mx)⊥

‖b‖2=1

|y∗b| for symmetric bilinear forms and γ
L

= 1 otherwise.

Note that Theorem 4.5 deals with complex perturbations only. However, for real
bilinear forms the results still hold when λ is real. For complex λ, in view of (2.15)
we know that the real structured eigenvalue condition number is within a small factor
of the complex one.

For A ∈ L we have A⋆ = −A and

λ〈x, x〉
M

= 〈λx, x〉
M

= 〈Ax, x〉
M

= 〈x,A⋆x〉
M

= −〈x,Ax〉
M

= −λ〈x, x〉
M

so that if λ 6= 0, 〈x, x〉M = (Mx)T x = 0, that is, x ∈ (Mx)⊥. Hence for λ 6= 0,

|y∗x| ≤ max
b∈(Mx)⊥

‖b‖2=1

|y∗b| ≤ 1.
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When λ = 0 is an eigenvalue of A ∈ L,

Ax = 0 ⇐⇒ −A⋆x = 0 ⇐⇒ M−1AT Mx = 0 ⇐⇒ (Mx)T A = 0

so that we can take y = Mx as a left eigenvector of λ = 0. Hence if λ = 0 is simple,

κ2(A, 0; L) = 0 < κ2(A, 0).

This result may be surprising but from Theorem 3.1 we know that eigenvalues of
Lie algebras of bilinear forms come in pairs λ,−λ so that for odd dimensions n,
λ = 0 has to be an eigenvalue. Any perturbation of A leaves a simple 0 eigenvalue
unchanged. For the special case where M = I, i.e., when L is the set of complex
skew-symmetric matrices, Rump [18] exhibits a 3× 3 example showing that the ratio
κ2(A, λ; L)/κ2(A, λ) for λ 6= 0 can be arbitrarily small. Our result shows that this
ratio can be arbitrarily small for all Lie algebras of symmetric bilinear forms on Kn.

Since the eigenvalues of matrices in L come in pairs λ,−λ for bilinear forms and
λ,−λ̄ for sesquilinear forms (see Theorem 3.1) then if 0 6= λ is simple so is −λ (or
−λ̄). We can show that for unitary scalar products,

κ(A, λ; L) =

{
κ(A,−λ; L) for bilinear forms,
κ(A,−λ̄; L) for sesquilinear forms.

5. Automorphism groups. We now consider structured condition numbers for
automorphism groups G associated with the scalar product 〈·, ·〉

M
,

G = {A ∈ K
n×n : A⋆ = A−1}.

This includes the groups of symplectic matrices (M = J), real and complex orthogonal
matrices (M = I), as well as Lorentz transformations (M = diag(1, 1, 1,−1)). We
first show how to compute κF (A, λ; G) in (2.14) and (2.16), then consider properties
of the structured condition number, and finally provide lower bounds for κ2(A, λ; G).

5.1. Computation of κF (A, λ; G). An automorphism group G forms a smooth
manifold. The Jacobian of the function

Φ(A) =

{
AT MA − M for bilinear forms,
A∗MA − M for sesquilinear forms.

at A ∈ Kn×n can be represented as the linear function

JA(X) =

{
AT MX + XT MA for bilinear forms,
A∗MX + X∗MA for sesquilinear forms.

The tangent space TAG at A ∈ G coincides with the kernel of this Jacobian,

TAG = {X ∈ K
n×n : JA(X) = 0} = {AH ∈ K

n×n : H⋆ = −H} = A·L,(5.1)

where L is the Lie algebra of 〈·, ·〉M .
As the Lie algebra L in (5.1) is independent of A, it is often simple to explicitly

construct a pattern matrix L such that for every H ∈ L there exists a uniquely defined
parameter vector q with vec(H) = Lq. To obtain a pattern matrix B for A·L in the
sense of (2.12), we can compute a QR decomposition (I ⊗ A)L = BR, where the
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Table 5.1
Pattern matrices L

M
for M ·L = Sym(K), Skew(K) or Herm(C). L

M
is such that for any

H ∈ M ·L there exists a uniquely defined parameter vector q with vec(H) = L
M

q , ‖H‖F = ‖q‖2.

Here n = 2.

