Université de Montréal

Caractérisation bioinformatique des nouvelles protéines mitochondriales chez les moules d'eau douce (Bivalvia : Unionoida).

par Alyssa Mitchell

Département de sciences biologiques Faculté des arts et des sciences

Mémoire présenté à la Faculté des arts et des sciences en vue de l'obtention du grade de M.Sc. en sciences biologiques

Décembre, 2015

© Alyssa Mitchell, 2015

Résumé

Malgré que le contenu des génomes mitochondriaux animaux soit dit bien conservé, des nouveaux gènes mitochondriaux ont été identifiés chez plusieurs espèces, surtout des invertébrés. Par exemple, les bivalves exhibant la double transmission uniparentale de leurs génomes mitochondriaux possèdent des nouveaux gènes spécifiques au sexe (M-ORF dans l'ADN de type M, F-ORF dans l'ADN de type F) qui ont été caractérisés in silico chez trois espèces de l'ordre Mytiloida, une espèce de Veneroida et une espèce de Unionoida par une précédente étude. Même si les séquences varient beaucoup entre ces trois ordres, cette étude à montré que des hélices transmembranaires ainsi que des peptides signaux sont conservés pour toutes les séquences. L'étude a aussi montré que les nouveaux gènes pourraient avoir des rôles dans la signalisation cellulaire, le cycle cellulaire et la réponse immunitaire et qu'ils pourraient être le résultat de l'endogénisation de l'ADN viral. Le projet présenté ici a pour but de mieux caractériser ces nouveaux gènes et leur origine potentielle, en plus d'étudier le H-ORF particulier aux hermaphrodites, en ciblant les espèces des unionidés. Les résultats montrent que les hélices transmembranaires et peptides signaux sont conservés chez les unionidés, les protéines semblent être associées à la membrane et être capables de lier des acides nucléiques et protéines, et les fonctions potentielles sont conservées. Les M-ORFs semblent avoir un rôle dans le transport et des processus cellulaires tels que la signalisation, le cycle cellulaire et la division, et l'organisation du cytosquelette. Les F-ORFs semblent être impliqués dans le trafic et transport cellulaire et la réponse immunitaire. Finalement, les H-ORFs semblent être des glycoprotéines structurales avec des rôles dans la signalisation, le transport et la transcription. Les résultats de ce projet pourraient supporter une origine virale ou mitochondriale pour ces gènes.

Mots-clés : double transmission uniparentale, Unionoida, ORFans, mitochondrie, in silico

Abstract

Although animal mitochondrial gene content is generally considered to be wellconserved, new genes have been identified in a variety of species, particularly invertebrates. For example, bivalves with doubly uniparental inheritance (DUI) of the mitochondrial genome have novel, sex-specific genes (M-ORF in M-type DNA, F-ORF in F-type DNA) which have been characterized in silico in three species of the order Mytiloida, one Veneroida and one Unionoida in a previous study. Although they are highly variable across these three orders, this study found conserved N-terminal signal peptides and transmembrane helices across all species. The study also showed that the new genes may and have roles in cell signaling, cell cycle, and immune response, and that they may be the result of endogenization of viral DNA. This project aimed to better characterize these novel genes and their potential origin as well as the H-ORF specific to hermaphrodites by focusing on the Unionoida. The pattern of conserved transmembrane helices and signal peptides is present across the species studied, all proteins seem to be membrane associated and able to bind nucleic acids and proteins, and potential functions are conserved as well. M-ORFs seem to have a role in transport and cellular processes such as signalling, cell cycle and division, and cytoskeleton organisation. F-ORFs are predicted to be involved in cellular traffic and transport and immune response. Finally, H-*ORFs* appear to be structural glycoproteins which may be involved in signalling, transport and transcription. The results of this project support either a viral or a mitochondrial origin for these genes.

Keywords : doubly uniparental inheritance, Unionoida, ORFans, mitochondria, in silico

Table des matières

Résumé	1
Abstract	2
Table des matières	3
Liste des tableaux	5
Liste des figures	8
Liste des abréviations et sigles	9
Remerciements	11
Chapitre 1 : Introduction générale	13
Section 1.1 : La mitochondrie et son génome	13
Section 1.2 : La double transmission uniparentale	14
Section 1.3 : Les moules d'eau douce (Unionoida)	16
Section 1.4 : Nouveautés et nouveaux gènes	18
Section 1.5 : Objectifs et hypothèses	22
Chapitre 2 : In silico analyses of mitochondrial ORFans in freshwater mussels (B	ivalvia:
Unionoida) provide framework for future studies of their origin and function	23
Section 2.1: Introduction	23
Section 2.2: Materials and methods	26
Section 2.2.1: Sequences used in the analyses	26
Section 2.2.2: Analyses of ORFan sequences and protein secondary structures	30
Section 2.2.3: Functional analyses of ORFan proteins	30
Section 2.3: Results	31
Section 2.3.1: Rate of evolution of ORFan genes and proteins	31
Section 2.3.2: Conserved structures in ORFan protein sequences	40

Section 2.3.3: Motif and functional domain scans: frequently recurring HHpred hit	s and
potential ligand-binding sites	44
Section 2.3.4: Prediction of molecular function: hits to viral proteins	47
Section 2.3.5: Prediction of molecular function: hits to mitochondrial proteins	51
Section 2.3.6: Profile HMM – sequence comparisons for F-ORFs and M-ORFs	53
Section 2.3.7: Prediction of molecular function (all sequences, all programs e	xcept
hmmsearch)	54
Section 2.4: Discussion and conclusion	57
Section 2.4.1: Evolution of freshwater mussel ORFan sequences and protein struct	ctures
	57
Section 2.4.2: Conserved motifs and domains: mitochondrial export of ORFan pro	oteins
	59
Section 2.4.3: Putative origin for freshwater mussel mitochondrial ORFans	61
Section 2.4.4: Predicted functions for freshwater mussel mitochondrial ORFans	64
Section 2.4.5: Conclusions and future directions	67
Chapitre 3 : Discussion, perspectives et conclusion	69
Section 3.1 : Conservation des séquences et structures des ORFans	69
Section 3.2 : Exportation des ORFans de la mitochondrie	70
Section 3.3 : Fonctions potentielles	72
Section 3.4 : DUI et conflit génomique	73
Section 3.5 : Unionoida	74
Bibliographie	76
Appendice 1 : L'approche bioinformatique	84
Appendice 2 : Figures supplémentaires	87
Appendice 3 : Tableaux supplémentaires	95

Liste des tableaux

Table I. Sequences analyzed in the present study
Table II. p-distances (p-D) and standard error (SE) values for mitochondrial M-orfs, F-orfs,
and <i>cox1</i> in freshwater mussel subfamilies
Table III. p-distances (p-D) and standard error (SE) values of mitochondrial H-orfs and cox1
in hermaphroditic freshwater mussels
Table IV. p-distances (p-D) and standard error (SE) values of mitochondrial F-orfs vs H-orfs
and Fcox1 vs Hcox1 in comparisons between gonochoric vs. closely related hermaphroditic
freshwater mussel species
Table V. Summary of hits to ligand-binding sites in M-ORFs, F-ORFs and H-ORFs
Table VI. Hits to viral proteins from structural prediction analyses
Table VII. List of BLAST hits for mitochondrial ORFans in freshwater mussels searched
against NCBI NRDB mitochondrial proteins
Supplementary Table I. Predicted transmembrane (TM) helices in M-ORFs and F-ORFs 95
Supplementary Table II. Predicted signal peptides in M-ORFs and F-ORFs
Supplementary Table III. Predicted transmembrane (TM) helices in H-ORFs
Supplementary Table IV. Predicted signal peptides in H-ORFs
Supplementary Table V. Frequently recurring HHpred hits in F-ORFs and M-ORFs 100
Supplementary Table VI. Frequently recurring HHpred hits in H-ORFs
Supplementary Table VII. Hits to other motifs and domains in M-ORFs and F-ORFs 105
Supplementary Table VIII. Hits to other motifs and domains in H-ORFs
Supplementary Table IX. Filtered hmmsearch output for the M-ORF and F-ORF HMM
profiles built using default parameters with hmmbuild108
Supplementary Table X. Filtered hmmsearch output for the M-ORF and F-ORF HMM
profiles built using custom parameters with hmmbuild
Supplementary Table XI. Venustaconcha ellipsiformis M-ORF function predictions 132
Supplementary Table XII. Quadrula quadrula M-ORF function predictions
Supplementary Table XIII. Pyganodon grandis M-ORF function predictions
Supplementary Table XIV. Inversidens japanensis M-ORF function predictions
Supplementary Table XV. Utterbackia peninsularis M-ORF function predictions

upplementary Table XVI. Solenaia carinatus M-ORF function predictions
upplementary Table XVII. Cumberlandia monodonta M-ORF function predictions 154
upplementary Table XVIII. Hyridella menziesii M-ORF function predictions
upplementary Table XIX. Anodonta anatina M-ORF function predictions
upplementary Table XX. Venustaconcha ellipsiformis F-ORF function predictions 164
upplementary Table XXI. Quadrula quadrula F-ORF function predictions
upplementary Table XXII. Pyganodon grandis F-ORF function predictions
upplementary Table XXIII. Inversidens japanensis F-ORF function predictions
upplementary Table XXIV. Utterbackia peninsularis F-ORF function predictions
upplementary Table XXV. Solenaia carinatus F-ORF function predictions
upplementary Table XXVI. Cumberlandia monodonta F-ORF function predictions 183
upplementary Table XXVII. Hyridella menziesii F-ORF function predictions
upplementary Table XXVIII. Lasmigona complanata F-ORF function predictions 19
upplementary Table XXIX. Toxolasma lividus F-ORF function predictions
upplementary Table XXX. Margaritifera margaritifera F-ORF function predictions 199
upplementary Table XXXI. Anodonta anatina F-ORF function predictions
upplementary Table XXXI. Anodonta anatina F-ORF function predictions203upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 1 function
upplementary Table XXXI. Anodonta anatina F-ORF function predictions202upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 1 function202redictions204
upplementary Table XXXI. Anodonta anatina F-ORF function predictions 202 upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 1 function 202 redictions 202 upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 2 function
upplementary Table XXXI. Anodonta anatina F-ORF function predictions 202 upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 1 function 202 redictions 202 upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 2 function 202 redictions 203 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 203 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 203 redictions 213
upplementary Table XXXI. Anodonta anatina F-ORF function predictions 202 upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 1 function 202 redictions 203 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 203 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 203 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 3 function 213 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function 213
upplementary Table XXXI. Anodonta anatina F-ORF function predictions 202 upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 1 function 202 redictions 203 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 203 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 203 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 3 function 213 redictions 213 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function 213 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function 214
upplementary Table XXXI. Anodonta anatina F-ORF function predictions 202 upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 1 function 202 redictions 206 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 206 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 212 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function 212 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function 216 upplementary Table XXXV. Utterbackia imbecillis H-ORF sequence 4 function prediction 216
upplementary Table XXXI. Anodonta anatina F-ORF function predictions 202 upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 1 function 202 redictions 202 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 202 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 212 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function 212 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function 212 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 4 function prediction 212 upplementary Table XXXV. Utterbackia imbecillis H-ORF sequence 4 function 212 upplementary Table XXXV. Utterbackia imbecillis H-ORF sequence 4 function 212
upplementary Table XXXI. Anodonta anatina F-ORF function predictions 202 upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 1 function 200 redictions 200 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 200 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 212 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function 212 upplementary Table XXXV. Utterbackia imbecillis H-ORF sequence 4 function prediction 212 upplementary Table XXXV. Utterbackia imbecillis H-ORF sequence 5 & 6 function 222 upplementary Table XXXVI. Utterbackia imbecillis H-ORF sequences 5 & 6 function 222
upplementary Table XXXI. Anodonta anatina F-ORF function predictions 202 upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 1 function 202 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 202 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 203 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function 213 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function 214 upplementary Table XXXV. Utterbackia imbecillis H-ORF sequence 4 function prediction 214 upplementary Table XXXV. Utterbackia imbecillis H-ORF sequence 5 & 6 function 215 upplementary Table XXXVI. Utterbackia imbecillis H-ORF sequence 5 & 6 function 225 upplementary Table XXXVI. Utterbackia imbecillis H-ORF sequences 5 & 6 function 23
upplementary Table XXXI. Anodonta anatina F-ORF function predictions 202 upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 1 function 202 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 202 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 212 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function 212 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 4 function prediction 212 upplementary Table XXXV. Utterbackia imbecillis H-ORF sequence 5 & 6 function 212 upplementary Table XXXVI. Utterbackia imbecillis H-ORF sequences 5 & 6 function 222 upplementary Table XXXVI. Utterbackia imbecillis H-ORF sequences 5 & 6 function 23 upplementary Table XXXVI. Utterbackia imbecillis H-ORF sequences 7 function 23
upplementary Table XXXI. Anodonta anatina F-ORF function predictions 202 upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 1 function 200 redictions 200 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 200 redictions 211 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function 212 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function 214 upplementary Table XXXV. Utterbackia imbecillis H-ORF sequence 4 function prediction 214 upplementary Table XXXV. Utterbackia imbecillis H-ORF sequence 5 & 6 function 214 upplementary Table XXXVI. Utterbackia imbecillis H-ORF sequences 5 & 6 function 224 upplementary Table XXXVI. Utterbackia imbecillis H-ORF sequences 5 & 6 function 234 upplementary Table XXXVI. Utterbackia imbecillis H-ORF sequences 7 function 235 upplementary Table XXXVII. Utterbackia imbecillis H-ORF sequences 7 function 236 upplementary Table XXXVII. Utterbackia imbecillis H-ORF sequences 7 function 236
upplementary Table XXXI. Anodonta anatina F-ORF function predictions 201 upplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 1 function 200 redictions 200 upplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function 200 redictions 211 upplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function 212 upplementary Table XXXV. Utterbackia imbecillis H-ORF sequence 3 function 213 upplementary Table XXXV. Utterbackia imbecillis H-ORF sequence 4 function prediction 214 upplementary Table XXXV. Utterbackia imbecillis H-ORF sequences 5 & 6 function 215 upplementary Table XXXVI. Utterbackia imbecillis H-ORF sequences 5 & 6 function 216 upplementary Table XXXVI. Utterbackia imbecillis H-ORF sequences 5 & 6 function 213 upplementary Table XXXVII. Utterbackia imbecillis H-ORF sequences 5 & 6 function 213 upplementary Table XXXVII. Utterbackia imbecillis H-ORF sequences 7 function 233 upplementary Table XXXVII. Utterbackia imbecillis H-ORF sequences 7 function 236 upplementary Table XXXVIII. Margaritifera margaritifera H-ORF sequence 1 function 236

Supplementary Table XXXIX. Margaritifera margaritifera H-ORF sequences 2 & 4
function predictions
Supplementary Table XL. Margaritifera margaritifera H-ORF sequence 3 function
predictions
Supplementary Table XLI. Toxolasma lividus H-ORF function predictions
Supplementary Table XLII. Lasmigona compressa H-ORF sequence 1 function predictions
Supplementary Table XLIII. Lasmigona compressa H-ORF sequence 2 function predictions
Supplementary Table XLIV. Lasmigona subviridis H-ORF sequence 1 function predictions
Supplementary Table XLV. Lasmigona subviridis H-ORF sequence 2 function predictions
268

Liste des figures

Figure 1. La double transmission uniparentale
Figure 2. Phylogénie simplifiée d'une collection d'espèces à sexes séparés e
hermaphrodites (familles Unionoida et Margaritifera)18
Figure 3. Cartes des génomes de types F, H et M
Figure 4. Alignment of M-ORF and F-ORF protein sequences
Figure 5. Hydrophobicity profiles of M-ORFs (a), F-ORFs (b) and H-ORFs vs. F-ORFs
(c)
Figure 6. Position of motifs frequently recurring in HHpred hits
Figure 7. Most common categories of hits for (a) M-ORFs, (b) F-ORFs, and (c) H-ORFs.
Supplementary Figure 1. Alignments of F-ORFs and H-ORFs of closely related species
Supplementary Figure 2. Alignments of complete mitochondrial genomes of freshwater
mussels with DUI
Supplementary Figure 3. Position of frequently recurring functions in HHpred and
BLAST hits for (a) M-ORFs, (b) F-ORFs, and (c) and (d) H-ORFs

Liste des abréviations et sigles

ABC : transporteur ABC / ATP-binding cassette transporter ADN : acide désoxyribonucléique / deoxyribonucleic acid ADNmt : ADN mitochondriale / mitochondrial DNA ARN : acide ribonucléique / ribonucleic acid ATP : adénosine triphosphate / adenosine triphosphate CMS : stérilité cytoplasmique mâle / cytoplasmic male sterility CTERM : C-terminale / C-terminal DUI: double transmission uniparentale / doubly uniparental inheritance e.g.: exempli gratia Et al. : et alii HMM : modèle de Markov caché / Hidden Markov Model i.e. : id est MY : million d'années / million years NADH : nicotinamide adénine dinucléotide / nicotinamide adenine dinucleotide ORF : cadre de lecture ouvert / open reading frame ORFan : cadre de lecture ouvert sans homologie à une protéine connue / open reading frame without homology to a known protein PPR : protéines avec répétitions de type pentatricopeptide / pentatricopeptide repeat proteins SMI : transmission strictement maternelle / strict maternal inheritance SP : peptide signal / signal peptide Spp. : espèces / species TMH : hélice transmembranaire / transmembrane helix UPR_{mt}: réponse au stress lié à l'accumulation de protéines mal repliées dans les mitochondries / mitochondrial unfolded protein response

For all those who part ways by quietly chanting the name of a professor who looks like Santa. Hockey hamster.

Remerciements

- Je commence par Sophie, bien sûr! Surtout pour la décision aventureuse de m'accepter comme première étudiante graduée dans ton labo pas-tout-à-faitexistant, mais aussi pour les cent mille lettres de référence, les soupers, les daiquiris sans alcool et les cent mille rires.
- Don, I think you're the hardest to fit into a bullet point. You took me on as an honours student at the absolute last minute when no one knew much of anything about me (or even who I was). The four years you've known me have been a bit chaotic to say the least, but you've been patient and supportive through it all (I deleted "very" for you). Coincidentally, your name means "gift" in French. If I ever master my great-grandmother's molasses cookies, you're getting a great big batch!
- Of course I have to thank my family, aka the reason I exist. I think I've planned the perfect celebratory feast: cheeseball, lobster dip, almond roca, gingerbread men from Yarmouth, and braid. Nobody needs a main course. Make it a kitchen party, and get ready to atone for your sins at the lobster dip (*forgiiiive me Father, I know not what I do!*).
- Next is my nerd crew (plus that one "normal" guy with the tin foil hat and hatchet). Every now and then I get a bit stunned that we're all still in touch and see each other anywhere near as often as we do. I think that's a pretty good reflection of how highly these friendships are prioritized, and it's nice to know that we're pretty ride or die (or maybe hike or die). I'm thrilled to have found my people so early in life, and when I'm home for Christmas I want to celebrate this like it's The Night Pat Murphy Died.
- Je tiens aussi à remercier mon département, surtout ceux et celles que j'ai connu le plus. D'abord, ce « grand lab avec beaucoup d'étudiants » à Bernard Angers, qui m'ont adoptée ma première année. Trouvez-vous que mes présentations ont évolué au cours de ma maitrise? Ensuite, mon labo, qui a

commencé à se peupler tout tranquillement – c'est plus fun en groupe qu'à 1 ou 2. Il faut que je rémercie les étudiants au bac avec qui j'ai travaillé et parmi lesquels je compte plusieurs amis - vous avez mis beaucoup de joie dans les TPs et séances de tutorat! Finalement, les démos et tuteurs qui ont travaillé à côté de moi, et tout le gang qui se réunit au CI. C'est grâce à vous que j'ai eu l'expérience d'immersion totale que j'ai voulue, et c'est aussi grâce à vous que j'ai pu rire au moins une fois par jour, même quand ça n'allait pas bien.

- *Gli italiani* are next, aka the Passamonti lab. *Grazie di* your contributions to my work, the article that guided mine, your contributions to our lab (Davide and Stefano), and the entertaining and delicious visits from Dr. Over-the-hill. *Molte grazie*!
- For beach days, Nordic spas, masala dosa, all of the most useful Hindi vocabulary (food), and sternly telling me that I need to meditate, श्क्रिया राजेश.
- I'm going to close this section by thanking all of the artists who made the most miserable tasks a bit more fun. For all the hours of spent sorting hits, scoring my beastly matrix, and moving pieces of figures one pixel at a time, thank you Prince Royce, Taylor Swift, Lea Michele, Tim Chaisson, and Great Big Sea. For the writing process, thank you Mozart, Beethoven, and Bach.

Chapitre 1 : Introduction générale

Section 1.1 : La mitochondrie et son génome

Les mitochondries sont des organelles à double-membrane retrouvées dans le cytoplasme chez les cellules eucaryotes et responsables de la production d'énergie. Bien que ça soit leur fonction principale, elles sont également impliquées dans d'autres processus cellulaires, tels que la signalisation cellulaire, la régulation métabolique, le contrôle du cycle cellulaire, le développement, la réponse antivirale et l'apoptose [1].

Antérieurement, on croyait que les génomes mitochondriaux (ADN mitochondrial ou ADNmt) chez les espèces animales étaient tous très similaires - une molécule circulaire d'environ 15 000 à 20 000 paires de bases encodant 2 ARN ribosomaux, 22 ARN de transfert, et 13 protéines impliquées dans la synthèse de l'ATP à l'intérieur des mitochondries [7 sousunités du complexe de la NADH-ubiquinone oxydoréductase (gènes nad1-6, nad4L), une du complexe de l'ubiquinol-cytochrome c oxydoréductase (gène *cytb*), 3 du complexe de la cytochrome c oxydase (gènes cox1-3), et 2 du complexe de l'ATP synthase (gènes atp6 et *atp8*)] [2, 3]. Aujourd'hui on connaît plusieurs cas de réarrangements structuraux du génome mitochondrial ou encore la présence de gènes mitochondriaux supplémentaires (Voir [4] pour une revue). Par exemple, les Medusozoa ont un génome mitochondrial linéaire [5], et certains crustacés terrestres ont une portion circulaire et une portion linéaire [6]. Au niveau des gènes, on connait plusieurs cas de duplications de gènes existants ou encore de découverte de nouveaux gènes, surtout chez les invertébrés [4]. Chez les bivalves en particulier, deux exemples de duplication de gènes codant pour des protéines sont bien connus : la duplication de cox2 chez Musculista senhousia [7], et la duplication de nad2 chez le genre Crassostrea [8]. Le gène codant l'ARN ribosomal rrnS est aussi dupliqué chez Crassostrea gigas [3, 9]. Chez Aurelia aurita, et le genre Pocillopora (Cnidaria), un nouveau cadre de lecture (« open reading frame » ou ORF) de fonction inconnue a été retrouvé dans le génome mitochondrial [10-12] et deux ORFs de fonctions inconnues existent également chez Iphitheon panicea (Porifera) [13].

De plus, la transmission strictement maternelle (« *Strict maternal inheritance* » ou SMI), qui est la norme dans le règne animal, était considérée le seul système de transmission mitochondriale [14]. On connait maintenant une exception à cette règle aussi – la double transmission uniparentale, qui sera décrite dans la prochaine section.

Section 1.2 : La double transmission uniparentale

Il existe un cas exceptionnel à la « règle » de la transmission strictement maternelle de l'ADNmt chez les animaux. Plusieurs espèces de bivalves (Ordres Mytiloida, Nuculanoida, Unionoida et Veneroida) ont un mode de transmission fondamentalement différent connu sous le nom de « double transmission uniparentale » ou DUI (« Doubly uniparental inheritance ») [15–22]. Ces espèces sont caractérisées par la présence de deux ADNmt distincts : un génome M transmis par les mâles, et un génome F transmis par les femelles. Normalement, un œuf haploïde contient seulement des mitochondries de type F (voir [19, 20] pour des exceptions), et les spermatozoïdes contiennent seulement des mitochondries de type M, qui vont entrer dans l'œuf lors de la fécondation. Chez les embryons destinés à devenir femelles, les mitochondries paternelles sont dispersées dans toutes les cellules de l'embryon, et sont détruites pour permettre le développement d'une femelle homoplasmique (l'homoplasmie – où toutes les copies d'ADNmt sont identiques - est la norme sous SMI). Chez les embryons destinés à devenir mâles, par contre, les mitochondries paternelles sont regroupées dans les cellules destinées à devenir la gonade (Figure 1). Un mâle mature est hétéroplasmique, avec l'ADNmt de type F dans ses tissus somatiques, et l'ADNmt de type M dans sa gonade [21–23] (cet ADNmt M est principalement actif dans les spermatozoïdes [24, 25]).

Le taux de divergence entre les deux génomes au niveau des nucléotides peut varier d'environ 10% chez les moules marines à plus de 50% chez les moules d'eau douce, et une évolution plus rapide du génome mt de type M a été notée chez la plupart des espèces [21, 29-33]. Une explication possible pour cette différence est que le génome mt de type M serait un élément égoïste (ou « presque égoïse ») puisqu'il est fonctionnel seulement dans les cellules spermatogéniques [28]. D'autres études ont également proposé que les deux génomes évolueraient de façon neutre, mais que le type M accumulerait des mutations plus rapidement dû à (i) sa population effective plus petite, (ii) son taux de réplication et donc de mutations élévé (on observe un total de sept divisions pendant la gamètogénèse chez le mâle versus 4 chez la femelle), ou (iii) aux dommages oxidatifs plus importants que les mitochondries subissent chez les spermatozoïdes [e.g. 21].

Deux hypothèses non-exclusives ont été proposées pour expliquer l'origine et le maintien du système atypique DUI chez les bivalves [29, 30] : (i) l'ADNmt mâle est impliqué dans des fonctions spécifiques et nécessaires aux spermatozoïdes et/ou (ii) ces deux génomes associés aux sexes sont impliqués dans la détermination du sexe. La détermination du sexe est méconnue chez les bivalves, mais il y a une particularité connue chez les Mytiloida et Veneroida – un effet maternel sur la sexe-ratio [36-38]. Chaque femelle produit des descendants majoritairement femelles, majoritairement mâles, ou environ 50% femelles et 50% mâles, peu importe avec quel mâle elle a été croisée. De plus, la majorité des filles présentent le même biais que la mère, mais des changements de biais qui suivent un rapport Mendelien ont également été observés. Il a été suggéré qu'un facteur nucléaire maternel clé ainsi que des facteurs secondaires nucléaires et/ou mitochondriaux serait impliqués dans le maintient de ces sexe-ratios biaisées [31].

Figure 1. La double transmission uniparentale. Mitochondries avec génome de type M en bleu; mitochondries avec génome de type F en rouge.

Section 1.3 : Les moules d'eau douce (Unionoida)

Les moules d'eau douce (Unionoida) sont un groupe relativement ancien, avec une origine durant le Triassique il y a plus de 200 millions d'années [32, 33]. Les espèces sont généralement gonochoriques (à sexes séparés), avec un cycle de vie fondamentalement différent de celui des moules marines Mytiloida et palourdes marines Veneroida qui relâchent leurs gamètes dans la colonne d'eau, où a lieu la fécondation et le développement larvaire. Chez les Unionoida, seuls les mâles relachent leurs gamètes dans l'eau, les spermatozoïdes sont captés par les femelles et les premiers stades de développement ont lieu dans des compartiments spécialisés appelés marsupium dans les branchies des femelles [34]. Quand les embryons atteignent un certain stade de développement, la femelle les relâche, et ils doivent s'encyster sur les branchies d'un poisson hôte pour vivre une métamorphose parasitique. Une fois transformés en juvéniles, ils se détachent et tombent au fond du cours d'eau (pour plus de détails, voir [34])

Un petit nombre d'espèces hermaphrodites a été reporté chez les Unionoida (e.g., [32, 35, 36]). En Amérique du Nord, par exemple, seulement 7 espèces sont hermaphrodites sur plus de 300 espèces repertoriées [37]. De rares individus hermaphrodites sont également périodiquement trouvés chez les espèces à sexes séparés [37]. Plusieurs hypothèses ont été proposées pour expliquer l'émergence de l'hermaphrodisme chez les Unionoida, comme par exemple des facteurs environnementaux tels que la force du courant, la position d'un individu dans la population pour donner ou capter des spermatozoïdes et la densité de la population, e.g. [38]) mais cela demeure encore nébuleux [39]. Aussi, il n'est pas connu si des différences génétiques existent entre les hermaphrodites obligatoires et accidentels, cependant il y a des différences anatomiques bien documentées – tous les hermaphrodites ont un ovotestis (une gonade contenant à la fois des cellules spermatogéniques et des cellules ovogéniques), mais la distribution des cellules spermatogéniques et ovogéniques diffère entre les deux types d'hermaphrodites. Chez les hermaphrodites obligatoires on observe des acini discrèts qui produisent un type de gamète, mais chez les hermaphrodites accidentels on observe une distribution aléatoire de ces cellules [37]. Des analyses phylogénétiques démontrent que les espèces hermaphrodites en Amérique de Nord sont relativement jeunes [32, 37], et que l'hermaphrodisme est un caractère dérivé qui évolue à partir des femelles ([40, 41], voir Figure 2).

Figure 2. Phylogénie simplifiée d'une collection d'espèces à sexes séparés et hermaphrodites (familles Unionoida et Margaritifera). Les espèces marquées par une étoile (*) sont des hermaphrodites qui ont perdu le génome mitochondrial de type M (donc possédant une transmission mitochondriale strictement maternelle). Figure tirée de Stewart et al. [41] avec permission.

Section 1.4 : Nouveautés et nouveaux gènes

Récemment, Breton et al. [40, 42] ont identifié des nouveaux gènes codant pour des protéines dans les génomes mitochondriaux des moules d'eau douce. Tel que mentionné précédemment, chez les unionidés, la grande majorité des espèces ont des sexes séparés mais il existe aussi des rares cas d'espèces hermaphrodites [32, 39]. Breton et al. [40] ont séquencé les génomes mitochondriaux des mâles et femelles pour plusieurs espèces gonochoriques, ainsi que le génome mitochondrial présent chez 5 espèces hermaphrodites proches parentes des espèces gonochoriques, mais qui ont toutes évolué de façon indépendante. Dans chacun des génomes, un quatorzième ORF a donc été découvert (F-*ORF* dans les génomes F, M-*ORF* dans les génomes M et H-*ORF* dans les génomes des espèces hermaphrodites) [40, 42]. La

technique Western Blot a été utilisée pour démontrer que les F-*ORF* et M-*ORF* sont exprimés, par contre, cela reste encore à être démontré pour le H-*ORF*. Les études de Breton et al. [40, 42] ont présenté six points importants :

- tous les génomes F étudiés contiennent un F-ORF codant pour une protéine qui est conservée entre les espèces, mais qui ne présente aucune homologie évidente aux autres protéines connues (selon les résultats BLAST);
- tous les génomes M étudiés contiennent un M-ORF codant pour une protéine qui est conservée entre les espèces, mais qui n'est pas homologue au F-ORF, ni à aucune protéine connue;
- iii. les hermaphrodites n'ont pas de génome M et leur ADNmt contient un F-ORF hautement modifié (H-ORF);
- iv. les H-ORFs divergent des séquences F-ORF de leurs espèces proches parentes leurs séquences sont plus longues (environ 80 acides aminés pour les F-ORFs et 150 acides aminés pour les H-ORFs) et elles possèdent plusieurs sous-unités répétitrices et plusieurs portions transmembranaires prédites versus une seule chez les F-ORFs et M-ORFs;
- v. le gonochorisme est toujours accompagné de la DUI et la présence des F-ORFs et M-ORFs tandis que l'hermaphrodisme est accompagné de la SMI et la présence d'un F-ORF hautement modifié (H-ORF), ce qui mène à l'hypothèse que la DUI et les nouveaux gènes auraient un rôle dans le maintien des sexes séparés chez les unionidés;
- vi. l'analyse immunohistochimique indique que la protéine encodée par le F-ORF chez l'espèce Venustaconcha ellipsiformis est non seulement présente dans la mitochondrie, mais transportée hors de l'organelle et retrouvée dans la membrane nucléaire et le nucléoplasme des œufs;

Cette dernière observation indique un rôle autre que la phosphorylation oxydative, et des études subséquentes sont venues appuyer l'hypothèse que ce produit de gène pourrait jouer un rôle dans la détermination du sexe [40, 42–45]. Présentement, il n'y a aucun cas connu dans le règne animal où les mitochondries sont directement impliquées dans la détermination

du sexe. Les fonctions des nouveaux gènes mitochondriaux découverts chez les bivalves avec la DUI demeurent pour le moment obscures (voir ci-dessous). Les modifications importantes observées dans le gène H-*ORF* chez les espèces hermaphrodites suggèrent une fonction différente pour ce gène ou encore une perte de fonction, mais cela reste à être étudié. Le lien entre la DUI et la détermination du sexe reste aussi à être élucidé, et la raison pour la déviation de la SMI chez les bivalves gonochoriques – et un retour vers la SMI chez les hermaphrodites – demeurent des questions ouvertes.

Figure 3. Cartes des génomes de types F, H et M. Identités des gènes : complexe I en vert; complexe III en bleu pâle, complexe IV en bleu; complexe V en violet; ARN ribosomaux en bleu foncé. Les ARNs de transfert sont indiqués par leur lettre d'acide aminée. F-*ORF*, orange; H-*ORF*, rose; M-*ORF*, rouge. Les gènes à l'intérieure du cercle sont encodés sur le brin léger, ceux à l'extérieure du cercle sont encodés sur le brin lourd. Figure et légende tirées de Breton et al. 2011 [40] avec permission.

Milani et al. [44] ont publié les premières analyses *in silico* des structures et fonctions potentielles des F-ORFs et M-ORFs chez les bivalves avec la DUI (les moules marines *Musculista senhousia* and *Mytilus* spp. (Mytiloida), la palourde marine *Ruditapes philippinarum* (Veneroida), et l'unionidé *Venustaconcha ellipsiformis* (Unionoida)). Leurs résultats ont montré que les séquences des deux nouveaux ORFs sont très variables au niveau des nucléotides et des acides aminés, et que ces gènes évoluent plus vite que tout autre gène mitochondrial chez les bivalves étudiés [40].

Les prédictions structurales et fonctionnelles indiquaient des similarités parmi toutes les espèces. D'abord, des hélices transmembranaires et peptides signaux sont conservés entre les espèces. Ensuite, les fonctions prédites pour les F-*ORFs* incluent la liaison avec les acides nucléiques, l'association aux membranes pour la signalisation ou l'adhésion cellulaire, ou un rôle dans la réponse immunitaire, tandis que les fonctions prédites pour les M-*ORFs* incluent l'association aux membranes, des interactions avec les acides nucléiques (surtout pour la signalisation cellulaire et la différentiation et développement), des interactions avec le cytosquelette, l'ubiquitination, l'apoptose et la réponse immunitaire [44].

En plus de prédire la structure et la fonction de ces protéines, cette étude a émis une hypothèse sur leur origine : l'endogénisation d'un ADN viral [44, 46]. Toutefois, en raison des taxons étudiés (5 mytilidés, un veneridé, et un unionidé) qui sont évolutivement très distants, et en raison des problèmes pour l'obtention de bons alignements des séquences, les auteurs ont également émis l'hypothèse que les ORFs chez les bivalves avec la DUI pourraient provenir d'événements d'endogénisation indépendants [17, 18]. Une augmentation du nombre d'espèces proches parentes et de séquences à l'étude pourrait aider à avoir une meilleure idée de l'origine de ces nouveaux gènes mitochondriaux. Par exemple, au moins quatre autres origines peuvent être proposées : (i) un gène homologue à un ancien gène bactérien, (ii) une duplication et néofonctionalization d'un gène mitochondrial, (iii) une origine à partir de séquences mitochondrials non-codantes, et (iv) un transfert du noyau vers la mitochondrie.

Les unionidés représentent un excellent modèle pour mieux comprendre l'origine et les fonctions de ces nouveaux gènes. Ils ont une position basale dans les Bivalvia, et les séquences complètes des M-*ORF*, F-*ORF* et H-*ORF* sont disponibles pour plusieurs espèces gonochoriques et des espèces hermaphrodites proche-parentes. La gamme de séquences disponibles représentent au moins 200 MY d'évolution pour ces gènes ([40]; Guerra et al., en prep), mais les séquences demeurent relativement similaires et donc plus facilement comparables.

Section 1.5 : Objectifs et hypothèses

L'objectif principal du projet est de caractériser l'évolution, la structure et la fonction des nouveaux gènes mitochondriaux F-*ORF*, H-*ORF* et M-*ORF* chez les moules d'eau douce, à partir de leur séquences nucléotidiques et/ou protéiques. Notre hypothèse générale est que ces gènes sont impliqués dans la détermination du sexe et donc subissent de fortes pressions sélectives. Plus précisément, on prévoit que (i) ces gènes évoluent rapidement et présentent plus de mutations non-synonymes que synonymes chez toutes les espèces (une signature répandue chez les gènes impliqués dans la détermination du sexe), (ii) malgré cette évolution rapide, les structures secondaires devraient être conservées pour chacun des nouveaux gènes : c'est-à-dire entre les espèces pour les F-*ORFs* et M-*ORFs*, et intra-espèce pour les H-*ORFs*, et (iii) la fonction prédite pour chacun des nouveaux gènes fevorait être la même pour toutes les espèces pour un même genre (ex. les séquences F-*ORF* donnant des résultats similaires chez toutes les espèces).

Chapitre 2 : *In silico* analyses of mitochondrial ORFans in freshwater mussels (Bivalvia: Unionoida) provide framework for future studies of their origin and function.

Article in preparation for BMC Genomics.

Alyssa Mitchell^a, Davide Guerra^a, Donald Stewart^b, Sophie Breton^a

^aDepartment of Biological Sciences, Université de Montréal, Montréal, QC H3C 3J7 Canada

^bDepartment of Biology, Acadia University, Wolfville, NS B4P 2R6 Canada

Section 2.1: Introduction

Metazoan mitochondrial genomes (mtDNAs) are typically small, circular genomes without introns that encode 2 ribosomal RNAs, 22 transfer RNAs, and 13 proteins involved in ATP production [2, 3]. Strict maternal inheritance (SMI) of mtDNA is predominant among animals with limited or no paternal contribution [14]. There are, however, many exceptions to these characteristics. For example, linearized mitochondrial genomes have been reported in the Medusozoa [5] and some terrestrial isopod crustaceans [6]. Differences in gene content have also been found among metazoan mtDNAs, particularly in invertebrates (see [4] for a review). For example, duplications of typical protein-coding genes have been reported in several mollusc species, including cephalopods, aplacophorans, and bivalves; additional 'atypical' protein-coding genes with non-OXPHOS functions have been reported in cnidarians, sponges, and placozoans (e.g., *atp9, dnaB, tatC*); and mitochondrial ORFans, i.e., 'atypical' genes with unknown function, have been identified in cnidarians and in bivalves with doubly uniparental inheritance of mtDNA (DUI), which is the only known exception to SMI in the animal kingdom [4].

DUI has been reported in marine and freshwater bivalves (Orders Mytiloida, Nuculanoida, Unionoida, and Veneroida) ([26]; [47]; [27]; [21]). Species with DUI possess mitochondrial genomes that are transmitted in a sex-specific manner (known as female F-type

and male M-type mtDNAs, respectively). Haploid eggs typically contain mitochondria with only F-type mtDNA (but see [19] and [20]), while sperm mitochondria, which enter the egg when fertilization occurs, only contain the M-type. If the embryo develops as a female, sperm mitochondria are dispersed and/or destroyed, leading to homoplasmic females (similar to what happens under SMI). If the embryo develops as a male, sperm mitochondria remain grouped together, and are eventually sequestered in the germ line, which becomes homoplasmic for the M mtDNA [24, 25]. Males are therefore heteroplasmic individuals, with mitochondria inherited from their mother containing the F-type mtDNA throughout their soma, and mitochondria inherited from their father containing the M-type mtDNA in germ line cells (in males M mtDNA can be found in variable proportions also in somatic tissues [9]). DNA divergence between conspecific M- vs. F-type mitochondrial genomes over 50% has been found in Unionoida ([21]).

With their unique DUI system, bivalves not only challenge our traditional view of the SMI of mtDNA, their mitochondrial genomes also contain additional, sex-specific proteincoding genes, i.e., the mitochondrial ORFans - F-orfs and M-orfs in the F- and M-type mtDNAs, respectively - whose products are exported from the organelle and may be involved in functions other than energy production [40, 42–46]. In freshwater mussels, for example, species typically have separate sexes (gonochorism or dioecy), but hermaphroditism also occurs rarely [32, 39]. An absolute correlation has been observed between gonochorism and the presence of DUI and novel sex-specific proteins encoded by the F- and M-type mtDNAs (F-ORF and M-ORF), whereas hermaphroditic species lack the M-type altogether [43]. Hermaphroditic species appear to follow the SMI rule of mitochondrial transmission and individual mussels have only one type of mtDNA, called H-type [16]. The H-type is remarkably similar to the F-type mtDNA of closely-related gonochoric species except for the novel ORFan gene (named H-orf in these species), which is a highly mutated version of the Forf in their sister taxa [43]. For these reasons, Breton et al. [43] proposed a connection between DUI and the maintenance of separate sexes in freshwater mussels. However, the link between DUI and sex determination, and the cause of deviation from the "SMI rule" in bivalves are still open questions.

The first in-depth bioinformatic analysis of the structures and potential functions of F-ORF and M-ORF proteins was performed by Milani et al. [44] on the following DUI bivalve species: the marine mussels Musculista senhousia, Mytilus edulis, Mytilus galloprovincialis, Mytilus trossulus and Mytilus californianus (Mytiloida), the marine clam Ruditapes philippinarum (Veneroida), and the freshwater mussel Venustaconcha ellipsiformis (Unionoida). M-orf and F-orf nucleotide sequences were found to be highly variable, with mostly non-synonymous mutations, indicating rapid evolution and supporting previous claims that these protein-coding genes are the fastest-evolving mitochondrial genes in bivalves with DUI [40, 44]. Despite this fast rate of evolution, structural similarities in their translated amino acid sequences were observed among species, and ORFan proteins were predicted to share similar functions. For example, F-ORFs were largely predicted to bind and interact with nucleic acids, associate with membranes for cell adhesion and/or signalling, or play a role in immune response. M-ORFs were also predicted to be membrane-associated and interact with nucleic acids, primarily for signalling, cell differentiation and development, and also for cytoskeleton formation and dynamics, ubiquitination, apoptosis, and immune response [44]. Even if hit probabilities were sometimes low and the regions of similarity were of short lengths, several clues suggested that these novel ORFans originated from endogenization of viral DNA [44, 46]. However, the impossibility of obtaining good alignments including F-ORFs and M-ORFs from all species, due to the highly divergent nature of the ORFans, indicated that either their fast evolution wiped out sequence similarities among species or that they originated from independent virus endogenization events [44]. It is also conceivable that the ORFans originated from different sources/processes but evolved similar function(s) in these distantly related DUI species, particularly if DUI evolved independently more than once [44]. Other than a viral origin, there are at least four other possibilities for the source of these mitochondrial ORFans; they may have originated from (i) a gene homologous to ancestral bacterial protein-coding genes, (ii) a duplicated and diverged mitochondrial gene, (iii) a gene composed from previously non-coding mitochondrial sequences, or (iv) a gene transferred from the nucleus to the mitochondrion (e.g., [40]).

The reality is that it is unfortunately not currently possible to confirm that mitochondrial ORFans in these distantly related DUI species are homologous because of their

high divergence and incomplete knowledge regarding their phylogenetic distribution. One option to better understand the origin(s) and function(s) of these ORFans is to compare more closely related sequences at a lower taxonomic level. Freshwater mussels (Unionoida) offer an excellent opportunity for this for at least two reasons: (1) the basal nature of the Unionoida within the Bivalvia, according to mtDNA-based phylogenies, suggests that their ORFans have a very ancient origin and that DUI in this group might be one of the first examples of this phenomenon in bivalves [33], and (2) complete F and M genomes or F-orf, M-orf and H-orf sequences are available for several gonochoric species and five independently evolved hermaphroditic species (e.g., [33, 43, 48]). All of them belong to the family Unionidae, but recently we have sequenced the F and M mtDNAs from *Cumberlandia monodonta* (Margaritiferidae) and *Hyridella menziesii* (Hyriidae) (Guerra et al., in prep), and these genomes possess an F-orf and an M-orf, suggesting that these unique genes have been present and functioning continuously for >200 million years in this group ([43]; Guerra et al., in prep).

The present study thus aims to predict the origin, structure, and function of the F-*ORF* and M-*ORF* protein sequences in Unionoida, and analyze the H-*ORFs* for the first time. Our results confirm that they are the fastest evolving genes in unionoid mitochondrial genomes, that they share structural and functional similarities, and that they may have a viral or a mitochondrial origin, bringing back on the table the evolutionary scenario of multiple origins of DUI, with the possibility of DUI systems with elements of different sources/origins and different mechanisms of action in the distantly-related DUI taxa [44, 46].

Section 2.2: Materials and methods

Section 2.2.1: Sequences used in the analyses

ORFan and *cox1* nucleotide sequences of unionoid bivalve species were either obtained from the National Center for Biotechnology Information (NCBI) or from newly sequenced mitochondrial genomes (i.e., *H. menziesii* and *C. monodonta*; Guerra et al., in prep). Newly sequenced genomes were sequenced at the sequencing platform of McGill University [Montreal, Canada] using the genome sequencer FLX sequencing service, and all others were obtained by Sanger sequencing [40, 42]. All species and GenBank entries used in

this study are listed in Table I (Note: M-*orf* sequences for *Lasmigona complanata*, *Margaritifera margaritifera and Toxolasma lividus* have not been obtained). The sequences were translated with ORF Finder (http://www.ncbi.nlm.nih.gov/projects/gorf/; [49]) using the invertebrate mitochondrial genetic code, and analyzed at the nucleotide and/or amino acid level (see below). Because M-ORF and F-ORF protein sequences vary little within a species, only one sequence was used for each gonochoric species. H-ORF sequences are highly variable within species [42], and so multiple sequences were analyzed per species to provide a more complete picture of intraspecific H-ORF evolution and potential functionality.

Species	mtDNA type	Accession number	ORF name
Subfamiliy Ambleminae			
Quadrula quadrula	М	FJ809751.1	Qqu-Morf
	М	FJ809751.1	Qqu-Mcox1
	F	FJ809750.1	Qqu-Forf
	F	FJ809750.1	Qqu-Fcox1
Toxolasma lividus	F	HM849457.1	Tli-Forf
Toxolasma parvum	Н	To come	Tpa-H <i>orf</i>
Venustaconcha ellipsiformis	М	FJ809752.1	Vel-Morf
	Μ	FJ809752.1	Vel-Mcox1
	F	FJ809753.1	Vel-Forf
	F	FJ809753.1	Vel-Fcox1
Subfamiliy Anodontinae			
Anodonta anatina	М	KF030962.1	Aan-Morf
	F	KF030964.1	Aan-Forf

 Table I. Sequences analyzed in the present study

Subfamiliy Gonideinae			
Inversidens japanensis	М	AB055624.1	Ija-M <i>orf</i>
	Μ	AB055624.1	Ija-M <i>cox1</i>
	F	AB055625.1	Ija-F <i>orf</i>
	F	AB055625.1	Ija-F <i>cox1</i>
Solenaia carinatus	М	KC848655.1	Sca-Morf
	М	KC848655.1	Sca-Mcox1
	F	KC848654.1	Sca-Forf
	F	KC848654.1	Sca-Fcox1
Subfamiliy Hyriidae			
Hyridella menziesii	М	Guerra et al. in prep	Hme-Morf
	М	To come	Hme-Mcox1
	F	To come	Hme-Forf
	F	AY785394.1	Hme-Fcox1
Subfamiliy Margaritiferinae			
Cumberlandia monodonta	М	Guerra et al. in prep	Cmo-Morf
	М	To come	Cmo-Mcox1
	F	HM849375.1	Cmo-Forf
	F	KF647374.1	Cmo-Fcox1
Margaritifera falcata	Н	HM849545.1	
	Н	HM856634.1	Mfa-H $orf(1-4)$
	Н	HM849547.1	
	Н	HM849548.1	
	Н	HM856634.1	Mfa-H <i>cox1</i> (1-2)
	Н	NC_015476.1	
Margaritifera margaritifera	F	HM849399.1	Mma-Forf
	F	HM849095.1	Mma-Fcox1

Subfamiliy Unioninae

Lasmigona complanata	F	HM849393.1	Lco-Forf
Lasmigona compressa	Н	HM940524 1	Lco-H <i>orf</i> (1-2)
	Н	HM049534.1	
	Н	HM849535.1	$I_{co-H_{cor}}(1-2)$
	н	NC 015481.1	
	11	_	
Lasmigona subviridis	Н	HM849542.1	
	Н	HM849543.1	Lsu-H <i>orf</i> (1-2)
Pvganodon grandis	М	FJ809755.1	Pgr-Morf
1 ygunouon grunuis	М	FJ809755.1	Pgr-Mcox1
	F	FJ809754.1	Pgr-Forf
	F	FJ809754.1	Pgr-F <i>cox1</i>
Utterbackia imbecillis	Н	HM849591.1	
	Н	HM849595.1	$\operatorname{Uim} \operatorname{Hor} f(1,7)$
	Н	HM849594.1	Unin-1107j (1-7)
	Н	HM849601.1	
	Н	HM849606.1	
	Н	HM849597.1	
	Н	HM849584.1	
	Н	NC_015479	$\operatorname{Uim-H}_{\operatorname{cor}} I(1-2)$
	Н	HM856637.1	
Utterbackia peninsularis	Μ	HM856635.1	Upe-Morf
	М	HM856635.1	Upe-Mcox1
	F	HM856636.1	Upe-Forf
	F	HM856636.1	Upe-Fcox1

NOTE -M = M mtDNA in a DUI gonochoric breeding system, F = F mtDNA in a DUI gonochoric breeding system, H = H mtDNA in a non-DUI hermaphroditic breeding system.

Section 2.2.2: Analyses of ORFan sequences and protein secondary structures

Alignments of ORFan and COX1 sequences were performed with M-COFFEE (DNA) and PSI-COFFEE (proteins) (http://tcoffee.crg.cat/apps/tcoffee/index.html; [50]). Nucleotide and amino acid p-distances, as well as a codon-based test of positive selection using the Nei-Gojobori method [51] were calculated using MEGA6 [52] with variance estimated using 500 bootstrap repetitions. The program VISTA [53] was also used to display the level of sequence conservation between M vs. M, F vs. F, and F vs. H complete mitochondrial genomes. M- and F-type mtDNAs were not compared due to their high divergence and previous characterization [40]. Hydropathy profiles of each amino acid sequence were calculated with the ProtScale tool at ExPASy (http://ca.expasy.org/tools/; [54]) using the method of Kyte and Doolittle [55]. Putative transmembrane (TM) helices were identified using a variety of protein signature methods implemented by following recognition the programs: Phobius (http://phobius.sbc.su.se/; [56]), InterProScan (TMHMM) (http://www.ebi.ac.uk/Tools/pfa/iprscan5/; [57]), TMPred (http://www.ch.embnet.org/software/TMPRED form.html; [58]), TOPCONS (http://topcons.cbr.su.se/; [59]), and Predict Protein (http://www.predictprotein.org; [60]).

Section 2.2.3: Functional analyses of ORFan proteins

Signal peptides (SPs) were sought using Phobius, InterProScan, PrediSi (http://www.predisi.de/; [61]), and SignalP (http://www.cbs.dtu.dk/services/SignalP/; [62]). Motif Scan (http://myhits.isb-sib.ch/cgi-bin/motif_scan; [63]) and HHpred (http://toolkit.tuebingen.mpg.de/hhpred; [64]) were used to search for motifs and functional domains. TPRpred (http://toolkit.tuebingen.mpg.de/tprpred; [65]) was used to search for potential tetratricopeptide repeat (TPR) or pentatricopeptide repeat (PPR) motifs. The following procedure was used to predict the function of ORFan proteins: (1) we performed BLASTp, tBLASTx, and PSI-BLAST searches against NCBI's entire non-redundant protein

database (NRDB) and against mitochondrial proteins only (last accessed July, 2015) with default parameters (http://blast.ncbi.nlm.nih.gov/; [66]); (2) we used hmmbuild (v3.1b2; downloaded from http://hmmer.janelia.org) [67] to generate two HMM profiles from both the F-ORF and M-ORF protein alignments (H-ORFs were not considered given their scattered phylogenetic distribution and independent evolutionary histories) using default and custom parameters (four profiles in total), and performed profile HMM – sequence comparisons against UniProtKB, Swissprot, PDB, QfO, and Pfamseq databases using HMMER hmmsearch (http://www.ebi.ac.uk/Tools/hmmer/; [67]) with default parameters (E-value cutoff = 0.001); (3) for profile HMM – profile HMM comparisons, we used HHpred, which compares HMM profiles with databases of HMMs representing proteins with known structure (e.g. PDB, SCOP) or annotated protein families (e.g. PFAM, SMART, CDD, COGs, KOGs); and (4) the following programs were also used to predict the function of ORFan proteins: @tome2 (http://atome.cbs.cnrs.fr/; [68]), I-TASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER/; [69]) and PredictProtein, which also returned the predicted subcellular localization, binding sites, and ligands (with no accompanying measure of significance). For BLASTp and PredictProtein all matches with E-values <1.0 were kept, while for position-specific iterative or PSI-BLAST all matches with E-values <0.01 were kept as recommended by the program (except for PSI-BLAST analyses against NCBI mitochondrial genes only, where E-values <1.0 were kept, see below). For I-TASSER, top templates with Z scores over 1.0 and structural analogs with TM scores over 0.5 were recorded. All @tome2 results were kept. Motif Scan results not marked as "questionable" or "weak" were kept. Hits described as "uncharacterized," "putative," "unknown," or "predicted" were not kept. Hits from all programs were scored in 122 categories covering putative ligands, subcellular localization, and protein functions, and analyzed.

Section 2.3: Results

Section 2.3.1: Rate of evolution of ORFan genes and proteins

The amino acid sequences of ORFans were generally not well conserved among unionoid species. As seen in Figure 3, a good comprehensive alignment including all M-*ORF* sequences was not possible due to their high divergence, however, sequences from the same

subfamily produced good alignments: *P. grandis* and *U. peninsularis* (Unionidae: Unioninae); *I. japanensis* and *S. carinatus* (Unionidae: Gonideinae); *Q. quadrula* and *V. ellipsiformis* (Unionidae: Ambleminae) (Figure 3b-d). A common feature of M-*ORFs* is that they are all lysine-rich proteins with poly-K strings found in many of them, a characteristic that is apparently absent in F-*ORF* and H-*ORF* amino acid sequences. Similar to M-*ORF* sequences, F-*ORF* sequences from the same subfamily or family, produced better alignments than for all species: *L. complanata*, *P. grandis* and *U. peninsularis* (Unionidae: Unioninae); *I. japanensis* and *S. carinatus* (Unionidae: Gonideinae); *Q. quadrula*, *T. lividus* and *V. ellipsiformis* (Unionidae: Ambleminae); *C. monodonta* and *M. margaritifera*, (Margaritiferidae: Margaritiferinae) (Figures 3e-i). Finally, because the H-*ORFs* were likely formed by 5 independent evolutionary events [42], these gene sequences are only conserved within a species; interspecific alignment is therefore not possible for hermaphrodites, and alignments between hermaphrodite H-*ORFs* and closely-related gonochoric species F-*ORFs* were mainly of low quality (Supplementary Figure 2).

a)

G, A, V, L, I F, Y, M C, M S, T F, F, M S, T VolMORF QquMORF PgrMORF

IjaMORF

UpeMORF

ScaMORF

CmorMOR

HmeMORF

AanMORF

VelMORF

QquMORF

PGEMORF

IjaMORF

UpeMORF

ScaMORF

CmorMOR

HmeMORF

AanMORF

VelMORF QquMORF PgrMORF

IjaMORF

UpeMORF ScaMORF

CmorMOR

HmeMORF

AanMORF

VelMORF

QquMORF

PgrMORF

IjaMORF

UpeMORF

ScaMORF

CmorMOR

HmeMORF

AanMORF

VelMORF

QquMORF

PgrMORF

IjaMORF

UpeMORF

ScaMORF

CmorMOR

HmeMORF

AanMORF

MLRLISDLVSWLCFCLENYPILTLFML	46 35 46 45 45 45 75 50
VFEEQQEKEVALGSLNKDKLEEKNMGN IMEMKSSDEGSKVKDTTSNVEVSKDLEVKDTDSNFGGLKV GH KVVDX	74 43 116 54 118 53 50 96 91
LKM	93 51 136 72 119 71 63 175 92
KVDRLKKEEFGLIKKVDALKKEEFKFQGKLEELKAEVFELRKKVDKLKEEESMIEEKVDMMKMEWLS-LDVKMNSLKKEE G -VAVS G-SKSVKS G -SDAP	172 60 186 79 167 78 84 237 142
YESKKADKEIEGDDI-KEREKVF-DIVD-DE-VG-VEAKNID-EVINLLEVV-GGVT-KNSD- -KVRGSDFGSDGV-V-S-SSSPSKKSVIKPSKIS-GAVL-KDLKKD	226 101 234 117 218 136 92 294 195

VelMORF		226
QdnWOKE.	DDGS	105
PgrMORF		234
I jaMORF	KK	118
UpeMORF		218
ScaMORF	SSEGEVKS	144
CmorMOR	KSGG	96
HmeMORF	VSGGATDKLESDGSDKGNKLQ	315
AanMORF		195

b)

UpeMORF

PgrMORF

UpeMORF

PgrMORF

UpeMORF

PgrMORF

UpeMORF

FgrMORF

C)

IjaMORF ScaMORF

I jaMORF ScaMORF

d)

VelMORF QquMORF VelMORF

QquMORF

VelMORF QquMORF

e)

G, A, V, L, I

N, T K. R. H D, E N, Q P		
VelFORF	MVMKMKTFLLV-STK	45
QquFORF	MNKF	36
PgrFORF	MSLEMSKVI	42
IjaFORF	MLLGL	23
UpeFORF	MLKLPFLSG-SDR	27
ScaFORF	MHPKMWLTQT	29
CmaFORF	MAIMThuILIPESYLPLZ-WSN-TDNLKTANNLKMK	34
HmeFORF	MSLTIKKPSHS-SPKNPMIMAALLTLL_ITIILLYLMS-HGQDS-TTS	46
MmaFORF	MWHWLTNLLPIRKTPSIFQRLRN-YPLKHKPLWTLITVSTLA_MTM-ML-LTS-ASVND-LTP	58
LCOFORF	MSKHLIKL-ILLSVFAIAFLL-IQTFQMLFM-LDE	34
TLIFORF	MFHSHIDFSRQKGTLVHSATNLTLVIKTKTRIMNNVQQYKMMQKL-IIAFSTSLLLMIFL-LNPFYMM-SMK	69
AanFORF	MSNKSAQAIQMFLT-SSE	35
VelFORF	IT-YPEL-SLTDNPPEKNQPTS <mark>T</mark> STASTGSYP I KN <mark>S</mark> P <mark>AST</mark> NISDKT 89	
QquFORF	IN-QIKP-SLTDNPLDNNQLPN <mark>T</mark> IPIDIGIHPWNS <mark>SPASI</mark> DI <mark>S</mark> OKK 80	
PgrFORF	FW-LMDQ-IL-CSMELDDV <mark>S</mark> TQISADDHPVLP <mark>SKAST</mark> DL T KPN-TSL 85	
IjaFORF	VS-ATDPLPTPDWSLDETAHT <mark>I</mark> TPTAPSDHAVMP <mark>S</mark> OG <mark>ST</mark> DI <mark>T</mark> EA 66	
UpeFORF	FL-TMSQ-VL-HSMDLNDA <mark>S</mark> SQASTGDHP I IP <mark>S</mark> KA ST DL T KPN-TSA 70	
ScaFORF	TW-AMDPPPATSTEIHNPSPNGSGDT <mark>T</mark> IPSNPGNYPWIA <mark>S</mark> OKH <mark>TNIT</mark> OPT-TSQQAMNP 86	
CmaFORF	PIAHDLKPSKHP-TSNI-TKPQPNDTQT <mark>S</mark> NEHSPNTYKPKK <mark>S</mark> KA <mark>ST</mark> NL <mark>T</mark> NDK-PNA-TKEP 91	
HmoFORF	LT-ITSM-DITDMTS-ENLQTKGTNPQQNDTPTGHTPHK <mark>S</mark> KAH <mark>T</mark> NLNTK 92	
MmaFORF	MNPTKPL-TMNT-TELQPSCVMT <mark>T</mark> SKQEPSAYEPKK <mark>S</mark> KA <mark>ST</mark> D L VTDKEPSP-QD-K 110	
LCOFORF	SW-AVNQ-VL-CSMELDNT <mark>S</mark> TQPMTSDHPWIP <mark>S</mark> PARTDLIKPN-TKP 77	
TLIFORF	TP-YTEL-LLTDNPLEKNQPVN <mark>T</mark> PTTSTGCHP I KS <mark>S</mark> PASTNISDKT 113	
AanFORF	LW-KIDQ-IL-CSMDLGSTIPQPETSDHPWIP <mark>S</mark> LA <mark>ST</mark> DL <mark>I</mark> KPV-IKP 78	

f)

PgrFORF		
UpeFORF		
LCOFORF		

PNTSL 85 PNTSA 70 PNTKP 77

PgrFORF UpeFORF LcoFORF

g)

SCAFORF IjaFORF	MHPKMINFLAISLALIFMILLMSP-WLIQTIWAM PPPAISIEIHNPSPNGSGDIIIPSNPGNYPVIASOKHINIIQPII MLLGLCLLLLCCILYHCMPANSTVSAIPPPDWSLDETAHIITPIAPSDHAWMPSOGSTDIIFA	79
ScaFORF IjaFORF	SQQAMNP 86 66	

MSLEMSKVIL PSS LFLLMLSIFIVGFFITKAAQTFSLSDHFWLMDGILCSMLDDVBTQISADD PVLPSKASTDLT 80 ------ML LFFLYLLASLIFTKAFFLS------GS MFLTMSQVLMSM LNDASSOASTGD PIIPSKASTDLT 65 ------NS MLLFLILLISVFALASLLIQTFQMLFMLDESWAVNQVLCSMLDNTSTOPMTSD PVIPSPAETDLT 72

Figure 4. Alignment of M-ORF and F-ORF protein sequences. Global alignments and alignments for each subfamily are shown. a) All M-ORF sequences, b) M-ORFs from the subfamily Unioninae, c) M-ORFs from the subfamily Gonideinae, d) M-ORFs from the subfamily Ambleminae, e) all F-ORF sequences, f) F-ORF sequences from the subfamily Unioninae, g) F-ORF sequences from the subfamily Gonideinae, h) F-ORF sequences from the subfamily Ambleminae i) F-ORF sequences from the subfamily Margaritiferidae. Colour coding is applied to amino acid groups conserved in \geq 70% of sequences. Grey, aliphatic amino acids; orange, aromatic amino acids; yellow, sulfur amino acids; green, amino acids bearing a hydroxyl group; red, basic amino acids; blue, acidic amino acids; brown, amino acids with an amide group; pink, cyclic amino acids. VelMORF, V. ellipsiformis M-ORF; QquMORF, Q. quadrula M-ORF; PgrMORF, P. grandis M-ORF; IjaMORF, I. japanensis M-ORF; UpeMORF, U. peninsularis M-ORF; ScaMORF, S. carinatus M-ORF; CmoMORF, C. monodonta M-ORF; HmeMORF, H. menziesii M-ORF; AanMORF, A. anatina M-ORF; VelFORF, V. ellipsiformis F-ORF; QquFORF, Q. quadrula F-ORF; PgrFORF, P. grandis F-ORF; IjaFORF, I. japanensis F-ORF; UpeFORF, U. peninsularis F-ORF; ScaFORF, S. carinatus F-ORF; CmoFORF, C. monodonta F-ORF; HmeFORF, H. menziesii F-ORF;

MmaFORF, *M. margaritifera* F-*ORF*; LcoFORF, *L. complanata* F-*ORF*; TliFORF, *T. lividus* F-*ORF* AanFORF, *A. anatina* F-*ORF*.

The p-distances for nucleotide and amino acid ORFan sequences as well as the outcome of the test of positive selection are reported in Table II (M-*ORFs* and F-*ORFs*) and Table III (H-*ORFs*), along with the values for *cox1* sequences taken from the same sexspecific mtDNAs. Table IV shows the p-distances for within-genus comparisons of F-*ORFs* versus H-*ORFs*. In all cases, the novel ORFs have interspecific p-distances several times higher than *cox1*, which is typically the slowest-evolving protein-coding gene in animal mtDNAs [70]. All groups of sequences also returned a 100% chance of rejecting the null hypothesis of neutral selection in favor of the alternative hypothesis of positive selection. The level of sequence conservation between M vs. M, F vs. F, and F vs. H complete mitochondrial genomes also confirmed that mitochondrial ORFans are the fastest evolving genes in the mtDNA of freshwater mussels with DUI (Supplementary Figure 2).

Subfamily	Gene (N)	Nucl	eotide	Amin	o acid	р
		p-D	SE	p-D	SE	
Unioninae	F-or $f(3)$	0.355	0.023	0.467	0.047	1.000
	F- <i>cox1</i> (2)	0.103	0.007	0.014	0.005	
	M-orf(2)	0.350	0.018	0.502	0.034	1.000
	M-cox1 (2)	0.165	0.010	0.094	0.012	
Gonideinae	F-orf(2)	0.469	0.033	0.692	0.058	1.000
	F-cox1 (2)	0.132	0.008	0.033	0.008	
	M-orf(2)	0.384	0.025	0.552	0.044	1.000
	M-cox1 (2)	0.175	0.009	0.130	0.015	

Table II. p-distances (p-D) and standard error (SE) values for mitochondrial M-*orfs*, F-*orfs*, and *cox1* in freshwater mussel subfamilies

Ambleminae	F-orf(3)	0.351	0.024	0.508	0.041	1.000
	F- <i>cox1</i> (2)	0.128	0.009	0.033	0.007	
	M-orf(2)	0.421	0.027	0.687	0.047	1.000
	M-cox1 (2)	0.179	0.010	0.145	0.015	
Margaritiferinae	F- <i>orf</i> (2)	0.393	0.029	0.705	0.050	1.000

NOTE – N = number of sequences used. The probability of rejecting the null hypothesis of strict-neutrality ($d_N = d_S$) in favor of the alternative hypothesis ($d_N > d_S$) (in the p column) is shown. d_S and d_N are the numbers of synonymous and nonsynonymous substitutions per site, respectively.

Table III. p-distances (p-D) and standard error (SE) values of mitochondrial H-*orf*s and *cox1* in hermaphroditic freshwater mussels

Species	Gene (N)	Nucleotide		Amino acid		р
		p-D	SE	p-D	SE	
Utterbackia imbecillis	H-or $f(7)$	0.070	0.008	0.181	0.022	1.000
	<i>cox1</i> (2)	0.000	0.000	0.000	0.000	
Margaritifera falcata	H-orf(4)	0.003	0.002	0.004	0.004	1.000
	<i>cox1</i> (2)	0.000	0.000	0.000	0.000	
Lasmigona	H-orf(2)	0.029	0.007	0.065	0.017	1.000
compressa						
	<i>cox1</i> (2)	0.000	0.000	0.000	0.000	
Lasmigona subviridis	H-or $f(2)$	0.016	0.005	0.021	0.010	1.000

NOTE – N = number of sequences used. The probability of rejecting the null hypothesis of strict-neutrality ($d_N = d_S$) in favor of the alternative hypothesis ($d_N > d_S$) (in the p column) is shown. ds and d_N are the numbers of synonymous and nonsynonymous substitutions per site, respectively.

Species	Genes	Nucl	eotide	Amin	o acid
		p-D	SE	p-D	SE
Utterbackia imbecillis vs U.					
peninsularis	F-ORF & H-ORF1	0.338	0.034	0.691	0.055
	F-ORF & H-ORF2	0.310	0.032	0.721	0.054
	F-ORF & H-ORF3	0.343	0.031	0.743	0.051
	F-ORF & H-ORF4	0.335	0.034	0.729	0.054
	F-ORF & H-ORF5	0.333	0.031	0.714	0.052
	F-ORF & H-ORF6	0.333	0.031	0.714	0.052
	F-ORF & H-ORF7	0.310	0.030	0.739	0.055
	Mean	0.329	0.005	0.722	0.007
	F-COX1 & H-COX1-1	0.547	0.012	0.020	0.006
	F-COX1 & H-COX1-2	0.547	0.012	0.020	0.006
	Mean	0.547	0.000	0.020	0.000
Margaritifera falcata vs M.					
margaritifera	F-ORF & H-ORF1	0.339	0.025	0.491	0.048
	F-ORF & H-ORF2	0.336	0.026	0.491	0.049
	F-ORF & H-ORF3	0.358	0.024	0.491	0.049
	F-ORF & H-ORF4	0.336	0.026	0.491	0.049
	Mean	0.342	0.005	0.491	0.000
	F-COX1 & H-COX1-1	0.469	0.022	0.000	0.000
	F-COX1 & H-COX1-2	0.469	0.021	0.000	0.000
	Mean	0.469	0.000	0.000	0.000
Lasmigona complanata vs L.					
compressa	F-ORF & H-ORF1	0.218	0.028	0.394	0.059
	F-ORF & H-ORF2	0.255	0.027	0.395	0.055
	Mean	0.237	0.019	0.395	0.000

Table IV. p-distances (p-D) and standard error (SE) values of mitochondrial F-*orfs* vs H-*orfs* and F*cox1* vs H*cox1* in comparisons between gonochoric vs. closely related hermaphroditic freshwater mussel species

Lasmigona complanata vs L.					
subviridis	F-ORF & H-ORF1	0.269	0.029	0.429	0.054
	F-ORF & H-ORF2	0.295	0.029	0.442	0.055
	Mean	0.282	0.013	0.436	0.007
Toxolasma parvum vs T. lividus	F-ORF & H-ORF	0.443	0.027	0.736	0.044

Section 2.3.2: Conserved structures in ORFan protein sequences

One TM helix was predicted near the N-terminus of all M-ORFs (Figure 4 and Supplementary Table I), except for H. menziesii M-ORF sequence, for which one N-terminal and two additional TM helices were predicted. PrediSi and SignalP both returned predicted SPs for all M-ORF sequences, however, the programs rarely agreed about the length of the predicted signal peptide (Supplementary Table II). One TM helix was also predicted in all F-ORF sequences, with a SP predicted to overlap with this TM structure, except in the case of T. *lividus* F-ORF where the location of the SP was uncertain (Figure 4 and Supplementary Tables I and II). All H-ORFs contained one predicted TM helix near the N-terminus as well, except for U. imbecillis H-ORFs that contained multiple predicted TM helices, only the first of which had a confident location (Figure 4 and Supplementary Table III). U. imbecillis H-ORFs also returned variable SP predictions, whereas all other H-ORF sequences contain one predicted SP overlapping with the N-terminal TM helix (Supplementary Table IV). Although they could not be confidently aligned (see Supplementary Figure 2), F-ORFs and H-ORFs of closely related species showed some structural similarities in the localization of the TM helices and SPs (Figure 4). Importantly, all H-ORFs contain tandem repeats (L. compressa possesses between 3 to 7 tandemly repeated sequence motifs of 20 or 21aa; L. subviridis 7 to 9 repeats of 17aa; T. parvum 2 to 3 repeats of 47aa; M. falcata 2 to 3 repeats of 12aa; and U. imbecillis 2 to 4 repeats of 11 or 21aa), which are not found in F-ORFs and account for most of the difference in length between F-ORFs and H-ORFs of closely related species (Supplementary Figure 2).

Figure 5. Hydrophobicity profiles of M-*ORFs* **(a), F-***ORFs* **(b) and H-***ORFs* **vs. F-***ORFs* **(c).** Boxes indicate predicted TM helices, arrowheads indicate the end of predicted SPs. X-axis is amino acid position, Y-axis is hydrophobicity. Margaritifera H-*ORFs*: Mfa1 and Mfa2&4 have nearly identical profiles. Lasmigona H-*ORFs*: arrowheads outlined in black indicate the end of the SP in sequence 1, arrowhead without outline is for Lco-HORF2; boxes with long dashes are for sequence #2. Utterbackia H-*ORFs*: Sequences 2-6 have profiles similar to that of sequence 7.

Section 2.3.3: Motif and functional domain scans: frequently recurring HHpred hits and potential ligand-binding sites

Six HHpred hits consistently appeared highly ranked in the results of M-*ORFs*, F-*ORFs* and H-*ORFs*: (1) prepilin-type processing-associated H-X9-DG domain, (2) outer membrane insertion C-terminal signal, (3) LPXTG cell wall anchor domain, (4) X-X-X-Leu-X-X-Gly heptad repeats, (5) GlyGly-CTERM domain and (6) a pentatricopeptide repeat (PPR) domain. Probabilities were all >92% (which the developers state can be interpreted literally [64]), and ranks were typically 1-6 in variable order, with very few of these hits falling outside of the top 10 (Supplementary Tables V and VI). Figure 5 shows the position of these six hits in the protein sequences analyzed. Other but less recurring motifs and domains are presented in detail in Supplementary Tables VII and VIII. No TPR or PPR motifs were found.

Figure 6. Position of motifs frequently recurring in HHpred hits. Protein length in amino acids is indicated in parentheses. One representative sequence was chosen for each hermaphroditic species.

Inferred homologies and prediction of binding sites both indicated that ORFan proteins may bind several ligands (Table V). All M-ORFs returned hits to protein-binding, DNAbinding and RNA-binding proteins, while many returned hits to proteins binding ions (8 species), ATP (6 species), carbohydrates (3 species), and lipids (3 species). All F-ORFs returned hits to protein-binding and RNA-binding proteins, while many returned hits to proteins binding DNA (11 species), ions (10 species), ATP (8 species), carbohydrates (7 species), and lipids (4 species). H-ORF sequences returned hits to proteins binding other proteins (5 species), DNA (5 species), RNA (5 species), carbohydrates (5 species), ions (4 species), ATP (3 species), and lipids (2 species).

Protein	DNA	RNA	Protein	Carbohydrate	Ion	Lipid	ATP
Vel-MORF	Х	Х	Х	Х		Х	Х
Qqu-MORF	Х	Х	Х		Х		
Pgr-MORF	Х	Х	Х	Х	Х		Х
Ija-MORF	Х	Х	Х		Х		Х
Upe-MORF	Х	Х	Х		Х		Х
Sca-MORF	Х	Х	Х		Х		Х
Cmo-MORF	Х	Х	Х		Х	Х	
Hme-MORF	Х	Х	Х		Х	Х	Х
Aan-MORF	Х	Х	Х	Х	Х		
Total	9	9	9	3	8	3	6
Vel-FORF	Х	Х	Х	Х	Х		Х
Qqu-FORF	Х	Х	Х	Х	Х	Х	Х
Pgr-FORF	Х	Х	Х	Х	Х		Х
Ija-FORF	Х	Х	Х	Х	Х		
Upe-FORF	Х	Х	Х		Х		Х
Sca-FORF	Х	Х	Х		Х	Х	Х
Cmo-FORF		Х	Х	Х			

Table V. Summary of hits to ligand-binding sites in M-ORFs, F-ORFs and H-ORFs

Hme-FORF	Х	Х	Х	Х			Х
Lco-FORF	Х	Х	Х		Х	Х	Х
Tli-FORF	Х	Х	Х	Х	Х		Х
Mma-FORF	Х	Х	Х		Х		
Aan-FORF	Х	Х	Х		Х	Х	
Total	11	12	12	7	10	4	8
Uim-HORF1 - 3	Х	Х	Х	Х	Х		Х
Uim-HORF4 - 7	Х	Х	Х	Х	Х		
Mma-HORF1, 2, 4	Х	Х	Х		Х		Х
Mma-HORF3	Х	Х	Х		Х		
Tpa-HORF	Х	Х	Х	Х	Х	Х	Х
Lco-HORF1	Х	Х	Х		Х		
Lco-HORF2	Х	Х	Х	Х	Х	Х	
Lsu-HORF1 - 2	Х	Х	Х	Х	Х		
Total	14	14	14	10	14	2	6

Section 2.3.4: Prediction of molecular function: hits to viral proteins

Because a viral origin for the mitochondrial ORFans in DUI bivalves has previously been suggested [44], our results obtained with all programs for protein function prediction (i.e., BLAST, HMMER, HHpred, @tome2, I-TASSER, and PredictProtein) were first scanned for supported hits to viral proteins (Table VI). Overall, H-ORFs returned more viral hits than M-ORFs or F-ORFs. M. falcata H-ORFs primarily returned envelope proteins, L. subviridis H-ORFs returned capsid and envelope proteins, L. compressa H-ORFs returned proteins that interact with receptors, and T. parvum H-ORF returned a protein that regulates the degradation of a receptor. U. imbecillis H-ORFs returned many copies of capsid proteins and other structural proteins. M-ORFs returned nucleoproteins (A. anatina and H. menziesii), membrane proteins (I. japanensis and S. carinatus), and proteins with a role in replication, life cycle, and apoptosis (A. anatina, U. peninsularis, I. japanensis and V. ellipsiformis). F-ORF hits were mostly parts of the viral capsid and viral envelope (S. carinatus, T. lividus and M.

margaritifera), receptors/fibre proteins (*M. margaritifera* and *C. monodonta*), or proteins involved in cell cycle and translation (*P. grandis* and *I. japanensis*).

Gene	Hit	Function	Position
Aan- MORF	Nucleoprotein, <i>Andes virus</i> [Atome 2; 41.16] Regulatory protein MNT, <i>Enterobacteria phage P22</i> [Atome 2; 21.14]	Nucleoprotein Gene regulation	NA NA
Upe- MORF	Uncharacterized protein 56B, <i>Sulfolobus islandicus</i> [Atome 2; 27.96]	Transcription repressor	NA
Pgr- MORF	Matrix protein 1, <i>Influenza A virus</i> [Atome 2; 39.16] Helix-destabilizing protein, <i>Enterobacteria phage T7</i> [Atome 2; 18.55]	Matrix protein DNA binding protein	NA NA
Ija- MORF	Nonstructural protein 5A, <i>Bovine viral diarrhea virus 1-CP7</i> [Atome 2; 33.37] Functional anti-apoptotic factor vBCL-2 homolog, <i>Human</i> <i>herpesvirus 8</i> [Atome 2; 27.14]	Membrane protein Apoptosis	NA NA
Sca- MORF	Nonstructural protein 5A, <i>Bovine viral diarrhea virus 1-CP7</i> [Atome 2; 22.35]	Membrane protein	NA
Vel- MORF	Macrophage galactose N-acetyl-galactosamine specific lectin 2 [Hhpred; 93.40] RhUL123, <i>Macacine herpesvirus 3</i> [I-TASSER; TM score 0.671] Phosphoprotein, <i>Measels virus</i> [Atome 2; 49.33] Tail needle protein gp26, <i>Enterobacteria phage P22</i> [Atome 2; 48.96]	C-type lectin Viral life cycle Unknown function Fibrous protein	20-171 NA NA NA
Qqu- MORF	Virion RNA polymerase, <i>Bacteriophage n4</i> [I-TASSER; TM score 0.542]	Transferase	NA
Cmo- MORF	No hits to viral proteins		
Hme- MORF	Nucleoprotein, Andes virus [Atome 2; 63.91]	Nucleoprotein	NA
Aan- FORF	No hits to viral proteins		
Upe- FORF	BM2 protein, <i>Influenza B virus (B/Taiwan/70061/2006)</i> [Atome 2; 42.29]	Transport protein	NA
Pgr- FORF	V-cyclin, <i>Human herpesvirus 8</i> [I-TASSER; norm. TM score 0.517]	Cell cycle	NA

Table VI. Hits to viral proteins from structural prediction analyses

Lco- FORF	Herpes simplex virus protein ICP47, <i>Herpes simplex virus</i> (<i>type 1 / strain 17</i>) [Atome 2; 46.61]	Membrane protein	NA
Ija- FORF	Non-structural RNA-binding protein 34, <i>Simian rotavirus</i> <i>A/SA11</i> (2) [Atome 2; 48.04, 28.60]	Translation	NA
Sca- FORF	Major capsid protein (protein P3), <i>Enterobacteria phage</i> <i>PRD1</i> [Atome 2; 80.01]	Capsid protein	NA
Tli- FORF	Envelope protein E, <i>Dengue virus 2 Thailand/16681/84</i> [Atome 2; 46.45]	Envelope protein	NA
Vel- FORF	V1V2 region of HIV-1 on 1FD6 scaffold, <i>Human</i> <i>immunodeficiency virus 1</i> [Atome 2; 57.65]	Immune system	NA
Qqu- FORF	HIV-1 matrix protein, <i>Human immunodeficiency virus 1</i> (2) [Atome 2; 83.13, 72.79]	Matrix protein	NA
Mma- FORF	ODV-E18: Occlusion-derived virus envelope protein ODV- E18 (2) [Hhpred; 72.05, 62.79]	Envelope protein	21-62
	Adenovirus fibre, Human adenovirus 2 [Atome 2; 27.29]	Fibre protein	23-55
	Fibre protein 2 (receptor-binding domain), Human	Fibre protein,	NA
	adenovirus 41 [I-TASSER; 18.06]	receptor binding	NA
Cmo-	Virus attachment protein globular domain (49835) SCOP	Viral attachment,	50-68
rom	Adenovirus fibre protein; cell receptor recognition, receptor, <i>Human adenovirus type 3</i> [Hhpred; 21.71]	Fibre protein, Cell receptor recognition	44-68
	Fibre protein, Human adenovirus 37 [Atome 2; 31.21]	I O	NA
	Fibre protein, Human adenovirus 2 [Atome 2; 30.90]		NA
	Type 5 fibre protein, <i>Human adenovirus 5</i> [Atome 2; 30.46]		NA
	Fibre protein, Human adenovirus 41 [Atome 2; 24.60]		NA
Hme- FORF	Nucleoprotein, Influenza A virus [Atome 2; 80.49]	RNA binding protein	NA
Uim- HORFs	HIV-1 capsid, <i>Human immunodeficiency virus 1</i> [I-TASSER; TM score 0.513]	Capsid protein	NA
	Gag Polyprotein, <i>Human immunodeficiency virus 1</i> [I- TASSER; TM score 0.510]	Precursor protein	NA
	Capsid protein P24, <i>Human immunodeficiency virus type 2</i> [I-TASSER; TM score 0.504]	Capsid protein	NA
	Nucleoprotein, Andes virus [Atome 2; 44.18]	Nucleoprotein	NA
	Protein ICP47, Herpes simplex virus [Atome 2; 37.48]	Membrane protein	NA
	LdOrf-129 peptide, Lymantria dispar multiple	Structual protein	74-144
	nucleopolyhedrovirus (2) [BLASTP, PSIBLAST; 2e-06, 7e-		
	10]	Unknown	74-131
	ORF-132 protein, Lymantria dispar multiple		
	<i>nucleopolyhedrovirus</i> (2) [BLASTP, PSIBLAST; 4e-06, 2e-09]	Unknown	72-140
	orf-126 protein, Lymantria dispar multiple nucleopolyhedrovirus [PSIBLAST; 4e-08]	Unknown	60-154
	Central variable region protein, <i>African swine fever virus</i> [PSIBLAST; 6e-08, 7e-07]	Unknown	60-130

	Central variable region protein, <i>African swine fever virus</i> [PSIBLAST; 7e-08] pB602L, <i>African swine fever virus tick/South</i> <i>Africa/Pretoriuskop Pr4/1996</i> [PSIBLAST; 8e-08] U1, <i>Hyposoter didymator ichnovirus</i> [PSIBLAST; 3e-07] gp7, <i>Salmonella phage epsilon15</i> [I-TASSER; norm. Z- score 1.32] Long tail fibre protein p37, <i>Enterobacteria phage T4</i> [I- TASSER; norm. Z-score 1.30] RhUL123, <i>Macacine herpesvirus 3</i> [I-TASSER; TM score 0.617] Nucleoprotein, <i>Andes virus</i> [Atome 2; 39.59] LdOrf-129 peptide, <i>Lymantria dispar multiple</i> <i>nucleopolyhedrovirus</i> [PSIBLAST; 8e-10] ORF-132 protein, <i>Lymantria dispar multiple</i> <i>nucleopolyhedrovirus</i> [PSIBLAST; 5e-09] DNA stabilization protein, <i>Salmonella phage HK620</i> [I- TASSER; Z-score 1.09] Hexon protein, <i>Human adenovirus 5</i> [I-TASSER; Z-score 1.01] Human T-cell leukemia virus type II matrix protein, <i>Human</i> <i>T-lymphotropic virus 2</i> [I-TASSER; Z-score 1.00] Herpes simplex virus protein ICP47, <i>Herpes simplex virus</i> (<i>type 1 / strain 17</i>) [Atome 2; 1.72]	Structural capsid protein, chaperone in capsid assembly (several hits) Spliceosomal RNA DNA transfer protein Fibre protein Viral life cycle Nucleoporin (several hits) Structual protein Unknown DNA binding & stabilization Major coat protein Matrix protein Blocks the major histocompatibility complex class I antigen presentation pathway	65-153 65-137 NA 88-166 NA NA NA 87-188 139-223 NA NA
Lco- HORFs	Long tail fiber protein P37, <i>Enterobacteria phage T4</i> [I- TASSER; Z-score 1.01] Capsid protein, <i>Rubella virus strain M33</i> [Atome 2; 83.05] VPU protein, <i>Human immunodeficiency virus 1</i> [Atome 2; 43.79]	Receptor binding Capsid component Regulates degradation of CD4 (several hits)	NA NA NA
Lsu- HORFs	Major capsid protein, <i>Synechococcus phage Syn5</i> [I- TASSER; Z-score 1.66] RhUL123, <i>Macacine herpesvirus 3</i> [I-TASSER; TM score 0.547] Herpes virus major outer envelope glycoprotein (BLLF1) [BLASTP/PSIBLAST; 2.73e-03] Short tail fiber protein, <i>Enterobacteria phage T4</i> [I- TASSER; Z-score 2.14] Major capsid protein, <i>Synechococcus phage Syn5</i> [I- TASSER; Z-score 2.19] Coat protein, <i>Enterobacteria phage P22</i> [I-TASSER; TM score 0.520] Herpes virus major outer envelope glycoprotein (BLLF1) [BLASTP/PSIBLAST; 4.85e-04]	Capsid component Viral life cycle Envelope protein Structural protein Capsid component (several hits) Coat component Envelope protein	NA 69-195 NA NA NA NA

Tpa- HORF	VPU protein (Trans-membrane domain), <i>Human</i> <i>immunodeficiency virus 1</i> [Atome 2; 33.16]	Regulates degradation of receptor molecule CD4 (several hits)	NA
Mfa- HORFs	ODV-E18: Occlusion-derived virus envelope protein ODV- E18 [Hhpred; 74.97]	Envelope protein (several hits)	33-73
	Herpes_TK_C: Thymidine kinase from Herpesvirus C-terminal, <i>Herpesvirus</i> (2) [Hhpred; 48.70, 48.13]	ATP binding, thymidine kinase	33-73
	Adenovirus fibre, Human adenovirus 2 [Atome 2; 34.11]	(several hits) Fibre protein, receptor binding (several hits)	NA

NOTE – A norm. Z-score>1 indicates a good alignment; a TM-score>0.5 indicates a similar fold with query (I-TASSER, [69]); position = amino acid position in the query sequence; NA = not applicable

Section 2.3.5: Prediction of molecular function: hits to mitochondrial proteins

Besides viral hits, most of the sequences analyzed also returned hits to proteins involved in energy production, including proteins of the mitochondrial electron transport system, so we tested the similarity of the ORFan proteins to standard mtDNA-encoded ones with BLAST searches. Our analyses predicted M-*ORFs* mostly as subunit 5 of the NADH-Ubiquinone Oxidoreductase complex I of the mitochondrial electron transport chain (*NAD5*) for 5 species out of 9, and/or *ATP8* of the ATP synthase complex V for 5 species, but only with very low support (i.e., E-values ranged between 6e-04 and <1.0, the limit chosen for this analysis) (see Table VII). This latter result was also supported by a moderately significant domain hit identified in *C. monodonta* (i.e., pfam02326; plant ATP synthase F0; this family corresponds to subunit 8 of the F0 complex of plants; E-value 4e-03) (see below). For F-*ORFs*, the most recurring hit (8 species out of 12) was subunit 2 of the mitochondrial complex I (*NAD2*), again with quite low support (E-values ranged between 6e-08 and <1.0), whereas BLAST searches of H-*ORFs* principally identified F-*ORFs* (3 species out of 5), with moderate E-values (Table VII).

Table VII. List of BLAST hits for mitochondrial ORFans in freshwater mussels searched

 against NCBI NRDB mitochondrial proteins

Species Name	M-ORFs	F-ORFs	H-ORFs
Anodonta anatina	NAD7 (0.61)		
		atp9 (0.19)	
Cumberlandia monodonta	ATP8 (0.81)		
		nad2 (6e-08)	
Hyridella menziesi	ATP8 (0.61)	NAD2 (0.33)	
	nad4 (6e-04)	nad2 (0.022)	
Lasmigona complanata			
		nad2 (0.094)	
Lasmigona compressa			F-ORF (4e-05)
			f-orf (2e-05)
Lasmigona subviridis			F-ORF (6e-09)
			f-orf (2e-05)
			nad1 (0.64)
Inversidens japanensis	ATP8 (0.62)		
	nad5 (0.001)	nad2 (0.22)	
	atp8 (0.048)		
	cox1 (0.15)		
Margaritifera falcata			COX1 (0.94)
Margaritifera margaritifera		NAD5 (0.093)	
		NAD2 (0.23)	
		nad2 (0.15)	
Pyganodon grandis	NAD5 (0.046)		
	atp9 (0.30)	cytb (0.13)	
Quadrula quadrula	NAD5 (0.026)	NAD5 (0.31)	
	ATP8 (0.070)	nad2 (0.56)	
	atp9 (0.30)		
Solenaia carinatus	COX1 (0.41)		
	NAD5 (0.99)	nad2 (0.018)	

	nad5 (0.33)		
Toxolasma lividus			
Toxolasma parvum			F-ORF (0.020)
Utterbackia imbecillis			
			nad2 (0.061)
Utterbackia peninsularis	NAD5 (0.38)		
	nad2 (0.31)	cox1 (0.056)	
Venustaconcha ellipsiformis	NAD4 (0.19)	NAD4 (0.55)	
	CYTB (0.21)	nad2 (0.14)	
	ATP8 (0.94)		
	nad4 (0.15)		

NOTE – protein name and (E-values <1.0) identified using PSI-BLAST and *tBLASTx* are indicated above in capital letters and below in italics, respectively. Hits to freshwater mussel mitochondrial ORF homologs are not presented, except for the highly divergent H-*ORFs*.

Section 2.3.6: Profile HMM – sequence comparisons for F-*ORFs* and M-*ORFs*

The hmmsearch analyses with HMM profiles for F-*ORF* and M-*ORF* alignments gave different numbers of hits for default vs. custom profiles. In general, the custom profiles were more "stringent" in terms of hit yield among all databases analysed, giving fewer total results than the default ones. Except for one hit for the M-*ORF* profiles, freshwater mussel ORFan sequences were the only significant hits (E-value <0.001) returned for all profiles, and they will not be considered. Therefore, we will describe all the hits other than unionoids ORFans (even those with E-values higher than the cutoff) in terms of functional recurrence. Results are presented in Supplementary Tables IX and X.

Overall, F-ORF hits for both profiles are related to membrane association, virus life cycle, and interaction with nucleic acids (Supplementary Tables IX and X). The M-ORF default profile frequently returned hits associated with membranes, related to energy

production in bacteria or eukaryotes, transport or movement, or other functions related to membranes (Supplementary Tables IX and X). The Excalibur domain protein, found two times with borderline significance (E-values 0.0011 and 0.0018), also has functions in DNA binding and repair and transcription regulation. Another recurring function is interaction with RNA, sometimes specific to ribosomal functions or biogenesis (pre-rRNA processing, translation initiation, tRNA modification, poly-(A) RNA binding for nuclear import, posttranscriptional expression regulation). Interactions with amino acids and proteins were also common, including protein transport, protein modification, or involvement in cytoskeleton rearrangements. Some hits suggest the possible insertion of DNA from foreign sources, or nuclease activity. Hits to viral delta antigens of hepatitis delta virus are related to viral life cycle (invasion in host cell and nucleus, replication). The M-*ORF* custom profile returned four additional results, all involved in protein and/or membrane interactions.

Section 2.3.7: Prediction of molecular function (all sequences, all programs except hmmsearch)

Finally, we compiled the results obtained for all ORFs with all other programs for protein function prediction (i.e., BLAST, HHpred, @tome2, I-TASSER, and PredictProtein). Figure 6 summarizes the most frequent categories of hits for freshwater mussel mitochondrial ORFans (i.e., those returned for over 75% of sequences per sex) and Supplementary Figure 3 and Supplementary Tables XI-XLV contain detailed hits and recurring functions. Overall, the most common hits for M-*ORFs* were membrane-associated proteins (Figure 6). M-*ORFs* also returned many hits to proteins involved in transport, cellular signalling, and the cell cycle. The most commonly predicted subcellular localizations for M-*ORFs* also returned many hits to proteins. These include several trafficking and transport functions such as SNAP receptors, kinases (such as signalling proteins), trans-Golgi transport proteins including sensors, inhibitors, and transporters, and proteins generally involved in cell adhesion. Finally, immune system proteins were common hits including several SNAP receptors (e.g., v-SNARES involved in cytokine secretion). The mitochondria, Golgi, and ER were predicted subcellular localizations (Figure 6). For H-*ORFs*, structural proteins,

particularly collagen and collagen-like proteins were the most common categories, closely followed by transmembrane proteins. Signalling, transport, and transcription factors were common hits as well (Figure 6).

Figure 7. Most common categories of hits for (a) M-ORFs, (b) F-ORFs, and (c) H-ORFs. Bubble size represents average number of hits per sequence analyzed. Largest bubble

(structure, H-ORFs = 28.8 hits/sequence), smallest bubble (inhibitor, F-ORFs = 0.92 hits/sequence). Blue, M-ORFs; red, F-ORFs; purple, H-ORFs. ER, endoplasmic reticulum; ABC, ATP-binding cassette.

Section 2.4: Discussion and conclusion

Sex-specific mitochondrial DNAs of bivalves with DUI (orders Mytiloida, Veneroida, and Unionoida) harbor ORFans that have previously been hypothesized to have (1) originated from endogenization of viral genes and (2) play a role in the DUI mechanism, e.g. in the maintenance and segregation of sperm mitochondria during male embryo development by masking them from the degradation machinery [44, 46]. However, because the studied taxa (5 mytilids, 1 venerid, and 1 unionid) were evolutionarily distant, and because of the observed structural similarities of the ORFan protein products within evolutionary lineages (i.e., F-ORF and M-ORF were more similar to each other in the venerid and in the unionid than to the proteins of the same name in the Mytilus complex; in Mytilus spp. F-ORFs and M-ORFs were respectively more similar among themselves) it was further hypothesized that the ORFans could have originated from independent endogenization events [44, 46]. The evolutionary distance among mytilids, venerids, and unionids did not allow for a good comparison across the species studied [44], and so expanding the number of venerids or unionids used could provide more information on the conservation of these sequences and their characteristics. For these reasons, and because homologous sequences remain more conserved within closely related species (as compared to distantly related ones), we decided to perform in silico analyses on more closely related ORFan sequences, i.e., within the order Unionoida, for a better understanding of their putative origin(s) and function(s).

Section 2.4.1: Evolution of freshwater mussel ORFan sequences and protein structures

As previously reported in other DUI bivalves [17], one general feature usually observed in ORFan sequences is their higher p-distance values at the amino acid level compared to their own nucleotide sequences, and the test of positive selection returned a p-value of 1.000 in all cases, rejecting neutral evolution in favor of positive selection. This test

may also indicate relaxed purifying selection – for example all three ORFs may be under less purifying selection than the rest of the mitochondrial genome, or *H-ORFs* may be even under less selective pressure than their ancestral F-ORFs. This study also directly compared withingenus p-distances of nucleotide and amino acid sequences of M-ORFs, F-ORFs and H-ORFs to a standard mitochondrial gene -coxl – for the first time. Among species, unionoid M-*ORF*s display high variability in length and very low extent of amino acid sequence similarity (Figure 1). However, despite limited sequence similarities, M-ORFs appear conserved at the secondary structure level, with a single TM helix predicted in the N-terminus half of each M-ORF, except for H. menziesii (Figure 2). Most M-ORFs have an SP predicted in the same region, but given the hydrophobic nature of SPs, many programs struggle to distinguish Nterminal TM helices from SPs, and the number of M-ORFs with an SP may actually be higher [56]. Sequence similarities among F-ORF sequences are more pronounced, and mostly found within a stretch of ~30-40 residues in the C-terminal region (Figure 1). The relatively conserved region is preceded by a single predicted TM helix as well as one predicted SP in the N-terminus half of each F-ORF (Figure 2). Thus, despite low sequence conservation, M-ORF and F-ORF proteins appear structurally conserved, suggesting that their biological functions might be conserved among species as well.

Contrary to gonochoric species, H-*ORFs* from hermaphroditic unionoids are longer and display relatively low levels of sequence similarity to F-*ORFs* from closely related (congeneric) gonochoric species (Supplementary Figure 2). H-*ORFs* also contain repeat units not found in any of the F-*ORFs* from gonochoric species, and they sometimes possess different hydropathy profiles from the F-*ORF* proteins (e.g., *U. imbecillis* vs. *U. peninsularis*). All repetitive sequences in H-*ORFs* can be easily identified as a portion of the corresponding F-*ORF*, indicating internal duplication. No TPR or PPR motifs were found, and sequences are generally too short to correspond to these motifs. One possible mechanism that could be responsible for internal duplication of repeats independently in the various H-*ORF* sequences is DNA slippage due to the formation of DNA hairpins, a common mechanism in the creation of nucleotide repeats and thus short protein repeats [71, 72]. These independently acquired distinctive features of the five H-*ORFs* could indicate changes of function from that of the homologous F-*ORFs* in gonochoric species. Another important change in the switch from gonochorism to hermaphroditism is the loss of the M-type mtDNA. The switch from DUI to SMI has led to the hypothesis that M- and F-type mtDNA, and particularly F-ORF and M-ORF proteins likely have coordinated roles in maintaining gonochorism [40].

Proteins that contain tandem repeats are frequently involved in interactions with other proteins or ligands such as DNA or RNA (e.g. [72, 73]). A classic example involving proteins expressed in organelles is the pentatricopeptide repeat (PPR) protein family. PPR proteins contain tandemly repeated sequences that can vary in number and are known to have roles in transcription, RNA processing, splicing, stability, editing, and translation, i.e., processes that are important for expression of organelle genomes and organelle biogenesis (see [73] for a review). In mitochondria, defects in PPR protein function can yield phenotypes associated with organelle dysfunction [73]. Interestingly, PPR proteins are key elements of the only known sex determination system in which the mitochondrial DNA is directly involved, i.e., in hermaphroditic angiosperm plants exhibiting cytoplasmic male sterility (CMS) [73]. In this nuclear-cytoplasmic sex determining system, PPR proteins appear to function as nuclearencoded restorers of fertility, which suppress mtDNA-encoded factors that induce the inability to produce viable pollen [73]. Angiosperm plants with mutant PPR proteins are unable to produce viable pollen. Although speculative, it has been hypothesized that in freshwater mussel species with DUI, the loss of the M mitochondrial genome and macromutations in the F-orf gene (i.e., acquisition of tandemly repeated units in the H-ORF protein) could induce the ability of females to produce sperm (and eggs), leading to hermaphroditism [42].

Section 2.4.2: Conserved motifs and domains: mitochondrial export of ORFan proteins

In their previous *in silico* characterization of M-ORFs and F-ORFs of DUI bivalves belonging to the orders Mytiloida, Veneroida, and Unionoida, Milani et al. [44] used the program HHpred and found the same first four hits as presented here: LPXTG-motif cell wall anchor domain, outer membrane insertion C-terminal signal (both involved in cell membrane/surface anchoring), X-X-X-Leu-X-X-Gly heptad repeats (implicated in transcription) and PPRs (involved in post-transcriptional processes). In this unionoid-specific study we found these same four hits in all F-ORFs, M-ORFs, and H-ORFs, plus one hit involved in cleavage/methylation and protein transport (prepilin-type processing-associated H-

X9-DG), and one hit that serves as a recognition sequence for protein sorting and cleavage (Gly-Gly-CTERM) (Supplementary Tables V and VI). Other frequently recurring hits were found for M-*ORFs* (lysine-rich profile and nuclear localization signal), F-*ORFs* (outer membrane protein motifs), and H-*ORFs* (outer membrane or envelope proteins) (Supplementary Tables VII and VIII) As in Milani et al. [44], the regions covered by the hits are too short to perform the functions (incomplete matches), but they are supported by other hits as well (Supplementary Tables VII and VIII). Many hits to proteins with functions related to protein transport and movement, different from the ones listed above and with lower significance, are also found using profile searches for M-*ORFs*, but not for F-*ORFs*.

So far, the protein products of the F-orf and M-orf genes in unionoids have been studied only in the species Venustaconcha ellipsiformis [40]. Using immunoelectron microscopy, the F-ORF protein has been localized not only to egg mitochondria, but also on the nuclear envelope and in the nucleoplasm of unfertilized eggs [40]. Interestingly, the F-ORF protein has also been found on the inner mitochondrial membrane of some sperm mitochondria, which are thought to contain only M mtDNA [74]. Although the subcellular localization of the M-ORF protein has not been studied yet, our in silico detection of nuclear localization signals in several M-ORF sequences (Supplementary Tables VII and VIII), and of hits related to protein movement using their profile (Supplementary Tables IX and X), is consistent with the hypothesis that this protein is also exported from the organelle. Such results have already been observed in the venerid clam Ruditapes philippinarum, where the M-ORF protein has been immunolocalized both in mitochondria and in the nucleus of sperm [46]. Hence, mitochondrial ORFan proteins in DUI bivalves likely have a role (or multiple roles) in different cellular compartments ([40, 44, 46], present study), explaining the existence of functional domains that allow them to interact with several cellular elements such as membranes, cytoskeleton (see below), proteins, and nucleic acids.

The M-*ORF* and F-*ORF* of *V. ellipsiformis* are 25-30 kDa each [40], and thus may be able to diffuse into the nucleus through pores in the nuclear envelope, which are relatively large and flexible [75], but their export from the mitochondria remains unexplained. Mitochondrial import of proteins is a well-known process [76], but the opposite process of mitochondrial export is still largely obscure (e.g., [77]). The export of cell death effectors [78],

retrograde signals *humanin* and MOTS-c [79], and small peptides to trigger retrograde nuclear signalling in mitochondrial unfolded protein response are all somewhat characterized, but mitochondrial protein export is still largely unstudied, particularly for larger molecules [80]. One speculative hypothesis would be a system akin to autotransporters, which use the Type V secretion system in Gram-negative bacteria, including the proteobacteria (the presumed ancestor of mitochondria) [81]. Classical autotransporters, which are important virulence factors in many Gram-negative pathogens, are known to pass through the inner membrane of Gram-negative bacteria with the help of their N-terminal signal peptide, whereas their Cterminal motif forms a beta-barrel pore in the outer membrane to allow the secretion of the passenger domain (the mature protein) [81]. Interestingly, it has been demonstrated that the evolutionary conservation in the biogenesis of beta-barrel proteins allows mitochondria to assemble bacterial autotransporters in their functional form [82]. However, autotransporters are usually extremely large molecules, and although F-ORFs and H-ORFs contain a similar 3domain structure with an N-terminal SP, a C-terminal "motif", and a central variable region, they are much shorter and do not possess beta-barrel structures. They cannot, therefore, behave exactly like autotransporters, however we can hypothesize that the ORFan proteins could use their N-terminal SP to pass through the inner membrane, and their C-terminal motif to traverse the outer membrane. Their export could potentially be facilitated by proteins belonging to the evolutionarily conserved Omp85 family, which are essential for outer membrane biogenesis in mitochondria and chloroplasts, and recognize species-specific Cterminal motifs when functioning as assembly factors and in protein export in bacteria [83, 84]. Clearly, further studies are needed to better understand the process of mitochondrial export not only in bivalves, but in other animal species as well.

Section 2.4.3: Putative origin for freshwater mussel mitochondrial ORFans

As mentioned above, previous *in silico* analyses provided many clues consistent with a viral origin of DUI bivalve mitochondrial ORFans, even if the probability of the hits were sometimes low and the regions of similarity of short length [44]. Except for two sequences (M-ORF of Cumberlandia monodonta and F-ORF of Anodonta anatina), our results revealed the presence of at least one viral hit for each sequence analyzed, also with low probability values and short regions of similarity. Although not significant, the same viral hit

(neuraminidase) has been found multiple times for the F-ORF profiles, and a few hits related to viral activities, or insertion of foreign elements, were also retrieved for M-ORF profiles. As in Milani et al. [44], many hits pointing to immune system, defense, and antigens were found (Figure 4, Table VI and Supplementary Tables XI-XLV), supporting the hypothesis that mitochondrial ORFans in bivalves may have originated from viral elements with a function in immune response and apoptosis control. However, H-ORFs returned more hits to viral proteins than M-ORFs or F-ORFs which, given that they are likely derived from F-ORFs, suggests that these genes may be converging towards molecular properties similar to viral proteins. In addition, for each sequence analyzed, we also obtained hits with stronger probability values for bacterial or metazoan genes, and with functions other than immune response (Table VI and Supplementary Tables XI-XLV). Our objective was to compare more closely related sequences to obtain clearer patterns that could help to better understand the origin(s) and function(s) of these mitochondrial ORFans in bivalves. However, these ORFans evolve at a rate that limits our ability to fully characterize their function and/or evolutionary origins. In general, rapidly evolving ORFan genes for which homologues cannot be determined easily have been implicated in lineage-specific processes, such as immune system functioning and sex determination, and have been proposed to be major contributors to the origin of adaptive evolutionary novelties [85, 86]. It is noteworthy that collectively, studies of new genes in animal species have ascribed the testis as having a central role in the process of gene birth and evolution [86].

The birth of new genes involves a variety of mechanisms, including the origin of new protein-coding and RNA genes from previously nonfunctional genomic sequences, various types of gene fusions, and the formation of new genes from RNA intermediates [86, 87]. However, gene duplication is thought to be the mechanism underlying the origin of most novel genes, and thus represents one of the most important processes for functional innovation during evolution [86]. Interestingly, several of our sequences analysed returned hits to proteins involved in mitochondrial energy production, including proteins of the electron transport system, suggesting that duplication and neofunctionalization of a mitochondrial gene could be the source of freshwater mussel mitochondrial ORFans. Several M-ORF sequences (i.e., 6 species out of 9: *C. monodonta, I. japanensis, H. menziesii, Q. quadrula, S. carinatus, V.*

ellipsiformis) returned hits, some of them with high probability values, to the subunit ATP8 of the mitochondrial ATP synthase complex V (Table VII), and M-ORF profiles to subunit b of bacterial ATP synthase. These results are interesting in at least two ways. Firstly, because the *atp8* and M-*orf* genes are localized one beside another in the M mitochondrial genome, in a region corresponding to one of the three gene order rearrangements observed between female and male mtDNAs in freshwater mussels with DUI [40], and secondly, because the *atp8* gene is highly modified or reported missing in other bivalve species with DUI due to its short length and rapid evolution causing difficulties in annotation (e.g., [88–90]), leading to the possibility that this gene acquired DUI-specific functions that hamper its annotation in DUI bivalves. It is highly conceivable that a duplication event, as described in several other animal mtDNAs [91], of the region containing the *atp8* gene happened in an ancestral freshwater mussel species with DUI, allowing one of the two duplicate *atp8* copies to evolve new male-specific functional properties and thus giving birth to the M-orf gene in M-type mtDNAs. Considering this, both mitochondrial ATP8 and bacterial subunit b hits may indicate a mitochondrial localization for M-ORF in the F0 subunit of complex V, the part of ATP synthase where protons pass through the inner membrane from the intermembrane space to the matrix. Examples of mtDNA-encoded non-canonical subunits of the F0 complex are already known from studies on protists [92], and unionoid M-ORFs might be a metazoan variant of this scenario. However, how and if the M-ORF in these species could alter the membrane potential by locating itself in complex V, and possibly drive sperm mitochondria inheritance by such mechanism (as proposed by [93]) will be questions for future studies.

Individual F-ORF sequences also returned many hits pointing to mitochondrial membrane proteins, often *NAD2*, although with relatively high E-values. Nonetheless, this is an interesting result because the *nad2* and F-*orf* genes are typically localized beside one another in the female mitochondrial genome, in a region corresponding to the only gene order rearrangement observed among F mtDNAs in freshwater mussels with DUI [42]. It is plausible that this region could have been subjected to a duplication event and subsequent adaptation of one of the two copies of *nad2*. It is worth noting that the *nad2* gene is also localized beside the F-*orf* gene in the marine clam *Ruditapes philippinarum* [90] (this, however, is not the case for other species with DUI). Finally, and not surprisingly, all H-ORF

sequences returned hits to F-*ORF* sequences (Table 7), and many hits for F-*ORF* profiles are annotated H-*ORF*s (Supplementary Tables IX and X), supporting previous results that the former gene derived from the latter [40].

With such a rapid rate of evolution, it would not be unreasonable for the mitochondrial ORFans to rapidly lose their resemblance to the highly conserved mitochondrial genes from which they evolved. Our results do not refute the hypothesis that these ORFans may originate from viral sequences, but they open up the possibility of a mitochondrial origin. Additionally, the differences in the genomes across the orders Mytiloida, Veneroida, and Unionoida, when coupled with the fact that *ATP8* and *NAD2* are the most likely candidates for duplications leading to the development of M-ORF and F-ORF, respectively suggest that this mechanism would best fit multiple origins of DUI and the necessary factors. On the other hand, the rate of evolution of these genes and the structural and functional similarities seen across orders hints at a single origin with significant modifications over the course of the evolution of these orders. Sex determination factors are wildly diverse and tend to evolve rapidly despite strong conservation of the molecular pathways that they trigger [94], thus it is likely that extensive further work will be needed before a strong theory on the origin(s) of DUI can be built.

Section 2.4.4: Predicted functions for freshwater mussel mitochondrial ORFans

Overall, when we consider the most frequently recurring categories of hits, the functions of proteins bearing sequence and/or structural similarities to the freshwater mitochondrial ORFans follow a general pattern. For M-ORFs, these include membrane associated proteins, transport, and cellular processes, i.e., signalling, cell cycle control, and cytoskeleton organization (cell differentiation during development). For F-ORFs, they mainly include membrane-associated proteins, trafficking and transport, and the immune system. For H-ORFs, hits primarily returned structural proteins, especially glycoproteins such as collagen and collagen-like proteins, membrane-associated proteins, signalling, transport, and transcription. All mitochondrial ORFans in freshwater mussels seem capable of DNA, RNA, and protein binding, and transcription regulation.

Milani et al. [44] suggested that the novel ORFs might have a role in producing the aggregated and dispersed patterns of distribution of spermatozoon mitochondria observed in

early male and female embryos, respectively. This hypothesis has been supported by a subsequent study of the M-ORF in the marine clam Ruditapes philippinarum (named RPHM21 in this species) [46], in which the prediction of domains involved in cytoskeleton interactions, as well as the localization of the RPHM21 product in sperm mitochondria and around the animal-vegetal axis of embryos, supported a role of this protein in the distribution pattern of spermatozoon mitochondria observed in DUI embryos. The results obtained in the present study for the freshwater mussel M-ORFs also provide support for this hypothesis. Although it remains unclear if mitochondrial ORFans in freshwater mussels originated from viral or mitochondrial elements, our results for M-ORFs reveal connections with the cytoskeleton, such as microtubule-binding proteins, actin-binding proteins and proteins with a role in protein-cytoskeleton interactions (e.g., ankyrin). With their predicted SPs and TM helices, M-ORFs may be targeted to sites outside sperm mitochondria and be responsible for their cellular distribution and positioning in developing embryos. It has been suggested that mitochondrial dynamics, including motility, fusion, fission, and autophagy, must be, at least partly, controlled by "signalling" from the respective individual mitochondrion [95]. Although no protein of the dynamics machinery has been identified in bivalves yet, the mitochondriallyencoded M-ORF in bivalves with DUI represents an ideal candidate for direct control of sperm mitochondria.

A possible viral origin of the M-*orf* gene, as previously suggested [44, 46], supports the hypothesis of a role for its protein product during embryo development, that is to prevent the recognition of sperm mitochondria by the degradation machinery in DUI zygotes, as some viral proteins do in the immune recognition pathway, thus explaining the acquired capability of sperm mitochondria to avoid degradation and invade the germ line. Milani et al. [46] also described several retroviral genes co-opted by the host which have been shown to have roles in early development and in sex-specific functions, such as gamete differentiation and reproduction. This supports the hypothesized connection between DUI, the novel ORFs, and the maintenance of separate sexes in freshwater mussels [40]. Our results do not refute the hypothesis that the mitochondrial ORFans in bivalves with DUI might have a viral origin, but irrespective of this putative viral endogenization, a reproductive role for ankyrin-like proteins, to which freshwater mussel M-*ORFs* showed structural similarities (see Supplementary Tables

XI-XIX), is already well established (e.g. [96]). Remarkably indeed, Yu et al. [96] reported that a mitochondrially-localized ankyrin repeat protein (ANK6) is essential for fertilization in *Arabidopsis*, specifically for gamete recognition, possibly by regulating mitochondrial gene expression.

A possible function in reproduction, fertilization, gamete development or sex determination (and regulation of mitochondrial expression) is an attractive hypothesis for the mitochondrial ORFans in freshwater mussels. For example, the F-ORF protein could participate in the inhibition of testicular development in embryos that will become females, and the extreme modifications seen in H-ORFs (highly modified versions of F-ORF proteins) could explain why development of some testicular tissue is not inhibited in hermaphrodites. Interestingly, the F-ORF protein has not only been localized in the mitochondria, nuclear membrane, and nucleoplasm of eggs, but also in some sperm mitochondria [40, 74]. Because small proteins like this often diffuse into the nucleus without a specific targeting signal, the nuclear localization may not be specific, however, mitochondrial localization depends on a signal peptide at the N terminus of the protein [96]. Because the F mtDNA is not present in DUI bivalve sperm mitochondria [97], either there is a version of the F-orf gene in the nuclear genome, or the F mtDNA-encoded F-ORF protein is exported from F-type mitochondria and imported, with the help of its N-terminal signal peptide, into M-type mitochondria, where it could regulate mitochondrial gene expression, for example of the M-orf gene. Future experiments and examination of a freshwater mussel nuclear genome, which is currently underway in our laboratory, are needed to verify these hypotheses. But as hypothesized by Milani et al. [44], the M-ORF protein could be a masculinizing factor and that sperm from different males could carry different amounts of transcript and/or protein, determining the quantity of protein in embryos thus shifting development toward maleness. Although speculative, the F-ORF protein in sperm, possibly with the help of some nuclear-encoded factors, could be responsible for the regulation of this process. Yusa et al. [98], in their DUI sex-determination model, predicted the existence of such secondary or minor sex-determining mitochondrial factors.

Although the expression of the H-ORF protein in hermaphrodites has not yet been experimentally confirmed, the high level of amino acid sequence and structural similarities

within species suggest that it is functional. H-*ORFs* are predicted to be membrane-associated and/or secreted, and may act in signalling and transcription. Our results suggest that these proteins may in fact be glycoproteins given the large number of high probability and high coverage hits to glycoproteins (see Supplementary Tables XXXII-XLV). Interestingly, a previous study of the reproductive tracts of *Utterbackia imbecillis* identified an unknown carbohydrate or glycoprotein co-localized with cells determined to be secretory, which was absent from closely-related gonochoric species [99]. To date, this molecule has not been characterized, but the authors suggested that it might inhibit self-fertilization [99]. This molecule should be further investigated to determine whether it could be the H-*ORF* protein and determine if it has a role in fertilization.

Section 2.4.5: Conclusions and future directions

Knowledge of metazoan mitochondrial genomes is constantly changing, expanding and moving ever further from the norms of the past (e.g. [4]). One major deviation from mitochondrial paradigms is the DUI system with its novel, lineage-specific mitochondrial ORFans. Considering previous data [44, 46] and the data presented here, it is clear that the striking similarities observed among mitochondrial ORFans in distantly-related bivalve species indicate some commonality, that is a role for these genes in the DUI mechanism. Our results also lead to some clear questions for future work: are mitochondrial ORFans in freshwater mussels (and other DUI bivalves) of viral or mitochondrial origin? Are H-ORFs expressed in hermaphroditic species? Are they glycoproteins - or more specifically - the molecule observed by Henley et al. [99]? What are the subcellular localizations of M-ORFs and H-ORFs? Are the proteins exported, and if so, do the SP and C-terminal motif play essential roles in this? As recently proposed [100], DUI is an intriguing system to look for antagonistic interactions between distorting mitochondria and nuclear suppressors similar to CMS in plants. If the F-ORF and M-ORF proteins are indeed antagonistic molecules, i.e., with the F-ORF participating in the inhibition of testicular development in female developing embryos and the M-ORF participating in the inhibition of ovarian development in male developing embryos, this could explain why macromutations in the F-ORF protein (that turns it into a H-ORF) would allow for testis development in otherwise female gonads (i.e.,

hermaphroditism). Most importantly, the mechanisms underlying DUI and sex determination in bivalves remain to be elucidated.

Chapitre 3 : Discussion, perspectives et conclusion

Les connaissances concernant l'ADN mitochondrial chez les espèces animales changent rapidement et plusieurs études ont permis la découverte d'une multitude d'exceptions aux normes établies par le passé (voir [4] pour une revue récente). Parmi ces exceptions se trouve le système de la DUI et ses ORFans mitochondriaux spécifiques aux sexes chez les bivalves. Les données présentées ici et dans les études antérieures [44, 46] indiquent des similarités remarquables parmi les ORFans des différents ordres de bivalves, et suggèrent un rôle pour ces gènes dans la DUI.

La première étude *in silico* des ORFans mitochondriaux chez les espèces à DUI incluait des espèces très distantes, et les résultats ont montré qu'il y a plus de similarité structurale et fonctionnelle à l'intérieur d'un ordre qu'entre les trois ordres étudiés (Mytiloida, Veneroida, Unionoida) [44]. Ces résultats, qui laissent ouverte la question d'une origine unique ou multiple pour la DUI, ont poussé les auteurs à proposer des études sur des espèces plus proches phylogénétiquement afin d'avoir une meilleure idée de l'origine et des fonctions des nouveaux gènes mitochondriaux chez les espèces à DUI [44]. Pour ces raisons, et aussi parce que l'existence d'espèces hermaphrodites avec des F-*ORF* hautement modifiés amène un autre aspect intéressant, nous avons décidé de faire des analyses *in silico* avec les séquences d'ORFans mitochondriaux d'espèces de moules d'eau douce (ordre Unionoida) pour mieux comprendre leurs origines et fonctions.

Section 3.1 : Conservation des séquences et structures des ORFans

Nos analyses démontrent que les séquences des M-*ORF*s sont très variables au niveau inter-espèce : leur longueur varie beaucoup, et les séquences en acides aminés sont peu similaires. Malgré cette grande variabilité, leurs structures secondaires semblent être bien conservées. Quant aux protéines F-*ORF*s, leurs séquences sont beaucoup plus conservées, surtout au C-terminus. Elles ont toutes une TMH et un SP prédits dans leur portion N-terminale. Donc, malgré les divergences importantes observées au niveau des séquences en acides aminés entre les espèces, les protéines M-*ORF*s et F-*ORF*s semblent être conservées au niveau de la structure, ce qui suggère une conservation inter-espèces de leurs fonctions aussi.

Contrairement aux M-ORFs et F-ORFs, les protéines H-ORFs sont plus longues et contiennent beaucoup de répétitions en tandem. La séquence protéique H-ORF de chaque espèce hermaphrodite est relativement similaire aux F-ORFs des espèces proches-parentes, la divergence étant surtout due aux séquences répétitrices. Tout comme les autres ORFans, les protéines H-ORFs ont une TMH prédite au N-terminus et un SP aussi. Un mécanisme possiblement responsable pour les répétitions présentes dans les H-ORFs est le glissement de l'ADN dû à la formation de structures secondaires de type « épingles à cheveux » durant la réplication, ce qui est fréquemment à l'origine des séquences répétitrices [71, 72]. Les protéines H-ORFs des 5 espèces hermaphrodites étudiées montrent des changements structuraux similaires, ce qui pourrait indiquer un changement de fonction par rapport aux protéines F-ORFs. Il a déjà été proposé que parce que la perte du génome paternel M est toujours associée aux modifications des protéines F-ORFs (apparition des H-ORFs) chez les hermaphrodites, il est fort probable que le rôle des protéines F-ORF et M-ORF est de maintenir le gonochorisme (les sexes séparés) et que leur perte/modification coordonnée mène à la production d'individus hermaphrodites [40].

Section 3.2 : Exportation des ORFans de la mitochondrie

Jusqu'à présent, le seul unionidé dont les ORFans mitochondriaux avaient été le sujet d'étude plus poussée est *Venustaconcha ellipsiformis* [40]. À l'aide de techniques immunohistochimiques et de la microscopie électronique, la protéine F-*ORF* a été détectée non seulement dans les mitochondries de type F, mais également dans l'enveloppe nucléaire et le nucléoplasme des œufs non-fertilisés [40]. De plus, cette même protéine a été localisée sur la membrane interne de certaines mitochondries de spermatozoïdes, qui devraient en temps normal contenir exclusivement des mitochondries de type M [74]. La localisation subcellulaire de la protéine M-*ORF* n'est pas connue, mais les analyses présentées ici ont détecté des signaux de localisation nucléaire dans plusieurs séquences M-*ORF*, ce qui suggère que la protéine pourrait être exportée. Des telles résultats ont été trouvés dans un étude de la palourde *Ruditapes philippinarum*, où M-*ORF* (RPHM21) a été détectée dans les mitochondries et les noyaux des spermatozoïdes [46]. Donc, les ORFans ont probablement un rôle (ou plusieurs rôles) dans divers compartiments cellulaires ([40, 44, 46], cette étude), ce qui explique les prédictions des domaines fonctionnels qui permettent l'interaction avec divers éléments de la cellule, tels que les membranes, le cytosquelette, les protéines et les acides nucléiques.