M ·L Sym(K) Skew(K) Herm(C)

LM

264 1 0 0
0 1/

√
2 0

0 1/
√

2 0
0 0 1

375 264 0
1/

√
2

−1/
√

2
0

375 264 1 0 0 0
0 1/

√
2 −ı/

√
2 0

0 1/
√

2 ı/
√

2 0
0 0 0 1

375
columns of B form an orthonormal basis for the space spanned by the columns of L,
and R is an upper triangular matrix. Hence,

vec(AH) = (I ⊗ A) vec(H) = (I ⊗ A)Lq = Bp,

where p = Rq, and ‖AH‖F = ‖ vec(AH)‖2 = ‖p‖2.
According to (2.14) we have

κF (A, λ; G) =
1

|y∗x| ‖(x ⊗ y)∗B‖2 =
|λ|
|y∗x| ‖(x ⊗ y)∗LR−1‖2(5.2)

if K = C or if K = R with λ real. Otherwise, when K = R and λ is complex or, when
B is complex, (2.16) implies

κF (A, λ; G) =
1

|y∗x|

∥∥∥∥
[

Re
(
λ(x ⊗ y)∗LR−1

)

Im
(
λ(x ⊗ y)∗LR−1

)
]∥∥∥∥

2

.(5.3)

It is shown in [16, Lem. 5.9] that when the scalar product 〈·, ·〉
M

defining the
structure is orthosymmetric, left multiplication by M is a bijection from Kn×n to
Kn×n that maps L and J to Skew(K) and Sym(K) for bilinear forms and a scalar
multiple of Herm(C) for sesquilinear forms, where

Skew(K) = {A ∈ K
n×n : AT = −A}, Sym(K) = {A ∈ K

n×n : AT = A}

are the sets of symmetric and skew-symmetric matrices on Kn×n and Herm(C) is the
set of Hermitian matrices. More precisely, for bilinear forms on Kn, (K = R, C) write,

M ·L =

{
Skew(K) if M = MT ,
Sym(K) if M = −MT ,

(5.4)

and for sesquilinear forms on Cn,

M ·L = β1/2 ı Herm(C),(5.5)

where, by orthosymmetry, β is such that M = βM∗, |β| = 1. For any H ∈ L,
MH ∈ M ·L and if L

M
is pattern matrix for M ·L, that is, vec(MH) = L

M
q where q

is a uniquely defined vector of parameters, then

vec(H) = vec(M−1MH) = (I ⊗ M−1) vec(MH) = (I ⊗ M−1)L
M

q

so that L := (I ⊗ M−1)L
M

is a pattern matrix for L. An advantage of using left
multiplication by M is that pattern matrices for Sym(K), Skew(K) and Herm(C) are
easy to construct (see Table 5.1 for examples of such matrices).
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5.2. Properties of κ(A, λ; G). The eigenvalues of A ∈ G come in pairs λ and
1/λ for bilinear forms, and in pairs λ and 1/λ for sesquilinear forms. In both cases
these pairs have the same Jordan structure, and hence the same algebraic and geo-
metric multiplicities (see Theorem 3.1). Hence if λ is simple so is 1/λ or 1/λ̄. For
unitary scalar products, there are interesting relations between the structured condi-
tion numbers of these eigenvalue pairings.

Theorem 5.1. Let λ be a simple eigenvalue of A ∈ G, where G is the automor-
phism group of a unitary scalar product on Kn. For any unitarily invariant norm, the
(absolute) unstructured eigenvalue condition number satisfies

κ(A, λ) =

{
κ(A, 1/λ) for bilinear forms,
κ(A, 1/λ̄) for sesquilinear forms,

whereas the (absolute) structured eigenvalue condition number satisfies

κ(A, λ; G) =

{
|λ|2 κ(A, 1/λ; G) for bilinear forms,
|λ|2 κ(A, 1/λ̄; G) for sesquilinear forms.

Proof. We just prove the bilinear case, the proof for the sesquilinear case being
similar. The scalar product 〈·, ·〉

M
being unitary implies that αM is unitary for some

α > 0. If x and y are normalized right and left eigenvectors associated with λ then
x̃ = αMy and ỹ = αMx are right and left normalized eigenvectors belonging to the
eigenvalue 1/λ. It is easily checked that |ỹ∗x̃| = |y∗x| and since since ‖ · ‖ is unitarily
invariant, φ(x̃, ỹ; Kn×n) = φ(x, y; Kn×n) so that κ(A, λ) = κ(A, 1/λ).