Présentement, il y a peu d'hypothèses concernant l'exportation de grandes protéines de la mitochondrie. Un de ces hypothèses implique des vésicules dérivées de la mitochondrie formées lors d'un stress oxydatif, tandis qu'une autre propose des translocases mitochondriales, telles l'insertase Oxa-1, qui sont normalement utilisées pour importer des protéines, mais qui pourraient fonctionner en sens inverse aussi [77]. Aucun de ces mécanismes n'a été observé jusqu'à présent. Une autre possibilité, quoique très spéculative, est que des protéines exportées de la mitochondrie pourraient utiliser un mécanisme similaire aux autotransporteurs du système de sécrétion Type V chez les bactéries Gram-négatives, qui incluent les protéobactéries, ancêtres présumées des mitochondries [81]. Ces protéines autotransporteurs sont des facteurs de virulence importants chez plusieurs pathogènes, et ils passent à travers la membrane interne à l'aide d'un peptide signal N-terminal tandis qu'un long motif C-terminal forme un tonneau bêta qui permet le passage du domaine passager, qui est la protéine mature, par la membrane externe [81]. Il est intéressant de noter que les mitochondries peuvent assembler des autotransporteurs dans leur forme fonctionnelle [82]. Cependant, ces protéines sont généralement très grandes avec une architecture répétitive, et bien qu'une bonne partie des séquences étudiées ici ont une structure à 3 domaines avec un SP N-terminal, un motif C-terminal et une région centrale variable, elles sont beaucoup trop courtes et ne contiennent pas le tonneau bêta qui pourrait leur permettre de fonctionner comme les autotransporteurs classiques. Par contre, ces protéines ORFans pourraient utiliser leurs motifs N-terminal et C-terminal pour passer à travers les deux membranes mitochondriales à l'aide des protéines de la famille Omp85, par exemple, qui sont essentielles pour la biogénèse de la membrane externe des mitochondries et des chloroplastes, et qui reconnaissent des motifs C-terminaux spécifiques aux espèces lorsqu'impliquées dans l'exportation de protéines chez les bactéries [83, 84]. Il serait donc intéressant d'introduire ce gène dans des bactéries, le faire exprimer et vérifier si les bactéries secrètent la protéine et, le cas échéant, comment (ce qui pourrait être fait, par exemple, avec des souches ayant certains composants des systèmes de sécrétion silencés). Une telle étude pourrait également éclaircir les rôles des SP N-terminal et motif C-terminal retrouvés dans les protéines F-ORF.
Section 3.3 : Fonctions potentielles

Nous proposons l'hypothèse que la protéine F-ORF pourrait participer à l'inhibition du développement des cellules spermatogéniques chez les embryons qui deviendront des femelles, et que les importantes modifications présentes dans les H-ORFs chez les hermaphrodites pourraient expliquer leur capacité de produire des spermatozoïdes. Tel que mentionné ci-haut, la protéine F-ORF a été trouvée non seulement dans les mitochondries, la membrane nucléaire et le nucléoplasme des œufs, mais aussi dans certaines mitochondries des spermatozoïdes chez l'espèce Venustaconcha ellipsiformis [40, 74]. Puisque des petites protéines peuvent arriver au noyau par diffusion sans nécessiter de signal particulier, la localisation nucléaire n'est pas nécessairement spécifique, cependant la localisation mitochondriale dépend d'un SP [96]. Étant donné que l'ADNmt de type F n'est pas présent dans les mitochondries des spermatozoïdes chez les moules d'eau douce [97], soit il y a une copie nucléaire du gène F-orf, soit la protéine est exportée des mitochondries de type F et importée dans les mitochondries de type M. La protéine F-ORF pourrait par exemple réguler l'expression des gènes mitochondriaux paternels tels que le M-orf. Des expériences biochimiques ainsi que la séquence d'un génome nucléaire complet seront nécessaires pour vérifier ces hypothèses.

La protéine M-ORF quant à elle, pourrait être un facteur de masculinisation et, tel que proposé par Milani et al. [44], les spermatozoïdes chez les bivalves à DUI pourraient contenir différents niveaux du produit du gène, ce qui déterminerait le sexe de l'embryon. La protéine F-ORF pourrait être responsable de réguler ce processus dans les spermatozoïdes. L'existence des facteurs mitochondriaux secondaires dans la détermination du sexe a déjà été prédite pour les bivalves à DUI [98]. On ne sait pas encore si le gène H-orf est exprimé, mais la conservation intra-espèce des séquences en acides aminées et les similarités structurales interespèces suggèrent qu'il est fonctionnel. Même si les protéines H-ORFs sont très divergentes des protéines F-ORFs des espèces proches parentes – surtout à cause des séquences répétitrices – les prédictions fonctionnelles sont similaires à 60% au niveau des catégories générales. Les prédictions pour les protéines H-ORFs incluent des protéines associées à la membrane et/ou sécrétées, et ayant des rôles dans la signalisation et la transcription. Nos résultats indiquent que ces protéines pourraient, en fait, être des glycoprotéines, et une étude

antérieure du système reproducteur de l'espèce hermaphrodite *Utterbackia imbecillis* a identifié un carbohydrate ou une glycoprotéine dans ou autour de cellules sécrétrices, mais absent chez une espèce proche-parente à sexes séparés [99]. Cette molécule n'a jamais été caractérisée, mais les auteurs ont suggéré qu'elle pourrait prévenir l'autofécondation. Il serait intéressant de vérifier si cette molécule pourrait être la protéine H-*ORF* codée par le génome mitochondrial.

Section 3.4 : DUI et conflit génomique

Le génome mitochondrial de type M a déjà été décrit comme « presque égoïste » dans le sens qu'il doit remplir les fonctions normales de l'ADNmt dans les cellules spermatogéniques, mais pas dans les autres tissus [21]. Cette hypothèse peut expliquer l'évolution rapide de ce génome, et particulièrement le gène M-*orf*, qui n'aurait peut-être aucun rôle dans la production d'énergie mais seulement dans la détermination du sexe. En bref, le gène M-*of* pourrait être un composant égoïste d'un génome mt « presque égoïste ». Les nombreuses divisions cellulaires durant la gamétogénèse ainsi que les dommages oxydatifs subits dans les mitochondries des spermatozoïdes sont également des sources de mutations possibles [21]. Une relaxation de la sélection purificatrice qui est normalement très forte pour les génomes mitochondriaux a aussi été proposée pour expliquer l'évolution rapide du génome M [101]. Les taux de substitutions sont particulièrement élevés aux sites non-synonymes (voir références dans [21]). Il a déjà été proposé que ces changements puissent avoir des avantages au niveau de la performance des spermatozoïdes, mais les résultats expérimentaux ne sont pas entièrement conclusifs [102, 103].

Le gène F-*orf* pourrait également présenter une source additionnelle de pression sélective. En effet, les similarités entre les résultats obtenus pour les protéines F-*ORFs*, M-*ORFs* et H-*ORFs* sont frappantes et suggèrent que ces protéines ont des fonctions similaires chez les espèces de moules d'eau douce. Chez les espèces à sexes séparés, il semble que ces gènes aient des fonctions similaires dans les mêmes parties de la cellule, et donc, ils pourraient potentiellement être en conflit. Par exemple, des molécules antagonistes devraient évoluer plus rapidement pour gagner un avantage, ou simplement survivre (tout comme les idées de la course aux armements évolutionnaires et l'hypothèse de la reine rouge, e.g., [104]). Le besoin

d'évoluer rapidement dans un cas de conflit pourrait également expliquer le taux de mutations non-synonymes plus élevé – pour survivre dans une telle situation, il faut subir des changements qui dépassent le niveau de la séquence nucléotidique.

Section 3.5 : Unionoida

Quant au Unionoida, comment et pourquoi les hermaphrodites évoluent restent à être élucidé. L'étude d'une population en transition vers l'hermaphrodisme pourrait éclarcir la situation en identifiant des états intermédiaires de plusieurs caractéristiques importantes, incluant la transition du gène F-*orf* vers H-*orf* et l'expression de la protéine H-*ORF*. L'obtention des génomes mitochondriaux d'hermaphrodites accidentels serait aussi un atout pour une meilleure compréhension de la fonction des nouveaux gènes. Une plus grande banque des séquences (incluant des gènes nucléaires) sera importante pour mieux comprendre le lien entre le système DUI et la détermination du sexe chez les moules d'eau douce. Finalement, le développement de techniques pour croiser des unionidés en laboratoire permettrait des tests de compatibilité entre espèces proche-parentes : par exemple, on pourrait féconder l'œuf d'une femelle avec le sperme d'un hermaphrodite, et l'œuf d'un hermaphrodite avec le sperme d'un mâle pour voir s'ils sont compatibles et, le cas échéant si la DUI et les sexes séparés persistent chez les descendants.

Nos résultats amènent également beaucoup de nouvelles questions: d'abord, quelle est la véritable origine des ORFans chez les espèces à DUI? Est-ce que le gène H-*orf* s'exprime? Des résultats préliminaires d'une étude en cours dans notre laboratoire ont montré la présence de la séquence H-*orf* dans le transcriptome de *U. imbecillis*, suggérant que oui. Nos résultats suggèrent également que cette protéine serait une glycoprotéine (probablement structurale), et donc la purification et caractérisation de celle-ci pour vérifier ceci, ainsi que l'étude de sa localisation subcellulaire pourrait aider à déterminer si la glycoprotéine identifiée par Henley et al. [99] est belle et bien la protéine H-*ORF*. En fait, une étude plus approfondie de la localisation subcellulaire des H-*ORF*s, M-*ORF*s et F-*ORFs* est nécessaire chez les unionidés.

Les différences parfois mineures entre les F-ORFs et H-ORFs mènent à quelques questions aussi. Tout d'abord, qu'est-ce qui cause la transition vers l'hermaphrodisme? Des facteurs environnementaux ont déjà été proposés, mais généralement peu étudiés en profondeur [38, 105–110]. Le cas des espèces du genre *Margaritifera* est particulièrement intéressant, parce que la protéine H-*ORF* de *M. falcata* diffère de la protéine F-*ORF* de *M. margaritifera* par une seule répétition, ce qui met en question à quel point les séquences doivent changer pour produire un hermaphrodite. Vu qu'une seule répétition semble suffisante, il serait intéressant d'investiguer si cette répétition seule peut déclencher des changements, ou si elle est, en fait, une conséquence de l'hermaphrodisme, ou bien si des facteurs nucléaires sont également nécessaires. Le séquençage de génomes nucléaires complets et l'étude des différences entre les transcriptomes des hermaphrodites et des espèces à sexes séparés qui sont présentement en cours dans notre laboratoire nous permettront de mieux caractériser le système de la DUI et son lien potentiel avec la détermination du sexe.

Finalement, avec trois génomes, et deux gènes mitochondriaux spécifiques au sexe ayant des fonctions similaires, la DUI pourrait représenter le premier cas de détermination du sexe impliquant directement les mitochondries chez les animaux. Ce système de transmission mitochondriale unique s'avèrera certainement être un cas riche en découvertes sur les conflits intergénomiques, d'un point de vue mitonucléaire, et également entre les sexes.

Bibliographie

1. McBride HM, Neuspiel M, Wasiak S: Mitochondria: more than just a powerhouse. *Curr Biol* 2006, 16:R551–60.

2. Boore JL: Animal mitochondrial genomes. *Nucleic Acids Res* 1999, 27:1767–1780.

3. Gissi C, Iannelli F, Pesole G: Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. *Heredity (Edinb)* 2008, **101**:301–320.

4. Breton S, Milani L, Ghiselli F, Guerra D, Stewart DT, Passamonti M: A resourceful genome: updating the functional repertoire and evolutionary role of animal mitochondrial DNAs. *Trends Genet* 2014, **30**:555–564.

5. Kayal E, Bentlage B, Collins AG, Kayal M, Pirro S, Lavrov D V.: Evolution of linear mitochondrial genomes in medusozoan cnidarians. *Genome Biol Evol* 2012, **4**:1–12.

6. Doublet V, Souty-Grosset C, Bouchon D, Cordaux R, Marcadé I: A thirty million year-old inherited heteroplasmy. *PLoS One* 2008, **3**:e2938.

7. Passamonti M, Ricci A, Milani L, Ghiselli F: Mitochondrial genomes and Doubly Uniparental Inheritance: new insights from Musculista senhousia sex-linked mitochondrial DNAs (Bivalvia Mytilidae). *BMC Genomics* 2011, **12**:442.

8. Wu X, Li X, Li L, Xu X, Xia J, Yu Z: New features of Asian Crassostrea oyster mitochondrial genomes: a novel alloacceptor tRNA gene recruitment and two novel ORFs. *Gene* 2012, 507:112–8.

9. Milbury CA, Gaffney PM: Complete mitochondrial DNA sequence of the eastern oyster Crassostrea virginica. *Mar Biotechnol* 2005, **7**:697–712.

10. Shao Z, Graf S, Chaga OY, Lavrov D V.: Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): A linear DNA molecule encoding a putative DNA-dependent DNA polymerase. *Gene* 2006, **381**:92–101.

11. Fukami H, Knowlton N: Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia). *Coral Reefs* 2005, **24**:410–417.

12. Flot JF, Tillier S: The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: The putative D-loop and a novel ORF of unknown function. *Gene* 2007, **401**:80–87.

13. Haen KM, Lang BF, Pomponi SA, Lavrov D V.: Glass Sponges and Bilaterian Animals Share Derived Mitochondrial Genomic Features: A Common Ancestry or Parallel Evolution? *Mol Biol Evol* 2007, 24:1518–1527.

14. Birky CW: The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. *Annu Rev Genet* 2001, **35**:125–148.

15. Hoeh WR, Blakley KH, Brown WM: Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA. *Science (80-)* 1991, **251**:1488–90.

16. Zouros E, Oberhauser Ball a, Saavedra C, Freeman KR: An unusual type of mitochondrial DNA inheritance in the blue mussel Mytilus. *Proc Natl Acad Sci U S A* 1994, **91**:7463–7467.

17. Zouros E, Freeman KR, Ball AO, Pogson GH: Direct evidence for extensive paternal mitochondrial DNA inheritance in the marine mussel _Mytilus_ . *Nat* 1992, **359** :412–414.

18. Skibinski DO, Gallagher C, Beynon CM: Sex-limited mitochondrial DNA transmission in the marine mussel Mytilus edulis. *Genetics* 1994, **138**:801–809.

19. Obata M, Sano N, Kawamura K, Komaru A: Inheritance of two M type mitochondrial DNA from sperm and unfertilized eggs to offspring in Mytilus galloprovincialis. *Dev Growth Differ* 2007, **49**:335–344.

20. Chakrabarti R, Walker JM, Chapman EG, Shepardson SP, Trdan RJ, Curole JP, Watters GT, Stewart DT, Vijayaraghavan S, Hoeh WR: **Reproductive function for a C-terminus extended, male-transmitted cytochrome c oxidase subunit II protein expressed in both spermatozoa and eggs.** *FEBS Lett* 2007, **581**:5213–9.

21. Zouros E: Biparental Inheritance Through Uniparental Transmission: The Doubly Uniparental Inheritance (DUI) of Mitochondrial DNA. Evol Biol 2013, 40:1–31.

22. Dalziel AC, Stewart D.T.: Tissue-specific expression of male-transmitted mitochondrial DNA and its implications for rates of molecular evolution in \emph{Mytilus} mussels (Bivalvia: Mytilidae). Genome 2002, 45:348–355.

23. GarridoRamos MA, Stewart DT, Sutherland BW, Zouros E: The distribution of maletransmitted and female-transmitted mitochondrial DNA types in somatic tissues of blue mussels: Implications for the operation of doubly uniparental inheritance of mitochondrial DNA. *Genome* 1998, 41:818–824.

24. Cao L, Kenchington E, Zouros E: Differential Segregation Patterns of Sperm Mitochondria in Embryos of the Blue Mussel (Mytilus edulis). Genet Soc Am 2004, 894:883–894.

25. Milani L, Ghiselli F, Passamonti M: Sex-linked mitochondrial behavior during early embryo development in Ruditapes philippinarum (Bivalvia Veneridae) a species with the Doubly Uniparental Inheritance (DUI) of mitochondria. *J Exp Zool B Mol Dev Evol* 2012, 318:182–189.

26. Breton S, Beaupré HD, Stewart DT, Hoeh WR, Blier PU: The unusual system of doubly uniparental inheritance of mtDNA: isn't one enough? *Trends Genet* 2007, **23**:465–474.

27. Passamonti M, Ghiselli F: **Doubly uniparental inheritance: two mitochondrial genomes, one precious model for organelle DNA inheritance and evolution.** *DNA Cell Biol* 2009, **28**:79–89.

28. Hurst LD, Hoekstra RR: Shellfish genes kept in line. Nature 1994, 368:811-812.

29. Zeh J a., Zeh DW: Maternal inheritance, sexual conflict and the maladapted male. *Trends Genet* 2005, **21**:281–286.

30. Zouros E: The exceptional mitochondrial DNA system of the mussel family Mytilidae. *Genes Genet Syst* 2000, **75**:313–318.

31. Kenchington E, Macdonald B, Cao L, Tsagkarakis D, Zouros E: Genetics of Mother-Dependent Sex Ratio in Blue Mussels (Mytilus spp.) and Implications for Doubly Uniparental Inheritance of Mitochondrial DNA. *Genetics* 2002, 1588:1579–1588.

32. Hoeh WR, Frazer KS, Naranjo-Garcia E, Trdan RJ: A phylogenetic perspective on the evolution of simultaneous hermaphroditism in a freshwater mussel Clade (Bivalvia: Unionidae: Utterbackia). *Malacol Rev* 1995, **28**:25–42.

33. Doucet-Beaupré H, Breton S, Chapman EG, Blier PU, Bogan AE, Stewart DT, Hoeh WR: Mitochondrial phylogenomics of the Bivalvia (Mollusca): searching for the origin and mitogenomic correlates of doubly uniparental inheritance of mtDNA. *BMC Evol Biol* 2010, 10.

34. Bauer G, Wächtler K (Eds): *Ecology and Evolution of the Freshwater Mussels Unionoida*. 1st edition. New York: Springer-Verlag Berlin Heidelberg; 2001.

35. Kat PW: Sexual selection and simultaneous hermaphroditism among the Unionidae (Bivalvia: Mollusca). *J Zool* 1983, **201**:395–416.

36. Walker JM, Curole JP, Wade DE, Chapman EG, Bogan AE, Watters GT, Hoeh WR, Al WET: Taxonomic Distribution and Phylogenetic Utility of Gender- Associated Mitochondrial Genomes in the Unionoida (Bivalvia). *Malacologia* 2006, **48**:265–282.

37. Van der Schalie H: Hermaphroditism Among North American Freshwater Mussels. *Malacologia* 1970, **10**:93–112.

38. Bauer G: Reproductive Strategy of the Freshwater Pearl Mussel Margaritifera margaritifera. *J Anim Ecol* 1987, **56**:691–704.

39. Heller J: Hermaphroditism in molluscs. *Biol J Linn Soc* 1993, 48:19–42.

40. Breton S, Stewart DT, Shepardson S, Trdan RJ, Bogan AE, Chapman EG, Ruminas AJ, Piontkivska H, Hoeh WR: Novel protein genes in animal mtDNA: A new sex determination system in freshwater mussels (Bivalvia: Unionoida)? *Mol Biol Evol* 2011, 28:1645–1659.

41. Stewart DT, Hoeh WR, Bauer G, Breton S: Mitochondrial Genes, Sex Determination and Hermaphroditism in Freshwater Mussels (Bivalvia: Unionoida). In Evolutionary Biology: Exobiology and Evolutionary Mechanisms. Edited by Pontarotti P. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg; 2013:245–255.

42. Breton S, Beaupre HD, Stewart DT, Piontkivska H, Karmakar M, Bogan AE, Blier PU, Hoeh WR: Comparative Mitochondrial Genomics of Freshwater Mussels (Bivalvia: Unionoida) With Doubly Uniparental Inheritance of mtDNA: Gender-Specific Open Reading Frames and Putative Origins of Replication. *Genetics* 2009, 183:1575–1589.

43. Breton S, Ghiselli F, Passamonti M, Milani L, Stewart DT, Hoeh WR: Evidence for a fourteenth mtDNA-encoded protein in the female-transmitted mtDNA of marine Mussels (Bivalvia: Mytilidae). *PLoS One* 2011, 6:e19365.

44. Milani L, Ghiselli F, Guerra D, Breton S, Passamonti M: A comparative analysis of mitochondrial ORFans: New clues on their origin and role in species with Doubly Uniparental Inheritance of mitochondria. *Genome Biol Evol* 2013, **5**:1408–1434.

45. Milani L, Ghiselli F: Mitochondrial activity in gametes and transmission of viable mtDNA. *Biol Direct* 2015, 10:22.

46. Milani L, Ghiselli F, Maurizii MG, Nuzhdin S V., Passamonti M: **Paternally transmitted mitochondria express a new gene of potential viral origin**. *Genome Biol Evol* 2014, **6**:391–405.

47. Boyle EE, Etter RJ: Heteroplasmy in a deep-sea protobranch bivalve suggests an ancient origin of doubly uniparental inheritance of mitochondria in Bivalvia. *Mar Biol* 2013, **160**:413–422.

48. Xue T, Chen M, Wang G, Han Z, Li J: The complete F-type mitochondrial genome of Chinese freshwater mussel Anodonta euscaphys. *Mitochondrial DNA* 2015, **26**:263–264.

49. Rombel IT, Sykes KF, Rayner S, Johnston SA: **ORF-FINDER:** A vector for high-throughput gene identification. *Gene* 2002, **282**:33–41.

50. Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang J-M, Taly J-F, Notredame C: **T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension**. *Nucleic Acids Res* 2011, **39**:W13–W17.

51. Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. *Mol Biol Evol* 1986, **3**:418–26.

52. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. *Mol Biol Evol* 2013, 30:2725–2729.

53. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I: **VISTA: computational tools** for comparative genomics. *Nucleic Acids Res* 2004, **32**(Web Server):W273–W279.

54. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A: **Protein identification and analysis tools on the ExPASy server**. In *The proteomics protocols handbook*. Edited by Walker JM. Humana Press; 2005:571–607.

55. Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. *J Mol Biol* 1982, **157**:105–132.

56. Käll L, Krogh A, Sonnhammer EL.: A Combined Transmembrane Topology and Signal Peptide Prediction Method. *J Mol Biol* 2004, **338**:1027–1036.

57. Zdobnov EM, Apweiler R: InterProScan--an integration platform for the signature-recognition methods in InterPro. *Bioinformatics* 2001, 17:847–848.

58. Hofmann K, Stoffel W: **TMbase-A database of membrane spanning proteins segments**. *Biol Chem Hoppe-Seyler* 1993, **374**:166.

59. Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A: Prediction of membrane-protein topology from first principles. *Proc Natl Acad Sci* 2008, 105:7177–

7181.

60. Rost B, Yachdav G, Liu J: **The PredictProtein server.** *Nucleic Acids Res* 2004, **32**(Web Server issue):W321–6.

61. Nielsen H, Engelbrecht J, Brunak S, Heijne G: A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites Cited by me. *Protein Eng* 1997, **10**:1–6.

62. Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. *Nature Methods* 2011:785–786.

63. Sigrist CJA, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N: **PROSITE**, a protein domain database for functional characterization and annotation. *Nucleic Acids Res* 2010, **38**(Database):D161–D166.

64. Soding J, Biegert A, Lupas AN: **The HHpred interactive server for protein homology detection and structure prediction**. *Nucleic Acids Res* 2005, **33**(Web Server):W244–W248.

65. Karpenahalli MR, Lupas AN, Söding J: **TPRpred: a tool for prediction of TPR-, PPR**and **SEL1-like repeats from protein sequences.** *BMC Bioinformatics* 2007, **8**.

66. Altschul S: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* 1997, **25**:3389–3402.

67. Finn RD, Clements J, Eddy SR: **HMMER web server: interactive sequence similarity** searching. *Nucleic Acids Res* 2011, **39**(Web Server issue):W29–37.

68. Pons J-L, Labesse G: **@TOME-2: a new pipeline for comparative modeling of protein**ligand complexes. *Nucleic Acids Res* 2009, **37**:W485–91.

69. Zhang Y: I-TASSER server for protein 3D structure prediction. *BMC Bioinformatics* 2008, 9:40.

70. Pesole G, Gissi C, De Chirico A, Saccone C: Nucleotide substitution rate of mammalian mitochondrial genomes. *J Mol Evol* 1999, **48**:427–434.

71. Djian P: Evolution of simple repeats in DNA and their relation to human disease. *Cell* 1998, **94**:155–60.

72. Björklund ÅK, Ekman D, Elofsson A: **Expansion of Protein Domain Repeats**. *PLoS Comput Biol* 2006, **2**:e114.

73. Manna S: An overview of pentatricopeptide repeat proteins and their applications. *Biochimie* 2015, **113**:93–99.

74. Sheprdson SP, Heard WH, Breton S, Hoeh WR: Light and Transmission Electron Microscopy of Two Spermatogenic Pathways and Unimorphic Spermatozoa in Venustaconcha ellipsiformis (Conrad, 1836) (Bivalvia: Unionoida). *Malacologia* 2012, 55:263–284.

75. Terry LJ, Wente SR: Flexible Gates: Dynamic Topologies and Functions for FG Nucleoporins in Nucleocytoplasmic Transport. *Eukaryot Cell* 2009, **8**:1814–1827.

76. Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A: A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. *Plant Cell* 2006, **18**:2650–2663.

77. Ng F, Tang BL: **Pyruvate dehydrogenase complex (PDC) export from the mitochondrial matrix**. *Mol Membr Biol* 2014, **31**:207–210.

78. Bernardi P: The mitochondrial permeability transition pore: a mystery solved? *Front Physiol* 2013, **4**:1–12.

79. Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, Kim S-J, Mehta H, Hevener AL, de Cabo R, Cohen P: The Mitochondrial-Derived Peptide MOTS-c Promotes Metabolic Homeostasis and Reduces Obesity and Insulin Resistance. *Cell Metab* 2015, 21:443–454.

80. Tang BL: Mitochondrial Protein in the Nucleus. CellBio 2015, 4:23–29.

81. Henderson IR, Navarro-Garcia F, Nataro JP: **The great escape: Structure and function** of the autotransporter proteins. *Trends in Microbiology* 1998:370–378.

82. Ulrich T, Oberhettinger P, Schütz M, Holzer K, Ramms AS, Linke D, Autenrieth IB, Rapaport D: Evolutionary Conservation in Biogenesis of β-Barrel Proteins Allows Mitochondria to Assemble a Functional Bacterial Trimeric Autotransporter Protein. J Biol Chem 2014, 289:29457–29470.

83. Robert V, Volokhina EB, Senf F, Bos MP, Van Gelder P, Tommassen J: Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. *PLoS Biol* 2006, 4:1984–1995.

84. Gentle I: The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. *J Cell Biol* 2004, **164**:19–24.

85. Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TCG: More than just orphans: are taxonomically-restricted genes important in evolution? *Trends Genet* 2009, **25**:404–413.

86. Kaessmann H: Origins, evolution, and phenotypic impact of new genes. *Genome Res* 2010, **20**:1313–1326.

87. Tautz D, Domazet-Lošo T: The evolutionary origin of orphan genes. *Nat Rev Genet* 2011, **12**:692–702.

88. Breton S, Stewart DT, Hoeh WR: Characterization of a mitochondrial ORF from the gender-associated mtDNAs of Mytilus spp. (Bivalvia: Mytilidae): identification of the "missing" ATPase 8 gene. *Mar Genomics* 2010, **3**:11–8.

89. Burzyn A, Wenne R: Comparative Genomics of Marine Mussels (Mytilus spp.) Gender Associated mtDNA: Rapidly Evolving atp8. *J Mol Evol* 2010, 71:385–400.

90. Ghiselli F, Milani L, Guerra D, Chang PL, Breton S, Nuzhdin S V., Passamonti M: Structure, Transcription, and Variability of Metazoan Mitochondrial Genome: Perspectives from an Unusual Mitochondrial Inheritance System. *Genome Biol Evol* 2013,

5:1535–1554.

91. Boore JL, Brown WM: Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. *Mol Biol Evol* 2000, 17:87–106.

92. Burger G, Lang BF, Braun H, Marx S: The enigmatic mitochondrial ORF ymf39 codes for ATP synthase chain b. *Nucleic Acids Res* 2003, 31:2353–2360.

93. Milani L: Mitochondrial membrane potential: a trait involved in organelle inheritance? *Biol Lett* 2015, 11:20150732.

94. Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman T-L, Hahn MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC: Sex Determination: Why So Many Ways of Doing It? *PLoS Biol* 2014, **12**:e1001899.

95. Schwarzländer M, Finkemeier I: Mitochondrial Energy and Redox Signaling in Plants. *Antioxid Redox Signal* 2013, **18**:2122–2144.

96. Yu F, Shi J, Zhou J, Gu J, Chen Q, Li J, Cheng W, Mao D, Tian L: **ANK6**, a mitochondrial ankyrin repeat protein, is required for male-female gamete recognition in Arabidopsis thaliana. *PNAS* 2010, **107**:22332–22337.

97. Venetis C, Theologidis I, Zouros E, Rodakis GC: No evidence for presence of maternal mitochondrial DNA in the sperm of Mytilus galloprovincialis males. *Proc Biol Sci* 2006, **273**:2483–9.

98. Yusa Y, Breton S, Hoeh WR: Population genetics of sex determination in Mytilus mussels: Reanalyses and a model. *J Hered* 2013, **104**:380–385.

99. Henley WF, Neves RJ, Caceci T, Saacke RG: Anatomical descriptions and comparison of the reproductive tracts of Utterbackia imbecillis and Villosa iris (Bivalvia: Unionidae). *Invertebr Reprod Dev* 2007, **50**:1–12.

100. Perlman SJ, Hodson CN, Hamilton PT, Opit GP, Gowen BE: Maternal transmission, sex ratio distortion, and mitochondria. *Proc Natl Acad Sci U S A* 2015, **112**:1–7.

101. Stewart DT, Kenchington ER, Singh RK, Zonros E: **Degree of selective constraint as an explanation of the different rates of evolution of gender-specific mitochondrial DNA lineages in the mussel Mytilus**. *Genetics* 1996, **143**:1349–1357.

102. Everett EM, Williams PJ, Gibson G, Stewart DT: Mitochondrial DNA polymorphisms and sperm motility in Mytilus edulis (Bivalvia: Mytilidae). *J Exp Zool Part A Comp Exp Biol* 2004, **301A**:906–910.

103. Jha M, Côté J, Hoeh WR, Blier PU, Stewart DT: **Sperm motility in Mytilus edulis in** relation to mitochondrial **DNA** polymorphisms: implications for the evolution of doubly uniparental inheritance in bivalves. *Evolution (N Y)* 2008, **62**:99–106.

104. Chou JY, Leu JY: The Red Queen in mitochondria: Cyto-nuclear co-evolution, hybrid breakdown and human disease. *Front Genet* 2015, 6.

105. Heath DJ: Simultaneous hermaphroditism; cost and benefit. J Theor Biol 1977, 64:363–373.

106. Heath DJ: Brooding and the evolution of hermaphroditism. J Theor Biol 1979, 81:151–155.

107. Ghiselin MT: Sexual selection in hermaphrodites: Where did our ideas come from? *Integr Comp Biol* 2006, **46**:368–372.

108. Ghiselin MT: The evolution of hermphroditism among animals. *Q Rev Biol* 1969, 44:189–208.

109. Galbraith HS, Vaughn CC: Effects of Reservoir Management on Abundance, Condition, Parasitism and Reproductive Traits of Downstream Mussels. *River Res Appl* 2011, 27:193–201.

110. Aldridge DC: The morphology, growth and reproduction of unionidae (bivalvia) in a fenland waterwa y. *J Molluscan Stud* 1999, **65**:47–60.

111. Viklund H, Elofsson A: Best alpha-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. *Protein Sci* 2004, **13**:1908–1917.

112. Viklund H, Elofsson A: OCTOPUS: Improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. *Bioinformatics* 2008, 24:1662–1668.

113. Granseth E, Viklund H, Elofsson A: **ZPRED: Predicting the distance to the membrane center for residues in** α -helical membrane proteins. In *Bioinformatics. Volume 22*; 2006:191–196.

114. Sigrist CJ a, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, Bairoch A, Bucher P: **PROSITE: a documented database using patterns and profiles as motif descriptors.** *Brief Bioinform* 2002, **3**:265–274.

Appendice 1 : L'approche bioinformatique

Il peut être laborieux de déterminer la fonction d'une nouvelle protéine en laboratoire à l'aide de techniques biochimiques. Cependant, on peut prédire des caractéristiques structurales et fonctionnelles à partir de séquences protéiques en employant des méthodes de prédiction automatisées [111]. Une suite de programmes bioinformatiques peut être employée pour prédire des peptides signaux, des hélices transmembranaires, des domaines fonctionnels, et pour trouver des protéines connues avec des séquences ou des structures similaires pour nous informer sur la fonction potentielle de gènes nouvellement découverts comme ceux retrouvés dans les génomes mitochondriaux chez les moules d'eau douce.

Prédiction des hélices transmembranaires : Phobius est un programme qui prédit les peptides signaux et les hélices transmembranaires. Les programmes qui prédisent les hélices transmembranaires seulement peuvent parfois être induits en erreur par la présence de peptides signaux contenant des hélices alpha dans les séquences protéiques [56]. Pour résoudre ce problème, Phobius emploie un modèle de Markov caché (HMM, *Hidden Markov Model*) pour prédire ces deux structures en même temps, ce qui sépare les hélices alpha des peptides signaux des hélices transmembranaires, et facilite l'identification de l'orientation des hélices transmembranaires dans la membrane. Il est fiable pour des protéines qui contiennent les deux structures, mais conservateur si la protéine contient un peptide signal seulement. Phobius est parmi les meilleurs programmes permettant la détection des hélices transmembranaires, et, en combinaison avec le programme TMHMM (*« Transmembrane Hidden Markov Model »*), un outil intégré à InterProScan, on peut s'attendre à un taux d'erreur très faible [56].

Les hélices transmembranaires présentent une grande diversité structurale, et donc les méthodes de prédiction sont nombreuses et diverses. InterProScan compare la séquence protéique à l'étude à toutes les protéines connues et annotées dans toutes les bases de données qui sont membres de InterPro. Il intègre quatorze outils différents pour reconnaitre des signatures protéiques telles que les peptides signaux et hélices transmembranaires et donne un résultat visuel illustrant les prédictions de chaque outil (les 14 outils sont BlastProDom, HMMTigr, SignalPHMM, FPrintScan, ProfileScan, TMHMM, HMMPIR, HAMAP, HMMPanther, HMMPfam, PatternScan, Gene3D, HMMSmart et SuperFamily) [57]. TMPred

utilise une matrice de poids optimale pour comparer la séquence aux protéines dans la base de données TMbase. Il émet un score pour chaque résidu – un score de 500 ou plus est considéré significatif, et sera utilisé pour identifier une hélice transmembranaire et prédire son orientation dans la membrane [58]. Finalement, TOPCONS intègre cinq outils pour prédire des hélices transmembranaires : par exemple un qui aligne les séquences avec des modèles de protéines membranaires et un qui distingue les régions qui entrent dans, mais ne traversent pas la membrane. Puisque ces régions peuvent être mal identifiées comme transmembranaires, cette distinction est essentielle pour bien identifier l'orientation de la protéine dans la membrane. Les autres composants de TOPCONS [59, 112, 113] sont conçus pour imiter un translocon – c'est-à-dire qu'ils considèrent les caractéristiques physiques des résidus pour prédire comment ils interagissent avec la membrane, le milieu cellulaire, et d'autres résidus.

Prédiction de peptides signaux : PrediSi est parmi les programmes les plus avancés pour prédire des peptides signaux. Il emploie un réseau de neurones pour calculer trois scores : le *S-score*, qui indique la probabilité qu'un résidu fasse partie d'un peptide signal, le *C-score*, qui indique la probabilité qu'un résidu soit le premier acide aminé de la protéine mature, et le *Y-score*, qui combine les deux. Un *Y-score* élevé indique la présence d'un peptide signal. Si le *S-score* moyen de tous les résidus avant la position du *Y-score* maximal est >0.5, il prédit un peptide signal. Si les trois scores sont faibles, il est probable que la protéine n'est pas sécrétée [61]. Cette méthode est rapide et optimale pour des séquences de 60-100 acides aminés. Le programme SignalP emploie un autre réseau de neurones pour prédire des peptides signaux. Il est sensible et très précis, mais donne beaucoup de résultats faussement positifs. Il est généralement utilisé pour confirmer les résultats d'autres programmes [57]. Phobius et InterProScan (décrits ci-dessus) identifient également des peptides signaux putatifs.

Prédiction des domaines fonctionnels et de la fonction : Il existe différents programmes bioinformatiques pour prédire la fonction d'une protéine à partir de sa séquence en acides aminés. Par exemple, BLAST compare les séquences protéiques aux séquences de protéines connues dans les bases de données GenBank. La séquence en acides aminés est comparée, position par position, aux protéines connues pour trouver des homologues. La structure et la fonction de ces homologues peuvent nous informer sur la structure et la fonction de ces homologues peuvent nous informer sur la structure et la fonction de la protéine nouvellement découverte [66].

Le programme @tome-2 intègre 23 différents outils pour chercher des séquences homologues, prédire la structure de la protéine, et reconnaitre des repliements putatifs [68]. Le programme I-TASSER prédit des modèles tridimensionnels pour la séquence d'intérêt et les compare aux protéines dont la structure et la fonction sont connues [69]. Le programme HHpred analyse la séquence et l'aligne avec des protéines connues, et prédit les structures secondaires et tertiaires [64]. TPRpred est un programme similaire qui cherche exclusivement des répétitions de type tetratricopeptide, pentatricopeptide et SEL 1-like [65]. Motif Scan cherche des motifs (comme β - α - β) dans la base de données PROSITE et retourne plusieurs catégories de signifiance [114]. Finalement, le programme PredictProtein est un outil à usages multiples qui donne des résultats BLAST (alignements), cherche des motifs dans la base de données PROSITE, identifie des signaux de localisation nucléaire, des régions de faible complexité ou sans structure régulière, et prédit la structure secondaire, l'accessibilité aux solvants, les régions globulaires, les hélices transmembranaires, les domaines superhélices, les ponts disulfures, la localisation subcellulaire et les annotations/domaines fonctionnels [60]

Appendice 2 : Figures supplémentaires

UimHORF1 _R_ UimHORF UimHORF2 _R_ UimHORF UimHORF3 _R_ UimHORF UimHORF4 _R_ UimHORF UimHORF5 _R_ UimHORF UimHORF6 _R_ UimHORF UimHORF7 _R_ UimHORF UpeFORF _R_ UpeFORF.	MTHN SNNSNN TIMIFLC LYCLISFTSIISINLIVACELPSLFIYSLYFWLLL MELI CYSTETFIV SALL LYMTHN SSNSN TIMIFLC LYCLISFTSIISINLIVACELPSLFIYSLYFWLLL MELI CYSTETFIV SALL LYMTHN SNSNSTTMIFLC LYCLISFTSIISINLIVACELPSLFIYSLYFWLLL MELI CYSTEFFIV SALL LYMTNN SSNSNN TIMIFLY LYCLISFTSIISINLIVACELPSLFIYSLYFWLLL MELI CYSTEFFIV SALL LYMTNN SSNSNN TIMIFLY LYCLISFTSIISINLIVACELPSLFIYSLYFWLLL MELI CYSTEFFI SALL LYMTNN SSNSNM TIMIFLY LYCLISFTSIISINLIVACELPSLFIYSLFYFU SLATFN SSNSNM TIMIFLY LYCLISFTSIISINLIVACELPSLFIYSLFYFU SLATFN SSNSNM TIMIFLY LYCLISFTSIISINLIVACELPSLFYFU SLATFN SSNSNM TIMIFLY LYCLISFTSIISNLIVACELPSLFYFU SLATFN SSNSNM TIMIFLY LYCLISFTSIISNLIVACELPSLFYFU SLATFN SSNSNM TIMIFLY LYCLISFTSIISNLIVACELPSLFYFU SLATFN SSNSNM TIMIFLY LYCLISFTSIISNLIVACELPSLFYFU SALL LYMTNN SSNSNM TIMIFLY LYCLISFTSIISNLIVACELPSLFYFU SALL LYMTNN SSNSNM TIMIFLY LYCLISFTSIISNLIVACELPSLFYFU SLATFN SSNSNM TIMIFLY LYCLISFTSIISNLIVACELPSLFYFU SALL YN SSNSNM TIMIFLY SNSNSNM TIMIFLY LYCLISFTSIISNLIVACELPSLFYFU SALL YN SLATFN SSNSNM TIMIFLY SNSNN TIMIFLY SNSNN TIMIFLY SNSNN TIMIFLY SNSN TIMIFLY SNSNN TIMIFLY SNSNN TIMIFLY SNNN TIMIFLY SNSNN TIMIFLY SNSNN TIMIFLY SNSNN TIMIFLY SNSNN TIMIF	58 80 80 80 80 80 80 32
UimHORF1 _R_ UimHORF UimHORF2 _R_ UimHORF UimHORF3 _R_ UimHORF UimHORF4 _R_ UimHORF UimHORF5 _R_ UimHORF UimHORF6 _R_ UimHORF UimHORF7 _R_ UimHORF UpeFORF _R_ UpeFORF.	UWIQALIINIVYAISPOT SLEINAETMÄETMÄETMÄETÄÄDISPETVAETVÄETSAOTSÄOTSÄOTSÄOTSÄOTKLELKLE CILIQALEMEVVAISPOT SLEIVAETSÄETSÄOTSAOTSPEAVÄETSAOTSPOAVAETSÄOTSÄOTSÄOTKLELKLE CILIQALEMEVVAISPOT SLEIVAETSÄETSÄOTSAOTSPEAVÄETSAOTSPOAVAETSÄETSÄETSÄETSÄOTSPO UWIQALIIMEVVAISPOT SLEIVAETSÄOTSPOAVAETSAOTSPOAVAETSAOTSPOAVAETSÄETSÄETSÄETSÄETSÄETSÄETSÄETSÄETSÄETSÄ	136 158 158 149 149 158 70
UimHORF1 _R_ UimHORF UimHORF2 _R_ UimHORF UimHORF3 _R_ UimHORF UimHORF4 _R_ UimHORF UimHORF5 _R_ UimHORF UimHORF6 _R_ UimHORF UimHORF7 _R_ UimHORF UpeFORF _R_ UpeFORF.	LKLELKLEIKIELSLELSTILLLIPMLELVMLLLFPPTLELWITNLPMLESEMVILITHSLELKNFLLPILILKIVR AVAETSA TSA TSA TSA TSA TSA TAATSA ETNA QTMPEAVAETSA ETSAQTSPEAVAETSA ETS AVAETSA TSA TSAQTSPEAVAETSA ETS LELKLELKLE LKLELSPILLLSPPY	213 220 188 183 159 159 220 70
UimHORF1 _R_ UimHORF UimHORF2 _R_ UimHORF UimHORF3 _R_ UimHORF UimHORF4 _R_ UimHORF UimHORF5 _R_ UimHORF UimHORF6 _R_ UimHORF UimHORF7 _R_ UimHORF UpeFORF _R_ UpeFORF.	PELEINTLEYTLFVGDEP 231 AQLYLSL 227 AQLDLSL 195 	

	S	
LCOHORF1 _R_ LCOHORF LCOHORF2 _R_ LCOHORF LCOFORF _R_ LCOFORF.	MLSIFAIAFFLIEIIEVLEVSN FYMINQILYSV LLWVSSOPMIGHSDHPVISSPASTDVSSOPMNG M-KPALKLLLSVLSIFAIAFFLIKIIEVLFVNN FYMINQILYSV LLWVSSOPMIGHSDHPVISSPASTDVSTOPMNG MSKHLLKLILLLSVFAIAFLLIOTFOMLFMLDSSAVNOVLCSM LLWISTOPMIS	69 79 57
LCOHORF1 _R_ LCOHORF LCOHORF2 _R_ LCOHORF LCOFORF _R_ LCOFORF.	DHSDNPVISSPASTDVSSQPMNGDHNDHPVISSPASTDVSSQPMNGDHSDHPVISSPASTDVSSQPMNGDHNDHPVISSP DHSDNPVISSPAGTDVSSQPMNGDHSDHPVISRPAGTDVSSQPMNGDNINHPVISSP	149 136 57
LCOHORF1 _R_ LCOHORF LCOHORF2 _R_ LCOHORF LCOFORF _R_ LCOFORF.	ASTDVSSQPMNGDHNDHPVISSPASTDVSSQPMNGDHS <mark>HPVISSPASTDVCPSCP</mark> 207 ASTVVSSQPMNGDHNDHPVISSPASTDVSSQPMNGDHSHPVISSPASTTVCPSCP HPVISSPASTDLIPPTP77 77	
		•
LSUHORF1 _R_ LSUHORF LSUHORF2 _R_ LSUHORF LCOFORF _R_ LCOFORF.	MLSIKVMM SAL LLIFILFNEAIAFILIEIIQVLEESE FMWNQVVYSME FDNAFSOPKNGD PVIASPAST VTOPS MMISAL LLIFILFNEAIAFILIEIIQVLEESE FMWNQVVYSME FDNAFSOPKNGD PVIASPAST VTOPS MSIHLLILILSVEAIAFLLIQTFOMLENLESMAVNOVLOSME LDNTSTOPMIS <mark>LE</mark> PVIPSPAETELIKFN	80 74 74
LsuHORF1 _R_ LSuHORF LsuHORF2 _R_ LSuHORF LCOFORF _R_ LCOFORF.	NGNYSVVASPAMTDLTQLGNGDHPVVASPASTDMTQLGSGDH NGNYSVVAWPAMTDFTQLGNGDHPVIASPASTDVTQPSNGNYSVVASPAMTDLTQLGNGDHPVVASPASTDMTQLGSGDH	122 154 74
LsuHORF1 _R_ LsuHORF1 LsuHORF2 _R_ LsuHORF LcoFORF _R_ LcoFORF.	PVIASPASTDVTQPSNGNYSVVASPASTDLTQPSNGNYSVVASPASTDLTQPSNGHPVIASPASTDVTQPATP - 197 PVIASPASTDVTQPSNGNYSVVASPASTDLTQPSNGNYSVVASPASTDLTQPSNGHPVIASPASTDVTQPATT 230 TP- 77	
MfaHORF1 R MfaHORF MfaHORF2 R MfaHORF MfaHORF3 R MfaHORF MfaHORF4 R MfaHORF MmaFORF R MmaFORF	MAAPANYLENERNWESLINPEFIWEEMNI-OPLENYPSAENPLEVLTAITILALLISMLLLASNINLLEPIEFTEPIIIN MAAPANYLENERNWESLINPEFIWEEMNI-OPLENYPSKENPLEVLTAITILALLISMLLEASNINLLEPIEPTEPIIIN MAAPANYLENERWESLINPEFIWEEMNI-OPLENYPSKENPLEVLTAITILALLISMLLEASNINLLEPIEPTEPIIIN MAAPANYLENERWESLINPEFIWEEMNI-OPLENYPSKENPLEVLTAITILALLISMLLEASNINLLEPIEPTEPIIIN AAPANYLENERWESLINPEFIWEEMNI-OPLENYPSKENPLEVLTAITILALLISMLLEASNINLLEPIEPTEPIITIN AAPANYLENERWESLINPEFIWEEMNI-OPLENYPSKENPLEVLTAITILALLISMLLEASNINLLEPIEPTEPIITIN	79 79 79 79

MmaFORF _R_ MmaFORF.	MARNETELIPIR TPSIFORIANYPI HKPINTLITUSTLAIMINALLISASVNOLTPANPI PLIMA	6
MfaHORF1 _R_ MfaHORF	TTNPOPNCTOTTT	
MfaHORF2 R MfaHORF	TTN FOFNCTOTTTNFOFNCTOTTO HEFT SAASTNLTTN APPA-T 126	
MfaHORF3 R MfaHORF	TTN FOFNCTOTTTN FOFNCTOTTTN FOFNCTOTTD FOFFF FOR ASTNITTN FOFM-TT 137	
MfaHORF4 R MfaHORF	TTN FOFNCTOTTTNFOFNCTOTTO HEFT SAASTNIITTN FFF -12 126	
MmaFORF R MmaFORF.	TTELESCUMTTSKQEFSKYFF S ASTDEVTDSEFSPQD 110	

Supplementary Figure 1. Alignments of F-ORFs and H-ORFs of closely related species. Colour coding is applied to amino acid groups conserved in \geq 70% of sequences. Grey, aliphatic amino acids; orange, aromatic amino acids; yellow, sulfur amino acids; green, amino acids bearing a hydroxyl group; red, basic amino acids; blue, acidic amino acids; brown, amino acids with an amide group; pink, cyclic amino acids. Green box: conserved C-terminal domain; blue underlining: repetitive sequences. UpeFORF, *U. peninsularis* F-ORF; UimHORF, *U. imbecillis* H-ORF; TliFORF, *T. lividus* F-ORF; TpaHORF, *T. parvum* H-ORF; MmaFORF, *M. margaritifera* F-ORF; MfaHORF, *M. falcata* H-ORF; LcoFORF, *L. compressa* H-ORF; LsuHORF, *L. subviridus* H-ORF.

A. M vs M complete mitochondrial genomes

B. F vs F complete mitochondrial genomes

C. F vs H complete mitochondrial genomes

Supplementary Figure 2. Alignments of complete mitochondrial genomes of freshwater mussels with DUI. (A) M vs. M genome comparison between two closely related species (*Utterbackia peninsularis* and *Pyganodon grandis*, GenBank accession numbers HM856635 and FJ809754, respectively) showing that the M-*ORF* gene shows low level of sequence conservation compare to other protein-coding genes. (B) F vs. F genome comparison between two closely related species (*U. peninsularis* and *P. grandis*, GenBank accession numbers HM856636 and FJ809755, respectively) showing that the F-*ORF* gene shows low level of sequence conservation compare to other protein-coding genes. (C) F vs. H genome comparison between two closely related species (*Utterbackia peninsularis* and *U. imbecillis*, GenBank accession numbers HM856636 and HM856636 and HM856637, respectively) showing that the F-*ORF* gene region shows low level of sequence conservation compare to other protein-coding genes. (C) F vs. H genome comparison between two closely related species (*Utterbackia peninsularis* and *U. imbecillis*, GenBank accession numbers HM856636 and HM856637, respectively) showing that the F-*ORF*/H-*ORF* gene region shows low level of sequence conservation compared to other protein-coding genes. Each graph shows the percent of conservation between genomes at any given coordinate. The top and bottom percentage bounds are shown to the right of every row. The pink regions are conserved non-protein-coding sequences, the dark blue regions are protein-coding genes.

 Transport
Transport
 Signalling
 Transferase
 Cell division
 Adhesion
 Electron transport/energy production
 Structural

Adhesion

Supplementary Figure 3. Position of frequently recurring functions in HHpred and BLAST hits for (a) M-ORFs, (b) F-ORFs, and (c) and (d) H-ORFs. Hits with positions were grouped into categories and traced together, showing hot spots of functionality. Protein length in amino acids is indicated in parentheses. Subfamilies are indicated.

Appendice 3 : Tableaux supplémentaires

	TM Helices														
M-ORF	Aan	Upe	Pgr	Lco	Ija	Sca	Tli	Vel	Qqu	Mma	Сто	Hme			
Phobius	<u>20-44</u>	<u>20-45</u>	<u>20-46</u>		21-42	<u>23-41</u>		<u>20-38</u>	<u>6-34</u>		<u>20-37</u>	20-42, <u>54-77,</u> 89-109			
InterProScan (TMHMM)	24-46	20-42	22-44		21-43	21-43		20-42	5-27		15-37	13-35, 55-77, 90-109			
TMPred	<u>23-41</u>	<u>21-38</u>	24-45		24-41	23-40		21-39	<u>7-27</u>		16-34	20-36 <u>54-73</u> 90-112			
TOPCONS	24-44	18-38	22-42		<u>25-45</u>	<u>24-44</u>		15-35	<u>17-37</u>		<u>17-37</u>	<u>2-22,</u> 69-89			
Predict Protein	26-43	22-39	24-44		19-42	22-39		21-38	17-32		17-33	21-38			
Consensus	~23-44	~20-38	~22-44		~24-42	~22-41		~20-38	<u>~10-30</u>		~17-35	~19-34, 54-72, 90-110			

Supplementary Table I. Predicted transmembrane (TM) helices in M-ORFs and F-ORFs.

F-ORF												
Phobius	-	-	-	-	-	-	45-65	21-42	12-30	<u>31-53</u>	-	-
InterProScan (TMHMM)	9-31	7-29	16-38	5-27	-	7-26	45-67	21-43	12-24	31-53	-	15-37
TMPred	9-27	6-25	16-40	8-26	1-18	7-23	<u>45-68</u>	21-42	<u>12-30</u>	32-49	2-18	18-37
TOPCONS	9-29	8-28	16-36	8-28	2-22	6-26	41-61	21-41	10-30	31-51	<u>2-22</u>	17-37
Predict Protein	9-26	8-25	14-31	8-25	1-18	8-25	44-66	20-42	16-33	32-49	1-18	17-31
Consensus	~9-28	~7-27	~16-35	~8-26	~1-19	~7-25	~45-66	~21-42	~12-29	~31-51	~2-19	~17-36

NOTE – All structures listed here were statistically supported by the programs used (Phobius posterior label probability>0.5; PrediSi score>0.5; SignalP score>D-cutoff 0.5; TMpred score>500; significance test not provided by the other programs). Numbers in italics represent TMHs predicted to be oriented from inside to outside, those underlined represent TMHs predicted to be oriented from outside.

					S	Signal Pep	tides					
M-ORF	Aan	Upe	Pgr	Lco	Ija	Sca	Tli	Vel	Qqu	Mma	Сто	Hme
Phobius	-	-	-		-	-		-	-		-	-
InterProScan		-	-		-	-		-	-		-	-
PrediSi	CP43	CP 42*	CP 44		CP 40*	CP 35		CP 40*	CP 29*		CP 34	CP38*
SignalP	1-20	1-10	1-10		1-40	1-16		1-40	1-10		1-10	1-37
Consensus	-	-	-		1-40	-		1-40	-	-	-	1-38
F-ORF		1	I	,		'	,		1			'
Phobius	1-26*	1-25*	1-33*	1-37*	1-26*	1-32*	-	-	-	-	1-20*	1-40*
InterProScan	-	-	-	-	-	-	-	-	-	-	-	-
PrediSi	CP26*	CP 25*	CP 33*	CP 25*	CP 17*	CP 32*	CP67	CP44	CP 32*	CP 51	CP 20*	CP 40*
SignalP	1-26*	1-19	1-36	1-37	1-20*	1-32*	1-18	1-44	1-32	1-51	1-20*	1-40
Consensus	1-26	~1-25	1-34	~1-33	~1-23	1-32	-	1-44	1-32	1-51	1-20	1-40

Supplementary Table II. Predicted signal peptides in M-ORFs and F-ORFs.

NOTE – All structures marked by an asterisk were statistically supported by the programs used. Those not marked with an asterisk were not statistically supported, but were predicted by multiple programs. (Phobius posterior label probability>0.5; PrediSi score>0.5; SignalP score>D-cutoff 0.5; TMpred score>500; significance test not provided by the other programs).

	TM Helix														
H-ORF	Uim l	Uim2	Uim3	Uim4	Uim5&6	Uim7	Lsul	Lsu2	Lcol	Lco2	Тра	Mfa l	Mfa2&4	Mfa3	
Phobius	21-46, <u>52-73,</u> 149-170, <u>190-209</u>	<i>37-61,</i> <u>67-84</u>	<i>37-61</i> , <u>67-84</u>	<i>44-68,</i> <u>74-95</u>	40-61, <u>67-84</u>	<i>44-68,</i> <u>74-94</u>	12-36	-	-	7-31	-	-	-	-	
InterProScan (TMHMM)	17-39	39-61	39-61	39-61	39-61	39-61	12-34	7-29	-	7-29	22-44	44-61	44-61	44-61	
TMPred	<u>23-50,</u> 153-171	<u>54-72</u>	<u>54-72</u>	45-72	44-72	45-72	14-32	8-26	2-20	7-31	22-42	44-62	44-62	44-62	
TOPCONS	<i>150-170</i> , <u>189-209</u>	29-49	-	<u>52-72</u>	59-79	20-40, <u>42-62</u>	-	-	-	-	22-42	44-64	44-64	44-64	
Predict Protein	22-41, 46-63, 195-212	41-65	43-67	46-64	51-65	42-66	16-33	11-29	1-18	10-28	26-44	43-61	43-61	43-60	
Consensus	~22-46	~40-62	~44-65	~45-68	~45-65	~42-64	~13-33	~9-28	-	~7-30	~22-43	~44-62	~44-62	~44-62	

Supplementary Table III. Predicted transmembrane (TM) helices in H-ORFs.

NOTE – All structures listed here were statistically supported by the programs used (Phobius posterior label probability>0.5; PrediSi score>0.5; SignalP score>D-cutoff 0.5; TMpred score>500; significance test not provided by the other programs). Numbers in italics represent TMHs predicted to be oriented from inside to outside, those underlined represent TMHs predicted to be oriented from outside to inside.

	Signal Peptides														
H-ORF	Uim1	Uim2	Uim3	Uim4	Uim5&6	Uim7	Lsul	Lsu2	Lcol	Lco2	Тра	Mfal	Mfa2&4	Mfa3	
Phobius	-	-	-	-	-	-	1-25*	1-19*	1-19*	-	1-47*	1-61*	1-61*	1-61*	
InterProScan	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PrediSi	CP 168*	CP 69	CP 69	CP 69	CP 69	CP 69	CP 25*	CP 19*	CP 17	CP 18	CP 49*	CP 64*	CP 64*	CP 64*	
SignalP	1-15	1-24	1-24	1-24	1-24	1-24	1-10	1-19	1-17	1-10	1-48	1-29	1-29	1-29	
Consensus	-	-	-	-	-	-	1-25	1-19	1-18	-	~1-49	1-62	1-62	1-62	

Supplementary Table IV. Predicted signal peptides in H-ORFs.

NOTE – All structures marked by an asterisk were statistically supported by the programs used. Those not marked with an asterisk were not statistically supported, but were predicted by multiple programs. (Phobius posterior label probability>0.5; PrediSi score>0.5; SignalP score>D-cutoff 0.5; TMpred score>500; significance test not provided by the other programs).

Supplementa	ry Table V	. Frequently	recurring HI	Hpred hits in	F-ORFs and M-ORFs
	•/		0		

F-ORF – probability (rank)	Aan	Upe	Pgr	Lco	Ija	Sca	Tli	Vel	Qqu	Mma	Сто	Hme
Prepilin-type processing-associated H-	99.31	99.34	99.27	99.32	99.23	99.37	99.23	99.30	99.37	99.11	99.04	99.25
X9-DG domain	(2)	(2)	(3)	(2)	(3)	(1)	(1)	(1)	(1)	(2)	(2)	(1)
Outer membrane insertion C-terminal signal	99.24	99.28	99.34	99.27	99.36	99.06	99.14	99.16	99.21	99.14	99.21	99.05
	(3)	(3)	(2)	(3)	(2)	(2)	(2)	(2)	(2)	(1)	(1)	(3)
LPXTG cell wall anchor domain	99.47	99.47	99.45	99.46	99.44	98.91	98.81	98.97	99.02	98.87	98.83	99.10
	(1)	(1)	(1)	(1)	(1)	(3)	(3)	(3)	(3)	(3)	(3)	(2)
X-X-X-Leu-X-X-Gly heptad repeats	98.03	98.08	97.97	98.05	97.91	97.69	97.99	97.97	97.98	97.75	97.70	97.66
	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)
GlyGly-CTERM domain	97.33 (5)	97.39 (5)	97.22(5)	97.32 (5)	97.58 (5)	96.90 (5)	97.08 (5)	97.29 (5)	97.38 (5)	97.15 (5)	96.86 (5)	96.93 (5)
Pentatricopeptide repeat domain	94.32	94.79	94.27	94.58	94.24	93.28	94.54	95.33	94.93	93.83	93.47	93.52
	(6)	(6)	(7)	(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)

M-ORF – probability (rank)	Aan	Upe	Pgr	Lco	Ija	Sca	Tli	Vel	Qqu	Mma	Cmo	Hme
Prepilin-type processing-associated H- X9-DG domain	99.04 (2)	99.06 (2)	99.10 (1)		99.21 (2)	99.15 (1)		99.01 (2)	99.14 (2)		99.52 (1)	99.58 (1)
Outer membrane insertion C-terminal signal	99.24 (1)	96.16 (1)	98.89 (3)		99.25 (1)	98.75 (3)		99.11 (1)	99.19 (1)		99.20 (2)	99.19 (2)
LPXTG cell wall anchor domain	98.89 (3)	98.89 (3)	99.05 (2)		98.80 (3)	98.88 (2)		98.99 (3)	99.12 (3)		98.77 (3)	98.67 (3)
X-X-X-Leu-X-X-Gly heptad repeats	97.70 (4)	97.32 (4)	97.48 (4)		97.73 (4)	97.95 (4)		97.60 (4)	97.91 (4)		97.81 (4)	97.91 (4)
GlyGly-CTERM domain	97.26 (5)	97.24 (5)	97.15 (5)		96.74 (5)	97.04 (5)		96.47 (14)	97.57 (5)		97.14 (5)	96.67 (8)
Pentatricopeptide repeat domain	92.98 (6)	92.61 (6)	92.96 (6)		94.79 (6)	94.60 (6)		92.71 (48)	93.60 (6)		94.35 (6)	93.94 (47)

	Aan	Upe	Pgr	Lco	Ija	Sca	Tli	Vel	Qqu	Mma	Сто	Hme
F-ORF – amino acid position			, ,									
Prepilin-type processing-associated H- X9-DG domain	19-22	18-21	26-29	18-29	13-15	2-9	34-36	11-13	1-4	44-49	48-50	80-85
Outer membrane insertion C-terminal signal	35-36	27-28	1-6	34-35	3-5	62-63	1-8	25-29	16-20	23-24	12-14	1-6
LPXTG cell wall anchor domain	55-60	47-52	62-67	54-59	1-15	4-22	95-96	19-34	10-25	32-48	72-76	8-35
X-X-X-Leu-X-X-Gly heptad repeats	47-54	39-46	54-61	46-53	57-65	4-7	18-22	71-78	62-69	49-56	18-27	8-12
GlyGly-CTERM domain	9-19	8-18	16-26	8-18	2-13	7-17	50-60	28-35	19-26	36-48	4-15	23-35
Pentatricopeptide repeat domain	26-46	31-38	46-53	38-45	14-18	16-23	30-49	7-25	63-66	16-23	59-68	60-69
	Aan	Upe	Pgr	Lco	Ija	Sca	Tli	Vel	Qqu	Mma	Сто	Hme
M-ORF – amino acid position												
Prepilin-type processing-associated H- X9-DG domain	29-32	41-44	40-46		28-31	27-30		26-29	70-71		30-34	107- 111
Outer membrane insertion C-terminal signal	57-64	53-60	55-59		40-44	6-7		158- 164	19-21		51-56	53-56
LPXTG cell wall anchor domain	22-42	18-38	20-40		103- 107	80-85		17-39	8-28		14-35	93-109
X-X-X-Leu-X-X-Gly heptad repeats	102- 108	107- 121	144-149		46-64	60-67		40-46	69-72		13-16	123- 137
GlyGly-CTERM domain	30-42	26-38	28-40		22-35	21-36		22-35	6-18		16-26	98-109
Pentatricopeptide repeat domain	102- 125	32-39	29-41		1-14	3-13		120- 136	48-60		39-51	71-90

	Uim1	Uim2	Uim3	Uim4	Uim5&6	Uim7	Lsu1	Lsu2	Lco1	Lco2	Tpa	Mfa1	Mf2&4	Mfa3
H-ORF – probability (rank)			1			I						1	1	I
Prepilin-type processing- associated H-X9-DG domain	99.30 (1)	99.28 (1)	99.27 (2)	99.14 (2)	99.14 (2)	99.16 (2)	99.14 (2)	99.07 (1)	99.15 (1)	99.17 (1)	98.98 (2)	99.16 (2)	99.16 (2)	99.14 (2)
Outer membrane insertion C- terminal signal	99.27 (2)	99.22 (2)	99.33 (1)	99.28 (1)	99.19 (1)	99.28 (1)	99.24 (1)	98.86 (3)	98.77 (3)	98.82 (3)	98.46 (3)	99.23 (1)	99.23 (1)	99.19 (1)
LPXTG cell wall anchor domain	98.89 (3)	98.94 (3)	98.98 (3)	98.89 (3)	98.86 (3)	98.89 (3)	99.03 (3)	98.98 (2)	98.90 (2)	99.09 (2)	99.01 (1)	98.88 (3)	98.93 (3)	98.94 (3)
X-X-X-Leu-X-X-Gly heptad repeats	97.49 (4)	97.63 (7)	97.70 (21)	97.50 (11)	97.45 (6)	97.53 (4)	97.61 (4)	97.52 (4)	97.64 (4)	97.62 (4)	97.44 (4)	97.66 (4)	97.50 (4)	97.43 (4)
GlyGly-CTERM domain	96.92 (7)	97.09 (19)	97.05 (45)	96.95 (15)	96.72 (7)	96.97 (5)	96.98 (5)	96.88 (5)	96.49 (5)	97.02 (5)	96.69 (5)	96.99 (5)	96.99 (5)	96.95 (5)
Pentatricopeptide repeat domain	94.13 (23)	-	-	94.09 (30)	94.26 (8)	94.00 (8)	92.73 (8)	92.04 (8)	93.03 (6)	92.77 (8)	93.27 (6)	93.25 (6)	93.25 (6)	93.37 (6)
	Uim1	Uim2	Uim3	Uim4	Uim5&6	Uim7	Lsu1	Lsu2	Lco1	Lco2	Tpa	Mfa1	Mf2&4	Mfa3
H-ORF – amino acid position														
Prepilin-type processing- associated H-X9-DG domain	201- 204	45-50	25-30	25-30	13-15	13-15	34-37	28-31	17-20	27-30	134- 135	5-8	5-8	5-8
Outer membrane insertion C- terminal signal	49-52	75-81	71-74	71-74	71-74	71-74	1-5	91-93	23-24	33-34	40-44	5-7	5-7	5-7
LPXTG cell wall anchor domain	75-77	56-72	49-64	49-64	97-99	49-64	14-30	8-24	2-13	7-23	24-41	43-59	43-60	43-60
X-X-X-Leu-X-X-Gly heptad repeats	21-23	227- 231	43-45	43-45	43-45	43-45	95- 101	91-95	79-92	112- 125	189- 194	60-67	61-67	61-67

Supplementary Table VI. Frequently recurring HHpred hits in H-ORFs

GlyGly-CTERM domain	49-57 58-71	71-79	71-79	55-70	96-97	14-24	8-18	2-12	7-17	33-44	47-59	47-59	47-60
Pentatricopeptide repeat domain	14-21 -	-	36-43	48-57	87-98	31-35	25-45	14-34	22-44	17-23	23-27	23-27	23-27

Motif or domain		Aan	Upe	Pgr	Ija	Sca	Tli	Vel	Qqu	Сто	Hme
Lysine-rich region profile	M F	X	X	Х	X	X		X		Х	X
Bipartite nuclear localization signal profile	M F		X	Х							X
RNA recognition motif in regulators of calcineurin and similar proteins	M F		X								
Prokaryotic membrane lipoprotein lipid attachment site profile	M F									Х	
HIG1 domain family member	M F	X	X								X
Telomerase reverse transcriptase (TEN domain)	M F	X									
EGF-like-domain	M F	X	X	X							X
Voltage-dependent anion channel	M F										X
Histone H1-like protein Hc1	M F										X
Microtubule-binding protein MIP-T3	M F										X
Periplasmic protein TonB, links inner and outer membranes	M F										X
Cell division protein FtsN	M F										X
Plant ATP synthase F0	M F									Х	
DUF4381 Domain of unknown function	M F									Х	
E set domains	M F									Х	
Homeodomain-like	M F									Х	
PELOTA RNA binding domain	M F		X								

Supplementary Table VII. Hits to other motifs and domains in M-ORFs and F-ORFs

Trigger factor ribosome-binding domain	M F	Х							
DNaJ domain family member	M F		Х						
Autophagy protein Apg6	M F					Х			
Chromosome segregation ATPases	M F					Х			
Chromosome segregation protein SMC, common bacterial type	M F					Х			
TIGR03778 VPDSG-CTERM protein sorting domain	M F		Х						
Bifunctional 2',3'-cyclic nucleotide 2'- phosphodiesterase/3'-nucleotidase precursor protein	M F			Х					
TIGR04288 CGP-CTERM domain	M F							X	
Homodimeric domain of signal transducing histidine kinase	M F							X	
Virus attachment protein globular domain	M F							X	
Opacity-associated protein A N-terminal motif	M F				X	Х	X		

NOTE – *Lco* and *Mma* M-*ORFs* and F-*ORFs* did not return any motifs or domains other than the frequently recurring HHpred hits.

Motif or domain				Ui	m		Lsu				
	1	2	3	4	5&6	7	1	2	1	2&4	3
Response regulator receiver domain protein (CheY-like)	Х										
Mitochondria Localisation Sequence		X	X								
ribonuclease E		Х	Х			X					
Ehrlichia tandem repeat		Х	Х			X					
Terminal organelle assembly protein TopJ		Х	Х								
Bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'- nucleotidase precursor protein				X							
TIGR03544 DivIVA domain				ĺ					Х	Х	Х
EGF-like-domain				ĺ					Х		Х
Herpes virus major outer envelope glycoprotein (BLLF1)							Х	Х			
NOTE – Lco and Tpa did not return any motifs or domains other that	n the	e fr	equ	ien	tly recu	urri	ng H	Hpree	b		

Supplementary Table VIII. Hits to other motifs and domains in H-ORFs

hits.
Supplementary Table IX. Filtered hmmsearch output for the M-ORF and F-ORF HMM profiles built using default parameters with hmmbuild.

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
M-ORF	UniProtKB	F4ZG80_9BIVA	M-specific morf protein	Eukaryota	Utterbackia peninsularis	1	1	174.6	5.20E-48
		V9PBU4_9BIVA	M-ORF	Eukaryota	Solenaia carinatus	1	1	94.8	1.70E-23
		A0A023I1E9_ANOAN	M-ORF	Eukaryota	Anodonta anatina	1	1	88.8	1.20E-21
		A0A023I1I6_ANOAN	M-ORF	Eukaryota	Anodonta anatina	1	1	88.6	1.40E-21
		A0A0F4GXW8_9PEZI	DUF221-domain-containing protein	Eukaryota	Zymoseptoria brevis	1	1	30.5	0.001
		G2RQY3_BACME	Excalibur domain protein	Bacteria	Bacillus megaterium WSH-002	1	1	30.3	0.0011
		A0A068N778_BACCE	Group-specific protein	Bacteria	Bacillus cereus	1	1	29.0	0.0029
		A0A0D0GUL4_BACTM	Bacillus thuringiensis serovar morrisoni strain HD 600 BG10.Contig244, whole genome shotgun sequence	Bacteria	Bacillus thuringiensis subsp. morrisoni	1	1	28.2	0.0048
		G3H659_CRIGR	CKLF-like MARVEL transmembrane domain-containing protein 2B	Eukaryota	Cricetulus griseus	1	1	27.4	0.0087
		K2G8H3_9BACT	RNA binding S1 protein	Bacteria	uncultured bacterium (gcode 4)	1	1	27.4	0.0089
		R7N780_9FIRM	Electron transport complex subunit E	Bacteria	Firmicutes bacterium CAG:95	1	0	26.6	0.016
		A0A0E0W0K4_BACAN	Group-specific protein	Bacteria	Bacillus anthracis str. H9401	1	0	26.3	0.019
		Q63BB7_BACCZ	Group-specific protein	Bacteria	Bacillus cereus (strain ZK / E33L)	1	0	26.3	0.019
		C1H9F4_PARBA	Nucleolar protein NOP56	unclassified sequences	unclassified	1	0	25.9	0.025
		A0A0D6M554_9BILA	SnoRNA binding domain protein	Eukaryota	Ancylostoma ceylanicum	1	0	25.6	0.031
		A5KSC4_9BACT	ATP synthase subunit b	Bacteria	candidate division TM7 genomosp. GTL1	1	0	24.9	0.052
		A0A061B2Y9_CYBFA	CYFA0S08e02300g1_1	Eukaryota	Cyberlindnera fabianii	1	0	24.6	0.061
		Q8EWL2_MYCPE	Putative uncharacterized protein MYPE1910	Bacteria	Mycoplasma penetrans (strain HF- 2)	1	0	24.4	0.076
		A0A098DB54_GIBZA	Fusarium graminearum chromosome 1, complete genome	Eukaryota	Gibberella zeae	1	0	24.3	0.079

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		H2J4N9_MARPK	ATP synthase subunit b	Bacteria	Marinitoga piezophila (strain DSM 14283 / JCM 11233 / KA3)	1	0	24.3	0.081
M-ORF	UniProtKB	A0A061CBD1_LACDL	Hypothetical membrane protein	Bacteria	Lactobacillus delbrueckii subsp. lactis	1	0	23.7	0.12
		H2B2B1_KAZAF	KAFR0L01510 protein	Eukaryota	Kazachstania africana (strain ATCC 22294 / BCRC 22015 / CBS 2517 / CECT 1963 / NBRC 1671 / NRRL Y-8276)	1	0	23.6	0.12
		A0A023FMS2_9ACAR	Putative ribosome bioproteinsis protein	Eukaryota	Amblyomma cajennense	1	0	23.4	0.15
		S9UXZ4_9TRYP	Cellular retinaldehyde-binding protein/triple function domain-containing protein	Eukaryota	Strigomonas culicis	1	0	23.3	0.16
		C4L4A3_EXISA	Glycosyl transferase family 51	Bacteria	Exiguobacterium sp. (strain ATCC BAA-1283 / AT1b)	1	0	23.1	0.18
		A0A085C9C0_BACIU	Membrane protein	Bacteria	Bacillus subtilis	1	0	22.9	0.21
		YTTA_BACSU	Uncharacterized membrane protein YttA	Bacteria	Bacillus subtilis (strain 168)	1	0	22.9	0.21
		A6TVR5_ALKMQ	Integral membrane sensor signal transduction histidine kinase	Bacteria	Alkaliphilus metalliredigens (strain QYMF)	1	0	22.8	0.22
		Q28264_CANFA	Junctional sarcoplasmic reticulum protein	Eukaryota	Canis familiaris	1	0	22.8	0.23
		L7MMA2_OESDE	RIC-3	Eukaryota	Oesophagostomum dentatum	1	0	22.4	0.3
		C6H7B9_AJECH	Sec14 cytosolic factor	Eukaryota	Ajellomyces capsulatus (strain H143)	1	0	22.3	0.33
		L9VVP2_9EURY	ATPase AAA containing von Willebrand factor type A (VWA) domain-like protein	Archaea	Natronorubrum tibetense GA33	1	0	22.2	0.35
		B5RV46_DEBHA	Vacuolar protein sorting-associated protein 29	Eukaryota	Debaryomyces hansenii (strain ATCC 36239 / CBS 767 / JCM 1990 / NBRC 0083 / IGC 2968)	1	0	22.0	0.39
		K2HQK2_ENTNP	Major facilitator superfamily protein	Eukaryota	Entamoeba nuttalli (strain P19)	1	0	21.7	0.48
		W4GC94_9STRA	tRNA pseudouridine(55) synthase	Eukaryota	Aphanomyces astaci	1	0	21.5	0.57
		F0U682_AJEC8	SEC14 cytosolic factor	Eukaryota	Ajellomyces capsulatus (strain	1	0	21.5	0.58

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
					H88)				
		A0A078J4T8_BRANA	BnaCnng34340D protein	Eukaryota	Brassica napus	1	0	21.4	0.6
		I2H4F9_TETBL	TBLA0E02080 protein	Eukaryota	Tetrapisispora blattae (strain ATCC 34711 / CBS 6284 / DSM 70876 / NBRC 10599 / NRRL Y- 10934 / UCD 77-7)	1	0	21.4	0.61
M-ORF	UniProtKB	H0DG78_9STAP	Nuclease-like protein	Bacteria	Staphylococcus pettenkoferi VCU012	1	0	21.4	0.62
		M3UR84_ENTHI	Major facilitator superfamily protein	Eukaryota	Entamoeba histolytica HM-1:IMSS- B	1	0	21.1	0.74
		K0NZP8_9LACO	Hypothetical membrane protein	Bacteria	Lactobacillus equicursoris DSM 19284 = JCM 14600 = CIP 110162	1	0	21.1	0.75
		A0A090BR33_KLUMA	Nucleolar protein 56	Eukaryota	Kluyveromyces marxianus	1	0	21.1	0.75
		W0TC29_KLUMA	Nucleolar protein 56	Eukaryota	Kluyveromyces marxianus DMKU3-1042	1	0	21.1	0.75
		C5D4P5_GEOSW	Penicillin-binding protein transpeptidase	Bacteria	Geobacillus sp. (strain WCH70)	1	0	21.0	0.8
		R6HQS4_9PROT	Putative uncharacterized membrane protein	Bacteria	Azospirillum sp. CAG:260	1	0	21.0	0.8
		F9N4N5_9FIRM	ATP synthase subunit b	Bacteria	Veillonella sp. oral taxon 780 str. F0422	1	0	20.8	0.96
		H2B1U5_KAZAF	KAFR0K02390 protein	Eukaryota	Kazachstania africana (strain ATCC 22294 / BCRC 22015 / CBS 2517 / CECT 1963 / NBRC 1671 / NRRL Y-8276)	1	0	20.7	0.97
	SwissProt	YTTA_BACSU	Uncharacterized membrane protein YttA	Bacteria	Bacillus subtilis (strain 168)	1	1	22.9	0.0023
		YZVL_CAEEL	Uncharacterized NOP5 family protein K07C5.4	Eukaryota	Caenorhabditis elegans	1	0	18.7	0.046
		PROQ_VIBF1	RNA chaperone ProQ	Bacteria	Vibrio fischeri (strain ATCC 700601 / ES114)	1	0	17.9	0.08
		PROQ_VIBFM	RNA chaperone ProQ	Bacteria	Vibrio fischeri (strain MJ11)	1	0	17.9	0.08
		HDAC1_CHICK	Histone deacetylase 1	Eukaryota	Gallus gallus	1	0	17.4	0.12

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		PROQ_PSYIN	RNA chaperone ProQ	Bacteria	Psychromonas ingrahamii (strain	1	0	17.0	0.15
					37)				
		YYAB_BACSU	Uncharacterized protein YyaB	Bacteria	Bacillus subtilis (strain 168)	1	0	16.9	0.17
		NU3M_YARLI	NADH-ubiquinone oxidoreductase chain 3	Eukaryota	Yarrowia lipolytica (strain CLIB 122	2	0	16.2	0.27
					/ E 150)				
		LRC59_RAT	Leucine-rich repeat-containing protein 59	Eukaryota	Rattus norvegicus	1	0	16.1	0.28
		CT47A_HUMAN	Cancer/testis antigen 47A	Eukaryota	Homo sapiens	1	0	15.9	0.33
		PROQ_ALISL	RNA chaperone ProQ	Bacteria	Aliivibrio salmonicida LFI1238	1	0	15.8	0.34
		LRC59_HUMAN	Leucine-rich repeat-containing protein 59	Eukaryota	Homo sapiens	1	0	15.8	0.36
		TNSB_ECOLX	Transposon Tn7 transposition protein TnsB	Bacteria	Escherichia coli	1	0	15.7	0.37
M-ORF	SwissProt	RPN2_CANGA	26S proteasome regulatory subunit RPN2	Eukaryota	Candida glabrata (strain ATCC	1	0	15.5	0.44
					2001 / CBS 138 / JCM 3761 /				
					NBRC 0622 / NRRL Y-65)				
		Y377_MYCGE	Uncharacterized protein MG377	Bacteria	Mycoplasma genitalium (strain	1	0	15.3	0.49
					ATCC 33530 / G-37 / NCTC				
					10195)				
		ATPF_XYLFT	ATP synthase subunit b	Bacteria	Xylella fastidiosa (strain	1	0	14.9	0.67
					Temecula1 / ATCC 700964)				
		ATPF_XYLF2	ATP synthase subunit b	Bacteria	Xylella fastidiosa (strain M23)	1	0	14.9	0.67
		ATPF_BURVG	ATP synthase subunit b	Bacteria	Burkholderia vietnamiensis (strain	1	0	14.8	0.72
					G4 / LMG 22486)				
		ATPF_BURCC	ATP synthase subunit b	Bacteria	Burkholderia cenocepacia (strain	1	0	14.8	0.74
					MC0-3)				
		ATPF_BURCA	ATP synthase subunit b	Bacteria	Burkholderia cenocepacia (strain	1	0	14.8	0.74
					AU 1054)				
		ATPF_BURCH	ATP synthase subunit b	Bacteria	Burkholderia cenocepacia (strain	1	0	14.8	0.74
					HI2424)				
		ATPF_BURCJ	ATP synthase subunit b	Bacteria	Burkholderia cenocepacia (strain	1	0	14.8	0.74
					ATCC BAA-245 / DSM 16553 /				

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
					LMG 16656 / NCTC 13227 / J2315 / CF5610)				
		ATPF_BURM1	ATP synthase subunit b	Bacteria	Burkholderia multivorans	1	0	14.7	0.75
		ATPF_BURA4	ATP synthase subunit b	Bacteria	Burkholderia ambifaria (strain	1	0	14.6	0.83
					MC40-6)				
		ATPF_BURCM	ATP synthase subunit b	Bacteria	Burkholderia ambifaria (strain	1	0	14.6	0.83
					ATCC BAA-244 / AMMD)				
		SHDAG_HDVAM	Small delta antigen	Viruses	Hepatitis delta virus genotype I	2	0	14.6	0.84
					(isolate American)				
		OTCC_TREDE	Ornithine carbamoyltransferase, catabolic	Bacteria	Treponema denticola (strain ATCC	1	0	14.4	0.93
					35405 / CIP 103919 / DSM 14222)				
	PDB	3x1I_C	Cmr4	Archaea	Archaeoglobus fulgidus DSM 4304	2	0	16.0	0.15
	PDB	1a92_A	DELTA ANTIGEN	Viruses	Hepatitis delta virus	1	0	14.8	0.36
	QfO	YTTA_BACSU	Uncharacterized membrane protein YttA	Bacteria	Bacillus subtilis (strain 168)	2	1	22.9	0.0032
		YZVL_CAEEL	Uncharacterized NOP5 family protein K07C5.4	Eukaryota	Caenorhabditis elegans	1	0	18.7	0.064
M-ORF	QfO	Q9LTV0_ARATH	NOP56-like pre RNA processing ribonucleoprotein	Eukaryota	Arabidopsis thaliana	1	0	18.4	0.078
		HDAC1_CHICK	Histone deacetylase 1	Eukaryota	Gallus gallus	1	0	17.4	0.16
		YYAB_BACSU	Uncharacterized protein YyaB	Bacteria	Bacillus subtilis (strain 168)	1	0	16.9	0.23
		Q7S9Y2_NEUCR	NMDA receptor-regulated protein 1	Eukaryota	Neurospora crassa (strain ATCC	1	0	16.6	0.27
					24698 / 74-OR23-1A / CBS 708.71				
					/ DSM 1257 / FGSC 987)				
		Q9LJA1_ARATH	Expressed protein	Eukaryota	Arabidopsis thaliana	1	0	16.3	0.35
		NU3M_YARLI	NADH-ubiquinone oxidoreductase chain 3	Eukaryota	Yarrowia lipolytica (strain CLIB 122	2	0	16.2	0.38
					/ E 150)				
		LRC59_RAT	Leucine-rich repeat-containing protein 59	Eukaryota	Rattus norvegicus	1	0	16.1	0.39
		CT47A_HUMAN	Cancer/testis antigen 47A	Eukaryota	Homo sapiens	1	0	15.9	0.46
		H2QDF0_PANTR	Leucine rich repeat containing 59	Eukaryota	Pan troglodytes	1	0	15.8	0.5
		LRC59_HUMAN	Leucine-rich repeat-containing protein 59	Eukaryota	Homo sapiens	1	0	15.8	0.5

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
	Pfamseq	G2RQY3_BACME	Excalibur domain protein	Bacteria	Bacillus megaterium WSH-002	1	1	30.3	0.0018
		G3H659_CRIGR	CKLF-like MARVEL transmembrane domain-containing protein 2B	Eukaryota	Cricetulus griseus	1	0	27.4	0.014
		K2G8H3_9BACT	RNA binding S1 protein	Bacteria	uncultured bacterium (gcode 4)	1	0	27.4	0.014
		R7N780_9FIRM	Electron transport complex subunit E	Bacteria	Firmicutes bacterium CAG:95	1	0	26.6	0.026
		J6PCC7_BACAN	Group-specific protein	Bacteria	Bacillus anthracis str. BF1	1	0	26.3	0.03
		W8HQB3_BACAN	Group-specific protein	Bacteria	Bacillus anthracis str. SVA11	1	0	26.3	0.03
		J6DVY5_BACAN	Group-specific protein	Bacteria	Bacillus anthracis str. UR-1	1	0	26.3	0.03
		I0D291_BACAN	Group-specific protein	Bacteria	Bacillus anthracis str. H9401	1	0	26.3	0.03
		Q63BB7_BACCZ	Group-specific protein	Bacteria	Bacillus cereus (strain ZK / E33L)	1	0	26.3	0.03
		C1H9F4_PARBA	Nucleolar protein NOP56	unclassified sequences	unclassified	1	0	25.9	0.041
		E4SY79_LACDN	Hypothetical membrane protein	Bacteria	Lactobacillus delbrueckii subsp. bulgaricus ND02	1	0	25.8	0.043
		A5KSC4_9BACT	ATP synthase subunit b	Bacteria	candidate division TM7 genomosp. GTL1	1	0	24.9	0.083
		Q8EWL2_MYCPE	Putative uncharacterized protein MYPE1910	Bacteria	Mycoplasma penetrans (strain HF- 2)	1	0	24.4	0.12
M-ORF	Pfamseq	H2J4N9_MARPK	ATP synthase subunit b	Bacteria	Marinitoga piezophila (strain DSM 14283 / JCM 11233 / KA3)	1	0	24.3	0.13
		A0A023FMS2_9ACAR	Putative ribosome bioproteinsis protein	Eukaryota	Amblyomma cajennense	1	0	23.4	0.24
		S9UXZ4_9TRYP	Cellular retinaldehyde-binding protein/triple function domain-containing protein	Eukaryota	Strigomonas culicis	1	0	23.3	0.26
		A0A031LCL5_ENTFC	MAEBL family membrane protein	Bacteria	Enterococcus faecium VRE0576	1	0	23.2	0.28
		C4L4A3_EXISA	Glycosyl transferase family 51	Bacteria	Exiguobacterium sp. (strain ATCC BAA-1283 / AT1b)	1	0	23.1	0.29
		C0SHR5_PARBP	Nucleolar protein 5A	Eukaryota	Paracoccidioides brasiliensis (strain Pb03)	1	0	23.0	0.32

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		V5MXR1_BACIU	Putative membrane protein yttA	Bacteria	Bacillus subtilis PY79	1	0	22.9	0.34
		YTTA_BACSU	Uncharacterized membrane protein YttA	Bacteria	Bacillus subtilis (strain 168)	1	0	22.9	0.34
		M1U5M5_BACIU	YttA	Bacteria	Bacillus subtilis subsp. subtilis 6051-HGW	1	0	22.9	0.34
		J7JVR5_BACIU	YttA	Bacteria	Bacillus subtilis QB928	1	0	22.9	0.34
		A6TVR5_ALKMQ	Integral membrane sensor signal transduction histidine kinase	Bacteria	Alkaliphilus metalliredigens (strain QYMF)	1	0	22.8	0.36
		L7MMA2_OESDE	RIC-3	Eukaryota	Oesophagostomum dentatum	1	0	22.4	0.48
		C6H7B9_AJECH	Sec14 cytosolic factor	Eukaryota	Ajellomyces capsulatus (strain H143) (Darling's disease fungus) (Histoplasma capsulatum)	1	0	22.3	0.53
		L9VVP2_9EURY	ATPase AAA containing von Willebrand factor type A (VWA) domain-like protein	Archaea	Natronorubrum tibetense GA33	1	0	22.2	0.57
		B5RV46_DEBHA	DEHA2G07304p	Eukaryota	Debaryomyces hansenii (strain ATCC 36239 / CBS 767 / JCM 1990 / NBRC 0083 / IGC 2968)	1	0	22.0	0.62
		C5DTL9_ZYGRC	ZYRO0C09614p	Eukaryota	Zygosaccharomyces rouxii (strain ATCC 2623 / CBS 732 / NBRC 1130 / NCYC 568 / NRRL Y-229)	1	0	21.8	0.76
		K2HQK2_ENTNP	Major facilitator superfamily protein	Eukaryota	Entamoeba nuttalli (strain P19) (Amoeba)	1	0	21.7	0.77
		W4GC94_9STRA	tRNA pseudouridine(55) synthase	Eukaryota	Aphanomyces astaci	1	0	21.5	0.91
M-ORF	Pfamseq	F0U682_AJEC8	SEC14 cytosolic factor	Eukaryota	Ajellomyces capsulatus (strain H88) (Darling's disease fungus) (Histoplasma capsulatum)	1	0	21.5	0.94
		H0DG78_9STAP	Nuclease-like protein	Bacteria	Staphylococcus pettenkoferi VCU012	1	0	21.4	0.99
F-ORF	UniProtKB	F4ZFW9_9BIVA	H-orf protein (Fragment)	Eukaryota	Lasmigona subviridis	8	8	122.9	1.8E-32
		F4ZFX0_9BIVA	H-orf protein (Fragment)	Eukaryota	Lasmigona subviridis	7	7	110.8	1.1E-28

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		F4ZGF0_9BIVA	H open reading frame	Eukaryota	Lasmigona subviridis	7	7	109.6	2.5E-28
		F4ZFW8_9BIVA	H-orf protein	Eukaryota	Lasmigona subviridis	7	7	109.6	2.6E-28
		F4ZFN3_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma lividus	1	1	108.3	6.6E-28
		F4ZFH5_MARMG	Female-specific orf protein	Eukaryota	Margaritifera margaritifera	1	1	101.6	7.9E-26
		F4ZFV5_VENEL	Female-specific orf protein	Eukaryota	Venustaconcha ellipsiformis	1	1	92.4	5.9E-23
		F4ZFW3_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	5	5	92.1	7.6E-23
		F4ZFG1_LAMSI	Female-specific orf protein	Eukaryota	Lampsilis siliquoidea	1	1	89.5	4.8E-22
		F4ZFV6_VENEL	Female-specific orf protein	Eukaryota	Venustaconcha ellipsiformis	1	1	89.1	6.6E-22
		F4ZFG0_9BIVA	Female-specific orf protein	Eukaryota	Lampsilis powellii	1	1	89.0	7.0E-22
		F4ZFW0_LASCM	H-orf protein (Fragment)	Eukaryota	Lasmigona compressa	7	7	86.9	3.0E-21
		F4ZFW4_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	5	5	84.9	1.3E-20
		F4ZFV7_9BIVA	Female-specific orf protein	Eukaryota	Villosa iris	1	1	82.1	9.4E-20
		F4ZFW7_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	3	3	79.6	5.7E-19
		F4ZGB5_LASCM	H open reading frame	Eukaryota	Lasmigona compressa	5	5	72.1	1.3E-16
		F4ZFE6_CUMMO	Female-specific orf protein	Eukaryota	Cumberlandia monodonta	1	1	72.0	1.4E-16
		F4ZFF2_CYCTU	Female-specific orf protein	Eukaryota	Cyclonaias tuberculata	1	1	70.8	3.3E-16
		V9PBQ9_9BIVA	F-ORF	Eukaryota	Solenaia carinatus	1	1	70.6	3.9E-16
		F4ZFH4_LEMRI	Female-specific orf protein	Eukaryota	Lemiox rimosus	1	1	69.4	9.0E-16
		F4ZFL6_9BIVA	Female-specific orf protein	Eukaryota	Quadrula houstonensis	1	1	69.0	1.2E-15
		F4ZFF9_9BIVA	Female-specific orf protein	Eukaryota	Echyridella menziesii	1	1	68.9	1.2E-15
		F4ZFF3_CYCTU	Female-specific orf protein	Eukaryota	Cyclonaias tuberculata	1	1	68.4	1.8E-15
		F4ZFH7_9BIVA	Female-specific orf protein	Eukaryota	Margaritifera marrianae	1	1	67.4	3.7E-15
		F4ZFF4_9BIVA	Female-specific orf protein	Eukaryota	Ellipsaria lineolata	1	1	66.5	7.2E-15
F-ORF	UniProtKB	F4ZFK9_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	66.1	9.8E-15
		F4ZFI6 PYGGR	Female-specific orf protein	Eukarvota	Pyganodon grandis	1	1	66.0	1.0E-14

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		F4ZFK7_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	65.5	1.4E-14
		F4ZFI9_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	65.4	1.6E-14
		F4ZFI8_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	65.3	1.6E-14
		F4ZFL2_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	65.3	1.6E-14
		F4ZFW1_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	6	4	64.8	2.4E-14
		F4ZFI1_9BIVA	Female-specific orf protein	Eukaryota	Potamilus metnecktayi	1	1	64.7	2.6E-14
		F4ZFF6_FUSFL	Female-specific orf protein	Eukaryota	Fusconaia flava	1	1	64.6	2.9E-14
		F4ZFK6_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	63.7	5.3E-14
		F4ZFE3_9BIVA	Female-specific orf protein	Eukaryota	Alasmidonta undulata	1	1	63.3	6.9E-14
		F4ZFW6_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	3	3	63.2	7.7E-14
		X2CT99_9BIVA	H open reading frame	Eukaryota	Dahurinaia dahurica	1	1	62.6	1.2E-13
		F4ZFL4_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	62.5	1.3E-13
		F4ZFK8_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	62.4	1.3E-13
		F4ZFG2_LASCO	Female-specific orf protein	Eukaryota	Lasmigona complanata	1	1	61.8	2.1E-13
		F4ZFE8_CUMMO	Female-specific orf protein	Eukaryota	Cumberlandia monodonta	1	1	61.5	2.5E-13
		F4ZFG3_LASCO	Female-specific orf protein	Eukaryota	Lasmigona complanata	1	1	61.1	3.6E-13
		F4ZFN6_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	60.7	4.5E-13
		F4ZFN5_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	60.5	5.4E-13
		F4ZFW5_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	3	3	60.4	5.7E-13
		F4ZFQ4_9BIVA	Female-specific orf protein	Eukaryota	Truncilla macrodon	1	1	60.3	6.2E-13
		F4ZFN4_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	59.1	1.4E-12
		F4ZFF5_9BIVA	Female-specific orf protein	Eukaryota	Fusconaia ebenus	1	1	58.5	2.2E-12
		F4ZFQ2_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma texasiensis	1	1	57.8	3.7E-12
		F4ZFE2_ALAMA	Female-specific orf protein	Eukaryota	Alasmidonta marginata	1	1	57.5	4.6E-12
		F4ZFH0_9BIVA	Female-specific orf protein	Eukaryota	Lasmigona costata	1	1	57.5	4.6E-12

Profile	Database	Target	Description	Kingdom	Species	#	# significant	Bit	E-value
						TillS	hits	Score	
		F4ZFI3_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	57.1	6.2E-12
		F4ZFP1_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	56.2	1.2E-11
F-ORF	UniProtKB	F4ZFP9_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	56.2	1.2E-11
		F4ZFW2_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	2	2	55.9	1.5E-11
		F4ZFY0_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	55.6	1.8E-11
		F4ZFH3_9BIVA	Female-specific orf protein	Eukaryota	Lasmigona costata	1	1	55.6	1.9E-11
		F4ZFX1_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	55.5	2.0E-11
		F4ZFY3_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	55.4	2.1E-11
		F4ZFX3_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	2	2	55.3	2.2E-11
		F4ZFY2_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	55.2	2.4E-11
		F4ZFX2_MARFC	H open reading frame	Eukaryota	Margaritifera falcata	1	1	55.1	2.6E-11
		F4ZFY1_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	53.8	6.3E-11
		F4ZFT3_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	53.3	9.3E-11
		F4ZFU5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	53.0	1.2E-10
		F4ZFP6_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	52.5	1.6E-10
		F4ZG87_9BIVA	F-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	51.6	3.2E-10
		F4ZFI0_9BIVA	Female-specific orf protein	Eukaryota	Megalonaias nervosa	1	1	51.6	3.3E-10
		F4ZFT2_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	50.7	6.1E-10
		F4ZFT5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	50.7	6.3E-10
		F4ZFR5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	49.4	1.5E-09
		F4ZFR3_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	48.7	2.5E-09
		F4ZFQ5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	48.5	2.9E-09
		F4ZFS9_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	48.5	3.1E-09
		F4ZFR2_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	48.1	3.8E-09
		F4ZFQ6_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	46.8	9.7E-09

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		F4ZFQ8_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	46.8	1.0E-08
		F4ZFT0_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	46.8	1.0E-08
		F4ZFU7_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	45.8	2.1E-08
		F4ZFL9_9BIVA	Female-specific orf protein	Eukaryota	Strophitus undulatus	1	1	45.4	2.7E-08
		F4ZFM7_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma glans	1	1	44.5	5.4E-08
		F4ZFL8_9BIVA	Female-specific orf protein	Eukaryota	Strophitus undulatus	1	1	44.0	7.5E-08
F-ORF	UniProtKB	F4ZFM0_9BIVA	Female-specific orf protein	Eukaryota	Strophitus undulatus	1	1	43.4	1.2E-07
		F4ZFQ7_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	42.3	2.5E-07
		U5KJG1_ANOAN	F-ORF	Eukaryota	Anodonta anatina	1	1	42.0	3.0E-07
		U5KJ96_ANOAN	F-ORF	Eukaryota	Anodonta anatina	1	1	41.2	5.7E-07
		U5KJC3_ANOAN	F-ORF	Eukaryota	Anodonta anatina	1	1	39.3	2.1E-06
		F2WZ99_SINWO	FORF	Eukaryota	Sinanodonta woodiana	1	1	33.0	0.0002
		Q6D9Z7_PECAS	Putative membrane protein	Bacteria	Pectobacterium atrosepticum (strain SCRI 1043 / ATCC BAA- 672)	2	0	21.5	0.76
	PDB	3tia_A	Neuraminidase	Viruses	Influenza A virus (A/RI/5+/1957(H2N2))	1	0	14.7	0.56
	QfO	Q59ZX2_CANAL	FTR1 family protein	Eukaryota	Candida albicans (strain SC5314 / ATCC MYA-2876)	3	0	18.6	0.098
		A2ERK8_TRIVA	DNA polymerase epsilon. catalytic subunit, putative	Eukaryota	Trichomonas vaginalis	2	0	16.1	0.59
		Q9VE38_DROME	CG14302	Eukaryota	Drosophila melanogaster	1	0	16.0	0.64
	Pfamseq	F4ZFW9_9BIVA	H-orf protein (Fragment)	Eukaryota	Lasmigona subviridis	8	8	122.9	2.9E-32
		F4ZFX0_9BIVA	H-orf protein (Fragment)	Eukaryota	Lasmigona subviridis	7	7	110.8	1.8E-28
		F4ZGF0_9BIVA	H open reading frame	Eukaryota	Lasmigona subviridis	7	7	109.6	4.0E-28
		F4ZFW8_9BIVA	H-orf protein	Eukaryota	Lasmigona subviridis	7	7	109.6	4.3E-28
		F4ZFN3_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma lividus	1	1	108.3	1.1E-27

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		F4ZFH5_MARMG	Female-specific orf protein	Eukaryota	Margaritifera margaritifera	1	1	101.6	1.3E-25
		F4ZFV5_VENEL	Female-specific orf protein	Eukaryota	Venustaconcha ellipsiformis	1	1	92.4	9.5E-23
		F4ZFW3_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	5	5	92.1	1.2E-22
		F4ZFG1_LAMSI	Female-specific orf protein	Eukaryota	Lampsilis siliquoidea	1	1	89.5	7.8E-22
		F4ZFV6_VENEL	Female-specific orf protein	Eukaryota	Venustaconcha ellipsiformis	1	1	89.1	1.1E-21
		F4ZFG0_9BIVA	Female-specific orf protein	Eukaryota	Lampsilis powellii	1	1	89.0	1.1E-21
		F4ZFW0_LASCM	H-orf protein (Fragment)	Eukaryota	Lasmigona compressa	7	7	86.9	4.8E-21
		F4ZFW4_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	5	5	84.9	2.1E-20
		F4ZFV7_9BIVA	Female-specific orf protein	Eukaryota	Villosa iris	1	1	82.1	1.5E-19
		F4ZFW7_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	3	3	79.6	9.1E-19
F-ORF	Pfamseq	F4ZGB5_LASCM	H open reading frame	Eukaryota	Lasmigona compressa	5	5	72.1	2.1E-16
		F4ZFE6_CUMMO	Female-specific orf protein	Eukaryota	Cumberlandia monodonta	1	1	72.0	2.3E-16
		F4ZFF2_CYCTU	Female-specific orf protein	Eukaryota	Cyclonaias tuberculata	1	1	70.8	5.3E-16
		V9PBQ9_9BIVA	F-ORF	Eukaryota	Solenaia carinatus	1	1	70.6	6.3E-16
		F4ZFH4_LEMRI	Female-specific orf protein	Eukaryota	Lemiox rimosus	1	1	69.4	1.4E-15
		F4ZFL6_9BIVA	Female-specific orf protein	Eukaryota	Quadrula houstonensis	1	1	69.0	1.9E-15
		F4ZFF9_9BIVA	Female-specific orf protein	Eukaryota	Echyridella menziesii	1	1	68.9	2.0E-15
		F4ZFF3_CYCTU	Female-specific orf protein	Eukaryota	Cyclonaias tuberculata	1	1	68.4	3.0E-15
		F4ZFH7_9BIVA	Female-specific orf protein	Eukaryota	Margaritifera marrianae	1	1	67.4	6.0E-15
		F4ZFF4_9BIVA	Female-specific orf protein	Eukaryota	Ellipsaria lineolata	1	1	66.5	1.2E-14
		F4ZFK9_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	66.1	1.6E-14
		F4ZFI6_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	66.0	1.7E-14
		F4ZFK7_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	65.5	2.3E-14
		F4ZFI9_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	65.4	2.6E-14
		F4ZFI8_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	65.3	2.7E-14

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		F4ZFL2_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	65.3	2.7E-14
		F4ZFW1_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	6	4	64.8	3.9E-14
		F4ZFI1_9BIVA	Female-specific orf protein	Eukaryota	Potamilus metnecktayi	1	1	64.7	4.1E-14
		F4ZFF6_FUSFL	Female-specific orf protein	Eukaryota	Fusconaia flava	1	1	64.6	4.6E-14
		F4ZFK6_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	63.7	8.6E-14
		F4ZFE3_9BIVA	Female-specific orf protein	Eukaryota	Alasmidonta undulata	1	1	63.3	1.1E-13
		F4ZFW6_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	3	3	63.2	1.2E-13
		X2CT99_9BIVA	H open reading frame	Eukaryota	Dahurinaia dahurica	1	1	62.6	1.9E-13
		F4ZFL4_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	62.5	2.0E-13
		F4ZFK8_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	62.4	2.2E-13
		F4ZFG2_LASCO	Female-specific orf protein	Eukaryota	Lasmigona complanata	1	1	61.8	3.4E-13
		F4ZFE8_CUMMO	Female-specific orf protein	Eukaryota	Cumberlandia monodonta	1	1	61.5	4.1E-13
		F4ZFG3_LASCO	Female-specific orf protein	Eukaryota	Lasmigona complanata	1	1	61.1	5.7E-13
		F4ZFN6_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	60.7	7.3E-13
F-ORF	Pfamseq	F4ZFN5_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	60.5	8.6E-13
		F4ZFW5_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	3	3	60.4	9.1E-13
		F4ZFQ4_9BIVA	Female-specific orf protein	Eukaryota	Truncilla macrodon	1	1	60.3	1.0E-12
		F4ZFN4_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	59.1	2.3E-12
		F4ZFF5_9BIVA	Female-specific orf protein	Eukaryota	Fusconaia ebenus	1	1	58.5	3.5E-12
		F4ZFQ2_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma texasiensis	1	1	57.8	5.9E-12
		F4ZFE2_ALAMA	Female-specific orf protein	Eukaryota	Alasmidonta marginata	1	1	57.5	7.4E-12
		F4ZFH0_9BIVA	Female-specific orf protein	Eukaryota	Lasmigona costata	1	1	57.5	7.4E-12
		F4ZFI3_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	57.1	1.0E-11
		F4ZFP1_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	56.2	1.9E-11
		F4ZFP9_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	56.2	1.9E-11

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		F4ZFW2_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	2	2	55.9	2.4E-11
		F4ZFH3_9BIVA	Female-specific orf protein	Eukaryota	Lasmigona costata	1	1	55.6	3.0E-11
		F4ZFY0_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	55.6	3.0E-11
		F4ZFX1_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	55.5	3.1E-11
		F4ZFY3_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	55.4	3.3E-11
		F4ZFX3_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	2	2	55.3	3.6E-11
		F4ZFY2_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	55.2	3.9E-11
		F4ZFX2_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	55.1	4.2E-11
		F4ZFY1_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	53.8	1.0E-10
		F4ZFT3_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	53.3	1.5E-10
		F4ZFU5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	53.0	1.9E-10
		F4ZFP6_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	52.5	2.6E-10
		F4ZG87_9BIVA	F-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	51.6	5.2E-10
		F4ZFI0_9BIVA	Female-specific orf protein	Eukaryota	Megalonaias nervosa	1	1	51.6	5.3E-10
		F4ZFT2_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	50.7	9.9E-10
		F4ZFT5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	50.7	1.0E-09
		F4ZFR5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	49.4	2.4E-09
		F4ZFR3_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	48.7	4.1E-09
F-ORF	Pfamseq	F4ZFQ5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	48.5	4.7E-09
		F4ZFS9_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	48.5	4.9E-09
		F4ZFR2_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	48.1	6.1E-09
		F4ZFQ6_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	46.8	1.6E-08
		F4ZFQ8_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	46.8	1.6E-08
		F4ZFT0_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	46.8	1.6E-08
		F4ZFU7_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	45.8	3.3E-08

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		F4ZFL9_9BIVA	Female-specific orf protein	Eukaryota	Strophitus undulatus	1	1	45.4	4.3E-08
		F4ZFM7_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma glans	1	1	44.5	8.7E-08
		F4ZFL8_9BIVA	Female-specific orf protein	Eukaryota	Strophitus undulatus	1	1	44.0	1.2E-07
		F4ZFM0_9BIVA	Female-specific orf protein	Eukaryota	Strophitus undulatus	1	1	43.4	1.9E-07
		F4ZFQ7_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	42.3	4.0E-07
		U5KJG1_ANOAN	F-ORF	Eukaryota	Anodonta anatina	1	1	42.0	4.9E-07
		U5KJ96_ANOAN	F-ORF	Eukaryota	Anodonta anatina	1	1	41.2	9.2E-07
		U5KJC3_ANOAN	F-ORF	Eukaryota	Anodonta anatina	1	1	39.3	3.4E-06
		F2WZ99_SINWO	F ORF	Eukaryota	Sinanodonta woodiana	1	1	33.0	3.2E-04

Note : Proteins described only as "uncharacterized", "putative", or not annotated in general, have been removed since no information can be obtained. In bold are bit scores \geq 20 and E-values \leq 0.001. Results are ordered by profile, database, and E-value.

Supplementary Table X. Filtered hmmsearch output for the M-*ORF* and F-*ORF* HMM profiles built using custom parameters with hmmbuild.

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
M-ORF	UniProtKB	F4ZG80_9BIVA	M-specific morf protein	Eukaryota	Utterbackia peninsularis	1	1	386.2	6.1E-112
		V9PBU4_9BIVA	M-ORF	Eukaryota	Solenaia carinatus	1	1	190.5	8.2E-53
		A0A0231116_ANOAN	M-ORF	Eukaryota	Anodonta anatina	2	2	117.7	8.2E-31
		A0A023I1E9_ANOAN	M-ORF	Eukaryota	Anodonta anatina	2	2	117.2	1.1E-30
	SwissProt	OTCC_TREDE	Ornithine carbamoyltransferase, catabolic	Bacteria	Treponema denticola (strain ATCC	2	0	13.4	0.28
					35405 / CIP 103919 / DSM 14222)				
		CDSA_DICDI	Probable phosphatidate cytidylyltransferase	Eukaryota	Dictyostelium discoideum	1	0	12.5	0.51
	PDB	2ml9_A	Yop proteins translocation protein U	Bacteria	Yersinia pseudotuberculosis IP	1	0	14.1	0.085
					32953				
	QfO	C3Z4U7_BRAFL	Putative uncharacterized protein	Eukaryota	Branchiostoma floridae	1	0	14.7	0.16
		CDSA_DICDI	Probable phosphatidate cytidylyltransferase	Eukaryota	Dictyostelium discoideum	1	0	12.5	0.71
	Pfamseq	F4ZG80_9BIVA	M-specific morf protein	Eukaryota	Utterbackia peninsularis	1	1	386.2	9.8E-112
		V9PBU4_9BIVA	M-ORF	Eukaryota	Solenaia carinatus	1	1	190.5	1.3E-52
		A0A023I1I6_ANOAN	M-ORF	Eukaryota	Anodonta anatina	2	2	117.7	1.3E-30
		A0A023I1E9_ANOAN	M-ORF	Eukaryota	Anodonta anatina	2	2	117.2	1.8E-30
F-ORF	UniProtKB	F4ZFN3_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma lividus	1	1	216.9	1.3E-60
		F4ZFH5_MARMG	Female-specific orf protein	Eukaryota	Margaritifera margaritifera	1	1	168.3	8.3E-46
		F4ZFW9_9BIVA	H-orf protein (Fragment)	Eukaryota	Lasmigona subviridis	8	8	163.0	3.4E-44
		F4ZFV6_VENEL	Female-specific orf protein	Eukaryota	Venustaconcha ellipsiformis	1	1	149.0	6.2E-40
		F4ZFX0_9BIVA	H-orf protein (Fragment)	Eukaryota	Lasmigona subviridis	7	7	148.9	6.7E-40
		F4ZGF0_9BIVA	H open reading frame	Eukaryota	Lasmigona subviridis	7	7	147.4	1.9E-39

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		F4ZFW8_9BIVA	H-orf protein	Eukaryota	Lasmigona subviridis	7	7	146.4	3.7E-39
		F4ZFV5_VENEL	Female-specific orf protein	Eukaryota	Venustaconcha ellipsiformis	1	1	133.7	2.7E-35
F-ORF	UniProtKB	F4ZFW3_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	5	5	126.7	3.7E-33
		F4ZFH4_LEMRI	Female-specific orf protein	Eukaryota	Lemiox rimosus	1	1	124.0	2.4E-32
		F4ZFW7_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	3	3	122.7	6.2E-32
		F4ZFW4_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	5	5	120.2	3.5E-31
		F4ZFI6_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	120.1	3.8E-31
		F4ZFI9_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	119.5	5.8E-31
		F4ZFG1_LAMSI	Female-specific orf protein	Eukaryota	Lampsilis siliquoidea	1	1	119.2	7.2E-31
		F4ZFI8_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	118.6	1.0E-30
		F4ZFL2_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	118.6	1.0E-30
		F4ZFG0_9BIVA	Female-specific orf protein	Eukaryota	Lampsilis powellii	1	1	118.6	1.1E-30
		V9PBQ9_9BIVA	F-ORF	Eukaryota	Solenaia carinatus	1	1	117.2	3.0E-30
		F4ZFV7_9BIVA	Female-specific orf protein	Eukaryota	Villosa iris	1	1	115.7	8.3E-30
		F4ZFW0_LASCM	H-orf protein (Fragment)	Eukaryota	Lasmigona compressa	7	7	115.1	1.2E-29
		F4ZFE6_CUMMO	Female-specific orf protein	Eukaryota	Cumberlandia monodonta	1	1	113.0	5.5E-29
		F4ZFG2_LASCO	Female-specific orf protein	Eukaryota	Lasmigona complanata	1	1	112.6	7.4E-29
		F4ZFG3_LASCO	Female-specific orf protein	Eukaryota	Lasmigona complanata	1	1	111.9	1.2E-28
		F4ZFK9_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	110.3	3.5E-28
		F4ZFK7_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	109.5	6.4E-28
		F4ZFE8_CUMMO	Female-specific orf protein	Eukaryota	Cumberlandia monodonta	1	1	108.8	1.1E-27
		F4ZFE3_9BIVA	Female-specific orf protein	Eukaryota	Alasmidonta undulata	1	1	105.6	9.5E-27
		F4ZFK6_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	105.3	1.2E-26
		F4ZFK8_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	104.2	2.5E-26
		F4ZFL4_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	103.7	3.6E-26

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		F4ZGB5_LASCM	H open reading frame	Eukaryota	Lasmigona compressa	4	4	97.7	2.5E-24
		F4ZFW6_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	3	3	97.6	2.6E-24
		F4ZFT3_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	96.8	4.7E-24
		F4ZFE2_ALAMA	Female-specific orf protein	Eukaryota	Alasmidonta marginata	1	1	96.5	5.5E-24
		F4ZFH0_9BIVA	Female-specific orf protein	Eukaryota	Lasmigona costata	1	1	96.5	5.5E-24
		F4ZFU5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	95.9	8.7E-24
F-ORF	UniProtKB	F4ZFI3_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	93.8	3.9E-23
		F4ZFF9_9BIVA	Female-specific orf protein	Eukaryota	Echyridella menziesii	1	1	92.4	1.0E-22
		F4ZG87_9BIVA	F-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	92.1	1.3E-22
		F4ZFT5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	91.7	1.6E-22
		F4ZFF2_CYCTU	Female-specific orf protein	Eukaryota	Cyclonaias tuberculata	1	1	91.1	2.5E-22
		F4ZFL6_9BIVA	Female-specific orf protein	Eukaryota	Quadrula houstonensis	1	1	90.9	2.8E-22
		F4ZFT2_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	90.0	5.3E-22
		F4ZFU7_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	88.7	1.3E-21
		F4ZFH3_9BIVA	Female-specific orf protein	Eukaryota	Lasmigona costata	1	1	88.4	1.6E-21
		F4ZFF4_9BIVA	Female-specific orf protein	Eukaryota	Ellipsaria lineolata	1	1	88.0	2.2E-21
		F4ZFW5_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	3	3	87.4	3.4E-21
		F4ZFF3_CYCTU	Female-specific orf protein	Eukaryota	Cyclonaias tuberculata	1	1	87.0	4.2E-21
		F4ZFR5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	86.5	6.3E-21
		F4ZFR3_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	86.0	8.7E-21
		F4ZFS9_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	85.6	1.2E-20
		F4ZFW2_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	2	2	85.2	1.5E-20
		F4ZFR2_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	85.1	1.7E-20
		F4ZFQ5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	84.8	2.0E-20
		F4ZFF6_FUSFL	Female-specific orf protein	Eukaryota	Fusconaia flava	1	1	83.5	5.2E-20

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		F4ZFQ6_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	83.1	6.9E-20
		F4ZFQ2_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma texasiensis	1	1	82.8	8.1E-20
		F4ZFT0_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	82.7	8.8E-20
		F4ZFQ8_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	82.0	1.4E-19
		F4ZFN6_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	81.8	1.7E-19
		F4ZFW1_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	5	4	81.7	1.8E-19
		F4ZFN5_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	80.6	3.9E-19
		F4ZFQ4_9BIVA	Female-specific orf protein	Eukaryota	Truncilla macrodon	1	1	78.7	1.4E-18
		F4ZFN4_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	78.1	2.3E-18
		F4ZFQ7_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	74.3	3.1E-17
F-ORF	UniProtKB	F4ZFI1_9BIVA	Female-specific orf protein	Eukaryota	Potamilus metnecktayi	1	1	72.0	1.6E-16
		F4ZFP1_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	70.9	3.3E-16
		F4ZFF5_9BIVA	Female-specific orf protein	Eukaryota	Fusconaia ebenus	1	1	68.5	1.8E-15
		F4ZFP9_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	67.7	3.3E-15
		F4ZFL9_9BIVA	Female-specific orf protein	Eukaryota	Strophitus undulatus	1	1	65.0	2.1E-14
		F4ZFP6_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	64.6	2.8E-14
		F4ZFH7_9BIVA	Female-specific orf protein	Eukaryota	Margaritifera marrianae	1	1	64.2	3.8E-14
		U5KJG1_ANOAN	F-ORF	Eukaryota	Anodonta anatina	1	1	63.6	5.9E-14
		U5KJ96_ANOAN	F-ORF	Eukaryota	Anodonta anatina	1	1	61.3	2.9E-13
		F4ZFL8_9BIVA	Female-specific orf protein	Eukaryota	Strophitus undulatus	1	1	60.7	4.2E-13
		F4ZFX2_MARFC	H open reading frame	Eukaryota	Margaritifera falcata	1	1	60.3	5.7E-13
		F4ZFY0_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	60.2	6.1E-13
		F4ZFY3_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	60.2	6.1E-13
		F4ZFY2_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	59.6	9.1E-13
		F4ZFX1_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	59.5	9.8E-13

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		F4ZFX3_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	2	2	59.4	1.1E-12
		F4ZFM7_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma glans	1	1	59.2	1.2E-12
		X2CT99_9BIVA	H open reading frame	Eukaryota	Dahurinaia dahurica	1	1	59.2	1.2E-12
		F4ZFY1_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	58.6	1.9E-12
		F4ZFM0_9BIVA	Female-specific orf protein	Eukaryota	Strophitus undulatus	1	1	58.4	2.2E-12
		F4ZFI0_9BIVA	Female-specific orf protein	Eukaryota	Megalonaias nervosa	1	1	57.3	4.8E-12
		U5KJC3_ANOAN	F-ORF	Eukaryota	Anodonta anatina	1	1	56.4	9.0E-12
		F2WZ99_SINWO	FORF	Eukaryota	Sinanodonta woodiana	1	1	39.2	1.5E-06
		A0A0C5RBW4_9MOLU	Strain ATCC 49782 genome	Bacteria	Ureaplasma diversum	1	0	21.0	0.51
		A0A091H1Z3_BUCRH	Metalloreductase STEAP4 (Fragment)	Eukaryota	Buceros rhinoceros silvestris	1	0	20.6	0.68
		A0A091Q5Q8_LEPDC	Metalloreductase STEAP4 (Fragment)	Eukaryota	Leptosomus discolor	1	0	20.6	0.69
		C0F8Y4_9RICK	Efflux transporter, RND family, MFP subunit (Fragment)	Bacteria	Wolbachia endosymbiont of	1	0	20.6	0.7
					Muscidifurax uniraptor				
F-ORF	SwissProt	NRAM_I68A6	Neuraminidase	Viruses	Influenza A virus (A/Northern Territories/60-JY2/1968(H3N2))	1	0	16.1	0.17
		NRAM_I57A5	Neuraminidase	Viruses	Influenza A virus (strain	1	0	14.9	0.4
					A/Singapore/1/1957 H2N2)				
		NRAM_I60A0	Neuraminidase	Viruses	Influenza A virus (strain A/Ann Arbor/6/1960 H2N2)	1	0	14.9	0.41
		NRAM_I66A1	Neuraminidase	Viruses	Influenza A virus (strain A/Turkey/Wisconsin/1/1966 H9N2)	1	0	14.3	0.6
		NRAM_I68A5	Neuraminidase	Viruses	Influenza A virus (A/(Puerto Rico/8/1934- Korea/426/1968)(H2N2))	1	0	14.3	0.62
		NRAM_I67A0	Neuraminidase	Viruses	Influenza A virus (strain A/Tokyo/3/1967 H2N2)	1	0	14.3	0.62
	PDB	3tia_A	Neuraminidase	Viruses	Influenza A virus (A/RI/5+/1957(H2N2))	1	0	14.9	0.2

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
	QfO	P73901_SYNY3	50S ribosomal protein L12 honologue	Bacteria	Synechocystis sp. (strain PCC 6803 / Kazusa)	1	0	15.9	0.28
	Pfamseq	F4ZFN3_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma lividus	1	1	216.9	2.2E-60
		F4ZFH5_MARMG	Female-specific orf protein	Eukaryota	Margaritifera margaritifera	1	1	168.3	1.3E-45
		F4ZFW9_9BIVA	H-orf protein (Fragment)	Eukaryota	Lasmigona subviridis	8	8	163.0	5.4E-44
		F4ZFV6_VENEL	Female-specific orf protein	Eukaryota	Venustaconcha ellipsiformis	1	1	149.0	1.0E-39
		F4ZFX0_9BIVA	H-orf protein (Fragment)	Eukaryota	Lasmigona subviridis	7	7	148.9	1.1E-39
		F4ZGF0_9BIVA	H open reading frame	Eukaryota	Lasmigona subviridis	7	7	147.4	3.0E-39
		F4ZFW8_9BIVA	H-orf protein	Eukaryota	Lasmigona subviridis	7	7	146.4	6.0E-39
		F4ZFV5_VENEL	Female-specific orf protein	Eukaryota	Venustaconcha ellipsiformis	1	1	133.7	4.3E-35
		F4ZFW3_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	5	5	126.7	5.9E-33
		F4ZFH4_LEMRI	Female-specific orf protein	Eukaryota	Lemiox rimosus	1	1	124.0	3.9E-32
		F4ZFW7_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	3	3	122.7	9.9E-32
		F4ZFW4_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	5	5	120.2	5.6E-31
		F4ZFI6_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	120.1	6.2E-31
		F4ZFI9_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	119.5	9.3E-31
		F4ZFG1_LAMSI	Female-specific orf protein	Eukaryota	Lampsilis siliquoidea	1	1	119.2	1.2E-30
F-ORF	Pfamseq	F4ZFI8_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	118.6	1.7E-30
		F4ZFL2_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	118.6	1.7E-30
		F4ZFG0_9BIVA	Female-specific orf protein	Eukaryota	Lampsilis powellii	1	1	118.6	1.7E-30
		V9PBQ9_9BIVA	F-ORF	Eukaryota	Solenaia carinatus	1	1	117.2	4.8E-30
		F4ZFV7_9BIVA	Female-specific orf protein	Eukaryota	Villosa iris	1	1	115.7	1.3E-29
		F4ZFW0_LASCM	H-orf protein (Fragment)	Eukaryota	Lasmigona compressa	7	7	115.1	2.0E-29
		F4ZFE6_CUMMO	Female-specific orf protein	Eukaryota	Cumberlandia monodonta	1	1	113.0	8.8E-29
		F4ZFG2_LASCO	Female-specific orf protein	Eukaryota	Lasmigona complanata	1	1	112.6	1.2E-28

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		F4ZFG3_LASCO	Female-specific orf protein	Eukaryota	Lasmigona complanata	1	1	111.9	1.9E-28
		F4ZFK9_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	110.3	5.6E-28
		F4ZFK7_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	109.5	1.0E-27
		F4ZFE8_CUMMO	Female-specific orf protein	Eukaryota	Cumberlandia monodonta	1	1	108.8	1.7E-27
		F4ZFE3_9BIVA	Female-specific orf protein	Eukaryota	Alasmidonta undulata	1	1	105.6	1.5E-26
		F4ZFK6_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	105.3	1.9E-26
		F4ZFK8_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	104.2	4.0E-26
		F4ZFL4_9BIVA	Female-specific orf protein	Eukaryota	Pyganodon lacustris	1	1	103.7	5.7E-26
		F4ZGB5_LASCM	H open reading frame	Eukaryota	Lasmigona compressa	4	4	97.7	4.0E-24
		F4ZFW6_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	3	3	97.6	4.1E-24
		F4ZFT3_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	96.8	7.5E-24
		F4ZFE2_ALAMA	Female-specific orf protein	Eukaryota	Alasmidonta marginata	1	1	96.5	8.8E-24
		F4ZFH0_9BIVA	Female-specific orf protein	Eukaryota	Lasmigona costata	1	1	96.5	8.8E-24
		F4ZFU5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	95.9	1.4E-23
		F4ZFI3_PYGGR	Female-specific orf protein	Eukaryota	Pyganodon grandis	1	1	93.8	6.2E-23
		F4ZFF9_9BIVA	Female-specific orf protein	Eukaryota	Echyridella menziesii	1	1	92.4	1.6E-22
		F4ZG87_9BIVA	F-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	92.1	2.0E-22
		F4ZFT5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	91.7	2.6E-22
		F4ZFF2_CYCTU	Female-specific orf protein	Eukaryota	Cyclonaias tuberculata	1	1	91.1	4.0E-22
		F4ZFL6_9BIVA	Female-specific orf protein	Eukaryota	Quadrula houstonensis	1	1	90.9	4.5E-22
		F4ZFT2_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	90.0	8.6E-22
F-ORF	Pfamseq	F4ZFU7_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peninsularis	1	1	88.7	2.1E-21
		F4ZFH3_9BIVA	Female-specific orf protein	Eukaryota	Lasmigona costata	1	1	88.4	2.6E-21
		F4ZFF4_9BIVA	Female-specific orf protein	Eukaryota	Ellipsaria lineolata	1	1	88.0	3.5E-21
		F4ZFW5_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	3	3	87.4	5.5E-21

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
		F4ZFF3_CYCTU	Female-specific orf protein	Eukaryota	Cyclonaias tuberculata	1	1	87.0	6.8E-21
		F4ZFR5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	86.5	1.0E-20
		F4ZFR3_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	86.0	1.4E-20
		F4ZFS9_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	85.6	1.9E-20
		F4ZFW2_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	2	2	85.2	2.4E-20
		F4ZFR2_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	85.1	2.7E-20
		F4ZFQ5_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	84.8	3.2E-20
		F4ZFF6_FUSFL	Female-specific orf protein	Eukaryota	Fusconaia flava	1	1	83.5	8.4E-20
		F4ZFQ6_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	83.1	1.1E-19
		F4ZFQ2_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma texasiensis	1	1	82.8	1.3E-19
		F4ZFT0_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	82.7	1.4E-19
		F4ZFQ8_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	82.0	2.3E-19
		F4ZFN6_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	81.8	2.7E-19
		F4ZFW1_LASCM	H-orf protein	Eukaryota	Lasmigona compressa	5	4	81.7	2.8E-19
		F4ZFN5_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	80.6	6.3E-19
		F4ZFQ4_9BIVA	Female-specific orf protein	Eukaryota	Truncilla macrodon	1	1	78.7	2.3E-18
		F4ZFN4_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	78.1	3.6E-18
		F4ZFQ7_9BIVA	Female-specific orf protein	Eukaryota	Utterbackia peggyae	1	1	74.3	5.0E-17
		F4ZFI1_9BIVA	Female-specific orf protein	Eukaryota	Potamilus metnecktayi	1	1	72.0	2.6E-16
		F4ZFP1_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	70.9	5.4E-16
		F4ZFF5_9BIVA	Female-specific orf protein	Eukaryota	Fusconaia ebenus	1	1	68.5	2.9E-15
		F4ZFP9_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	67.7	5.4E-15
		F4ZFL9_9BIVA	Female-specific orf protein	Eukaryota	Strophitus undulatus	1	1	65.0	3.4E-14
		F4ZFP6_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma paulus	1	1	64.6	4.6E-14
		F4ZFH7_9BIVA	Female-specific orf protein	Eukaryota	Margaritifera marrianae	1	1	64.2	6.1E-14

Profile	Database	Target	Description	Kingdom	Species	# hits	# significant hits	Bit Score	E-value
F-ORF	Pfamseq	U5KJG1_ANOAN	F-ORF	Eukaryota	Anodonta anatina	1	1	63.6	9.5E-14
		U5KJ96_ANOAN	F-ORF	Eukaryota	Anodonta anatina	1	1	61.3	4.7E-13
		F4ZFL8_9BIVA	Female-specific orf protein	Eukaryota	Strophitus undulatus	1	1	60.7	6.8E-13
		F4ZFX2_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	60.3	9.2E-13
		F4ZFY0_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	60.2	9.9E-13
		F4ZFY3_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	60.2	9.9E-13
		F4ZFY2_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	59.6	1.5E-12
		F4ZFX1_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	59.5	1.6E-12
		F4ZFX3_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	2	2	59.4	1.8E-12
		F4ZFM7_9BIVA	Female-specific orf protein	Eukaryota	Toxolasma glans	1	1	59.2	2.0E-12
		X2CT99_9BIVA	H open reading frame	Eukaryota	Dahurinaia dahurica	1	1	59.2	2.0E-12
		F4ZFY1_MARFC	H-orf protein	Eukaryota	Margaritifera falcata	1	1	58.6	3.0E-12
		F4ZFM0_9BIVA	Female-specific orf protein	Eukaryota	Strophitus undulatus	1	1	58.4	3.5E-12
		F4ZFI0_9BIVA	Female-specific orf protein	Eukaryota	Megalonaias nervosa	1	1	57.3	7.7E-12
		U5KJC3_ANOAN	F-ORF	Eukaryota	Anodonta anatina	1	1	56.4	1.4E-11
		F2WZ99_SINWO	FORF	Eukaryota	Sinanodonta woodiana	1	1	39.2	2.4E-06

NOTE : parameters: --fast --symfrac 0 --fragthresh 0 --wnone --enone; see HMMER User's Guide at ftp://selab.janelia.org/pub/software/hmmer/CURRENT/Userguide.pdf for details on the commands. Proteins described only as "uncharacterized", "putative", or not annotated in general, have been removed since no information can be obtained. In bold are bit scores \geq 20 and E-values \leq 0.001. Results are ordered by profile, database, and E-value.