Let E ∈ TAG = A·L. Then E = AH for some H in the Lie algebra L of 〈·, ·〉
M

and

|y∗Ex| = |λ| |y∗Hx|.(5.6)

Also, A ∈ G ⇒ MT A = A−T MT , αM unitary ⇒ M−T = α2M and H ∈ L ⇒
α2MT HM = −HT . Hence,

|(αMx)∗E(αMy)| = |α2xT MT AHMy|
= |α2(xT A−T )(MT HM)y|

=
1

|λ| |x
T HT y|

=
1

|λ| |y
∗Hx| =

1

|λ|2 |y
∗Ex|

so that from (2.10) and (2.11), κ(A, λ; G) = κ(A, 1/λ; G)/|λ|2.
Theorem 5.1 shows that the relative structured eigenvalue condition numbers for

λ and 1/λ if the form is bilinear or λ and 1/λ̄ if the form is sesquilinear, are equal.
On the other hand, the ratio between the relative unstructured eigenvalue condition
numbers for λ and 1/λ ( or λ and 1/λ̄) is 1/|λ|2. Hence, if we use a non structure
preserving algorithm, we should compute the larger of λ and 1/λ (or 1/λ̄). In other
words, we should compute whichever member of the pair (λ, 1/λ) (or the pair (λ, 1/λ̄))
lies outside the unit circle and then obtain the other one by reciprocation.

5.3. Bounds for κ(A, λ; G). Lower bounds for the eigenvalue structured condi-
tion number can be derived when 〈·, ·〉

M
is orthosymmetric and unitary.
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Theorem 5.2. Let λ be a simple eigenvalue of A ∈ G, where G is the auto-
morphism group of an orthosymmetric and unitary scalar product 〈·, ·〉

M
on Kn. If

K = C or, if K = R with λ real we have for both the Frobenius norm and the 2-norm
(ν = 2, F ),

• for symmetric bilinear forms,

|λ|
‖A‖2

max
b∈(Mx)⊥

‖b‖2=1

|y∗b| κν(A, λ) ≤ κν(A, λ; G) ≤ max
b∈(Mx)⊥

‖b‖2=1

|y∗b| κν(A, λ),

• for skew-symmetric bilinear or sesquilinear forms,

|λ|
‖A‖2

κν(A, λ) ≤ κν(A, λ; G) ≤ κν(A, λ).

For K = R and λ complex, the lower bounds for the Frobenius norm need to be
multiplied by 1/

√
2.

Proof. Let x and y be right and left eigenvectors of A associated with λ normalized
so that ‖x‖2 = ‖y‖2 = 1. Let L be the Lie algebra of 〈·, ·〉M . From (2.11) and (5.1)
we have

κ(A, λ; G) =
1

|y∗x|φ(x, y;A·L) =
1

|y∗x| max {|y∗AHx| : H ∈ L, ‖AH‖ = 1} .

By definition of orthosymmetry and from Remark 3.3 we just need to prove the
result for symmetric and skew-symmetric bilinear forms and for Hermitian sesquilinear
forms.

Suppose first that 〈·, ·〉
M

is a symmetric bilinear form on Kn. Let Hν ∈ L be
such that ‖AHν‖ν = 1 and |y∗AHνx| = φν(x, y;A ·L), ν = 2, F . Let bν = AHνx.
Theorem 4.1 implies that (A−1bν)T Mx = 0. Since M = MT and A ∈ G, that is,
A−1 = A⋆ = M−1AT M , we have

(A−1bν)T Mx = 0 ⇐⇒ bT
ν MAM−1Mx = λ bT

ν Mx = 0

so that bν ∈ (Mx)⊥. Also, ‖bν‖2 = ‖AHνx‖2 ≤ 1. Hence

φν(x, y;A·L) = |y∗AHνx| = |y∗bν | ≤ max
{
|y∗b| : b ∈ (Mx)⊥, ‖b‖2 = 1

}

which proves the upper bound. For the lower bound we take v ∈ (Mx)⊥ of unit
2-norm and such that |y∗v| = max

{
|y∗b| : b ∈ (Mx)⊥, ‖b‖2 = 1

}
. From Lemma 4.2

there exists S ∈ L such that Sx = v and ‖S‖2 = 1. Let H̃ν = ξνS with ξν > 0 such

that ‖AH̃ν‖ν = 1, ν = 2, F . From ‖AH̃ν‖ν ≤ ‖A‖ν‖H̃ν‖2 we have that ξν ≥ 1/‖A‖ν .
Hence

φν(x, y;A·L) = |λ|max {|y∗Hx| : H ∈ L, ‖AH‖ν = 1}
≥ |λ||y∗H̃νx|

≥ |λ|
‖A‖ν

|y∗v|

=
|λ|

‖A‖ν
max

{
|y∗b| : b ∈ (Mx)⊥, ‖b‖2 = 1

}

proving the lower bound.
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The lower bound for the skew-symmetric bilinear or Hermitian sesquilinear cases
is derived in a similar way to that for the symmetric bilinear case. The only difference
being that, from Lemma 4.2, there exists S ∈ L of unit 2-norm such that Sx = y if the
form is skew-symmetric bilinear and Sx = µy for some µ ∈ C such that (µy)∗Mx ∈ ıR,
|µ| = 1 when the form is Hermitian sesquilinear.