Hits (n)	Species	Position	Probability
HHpred			
TIGR03304 outer membrane insertion C-terminal signal		158-164	99.11
TIGR04294 prepilin-type processing-associated H-X9-		26-29	99.01
DG domain			
TIGR01167 LPXTG cell wall anchor domain		17-39	98.99
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		40-46	97.60
Cutaneous T-cell lymphoma-associated antigen 1	Homo sapiens	21-171	97.99
isoform 1			
CTAGE family, member 5 isoform 2	Homo sapiens	13-171	97.92
CTAGE family, member 5 isoform 1	Homo sapiens	13-171	97.73
CTAGE family, member 5 isoform 4	Homo sapiens	21-171	97.71
TIGR03501 GlyGly-CTERM domain (rank 14)		22-35	96.47
CTAGE family, member 5 isoform 3	Homo sapiens	21-171	97.24
CTAGE family, member 5	Mus musculus	21-171	97.13
Nuclear Pore complex Protein family member (npp-11)	Caenorhabditis elegans	62-217	97.08
Nuclear Pore complex Protein family member (npp-11)	Caenorhabditis elegans	81-192	96.95
Essential subunit of the nuclear pore complex (NPC)		87-218	96.25
Subunit of the Nsp1p-Nup57p-Nup49p-Nic96p	Saccharomyces cerevisiae	90-192	95.37
subcomplex of the nuclear pore complex (NPC)			
Flagellar motor protein	Agrobacterium tumefaciens	11-176	95.34
Essential component of the nuclear pore complex	Saccharomyces cerevisiae	44-170	95.24
Collectin sub-family member 12 isoform II	Homo sapiens	19-171	95.15
Essential component of the nuclear pore complex	Saccharomyces cerevisiae	44-196	95.07
CD207 antigen, langerin	Mus musculus	19-149	94.92
Peroxisomal membrane protein that is a central	Saccharomyces cerevisiae	27-167	94.76
component of the peroxisomal protein import machinery			
Structural constituent of nuclear pore	Arabidopsis thaliana	61-217	94.64
Fc fragment of IgE, low affinity II, receptor for (CD23A)	Homo sapiens	24-157	94.54
Structural constituent of nuclear pore	Arabidopsis thaliana	44-172	94.40
Scavenger receptor class A, member 3	Mus musculus	19-171	94.36
Keratin 9	Homo sapiens	81-171	94.29
Nucleoporin 62kDa	Homo sapiens	90-218	93.89
Nucleoporin 62kDa	Homo sapiens	90-218	93.89

Supplementary Table XI. Venustaconcha ellipsiformis M-ORF function predictions

Nucleoporin 62kDa	Homo sapiens	90-218	93.89
Nucleoporin 62kDa	Homo sapiens	90-218	93.89
CTAGE family, member 5 isoform 4	Homo sapiens	21-171	93.64
TIGR00756 pentatricopeptide repeat domain		120-136	92.71
F02E8.5	Caenorhabditis elegans	43-190	93.56
CG4898-PF, isoform F	Drosophila melanogaster	91-171	93.56
CTAGE family, member 5	Mus musculus	22-183	93.52
CG4898-PK, isoform K	Drosophila melanogaster	90-171	93.50
Keratin complex 1, acidic, gene 9	Mus musculus	81-218	93.44
Cancer susceptibility candidate 4 isoform b	Homo sapiens	21-183	93.43
Macrophage galactose N-acetyl-galactosamine specific		20-171	93.40
lectin 2			
Laminin, beta 4	Homo sapiens	41-218	93.39
Laminin, beta 1 precursor	Homo sapiens	41-218	93.08
Vacuolar protein sorting 37C	Mus musculus	72-171	93.04
PaREP5a	Pyrobaculum aerophilum	89-171	92.83
PaREP5a	Pyrobaculum aerophilum	81-171	92.80
Laminin B1 subunit 1	Mus musculus	41-218	92.77
Keratin 3	Homo sapiens	81-171	92.39
Essential subunit of the nuclear pore complex (NPC)	Saccharomyces cerevisiae	84-218	92.38
B-cell receptor-associated protein BAP29 isoform c	Homo sapiens	24-157	92.13
Keratin 10	Homo sapiens	81-171	92.07
Nuclear Pore complex Protein family member (npp-1)	Caenorhabditis elegans	81-171	91.77
Nucleotide binding	Arabidopsis thaliana	90-213	91.70
Nuclear Pore complex Protein family member (npp-1)	Caenorhabditis elegans	41-201	91.62
Nuclear Pore complex Protein family member (npp-1)	Caenorhabditis elegans	41-220	91.50
Collectin sub-family member 12 isoform I	Homo sapiens	19-171	91.49
CG16932-PC, isoform C	Drosophila melanogaster	44-178	91.46
PaREP5a	Pyrobaculum aerophilum	79-171	91.21
C27D6.4c	Caenorhabditis elegans	81-293	91.19
Type I hair keratin KA36	Homo sapiens	90-178	91.00
Subunit of the Nsp1p-Nup57p-Nup49p-Nic96p	Saccharomyces cerevisiae	107-345	90.77
subcomplex of the nuclear pore complex (NPC)			
Shep3p Protein that acts as an adaptor between Myo4p	Saccharomyces cerevisiae	50-171	90.76
and the She2p-mRNA complex			
Keratin 1	Homo sapiens	81-177	90.64

CG16932-PC, isoform C	Drosophila melanogaster	44-155	90.63
APG16 autophagy 16-like isoform 1	Homo sapiens	75-200	90.61
Cortactin binding protein 2	Homo sapiens	46-183	90.59
B-cell receptor-associated protein BAP29 isoform b	Homo sapiens	24-155	90.58
ATP synthase subunit I	Aeropyrum pernix K1	54-171	90.51
CG7123-PA, isoform A	Drosophila melanogaster	44-214	90.39
CG7123-PB, isoform B	Drosophila melanogaster	44-214	90.39
Nuclear Pore complex Protein family member (npp-1)	Caenorhabditis elegans	45-182	90.32
Nuclear Pore complex Protein family member (npp-1)		38-171	90.20
CG8831-PA	Drosophila melanogaster	41-177	90.13
BLASTP		1	
Chromosome segregation protein SMC, common		38-196	3.45e-05
bacterial type			
Chromosome segregation ATPases		44-212	2.02e-04
Autophagy protein Apg6		67-180	1.77e-03
RNA polymerase Rpb1 C-terminal repeat domain-	Blastomyces dermatitidis	43-220	7e-05
containing protein			
SMC domain-containing protein	Thermodesulfatator indicus	72-162	0.008
LPXTG-motif cell wall anchor domain	Bacillus cytotoxicus	94-171	0.011
Cell wall anchor protein	Bacillus cytotoxicus	94-171	0.011
Viral A-type inclusion protein	Trichomonas vaginalis	53-111	0.031
SMC1, partial	Brachionus calyciflorus	52-111	0.089
Intracellular protein transport protein USO1	Entamoeba dispar	74-123	0.099
Chromosome segregation protein SMC	Methanocaldococcus	65-193	0.49
	villosus		
PSIBLAST		•	
Chromosome segregation protein SMC, common		38-196	3.45e-05
bacterial type			
Chromosome segregation ATPases		44-212	2.02e-04
Autophagy protein Apg6		67-180	1.77e-03
Ankyrin-3	Fukomys damarensis	51-218	4e-04
Ankyrin-3	Heterocephalus glaber	51-218	5e-04
Ankyrin-3	Pteropus alecto	51-218	0.001
Motif Scan	•		
Lysine-rich region profile		63-217	12.512
I-TASSER			

Tropomyosin	Oryctolagus cuniculus		2.41
Smooth muscle myosin heavy chain	Gallus gallus		1.82
Secreted 45kDa protein	Streptococcus pneumoniae		1.75
General control protein GCN4 and Tropomyosin 1 $\boldsymbol{\alpha}$	Oryctolagus cuniculus		1.91
chain			
RhUL123	Macacine herpesvirus 3		0.671
Tyrosine-protein kinase Fes/Fps	Homo sapiens		0.597
SH3-containing GRB2-like protein 2	Homo sapiens		0.594
Metastasis suppressor protein 1	Mus musculus		0.588
Brain-specific angiogenesis inhibitor 1-associated	Mus musculus		0.588
protein 2-like protein 2			
Formin-binding protein 1	Homo sapiens		0.582
LEOA	Escherichia coli		0.575
ARF-GAP with coiled-coil, ANK repeat and PH domain-	Homo sapiens		0.574
containing protein 1			
FCH domain only protein 2	Homo sapiens		0.569
Brain-specific angiogenesis inhibitor 1-associated	Homo sapiens		0.568
protein 2			
Predict Protein			
Predict Protein Protein binding		1	
Predict Protein Protein binding Cytoplasm		1	
Predict Protein Protein binding Cytoplasm Ankyrin-3	Fukomys damarensis	1	9e-35, 0.06
Predict Protein Protein binding Cytoplasm Ankyrin-3 Coiled-coil domain-containing protein 6	Fukomys damarensis Homo sapiens	1	9e-35, 0.06 1e-11
Predict Protein Protein binding Cytoplasm Ankyrin-3 Coiled-coil domain-containing protein 6 Coiled-coil domain-containing protein 6	Fukomys damarensis Homo sapiens Mus musculus	1	9e-35, 0.06 1e-11 1e-11
Predict Protein Protein binding Cytoplasm Ankyrin-3 Coiled-coil domain-containing protein 6 Coiled-coil domain-containing protein 6 Ankyrin-3 (2)	Fukomys damarensis Homo sapiens Mus musculus Heterocephalus glaber	1	9e-35, 0.06 1e-11 1e-11 2e-33, 0.24
Predict Protein Protein binding Cytoplasm Ankyrin-3 Coiled-coil domain-containing protein 6 Coiled-coil domain-containing protein 6 Ankyrin-3 (2) Ankyrin-3 (5)	Fukomys damarensis Homo sapiens Mus musculus Heterocephalus glaber Pteropus alecto	1	9e-35, 0.06 1e-11 1e-11 2e-33, 0.24 2e-33-0.5
Predict Protein Protein binding Cytoplasm Ankyrin-3 Coiled-coil domain-containing protein 6 Coiled-coil domain-containing protein 6 Ankyrin-3 (2) Ankyrin-3 (5) Myosin-6 (3)	Fukomys damarensis Homo sapiens Mus musculus Heterocephalus glaber Pteropus alecto Mus musculus		9e-35, 0.06 1e-11 1e-11 2e-33, 0.24 2e-33-0.5 6e-5- 0.77
Predict ProteinProtein bindingCytoplasmAnkyrin-3Coiled-coil domain-containing protein 6Coiled-coil domain-containing protein 6Ankyrin-3 (2)Ankyrin-3 (5)Myosin-6 (3)Myosin-6 (3)	Fukomys damarensisFukomys damarensisHomo sapiensMus musculusHeterocephalus glaberPteropus alectoMus musculusRattus norvegicus		9e-35, 0.06 1e-11 1e-11 2e-33, 0.24 2e-33-0.5 6e-5- 0.77 4e-5-0.54
Predict ProteinProtein bindingCytoplasmAnkyrin-3Coiled-coil domain-containing protein 6Coiled-coil domain-containing protein 6Ankyrin-3 (2)Ankyrin-3 (5)Myosin-6 (3)Myosin-6 (3)Myosin-7 (3)	Fukomys damarensisHomo sapiensMus musculusHeterocephalus glaberPteropus alectoMus musculusRattus norvegicusCanis familiaris		9e-35, 0.06 1e-11 1e-11 2e-33, 0.24 2e-33-0.5 6e-5- 0.77 4e-5-0.54 7e-5- 0.19
Predict ProteinProtein bindingCytoplasmAnkyrin-3Coiled-coil domain-containing protein 6Coiled-coil domain-containing protein 6Ankyrin-3 (2)Ankyrin-3 (5)Myosin-6 (3)Myosin-6 (3)Myosin-7 (3)	Fukomys damarensisFukomys damarensisHomo sapiensMus musculusHeterocephalus glaberPteropus alectoMus musculusRattus norvegicusCanis familiarisHomo sapiens		9e-35, 0.06 1e-11 1e-11 2e-33, 0.24 2e-33-0.5 6e-5- 0.77 4e-5-0.54 7e-5- 0.19 5e-5-0.14
Predict ProteinProtein bindingCytoplasmAnkyrin-3Coiled-coil domain-containing protein 6Coiled-coil domain-containing protein 6Ankyrin-3 (2)Ankyrin-3 (5)Myosin-6 (3)Myosin-6 (3)Myosin-7 (3)Myosin-7 (3)Myosin-7 (3)	Fukomys damarensisFukomys damarensisHomo sapiensMus musculusHeterocephalus glaberPteropus alectoMus musculusRattus norvegicusCanis familiarisHomo sapiensOryctolagus cuniculus		9e-35, 0.06 1e-11 1e-11 2e-33, 0.24 2e-33-0.5 6e-5- 0.77 4e-5-0.54 7e-5- 0.19 5e-5-0.14 5e-5-0.061
Predict ProteinProtein bindingCytoplasmAnkyrin-3Coiled-coil domain-containing protein 6Coiled-coil domain-containing protein 6Ankyrin-3 (2)Ankyrin-3 (5)Myosin-6 (3)Myosin-6 (3)Myosin-7 (3)Myosin-7 (3)Unconventional myosin-Vc (6)	Fukomys damarensisFukomys damarensisHomo sapiensMus musculusHeterocephalus glaberPteropus alectoMus musculusRattus norvegicusCanis familiarisHomo sapiensOryctolagus cuniculusHomo sapiensHomo sapiens		9e-35, 0.06 1e-11 1e-11 2e-33, 0.24 2e-33-0.5 6e-5- 0.77 4e-5-0.54 7e-5- 0.19 5e-5-0.14 5e-5-0.061 1e-11- 0.71
Predict ProteinProtein bindingCytoplasmAnkyrin-3Coiled-coil domain-containing protein 6Coiled-coil domain-containing protein 6Ankyrin-3 (2)Ankyrin-3 (5)Myosin-6 (3)Myosin-6 (3)Myosin-7 (3)Myosin-7 (3)Unconventional myosin-Vc (6)Myosin heavy chain, cardiac muscle isoform (3)	Fukomys damarensisFukomys damarensisHomo sapiensMus musculusHeterocephalus glaberPteropus alectoMus musculusRattus norvegicusCanis familiarisHomo sapiensOryctolagus cuniculusHomo sapiensGallus gallus		9e-35, 0.06 1e-11 1e-11 2e-33, 0.24 2e-33-0.5 6e-5- 0.77 4e-5-0.54 7e-5- 0.19 5e-5-0.14 5e-5-0.061 1e-11- 0.71 2e-5- 0.58
Predict ProteinProtein bindingCytoplasmAnkyrin-3Coiled-coil domain-containing protein 6Coiled-coil domain-containing protein 6Ankyrin-3 (2)Ankyrin-3 (5)Myosin-6 (3)Myosin-6 (3)Myosin-7 (3)Myosin-7 (3)Unconventional myosin-Vc (6)Myosin heavy chain, cardiac muscle isoform (3)Myosin heavy chain, skeletal muscle (2)	Fukomys damarensisFukomys damarensisHomo sapiensMus musculusHeterocephalus glaberPteropus alectoMus musculusRattus norvegicusCanis familiarisHomo sapiensOryctolagus cuniculusHomo sapiensGallus gallusOryctolagus cuniculus		9e-35, 0.06 1e-11 1e-11 2e-33, 0.24 2e-33-0.5 6e-5- 0.77 4e-5-0.54 7e-5- 0.19 5e-5-0.14 5e-5-0.14 5e-5-0.061 1e-11- 0.71 2e-5- 0.58 3e-5, 8e-4
Predict ProteinProtein bindingCytoplasmAnkyrin-3Coiled-coil domain-containing protein 6Coiled-coil domain-containing protein 6Ankyrin-3 (2)Ankyrin-3 (5)Myosin-6 (3)Myosin-6 (3)Myosin-7 (3)Myosin-7 (3)Unconventional myosin-Vc (6)Myosin heavy chain, cardiac muscle isoform (3)Myosin heavy chain, skeletal muscle (2)Reticulocyte-binding protein 2 homolog a (3)	Fukomys damarensisFukomys damarensisHomo sapiensMus musculusHeterocephalus glaberPteropus alectoMus musculusRattus norvegicusCanis familiarisHomo sapiensOryctolagus cuniculusHomo sapiensGallus gallusOryctolagus cuniculusPlasmodium falciparum		9e-35, 0.06 1e-11 1e-11 2e-33, 0.24 2e-33-0.5 6e-5- 0.77 4e-5-0.54 7e-5- 0.19 5e-5-0.14 5e-5-0.061 1e-11- 0.71 2e-5- 0.58 3e-5, 8e-4 8e-5- 5e-4

Myosin heavy chain, cardiac muscle beta isoform	Homo sapiens	86.43	
Myosin-5A	Gallus gallus	76.77	
Myosin heavy chain, cardiac muscle beta isoform	Homo sapiens	73.37	
M protein	Streptococcus pyogenes	60.89	
Protein Shroom	Drosophila melanogaster	59.94	
Beclin-1 (Coiled Coil Domain)	Rattus norvegicus	59.27	
Myosin-5A	Gallus gallus	54.59	
ADP-ribosylation factor 6 (G domain, residues 13-175)	Homo sapiens	53.93	
Rho-associated protein kinase 1 (coiled-coil domain	Homo sapiens	53.17,	
(unp residues 535-700)) (2)		41.06	
Cell division protein ZAPB	Escherichia coli	51.37	
Phosphoprotein	Measles virus	49.33	
Tail needle protein gp26	Enterobacteria phage P22	48.96	
Ras-related protein SEC4	Saccharomyces cerevisiae	48.96	
C-JUN homodimer (leucine zipper domain, residues 272	Homo sapiens	38.90	
- 315)			
Secreted 45 kDa protein (2)	Streptococcus pneumoniae	37.17,	
		36.73	
HP0958	Helicobacter pylori	41.08	

NOTE : For Supplementary Tables XI-XLV HHpred and @tome 2 use probabilities /100; I-TASSER Z scores > 1.0 and TM scores > 0.5 are significant; BLASTP & Predict Protein E-values < 1.0 are significant (adjusted from developer's recommendation of 10.0); PSIBLAST E-values < 0.001 are significant; Motif Scan N-scores do not have a significance threshold, a higher score indicates a better match.

Supplementary Table XII. Quadrula quadrula M-ORF function predictions

Hits (n)	Species	Position	Probability
HHpred			
TIGR03304 outer membrane insertion C-terminal signal		19-21	99.19
TIGR04294 prepilin-type processing-associated H-X9-		70-71	99.14
DG domain			
TIGR01167 LPXTG cell wall anchor domain		8-28	99.12
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		69-72	97.91
TIGR03501 GlyGly-CTERM domain		6-18	97.57

TIGR00756 pentatricopeptide repeat domain		48-60	93.60
CG18146-PB, isoform B	Drosophila melanogaster	9-36	89.69
Syndecan 3	Mus musculus	2-45	88.44
RCR		9-27	87.35
CG14181-PA	Drosophila melanogaster	13-37	83.64
CG18146-PA, isoform A	Drosophila melanogaster	9-82	82.12
BAS1 (PHYB activation tagged suppressor 1)	Arabidopsis thaliana	3-34	81.33
4_hem_cytochrm_NapC		18-38	80.73
CG13461-PA	Drosophila melanogaster	12-30	80.51
Sso2p: Plasma membrane t-SNARE	Saccharomyces cerevisiae	9-32	80.47
Sso1p: Plasma membrane t-SNARE	Saccharomyces cerevisiae	9-32	80.29
Syndecan 3	Homo sapiens	10-45	80.23
Syndecan 1 precursor	Homo sapiens	8-45	79.98
Syndecan 1 precursor	Homo sapiens	8-45	79.98
S-antigen	Plasmodium falciparum	1-19	79.73
Histidine kinase	Nitrosopumilus maritimus	1-19	76.65
Signal sequence receptor, alpha	Homo sapiens	11-91	74.74
RCR		9-27	74.71
COLlagen family member (col-36)	Caenorhabditis elegans	2-42	73.61
Signal sequence receptor, alpha	Mus musculus	11-91	72.27
UCP006158_SH3		9-27	72.08
Maltose:maltodextrin transport system permease	Haloferax volcanii	9-38	71.87
SYP124; t-SNARE	Arabidopsis thaliana	9-37	70.40
LCR19	Arabidopsis thaliana	1-21	69.65
SYP121; t-SNARE	Arabidopsis thaliana	9-46	68.98
LCR59	Arabidopsis thaliana	1-21	68.58
SYNtaxin family member (syn-2)	Caenorhabditis elegans	9-34	67.79
SYP121; t-SNARE	Arabidopsis thaliana	9-46	67.78
ZC190.8	Caenorhabditis elegans	3-33	67.59
Y116A8C.41	Caenorhabditis elegans	5-39	66.98
UCP006158_SH3		9-23	65.64
Translocation associated membrane protein		12-33	65.57
SYNtaxin family member (syn-1)	Caenorhabditis elegans	9-31	65.27
T01B11.3	Caenorhabditis elegans	9-31	63.67
Transmembrane protein	Mycobacterium		
	tuberculosis		

CG16707-PB, isoform B	Drosophila melanogaster	10-27	63.06
CG16707-PA, isoform A	Drosophila melanogaster	10-27	63.06
SQuaT family member (sqt-2)	Caenorhabditis elegans	2-42	63.00
CG12194-PA	Drosophila melanogaster	12-67	62.94
Copper ion binding / electron transporter	Arabidopsis thaliana	16-39	62.72
GGDEF family protein	Beggiatoa sp. PS	1-35	62.40
Y106G6E.2	Caenorhabditis elegans	10-28	62.07
Lectin, mannose-binding 2	Mus musculus	1-33	61.96
CG16707-PD, isoform D	Drosophila melanogaster	11-34	61.28
CG16707-PC, isoform C	Drosophila melanogaster	11-34	61.28
NHL25 (NDR1/HIN1-LIKE 25)	Arabidopsis thaliana	10-37	60.76
Serpentine Receptor, class X family member (srx-131)	Caenorhabditis elegans	10-41	60.38
C44H4.1	Caenorhabditis elegans	4-74	60.14
TMEM171: Transmembrane protein family 171		10-34	60.03
AC3.6	Caenorhabditis elegans	5-42	59.28
Opsin 1, short-wave-sensitive	Homo sapiens	8-41	59.09
Metal ion binding	Arabidopsis thaliana	9-37	58.54
ATG27: Autophagy-related protein 27		6-32	57.82
Psbl: Photosystem II reaction centre I protein		8-22	57.67
ТсаА		7-23	57.22
I-TASSER			
Fumarate hydratase class II	Mycobacterium		0.560
	tuberculosis		
Fumarate hydratase class II	Mycobacterium smegmatis		0.559
Fumarase Fum	Mycobacterium marinum		0.558
Adenylosuccinate lyase	Mycobacterium smegmatis		0.548
Argininosuccinate lyase	Thermus thermophilus		0.548
3-carboxy-cis,cis-muconate cycloisomerase	Pseudomonas putida		0.545
Virion RNA polymerase	Bacteriophage n4		0.542
Predict Protein			
Protein binding		42, 66,	
		105	
Nucleus			
Atome2			
Flavocytochrome C sulfide dehydrogenase (Flavin-	Allochromatium vinosum		62.97
binding subunit)			

NADH-quinone oxidoreductase	Thermus thermophilus HB8	60.23
Voltage-gated sodium channel	Caldalkalibacillus	42.44
	thermarum	
NADH-quinone oxidoreductase subunit L		42.08
Alpha-catenin (dimerization and beta-catenin binding	Mus musculus	39.63
region)		
Ion transport protein	Arcobacter butzleri	36.63
Collagen alpha 1 fragment 84-116 of NC1	Gallus gallus	36.49
Apocytochrome f	Chlamydomonas reinhardtii	31.45
Disabled homolog 2	Homo sapiens	29.91
Minicollagen-5	Hydra vulgaris	19.36
Proline dehydrogenase	Pseudomonas putida	17.32

NOTE : For Supplementary Tables XI-XLV HHpred and @tome 2 use probabilities /100; I-TASSER Z scores > 1.0 and TM scores > 0.5 are significant; BLASTP & Predict Protein E-values < 1.0 are significant (adjusted from developer's recommendation of 10.0); PSIBLAST E-values < 0.001 are significant; Motif Scan N-scores do not have a significance threshold, a higher score indicates a better match.

Supplementary Table XIII. Pyganodon grandis M-ORF function predictions

Hits (n)	Species	Position	Probability
HHpred			
TIGR04294 prepilin-type processing-associated H-X9-		40-46	99.10
DG domain			
TIGR01167 LPXTG cell wall anchor domain		20-40	99.05
TIGR03304 outer membrane insertion C-terminal signal		55-59	98.89
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		144-149	97.48
TIGR03501 GlyGly-CTERM domain		28-40	97.15
TIGR00756 pentatricopeptide repeat domain		29-41	92.96
DYstrophin-like phenotype and CAPON related family	Caenorhabditis elegans	164-232	89.28
member (dyc-1)			
EGF-like-domain, multiple 5	Mus musculus	21-45	88.13
CG32048-PA, isoform A	Drosophila melanogaster	164-232	87.99
CG2086-PB, isoform B	Drosophila melanogaster	24-128	84.37
Phosphoserine aminotransferase, PSAT	Bacillus circulans,	104-140	79.56

Negative regulator of septation ring formation	Lactobacillus casei	25-60	78.48
Golgi phosphoprotein 4	Mus musculus	25-47	78.23
CG17213-PA	Drosophila melanogaster	2-55	76.37
Phosphoserine aminotransferase	Beggiatoa sp. PS	104-140	76.27
CG6124-PA	Drosophila melanogaster	19-51	75.80
F55C12.5c	Caenorhabditis elegans	4-63	74.61
Phosphoserine aminotransferase, PSAT	Bacillus alcalophilus	104-140	74.12
Cell division protein	Yersinia pestis	20-47	73.99
Phosphoserine_aminotransferase phosphoserine		91-140	73.60
aminotransferase, Methanosarcina type.			
D2092.1a	Caenorhabditis elegans	6-74	73.12
Septation ring formation regulator EzrA	Streptococcus pneumoniae	19-52	72.71
	D39		
ZK353.4	Caenorhabditis elegans	1-44	72.53
Psbl: Photosystem II reaction centre I protein		22-41	72.29
Phosphoserine aminotransferase	Beggiatoa sp. PS	46-140	70.86
Photosystem II reaction center protein I, Psbl	Thermosynechococcus	22-41	69.88
	vulcanus		
Cytochrome c oxidase, cbb3-type, CcoQ subunit		22-52	69.88
Photosystem II reaction center protein I, Psbl		22-41	69.59
Homoserine kinase ThrH	Pseudomonas aeruginosa	116-163	69.41
GtrA		6-35	69.05
CG2086-PA, isoform A	Drosophila melanogaster	13-111	68.86
Transmembrane protein	Mycobacterium	19-59	68.34
	tuberculosis H37Rv		
Phosphoserine aminotransferase	Mycobacterium	104-183	68.17
	tuberculosis H37Rv		
Podocalyxin-like precursor isoform 2	Homo sapiens	21-48	68.13
ZK945.3	Caenorhabditis elegans	149-200	67.86
Phosphoserine aminotransferase, PSAT	Bacillus circulans,	104-140	67.51
Phosphoserine aminotransferase		104-183	67.36
UBN_AB: Ubinuclein conserved middle domain		149-217	67.29
CG32177-PA (SD09769P)		22-45	67.07
Photosystem II reaction center I protein	Synechococcus sp.	22-41	66.83
	CC9311		
Sec-independent translocase	Agrobacterium tumefaciens	25-57	66.80

Myc_target_1 Myc target protein 1.		1-39	64.30
Phosphoglycolate phosphatase, PGPase	Pyrococcus horikoshii	116-176	64.22
Sec-independent translocase	Escherichia coli	25-53	63.02
Essential cell division protein	Escherichia coli	20-46	62.46
Podocalyxin-like precursor isoform 1	Homo sapiens	21-48	61.69
Nedd4 family interacting protein 2	Homo sapiens	20-45	61.47
Phosphoserine aminotransferase	Homo sapiens	104-140	61.38
Phosphoserine aminotransferase (PSAT) family		104-183	60.87
F56H1.3	Caenorhabditis elegans	21-47	60.78
Phosphoserine aminotransferase	Salmonella enterica	104-140	60.66
Penumbra	Homo sapiens	10-59	60.60
ACyLtransferase-like family member (acl-2)	Caenorhabditis elegans	149-196	59.95
Claudin domain containing 1 protein isoform a	Homo sapiens	3-59	59.47
Claudin domain containing 1 protein isoform a	Homo sapiens	3-59	59.47
Claudin domain containing 1 protein isoform a	Homo sapiens	3-59	59.47
Claudin domain containing 1 protein isoform a	Homo sapiens	3-59	59.47
Sec-independent protein translocase protein TatB	Yersinia pestis CO92	25-57	59.28
Phosphoserine aminotransferase, PSAT	Bacillus alcalophilus	104-140	58.99
Golgi phosphoprotein 4	Homo sapiens	29-47	58.44
Membrane protein component of ABC phosphate	Pseudomonas aeruginosa	9-46	57.97
transporter			
Photosystem II reaction center protein I		22-41	57.78
Trans-golgi network protein 2	Homo sapiens	28-62	57.19
Transmembrane protein	Mycobacterium	6-42	55.77
	tuberculosis		
Phosphoserine aminotransferase, PSAT			
	Escherichia coli	104-140	55.21
Phosphoglycolate phosphatase	Escherichia coli Pyrococcus horikoshii	104-140 80-177	55.21 54.69
Phosphoglycolate phosphatase CG7695-PA	Escherichia coli Pyrococcus horikoshii Drosophila melanogaster	104-140 80-177 20-37	55.21 54.69 54.45
Phosphoglycolate phosphatase CG7695-PA C18H2.4	Escherichia coli Pyrococcus horikoshii Drosophila melanogaster Caenorhabditis elegans	104-140 80-177 20-37 21-60	55.21 54.69 54.45 54.21
Phosphoglycolate phosphatase CG7695-PA C18H2.4 Claudin containing domain 1	Escherichia coli Pyrococcus horikoshii Drosophila melanogaster Caenorhabditis elegans Mus musculus	104-140 80-177 20-37 21-60 22-59	55.21 54.69 54.45 54.21 54.19
Phosphoglycolate phosphatase CG7695-PA C18H2.4 Claudin containing domain 1 Phosphomannomutase 1	Escherichia coli Pyrococcus horikoshii Drosophila melanogaster Caenorhabditis elegans Mus musculus Homo sapiens	104-140 80-177 20-37 21-60 22-59 116-160	55.21 54.69 54.45 54.21 54.19 54.15
Phosphoglycolate phosphatase CG7695-PA C18H2.4 Claudin containing domain 1 Phosphomannomutase 1 Myc_target_1: Myc target protein 1	Escherichia coli Pyrococcus horikoshii Drosophila melanogaster Caenorhabditis elegans Mus musculus Homo sapiens	104-140 80-177 20-37 21-60 22-59 116-160 1-39	55.21 54.69 54.45 54.21 54.19 54.15 54.06
Phosphoglycolate phosphatase CG7695-PA Claudin containing domain 1 Phosphomannomutase 1 Myc_target_1: Myc target protein 1 Translocation associated membrane protein	Escherichia coli Pyrococcus horikoshii Drosophila melanogaster Caenorhabditis elegans Mus musculus Homo sapiens	104-140 80-177 20-37 21-60 22-59 116-160 1-39 173-220	55.21 54.69 54.45 54.21 54.19 54.15 54.06 54.03
Phosphoglycolate phosphatase CG7695-PA C18H2.4 Claudin containing domain 1 Phosphomannomutase 1 Myc_target_1: Myc target protein 1 Translocation associated membrane protein MiRP K channel accessory subunit family (mps-4)	Escherichia coli Pyrococcus horikoshii Drosophila melanogaster Caenorhabditis elegans Mus musculus Homo sapiens Caenorhabditis elegans	104-140 80-177 20-37 21-60 22-59 116-160 1-39 173-220 6-49	55.21 54.69 54.45 54.21 54.19 54.15 54.06 54.03 54.02
Phosphoglycolate phosphatase CG7695-PA Claudin containing domain 1 Phosphomannomutase 1 Myc_target_1: Myc target protein 1 Translocation associated membrane protein MiRP K channel accessory subunit family (mps-4) MCTP-related	Escherichia coli Pyrococcus horikoshii Drosophila melanogaster Caenorhabditis elegans Mus musculus Homo sapiens Caenorhabditis elegans	104-140 80-177 20-37 21-60 22-59 116-160 1-39 173-220 6-49 9-75	55.21 54.69 54.45 54.21 54.19 54.15 54.03 54.02 53.90

Phosphoserine aminotransferase	Mycobacterium	91-140	53.25
	tuberculosis		
Phosphoserine aminotransferase	Campylobacter jejuni	104-140	53.11
Claudin domain containing 1 protein isoform b	Homo sapiens	22-59	52.75
Integral membrane protein	Streptomyces coelicolor	26-54	52.57
Y77E11A.12a	Caenorhabditis elegans	9-62	52.43
Twin arginine translocase protein A	Frankia alni ACN14a	25-37	52.36
Motif Scan			
Lysine-rich region profile		142-233	12.082
Bipartite nuclear localization signal profile		183-199	4.000
I-TASSER		1	
Type I hyperactive antifreeze protein	Pseudopleuronectes		1.64
	americanus		
Antigen MTB48, Mycobacterial protein (2)	Mycobacterium smegmatis		1.20, 1.37
LEOA	Escherichia coli		1.05
Serine/threonine-protein kinase mTOR	Homo sapiens		1.03
Hemocyanin KLH1	Megathura crenulata		1.02
Accumulation associated protein	Staphylococcus		1.33
	epidermidis		
Flagellar hook-associated protein	Burkholderia pseudomallei		0.572
Type I hyperactive antifreeze protein	Pseudopleuronectes		0.563
	americanus		
Flagellar hook-associated protein 1	Salmonella enterica		0.560
Phospholipase C beta	Meleagris gallopavo		0.546
LEOA	Escherichia coli		0.540
1-phosphatidylinositol 4,5-bisphosphate	Homo sapiens		0.532
phosphodiesterase beta-3			
Multidrug resistance protein pgp-1	Caenorhabditis elegans		0.521
Interferon-induced guanylate-binding protein 1	Homo sapiens		0.520
Predict Protein		1	
Protein binding		1	
Cytoplasm			
Muscle M-line assembly protein unc-89	Harpegnathos saltator		0.19
Conjugative transposon TraM protein	Parabacteroides sp. 20_3		0.70
Atome2		1	1
Methly-coenzyme M reductase I alpha subunit	Methanopyrus kandleri		85.07

Dolichyl-diphosphooligosaccharide-protein	Saccharomyces cerevisiae	65.74
glycosyltransferase subunit STT3		
Succinylglutamate desuccinylase	Chromobacterium	55.83
	violaceum	
Matrix protein 1	Influenza A virus	39.16
Receptor tyrosine-protein kinase erbB-2	Homo sapiens	38.24
Cyclic nucleotide-gated cation channel alpha-3	Homo sapiens	37.26
Talin-1 (F2F3 subdomain, UNP residues 206-405)	Mus musculus	23.21
Proteasome-associated ATPase (Coil coil domain)	Mycobacterium	21.27
	tuberculosis	
Cytochrome c oxidase subunit 1	Thermus thermophilus	18.60
Helix-destabilizing protein	Enterobacteria phage T7	18.55
Ion transport protein	Magnetococcus marinus	18.17
Myosin light chain	Saccharomyces cerevisiae	16.20
Soluble cytochrome b562, Smoothened homolog	Homo sapiens	15.95
Formaldehyde-activating enzyme fae	Methylobacterium	13.89
	extorquens	

NOTE : For Supplementary Tables XI-XLV HHpred and @tome 2 use probabilities /100; I-TASSER Z scores > 1.0 and TM scores > 0.5 are significant; BLASTP & Predict Protein E-values < 1.0 are significant (adjusted from developer's recommendation of 10.0); PSIBLAST E-values < 0.001 are significant; Motif Scan N-scores do not have a significance threshold, a higher score indicates a better match.

Supplementary Table XIV. Inversidens japanensis M-ORF function predictions

Hits (n)	Species	Position	Probability
HHpred			
TIGR03304 outer membrane insertion C-terminal signal		40-44	99.25
TIGR04294 prepilin-type processing-associated H-X9-		28-31	99.21
DG domain			
TIGR01167 LPXTG cell wall anchor domain		103-107	98.80
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		46-64	97.73
TIGR03501 GlyGly-CTERM domain		22-35	96.74
TIGR00756 pentatricopeptide repeat domain		1-14	94.79
CG32245-PB, isoform B	Drosophila melanogaster	17-63	94.34
Septum formation initiator	Beggiatoa sp. PS	25-47	88.31
--	--------------------------	--------	-------
CG32245-PA, isoform A	Drosophila melanogaster	17-63	87.71
CG32245-PC, isoform C	Drosophila melanogaster	17-63	86.87
T24B1.1	Caenorhabditis elegans	3-48	85.10
SYP51 (SYNTAXIN OF PLANTS 51) (2)	Arabidopsis thaliana	1-42	83.61
STOmatin family member (sto-6)	Caenorhabditis elegans	19-59	82.81
Photosystem II reaction center protein PsbN	Synechococcus sp.	15-44	79.61
	CC9311		
STOmatin family member (sto-4)	Caenorhabditis elegans	21-59	79.10
	Caenorhabditis elegans	20-63	79.02
MEChanosensory abnormality family member (mec-2)	Caenorhabditis elegans	21-63	78.75
Stomatin isoform a	Homo sapiens	20-63	78.31
Podocin	Homo sapiens	21-63	76.82
Golgi autoantigen, golgin subfamily a, 5	Homo sapiens	3-48	76.72
F0F1-type ATP synthase, subunit b	Lactobacillus casei	20-45	76.70
SYP52 (SYNTAXIN OF PLANTS 52) (2)	Arabidopsis thaliana	1-41	76.63
Stomatin (Epb7.2)-like 3	Mus musculus	21-59	76.25
UNCoordinated family member (unc-1)	Caenorhabditis elegans	19-63	74.89
STOmatin family member (sto-2)	Caenorhabditis elegans	21-63	74.40
CG7635-PA	Drosophila melanogaster	21-59	72.95
Ring finger protein 183	Mus musculus	24-63	71.09
CG14644-PA	Drosophila melanogaster	21-63	70.71
ATP synthase F0 B subunit	Desulfitobacterium	23-45	69.95
	hafniense		
Y45F3A.8	Caenorhabditis elegans	24-37	69.72
F0F1 ATP synthase subunit B	Escherichia coli	23-45	69.20
Cell divison protein FtsB	Escherichia coli	26-53	68.45
Sec20		23-42	68.00
ATP synthase (subunit b)	Bacillus subtilis	22-45	67.79
CG14736-PA, isoform A	Drosophila melanogaster	21-59	66.71
Cell divison protein FtsB	Yersinia pestis CO92	26-47	65.60
Tumor endothelial marker 8 isoform 2 precursor	Homo sapiens	17-42	63.80
MEChanosensory abnormality family member (mec-2)	Caenorhabditis elegans	19-63	62.96
DNA repair protein complementing XP-A cells		59-114	62.85
Pheromone-regulated protein, induced during cell	Saccharomyces cerevisiae	15-42	62.69
integrity signaling			

ATP synthase B/B' CF(0)		23-45	62.51
ATP synthase chain b""	Synechococcus sp.	22-45	62.44
	CC9311		
S-antigen		24-42	62.44
PaTched Related family member (ptr-12)	Caenorhabditis elegans	2-41	62.40
Stomatin-prohibitin homolog, transmembrane	Haloferax volcanii DS2	22-59	62.08
D2085.6	Caenorhabditis elegans	2-45	62.01
Endoplasmic Reticulum-Golgi Intermediate		3-41	60.13
Compartment (ERGIC)			
CG10737-PA, isoform A	Drosophila melanogaster	26-94	59.87
Translocation associated membrane protein		67-106	59.79
Golgi membrane protein, similar to mammalian CASP		23-43	59.55
DNaJ domain family member (dnj-26)	Caenorhabditis elegans	4-42	59.53
ATP synthase subunit B	Corynebacterium	19-45	59.33
	diphtheriae		
Stomatin-like 3	Homo sapiens	19-59	59.04
Anthrax toxin receptor 1	Mus musculus	17-42	58.78
CG10737-PB, isoform B	Drosophila melanogaster	26-94	58.62
STOmatin family member (sto-1)	Caenorhabditis elegans	17-59	58.61
ATBS14A; protein transporter	Arabidopsis thaliana	4-41	57.72
CG10737-PC, isoform C	Drosophila melanogaster	26-94	57.24
CG10737-PD, isoform D	Drosophila melanogaster	26-94	57.24
CG31358-PA	Drosophila melanogaster	21-59	57.24
Nephrosis 2 homolog, podocin	Mus musculus	19-59	56.75
SYP61	Arabidopsis thaliana	1-39	56.60
Melanocortin 2 receptor accessory protein isoform alpha	Homo sapiens	23-37	55.13
ATP synthase subunit B	Bartonella henselae	23-45	54.94
ATP synthase F0, B subunit	Streptococcus pneumoniae	22-45	54.79
Melanocortin 2 receptor accessory protein isoform beta	Homo sapiens	23-37	54.11
C35D10.8	Caenorhabditis elegans	4-43	54.11
CG13409-PA	Drosophila melanogaster	14-46	53.62
ATP synthase subunit B	Streptomyces coelicolor	19-45	53.22
Actin binding	Arabidopsis thaliana	26-38	52.92
AFH1	Arabidopsis thaliana	25-36	52.85
BLASTP			
ATP synthase F0 subunit B	Lachnospiraceae bacterium	18-116	0.57

Motif Scan			
Lysine-rich region profile		49-118	10.073
I-TASSER		1	1
Nucleotidyltransferase	Agrobacterium fabrum		0.668
Bacteriorhodopsin	Halobacterium salinarum		0.666
Halorhodopsin	Natronomonas pharaonis		0.665
Deltarhodopsin	Haloterrigena		0.663
	thermotolerans		
Archaerhodopsin-1	Halorubrum chaoviator		0.662
Archaerhodopsin-2	Halobacterium sp. AUS-2		0.660
Cruxrhodopsin-3	Haloarcula vallismortis		0.657
Halorhodopsin	Halobacterium salinarum		0.652
Predict Protein		1	1
Protein binding		1-4, 43,	
		90, 92	
Polynucleotide binding		64	
Mitochondrion			
Atome2			•
Second mitochondria-derived activator of caspases	Homo sapiens		76.53
Guanine nucleotide exchange factor P115RHOGEF	Homo sapiens		71.51
Rep (DNA-bindig domain)	Escherichia coli		69.62
Nuclear factor of activated T-cells	Homo sapiens		37.72
Antifreeze peptide SS-3	Myoxocephalus scorpius		34.95
Nonstructural protein 5A (BVDV NS5A)	Bovine viral diarrhea virus		33.37
Functional anti-apoptotic factor vBCL-2 homolog	Human herpesvirus 8		27.14
Ion transport protein (Pore and cytoplasmic domains)	Alkalilimnicola ehrlichii		25.55
Thymosin alpha-1	Homo sapiens		24.55
Cytochrome c oxidase subunit 1	Thermus thermophilus		24.36
Ion transport protein	Magnetococcus marinus		23.40
NHE1 isoform of Na+/H+ exchanger (Transmembrane	Meriones unguiculatus		23.11
segment VII)			
Apoptosis regulator BAK	Homo sapiens		18.22

NOTE : For Supplementary Tables XI-XLV HHpred and @tome 2 use probabilities /100; I-TASSER Z scores > 1.0 and TM scores > 0.5 are significant; BLASTP & Predict Protein E-values < 1.0 are significant (adjusted from developer's recommendation of 10.0); PSIBLAST E-values < 0.001 are significant; Motif Scan N-scores do not have a significance threshold, a higher score indicates a better match.

Hits (n)	Species	Position	Probability
HHpred		1	
TIGR03304 outer membrane insertion C-terminal signal		53-60	99.16
TIGR04294 prepilin-type processing-associated H-X9-		41-44	99.06
DG domain			
TIGR01167 LPXTG cell wall anchor domain		18-38	98.89
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		107-121	97.32
TIGR03501 GlyGly-CTERM domain		26-38	97.24
TIGR00756 pentatricopeptide repeat domain		32-39	92.61
F58B4.4	Caenorhabditis elegans	59-97	84.64
EGF-like-domain, multiple 5	Mus musculus	19-43	78.12
F13D12.5	Caenorhabditis elegans	15-46	77.77
T21B10.4	Caenorhabditis elegans	15-46	75.99
Catenin alpha-1; four helix bundle, cell adhesion	Mus musculus	145-158	75.96
ZK945.3	Caenorhabditis elegans	132-183	72.81
Cytochrome c oxidase		20-50	72.15
Transcriptional regulator	Lactobacillus casei	134-163	71.49
Pheromone-regulated protein, DUP240 gene family	Saccharomyces cerevisiae	6-85	71.19
Peptidase A24A prepilin type IV	Candidatus Korarchaeum	10-63	69.06
	cryptofilum OPF8		
Mitochondrial ribosomal protein S23		44-51	65.64
CG18146-PB, isoform B	Drosophila melanogaster	21-47	65.59
Catenin alpha-1; four helix bundle	Mus musculus	145-158	61.01
Beta-lactamase	Pseudomonas fluorescens	143-163	60.65
Phosphatidylserine decarboxylase	Methanosarcina mazei Go1	19-102	60.03
Septation ring formation regulator EzrA	Streptococcus pneumoniae	16-42	59.30
Reticulon 1 isoform A	Homo sapiens	4-56	59.03
Trigger factor ribosome-binding domain (102735) SCOP		141-167	58.82
seed sequence: d1w26a2			
Hup-type Ni,Fe-hydrogenase cytochrome b subunit	Desulfitobacterium	4-78	57.93

Supplementary Table XV. Utterbackia peninsularis M-ORF function predictions

	hafniense Y51		
Transcriptional regulator, TetR family	Staphylococcus aureus	140-163	57.48
	subsp. aureus COL		
CG32048-PA, isoform A	Drosophila melanogaster	147-216	57.23
Essential cell division protein	Escherichia coli K12	18-44	56.08
Trigger factor ribosome-binding domain (102735) SCOP		141-167	56.00
seed sequence: d1t11a2			
F56H1.3	Caenorhabditis elegans	19-45	55.38
YajQ-like (89963) SCOP seed sequence: d1in0a1		143-164	54.62
Transmembrane protein	Mycobacterium	4-40	54.42
	tuberculosis		
POTASSIUM VOLTAGE-GATED CHANNEL		20-38	53.73
SUBFAMILY E MEMBER 1, 3.			
Multi-sensor hybrid histidine kinase	Nostoc punctiforme	8-62	53.52
Acyltransferase	Streptomyces coelicolor	126-160	53.51
PELOTA_1 PELOTA RNA binding domain.		131-172	53.49
F55C12.5c	Caenorhabditis elegans	2-61	51.82
Y77E11A.12a	Caenorhabditis elegans	4-60	50.58
Transcriptional regulator MvaT, P16 subunit	Pseudomonas aeruginosa	130-213	49.58
Sensor histidine kinase	Bartonella henselae	1-50	49.57
Zinc finger, DHHC domain containing 5	Mus musculus	2-45	49.44
D2092.1a	Caenorhabditis elegans	4-84	49.18
Olfactory receptor, family 6, subfamily C, member 6	Homo sapiens	1-44	48.98
C18H2.4	Caenorhabditis elegans	20-45	48.86
Secretory carrier-associated membrane protein		26-53	48.67
(SCAMP)			
Thiamin diphosphate-binding fold (THDP-binding)		91-152	48.59
(52518) SCOP seed sequence: d1b0pa2			
PELOTA RNA binding domain		141-172	48.40
AMPC beta-Lactamase, class C	Citrobacter freundii	140-163	47.16
Transcriptional regulator, TetR family protein	Streptococcus pneumoniae	144-163	46.07
Chromatin regulatory protein SIR2		97-119	45.86
Toll-like receptor 7	Mus musculus	20-80	45.51
K+_transpter_TRK		20-48	45.40
Sec-independent protein translocase protein TatB	Yersinia pestis	23-55	44.37
Zinc finger DHHC domain-containing protein		10-51	44.23

RNA recognition motif in regulators of calcineurin		137-159	44.00
(RCANs) and similar proteins.			
Maltose: maltodextrin transport system permease	Haloferax volcanii	20-53	43.91
Phospholipid/glycerol acyltransferase	Beggiatoa sp. PS	131-176	43.89
Podocalyxin-like precursor isoform 2	Homo sapiens	19-46	43.69
Alpha amylase catalytic domain		129-164	43.63
Beta-lactamase ACT-1	Klebsiella pneumoniae	140-163	43.59
Metal ion binding	Arabidopsis thaliana	2-43	43.14
Neopullulanase, central domain	Bacillus stearothermophilus	129-164	42.86
Neopullulanase, central domain	Bacillus stearothermophilus	129-164	42.86
GH36 glycosyl hydrolase family 36 (GH36)		143-164	42.83
Trigger factor, TF; chaperone	Thermotoga maritima	140-167	42.76
T22E7.2	Caenorhabditis elegans	10-45	42.75
Zinc finger, DHHC domain containing 5	Homo sapiens	2-45	42.71
UCP016495		149-189	42.37
Organic solute transporter-related		3-36	41.59
Trigger_N: Bacterial trigger factor protein (TF)		140-167	41.54
SUPFAM template c.1.8 (Trans) glycosidases (51445)		141-164	41.40
SCOP seed sequence: d1gcya2			
Motif Scan		1	1
Lysine-rich region profile		115-206	9.500
Bipartite nuclear localization signal profile		166-180	4.000
I-TASSER		1	1
4-Hydroxybutyrate CoA-transferase	Clostridium aminobutyricum		0.605
4-hydroxybutyrate coenzyme A transferase	Shewanella oneidensis		0.604
4-hydroxybutyrate CoA-transferase	Porphyromonas gingivalis		0.603
Coenzyme A transferase	Yersinia pestis		0.598
4-hydroxybutyrate CoA-transferase	Porphyromonas gingivalis		0.565
Succinyl-CoA:acetate coenzyme A transferase	Acetobacter aceti		0.565
Acetyl-CoA hydrolase/transferase family protein	Porphyromonas gingivalis		0.553
Predict Protein		1	1
Protein binding		41, 77,	
		92, 95-	
		98, 118,	
		127	
Cytoplasm			

Atome2		
Vinculin	Gallus gallus	50.72
ADP-ribosylation factor binding protein GGA	Homo sapiens	42.58
80 kDa MCM3-associated protein	Homo sapiens	41.19
LCoR protein	Homo sapiens	36.28
Transcriptional repressor COPG	Streptococcus agalactiae	34.49
HIG1 domain family member 1B	Homo sapiens	29.87
Uncharacterized protein 56B (transcription repressor)	Sulfolobus islandicus rod-	27.96
	shaped virus 1	
Talin-1 (F2F3 subdomain, UNP residues 206-405)	Mus musculus	26.08
ScpA	Geobacillus	22.94
	stearothermophilus	
HIG1 domain family member 1A	Homo sapiens	21.45
PInE	Lactobacillus plantarum	15.35

Supplementary Table XVI. Solenaia carinatus M-ORF function predictions

Hits (n)	Species	Position	Probability
HHpred			
TIGR04294 prepilin-type processing-associated H-X9-		27-30	99.15
DG domain			
TIGR01167 LPXTG cell wall anchor domain		80-85	98.88
TIGR03304 outer membrane insertion C-terminal signal		6-7	98.75
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		60-67	97.95
TIGR03501 GlyGly-CTERM domain		21-36	97.04
TIGR00756 pentatricopeptide repeat domain		3-13	94.60
W06F12.2a	Caenorhabditis elegans	20-59	90.96
SAP		38-58	90.80
S-antigen		23-41	90.41
ZK973.11	Caenorhabditis elegans	11-43	80.48

Thioredoxin domain containing 10	Homo sapiens	11-43	79.74
UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase 5	Homo sapiens	12-51	77.75
V-type ATPase 116 kDa subunit	Nitrosopumilus maritimus	4-60	70.53
Thioredoxin domain containing 10	Mus musculus	11-113	70.01
Golgi autoantigen, golgin subfamily a, 5	Homo sapiens	22-47	69.90
Photosystem II reaction center protein PsbN	Synechococcus sp.	14-45	68.30
	CC9311		
CG10207-PA	Drosophila melanogaster	23-131	67.76
PRP38 pre-mRNA processing factor 38 (yeast) domain	Homo sapiens	4-58	64.40
containing B			
CG14084-PB, isoform B	Drosophila melanogaster	5-40	63.61
CG14084-PA, isoform A	Drosophila melanogaster	5-40	63.61
ZK757.4b	Caenorhabditis elegans	23-45	61.92
F12B6.2b	Caenorhabditis elegans	22-124	59.84
Binding	Arabidopsis thaliana	3-58	59.77
V-type ATP synthase subunit I	Methanopyrus kandleri	4-60	59.58
F12B6.2a	Caenorhabditis elegans	10-141	59.54
Golgi membrane protein with similarity to mammalian	Saccharomyces cerevisiae	22-41	59.34
CASP			
Hydrolase, hydrolyzing O-glycosyl compounds	Arabidopsis thaliana	23-44	59.22
CG1622-PA	Drosophila melanogaster	4-44	58.83
CG17287-PA	Drosophila melanogaster	23-45	58.07
Sec20 is a membrane glycoprotein associated with		3-41	57.96
secretory pathway			
CG14181-PA	Drosophila melanogaster	1-56	57.83
DNA-binding transcription factor required for the	Saccharomyces cerevisiae	1-41	57.24
activation of the GAL genes in response to galactose;			
repressed by Gal80p and activated by Gal3p			
Y15E3A.4	Caenorhabditis elegans	22-89	56.55
AC3.10	Caenorhabditis elegans	22-45	56.54
ZK757.4a	Caenorhabditis elegans	23-46	56.20
Y116A8C.41	Caenorhabditis elegans	23-58	55.43
Actin binding	Arabidopsis thaliana	25-33	55.06
CG30272-PA	Drosophila melanogaster	22-119	54.95
Similar to S. cerevisiae PKR1	Schizosaccharomyces	7-61	54.74
	pombe		

PRP38 pre-mRNA processing factor 38 (yeast) domain	Mus musculus	4-44	54.67
containing B			
Protein transporter	Arabidopsis thaliana	2-41	54.37
VAC_I2L		4-42	54.08
Y47H9C.2	Caenorhabditis elegans	14-46	53.55
Metal ion binding	Arabidopsis thaliana	22-46	53.52
Metal ion binding	Arabidopsis thaliana	22-46	53.13
Photosystem II reaction center protein N	Nostoc punctiforme	21-45	53.05
ATBS14A; protein transporter	Arabidopsis thaliana	2-41	52.99
BCL2/adenovirus E1B 19kD interacting protein 1 isoform	Homo sapiens	2-52	52.89
BNIP1			
Sarcolycans		21-42	52.86
Binding	Arabidopsis thaliana	4-58	52.79
T12G3.7	Caenorhabditis elegans	26-88	52.77
Membrane associated histidine-rich protein, MAHRP-1		1-41	52.62
Integral membrane protein	Streptomyces coelicolor	22-49	52.09
CG6627-PA	Drosophila melanogaster	21-46	51.18
Zinc finger, DHHC domain containing 15	Mus musculus	22-45	51.04
CG32245-PB, isoform B	Drosophila melanogaster	16-43	50.50
CHL00020 psbN photosystem II protein N		21-45	50.47
ZC190.8	Caenorhabditis elegans	21-41	50.24
PsbN: Photosystem II reaction centre N protein (psbN)		21-45	49.96
Y51F10.4b	Caenorhabditis elegans	5-43	49.92
ATP synthase subunit I	Sulfolobus solfataricus	4-60	48.84
Erf4: Golgin subfamily A member 7/ERF4 family		5-58	48.74
Photosystem I subunit III	Synechocystis sp.	13-42	48.61
PsbN Photosystem II reaction centre N protein (psbN)		21-45	47.86
CG8421-PB, isoform B	Drosophila melanogaster	20-46	47.40
Rab5ip Rab5-interacting protein (Rab5ip)		23-61	47.18
Subunit III of photosystem I reaction centre, PsaF	Synechococcus elongatus	13-42	47.18
Stomatin-like 3	Homo sapiens	18-43	47.17
BLASTP	1		1
Transmembrane protein 72, partial	Anas platyrhynchos	47-129	0.95
Motif Scan			
Lysine-rich region profile		48-119	11.508
Predict Protein		-	

Protein binding		17-19,	
		43-45,	
		66	
Polynucleotide binding		49, 63	
Mitochondrion			
Atome2		1	1
RAD50 ABC-ATPase (N-terminal domain)	Pyrococcus furiosus		84.72
Cytoplasmic FMR1-interacting protein 1	Homo sapiens		65.70
Chromosomal replication initiator protein dnaA	Mycoplasma genitalium		62.22
KIAA0380 (RGS-like domain (residues 281-490))	Homo sapiens		59.65
Autophagy protein 1 (coiled-coil domain)	Saccharomyces cerevisiae		52.37
V-type ATP synthase subunit E	Methanocaldococcus		51.34
	jannaschii		
Nuclear pore complex protein Nup54 (UNP residues	Rattus norvegicus		51.32
346-407)			
B-cell receptor-associated protein 31	Homo sapiens		46.96
Protein NRD1 (CTD-interacting domain, unp residues 6-	Saccharomyces cerevisiae		45.58
151)			
Photosystem I P700 chlorophyll a apoprotein A1	Synechococcus elongatus		42.88
Transcription factor ATF-4	Homo sapiens		38.86
Cytochrome c oxidase subunit 1	Thermus thermophilus		27.52
Bcl-2-like protein 2 (UNP residues 2-171)	Bos taurus		24.75
Lmo2059 protein (KVLM pore module, truncated C-	Listeria monocytogenes		24.64
terminus (UNP residues 98-233))			
Nonstructural protein 5A (BVDV NS5A)	Bovine viral diarrhea virus		22.35
DNA-(apurinic or apyrimidinic site) lyase	Homo sapiens		4.84

Hits (n)	Species	Position	Probability
HHpred			
TIGR04294 prepilin-type processing-associated H-X9-		30-34	99.52
DG domain			
TIGR03304 outer membrane insertion C-terminal signal		51-56	99.20
TIGR01167 LPXTG cell wall anchor domain		14-35	98.77
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		13-16	97.81
TIGR03501 GlyGly-CTERM domain		16-26	97.14
TIGR00756 pentatricopeptide repeat domain		39-51	94.35
CG9552-PA	Drosophila melanogaster	18-60	87.49
YMF19 Plant ATP synthase F0		17-43	84.86
Secretory carrier-associated membrane protein		18-38	84.05
(SCAMP)			
Protein binding	Arabidopsis thaliana	16-54	81.54
F01E11.3	Caenorhabditis elegans	16-24	80.16
YMF19: Plant ATP synthase F0		17-46	69.49
ATP synthase subunit B	Agrobacterium tumefaciens	17-50	67.80
Selenoprotein_S: Selenoprotein S (SelS)		8-42	66.63
VP35_FiloV		13-21	63.95
CYTOCHROME C1		21-48	63.67
F56F4.7	Caenorhabditis elegans	57-95	62.52
Carrier	Arabidopsis thaliana	18-38	62.02
Syndecan		16-41	59.22
CG18146-PB, isoform B	Drosophila melanogaster	20-51	55.88
CG30389-PA, isoform A	Drosophila melanogaster	18-37	55.74
CG30389-PC, isoform C	Drosophila melanogaster	18-37	55.74
CG2023-PA	Drosophila melanogaster	17-38	55.68
CG30415-PB, isoform B	Drosophila melanogaster	9-39	54.50
CG30415-PA, isoform A	Drosophila melanogaster	9-39	54.50
SC3 (secretory carrier 3)	Arabidopsis thaliana	18-49	53.74
Y46G5A.26b	Caenorhabditis elegans	18-26	53.07
CD4.1	Caenorhabditis elegans	9-46	52.82
F0F1 ATP synthase subunit B'		17-50	50.26
SCAMP homolog family member (scm-1)	Caenorhabditis elegans	18-38	50.18
Protein binding	Arabidopsis thaliana	16-48	48.42

Supplementary Table XVII. Cumberlandia monodonta M-ORF function predictions

Agal		11-18	48.41
CG16707-PD, isoform D	Drosophila melanogaster	20-42	47.94
CG16707-PC, isoform C	Drosophila melanogaster	20-42	47.94
Sperm-associated cation channel 2	Mus musculus	15-33	47.25
BCL2/adenovirus E1B 19kD interacting protein 1 isoform	Homo sapiens	17-38	46.86
BNIP1-c			
Transmembrane protein 57	Mus musculus	18-37	46.30
Syntaxin 7	Homo sapiens	17-39	44.74
Carrier	Arabidopsis thaliana	18-34	44.59
Syntaxin 7	Mus musculus	17-39	44.47
Carrier	Arabidopsis thaliana	18-34	43.51
S-antigen	Plasmodium falciparum	18-32	42.94
Y47D7A.13	Caenorhabditis elegans	7-26	42.68
G-protein-linked Acetylcholine Receptor family member	Caenorhabditis elegans	18-49	41.32
(gar-1)			
Transmembrane protein 57	Homo sapiens	18-37	41.20
ATP synthase subunit B	Streptomyces coelicolor	17-50	40.92
ATP synthase subunit B	Bartonella henselae	17-49	40.84
Homeodomain-like (46689) SCOP seed sequence:		10-21	40.78
d1hlva2			
Related to Secretory carrier-associated membrane		18-34	40.31
protein 2			
C15A7.2	Caenorhabditis elegans	20-59	40.10
Zinc beta-ribbon (57783) SCOP seed sequence:		25-31	39.90
d1yuaa1			
Carrier	Arabidopsis thaliana	18-34	39.62
Secretory carrier membrane protein 1 isoform 1	Homo sapiens	18-34	38.98
PeRoxireDoXin family member (prdx-6)	Caenorhabditis elegans	21-45	38.74
E set domains (81296) SCOP seed sequence: d1eh9a1		54-64	38.39
High affinity copper uptake protein 1; HCTR1 TMDS,	Homo sapiens	15-24	37.97
oligomerization, metal transport			
F11G11.10	Caenorhabditis elegans	14-24	37.43
CG32177-PA	Drosophila melanogaster	14-42	37.06
NK inhibitory receptor precursor	Homo sapiens	18-41	36.95
DUF4381 Domain of unknown function (DUF4381)		16-46	36.93
CG3268-PA	Drosophila melanogaster	18-40	36.73

UCP014405		33-54	36.16
CG9195-PA, isoform A	Drosophila melanogaster	18-34	35.18
CG15673-PA	Drosophila melanogaster	17-41	35.13
Metal ion binding	Arabidopsis thaliana	41-93	34.53
Metal ion binding	Arabidopsis thaliana	41-93	34.53
ATP synthase subunit B	Bartonella henselae	17-35	34.36
SRF-like (55455) SCOP seed sequence: d1mnma_		36-50	34.35
Secretory carrier membrane protein 2	Mus musculus	18-34	34.20
BCL2/adenovirus E1B 19kD interacting protein 1 isoform	Homo sapiens	17-38	33.55
BNIP1-b			
BLASTP	I		1
Plant ATP synthase F0		17-46	3.97e-03
Motif Scan	I		1
Lysine-rich region profile		38-93	10.360
Prokaryotic membrane lipoprotein lipid attachment site		1-29	6.000
profile			
I-TASSER	I		I
Enoyl-CoA hydratase EchA1	Mycobacterium marinum		1.76
40S ribosomal protein S4, X isoform	Homo sapiens		1.22
Enoyl-coA hydratase/isomerase	Mycobacterium abscessus		1.23
Enoyl-CoA hydratase EchA17	Mycobacterium marinum		1.20
Carnitinyl-CoA dehydratas	Mycobacterium avium		1.19
Enoyl-CoA hydratase, EchA12_1	Mycobacterium marinum		1.19
Enoyl-CoA hydratase/carnithine racemase	Magnetospirillum		1.50
	magneticum		
Enoyl-CoA hydratase/isomerase family protein	Bacillus anthracis		0.882
Enoyl-CoA hydratase	Mycobacterium smegmatis		0.876
Methylglutaconyl-CoA hydratase	Homo sapiens		0.875
Enoyl-CoA hydratase echA8	Mycobacterium		0.874
	tuberculosis		
Enoyl-CoA hydratase	Mycobacterium smegmatis		0.874
Naphthoate synthase	Staphylococcus aureus		0.873
2,3-dehydroadipyl-CoA hydratase	Escherichia coli		0.872
Predict Protein	1	1	1
Protein binding		1, 18,	
		29, 33,	

		36, 46	
Polynucleotide binding		92	
Nucleus			
Atome2			
SVP1-like protein 2	Kluyveromyces lactis		78.90
Rhomboid Intramembrane Protease	Pseudomonas aeruginosa		63.14
U3 small nucleolar RNA-associated protein 22	Saccharomyces cerevisiae		43.16
DNA-directed RNA polymerase subunit alpha	Escherichia coli		42.29
Myosin-X (MyTH4-FERM tandem)	Homo sapiens		33.40
Multidrug transporter emrE	Escherichia coli		28.36
Actin, alpha skeletal muscle	Oryctolagus cuniculus		24.15
Calcium-activated potassium channel RSK2	Rattus norvegicus		19.69
Calmodulin	Rattus norvegicus		19.51
Ion transport protein	Magnetococcus marinus		16.41
Calmodulin	Homo sapiens		15.33
High affinity copper uptake protein 1	Homo sapiens		8.26
14-3-3 protein beta/alpha	Mus musculus		7.34

Supplementary Table XVIII. Hyridella menziesii M-ORF function predictions

Hits (n)	Species	Position	Probability
HHpred			
TIGR04294 prepilin-type processing-associated H-X9-		107-111	99.58
DG domain			
TIGR03304 outer membrane insertion C-terminal signal		53-56	99.19
TIGR01167 LPXTG cell wall anchor domain		93-109	98.67
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		123-137	97.91
Apolipoprotein Apolipoprotein A1/A4/E domain		170-296	97.84
Apolipoprotein Apolipoprotein A1/A4/E domain		169-296	97.83

Apolipoprotein A-I; lipid transport; NMR	Mus musculus	169-296	97.66
TIGR03501 GlyGly-CTERM domain (rank 8)		98-109	96.67
a.24.1 Apolipoprotein (47162) SCOP seed sequence:		182-286	97.42
d1bz4a_			
Apolipoprotein A-I; lipid transport	Mus musculus	169-289	97.29
Apolipoprotein E (2)	Homo sapiens	167-288	97.27
Apolipoprotien		169-296	97.19
Apolipoprotein (47162) SCOP seed sequence: d1bz4a		170-263	97.18
Apolipoprotein A-I preproprotein	Homo sapiens	170-296	97.12
Apolipoprotein A-I	Homo sapiens	169-284	97.09
Apolipoprotein A-I preproprotein	Homo sapiens	169-296	97.08
Apolipoprotein A-I; four-helix bundle, lipid transport; (3)	Homo sapiens	169-296	96.92 -
			97.08
Apolipoprotein A-I; four-helix bundle, lipid transport;	Homo sapiens	167-296	97.02
Apolipoprotein	Homo sapiens	170-296	96.88
Apolipoprotein E (2)	Homo sapiens	171-264	96.85
Apolipoprotein E3	Homo sapiens	181-295	96.79
Apolipoprotein E3	Homo sapiens	167-261	96.78
Y51F10.4a	Caenorhabditis elegans	20-296	96.48
Apolipoprotein E, APO-E	Homo sapiens	170-296	96.44
Y51F10.4a	Caenorhabditis elegans	20-289	96.35
Y51F10.4b	Caenorhabditis elegans	17-298	95.84
Apolipoprotein E, APO-E	Homo sapiens	169-264	95.77
abortive infection protein family	Staphylococcus aureus	11-313	95.21
TIGR00756 pentatricopeptide repeat domain		71-90	93.94
Apolipoprotein: Apolipoprotein A1/A4/E domain		167-296	94.83
Apolipoprotein: Apolipoprotein A1/A4/E domain		167-295	94.49
CG3576-PA, isoform A	Drosophila melanogaster	21-171	93.82
CG3576-PB, isoform B	Drosophila melanogaster	21-171	93.82
Apolipoprotein E, APOE4	Homo sapiens	169-253	93.35
apolipoprotein A-V	Mus musculus	168-296	93.30
Homolog of Yeast Longevity gene family member (hyl-1)	Caenorhabditis elegans	21-109	93.29
Homolog of Yeast Longevity gene family member (hyl-2)	Caenorhabditis elegans	21-174	93.24
apolipoprotein AV	Homo sapiens	168-263	93.12
W06F12.2a	Caenorhabditis elegans	20-109	92.95
Apolipoprotein E, APOE4	Homo sapiens	171-264	92.62

CG30394-PB, isoform B	Drosophila melanogaster	20-306	92.56
CG30394-PA, isoform A	Drosophila melanogaster	20-306	92.56
Longevity assurance homolog 4	Mus musculus	21-109	92.48
Apolipoprotein AV	Homo sapiens	169-295	92.06
Apolipoprotein A-V	Mus musculus	173-296	91.63
Autosomal Highly Conserved Protein	Homo sapiens	10-106	91.54
Longevity assurance factor 1 (LAG1)		7-109	91.38
CG30394-PB, isoform B	Drosophila melanogaster	20-128	90.82
CG30394-PA, isoform A	Drosophila melanogaster	20-128	90.82
LAG1 longevity assurance homolog 4	Homo sapiens	21-109	90.77
Proline-rich transmembrane protein 2	Homo sapiens	17-82	90.76
Translocation protein 1	Mus musculus	50-275	90.69
Integral membrane protein	Streptomyces coelicolor	20-110	90.69
Late embryogenesis abundant (plants) LEA-related		171-298	90.44
Apolipoprotein A-IV precursor	Homo sapiens	169-296	90.32
BLASTP/PSIBLAST	1		
Voltage-dependent anion channel		31-117	1.05e-04
Histone H1-like protein Hc1		213-284	3.78e-03
Microtubule-binding protein MIP-T3		166-313	8.12e-06
Periplasmic protein TonB links inner & outer membranes		201-300	7.59e-04
Cell division protein FtsN		155-286	1.31e-03
fam-a protein	Plasmodium chabaudi	170-294	1e-06
	chabaudi		
Cyclin related protein	Plasmodium chabaudi	168-294	4.00e-05
	chabaudi		
fam-a protein	Plasmodium chabaudi	168-294	7e-05
	chabaudi		
Choline-binding protein A (2)	Streptococcus pneumoniae	179-238	7e-05
Choline-binding protein A (2)	Streptococcus pneumoniae	180-239	7e-05
Surface protein PspC (2)	Streptococcus pneumoniae	179-238	1e-04
Surface protein PspC	Streptococcus pneumoniae	175-309	1e-04
LPXTG-motif cell wall anchor domain protein	Streptococcus pneumoniae	179-238	2e-04
Choline-binding protein A	Streptococcus pneumoniae	182-241	2e-04
Surface protein PspC	Streptococcus pneumoniae	180-239	9e-04
Peptidase	Streptococcus pneumoniae	182-241	0.004
BLASTP			

Surface protein PspC	Streptococcus pneumoniae	179-238	0.007
igA FC receptor	Streptococcus pneumoniae	182-241	0.012
Surface protein PspC	Streptococcus pneumoniae	180-302	0.12
Cyclin related protein	Plasmodium chabaudi	191-250	0.91
	chabaudi		
Motif Scan			I
Lysine-rich region profile		168-294	24.274
Bipartite nuclear localization signal profile		170-	4.000
		185,	
		236-	
		251,	
		269-284	
I-TASSER			1
DNA polymerase subunit gamma-1	Homo sapiens		1.15
Survival motor neuron protein	Homo sapiens		1.79, 2.63
SHERP	Leishmania major		1.41, 1.40
Septation ring formation regulator EZRA	Bacillus subtilis		1.30
Vascular apoptosis-inducing protein 1	Crotalus atrox		1.01
DNA (cytosine-5)-methyltransferase 1	Zea mays		1.15
Accumulation associated protein	Staphylococcus		1.54
	epidermidis		
Tropomyosin	Oryctolagus cuniculus		1.28
Septation ring formation regulator EZRA	Bacillus subtilis		0.943
Predict Protein			I
Protein binding		1-4	
Cytoplasm			
Pneumococcal surface protein C (2)	Streptococcus pneumoniae		6e-32, 2e-
			08
IgA-binding beta antigen (4)	Streptococcus pneumoniae		2e-30- 4e-
			08
Surface protein PcpC (8)	Streptococcus pneumoniae		4e-34- 0.22
Surface protein PspC (10)	Streptococcus pneumoniae		4e-34- 0.22
Titin (15)	Mus musculus		2e-09-
			0.037
Muscle M-line assembly protein unc-89 (16)	Caenorhabditis elegans		1e-12-
			0.018

Atome2		
Nucleoprotein (N-terminal domain (residues 1-74))	Andes virus	63.91
Nuclear distribution protein NUDE-like 1	Homo sapiens	61.83
Alpha-synuclein	Homo sapiens	60.92
Beclin-1	Rattus norvegicus	59.76
Bud site selection protein 6	Saccharomyces cerevisiae	56.98
Spindle and kinetochore-associated protein 3	Homo sapiens	48.52
Actin-related protein 7	Saccharomyces cerevisiae	38.22
Synaptobrevin 2	Rattus norvegicus	33.50
Talin-1 (Vbs2b domain, residues 787-91)	Mus musculus	11.89

Supplementary Table XIX. Anodonta anatina M-ORF function predictions

Hits (n)	Species	Position	Probability
HHpred		•	•
TIGR03304 outer membrane insertion C-terminal signal		57-64	99.24
TIGR04294 prepilin-type processing-associated H-X9-		29-32	99.04
DG domain			
TIGR01167 LPXTG cell wall anchor domain		22-42	98.89
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		102-108	97.70
TIGR03501 GlyGly-CTERM domain		30-42	97.26
TIGR00756 pentatricopeptide repeat domain		102-125	92.98
D2092.1a	Caenorhabditis elegans	1-92	92.91
D2092.1b	Caenorhabditis elegans	1-123	87.46
Y77E11A.12a	Caenorhabditis elegans	2-64	86.20
SaPosin-like Protein family member (spp-14)	Caenorhabditis elegans	19-57	81.56
Multiple C2-domains with two transmembrane regions 1	Homo sapiens	1-132	80.62
isoform L			
Transmembrane protein	Mycobacterium	1-61	79.32
	tuberculosis		

SaPosin-like Protein family member (spp-14)	Caenorhabditis elegans	19-57	79.01
F55C12.5c	Caenorhabditis elegans	11-65	78.50
Mitochondrial ribosomal protein S23		48-55	78.12
Auxilin; four helix bundle, protein binding; NMR	Bos taurus	60-112	77.88
Multiple C2-domains with two transmembrane regions 1	Homo sapien	1-64	76.81
isoform S			
Y77E11A.12b	Caenorhabditis elegans	2-64	76.38
EGF-like-domain, multiple 5	Mus musculus	23-47	76.05
Vacuolar H ATPase family member (vha-7)	Caenorhabditis elegans	21-55	74.03
Oxidoreductase	Arabidopsis thaliana	1-47	73.17
PadR-like family transcriptional regulator	Nostoc punctiforme	4-55	72.42
C01F6.2	Caenorhabditis elegans	5-98	71.70
CG4832-PE, isoform E	Drosophila melanogaster	61-122	71.57
"Winged helix" DNA-binding domain (46785) SCOP		20-64	71.19
seed sequence: d1bm9a_			
GtrA		8-41	69.48
CG33146-PA	Drosophila melanogaster	1-64	68.60
ZK353.4	Caenorhabditis elegans	13-46	67.88
Proline-rich cyclin A1-interacting protein		132-184	67.61
YbaB-like (82607) SCOP seed sequence: d1j8ba_		107-127	67.13
paREP7	Pyrobaculum aerophilum	108-130	65.89
Integral membrane protein	Streptomyces coelicolor	28-56	65.74
CG33171-PE, isoform E	Drosophila melanogaster	19-104	65.66
Chemokine-like factor superfamily 3 isoform a (3)	Homo sapiens	1-82	65.45
SPFH_like core domain of the SPFH superfamily		98-134	65.28
V-type ATPase 116 kDa subunit	Nitrosopumilus maritimus	10-55	64.89
Isopentenyl pyrophosphate isomerase	Thermoplasma acidophilum	47-148	63.71
Transcriptional regulator, PadR-like family	Eggerthella lenta	32-55	63.05
Transcriptional regulator, PadR-like family	Eggerthella lenta	32-55	63.05
UCP004555		107-127	62.33
Peptidase A24A prepilin type IV	Candidatus Korarchaeum	14-67	62.23
	cryptofilum OPF8		
Metal ion binding	Arabidopsis thaliana	14-52	61.57
YbaB-like (82607) SCOP seed sequence: d1puga_		108-127	61.33
Vacuolar H ATPase family member (vha-6)	Caenorhabditis elegans	1-55	60.37
ZK945.3	Caenorhabditis elegans	104-163	59.46

A-type ATP synthase subunit I	Haloferax volcanii	9-55	59.20
NADH dehydrogenase I, A subunit	Neisseria meningitidis	20-92	59.19
Sensor histidine kinase	Bartonella henselae	11-49	58.76
Integral transmembrane protein 2		24-49	58.48
Membrane-associated phospholipid phosphatase	Methanopyrus kandleri	1-87	58.13
CG31247-PB, isoform B	Drosophila melanogaster	19-56	57.68
CG31247-PC, isoform C	Drosophila melanogaster	19-56	57.45
CG31247-PA, isoform A	Drosophila melanogaster	19-56	57.22
CG31247-PD, isoform D	Drosophila melanogaster	19-56	57.22
Zinc finger, DHHC domain containing 5	Mus musculus	14-49	57.19
Multiple C2-domains with two transmembrane regions 2	Homo sapiens	1-64	56.00
UNCoordinated family member (unc-32)	Caenorhabditis elegans	7-55	55.98
PadR-like family transcriptional regulator	Thermofilum pendens	35-70	55.76
BLASTP	1		L
Mucolipin-2	Echinococcus granulosus	97-188	0.22
Motif Scan	1		L
Lysine-rich region profile		121-193	9.643
I-TASSER	1		I
HAT1-interacting factor 1	Saccharomyces cerevisiae		1.11
HAT1-interacting factor 1	Saccharomyces cerevisiae		0.670
Superkiller protein 3	Saccharomyces cerevisiae		0.565
SusD-like carbohydrate binding protein	Bacteroides vulgatus		0.564
G-protein-signaling modulator 2	Mus musculus		0.562
Partner of inscuteable	Drosophila melanogaster		0.553
14-3-3 protein	Cryptosporidium parvum		0.551
SusD superfamily protein	Bacteroides vulgatus		0.548
Predict Protein		•	•
Protein binding		1-2, 45,	0.548
		67-68	
Nucleus			
Atome2			
Telomerase reverse transcriptase (TEN domain)	Tetrahymena thermophila		68.12
Guanine nucleotide exchange factor P115RHOGEF			
	Homo sapiens		59.68
Vinculin	Homo sapiens Gallus gallus		59.68 44.56
Vinculin Nucleoprotein	Homo sapiens Gallus gallus Andes virus		59.68 44.56 41.16

	viridochromogenes	
Ubiquinol cytochrome c oxidoreductase	Gallus gallus	36.83
Delta-sleep-inducing peptide immunoreactive peptide	Sus scrofa	36.46
HIG1 domain family member 1B	Homo sapiens	29.71
VicH protein	Vibrio cholerae	29.49
Antifreeze protein type 1 analogue	Pseudopleuronectes	28.08
	americanus	
Replication terminator protein	Bacillus subtilis	25.98
LCoR protein	Homo sapiens	22.26
Regulatory protein MNT	Enterobacteria phage P22	21.14
Talin-1	Mus musculus	18.94
Acetyl-delta-toxin	Staphylococcus aureus	16.20

Supplementary Table XX. Venustaconcha ellipsiformis F-ORF function predictions

Hits (n)	Species	Position	Probability
HHpred			
TIGR04294 prepilin-type processing-associated H-X9-		11-13	99.30
DG domain			
TIGR03304 outer membrane insertion C-terminal signal		25-29	99.16
TIGR01167 LPXTG cell wall anchor domain		19-34	98.97
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		71-78	97.97
TIGR03501 GlyGly-CTERM domain		28-35	97.29
TIGR00756 pentatricopeptide repeat domain		7-25	95.33
ComGC		21-38	92.53
VAMP-5_synaptobrevin		13-44	81.17
Protein-export membrane protein	Bartonella henselae	11-87	81.16
Transducer protein Htr37	Haloferax volcanii	1-40	79.70
Transducer protein Htr36	Haloferax volcanii	3-40	73.90

Stage III sporulation protein AF		7-39	70.15
General secretion pathway protein H	Nostoc punctiforme	5-39	69.69
Competence protein ComGC		21-38	69.08
CG11815-PA	Drosophila melanogaster	53-75	68.40
C-type LECtin family member (clec-35)	Caenorhabditis elegans	13-86	66.92
Protein involved in cis-Golgi membrane traffic	Saccharomyces cerevisiae	2-40	66.39
F08F8.8	Caenorhabditis elegans	6-40	66.33
Methyl-accepting chemotaxis protein	Beggiatoa sp. PS	10-35	65.39
SecD-TM1 SecD export protein N-terminal TM region		12-39	65.33
Vesicle transport through interaction with t-SNAREs 1B	Mus musculus	6-40	65.33
homolog			
d.24.1 Pili subunits (54523) SCOP seed sequence:		20-40	63.63
d2pila			
Vesicle transport through interaction with t-SNAREs 1B	Homo sapiens	6-40	63.51
Vesicle-associated membrane protein 5 (myobrevin)	Homo sapiens	13-45	61.92
Vesicle transport v-snare protein	Schizosaccharomyces	6-40	60.94
	pombe		
Y57G11C.4	Caenorhabditis elegans	2-39	60.92
Stage III sporulation protein AF		1-39	60.78
d.24.1 Pili subunits (54523) SCOP seed sequence:		20-41	59.91
d1oqwa_			
Syntaxin-like t-SNARE	Saccharomyces cerevisiae	6-74	59.63
VTI11; receptor	Arabidopsis thaliana	6-40	59.48
Related to VTI1 - v-SNARE		6-40	59.10
Methyl-accepting chemotaxis protein II	Yersinia pestis	4-40	59.10
CG3279-PA	Drosophila melanogaster	6-52	58.98
OapA_N: Opacity-associated protein A N-terminal motif		16-37	58.44
VTI12; SNARE binding / receptor	Arabidopsis thaliana	2-40	58.30
SYP123; t-SNARE	Arabidopsis thaliana	5-42	57.83
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	35-80	54.60
member (pqn-34)			
OapA_N Opacity-associated protein A N-terminal motif		16-37	54.42
B0272.2	Caenorhabditis elegans	6-40	52.87
DevC protein	Nostoc punctiforme	1-42	52.59
Stage III sporulation protein AF		7-39	52.31
F41F3.3	Caenorhabditis elegans	18-37	52.22

C-type LECtin family member (clec-25)	Caenorhabditis elegans	19-83	51.25
SYP124; t-SNARE	Arabidopsis thaliana	14-40	50.99
Integral membrane sensor signal transduction histidine	Nostoc punctiforme	5-41	50.79
kinase			
COLlagen family member (col-144)	Caenorhabditis elegans	7-42	50.47
Methyl-accepting chemotaxis protein III	Escherichia coli	10-35	50.16
v-SNARE protein involved in Golgi transpor	Saccharomyces cerevisiae	2-35	49.57
v-SNARE	Saccharomyces cerevisiae	6-40	48.46
Flagellar M-ring protein	Bacillus subtilis	2-55	48.18
DevC protein	Nostoc punctiforme	3-41	47.10
Resistance to inhibitors of cholinesterase 3 homolog	Homo sapiens	17-81	45.89
VTI13; SNARE binding / receptor	Arabidopsis thaliana	6-40	45.23
Enzyme inhibitor/ pectinesterase	Arabidopsis thaliana	4-83	45.14
Sulfate ABC transporter	Nostoc punctiforme	9-35	44.93
TonB family protein	Nostoc punctiforme	14-57	43.89
SQuaT family member (sqt-2)	Caenorhabditis elegans	14-41	42.86
T24B1.1	Caenorhabditis elegans	8-45	42.65
CG4780-PA	Drosophila melanogaster	6-42	42.35
COLlagen family member (col-14)	Caenorhabditis elegans	1-41	42.28
Related to SNARE protein of Golgi compartment		6-39	42.05
T10E10.5	Caenorhabditis elegans	5-42	42.03
DevC protein	Nostoc punctiforme	5-41	41.86
FER-1-LIKE		16-43	41.78
Type IV Pilin Pak	Pseudomonas aeruginosa	20-39	41.43
Transcriptional accessory factor Tex (2)	Pseudomonas aeruginosa	55-75	41.42
Syntaxin-related protein required for vacuolar assembly	Saccharomyces cerevisiae	5-38	41.06
Methyl-accepting chemotaxis protein	Bacillus subtilis	5-41	40.98
CG13581-PA	Drosophila melanogaster	77-89	40.49
Diffuse panbronchiolitis critical region 1 protein	Homo sapiens	14-56	40.32
Thiol-disulfide oxidoreductase	Bacillus subtilis	18-55	39.81
Alpha-disintegrin and metalloproteinase domain 7	Homo sapiens	21-84	39.42
Fimbrial protein	Dichelobacter nodosus	20-38	39.16
I-TASSER	1		1
Glycine betaine transporter BETP	Corynebacterium		0.575
	glutamicum		
Cytochrome P450 130	Mycobacterium		0.567

	tuberculosis		
Transcription regulator, Crp family	Thermus thermophilus		0.565
DNA topoisomerase 2	Saccharomyces cerevisiae		0.556
Virulence-associated V antigen	Yersinia pestis		0.554
Vitamin B12 import system permease protein btuC	Escherichia coli		0.553
Phase 1 flagellin	Salmonella enterica		0.548
Predict Protein			
Protein binding		1, 8, 11,	
		15, 38,	
		40-42,	
		44, 48-	
		50, 66,	
		70-71,	
		73	
Mitochondrial membrane			
Atome2			
Hepatitis B virus X-interacting protein	Homo sapiens		72.60
Prod 1	Notophthalmus viridescens		68.64
Tumor necrosis factor receptor	Homo sapiens		63.21
V1V2 region of HIV-1 on 1FD6 scaffold	Human immunodeficiency		57.65
	virus 1		
Troponin I, cardiac muscle	Mus musculus		38.80
Bone marrow stromal antigen 2	Homo sapiens		35.47
Fimbrial protein	Neisseria gonorrhoeae		29.39
Photosystem Q(B) protein	Thermosynechococcus		27.56
	elongatus		
Fimbrial protein	Pseudomonas aeruginosa		23.99
Fimbrial protein	Dichelobacter nodosus		23.00
Neurotoxin	Clostridium botulinum		13.59

Hits (n)	Species	Position	Probability
HHpred		•	•
TIGR04294 prepilin-type processing-associated H-X9-		1-4	99.37
DG domain			
TIGR03304 outer membrane insertion C-terminal signal		16-20	99.21
TIGR01167 LPXTG cell wall anchor domain		10-25	99.02
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		62-69	97.98
TIGR03501 GlyGly-CTERM domain		19-26	97.38
TIGR00756 pentatricopeptide repeat domain		63-66	94.93
ComGC		12-29	94.12
VAMP-5_synaptobrevin		4-35	87.41
Methyl-accepting chemotaxis protein	Beggiatoa sp. PS	1-26	84.49
Protein-export membrane protein	Bartonella henselae	2-77	83.21
C-type LECtin family member (clec-35)	Caenorhabditis elegans	4-77	79.44
ComGC Competence protein ComGC		12-29	77.26
SecD-TM1 SecD export protein N-terminal TM region		3-30	77.09
Pili subunits (54523) SCOP seed sequence: d2pila_		11-30	73.77
Vesicle-associated membrane protein 5 (myobrevin)	Homo sapiens	4-36	73.53
Methyl-accepting chemotaxis sensory transducer	Beggiatoa sp. PS	1-26	71.68
d.24.1 Pili subunits (54523) SCOP seed sequence:		11-32	70.76
d1oqwa_			
Methyl-accepting chemotaxis protein III	Escherichia coli	1-26	70.47
CG11815-PA	Drosophila melanogaster	44-66	69.18
Syntaxin-like t-SNARE	Saccharomyces cerevisiae	7-65	68.43
C-type LECtin family member (clec-25)	Caenorhabditis elegans	10-74	67.54
SYP123; t-SNARE	Arabidopsis thaliana	5-33	67.07
SYP124; t-SNARE	Arabidopsis thaliana	5-31	66.45
OapA_N: Opacity-associated protein A N-terminal motif		7-28	65.18
Sensor signal transduction histidine kinase	Beggiatoa sp. PS	1-31	63.30
Diffuse panbronchiolitis critical region 1 protein	Homo sapiens	5-47	62.48
Spore_III_AF: Stage III sporulation protein AF		2-30	62.09
(Spore_III_AF)			
OapA_N Opacity-associated protein A N-terminal motif		7-28	61.64
F41F3.3	Caenorhabditis elegans	9-28	59.91
SQuaT family member (sqt-2)	Caenorhabditis elegans	5-32	57.86

Supplementary Table XXI. Quadrula quadrula F-ORF function predictions

Plasma membrane t-SNARE	Saccharomyces cerevisiae	7-26	56.77
FER-1-LIKE		7-34	56.30
Methyl-accepting chemotaxis sensory transducer	Beggiatoa sp. PS	1-26	55.82
Cytochrome c family protein	Beggiatoa sp. PS	1-34	55.53
Vesicle transport through interaction with t-SNAREs 1B	Homo sapiens	3-31	55.19
CreD		3-24	55.15
Vesicle transport through interaction with t-SNAREs 1B	Mus musculus	3-31	54.58
homolog			
RCR		9-26	54.56
Pilin PilE	Neisseria meningitidis	1-29	54.48
Vesicle-associated membrane protein 1 isoform 1	Homo sapiens	4-31	54.42
Methyl-accepting chemotaxis protein II	Yersinia pestis	1-32	54.19
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	26-71	54.00
member (pqn-34)			
C-type LECtin family member (clec-32)	Caenorhabditis elegans	3-74	53.81
Type IV Pilin Pak	Pseudomonas aeruginosa	11-30	53.69
F08F8.8	Caenorhabditis elegans	3-31	53.66
Stage III sporulation protein AF		2-30	53.25
Stage III sporulation protein AG		7-25	53.24
Sensor protein	Nostoc punctiforme	3-32	52.91
Protein involved in cis-Golgi membrane traffic; v-SNARE	Saccharomyces cerevisiae	3-31	52.91
COLlagen family member (col-176)	Caenorhabditis elegans	3-33	52.78
Syntaxin-related protein required for vacuolar assembly	Saccharomyces cerevisiae	5-31	52.32
C-type LECtin family member (clec-38)	Caenorhabditis elegans	10-80	52.29
TonB family protein	Nostoc punctiforme	5-48	51.68
Extracellular solute-binding protein	Thermofilum pendens	3-26	51.66
USE1-like protein		9-26	51.50
Thiol-disulfide oxidoreductase	Bacillus subtilis	9-46	51.47
Fimbrial protein (cell adhesion)	Dichelobacter nodosus	11-29	51.31
C-type LECtin family member (clec-27)	Caenorhabditis elegans	10-74	51.13
Enzyme inhibitor/ pectinesterase	Arabidopsis thaliana	4-74	51.02
Resistance to inhibitors of cholinesterase 3 homolog	Homo sapiens	8-72	50.86
Sialidase	Haloferax volcanii	3-26	50.72
Syntaxin 12	Mus musculus	5-30	50.68
Use1 Membrane fusion protein Use1		9-26	50.43
Target membrane receptor (t-SNARE)	Saccharomyces cerevisiae	7-26	50.43

CG3279-PA	Drosophila melanogaster	3-31	50.13
Fimbrial protein	Dichelobacter nodosus	11-29	49.97
Plasma membrane t-SNARE	Saccharomyces cerevisiae	6-26	49.94
SYP111; t-SNARE	Arabidopsis thaliana	5-34	49.48
Sensor protein	Nostoc punctiforme	3-32	49.45
Y57G11C.4	Caenorhabditis elegans	3-30	48.87
VTI11; receptor	Arabidopsis thaliana	3-31	48.51
Alpha-disintegrin and metalloproteinase domain 7	Homo sapiens	12-75	48.44
Use1: Membrane fusion protein Use1		9-26	48.26
SYP21; t-SNARE	Arabidopsis thaliana	5-30	47.91
4HB_MCP_1: Four helix bundle sensory module for		7-26	47.71
signal transduction			
CG31136-PA	Drosophila melanogaster	7-32	47.53
PSIBLAST	1		
Preprotein translocase subunit SecG	Bergeyella zoohelcum	2-80	2.00e-04
Leucine rich repeat protein (2)	Leptospira kirschneri	19-63	3.00e-04,
			7.00e-04
Magnesium transporter MgtE (2)	Thermus oshimai	7-49	7.00e-04
Mg2+ transporter MgtE	Thermus oshimai	7-49	7.00e-04
Histidine kinase	Paenibacillus larvae	1-26	8.00e-04
Peptidase M15B and M15C DD-carboxypeptidase	Paenibacillus sp. JDR-2	13-74	9.00e-04
VanY/endolysin			
Histidine kinase	Paenibacillus larvae	1-26	0.001
Peptidase M15	Paenibacillus sp. JDR-2	13-74	0.001
Calcium/proton exchanger (3)	Cryptococcus gattii	26-78	0.001
Calcium ion transporter	Cryptococcus gattii	26-78	0.001
Diaminopimelate epimerase	Pseudomonas sp. RIT357	29-78	0.001
Amino acid transporter	Olleya marilimosa	14-49	0.002
Sulfate transporter	Bacillus cereus	3-37	0.002
Serine/threonine protein kinase	Vibrio harveyi	6-67	0.002
Na(+)/H(+) antiporter NhaA	Salinispora pacifica	13-75	0.002
C4-dicarboxylate ABC transporter	Chelatococcus sp. GW1	7-38	0.002
Poly(glycerophosphate chain) D-alanine transfer protein	Streptococcus parauberis	7-61	0.002
D-alanyl-lipoteichoic acid biosynthesis protein DltD	Streptococcus parauberis	7-61	0.002
Sodium:proton antiporter	Salinispora pacifica	13-75	0.002
ATP-dependent DNA helicase RecQ	Rhodopirellula europaea	37-76	0.002

Transporter, MotA/TolQ/ExbB proton channel family	Prevotella pleuritidis	11-78	0.003
protein			
Sulfate transporter	Bacillus cereus	3-40	0.003
Bacterial membrane protein YfhO	Microvirga lotononidis	5-73	0.003
MULTISPECIES: C4-dicarboxylate ABC transporter	Rhizobium	7-38	0.003
XRE family transcriptional regulator	Cyanothece sp. PCC 8801	23-49	0.003
Leucine-rich repeat and death domain-containing protein	Heterocephalus glaber	19-59	0.003
Serine/threonine protein kinase (2)	Vibrio harveyi	6-67	0.003,
			0.004
Membrane protein, partial	Streptomyces	6-34	0.004
	xanthophaeus		
Doublesex-and mab-3-related transcription factor 3	Strongyloides ratti	35-66	0.004
Membrane protein, partial	Streptomyces	6-34	0.004
	xanthophaeus		
General secretion pathway protein G	Gallaecimonas	12-57	0.004
	xiamenensis		
Nicotinate (nicotinamide) nucleotide adenylyltransferase	Cryptococcus gattii	27-74	0.004
Bicarbonate transporter BicA	Prochlorococcus marinus	10-61	0.004
CoA-binding protein	Halosarcina pallida	34-74	0.004
Antisigma-factor antagonist, STAS	Bacillus cereus Rock3-28	3-40	0.005
Magnesium transporter MgtE	Thermus yunnanensis	10-49	0.005
I-TASSER	1		
A-type ATP synthase subunit E	Methanocaldococcus		1.18
	jannaschii		
Fumarase C	Escherichia coli		0.548
Fumarate hydratase	Homo sapiens		0.543
Deoxyguanosinetriphosphate triphosphohydrolase	Escherichia coli K-1		0.543
Fumarate hydratase class II	Rickettsia prowazekii		0.542
Adenylosuccinate lyase	Staphylococcus aureus		0.538
Fumarate lyase	Chelativorans sp. BNC1		0.538
Fumarase Fum	Mycobacterium marinum M		0.537
Adenylosuccinate lyase	Bacillus anthracis		0.537
Predict Protein	1		
Protien binding		1, 13,	
		39-40,	
		59, 65,	

		85	
Mitochondrial membrane			
Atome2		-	
HIV-1 matrix protein (2)	Human immunodeficiency		83.13,
	virus 1		72.79
Obscurin-like protein 1	Homo sapiens		41.74
Photosystem Q(B) protein (2)	Thermosynechococcus		37.59,
	elongatus		31.35
Photosystem II reaction center protein T	Mastigocladus laminosus		27.60
Sec-independent protein translocase protein tatAd	Bacillus subtilis		27.54
Fimbrial protein	Neisseria gonorrhoeae		26.93
Fimbrial protein	Pseudomonas aeruginosa		23.40
Vesicle-associated membrane protein 2	Rattus norvegicus		23.05
Fimbrial protein	Dichelobacter nodosus		22.81
Defensin	Caretta caretta		16.71

Supplementary Table XXII. Pyganodon grandis F-ORF function predictions

Hits (n)	Species	Position	Probability
HHpred			
TIGR01167 LPXTG cell wall anchor domain		62-67	99.45
TIGR03304 outer membrane insertion C-terminal signal		1-6	99.34
TIGR04294 prepilin-type processing-associated H-X9-		26-29	99.27
DG domain			
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		54-61	97.97
TIGR03501 GlyGly-CTERM domain		16-26	97.22
TIGR00756 pentatricopeptide repeat domain		46-53	94.27
CG7685-PA	Drosophila melanogaster	7-34	92.74
Intra-Golgi v-SNARE	Saccharomyces cerevisiae	2-34	89.49
TMEM156: TMEM156 protein family		9-35	76.75,

			76.59
Conserved inner membrane protein	Escherichia coli	5-37	75.88
SrtB		4-42	75.38
LptF_YjgP LPS export ABC transporter permease LptF		7-37	74.47
GOLGI SNARE BET1-RELATED		11-32	69.38
Ceramidase		11-52	69.27
CG13969-PA	Drosophila melanogaster	11-52	68.78
Sensor histidine kinase	Streptococcus pneumoniae	9-48	64.48
LPS export ABC transporter permease LptG		5-37	64.01
Sensory box histidine kinase PhoR	Staphylococcus aureus	9-44	63.97
Nitric oxide reductase subunit C	Pseudomonas aeruginosa	5-30	61.75
Saliv_gland_allergen_Aed3		10-27	60.13
Essential SNARE protein localized to the ER	Saccharomyces cerevisiae	13-34	60.06
T27F7.3a	Caenorhabditis elegans	10-44	59.65
CG11020-PA, isoform A	Drosophila melanogaster	5-46	57.90
Sterol reductase/lamin b receptor		27-55	57.55
Alkaline ceramidase 2	Mus musculus	11-52	56.62
Dipeptide transport permease	Pyrobaculum aerophilum	2-34	56.60
GRP: Glycine rich protein family		14-34	56.22
Permease YjgP/YjgQ family protein	Nostoc punctiforme	5-37	56.02
Osm-9 & capsaicin receptor-related family (ocr-4)	Caenorhabditis elegans	5-70	55.92
ATBS14A; protein transporter	Arabidopsis thaliana	11-32	55.52
W02F12.2	Caenorhabditis elegans	11-61	54.80
Related to YPC1 - Alkaline ceramidase		11-52	53.56
Human EMeRin homolog family member (emr-1)	Caenorhabditis elegans	13-31	53.29
GDSL family lipase	Nitrosopumilus maritimus	1-38	52.36
Alkaline ceramidase that also has reverse (CoA-	Saccharomyces cerevisiae	7-52	52.01
independent) ceramide synthase function			
Vesicle-associate membrane protein-associated protein		12-34	51.58
SVM protein signal sequence		10-31	51.26
GRP Glycine rich protein family		13-34	51.08
CbiN ABC-type cobalt transport system, periplasmic		9-44	49.52
component			
Peptidoglycan-associated lipoprotein Pal	Yersinia pestis	8-27	47.95
Lipoprotein required for capsular polysaccharide	Escherichia coli	9-27	47.20
translocation through the outer membrane			

Retinoblastoma-associated protein	Homo sapiens	37-54	47.14
Galactose-3-O-sulfotransferase 3	Homo sapiens	4-63	46.93
H/K_exch_ATPase_C		9-38	46.76
Phytoceramidase, alkaline	Homo sapiens	2-52	46.21
DumPY: shorter than wild-type family member (dpy-5)	Caenorhabditis elegans	9-49	46.06
Y41C4A.19	Caenorhabditis elegans	2-54	45.83
Secreted protein	Beggiatoa sp. PS	9-57	45.68
Protein transporter	Arabidopsis thaliana	11-34	44.80
Extracellular solute-binding protein	Nostoc punctiforme	2-31	43.64
I-TASSER		I	
Human cyclin B1	Homo sapiens		0.520
G1/S-specific cyclin-D1	Homo sapiens		0.518,
			0.512
V-cyclin	Human herpesvirus 8		0.517
G1/S-specific cyclin E1	Homo sapiens		0.517
Cell division protein kinase 4	Homo sapiens		0.516
Cell division protein kinase 2	Homo sapiens		0.515
G2/mitotic-specific cyclin-B1	Homo sapiens		0.513
Cyclin-C	Homo sapiens		0.513
Predict Protein			
Protein binding		1-6, 9,	
		28-29,	
		31-33,	
		35, 38-	
		40, 42,	
		57, 59,	
		61-62,	
		64	
Mitochondrial membrane			
Atome2			
Colicin D (colicin D catalytic domain)	Escherichia coli		87.77
14 kDa phosphohistidine phosphatase	Homo sapiens		83.70
Thrombin	Homo sapiens		67.65
Human beta2-Glycoprotein I	Homo sapiens		66.28
Calcium-gated potassium channel mthK	Methanothermobacter		48.14
	thermautotrophicus		

Photosynthetic reaction center C subunit	Thermochromatium	38.65
	tepidum	
CREB-binding protein	Mus musculus	37.60
Transcription factor Dp-1	Homo sapiens	36.50
CPAP	Danio rerio	27.81
Vesicle-associated membrane protein 2	Rattus norvegicus	24.76
Protein translocase subunit secA	Bacillus subtilis	24.71
Transient receptor potential cation channel subfamily V	Rattus norvegicus	20.75
member 1		
Antibody fab fragment light chain	Mus musculus	

Supplementary Table XXIII. Inversidens japanensis F-ORF function predictions

Hits (n)	Species	Position	Probability
HHpred			
TIGR01167 LPXTG cell wall anchor domain		1-15	99.44
TIGR03304 outer membrane insertion C-terminal signal		3-5	99.36
TIGR04294 prepilin-type processing-associated H-X9-		13-15	99.23
DG domain			
X-X-X-Leu-X-X-Gly heptad repeats		57-65	97.91
TIGR03501 GlyGly-CTERM domain		2-13	97.58
TIGR00756 pentatricopeptide repeat domain		14-18	94.24
L-lactate permease-related protein	Neisseria meningitidis	1-31	81.61
golgi phosphoprotein 4	Homo sapiens	4-18	80.40
H/K_exch_ATPase_C		3-15	80.09
Md_memb_hyd		5-24	74.97
Cell division protein ZipA	Yersinia pestis	2-18	72.32
Cell division protein ZipA	Escherichia coli	2-17	71.55
Cell division protein ZipA	Pseudomonas aeruginosa	2-18	70.81
C-type LECtin family member (clec-62)	Caenorhabditis elegans	1-19	70.72,

			69.95
TGF-beta-activated kinase 1 and MAP3K7-binding PR	Homo sapiens	40-59	69.82
ABI gene family, member 3 (NESH) binding protein	Homo sapiens	1-14	69.57
Asialoglycoprotein receptor 1	Homo sapiens	1-14	69.16
Melanocortin 3 receptor	Homo sapiens	16-61	67.54
Fibronectin-binding_protein_I_partial TQXA domain		10-22	66.79
T10G3.1	Caenorhabditis elegans	2-13	65.01
Y111B2A.26	Caenorhabditis elegans	17-51	64.36
Alpha-1,4-N-acetylglucosaminyltransferase	Homo sapiens	1-15	61.44
TIGR03778 VPDSG-CTERM protein sorting domain		56-61	65.10
CG33206-PB, isoform B	Drosophila melanogaster	7-60	60.26
Y41G9A.4a	Caenorhabditis elegans	1-32	60.13
Thrombospondin type 3 repeat-containing protein	Nitrosopumilus maritimus	2-27	60.12
Cell division protein ZipA		1-21	59.36
Neuropeptide-Like Protein family member (nlp-16)	Caenorhabditis elegans	1-15	59.23
Peptidyl-prolyl cis-trans isomerase	Neisseria meningitidis	3-60	58.90
CG12522-PA	Drosophila melanogaster	2-51	58.86
Cell division protein	Yersinia pestis CO92	1-51	57.29
TMEM52: Transmembrane 52		2-13	56.98
ZK1010.5	Caenorhabditis elegans	2-16	56.32
C-type lectin, superfamily member 14 isoform 2	Homo sapiens	2-18	56.21
KdpC K+-transporting ATPase, c chain		1-15	55.34
Submaxillary gland androgen regulated protein 1	Mus musculus	1-11	54.45
Transmembrane protein	Mycobacterium	1-40	54.33
	tuberculosis		
Potassium-transporting ATPase subunit C; Reviewed		1-15	54.00
Alpha 1B-glycoprotein	Homo sapiens	1-33	53.56
KdpC: K+-transporting ATPase, c chain		3-15	53.51
CG33706-PA, isoform A	Drosophila melanogaster	2-14	52.88
Potassium-transporting ATPase C chain K+		1-15	52.85
Potassium-transporting ATPase subunit C	Nostoc punctiforme	3-15	52.73
F13G3.12	Caenorhabditis elegans	13-19	52.66
CG11709-PA	Drosophila melanogaster	1-55	52.32
Potassium-transporting ATPase subunit C	Escherichia coli	2-15	51.89
Potassium-transporting ATPase subunit C	Nostoc punctiforme	2-15	51.32
Potassium-transporting ATPase subunit C	Mycobacterium	1-15	51.31

	tuberculosis		
Golgi phosphoprotein 4	Mus musculus	4-18	51.08
ROK family transcriptional regulator	Streptomyces coelicolor	2-35	50.72
Cell envelope integrity inner membrane protein TolA	Yersinia pestis	3-26	50.33
Chymotrypsinogen B2	Homo sapiens	1-29	50.13
Macrophage galactose N-acetyl-galactosamine specific	Mus musculus	1-17	49.30
lectin 2			
CG9928-PA	Drosophila melanogaster	1-15	49.29
Potassium-transporting ATPase subunit C	Yersinia pestis	2-15	48.97
Ribonuclease, RNase A family, 2 (liver, eosinophil-	Homo sapiens	5-25	48.15
derived neurotoxin)			
K+-transporting ATPase, C subunit	Staphylococcus aureus	2-15	47.95
R09D1.5	Caenorhabditis elegans	2-19	47.79
CD8 ALPHA CHAIN		2-13	47.69
P-type ATPase	Frankia alni	2-15	47.63
GRP: Glycine rich protein family		1-52	47.53
Outer membrane efflux protein	Nostoc punctiforme	1-50	47.40
Potassium-transporting ATPase subunit C	Pseudomonas aeruginosa	2-15	47.35
Cation transport system component	Streptomyces coelicolor	3-15	46.51
I-TASSER			
MSin3A-binding protein	Mus musculus		1.03
Predict Protein			1
Protein binding		1-4, 15-	
		19, 28,	
		30-33,	
		35, 45-	
		47, 49,	
		53-54,	
		56-58,	
		62, 65	
Secreted			
Atome2			
Carboxypeptidase A2	Homo sapiens		69.57
TraF protein	Escherichia coli		61.48
Nonstructural RNA-binding protien 34	Simian rotavirus		28.60-
			48.04

Nucleoporin	Mus musculus	47.00
Dolichyl-diphosphooligosaccharideprotein	Homo sapiens	41.53
glycosyltransferase subunit 4		
Chromo domain-containing protein 1	Saccharomyces cerevisiae	38.89
Bone marrow stromal antigen 2	Homo sapiens	37.80
Cytochrome b6 (3)	Mastigocladus laminosus	29.46-
		34.43
Presenilin-1	Homo sapiens	32.35
Polyadenylate-binding protein 1	Homo sapiens	28.20
Mitogen-activated protein kinase 14	Mus musculus	25.10

Supplementary Table XXIV. Utterbackia peninsularis F-ORF function predictions

Hits (n)	Species	Position	Probability
HHpred			1
TIGR01167 LPXTG cell wall anchor domain		47-52	99.47
TIGR04294 prepilin-type processing-associated H-X9-		18-21	99.34
DG domain			
TIGR03304 outer membrane insertion C-terminal signal		27-28	99.28
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		39-46	98.08
TIGR03501 GlyGly-CTERM domain		8-18	97.39
TIGR00756 pentatricopeptide repeat domain		31-38	94.79
CG7685-PA	Drosophila melanogaster	2-34	90.11
CG11786-PA	Drosophila melanogaster	1-33	83.58
CbiN ABC-type cobalt transport system, periplasmic		1-29	79.63
component			
Human EMeRin homolog family member (emr-1)	Caenorhabditis elegans	5-24	74.62
CG13969-PA	Drosophila melanogaster	3-37	74.59
Ceramidase		3-37	67.66
Saliv_gland_allergen_Aed3		2-19	66.83

GRP: Glycine rich protein family		6-23	64.89
Lipoprotein required for capsular polysaccharide	Escherichia coli	1-19	62.25
translocation through the outer membrane			
Intra-Golgi v-SNARE	Saccharomyces cerevisiae	3-23	57.13
Syntaxin-like t-SNARE	Saccharomyces cerevisiae	8-58	56.27
Syntaxin 5	Mus musculus	3-25	56.06
Cysteine-type endopeptidase/ cysteine-type peptidase	Arabidopsis thaliana	2-41	55.67
GRP Glycine rich protein family		5-23	55.06
T27F7.3a	Caenorhabditis elegans	2-29	54.72
RCR		8-23	54.67
W02F12.2	Caenorhabditis elegans	3-46	54.24
CG4214-PA, isoform A	Drosophila melanogaster	6-25	54.12
CG4214-PB, isoform B	Drosophila melanogaster	6-25	54.12
SYP31; t-SNARE	Arabidopsis thaliana	3-24	53.28
Retinoblastoma-associated protein	Homo sapiens	22-39	53.01
Alkaline ceramidase 2	Mus musculus	3-37	52.35
MORN repeat protein	Beggiatoa sp. PS	1-21	52.26
Cancer susceptibility candidate 4 isoform 1	Mus musculus	4-32	52.12
Golgi phosphoprotein 2	Homo sapiens	1-32	52.03
Golgi phosphoprotein 2	Homo sapiens	1-32	52.03
Target membrane receptor (t-SNARE)	Saccharomyces cerevisiae	3-24	51.69
Sensor histidine kinase	Streptococcus pneumoniae	1-35	51.24
SYNtaxin family member (syn-3)	Caenorhabditis elegans	8-25	51.20
C46H11.8	Caenorhabditis elegans	6-20	50.34
Golgi SNARE BET1-related		3-23	49.96
Sensory box histidine kinase PhoR	Staphylococcus aureus	1-35	49.94
Related to YPC1 - Alkaline ceramidase		3-37	49.81
P53-induced protein related		4-33	48.53
LCR32	Arabidopsis thaliana	1-18	48.29
Sensor protein	Nostoc punctiforme	2-35	47.97
Cancer susceptibility candidate 4 isoform b	Homo sapiens	4-32	47.39
SVM protein signal sequence		2-21	46.80
Cancer susceptibility candidate 4 isoform a	Homo sapiens	4-32	46.01
Rhodanese-like protein	Beggiatoa sp. PS	2-21	45.74
LCR9	Arabidopsis thaliana	1-18	45.22
Cell wall structural complex MreBCD transmembrane	Escherichia coli	2-34	45.03
component MreC			
---	--------------------------	----------	-------
Cancer susceptibility candidate 4 isoform 2	Mus musculus	4-32	44.69
Alkaline ceramidase that also has reverse (CoA-	Saccharomyces cerevisiae	3-37	44.61
independent) ceramide synthase activity			
T01B10.5	Caenorhabditis elegans	9-67	44.41
Pectinesterase/pectinesterase inhibitor	Arabidopsis thaliana	2-21	44.24
Conserved inner membrane protein	Escherichia coli	1-32	44.17
Y116A8C.44	Caenorhabditis elegans	10-21	44.15
SYP32; t-SNARE	Arabidopsis thaliana	3-25	44.03
v-SNARE protein involved in Golgi transport, homolog of	Saccharomyces cerevisiae	7-29	43.63
the mammalian protein GOS-28/GS28			
T19H12.3	Caenorhabditis elegans	6-21	43.56
F08E10.7	Caenorhabditis elegans	6-34	43.53
Alpha/beta hydrolase superfamily protein	Lactobacillus casei	1-30	43.32
CG4716-PB, isoform B	Drosophila melanogaster	10-35	43.04
F10B5.9	Caenorhabditis elegans	9-33	42.75
Leukocyte surface antigen CD47		2-34	42.10
COLlagen family member (col-102)	Caenorhabditis elegans	4-39	41.52
Diguanylate cyclase	Nostoc punctiforme	2-35	41.51
F58G1.5	Caenorhabditis elegans	8-55	41.39
Predict Protein		1	1
Protein binding		1-2, 41,	
		50	
Mitochondrial membrane			
Atome2			
Thrombin	Homo sapiens		86.79
Spindle pole body component SPC42	Saccharomyces cerevisiae		67.12
Antitoxin RelB3	Methanocaldococcus		62.24
	jannaschii		
Antifreeze peptide SS-3	Myoxocephalus scorpius		55.05
CREB-binding protein	Mus musculus		50.10
Antifreeze peptide SS-3	Myoxocephalus scorpius		45.83
Oligomerization	Homo sapiens		45.03
BM2 protein	Influenza B virus		42.29
Importin subunit alpha-2	Mus musculus		41.49
Protein transport protein SEC23	Saccharomyces cerevisiae		41.12

СРАР	Danio rerio	40.65
Transcription factor Dp-1	Homo sapiens	36.18
Protein translocase subunit secA	Bacillus subtilis	23.61
Argenine attenuator peptide	Neurospora crassa	23.04
Beta-hemolysin	Staphylococcus aureus	13.11

Hits (n)	Species	Position	Probability
HHpred		1	1
TIGR04294 prepilin-type processing-associated H-X9-		2-9	99.37
DG domain			
TIGR03304 outer membrane insertion C-terminal signal		62-63	99.06
TIGR01167 LPXTG cell wall anchor domain		4-22	98.91
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		4-7	97.69
TIGR03501 GlyGly-CTERM domain		7-17	96.90
TIGR00756 pentatricopeptide repeat domain		16-23	93.28
5-hydroxytryptamine (serotonin) receptor 1D	Homo sapiens	33-70	92.61
Light-harvesting complex subunits	Rhodoblastus acidophilus	8-26	87.30,
			87.07
Light-harvesting complex subunits (56918) SCOP seed		4-26	83.17
sequence: d1dx7a_			
Light-harvesting complex subunits (56918) SCOP seed		4-26	81.89
sequence: d1lghb_			
Light-harvesting complex subunits (56918) SCOP seed		4-26	80.77
sequence: d1kzub_			
Prenylated RAB acceptor 1-related		6-26	79.07
Light-harvesting protein B-800/850		5-26	74.63
Integrin, beta-like 1	Mus musculus	1-28	73.53
Light-harvesting complex subunits	Rhodoblastus acidophilus	8-25	72.83

Supplementary Table XXV. Solenaia carinatus F-ORF function predictions

Light-harvesting complex subunits (56918) SCOP seed		4-25	71.44
sequence: d1ijdb_			
LH1 beta polypeptide; photosynthesis		5-26	70.95
Light-harvesting complex subunits	Rhodoblastus acidophilus	8-25	70.88
P-loop containing nucleoside triphosphate hydrolases		48-56	70.54
(52540) SCOP seed sequence: d1qhla_			
LH II, B800/850, light harvesting complex II		5-26	69.61
Rab acceptor 1	Homo sapiens	6-26	69.24
Membrane protein	Beggiatoa sp. PS	34-54	68.30
Rab acceptor 1	Mus musculus	6-26	67.03
Transmembrane protein HTP-1 related		2-21	66.89
CG1418-PA	Drosophila melanogaster	6-26	65.31
Dienelactone hydrolase	Nostoc punctiforme	8-66	57.49
PRA1 PRA1 family protein		6-26	57.44
ZK896.1	Caenorhabditis elegans	4-47	57.43
Sterol carrier protein 2 isoform 3 precursor	Homo sapiens	23-31	56.70
MPI7	Arabidopsis thaliana	6-26	56.39
Syntaxin-like t-SNARE	Saccharomyces cerevisiae	8-66	56.24
Protein localized to COPII vesicles	Saccharomyces cerevisiae	6-26	55.8
LH-1, light-harvesting protein B-880, beta chain	Rhodospirillum rubrum	5-26	55.18
Magnesium transporter	Synechococcus sp.	9-28	55.18
	CC9311		
Flagellar motor protein MotS		11-23	55.17
CG10031-PA	Drosophila melanogaster	1-21	54.86
Integrin, beta-like 1 (with EGF-like repeat domains)	Homo sapiens	1-24	54.45
Phosphatidylserine decarboxylase	Methanopyrus kandleri	1-26	53.64
Light-harvesting protein B-880, beta chain		5-26	53.58
CG6339-PA	Drosophila melanogaster	48-56	52.81
Cell surface glycoprotein	Methanosarcina mazei	1-63	51.14
Excinuclease ATPase subunit	Beggiatoa sp. PS	48-56	50.17
Dopamine receptor D1A	Mus musculus	1-26	50.08
RADiation sensitivity abnormal/yeast RAD-related family	Caenorhabditis elegans	34-56	49.33
member (rad-50)			
Light-harvesting protein B-880, beta chain	Rhodospirillum rubrum	5-26	49.09
P-loop containing nucleoside triphosphate hydrolases		48-56	48.83
(52540) SCOP seed sequence: d1np6a_			

RAD50; ATP binding / nuclease/ zinc ion binding	Arabidopsis thaliana	48-56	48.65
ABC transporter ATP-binding protein	Beggiatoa sp. PS	48-56	48.37
P-loop containing nucleoside triphosphate hydrolases		48-56	48.27
(52540) SCOP seed sequence: d1q3ta_			
P-loop containing nucleoside triphosphate hydrolases		48-56	48.11
(52540) SCOP seed sequence: d1f2t.1			
Oligosaccharyltransferase subunit ost4p	Saccharomyces cerevisiae	7-21	47.89
Oligosaccharyltransferase subunit ost4p	Saccharomyces cerevisiae	7-21	47.89
Subunit of MRX complex	Saccharomyces cerevisiae	48-56	47.83
Glutamine ABC transporter (glutamine-binding protein)	Bacillus subtilis	5-64	47.75
UCP018933		47-69	47.22
P-loop containing nucleoside triphosphate hydrolases		48-56	47.06
(52540) SCOP seed sequence: d1gkya_			
ABC transporter	Beggiatoa sp. PS	48-56	46.29
LHC Antenna complex alpha/beta subunit		5-26	46.13
P-loop containing nucleoside triphosphate hydrolases		48-56	45.70
(52540) SCOP seed sequence: d1e3ma2			
RAD50 homolog isoform 1	Homo sapiens	48-56	45.17
ATP-binding protein	Beggiatoa sp. PS	48-56	44.98
MotB flagellar motor protein MotB		11-23	44.88
F57C2.5	Caenorhabditis elegans	4-38	44.66
Glycine rich protein family		1-53	44.60
UbiA prenyltransferase	Nostoc punctiforme	9-31	44.58
yidC_nterm membrane protein insertase, YidC/Oxa1		7-77	44.52
family, N-terminal domain			
BLASTP		1	
Bifunctional 2',3'-cyclic nucleotide 2'-		12-81	2.98e-03
phosphodiesterase/3'-nucleotidase precursor protein			
I-TASSER			
Dilip type IV			
	Thermus thermophilus		1.04, 1.07
Anastral spindle 2, SAS 4	Thermus thermophilus Drosophila melanogaster		1.04, 1.07 1.00
Anastral spindle 2, SAS 4 Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic	Thermus thermophilus Drosophila melanogaster Homo sapiens		1.04, 1.07 1.00 0.617
Anastral spindle 2, SAS 4 Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma isoform	Thermus thermophilus Drosophila melanogaster Homo sapiens		1.04, 1.07 1.00 0.617
Anastral spindle 2, SAS 4 Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Fructose 1,6-bisphosphatase/inositol monophosphatase	Thermus thermophilus Drosophila melanogaster Homo sapiens Archaeoglobus fulgidus		1.04, 1.07 1.00 0.617 0.617
Anastral spindle 2, SAS 4 Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Fructose 1,6-bisphosphatase/inositol monophosphatase Inositol monophosphatase	Thermus thermophilus Drosophila melanogaster Homo sapiens Archaeoglobus fulgidus Zymomonas mobilis		1.04, 1.07 1.00 0.617 0.617 0.606

Pseudopilin GspK	Escherichia coli		0.589
Fructose 1,6-bisphosphatase	Pisum sativum		0.589
Fimbrial protein	Pseudomonas aeruginosa		0.588
Xaa-Pro aminopeptidase 1	Homo sapiens		0.588
Type IV pilin	Pseudomonas aeruginosa		0.580
Predict Protein			
Protein binding		1-2, 22,	
		25, 28,	
		32, 34-	
		37, 57,	
		80, 85-	
		86	
Secreted			
Atome2			
Major capsid protein (protein P3)	Enterobacteria phage		80.01
Importin alpha-1 subunit	Homo sapiens		71.81
Type II restriction enzyme HindIII	Haemophilus influenzae		66.46
AS-48 protein	Enterococcus faecalis		63.35
Stromal cell-derived factor 1	Homo sapiens		55.61
Photosynthetic reaction center C subunit	Thermochromatium		49.31
	tepidum		
Archaeal adhesion filament core	Ignicoccus hospitalis		45.48
Light-harvesting protein B-800/850, alpha chain	Rhodoblastus acidophilus		42.22
Light-harvesting protein B-880, beta chain	Rhodospirillum rubrum		37.37
Chromosome segregation protein smc	Pyrococcus furiosus		31.93
Phosphate starvation-inducible protein	Corynebacterium		31.63
	glutamicum		
Guanylate kinase	Coxiella burnetii		31.61
Light harvesting complex II	Phaeospirillum		31.23
	molischianum		
Chromosome segregation SMC protein	Thermotoga maritima		30.86
Cytochrome c oxidase, cbb3-type, subunit N	Pseudomonas stutzeri		27.90
Guanylate kinase	Mus musculus		27.75
Fructokinase	Ruegeria sp. TM1040		27.69

NOTE : For Supplementary Tables XI-XLV HHpred and @tome 2 use probabilities /100; I-TASSER Z scores > 1.0 and TM scores > 0.5 are significant; BLASTP & Predict Protein E-values < 1.0 are significant (adjusted from developer's recommendation of 10.0); PSIBLAST E-values < 0.001 are significant; Motif Scan N-scores do not have a significance threshold, a higher score indicates a better match.