Note that A ∈ G implies

λ〈x, x〉M = 〈Ax, x〉M = 〈x,A−1x〉M =
1

λ
〈x, x〉M .(5.7)

Hence if λ 6= ±1 we have, for bilinear forms, 〈x, x〉
M

= xT Mx = 0, that is, x ∈ (Mx)⊥

so that

|y∗x| ≤ max
b∈(Mx)⊥

‖b‖2=1

|y∗b| ≤ 1, λ 6= ±1.(5.8)

If λ = ±1 then

Ax = ±x ⇔ x = ±A−1x ⇔ x = ±A⋆x ⇔ Mx = AT Mx ⇔ (Mx)∗ = ±(Mx)∗A

so that y = Mx is a left eigenvector of A associated with λ. If M = MT then Theorem
5.2 implies that for both the 2-norm and Frobenius norm,

κν(A, λ; G) = 0 for λ = ±1.(5.9)

When M = I and 〈·, ·〉 is a sesquilinear form, G is the set of unitary matrices
(see Table 3.1). But unitary matrices are normal and therefore κν(A, λ) = 1, ν =
2, F . Thus we can expect κν(A, λ; G) ≤ 1. Theorem 5.2 implies that the structured
condition number is exactly 1. If 〈·, ·〉M with M = I is a real (symmetric) bilinear
form, G is the set of orthogonal matrices. Theorem 5.2 combined with (5.8) and (5.9)
says that κν(A, λ; G) = 0 if λ = ±1 and κν(A, λ; G) = 1 otherwise. We refer to [3] for
a more general perturbation analysis of orthogonal and unitary eigenvalue problems,
based on the Cayley transform.

Suppose G is the automorphism group of a skew-symmetric bilinear form 〈·, ·〉M
(M = −MT ). For an eigenvalue λ of A with |λ| ≈ ‖A‖2, the bounds in Theorem 5.2
imply

κν(A, λ; G) ≈ κν(A, λ), ν = 2, F.

From Theorem 5.1 we then have

|λ|2κν(A, 1/λ; G) ≈ κν(A, 1/λ), ν = 2, F

showing that if |λ| is large, the unstructured eigenvalue condition number for 1/λ is
much larger than the structured one. The lower bounds in Theorem 5.2 may not be
tight when max(|λ|, 1/|λ|) ≪ ‖A‖ν as shown by the following example. Suppose that
M = J and that 〈·, ·〉J is a real bilinear form (K = R). Then G is the set of real
symplectic matrices (see table 3.1). Let us consider the symplectic matrix

A =

[
D D
0 D−1

]
, D = diag(104, 102, 2).(5.10)

Define the ratio

ρ = κF (A, λ; G)/κF (A, λ) ≤ 1
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Table 5.2
Condition numbers for the eigenvalues of the symplectic matrix A in (5.10), ratio ρ between the

structured and unstructured condition number, and lower bound γ for this ratio.

λ 104 102 2 1/2 10−2 10−4

κF (A, λ; G) 1.2 1.2 1.5 0.4 1.2× 10−4 1.2× 10−8

ρ 0.87 0.87 0.89 0.22 8.7× 10−5 8.7× 10−9

γ 0.5 5× 10−3 1× 10−4 2.5× 10−5 5× 10−7 5× 10−9

between the structured and unstructured eigenvalue condition numbers. κK(A, λ; G)
is computed using (5.2) and its values and these of ρ are displayed in Table 5.2 together
with the lower bound γ = |λ|/(

√
2‖A‖2) of Theorem 5.2. This example demonstrates

the looseness of the bounds of Theorem 5.2 for eigenvalues in the interior of the
spectrum. Hence for these eigenvalues the computable expressions in Section 5.1 are
of interest.

6. Conclusions. We have derived directly computable expressions for struc-
tured eigenvalue condition numbers on a smooth manifold of structured matrices.
Furthermore, we have obtained meaningful bounds on the ratios between the struc-
tured and unstructured eigenvalue condition numbers for a number of structures re-
lated to Jordan algebras, Lie algebras, and automorphism groups. We have identified
classes of structured matrices for which this ratio is 1 or close to 1. Hence for these
structures, the usual unstructured perturbation analysis is sufficient.

The important task of finding computable expressions for structured backward
errors of nonlinearly structured eigenvalue problems is still largely open and remains
to be addressed.
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