Hits (n)	Species	Position	Probability
HHpred			
TIGR03304 outer membrane insertion C-terminal signal		12-14	99.21
TIGR04294 prepilin-type processing-associated H-X9-		48-50	99.04
DG domain			
TIGR01167 LPXTG cell wall anchor domain		72-76	98.83
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		18-27	97.70
TIGR03501 GlyGly-CTERM domain		4-15	96.86
TIGR00756 pentatricopeptide repeat domain		59-68	93.47
F46H6.5	Caenorhabditis elegans	56-75	76.05
UCP029505		6-16	69.88
PEP-CTERM protein-sorting domain		64-69	46.91
TIGR04288 CGP-CTERM domain		2-12	46.76
Conserved inner membrane protein	Escherichia coli	2-17	40.08
COX7		2-16	36.69
Conserved integral membrane protein	Corynebacterium	3-28	34.75
	diphtheriae		
Y54E10BL.2	Caenorhabditis elegans	1-27	34.23
Homodimeric domain of signal transducing histidine		36-42	33.23
kinase (47384) SCOP seed sequence: d1joya_			
DumPY : shorter than wild-type family member (dpy-14)	Caenorhabditis elegans	1-27	31.73
T10E10.2	Caenorhabditis elegans	1-27	31.04
DumPY : shorter than wild-type family member (dpy-2)	Caenorhabditis elegans	1-14	30.61
OSMotic avoidance abnormal family member (osm-10)	Caenorhabditis elegans	28-51	29.76
F46B6.10	Caenorhabditis elegans	6-89	29.15
DumPY : shorter than wild-type family member (dpy-10)	Caenorhabditis elegans	1-14	28.10
COLlagen family member (col-84)	Caenorhabditis elegans	1-14	28.10
F38A3.1	Caenorhabditis elegans	1-27	27.34
T10E10.1	Caenorhabditis elegans	1-27	27.33
COLlagen family member (col-2)	Caenorhabditis elegans	2-27	26.87

Supplementary Table XXVI. Cumberlandia monodonta F-ORF function predictions

COLlagen family member (col-36)	Caenorhabditis elegans	1-27	26.73
F15H10.1	Caenorhabditis elegans	1-27	26.57
Nop10-like SnoRNP (144210) SCOP seed sequence:		50-72	26.50
d2ey4e1			
ROLler: helically twisted, animals roll when moving	Caenorhabditis elegans	1-14	26.24
family member (rol-1)			
C34F6.3	Caenorhabditis elegans	1-27	25.86
COLlagen family member (col-106)	Caenorhabditis elegans	2-27	25.77
COLlagen family member (col-166)	Caenorhabditis elegans	1-27	25.24
COLlagen family member (col-115)	Caenorhabditis elegans	1-14	24.41
CG13783-PA	Drosophila melanogaster	10-28	24.23
F15H10.2		1-27	24.06
Methylene tetrahydromethanopterin dehydrogenase		33-47	23.46
fixS protein	Neisseria meningitidis	6-19	23.35
F11G11.12	Caenorhabditis elegans	1-27	23.32
Chondrolectin precursor	Homo sapiens	2-20	23.15
F57B1.4	Caenorhabditis elegans	1-27	22.76
T21B4.2	Caenorhabditis elegans	1-27	22.47
Y69H2.14	Caenorhabditis elegans	1-27	22.39
F57B1.3	Caenorhabditis elegans	1-27	22.39
BLIstered cuticle family member (bli-2)	Caenorhabditis elegans	1-27	22.37
COLlagen family member (col-51)	Caenorhabditis elegans	2-27	22.30
ROLler: helically twisted, animals roll when moving	Caenorhabditis elegans	1-27	22.10
family member (rol-8)			
T10E10.6	Caenorhabditis elegans	1-27	22.08
DumPY : shorter than wild-type family member (dpy-10)	Caenorhabditis elegans	1-27	21.85
Virus attachment protein globular domain (49835) SCOP		50-68	21.78
seed sequence: d1h7za_			
Adenovirus fibre protein; cell receptor recognition,	Human adenovirus type 3	44-68	21.71
receptor			
COLlagen family member (col-165)	Caenorhabditis elegans	1-27	21.58
C44C10.1	Caenorhabditis elegans	1-27	21.26
Photosystem II reaction centre X protein (PsbX)	Synechococcus sp.	5-26	21.26
	CC9311		
COLlagen family member (col-110)	Caenorhabditis elegans	2-27	20.99
DumPY : shorter than wild-type family member (dpy-9)	Caenorhabditis elegans	2-27	20.99

DumPY : shorter than wild-type family member (dpy-3)	Caenorhabditis elegans	1-27	20.77
COLlagen family member (col-34)	Caenorhabditis elegans	2-27	20.65
FAD/NAD-linked reductases, dimerisation (C-terminal)		10-26	20.64
domain (55424) SCOP seed sequence: d1d7ya3			
F17C11.3	Caenorhabditis elegans	2-27	20.63
COLlagen family member (col-173)	Caenorhabditis elegans	1-27	20.56
Secreted protein	Streptomyces coelicolor	4-19	20.37
K08F4.5	Caenorhabditis elegans	2-21	20.33
C34F6.2	Caenorhabditis elegans	2-27	20.30
COLlagen family member (col-124)	Caenorhabditis elegans	2-27	20.27
F32G8.5	Caenorhabditis elegans	2-25	20.14
I-TASSER			
Sec-independent protein translocase protein TatB	Escherichia coli		1.13
Sts-2 protein	Mus musculus		0.501
Predict Protein			
Protein binding		1-2, 52,	
		62	
Mitochondrial membrae			
Atome2			
Atome2 Preprotein translocase SecA subunit	Thermus thermophilus		72.89
Atome2 Preprotein translocase SecA subunit Deoxyribonuclease I	Thermus thermophilus Bos taurus		72.89 63.10
Atome2 Preprotein translocase SecA subunit Deoxyribonuclease I FLAP endonuclease-1 protein	Thermus thermophilus Bos taurus Methanocaldococcus		72.89 63.10 58.69
Atome2 Preprotein translocase SecA subunit Deoxyribonuclease I FLAP endonuclease-1 protein	Thermus thermophilus Bos taurus Methanocaldococcus jannaschii		72.89 63.10 58.69
Atome2 Preprotein translocase SecA subunit Deoxyribonuclease I FLAP endonuclease-1 protein E3 ubiquitin-protein ligase UBR2	Thermus thermophilus Bos taurus Methanocaldococcus jannaschii Homo sapiens		72.89 63.10 58.69 48.38
Atome2 Preprotein translocase SecA subunit Deoxyribonuclease I FLAP endonuclease-1 protein E3 ubiquitin-protein ligase UBR2 Potassium large conductance calcium-activated	Thermus thermophilus Bos taurus Methanocaldococcus jannaschii Homo sapiens Homo sapiens		72.89 63.10 58.69 48.38 45.89
Atome2 Preprotein translocase SecA subunit Deoxyribonuclease I FLAP endonuclease-1 protein E3 ubiquitin-protein ligase UBR2 Potassium large conductance calcium-activated channel, subfamily M, beta member 2	Thermus thermophilus Bos taurus Methanocaldococcus jannaschii Homo sapiens Homo sapiens		72.89 63.10 58.69 48.38 45.89
Atome2 Preprotein translocase SecA subunit Deoxyribonuclease I FLAP endonuclease-1 protein E3 ubiquitin-protein ligase UBR2 Potassium large conductance calcium-activated channel, subfamily M, beta member 2 S-locus pollen protein	Thermus thermophilus Bos taurus Methanocaldococcus jannaschii Homo sapiens Homo sapiens Brassica rapa		72.89 63.10 58.69 48.38 45.89 43.02
Atome2 Preprotein translocase SecA subunit Deoxyribonuclease I FLAP endonuclease-1 protein E3 ubiquitin-protein ligase UBR2 Potassium large conductance calcium-activated channel, subfamily M, beta member 2 S-locus pollen protein Regulatory protein SIR4	Thermus thermophilusBos taurusMethanocaldococcusjannaschiiHomo sapiensHomo sapiensBrassica rapaSaccharomyces cerevisiae		72.89 63.10 58.69 48.38 45.89 43.02 41.26
Atome2 Preprotein translocase SecA subunit Deoxyribonuclease I FLAP endonuclease-1 protein E3 ubiquitin-protein ligase UBR2 Potassium large conductance calcium-activated channel, subfamily M, beta member 2 S-locus pollen protein Regulatory protein SIR4 mRNA 3'-end-processing protein RNA14	Thermus thermophilusBos taurusMethanocaldococcusjannaschiiHomo sapiensHomo sapiensBrassica rapaSaccharomyces cerevisiaeKluyveromyces lactis		72.89 63.10 58.69 48.38 45.89 43.02 41.26 36.60
Atome2 Preprotein translocase SecA subunit Deoxyribonuclease I FLAP endonuclease-1 protein E3 ubiquitin-protein ligase UBR2 Potassium large conductance calcium-activated channel, subfamily M, beta member 2 S-locus pollen protein Regulatory protein SIR4 mRNA 3'-end-processing protein RNA14 Proliferating cell nuclear antigen	Thermus thermophilusBos taurusMethanocaldococcusjannaschiiHomo sapiensHomo sapiensBrassica rapaSaccharomyces cerevisiaeKluyveromyces lactisHomo sapiens		72.89 63.10 58.69 48.38 45.89 43.02 41.26 36.60 35.73
Atome2 Preprotein translocase SecA subunit Deoxyribonuclease I FLAP endonuclease-1 protein E3 ubiquitin-protein ligase UBR2 Potassium large conductance calcium-activated channel, subfamily M, beta member 2 S-locus pollen protein Regulatory protein SIR4 mRNA 3'-end-processing protein RNA14 Protein (adenovirus fibre)	Thermus thermophilusBos taurusMethanocaldococcusjannaschiiHomo sapiensHomo sapiensBrassica rapaSaccharomyces cerevisiaeKluyveromyces lactisHomo sapiensHomo sapiens		72.89 63.10 58.69 48.38 45.89 43.02 41.26 36.60 35.73 33.59
Atome2 Preprotein translocase SecA subunit Deoxyribonuclease I FLAP endonuclease-1 protein E3 ubiquitin-protein ligase UBR2 Potassium large conductance calcium-activated channel, subfamily M, beta member 2 S-locus pollen protein Regulatory protein SIR4 mRNA 3'-end-processing protein RNA14 Protein (adenovirus fibre) Fiber protein	Thermus thermophilusBos taurusMethanocaldococcusjannaschiiHomo sapiensHomo sapiensBrassica rapaSaccharomyces cerevisiaeKluyveromyces lactisHomo sapiensHomo sapiensHomo sapiensHomo sapiensHomo sapiensHomo sapiensHomo sapiensHomo sapiensHuman adenovirus 37		72.89 63.10 58.69 48.38 45.89 43.02 41.26 36.60 35.73 33.59 31.21
Atome2 Preprotein translocase SecA subunit Deoxyribonuclease I FLAP endonuclease-1 protein E3 ubiquitin-protein ligase UBR2 Potassium large conductance calcium-activated channel, subfamily M, beta member 2 S-locus pollen protein Regulatory protein SIR4 mRNA 3'-end-processing protein RNA14 Protein (adenovirus fibre) Fiber protein Fiber protein	Thermus thermophilusBos taurusMethanocaldococcusjannaschiiHomo sapiensHomo sapiensBrassica rapaSaccharomyces cerevisiaeKluyveromyces lactisHomo sapiensHomo sapiensHomo sapiensHomo sapiensHomo sapiensHomo sapiensHomo sapiensHuman adenovirus 37Human adenovirus 2		72.89 63.10 58.69 48.38 45.89 43.02 41.26 36.60 35.73 33.59 31.21 30.90
Atome2Preprotein translocase SecA subunitDeoxyribonuclease IFLAP endonuclease-1 proteinE3 ubiquitin-protein ligase UBR2Potassium large conductance calcium-activatedchannel, subfamily M, beta member 2S-locus pollen proteinRegulatory protein SIR4mRNA 3'-end-processing protein RNA14Protein (adenovirus fibre)Fiber proteinFiber proteinAdenovirus type 5 fiber protein	Thermus thermophilusBos taurusMethanocaldococcusjannaschiiHomo sapiensHomo sapiensBrassica rapaSaccharomyces cerevisiaeKluyveromyces lactisHomo sapiensHomo sapiensHomo sapiensHomo sapiensHuman adenovirus 37Human adenovirus 5		72.89 63.10 58.69 48.38 45.89 43.02 41.26 36.60 35.73 33.59 31.21 30.90 30.46
Atome2 Preprotein translocase SecA subunit Deoxyribonuclease I FLAP endonuclease-1 protein E3 ubiquitin-protein ligase UBR2 Potassium large conductance calcium-activated channel, subfamily M, beta member 2 S-locus pollen protein Regulatory protein SIR4 mRNA 3'-end-processing protein RNA14 Protein (adenovirus fibre) Fiber protein Fiber protein Adenovirus type 5 fiber protein Fiber protein	Thermus thermophilusBos taurusMethanocaldococcusjannaschiiHomo sapiensHomo sapiensBrassica rapaSaccharomyces cerevisiaeKluyveromyces lactisHomo sapiensHomo sapiensHomo sapiensHuman adenovirus 37Human adenovirus 5Human adenovirus 41		72.89 63.10 58.69 48.38 45.89 43.02 41.26 36.60 35.73 33.59 31.21 30.90 30.46 24.60

Stimulator of interferon genes protein	Homo sapiens	19.47	
Oncogene product P14TCL1	Homo sapiens	16.55	
HMTCP-1	Homo sapiens	13.22	

Supplementary Table XXVII. Hyridella menziesii F-ORF function predictions

Hits (n)	Species	Position	Probability
HHpred		•	
TIGR04294 prepilin-type processing-associated H-X9-		80-85	99.25
DG domain			
TIGR01167 LPXTG cell wall anchor domain		8-35	99.10
TIGR03304 outer membrane insertion C-terminal signal		1-6	99.05
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		8-12	97.66
TIGR03501 GlyGly-CTERM domain		23-35	96.93
TIGR00756 pentatricopeptide repeat domain		60-69	93.52
MotB_plug Membrane MotB of proton-channel complex		17-38	87.38
MotA/MotB.			
Flagellar motor protein	Bacillus subtilis	1-38	87.21
CD274 antigen	Homo sapiens	2-65	86.19
Partially redundant sensor-transducer of the stress-	Saccharomyces cerevisiae	6-37	85.09
activated PKC1-MPK1 signaling pathway			
motB flagellar motor protein MotB		17-38	84.85,
			84.34
MotB_plug: Membrane MotB of proton-channel complex		17-38	84.08
MotA/MotB			
motB flagellar motor protein MotB		1-38	82.76
Flagellar motor protein MotS		5-38	82.25
Flagellar motor protein MotS		17-38	80.86
Glycophorin		17-38	80.00

Flagellar motor protein MotD		1-38	79.60
Flagellar motor protein MotB	Escherichia coli	3-38	79.38
Basigin	Mus musculus	3-73	77.67
MEGF11 protein	Homo sapiens	8-37	77.66
Cell division protein	Yersinia pestis	6-40	77.15
Transmembrane glycoprotein A33 precursor	Homo sapiens	1-36	76.89
Flagellar motor protein	Yersinia pestis	5-38	76.41
Leukocyte-associated immunoglobulin-like receptor 1	Homo sapiens	5-43	76.34
isoform b precursor			
Flagellar motor protein	Bacillus subtilis	17-38	76.34
C35D10.1	Caenorhabditis elegans	14-42	76.14
EGF-like-domain, multiple 9	Homo sapiens	2-37	76.07
EGF-like-domain, multiple 9	Homo sapiens	2-37	76.07
Carbamoyl-phosphate synthase L chain, ATP-binding	Nostoc punctiforme	7-46	76.06
MEGF10 protein	Homo sapiens	2-37	75.94
Golgi membrane protein with similarity to mammalian	Saccharomyces cerevisiae	10-38	75.88
CASP			
motB flagellar motor protein MotB		17-38	75.30
RIKEN cDNA 2900064A13	Mus musculus	14-39	75.22
CG18146-PB, isoform B	Drosophila melanogaster	17-37	74.16
Syntaxin 7	Homo sapiens	11-39	73.60
Glycoprotein A33 (transmembrane)	Mus musculus	1-36	73.22
CG31136-PA	Drosophila melanogaster	17-37	71.97
Chain length determinant protein	Beggiatoa sp. PS	8-38	71.77
Kin of IRRE-like 2	Mus musculus	18-86	71.74
Neuregulin 4	Mus musculus	3-36	71.40
motB flagellar motor protein MotB; Validated		17-38	71.22
Vesicle-associated membrane protein 1 isoform 1	Homo sapiens	17-38	71.16
STL2P	Arabidopsis thaliana	4-39	70.59
Flagellar motor protein	Yersinia pestis	17-39	70.30
RCR		18-38	68.98
NHL12	Arabidopsis thaliana	18-56	68.76
ZK353.4	Caenorhabditis elegans	12-34	68.51
Flagellar motor protein	Pseudomonas aeruginosa	17-38	67.85
VAMP-5_synaptobrevin		17-37	67.62
T20D4.12	Caenorhabditis elegans	17-48	67.04

CCAAT displacement protein isoform c	Homo sapiens	3-39	66.72
SIT: SHP2-interacting transmembrane adaptor protein,		18-42	66.62
SIT			
Endomucin		8-42	66.54
CCAAT displacement protein isoform b	Homo sapiens	3-39	66.34
Capsular polysaccharide biosynthesis protein Cap1A	Staphylococcus aureus	11-39	66.20
SYP61	Arabidopsis thaliana	11-36	65.62
ATP binding / kinase/ protein kinase/ protein	Arabidopsis thaliana	1-92	65.08
serine/threonine kinase/ protein-tyrosine kinase			
Regulator of length of O-antigen component of	Escherichia coli	11-38	65.00
lipopolysaccharide chains			
Essential cell division protein	Escherichia coli	6-40	64.98
YLS9	Arabidopsis thaliana	7-56	64.93
Integrin alpha-IIB	Homo sapiens	8-40	64.81
F11 receptor	Mus musculus	18-65	64.72
SIT SHP2-interacting transmembrane adaptor protein		18-42	64.07
Vesicle transport through interaction with t-SNAREs	Mus musculus	17-39	63.82
homolog 1A			
I-TASSER		1	1
Type I restriction-modification system methyltransferase	Vibrio vulnificus		0.527
subunit			
Poly(ADP-ribose) glycohydrolase	Rattus norvegicus		0.512
Transporter	Aquifex aeolicus		0.505
Mre11 nuclease	Pyrococcus furiosus		0.503
Predict Protein		I	1
Protein binding		1, 38-	
		40, 54-	
		56, 75-	
		77, 79,	
		81	
Secreted			
Atome2			
Nucleoprotein	Influenza A virus		80.49
Tankyrase-1	Mus musculus		56.43
Carboxypeptidase A1	Bos taurus		45.65

Integrin alpha-IIb (3)	Homo sapiens	28.46-
		37.34
Na, K-ATPase alpha subunit	Squalus acanthias	33.92
Integrin alpha-1	Homo sapiens	33.59
HIG1 domain family member 1A	Homo sapiens	33.37
Sodium/potassium-transporting ATPase subunit alpha-1	Sus scrofa	32.09
Pulmonary surfactant-associated polypeptide C	Sus scrofa	31.12
Phospholemman	Homo sapiens	31.06
Importin subunit alpha-2	Mus musculus	30.90
T-cell surface glycoprotein CD4	Homo sapiens	30.38
SERCA1a	Oryctolagus cuniculus	29.56
Potassium channel protein RCK4	Homo sapiens	29.40
Vesicle-associated membrane protein 2	Rattus norvegicus	27.79
Beta-type platelet-derived growth factor receptor	Homo sapiens	27.49
Integrin alpha-IIb light chain	Homo sapiens	26.38

Supplementary Table XXVIII. Lasmigona complanata F-ORF function predictions

Hits (n)	Species	Position	Probability
HHpred			
TIGR01167 LPXTG cell wall anchor domain		54-59	99.46
TIGR04294 prepilin-type processing-associated H-X9-		18-21	99.32
DG domain			
TIGR03304 outer membrane insertion C-terminal signal		34-35	99.27
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		46-53	98.05
TIGR03501 GlyGly-CTERM domain		8-18	97.32
TIGR00756 pentatricopeptide repeat domain		38-45	94.58
CG7685-PA	Drosophila melanogaster	2-26	93.27
Intra-Golgi v-SNARE, required for transport of proteins	Saccharomyces cerevisiae	3-26	84.46
between an early and a later Golgi compartment			

TMEM156: TMEM156 protein family (2)		1-27	78.90,
			78.70
Golgi SNARE BET1-related		3-24	71.61
CG13969-PA	Drosophila melanogaster	3-44	71.25
Ceramidase		3-44	70.74
Sensor histidine kinase	Streptococcus pneumoniae	1-40	69.88
LptF_YjgP LPS export ABC transporter permease LptF		1-29	67.65
Sensory box histidine kinase PhoR	Staphylococcus aureus	1-36	67.50
Saliv_gland_allergen_Aed3		2-19	64.97
Conserved inner membrane protein	Escherichia coli	1-29	63.38
T27F7.3a	Caenorhabditis elegans	2-36	62.64
GRP: Glycine rich protein family		6-26	61.27
Sterol reductase/lamin B receptor		19-47	60.88
Essential SNARE protein localized to the ER	Saccharomyces cerevisiae	5-26	60.56
Alkaline ceramidase 2	Mus musculus	3-44	58.05
Vesicle-associated membrane-associated protein		4-26	57.11
Human EMeRin homolog family member (emr-1)	Caenorhabditis elegans	6-23	56.93
GRP Glycine rich protein family		5-26	56.69
CbiN ABC-type cobalt transport system, periplasmic		1-36	55.84
component			
W02F12.2	Caenorhabditis elegans	3-53	55.64
Related to YPC1 - Alkaline ceramidase		3-44	55.42
Lipoprotein required for capsular polysaccharide	Escherichia coli K12	1-19	54.31
translocation through the outer membrane			
LptG_lptG LPS export ABC transporter permease LptG		1-29	53.94
CG11020-PA, isoform A	Drosophila melanogaster	1-38	52.93
CG3066-PD, isoform D	Drosophila melanogaster	2-27	52.93
SVM_signal: SVM protein signal sequence		2-23	51.26
DumPY: shorter than wild-type family member (dpy-5)	Caenorhabditis elegans	1-41	50.82
Alkaline ceramidase that also has reverse (CoA-	Saccharomyces cerevisiae	3-44	49.99
independent) ceramide synthase activity			
Retinoblastoma-associated protein	Homo sapiens	29-46	49.30
Protein transporter	Arabidopsis thaliana	3-26	48.30
Signal transduction histidine kinase	Lactobacillus casei	2-36	46.70
N-acylsphingosine amidohydrolase 3	Homo sapiens	3-44	45.65
F59E11.5	Caenorhabditis elegans	2-31	44.97

Ceramidase		3-44	44.88
Cytoplasmic membrane protein	Bartonella henselae	1-34	44.46
SYP125; t-SNARE	Arabidopsis thaliana	6-29	44.28
Rhodanese-like protein	Beggiatoa sp. PS	2-22	43.79
MORN repeat protein	Beggiatoa sp. PS	1-21	43.59
Protein containing DUF1239	Beggiatoa sp. PS	1-22	43.55
Y41D4B.24	Caenorhabditis elegans	3-34	43.31
Y110A7A.11	Caenorhabditis elegans	5-26	43.12
COLlagen family member (col-102)	Caenorhabditis elegans	1-46	42.45
C46H11.8	Caenorhabditis elegans	6-20	42.31
Vesicle-associated membrane protein	Mus musculus	4-26	42.29
SrtB		1-34	42.20
Urinary protein (RUP)/acrosomal protein SP-10		1-27	41.83
ATCDS1; phosphatidate cytidylyltransferase	Arabidopsis thaliana	45-77	41.81
Temporarily Assigned Gene name family member (tag-	Caenorhabditis elegans	6-21	41.51
254)			
Golgi phosphoprotein 2	Homo sapiens	1-39	41.51
Golgi phosphoprotein 2	Homo sapiens	1-39	41.51
RCR		8-23	41.47
BLASTP			
Membrane protein	Enterococcus faecium	2-77	1.00e-06
Membrane protein (3)	Enterococcus faecium	4-77	5.00e-06 –
Membrane protein (3)	Enterococcus faecium	4-77	5.00e-06 – 1.00e-05
Membrane protein (3) MULTISPECIES: membrane protein	Enterococcus faecium Enterococcus	4-77 4-77 4-77	5.00e-06 – 1.00e-05 5.00e-06
Membrane protein (3) MULTISPECIES: membrane protein Glycyl-tRNA synthetase subunit alpha	Enterococcus faecium Enterococcus Avibacterium	4-77 4-77 23-77	5.00e-06 - 1.00e-05 5.00e-06 2.00e-05
Membrane protein (3) MULTISPECIES: membrane protein Glycyl-tRNA synthetase subunit alpha	Enterococcus faecium Enterococcus Avibacterium paragallinarum	4-77 4-77 23-77	5.00e-06 - 1.00e-05 5.00e-06 2.00e-05
Membrane protein (3) MULTISPECIES: membrane protein Glycyl-tRNA synthetase subunit alpha Glycyl-tRNA synthetase subunit alpha	Enterococcus faecium Enterococcus Avibacterium paragallinarum Vibrio litoralis	4-77 4-77 23-77 23-77	5.00e-06 - 1.00e-05 5.00e-06 2.00e-05 2.00e-05
Membrane protein (3) MULTISPECIES: membrane protein Glycyl-tRNA synthetase subunit alpha Glycyl-tRNA synthetase subunit alpha Glycyl-tRNA synthetase subunit alpha	Enterococcus faecium Enterococcus Avibacterium paragallinarum Vibrio litoralis Vibrio rumoiensis	4-77 4-77 23-77 23-77 23-77	5.00e-06 - 1.00e-05 5.00e-06 2.00e-05 2.00e-05 2.00e-05
Membrane protein (3) MULTISPECIES: membrane protein Glycyl-tRNA synthetase subunit alpha	Enterococcus faecium Enterococcus Avibacterium paragallinarum Vibrio litoralis Vibrio rumoiensis Vibrio mytili	4-77 4-77 23-77 23-77 23-77 23-77 23-77	5.00e-06 - 1.00e-05 5.00e-06 2.00e-05 2.00e-05 2.00e-05 2.00e-05
Membrane protein (3) MULTISPECIES: membrane protein Glycyl-tRNA synthetase subunit alpha COG0752 Glycyl-tRNA synthetase, alpha subunit	Enterococcus faecium Enterococcus Avibacterium paragallinarum Vibrio litoralis Vibrio rumoiensis Vibrio mytili uncultured bacterium	4-77 4-77 23-77 23-77 23-77 23-77 23-77 23-77	5.00e-06 - 1.00e-05 5.00e-06 2.00e-05 2.00e-05 2.00e-05 3.00e-05
Membrane protein (3) MULTISPECIES: membrane protein Glycyl-tRNA synthetase subunit alpha COG0752 Glycyl-tRNA synthetase, alpha subunit	Enterococcus faecium Enterococcus Avibacterium paragallinarum Vibrio litoralis Vibrio rumoiensis Vibrio mytili uncultured bacterium B3TF_MPn_8	4-77 4-77 23-77 23-77 23-77 23-77 23-77 23-77	5.00e-06 - 1.00e-05 5.00e-06 2.00e-05 2.00e-05 2.00e-05 3.00e-05
Membrane protein (3) MULTISPECIES: membrane protein Glycyl-tRNA synthetase subunit alpha COG0752 Glycyl-tRNA synthetase, alpha subunit MULTISPECIES: glycyl-tRNA synthetase subunit alpha	Enterococcus faecium Enterococcus Avibacterium paragallinarum Vibrio litoralis Vibrio rumoiensis Vibrio mytili uncultured bacterium B3TF_MPn_8 Vibrio	4-77 4-77 23-77 23-77 23-77 23-77 23-77 23-77 23-77 23-77	5.00e-06 - 1.00e-05 5.00e-06 2.00e-05 2.00e-05 2.00e-05 3.00e-05 3.00e-05,
Membrane protein (3) MULTISPECIES: membrane protein Glycyl-tRNA synthetase subunit alpha COG0752 Glycyl-tRNA synthetase, alpha subunit MULTISPECIES: glycyl-tRNA synthetase subunit alpha (5)	Enterococcus faecium Enterococcus Avibacterium paragallinarum Vibrio litoralis Vibrio rumoiensis Vibrio mytili uncultured bacterium B3TF_MPn_8 Vibrio	4-77 4-77 23-77 23-77 23-77 23-77 23-77 23-77 23-77	5.00e-06 - 1.00e-05 5.00e-06 2.00e-05 2.00e-05 2.00e-05 3.00e-05 3.00e-05, 4.00e-05
Membrane protein (3) MULTISPECIES: membrane protein Glycyl-tRNA synthetase subunit alpha COG0752 Glycyl-tRNA synthetase, alpha subunit MULTISPECIES: glycyl-tRNA synthetase subunit alpha (5) Glycyl-tRNA synthetase subunit alpha	Enterococcus faeciumEnterococcusAvibacteriumparagallinarumVibrio litoralisVibrio rumoiensisVibrio mytiliuncultured bacteriumB3TF_MPn_8VibrioVibrio	4-77 4-77 23-77 23-77 23-77 23-77 23-77 23-77 23-77 23-77 23-77	5.00e-06 - 1.00e-05 5.00e-06 2.00e-05 2.00e-05 2.00e-05 3.00e-05 3.00e-05, 4.00e-05 3.00e-05
Membrane protein (3) MULTISPECIES: membrane protein Glycyl-tRNA synthetase subunit alpha COG0752 Glycyl-tRNA synthetase, alpha subunit MULTISPECIES: glycyl-tRNA synthetase subunit alpha (5) Glycyl-tRNA synthetase, partial	Enterococcus faeciumEnterococcusAvibacteriumparagallinarumVibrio litoralisVibrio rumoiensisVibrio mytiliuncultured bacteriumB3TF_MPn_8VibrioVibrio caribbeanicusVibrio campbellii	4-77 4-77 23-77 23-77 23-77 23-77 23-77 23-77 23-77 23-77 23-77 23-77	5.00e-06 - 1.00e-05 5.00e-06 2.00e-05 2.00e-05 2.00e-05 3.00e-05 3.00e-05 3.00e-05 4.00e-05 4.00e-05

			1.00e-04
Glycyl-tRNA synthetase subunit alpha, partial (2)	Vibrio parahaemolyticus	23-77	4.00e-05
Glycyl-tRNA synthetase subunit alpha, partial	Vibrio sp. ER1A	23-77	4.00e-05
Glycyl-tRNA synthetase subunit alpha	Vibrio shilonii	23-77	4.00e-05
GlycinetRNA ligase alpha subunit	Vibrio splendidus	23-77	4.00e-05
Glycyl-tRNA synthetase (8)	Vibrio parahaemolyticus	23-77	4.00e-05-
			1.00e-04
Glycyl-tRNA synthetase	Vibrio campbellii	23-77	4.00e-05
Glycyl-tRNA synthetase	Vibrio sp. 090810a	23-77	4.00e-05
Glycyl-tRNA synthetase	Vibrio rotiferianus	23-77	4.00e-05
GlycinetRNA ligase alpha subunit	Vibrio sagamiensis	23-77	4.00e-05
MULTISPECIES: glycyl-tRNA synthetase subunit alpha	Vibrio harveyi group	23-77	4.00e-05
Glycyl-tRNA synthetase subunit alpha	Vibrio tubiashii	23-77	4.00e-05
Glycyl-tRNA synthetase subunit alpha	Vibrio coralliilyticus	23-77	4.00e-05
Glycyl-tRNA synthetase alpha chain	Vibrio sp. C7	23-77	4.00e-05
Glycyl-tRNA synthetase, partial	Vibrio nigripulchritudo	23-77	5.00e-05
Glycyl-tRNA synthetase alpha chain	Vibrio ponticus	23-77	6.00e-05
Glycyl-tRNA synthetase subunit alpha	Vibrio shilonii	23-77	6.00e-05
Glycyl-tRNA synthetase alpha chain	Vibrio variabilis	23-77	6.00e-05
Deacylase	Maribacter sp. HTCC2170	3-53	7.00e-05
Glycyl-tRNA synthetase alpha chain	Vibrio sp. JCM 19236	23-77	7.00e-05
Glycyl-tRNA synthetase alpha chain	Vibrio sp. JCM 19231	23-77	2.00e-04
Lebocin-like antibacterial protein	Heliothis virescens	6-76	2.00e-04
2-oxoglutarate dehydrogenase E2	Staphylococcus hominis	34-77	4.00e-04
P2Y purinoceptor 1, partial	Podiceps cristatus	1-49	5.00e-04
Transporter	Rickettsia typhi	8-44	5.00e-04
Transporter	Rickettsia prowazekii	8-44	6.00e-04
P2Y purinoceptor 1, partial	Gavia stellata	1-49	6.00e-04
Chemotaxis protein	Lactobacillus parafarraginis	15-74	6.00e-04
Permease	Rickettsia prowazekii	28-65	7.00e-04
I-TASSER	1		
Fimbrial protein (Pilin)	Peptoclostridium difficile		0.667
Residues 29-152, plus four N-terminal residues from the	Neisseria meningitidis		0.622
expression construct			
Wnt inhibitor of Dorsal protein (N-terminal domain-linker)	Drosophila melanogaster		0.618
Cytochrome P450ERYF	Saccharopolyspora		0.612

	erythraea		
Cytochrome P450 cypX	Bacillus subtilis		0.607
Inositol-1-monophosphatase	Mycobacterium		0.606
	tuberculosis		
Cytochrome P450 119	Sulfolobus solfataricus		0.605
Cytochrome P450 107B1 (P450CVIIB1)	Streptomyces		0.604
	himastatinicus		
Oxy protein	Actinoplanes		0.602
	teichomyceticus		
367aa long hypothetical cytochrome P450	Sulfolobus tokodaii		0.600
Predict Protein			
Protein binding		1-2, 5,	
		31-32,	
		34-35,	
		48, 51,	
		57	
Mitochondrial membrane			
Atome2			
P fimbrial regulatory protein KS71A	Escherichia coli		92.97
Protein (neamatode anticoagulant protein C2)	Ancylostoma caninum		62.39
Herpes simplex virus protein ICP47 (active domain)	Herpes simplex virus		46.61
Polyribonucleotide nucleotidyltransferase	Escherichia coli		42.79
Neurotoxin BmP03	Mesobuthus martensii		41.75
Calcium-gated potassium channel mthK	Methanothermobacter		38.42
	thermautotrophicus		
CREB-binding protein	Mus musculus		37.95
Polyribonucleotide nucleotidyltransferase	Escherichia coli		34.92
Protein translocase subunit secA			
	Thermotoga maritima		33.09
Protein translocase subunit secA	Thermotoga maritima Bacillus subtilis		33.09 33.06
Protein translocase subunit secA Protein-export membrane protein secG	Thermotoga maritima Bacillus subtilis Escherichia coli		33.09 33.06 31.50
Protein translocase subunit secA Protein-export membrane protein secG CPAP	Thermotoga maritima Bacillus subtilis Escherichia coli Danio rerio		33.09 33.06 31.50 26.35
Protein translocase subunit secA Protein-export membrane protein secG CPAP Transcription factor Dp-1	Thermotoga maritima Bacillus subtilis Escherichia coli Danio rerio Homo sapiens		33.09 33.06 31.50 26.35 24.47

NOTE : For Supplementary Tables XI-XLV HHpred and @tome 2 use probabilities /100; I-TASSER Z scores > 1.0 and TM scores > 0.5 are significant; BLASTP & Predict Protein E-values < 1.0 are significant (adjusted from developer's recommendation of 10.0); PSIBLAST E-values < 0.001 are significant; Motif Scan N-scores do not have a significance threshold, a higher score indicates a better match.

Hits (n)	Species	Position	Probability
HHpred	1	1	
TIGR04294 prepilin-type processing-associated H-X9-		34-36	99.23
DG domain			
TIGR03304 outer membrane insertion C-terminal signal		1-8	99.14
TIGR01167 LPXTG cell wall anchor domain		95-96	98.81
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		18-22	97.99
GlyGly-CTERM domain		50-60	97.08
TIGR00756 pentatricopeptide repeat domain		30-49	94.54
ComGC		45-62	91.25
Stage III sporulation protein AF		18-63	80.41
Protein-export membrane protein		34-111	75.33
Transducer protein Htr37		24-64	74.74
Syntaxin-like t-SNARE		37-98	70.94
Mutants block sporulation after engulfment (stage III		18-63	70.72
sporulation)			
VAMP-5_synaptobrevin		36-68	67.81
CG11815-PA	Drosophila melanogaster	77-99	66.44
C-type LECtin family member (clec-35)	Caenorhabditis elegans	28-110	65.05
ComGC Competence protein ComGC		45-62	62.86
COLlagen family member (col-14)	Caenorhabditis elegans	21-65	58.40
Pili subunits (54523) SCOP seed sequence: d2pila_		4-62	56.94
General secretion pathway protein H	Nostoc punctiforme	28-63	56.08
Methyl-accepting chemotaxis protein	Beggiatoa sp. PS	33-59	55.50
Stage III sporulation protein AF (Spore_III_AF)		3-63	54.93
Opacity-associated protein A N-terminal motif		40-61	53.84
Protein involved in cis-Golgi membrane traffic; v-SNARE	Saccharomyces cerevisiae	25-64	53.77
Pili subunits (54523) SCOP seed sequence: d1oqwa_		44-62	53.25
F08F8.8	Caenorhabditis elegans	19-64	53.15
DevC protein	Nostoc punctiforme	24-66	52.26

Supplementary Table XXIX. Toxolasma lividus F-ORF function predictions

Transducer protein Htr36	Haloferax volcanii	26-64	50.87
Opacity-associated protein A N-terminal motif		40-61	50.30
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	59-104	50.27
member (pqn-34)			
Flagellar M-ring protein	Bacillus subtilis	25-79	49.97
SecD-TM1 SecD export protein N-terminal TM region.		35-63	48.71
C-type LECtin family member (clec-25)	Caenorhabditis elegans	43-107	48.40
Vesicle transport through interaction with t-SNAREs 1B	Homo sapiens	25-64	48.33
Vesicle transport through interaction with t-SNAREs 1B	Mus musculus	25-64	48.30
homolog			
Y57G11C.4	Caenorhabditis elegans	25-63	47.57
C05E11.1	Caenorhabditis elegans	8-59	46.93
Methyl-accepting chemotaxis protein II	Yersinia pestis	31-64	46.49
Stage III sporulation protein AF (Spore_III_AF)	+	30-63	46.41
DevC protein	Nostoc punctiforme	26-65	45.60
DevC protein	Nostoc punctiforme	24-65	45.36
T10E10.5	Caenorhabditis elegans	25-66	44.80
CG3279-PA	Drosophila melanogaster	25-76	44.73
SYP123; t-SNARE	Arabidopsis thaliana	25-66	43.93
VTI12; SNARE binding/receptor	Arabidopsis thaliana	25-64	43.41
Protein export protein SecD	Neisseria meningitidis	35-67	43.40
DevC protein	Nostoc punctiforme	28-65	43.13
DevC protein	Nostoc punctiforme	24-65	42.27
VTI11; receptor	Arabidopsis thaliana	25-64	42.17
Vesicle-associated membrane protein 5 (myobrevin)	Homo sapiens	36-69	41.51
T24B1.1	Caenorhabditis elegans	31-69	41.28
Vesicle transport v-snare protein	Schizosaccharomyces	25-64	41.03
	pombe		
Intra-Golgi v-SNARE, required for transport of proteins	Saccharomyces cerevisiae	25-63	40.76
between an early and a later Golgi compartment			
F41F3.3	Caenorhabditis elegans	42-61	40.59
TonB family protein	Nostoc punctiforme 73102	37-81	40.54
Related to VTI1 - v-SNARE: involved in Golgi retrograde		25-64	39.71
protein traffic			
Proline-rich region	Synechococcus sp.	23-66	39.54
	CC9311		

Resistance to inhibitors of cholinesterase 3 homolog	Homo sapiens	41-105	39.30
F46F5.7	Caenorhabditis elegans	36-111	39.23
Protein export protein SecD	Pseudomonas aeruginosa	35-67	38.85
Methyl-accepting chemotaxis protein III	Escherichia coli	33-59	38.71
Competence protein CgIC	Streptococcus pneumoniae	26-63	38.44
COLlagen family member (col-77)	Caenorhabditis elegans	25-66	37.87
v-SNARE (vesicle specific SNAP receptor)	Saccharomyces cerevisiae	19-64	37.76
Transcriptional accessory factor Tex (2)	Pseudomonas aeruginosa	79-99	37.60
F0F1 ATP synthase subunit A	Mycobacterium	18-67	37.34
	tuberculosis		
a disintegrin and metalloproteinase domain 7	Homo sapiens	45-108	37.11
CG13581-PA	Drosophila melanogaster	101-113	36.38
Protein export protein SecD	Escherichia coli	35-67	36.37
SYP124; t-SNARE	Arabidopsis thaliana	25-64	36.06
Laeverin	Homo sapiens	40-111	35.41
COLlagen family member (col-174)	Caenorhabditis elegans	25-66	35.28
CG11500-PA	Drosophila melanogaster	5-89	35.23
SecD-TM1: SecD export protein N-terminal TM region		36-67	34.96
Multi-sensor signal transduction histidine kinase	Nostoc punctiforme	21-64	34.75
MacB_PCD MacB-like periplasmic core domain.		32-66	34.43
Type IV Pilin Pak	Pseudomonas aeruginosa	44-62	34.26
I-TASSER			•
UNC-45 protein, SD10334p	Drosophila melanogaster		0.512
RCD1 required for cell differentiation1 homolog	Homo sapiens		0.509
Chloride intracellular channel exc-4	Caenorhabditis elegans		0.504
Telomerase-binding protein EST1A (tetratricopeptide			0.502
repeat, residues 580-1166)			
Protein UNC-45	Caenorhabditis elegans		0.502
Karyopherin alpha (armadillo domain)	Saccharomyces cerevisiae		0.500
Predict Protein			•
Protein binding		1, 3, 5,	
		10-11,	
		14-18,	
		20-21,	
		31, 35,	
		38-39,	

		64-66,	
		68, 70,	
		72, 90,	
		94-95.	
		97	
Polynucleotide binding		27	
Mitochondrial membrane			
Atome2			
FLT3 ligand (receptor binding domain)	Homo sapiens		99.28
Protein parD	Escherichia coli		59.11
Intrinsic membrane protein pufX	Rhodobacter sphaeroides		54.16
Envelope protein E	Dengue virus		46.45
Neopetrosiamide A	Neopetrosia sp.		38.08
Laccase	Rigidoporus microporus		30.09
Laccase	Botrytis aclada		25.58
Ascorbate oxidase	Cucurbita pepo		23.65
Iron transport multicopper oxidase FET3	Saccharomyces cerevisiae		23.49
Laccase 1	Coprinopsis cinerea		22.43
Laccase	Steccherinum ochraceum		22.40
Fimbrial protein	Neisseria gonorrhoeae		20.56
Laccase-1	Melanocarpus albomyces		15.28

Supplementary Table XXX. Margaritifera margaritifera F-ORF function predictions

Hits (n)	Species	Position	Probability
HHpred			
TIGR03304 outer membrane insertion C-terminal signal		23-24	99.14
TIGR04294 prepilin-type processing-associated H-X9-		44-49	99.11
DG domain			
TIGR01167 LPXTG cell wall anchor domain		32-48	98.87

TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		49-56	97.75
TIGR03501 GlyGly-CTERM domain		36-48	97.15
TIGR00756 pentatricopeptide repeat domain		16-23	93.83
T24B1.1	Caenorhabditis elegans	21-52	84.13
Occlusion-derived virus envelope protein ODV-E18		21-62	72.05
d.24.1 Pili subunits (54523) SCOP seed sequence:		31-50	68.15
d2pila_			
d.24.1 Pili subunits (54523) SCOP seed sequence:		31-50	67.59
d1oqwa_			
RCR		32-50	65.14
Cytochrome c550	Bacillus subtilis	27-61	62.79
Occlusion-derived virus envelope protein ODV-E18		23-55	62.79
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	34-53	61.72
member (pqn-90)			
General secretion pathway protein H	Beggiatoa sp. PS	31-50	60.83
CytB-hydogenase Ni/Fe-hydrogenase, b-type		8-49	58.96
cytochrome subunit			
Activated in Blocked Unfolded protein response family	Caenorhabditis elegans	34-53	58.69
member (abu-1)			
Alpha defensin		39-50	58.16
ComB		6-50	57.29
COLlagen family member (col-34)	Caenorhabditis elegans	19-56	55.90
Secreted protein	Beggiatoa sp. PS	31-50	55.82
COLlagen family member (col-93)	Caenorhabditis elegans	19-56	54.87
Serine protease inhibitor		37-90	51.90
Prion-like-(Q/N-rich)-domain-bearing protein family			
	Caenorhabditis elegans	34-55	49.09
member (pqn-78)	Caenorhabditis elegans	34-55	49.09
member (pqn-78) Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans Caenorhabditis elegans	34-55 34-55	49.09 48.47
member (pqn-78) Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-2)	Caenorhabditis elegans Caenorhabditis elegans	34-55 34-55	49.09 48.47
member (pqn-78) Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-2) Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans Caenorhabditis elegans Caenorhabditis elegans	34-55 34-55 34-55	49.09 48.47 48.10
member (pqn-78) Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-2) Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-76)	Caenorhabditis elegans Caenorhabditis elegans Caenorhabditis elegans	34-55 34-55 34-55	49.09 48.47 48.10
member (pqn-78)Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-2)Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-76)Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans Caenorhabditis elegans Caenorhabditis elegans Caenorhabditis elegans	34-55 34-55 34-55 34-55	49.09 48.47 48.10 48.10
member (pqn-78)Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-2)Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-76)Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-79)	Caenorhabditis elegans Caenorhabditis elegans Caenorhabditis elegans Caenorhabditis elegans	34-55 34-55 34-55 34-55	49.09 48.47 48.10 48.10
member (pqn-78)Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-2)Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-76)Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-79)Integral membrane protein	Caenorhabditis elegans Caenorhabditis elegans Caenorhabditis elegans Caenorhabditis elegans Streptomyces coelicolor	34-55 34-55 34-55 34-55 1-55	49.09 48.47 48.10 48.10 47.76
member (pqn-78)Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-2)Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-76)Prion-like-(Q/N-rich)-domain-bearing protein family member (pqn-79)Integral membrane protein W06F12.2a	Caenorhabditis elegans Caenorhabditis elegans Caenorhabditis elegans Caenorhabditis elegans Streptomyces coelicolor Caenorhabditis elegans	34-55 34-55 34-55 34-55 34-55 1-55 10-52	 49.09 48.47 48.10 48.10 47.76 47.72

Methyl-CpG BinDing protein family member (mbd-2)	Caenorhabditis elegans	9-21	47.44
RCR		32-50	46.40
COLlagen family member (col-91)	Caenorhabditis elegans	31-56	45.97
Methyl-CpG binding domain protein 3-like 1	Mus musculus	9-27	44.23
Pleiotrophin family member		34-53	43.89
F27E5.3	Caenorhabditis elegans	31-50	43.81
F420-nonreducing hydrogenase II subunit cytochrome B	Methanosarcina mazei	22-50	43.78
Crumbs homolog 2	Homo sapiens	23-53	43.61
General secretion pathway protein J	Yersinia pestis	31-50	43.53
F26B1.1	Caenorhabditis elegans	1-49	43.50
Glycine rich protein family		35-53	43.19
COLlagen family member (col-94)	Caenorhabditis elegans	19-56	43.14
Activated in Blocked Unfolded protein response family	Caenorhabditis elegans	34-55	42.68
member (abu-7)			
TetraSPanin family member (tsp-14)	Caenorhabditis elegans	33-109	42.50
K08F4.5	Caenorhabditis elegans	31-50	42.44
COLlagen family member (col-92)	Caenorhabditis elegans	19-56	42.30
Type II secretion system protein I.		31-52	42.13
COLlagen family member (col-139)	Caenorhabditis elegans	19-56	42.09
COLlagen family member (col-108)	Caenorhabditis elegans	19-56	41.97
F46H6.5	Caenorhabditis elegans	75-94	40.38
COLlagen family member (col-102)	Caenorhabditis elegans	31-56	40.22
CG2040-PA, isoform A	Drosophila melanogaster	19-45	40.06
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	34-55	39.77
member (pqn-91)			
Type 4 fimbrial biogenesis protein FimT	Pseudomonas aeruginosa	31-50	39.48
	PAO1		
T-cell receptor-associated transmembrane adapter 1		31-48	39.41
I-TASSER			1
Tropomyosin	Oryctolagus cuniculus		1.03
Oligopeptidase	Geobacillus sp. MO-1		0.532
Glucose-6-phosphate isomerase	Brucella melitensis		0.523
Glucose-6-phosphate isomerase	Vibrio cholerae		0.518
Glucose-6-phosphate isomerase	Plasmodium falciparum		0.518
Glucose-6-phosphate isomerase	Sus scrofa		0.518
Cytochrome P450 107B1 (P450CVIIB1)	Streptomyces		0.517

	himastatinicus		
Glucose-6-phosphate isomerase	Escherichia coli		0.515
Oligoendopeptidase F	Geobacillus		0.515
	stearothermophilus		
Phosphoglucose isomerase	Geobacillus		0.512
	stearothermophilus		
Predict Protein			
Protein binding		1, 3-4,	
		16, 18-	
		20, 24-	
		29, 55,	
		57, 81-	
		82	
Secreted			
Atome2			
Protein MXIG	Shigella flexner		86.27
Protein parD	Escherichia coli		76.28
ARF GTPase-activating protein GIT1	Rattus norvegicus		66.40
NifU-like protein, mitochondrial	Saccharomyces cerevisiae		43.28
Photosynthetic reaction center C subunit	Thermochromatium		39.97
	tepidum		
Lichenicidin VK21 A1	Bacillus licheniformis		38.81
Collagen alpha 1 (heparin binding site)	Gallus gallus		38.00
Adenovirus fibre	Human adenovirus 2		27.29
Formate dehydrogenase, nitrate-inducible, major subunit	Escherichia coli		26.46
Fimbrial protein	Dichelobacter nodosus		22.77
Fimbrial protein	Neisseria gonorrhoeae		22.40
Fimbrial protein	Pseudomonas aeruginosa		20.49
Protein (LCA)	Homo sapiens		18.92
Fiber protein 2	Human adenovirus 41		18.06

Hits (n)	Species	Position	Probability
HHpred		1	I
TIGR01167 LPXTG cell wall anchor domain		55-60	99.47
TIGR04294 prepilin-type processing-associated H-X9-		19-22	99.31
DG domain			
TIGR03304 outer membrane insertion C-terminal signal		35-36	99.24
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		47-54	98.03
TIGR03501 GlyGly-CTERM domain		9-19	97.33
TIGR00756 pentatricopeptide repeat domain		26-46	94.32
CG7685-PA	Drosophila melanogaster	4-27	91.69
Intra-Golgi v-SNARE	Saccharomyces cerevisiae	2-27	86.02
CG13969-PA	Drosophila melanogaster	2-45	80.31
TMEM156 protein family		2-28	77.90
Ceramidase		3-45	74.10
Peptidoglycan-associated lipoprotein Pal	Yersinia pestis	1-20	69.76
Saliv_gland_allergen_Aed3		3-20	69.53
Retinoblastoma-associated protein	Homo sapiens	30-47	68.54
CG3066-PD, isoform D	Drosophila melanogaster	3-28	68.32
Alkaline ceramidase 2	Mus musculus	2-45	66.07
Golgi SNARE BET1-related		4-25	65.91
W02F12.2	Caenorhabditis elegans	2-54	65.41
ABC transporter, periplasmic amino acid-binding protein	Bartonella henselae	1-23	63.51
Undecaprenyl pyrophosphate phosphatase	Escherichia coli	1-28	62.85
Peptidoglycan-associated outer membrane lipoprotein	Escherichia coli	1-20	62.73
T27F7.3a	Caenorhabditis elegans	3-37	62.11
Cytochrome C-type biogenesis protein CcmE	Pseudomonas aeruginosa	1-43	61.79
Sterol reductase/lamin B receptor		20-48	61.33
Glycine rich protein family		6-27	61.32
SrtB		1-35	61.18
Human EMeRin homolog family member (emr-1)	Caenorhabditis elegans	6-24	61.00
Related to YPC1 - Alkaline ceramidase		2-45	60.98
Periplasmic heme chaperone	Escherichia coli	1-43	60.72
Protein transporter	Arabidopsis thaliana	2-27	59.33
Signal transduction histidine kinase	Lactobacillus casei	3-37	59.20
Essential SNARE protein localized to the ER	Saccharomyces cerevisiae	6-27	58.72

Supplementary Table XXXI. Anodonta anatina F-ORF function predictions

LPS export ABC transporter permease LptF		4-30	58.57
Syntaxin 5	Mus musculus	2-24	58.16
Vesicle-associated membrane protein-associated		5-27	57.33
protein			
SYP31; t-SNARE	Arabidopsis thaliana	2-24	57.00
N-acylsphingosine amidohydrolase 3	Homo sapiens	2-45	55.58
GRP Glycine rich protein family		6-27	55.38
Target membrane receptor (t-SNARE)	Saccharomyces cerevisiae	2-24	55.04
Alkaline ceramidase that also has reverse (CoA-	Saccharomyces cerevisiae	2-45	54.77
independent) ceramide synthase activity			
Soluble secreted antigen MPT53 precursor	Mycobacterium	1-28	54.23
	tuberculosis		
Temporarily Assigned Gene name family member (tag-	Caenorhabditis elegans	7-22	53.72
254)			
Conserved inner membrane protein	Escherichia coli	4-30	53.59
Ceramidase		2-45	52.04
F59E11.5	Caenorhabditis elegans	3-32	51.37
Cytochrome C-type protein NapC	Beggiatoa sp. PS	2-36	50.69
Syntaxin 7	Homo sapiens	2-24	50.07
N-acylsphingosine amidohydrolase 3-like	Homo sapiens	2-45	49.95
Syntaxin-related protein required for vacuolar assembly	Saccharomyces cerevisiae	2-24	49.79
Y59E9AL.7	Caenorhabditis elegans	2-25	49.43
Rhodanese-like protein	Beggiatoa sp. PS	3-28	49.25
PAP2 family protein	Staphylococcus aureus	1-35	48.90
Secreted protein	Beggiatoa sp. PS	1-36	48.75
Peptidoglycan associated lipoprotein OprL precursor	Pseudomonas aeruginosa	1-20	48.67
	PAO1		
Sortase B	Staphylococcus aureus	1-42	48.38
	subsp. aureus COL		
SYP125; t-SNARE	Arabidopsis thaliana	7-30	47.94
Y41D4B.24	Caenorhabditis elegans	2-35	47.44
CG14084-PB, isoform B	Drosophila melanogaster	2-25	47.44
I-TASSER		1	
Glucokinase regulatory protein	Homo sapiens		0.522
Glucokinase regulatory protein	Xenopus laevis		0.517
Cation exchanger YfkE	Bacillus subtilis		0.512

Pathogenicity island 1 effector protein	Chromobacterium		0.509
	violaceum		
Unconventional myosin-Va	Mus musculus		0.508
Methane monooxygenase hydroxylase	Methylosinus trichosporium		0.505
Inositol-1-monophosphatase	Mycobacterium		0.505
	tuberculosis		
Predict Protein			1
Protein binding		1-3, 6,	
		32-33,	
		56-58	
Mitochondrial membrane			
Atome2	•		1
Transposon Tn557 toxic shock syndrome toxin-1	Staphylococcus aureus		78.60
S67	Sicarius dolichocephalus		66.70
BirA bifunctional protein	Escherichia coli		61.21
SERCA1a	Oryctolagus cuniculus		55.57
Sodium/potassium-transporting ATPase subunit alpha-1	Sus scrofa		51.63
Antitoxin RelB3	Methanocaldococcus		48.98
	jannaschii		
Na, K-ATPase alpha subunit	Squalus acanthias		46.29
Transcription factor Dp-1			45.74
Nicotinic acetylcholine receptor	Torpedo californica		41.21
СРАР	Danio rerio		32.69
Potassium-transporting ATPase alpha	Sus scrofa		32.06
Vesicle-associated membrane protein 2	Rattus norvegicus		8.39

Supplementary Table XXXII. Utterbackia imbecillis H-ORF sequence 1 function

predictions

Hits (n)	Species	Position	Probability
HHpred	•		1
TIGR04294 prepilin-type processing-associated H-		201-204	99.30
X9-DG domain			
TIGR03304 outer membrane insertion C-terminal		49-52	99.27
signal			
TIGR01167 LPXTG cell wall anchor domain		75-77	98.89
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		21-23	97.49
TIGR03501 GlyGly-CTERM domain		49-57	96.92
CG12522-PA	Drosophila melanogaster	77-147	97.70
CG12522-PA	Drosophila melanogaster	74-137	97.65
G protein-coupled receptor 152	Homo sapiens	1-156	96.83
G protein-coupled receptor 152	Homo sapiens	3-156	96.50
Procyclic acidic repetitive protein (PARP)		80-149	96.21
R06C7.4	Caenorhabditis elegans	75-155	96.17
Procyclic acidic repetitive protein (PARP)		84-153	95.96
R06C7.4	Caenorhabditis elegans	74-155	95.67
K09E4.6	Caenorhabditis elegans	79-156	95.13
TIGR00756 pentatricopeptide repeat domain		14-21	94.13
T14A8.2	Caenorhabditis elegans	34-155	95.01
Related to CSR1 - phosphatidylinositol transfer		72-153	94.46
protein			
K09E4.6	Caenorhabditis elegans	88-156	94.22
T06A4.1b	Caenorhabditis elegans	73-153	93.81
T06A4.1b	Caenorhabditis elegans	73-155	93.76
Armadillo repeat containing, X-linked 4	Homo sapiens	75-153	93.72
DumPY: shorter than wild-type family member (dpy-	Caenorhabditis elegans	1-66	93.60
10)			
Protein with Tau-Like repeats family member (ptl-1)	Caenorhabditis elegans	74-156	93.46
Copper-binding protein	Methanosarcina mazei	11-154	93.45
Prolipoprotein diacylglyceryl transferase	Mycobacterium tuberculosis	21-156	93.44
Related to CSR1 - phosphatidylinositol transfer		75-156	92.94
protein			

T04F8.8	Caenorhabditis elegans	85-146	92.56
T04F8.8	Caenorhabditis elegans	75-136	92.47
F56B6.4a	Caenorhabditis elegans	74-152	92.43
Protein with Tau-Like repeats family member (ptl-1)	Caenorhabditis elegans	75-153	92.40
Armadillo repeat containing, X-linked 4	Homo sapiens	73-157	92.39
F56B6.4a	Caenorhabditis elegans	74-156	92.37
Junctophilin 2	Mus musculus	74-212	92.12
SphingoMyelin Synthase family member (sms-1)	Caenorhabditis elegans	75-204	91.33
Junctophilin 1	Mus musculus	74-212	91.12
BLIstered cuticle family member (bli-2)	Caenorhabditis elegans	12-67	91.06
Solute carrier family 16, member 2	Homo sapiens	75-149	91.03
CG1468-PA	Drosophila melanogaster	71-156	90.90
Solute carrier family 16, member 2	Homo sapiens	74-155	90.73
CG12316-PA, isoform A	Drosophila melanogaster	84-150	90.67
CG12316-PB, isoform B	Drosophila melanogaster	84-150	90.67
Eukaryotic translation initiation factor 3, subunit 9	Mus musculus	76-156	90.65
Prolipoprotein diacylglyceryl transferase	Frankia alni	74-157	90.55
Eukaryotic translation initiation factor 3, subunit 9	Mus musculus	69-156	90.48
Junctophilin 1	Homo sapiens	71-212	90.44
Adhesion exoprotein	Lactobacillus casei	72-156	89.55
F57B1.3	Caenorhabditis elegans	7-67	89.46
Membralin isoform 1	Homo sapiens	7-156	89.25
Protein with Tau-Like repeats family member (ptl-1)	Caenorhabditis elegans	74-156	88.92
Diacylglycerol kinase kappa	Homo sapiens	73-156	88.91
F47B8.5	Caenorhabditis elegans	74-155	88.65
F47B8.5	Caenorhabditis elegans	75-156	88.53
T10E10.5	Caenorhabditis elegans	12-67	88.21
SQuaT family member (sqt-2)	Caenorhabditis elegans	12-63	87.68
CG1468-PA	Drosophila melanogaster	74-156	87.29
DumPY: shorter than wild-type family member (dpy-	Caenorhabditis elegans	20-67	87.27
14)			
Prolipoprotein diacylglyceryl transferase	Frankia alni	74-153	87.09
Diacylglycerol kinase kappa	Homo sapiens	72-156	86.90
V-set and immunoglobulin domain containing 1	Mus musculus	74-155	86.33
Protein with Tau-Like repeats family member (ptl-1)	Caenorhabditis elegans	75-156	85.78
T10G3.1	Caenorhabditis elegans	73-154	85.56

T10G3.1	Caenorhabditis elegans	73-154	85.23
Adhesion exoprotein	Lactobacillus casei	76-156	84.94
R09F10.3	Caenorhabditis elegans	72-156	84.49
F33A8.9	Caenorhabditis elegans	10-67	84.46
COLlagen family member (col-110)	Caenorhabditis elegans	21-68	84.41
D1054.11	Caenorhabditis elegans	72-156	84.32
Y54E10BL.2	Caenorhabditis elegans	22-67	84.00
COLlagen family member (col-102)	Caenorhabditis elegans	25-67	83.99
PF70 protein	Plasmodium falciparum	74-154	83.94
C09F9.2	Caenorhabditis elegans	72-153	83.50
F11G11.11	Caenorhabditis elegans	16-67	83.21
BLASTP, PSIBLAST			
Bv80/Bb-1, partial	Babesia bovis	77-152	2e-10, 8e-
			14
Bv80/Bb-1, partial	Babesia bovis	76-157	4e-10, 2e-
			13
Bv80/Bb-1, partial	Babesia bovis	6-152	2e-09, 6e-
			13
S-layer protein precursor	Bacillus thuringiensis	73-152	6e-09, 2e-
			12
Cell surface protein, partial	Bacillus thuringiensis	73-152	7e-09, 3e-
			12
85 kDa protein	Babesia bovis	77-152	3e-08, 1e-
			11
Bv80/Bb-1, partial (3)	Babesia bovis	76-132	1e-07- 2e-
			10
Cell surface protein (2)	Bacillus thuringiensis	75-152	1e-07- 4e-
			11
Bv80, partial	Babesia bovis	76-136	1e-07, 5e-
			11
85 kDa protein (2)	Babesia bovis	76-182	1e-06-3e-
			10
LdORF-129 peptide	Lymantria dispar multiple	74-144	2e-06, 7e-
	nucleopolyhedrovirus		10
ORF-132 protein	Lymantria dispar multiple	74-131	4e-06, 2e-

GH24581	Drosophila grimshawi	79-143	6e-05, 2e-
			08
Type I restriction modification protein	Mycoplasma pneumoniae	76-157	2e-04, 9e-
			08
Restriction endonuclease, S subunit	Mycoplasma pneumoniae	70-157	0.005, 2e-
			06
Type I restriction modification protein	Mycoplasma pneumoniae	70-157	0.005, 2e-
			06
Restriction endonuclease, S subunit	Mycoplasma pneumoniae	62-157	0.007, 3e-
			06
PSIBLAST	1		
Protein B602L, partial	Columba livia	76-154	6e-11
Bv80, partial	Babesia bovis	76-132	3e-08
ORF-126 protein	Lymantria dispar multiple	72-140	4e-08
	nucleopolyhedrovirus		
B602L, partial (2)	African swine fever virus	60-148	5e-08, 2e-
			07
Central variable region protein (2)	African swine fever virus	60-154	6e-08-7e-
			07
Central variable region protein	African swine fever virus	60-130	7e-08
pB602L	African swine fever virus	60-132	8e-08
Bv80, partial	Babesia bovis	76-152	8e-08
9RL protein	African swine fever virus	65-153	8e-08
B602L, partial	African swine fever virus	60-148	1e-07
9RL, partial (3)	African swine fever virus	60-129	1e-07-3e-
			05
Bv80, partial (3)	Babesia bovis	80-132	2e-07, 2e-
			06
Response regulator receiver domain protein (CheY-	Nodularia spumigena	70-136	2e-07
like)			
B602L protein	African swine fever virus	66-153	3e-07
9RL protein (2)	African swine fever virus	60-154	3e-07-9e-
			07
U1	Hyposoter didymator ichnovirus	77-138	3e-07
Pathway-specific nitrogen regulator	Metarhizium guizhouense	68-132	4e-07
9RL protein	African swine fever virus	65-136	4e-07

B602L protein, partial (3)	African swine fever virus	65-169	4e-07-6e-
			06
BV80 merozoite protein	Babesia bovis	76-152	5e-07
Bv80, partial	Babesia bovis	80-136	6e-07
Bv80/Bb-1, partial (5)	Babesia bovis	80-128	6e-07-2e-
			06
9RL protein, partial	African swine fever virus	65-137	7e-07
9RL protein, partial	African swine fever virus	75-147	7e-07
GG21615	Drosophila erecta	65-140	9e-07
B602L protein (2)	African swine fever virus	66-152	1e-06, 3e-
			04
Bv80/Bb-1, partial	Babesia bovis	78-128	1e-06
9RL protein	African swine fever virus	65-164	2e-06
Type IV secretion protein Rhs, partial	Nocardioides sp. URHA0020	76-155	2e-06
9RL protein	African swine fever virus	65-154	2e-06
9RL protein, partial	African swine fever virus	81-165	2e-06
B602L protein (2)	African swine fever virus	66-130	2e-06, 1e-
			04
B602L, partial	African swine fever virus	60-130	3e-06
9RL, partial	African swine fever virus	60-125	3e-06
B602L, partial (4)	African swine fever virus	60-144	4e-06-1e-
			05
pB602L, partial	African swine fever virus	65-145	5e-06
B602L protein	African swine fever virus	66-154	5e-06
9RL	African swine fever virus	75-164	6e-06
9RL protein (2)	African swine fever virus	65-130	6e-06, 1e-
			04
GL22603	Drosophila persimilis	81-142	7e-06
B602L, partial (4)	African swine fever virus	60-129	8e-06-5e-
			05
Translation initiation factor eIF2B	Metarhizium robertsii	68-129	8e-06
B602L protein (2)	African swine fever virus	65-152	9e-06, 2e-
			05
B602L protein	African swine fever virus	65-148	9e-06
Pathway-specific nitrogen regulator	Metarhizium anisopliae	68-129	9e-06
Pathway-specific nitrogen regulator, partial	Metarhizium brunneum	68-129	9e-06

B602L protein	African swine fever virus	75-164	1e-05
9RL protein, partial	African swine fever virus	81-147	1e-05
Mucin	Trichomonas vaginalis	71-140	1e-05
Cell surface protein (2)	Bacillus thuringiensis	23-152	1e-05
B602L, partial	African swine fever virus	60-169	1e-05
B602L protein (2)	African swine fever virus	70-130	1e-05, 4e-
			04
S-layer protein	Bacillus thuringiensis	23-152	1e-05
Outer membrane autotransporter barrel domain-	Escherichia coli	68-124	2e-05
containing protein			
Central variable region protein	African swine fever virus	60-134	2e-05
9RL protein	African swine fever virus	65-125	2e-05
B602L, partial	African swine fever virus	64-148	2e-05
9RL protein, partial	African swine fever virus	79-153	2e-05
B602L protein	African swine fever virus	66-153	2e-05
9RL protein (2)	African swine fever virus	75-130	2e-05,
			0.003
B602L protein (3)	African swine fever virus	65-140	2e-05- 4e-
			05
BA71V-B602L	African swine fever virus	60-132	3e-05
9RL, partial	African swine fever virus	60-129	3e-05
Cellulosomal scaffoldin anchoring protein	Trichomonas vaginalis	76-152	3e-05
GE10809	Drosophila yakuba	74-148	3e-05
CG3108	Drosophila melanogaster	73-146	3e-05
B602L (2)	African swine fever virus	70-129	4e-05, 5e-
			05
9RL	African swine fever virus	81-140	4e-05
GE16785	Drosophila yakuba	84-137	4e-05
Ribonuclease E	Nitrincola lacisaponensis	77-146	4e-05
pB602L (2)	African swine fever virus	72-132	4e-05, 5e-
			05
B602L protein (2)	African swine fever virus	71-129	5e-05
B602L	African swine fever virus	60-152	5e-05
9RL protein (2)	African swine fever virus	65-129	5e-05, 6e-
			05
9RL protein (2)	African swine fever virus	65-140	6e-05

9RL (3)	African swine fever virus	75-148	6e-05-5e-
			04
B602L protein	African swine fever virus	75-140	7e-05
GI15252	Drosophila mojavensis	73-148	8e-05
Type I restriction modification protein, partial	Mycoplasma pneumoniae	96-157	8e-05
B602L	African swine fever virus	73-130	9e-05
B602L protein	African swine fever virus	81-140	1e-04
B602L protein (8)	African swine fever virus	75-148	1e-04-2e-
			04
Translation initiation factor IF-2	Eubacterium sp. CAG:786	82-153	1e-04
B602L protein	African swine fever virus	65-129	1e-04
Elicitin-like protein 6 precursor, partial	Phytophthora medicaginis	74-150	1e-04
9RL	African swine fever virus	74-140	2e-04
9RL	African swine fever virus	74-144	2e-04
B602L protein	African swine fever virus	76-148	2e-04
Rogdi domain containing protein	Haemonchus contortus	80-138	2e-04
9RL	African swine fever virus	75-144	4e-04
B602L protein	African swine fever virus	66-148	5e-04
Transcription factor IIIB 50 kDa subunit	Xenopus tropicalis	76-130	5e-04
Involucrin repeat protein	Ophiostoma piceae	74-136	6e-04
Peptidase	Actinoplanes sp. SE50/110	77-127	6e-04
B602L protein	African swine fever virus	75-130	0.001
Prokaryotic cytochrome b561 family protein	Burkholderia pseudomallei	76-127	0.001
B-type cytochrome	Burkholderia pseudomallei	76-127	0.001
9RL	African swine fever virus	74-130	0.001
Thylakoid rhodanese-like protein	Medicago truncatula	73-132	0.001
9RL	African swine fever virus	74-129	0.002
Cell division protein FtsK	Carnobacterium sp. 17-4	79-179	0.003
Autotransporter protein, partial	Escherichia coli	73-122	0.003
I-TASSER			
Survival motor neuron protein (3)	Homo sapiens		1.14-1.81
Type I hyperactive antifreeze protein	Pseudopleuronectes americanus		2.21
Myc box dependent interacting protein 1(2)	Homo sapiens		1.00-1.90
Accumulation associated protein (3)	Staphylococcus epidermidis		1.13-1.97
HIV-1 capsid	Human immunodeficiency virus 1		0.513
Gag Polyprotein	Human immunodeficiency virus 1		0.510

Capsid protein P24	Human immunodeficiency virus 2		0.504
Predict Protein	1		
Protein binding		1, 221-	
		222	
Secreted			
Diacylglycerol kinase kappa (3)	Homo sapiens		5e-04-
			0.002
Proteoglycan 4 (2)	Homo sapiens		0.17, 0.99
Proteoglycan 4 (9)	Mus musculus		1e-08-
			0.002
Atome2			
Lamin A/C	Homo sapiens		92.75
Protein bicaudal D	Drosophila melanogaster		84.72
80 kDa MCM3-associated protein	Homo sapiens		76.71
Selenoprotein S	Homo sapiens		72.30
Heat shock protein	Saccharomyces cerevisiae		50.07
Nucleoprotein	Andes virus		44.18
Herpes simplex virus protein ICP47	Herpes simplex virus 1		37.48
Cupiennin-1a	Cupiennius salei		35.85
RNA-binding protein 5	Homo sapiens		29.47

Supplementary Table XXXIII. Utterbackia imbecillis H-ORF sequence 2 function

predictions

Hits (n)	Species	Position	Probability
HHpred			
TIGR04294 prepilin-type processing-associated H-		45-50	99.28
X9-DG domain			
TIGR03304 outer membrane insertion C-terminal		75-81	99.22

signal			
TIGR01167 LPXTG cell wall anchor domain		56-72	98.94
G protein-coupled receptor 152	Homo sapiens	2-227	98.54
G protein-coupled receptor 152	Homo sapiens	4-229	98.36
Y51F10.4a	Caenorhabditis elegans	6-229	98.32
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		227-231	97.63
Prolipoprotein diacylglyceryl transferase	Frankia alni	46-218	98.28
Integral membrane protein	Streptomyces coelicolor	44-224	98.11
Prolipoprotein diacylglyceryl transferase	Frankia alni	51-222	98.01
CG17010-PA, isoform A	Drosophila melanogaster	103-227	97.89
TIGR03501 GlyGly-CTERM domain		58-71	97.07
Integral membrane protein	Streptomyces coelicolor	1-228	97.80
ТRААК	Homo sapiens	9-227	97.77
Copper-binding protein	Methanosarcina mazei	40-190	97.75
CG1246-PB	Drosophila melanogaster	2-226	97.71
Prolipoprotein diacylglyceryl transferase	Mycobacterium tuberculosis	47-229	97.67
C36H8.1	Caenorhabditis elegans	42-227	97.63
Cytochrome o ubiquinol oxidase subunit IV	Bartonella henselae	17-221	97.55
F47B8.5	Caenorhabditis elegans	113-228	97.49
Pannexin 2	Homo sapiens	51-229	97.45
R09E10.9	Caenorhabditis elegans	69-227	97.40
F47B8.5	Caenorhabditis elegans	103-229	97.37
CG17010-PA, isoform A	Drosophila melanogaster	110-223	97.36
SH3-domain binding protein 1	Homo sapiens	1-228	97.35
Repellent protein 1 precursor		118-228	97.33
Polygalacturonase	Arabidopsis thaliana	109-227	97.27
Polygalacturonase	Arabidopsis thaliana	119-229	97.24
Repellent protein 1 precursor		114-220	97.24
TonB family protein	Nostoc punctiforme	37-225	97.21
Eukaryotic translation initiation factor 3	Homo sapiens	120-204	97.14
Eukaryotic translation initiation factor 3	Homo sapiens	137-220	97.14
Cytochrome o ubiquinol oxidase subunit IV	Bartonella henselae	32-225	97.10
R09E10.9	Caenorhabditis elegans	13-227	97.10
Armadillo repeat containing, X-linked 4	Homo sapiens	105-228	97.05
Prolipoprotein diacylglyceryl transferase	Mycobacterium tuberculosis	103-229	97.04
Nischarin	Mus musculus	107-217	97.01

Transporter	Arabidopsis thaliana	111-228	96.96
Nischarin	Mus musculus	108-229	96.95
SphingoMyelin Synthase family member (sms-1)	Caenorhabditis elegans	109-203	96.90
CG1246-PB	Drosophila melanogaster	15-219	96.86
Related to CSR1 - phosphatidylinositol transfer		111-219	96.83
protein			
PPARgamma constitutive coactivator 1	Homo sapiens	102-226	96.79
Eukaryotic translation initiation factor 3 subunit	Homo sapiens	132-203	96.73
Gas vesicle protein L	Frankia alni	111-224	96.71
SphingoMyelin Synthase family member (sms-1)	Caenorhabditis elegans	109-229	96.70
Eukaryotic translation initiation factor 3 subunit	Homo sapiens	135-207	96.68
Eukaryotic translation initiation factor 3, subunit 9	Mus musculus	105-226	96.66
Transporter	Arabidopsis thaliana	107-229	96.65
C36H8.1	Caenorhabditis elegans	3-223	96.65
CG4875-PB, isoform B	Drosophila melanogaster	80-227	96.65
C05E11.1	Caenorhabditis elegans	29-227	96.64
K09E4.6	Caenorhabditis elegans	90-209	96.58
BLASTP/PSIBLAST			
Mitochondria Localisation Sequence		106-210	1.51e-04
Ribonuclease E; Reviewed		91-219	1.16e-12
Ehrlichia tandem repeat (Ehrlichia_rpt)		102-218	1.43e-05
Terminal organelle assembly protein TopJ		102-218	2.26e-04
Bv80/Bb-1, partial	Babesia bovis	98-226	3e-15
Bv80/Bb-1, partial	Babesia bovis	98-224	4e-13
PSIBLAST			
Protein B602L, partial	Columba livia	98-222	4e-15
85 kDa protein (2)	Babesia bovis	102-221	2e-14, 5e-
			14
Bv80, partial (2)	Babesia bovis	101-227	2e-12, 1e-
			10
Cell surface protein, partial (2)	Bacillus thuringiensis	89-218	3e-12-6e-
			12
S-layer protein precursor	Bacillus thuringiensis	89-218	3e-12
Response regulator receiver domain protein (CheY-	Nodularia spumigena	134-227	8e-12
like)			
Bv80/Bb-1, partial	Babesia bovis	101-226	7e-11
Bv80, partial (2)	Babesia bovis	102-227	7e-11, 4e-
---	------------------------------	---------	------------
			09
Cell surface protein	Bacillus thuringiensis	96-218	9e-11
B602L, partial	African swine fever virus	86-221	2e-10
IgA1 protease precursor	Erwinia billingiae	97-224	4e-10
BV80 merozoite protein	Babesia bovis	129-221	1e-09
Bv80, partial	Babesia bovis	98-206	2e-09
Pathogenicity protein	Weissella ceti	79-217	2e-09
Pullulanase, type I	Lachnospiraceae bacterium	72-226	3e-09
9RL protein	African swine fever virus	87-226	3e-09
9RL	African swine fever virus	98-222	3e-09
B602L, partial	African swine fever virus	86-219	4e-09
LdOrf-129 peptide	Lymantria dispar multiple	96-182	4e-09
	nucleopolyhedrovirus		
9RL	African swine fever virus	98-215	4e-09
Cell division protein FtsY	Filamentous cyanobacterium	107-215	4e-09
	ESFC-1		
B602L protein	African swine fever virus	88-215	5e-09
Snaclec 3	Toxocara canis	97-221	5e-09
9RL	African swine fever virus	97-226	2e-08
FHA domain containing protein	Arthrospira platensis	89-218	2e-08
Liver stage antigen 3	Plasmodium falciparum	102-222	3e-08
85 kDa protein	Babesia bovis	107-185	5e-08
B602L protein	African swine fever virus	88-222	6e-08
B602L	African swine fever virus	108-227	6e-08
ORF-132 protein	Lymantria dispar multiple	122-214	6e-08
	nucleopolyhedrovirus		
Glutamate/valine-rich protein	Natronorubrum sulfidifaciens	104-222	9e-08
Type I restriction modification protein	Mycoplasma pneumoniae	99-174	9e-08
B602L protein	African swine fever virus	108-219	1e-07
Bv80/Bb-1, partial	Babesia bovis	103-190	2e-07
B602L protein	African swine fever virus	87-219	2e-07
B602L protein	African swine fever virus	103-215	2e-07
B602L (2)	African swine fever virus	86-215	2e-07, 1e-
			05
pB602L (2)	African swine fever virus	88-221	3e-07, 4e-

			07
pB602L	African swine fever virus	99-215	4e-07
B602L protein (2)	African swine fever virus	87-203	5e-07, 6e-
			07
Cell division protein FtsK (18)	Burkholderia pseudomallei	99-221	6e-07-
			0.001
9RL protein (2)	African swine fever virus	87-199	6e-07, 9e-
			06
ftsK/SpoIIIE family protein (2)	Burkholderia pseudomallei	99-221	7e-07, 1e-
			04
B602L protein (6)	African swine fever virus	93-199	1e-06-1e-
			05
B602L protein	African swine fever virus	87-207	1e-06
9RL	African swine fever virus	96-207	1e-06
pB602L	African swine fever virus	88-223	2e-06
9RL	African swine fever virus	96-199	2e-06
pB602L, partial	African swine fever virus	87-205	2e-06
Cellulosomal scaffoldin anchoring protein	Trichomonas vaginalis	98-219	5e-06
kxYKxGKxW signal peptide domain protein	Streptococcus mitis	104-221	5e-06
Cell division protein FtsK (6)	Burkholderia pseudomallei	105-221	7e-06-4e-
Cell division protein FtsK (6)	Burkholderia pseudomallei	105-221	7e-06-4e- 04
Cell division protein FtsK (6) Trans-sialidase	Burkholderia pseudomallei Trypanosoma cruzi	105-221 97-219	7e-06-4e- 04 1e-05
Cell division protein FtsK (6) Trans-sialidase B602L protein	Burkholderia pseudomallei Trypanosoma cruzi African swine fever virus	105-221 97-219 96-199	7e-06-4e- 04 1e-05 2e-05
Cell division protein FtsK (6) Trans-sialidase B602L protein GH24581	Burkholderia pseudomalleiTrypanosoma cruziAfrican swine fever virusDrosophila grimshawi	105-221 97-219 96-199 125-219	7e-06-4e- 04 1e-05 2e-05 2e-05
Cell division protein FtsK (6) Trans-sialidase B602L protein GH24581 Cell division protein FtsK	Burkholderia pseudomalleiTrypanosoma cruziAfrican swine fever virusDrosophila grimshawiBurkholderia sp. TSV202	105-221 97-219 96-199 125-219 106-221	7e-06-4e- 04 1e-05 2e-05 2e-05 2e-05
Cell division protein FtsK (6) Trans-sialidase B602L protein GH24581 Cell division protein FtsK Cell division protein FtsK	Burkholderia pseudomalleiTrypanosoma cruziAfrican swine fever virusDrosophila grimshawiBurkholderia sp. TSV202Burkholderia sp. MSHR44	105-221 97-219 96-199 125-219 106-221 105-221	7e-06-4e- 04 1e-05 2e-05 2e-05 2e-05 2e-05
Cell division protein FtsK (6) Trans-sialidase B602L protein GH24581 Cell division protein FtsK Cell division protein FtsK 9RL protein, partial	Burkholderia pseudomalleiTrypanosoma cruziAfrican swine fever virusDrosophila grimshawiBurkholderia sp. TSV202Burkholderia sp. MSHR44African swine fever virus	105-221 97-219 96-199 125-219 106-221 105-221 103-223	7e-06-4e- 04 1e-05 2e-05 2e-05 2e-05 2e-05 3e-05
Cell division protein FtsK (6) Trans-sialidase B602L protein GH24581 Cell division protein FtsK Cell division protein FtsK 9RL protein, partial Proteoglycan 4	Burkholderia pseudomalleiTrypanosoma cruziAfrican swine fever virusDrosophila grimshawiBurkholderia sp. TSV202Burkholderia sp. MSHR44African swine fever virusPteropus alecto	105-221 97-219 96-199 125-219 106-221 105-221 103-223 103-218	7e-06-4e- 04 1e-05 2e-05 2e-05 2e-05 2e-05 3e-05 4e-05
Cell division protein FtsK (6) Trans-sialidase B602L protein GH24581 Cell division protein FtsK Cell division protein FtsK 9RL protein, partial Proteoglycan 4 Peptidase	Burkholderia pseudomalleiTrypanosoma cruziAfrican swine fever virusDrosophila grimshawiBurkholderia sp. TSV202Burkholderia sp. MSHR44African swine fever virusPteropus alectoActinomyces sp. oral	105-221 97-219 96-199 125-219 106-221 105-221 103-223 103-218 100-222	7e-06-4e- 04 1e-05 2e-05 2e-05 2e-05 2e-05 3e-05 4e-05 6e-05
Cell division protein FtsK (6) Trans-sialidase B602L protein GH24581 Cell division protein FtsK Cell division protein FtsK 9RL protein, partial Proteoglycan 4 Peptidase Cell division protein FtsK (3)	Burkholderia pseudomalleiTrypanosoma cruziAfrican swine fever virusDrosophila grimshawiBurkholderia sp. TSV202Burkholderia sp. MSHR44African swine fever virusPteropus alectoActinomyces sp. oralBurkholderia pseudomallei	105-221 97-219 96-199 125-219 106-221 105-221 103-223 103-218 100-222 106-221	7e-06-4e- 04 1e-05 2e-05 2e-05 2e-05 2e-05 3e-05 4e-05 6e-05 1e-04-
Cell division protein FtsK (6) Trans-sialidase B602L protein GH24581 Cell division protein FtsK Cell division protein FtsK 9RL protein, partial Proteoglycan 4 Peptidase Cell division protein FtsK (3)	Burkholderia pseudomalleiTrypanosoma cruziAfrican swine fever virusDrosophila grimshawiBurkholderia sp. TSV202Burkholderia sp. MSHR44African swine fever virusPteropus alectoActinomyces sp. oralBurkholderia pseudomallei	105-221 97-219 96-199 125-219 106-221 103-223 103-218 100-222 106-221	7e-06-4e- 04 1e-05 2e-05 2e-05 2e-05 3e-05 4e-05 6e-05 1e-04- 0.003
Cell division protein FtsK (6) Trans-sialidase B602L protein GH24581 Cell division protein FtsK Cell division protein FtsK 9RL protein, partial Proteoglycan 4 Peptidase Cell division protein FtsK (3) Peptidase	Burkholderia pseudomalleiTrypanosoma cruziAfrican swine fever virusDrosophila grimshawiBurkholderia sp. TSV202Burkholderia sp. MSHR44African swine fever virusPteropus alectoActinomyces sp. oralBurkholderia pseudomalleiActinomyces viscosus	105-221 97-219 96-199 125-219 106-221 105-221 103-223 103-218 100-222 106-221	7e-06-4e- 04 1e-05 2e-05 2e-05 2e-05 3e-05 4e-05 6e-05 1e-04- 0.003 2e-04
Cell division protein FtsK (6) Trans-sialidase B602L protein GH24581 Cell division protein FtsK Cell division protein FtsK 9RL protein, partial Proteoglycan 4 Peptidase Cell division protein FtsK (3) Peptidase DNA translocase FtsK domain protein	Burkholderia pseudomalleiTrypanosoma cruziAfrican swine fever virusDrosophila grimshawiBurkholderia sp. TSV202Burkholderia sp. MSHR44African swine fever virusPteropus alectoActinomyces sp. oralBurkholderia pseudomalleiActinomyces viscosusBurkholderia pseudomallei	105-221 97-219 96-199 125-219 106-221 105-221 103-223 103-218 100-222 106-221 105-222 105-222 102-221	7e-06-4e- 04 1e-05 2e-05 2e-05 2e-05 3e-05 4e-05 6e-05 1e-04- 0.003 2e-04
Cell division protein FtsK (6) Trans-sialidase B602L protein GH24581 Cell division protein FtsK Cell division protein FtsK 9RL protein, partial Proteoglycan 4 Peptidase Cell division protein FtsK (3) Peptidase DNA translocase FtsK domain protein DNA translocase FtsK	Burkholderia pseudomalleiTrypanosoma cruziAfrican swine fever virusDrosophila grimshawiBurkholderia sp. TSV202Burkholderia sp. MSHR44African swine fever virusPteropus alectoActinomyces sp. oralBurkholderia pseudomalleiActinomyces viscosusBurkholderia pseudomallei	105-221 97-219 96-199 125-219 106-221 105-221 103-223 103-218 100-222 106-221 105-222 105-222 102-221 99-221	7e-06-4e- 04 1e-05 2e-05 2e-05 2e-05 3e-05 4e-05 6e-05 1e-04- 0.003 2e-04 3e-04
Cell division protein FtsK (6) Trans-sialidase B602L protein GH24581 Cell division protein FtsK Cell division protein FtsK 9RL protein, partial Proteoglycan 4 Peptidase Cell division protein FtsK (3) Peptidase DNA translocase FtsK domain protein DNA translocase FtsK 9RL protein, partial	Burkholderia pseudomalleiTrypanosoma cruziAfrican swine fever virusDrosophila grimshawiBurkholderia sp. TSV202Burkholderia sp. MSHR44African swine fever virusPteropus alectoActinomyces sp. oralBurkholderia pseudomalleiBurkholderia pseudomalleiActinomyces viscosusBurkholderia pseudomalleiActinomyces viscosusBurkholderia pseudomalleiArtican swine fever virus	105-221 97-219 96-199 125-219 106-221 103-223 103-218 100-222 106-221 105-221 103-218 100-222 105-221 105-221 105-221 105-221 105-221 105-221 103-219	7e-06-4e- 04 1e-05 2e-05 2e-05 2e-05 3e-05 4e-05 6e-05 1e-04- 0.003 2e-04 3e-04

Multispecies: cell division protein FtsK	Burkholderia	99-221	5e-04
Cell divisionftsk/spoiiie	Burkholderia pseudomallei	105-221	5e-04
Ribonuclease E	Marinomonas sp. S3726	95-221	0.001
DNA translocase FtsK	Ralstonia solanacearum	95-220	0.002
Multispecies: nicotinate-nucleotide	Streptomyces	102-218	0.004
dimethylbenzimidazole phosphoribosyltransferase			
Trans-sialidase	Trypanosoma cruzi	97-218	0.004
I-TASSER		1	
Survival motor neuron protein (3)	Homo sapiens		1.17, 1.33,
			1.85
Accumulation associated protein	Staphylococcus epidermidis		1.42
Type I hyperactive antifreeze protein	Pseudopleuronectes		1.99
	americanus		
Myc box dependent interacting protein 1 (2)	Homo sapiens		1.03, 2.03
Chitinase 60	Moritella marina		1.17
Major capsid protein	Synechococcus phage Syn5		1.75
Anosmin 1	Homo sapiens		1.08
Survival motor neuron protein	Homo sapiens		0.867
Predict Protein		•	
Cytoplasm			
Proteoglycan 4 (11)	Mus musculus		2e-11-
			0.003
Titin (20)	Mus musculus		9e-10-
			0.050
Atome2			
Na(+)/H(+) exchange regulatory cofactor NHE-RF1	Homo sapiens		76.96
26S proteasome non-ATPase regulatory subunit 4	Homo sapiens		57.25
((poly)ubiquitin binding region)			
ADP-ribosylation factor binding protein GGA1	Homo sapiens		45.01
Ribosome-interacting GTPase 1	Saccharomyces cerevisiae		25.85
EspA	Escherichia coli		22.74

NOTE : For Supplementary Tables XI-XLV HHpred and @tome 2 use probabilities /100; I-TASSER Z scores > 1.0 and TM scores > 0.5 are significant; BLASTP & Predict Protein E-values < 1.0 are significant (adjusted from developer's recommendation of 10.0); PSIBLAST E-values < 0.001 are significant; Motif Scan N-scores do not have a significance threshold, a higher score indicates a better match.

Supplementary Table XXXIV. Utterbackia imbecillis H-ORF sequence 3 function

Hits (n)	Species	Position	Probability
HHpred	1		
TIGR03304 outer membrane insertion C-terminal		71-74	99.33
signal			
TIGR04294 prepilin-type processing-associated H-		25-30	99.27
X9-DG domain			
TIGR01167 LPXTG cell wall anchor domain		49-64	98.98
G protein-coupled receptor 152	Homo sapiens	2-192	99.04
Procyclic acidic repetitive protein (PARP)		62-163	98.98
G protein-coupled receptor 152	Homo sapiens	2-187	98.79
Procyclic acidic repetitive protein (PARP)		66-167	98.78
Protein with Tau-Like repeats family member (ptl-1)	Caenorhabditis elegans	92-193	98.76
Protein with Tau-Like repeats family member (ptl-1)	Caenorhabditis elegans	96-192	98.71
T06A4.1b	Caenorhabditis elegans	84-192	98.55
Related to CSR1 - phosphatidylinositol transfer		94-191	98.53
protein			
Related to CSR1 - phosphatidylinositol transfer		94-192	98.53
protein			
T06A4.1b	Caenorhabditis elegans	98-179	98.47
Y22D7AR.1	Caenorhabditis elegans	16-192	98.44
CG1468-PA	Drosophila melanogaster	83-192	98.43
Protein with Tau-Like repeats family member (ptl-1)	Caenorhabditis elegans	92-192	98.40
CG1468-PA	Drosophila melanogaster	98-195	98.39
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		43-45	97.70
T10G3.1	Caenorhabditis elegans	72-193	98.30
Protein with Tau-Like repeats family member (ptl-1)	Caenorhabditis elegans	96-193	98.27
R06C7.4	Caenorhabditis elegans	93-191	98.26
T10G3.1	Caenorhabditis elegans	92-189	98.25
R06C7.4	Caenorhabditis elegans	73-183	98.19

CG9029-PA	Drosophila melanogaster	78-186	98.18
V-set and immunoglobulin domain containing 1	Mus musculus	51-187	98.15
Y22D7AR.1	Caenorhabditis elegans	71-193	98.15
CG9029-PA	Drosophila melanogaster	72-183	98.08
T04F8.8	Caenorhabditis elegans	105-170	98.06
V-set and immunoglobulin domain containing 1	Mus musculus	93-183	98.04
T04F8.8	Caenorhabditis elegans	97-156	98.01
F56B6.4a	Caenorhabditis elegans	96-193	98.01
F49B2.6	Caenorhabditis elegans	96-190	98.01
Nucleolar protein 3	Homo sapiens	77-187	97.99
F47B8.5	Caenorhabditis elegans	26-189	97.95
T14A8.2	Caenorhabditis elegans	56-192	97.90
F56B6.4a	Caenorhabditis elegans	96-192	97.90
F49B2.6	Caenorhabditis elegans	94-192	97.89
Protein with Tau-Like repeats family member (ptl-1)	Caenorhabditis elegans	94-184	97.87
TIGR03501 GlyGly-CTERM domain		71-79	97.05
Protein with Tau-Like repeats family member (ptl-1)	Caenorhabditis elegans	92-190	97.77
Prolipoprotein diacylglyceryl transferase	Frankia alni	44-190	97.73
Solute carrier family 16, member 2	Homo sapiens	96-182	97.71
Repellent protein 1 precursor		96-185	97.70
Repellent protein 1 precursor		96-189	97.70
C09F9.2	Caenorhabditis elegans	94-187	97.67
Solute carrier family 16, member 2	Homo sapiens	96-192	97.58
Diacylglycerol kinase kappa	Homo sapiens	95-193	97.56
Nucleolar protein 3	Homo sapiens	94-180	97.56
C09F9.2	Caenorhabditis elegans	93-192	97.53
V-set and immunoglobulin domain containing 1	Homo sapiens	59-192	97.48
Diacylglycerol kinase kappa	Homo sapiens	97-193	97.43
Nucleolar protein 3	Mus musculus	98-188	97.35
Sperm equatorial segment protein 1	Mus musculus	98-192	97.33
Cytochrome o ubiquinol oxidase subunit IV	Bartonella henselae	25-190	97.32
C15C8.1	Caenorhabditis elegans	47-192	97.29
V-set and immunoglobulin domain containing 1	Homo sapiens	94-184	97.29
Integral membrane protein	Streptomyces coelicolor	33-192	97.26
Sperm equatorial segment protein 1	Mus musculus	89-189	97.22
Y51F10.4a	Caenorhabditis elegans	12-192	97.22

cyclin K	Mus musculus	7-185	97.22
K09E4.6	Caenorhabditis elegans	54-174	97.16
F47B8.5	Caenorhabditis elegans	98-191	97.16
Protease inhibitor Kazal-type	Nitrosopumilus maritimus	97-189	97.08
K09E4.6	Caenorhabditis elegans	110-186	97.08
Cytochrome o ubiquinol oxidase subunit IV	Bartonella henselae	10-192	97.06
Prolipoprotein diacylglyceryl transferase	Frankia alni	94-187	96.99
TRAAK	Homo sapiens	2-189	96.97
Prolipoprotein diacylglyceryl transferase	Mycobacterium tuberculosis	43-192	96.97
Procyclic acidic repetitive protein (PARP)		99-161	96.94
BLASTP/PSIBLAST			
Mitochondria Localisation Sequence		91-178	1.83e-04
Ribonuclease E; Reviewed		94-190	1.68e-08
Ehrlichia tandem repeat (Ehrlichia_rpt)		95-186	2.45e-04
Terminal organelle assembly protein TopJ		102-192	1.00e-03
Bv80/Bb-1, partial	Babesia bovis	98-194	5e-12
Protein B602L, partial	Columba livia	98-191	3e-11
Bv80/Bb-1, partial	Babesia bovis	98-190	3e-11
FOIDLAGT			
S-layer protein precursor	Bacillus thuringiensis	89-186	1e-12
S-layer protein precursor Cell surface protein (3)	Bacillus thuringiensis Bacillus thuringiensis	89-186 89-186	1e-12 1e-12-3e-
S-layer protein precursor Cell surface protein (3)	Bacillus thuringiensis Bacillus thuringiensis	89-186 89-186	1e-12 1e-12-3e- 12
S-layer protein precursor Cell surface protein (3) Response regulator receiver domain protein (CheY-	Bacillus thuringiensis Bacillus thuringiensis Nodularia spumigena	89-186 89-186 98-195	1e-12 1e-12-3e- 12 4e-12
S-layer protein precursor Cell surface protein (3) Response regulator receiver domain protein (CheY- like)	Bacillus thuringiensis Bacillus thuringiensis Nodularia spumigena	89-186 89-186 98-195	1e-12 1e-12-3e- 12 4e-12
S-layer protein precursor Cell surface protein (3) Response regulator receiver domain protein (CheY- like) 85 kDa merozoite protein	Bacillus thuringiensis Bacillus thuringiensis Nodularia spumigena Babesia bovis	89-186 89-186 98-195 102-190	1e-12 1e-12-3e- 12 4e-12 1e-11
S-layer protein precursor Cell surface protein (3) Response regulator receiver domain protein (CheY- like) 85 kDa merozoite protein 85 kDa protein (2)	Bacillus thuringiensisBacillus thuringiensisNodularia spumigenaBabesia bovisBabesia bovis	89-186 89-186 98-195 102-190 98-190	1e-12 1e-12-3e- 12 4e-12 1e-11 2e-11, 4e-
S-layer protein precursor Cell surface protein (3) Response regulator receiver domain protein (CheY- like) 85 kDa merozoite protein 85 kDa protein (2)	Bacillus thuringiensis Bacillus thuringiensis Nodularia spumigena Babesia bovis Babesia bovis	89-186 89-186 98-195 102-190 98-190	1e-12 1e-12-3e- 12 4e-12 1e-11 2e-11, 4e- 10
S-layer protein precursor Cell surface protein (3) Response regulator receiver domain protein (CheY- like) 85 kDa merozoite protein 85 kDa protein (2) BV80 merozoite protein	Bacillus thuringiensisBacillus thuringiensisNodularia spumigenaBabesia bovisBabesia bovisBabesia bovis	89-186 89-186 98-195 102-190 98-190 102-189	1e-12 1e-12-3e- 12 4e-12 1e-11 2e-11, 4e- 10 7e-10
S-layer protein precursor Cell surface protein (3) Response regulator receiver domain protein (CheY- like) 85 kDa merozoite protein 85 kDa protein (2) BV80 merozoite protein LdOrf-129 peptide	Bacillus thuringiensisBacillus thuringiensisNodularia spumigenaBabesia bovisBabesia bovisBabesia bovisLymantria dispar multiple	89-186 89-186 98-195 102-190 98-195 102-189 96-184	1e-12 1e-12-3e- 12 4e-12 1e-11 2e-11, 4e- 10 7e-10 8e-10
S-layer protein precursor Cell surface protein (3) Response regulator receiver domain protein (CheY- like) 85 kDa merozoite protein 85 kDa protein (2) BV80 merozoite protein LdOrf-129 peptide	Bacillus thuringiensisBacillus thuringiensisNodularia spumigenaBabesia bovisBabesia bovisBabesia bovisLymantria dispar multiple nucleopolyhedrovirus	89-186 89-186 98-195 102-190 98-195 102-189 96-184	1e-12 1e-12-3e- 12 4e-12 1e-11 2e-11, 4e- 10 7e-10 8e-10
S-layer protein precursor Cell surface protein (3) Response regulator receiver domain protein (CheY- like) 85 kDa merozoite protein 85 kDa protein (2) BV80 merozoite protein LdOrf-129 peptide 85 kDa protein	Bacillus thuringiensisBacillus thuringiensisNodularia spumigenaBabesia bovisBabesia bovisBabesia bovisLymantria dispar multiplenucleopolyhedrovirusBabesia bovis	89-186 89-186 98-195 102-190 98-190 102-189 96-184 99-174	1e-12 1e-12-3e- 12 4e-12 1e-11 2e-11, 4e- 10 7e-10 8e-10 8e-10
S-layer protein precursor Cell surface protein (3) Response regulator receiver domain protein (CheY- like) 85 kDa merozoite protein 85 kDa protein (2) BV80 merozoite protein LdOrf-129 peptide 85 kDa protein Outer membrane autotransporter barrel domain-	Bacillus thuringiensisBacillus thuringiensisBacillus thuringiensisNodularia spumigenaBabesia bovisBabesia bovisBabesia bovisLymantria dispar multiple nucleopolyhedrovirusBabesia bovisEscherichia coli	89-186 89-186 98-195 102-190 98-195 102-189 96-184 99-174 107-182	1e-12 1e-12-3e- 12 4e-12 1e-11 2e-11, 4e- 10 7e-10 8e-10 3e-09
S-layer protein precursor Cell surface protein (3) Response regulator receiver domain protein (CheY- like) 85 kDa merozoite protein 85 kDa protein (2) BV80 merozoite protein LdOrf-129 peptide 85 kDa protein Outer membrane autotransporter barrel domain- containing protein	Bacillus thuringiensisBacillus thuringiensisBacillus thuringiensisNodularia spumigenaBabesia bovisBabesia bovisBabesia bovisLymantria dispar multiple nucleopolyhedrovirusBabesia bovisEscherichia coli	89-186 89-186 98-195 102-190 98-195 102-189 96-184 99-174 107-182	1e-12 1e-12-3e- 12 4e-12 1e-11 2e-11, 4e- 10 7e-10 8e-10 3e-09
S-layer protein precursor Cell surface protein (3) Response regulator receiver domain protein (CheY- like) 85 kDa merozoite protein 85 kDa protein (2) BV80 merozoite protein LdOrf-129 peptide 85 kDa protein Outer membrane autotransporter barrel domain- containing protein ORF-132 protein	Bacillus thuringiensisBacillus thuringiensisBacillus thuringiensisNodularia spumigenaBabesia bovisBabesia bovisBabesia bovisLymantria dispar multiplenucleopolyhedrovirusBabesia bovisEscherichia coliLymantria dispar multiple	89-186 89-186 98-195 102-190 98-190 102-189 96-184 99-174 107-182 96-184	1e-12 1e-12-3e- 12 4e-12 1e-11 2e-11, 4e- 10 7e-10 8e-10 3e-09 5e-09
S-layer protein precursor Cell surface protein (3) Response regulator receiver domain protein (CheY- like) 85 kDa merozoite protein 85 kDa protein (2) BV80 merozoite protein LdOrf-129 peptide 85 kDa protein Outer membrane autotransporter barrel domain- containing protein ORF-132 protein	Bacillus thuringiensisBacillus thuringiensisBacillus thuringiensisNodularia spumigenaBabesia bovisBabesia bovisBabesia bovisLymantria dispar multiple nucleopolyhedrovirusBabesia bovisEscherichia coliLymantria dispar multiple nucleopolyhedrovirus	89-186 89-186 98-195 102-190 98-190 102-189 96-184 99-174 107-182 96-184	1e-12 1e-12-3e- 12 4e-12 1e-11 2e-11, 4e- 10 7e-10 8e-10 3e-09 5e-09

Bv80/Bb-1, partial (3)	Babesia bovis	98-195	1e-08-4e-
			07
Bv80/Bb-1, partial	Babesia bovis	108-194	1e-08
IgA1 protease precursor	Erwinia billingiae	97-189	6e-08
Type I restriction modification protein	Mycoplasma pneumoniae	99-174	6e-08
Bv80, partial	Babesia bovis	98-190	2e-07
Ribonuclease E	Marinomonas sp. S3726	95-191	2e-06
B602L, partial (4)	African swine fever virus	82-189	2e-06-2e-
			04
Restriction endonuclease, S subunit	Mycoplasma pneumoniae	98-174	2e-06
B602L, partial	African swine fever virus	82-190	2e-06
Pullulanase, type I	Lachnospiraceae bacterium	97-183	3e-06
9RL protein	African swine fever virus	87-187	4e-06
B602L protein (2)	African swine fever virus	88-188	6e-06, 2e-
			05
Type I restriction modification protein	Mycoplasma pneumoniae	98-170	7e-06
Cell division protein FtsY	Filamentous cyanobacterium	97-183	8e-06
Restriction endonuclease, S subunit	Mycoplasma pneumoniae	98-170	8e-06
B602L protein, partial (6)	African swine fever virus	87-189	1e-05-
			0.001
9RL	African swine fever virus	97-188	2e-05
B602L	African swine fever virus	87-188	2e-05
Snaclec 3	Toxocara canis	97-189	2e-05
B602L protein	African swine fever virus	87-187	3e-05
B602L protein	African swine fever virus	87-191	3e-05
9RL protein (2)	African swine fever virus	87-189	3e-05, 9e-
			05
B602L, partial	African swine fever virus	82-178	3e-05
B602L (3)	African swine fever virus	86-189	5e-05-
			0.002
9RL	African swine fever virus	97-190	6e-05
Central variable region protein	African swine fever virus	82-183	6e-05
Central variable region protein	African swine fever virus	82-194	8e-05
B602L protein (6)	African swine fever virus	93-189	9e-05-7e-
			04
Cell divisionftsk/spoiiie (3)	Burkholderia pseudomallei	95-189	9e-05-

			0.003
Cell division protein FtsK	Burkholderia sp. TSV202	99-189	1e-04
Cell division protein FtsK (2)	Burkholderia pseudomallei	99-189	1e-04, 2e-
			04
B602L protein	African swine fever virus	87-189	2e-04
9RL	African swine fever virus	96-190	2e-04
Type I restriction modification protein, partial	Mycoplasma pneumoniae	130-191	2e-04
orf-126 protein	Lymantria dispar multiple	94-164	2e-04
	nucleopolyhedrovirus		
Cell division protein FtsK	Burkholderia pseudomallei	99-192	2e-04
Cell division FtsK/SpoIIIE	Burkholderia pseudomallei	99-189	2e-04
GH24581	Drosophila grimshawi	99-187	2e-04
9RL protein	African swine fever virus	87-183	2e-04
pB602L, partial	African swine fever virus	87-194	3e-04
9RL protein	African swine fever virus	87-194	3e-04
Cell division protein FtsK	Burkholderia sp. MSHR44	105-189	4e-04
pB602L	African swine fever virus	99-188	4e-04, 5e-
			04
Peptidase	Actinomyces sp. oral	105-188	4e-04
B602L protein	African swine fever virus	103-188	5e-04
B602L, partial	African swine fever virus	86-194	6e-04
B602L protein	African swine fever virus	96-190	7e-04
kxYKxGKxW signal peptide domain protein	Streptococcus mitis	104-189	8e-04
pB602L	African swine fever virus	88-194	0.001
pB602L	African swine fever virus	88-189	0.001
9RL	African swine fever virus	97-193	0.001
B602L protein	African swine fever virus	94-189	0.001
B602L protein	African swine fever virus	87-183	0.001
Proteoglycan 4	Tupaia chinensis	105-149	0.002
CG3108	Drosophila melanogaster	102-191	0.002
B602L protein	African swine fever virus	103-194	0.002
9RL protein, partial	African swine fever virus	103-191	0.002
Peptidase	Actinomyces viscosus	96-190	0.002
B602L protein (2)	African swine fever virus	98-193	0.003
B602L, partial	African swine fever virus	86-187	0.003
9RL	African swine fever virus	97-190	0.004

Cellulosomal scaffoldin anchoring protein	Trichomonas vaginalis	98-187	0.005
B602L protein	African swine fever virus	87-187	0.005
Cell division protein FtsK	Burkholderia pseudomallei	95-189	0.005
I-TASSER			1
Type I hyperactive antifreeze protein	Pseudopleuronectes		2.10
	americanus		
Myc box dependent interacting protein 1	Homo sapiens		1.55
60S ribosomal protein L1	Saccharomyces cerevisiae		1.49
Survival motor neuron protein	Homo sapiens		1.37
Double-stranded RNA-specific editase 1	Rattus norvegicus		1.34
Major capsid protien	Synechococcus phage Syn5		1.28
gp7	Salmonella phage epsilon15		1.32
Polymeric-immunoglobulin receptor	Homo sapiens		1.24
Long tail fiber protein P37	Enterobacteria phage		1.30
Type I hyperactive antifreeze protein	Pseudopleuronectes		0.922
	americanus		
phospholipase C beta	Meleagris gallopavo		0.704
Interferon-induced guanylate-binding protein 1	Homo sapiens		0.664
Dynamin family protein	Nostoc punctiforme		0.632
RhUL123	Macacine herpesvirus 3		0.617
Tyrosine-protein kinase Fes/Fps	Homo sapiens		0.605
Formin-binding protein 1	Homo sapiens		0.595
Cdc42-interacting protein 4	Homo sapiens		0.586
Apolipoprotein A-IV	Homo sapiens		0.582
Predict Protein		1	1
Protein binding		69-71, 74	
Cytoplasm			
Diacylglycerol kinase kappa (3)	Homo sapiens		4e-08-4e-
			07
Proteoglycan 4 (2)	Homo sapiens		0.25, 0.58
Proteoglycan 4 (11)	Mus musculus		7e-08-
			0.096
Atome2		·	
Transcriptional activator rfaH	Escherichia coli		76.29
80 kDa MCM3-associated protein	Homo sapiens		71.48
Ubiquitin carboxyl-terminal hydrolase 28	Homo sapiens		70.13

Ribosome-interacting GTPase 1	Saccharomyces cerevisiae	64.19
Delta sleep inducing peptide immunoreactive	Sus scrofa	58.92
peptide		
26S proteasome non-ATPase regulatory subunit 4	Homo sapiens	56.57
Nucleoprotein	Andes virus	39.59
Clathrin heavy chain 1	Bos taurus	7.88

Supplementary Table XXXV. Utterbackia imbecillis H-ORF sequence 4 function

Hits (n)	Species	Position	Probability
HHpred			•
TIGR03304 outer membrane insertion C-terminal		71-74	99.28
signal			
TIGR04294 prepilin-type processing-associated H-X9-		25-30	99.14
DG domain			
TIGR01167 LPXTG cell wall anchor domain		49-64	98.89
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		43-45	97.50
Copper-binding protein	Methanosarcina mazei	33-174	97.89
TIGR03501 GlyGly-CTERM domain		71-79	96.95
G protein-coupled receptor 152	Homo sapiens	2-175	96.79
CG12522-PA	Drosophila melanogaster	89-155	96.42
CG12522-PA	Drosophila melanogaster	97-162	96.25
Copper-binding protein	Methanosarcina mazei	96-170	96.18
K09E4.6	Caenorhabditis elegans	96-158	95.95
Eukaryotic translation initiation factor 3, subunit 9	Mus musculus	95-162	95.89
T14A8.2	Caenorhabditis elegans	56-166	95.87
K09E4.6	Caenorhabditis elegans	54-163	95.54
Prolipoprotein diacylglyceryl transferase	Frankia alni	96-159	95.46

Eukaryotic translation initiation factor 3, subunit 9	Mus musculus	97-163	95.42
TIGR00756 pentatricopeptide repeat domain		36-43	94.09
Armadillo repeat containing, X-linked 4	Homo sapiens	91-168	95.07
Prolipoprotein diacylglyceryl transferase	Frankia alni	96-166	94.63
Cytochrome o ubiquinol oxidase subunit IV	Bartonella henselae	10-168	94.30
DumPY: shorter than wild-type family member (dpy-10)	Caenorhabditis elegans	23-88	94.09
Armadillo repeat containing, X-linked 4	Homo sapiens	102-172	93.67
Prolipoprotein diacylglyceryl transferase	Mycobacterium tuberculosis	44-164	93.57
Nischarin	Homo sapiens	98-161	93.34
MSP1_C: Merozoite surface protein 1 (MSP1) C-		92-167	93.31
terminus			
G protein-coupled receptor 152	Homo sapiens	2-166	93.23
30S ribosomal protein S3P	Methanosarcina mazei	97-166	92.92
TonB family protein	Nostoc punctiforme	30-166	92.81
BLIstered cuticle family member (bli-2)	Caenorhabditis elegans	34-89	92.48
30S ribosomal protein S3P	Methanosarcina mazei	91-166	92.19
Y51F10.4a	Caenorhabditis elegans	12-168	91.98
Membralin isoform 1	Homo sapiens	9-168	91.79
SphingoMyelin Synthase family member (sms-1)	Caenorhabditis elegans	97-167	91.58
Nischarin	Mus musculus	98-167	91.53
F57B1.3	Caenorhabditis elegans	29-82	91.07
SphingoMyelin Synthase family member (sms-1)	Caenorhabditis elegans	94-162	90.84
PPARgamma constitutive coactivator 1	Homo sapiens	93-166	90.47
T10E10.5	Caenorhabditis elegans	34-89	90.32
CG32372-PA	Drosophila melanogaster	95-161	90.19
Nischarin	Homo sapiens	98-162	90.16
PPARgamma constitutive coactivator 1	Homo sapiens	96-162	90.07
F33A8.9	Caenorhabditis elegans	32-83	90.06
SQuaT family member (sqt-2)	Caenorhabditis elegans	34-85	90.02
CG4875-PB, isoform B	Drosophila melanogaster	78-168	89.93
CG32372-PA	Drosophila melanogaster	95-168	89.52
DumPY: shorter than wild-type family member (dpy-14)	Caenorhabditis elegans	42-89	89.50
SH3 type 3 domain-containing protein	Nostoc punctiforme	31-160	89.35
Cell wall structural complex MreBCD transmembrane	Escherichia coli	91-166	89.30
component MreC			
Inner membrane protein translocase component YidC	Streptomyces coelicolor	10-166	89.12

COLlagen family member (col-102)	Caenorhabditis elegans	47-83	88.90
Binding	Arabidopsis thaliana	102-176	88.61
CG12316-PB, isoform B	Drosophila melanogaster	98-162	88.48
CG12316-PA, isoform A	Drosophila melanogaster	98-162	88.48
Cell division protein FtsY	Frankia alni	75-161	88.40
CG12316-PA, isoform A	Drosophila melanogaster	94-167	88.28
CG12316-PB, isoform B	Drosophila melanogaster	94-167	88.28
Binding	Arabidopsis thaliana	106-160	88.14
Prolipoprotein diacylglyceryl transferase	Mycobacterium tuberculosis	96-166	88.10
Y54E10BL.2	Caenorhabditis elegans	44-89	87.75
DumPY: shorter than wild-type family member (dpy-3)	Caenorhabditis elegans	34-85	87.65
SH3-domain binding protein 1	Homo sapiens	3-161	87.46
Nischarin	Mus musculus	92-168	87.44
Eukaryotic translation initiation factor 3, subunit 5	Homo sapiens	96-180	87.42
epsilon			
COLlagen family member (col-101)	Caenorhabditis elegans	38-89	87.38
BLASTP/PSIBLAST			
bifunctional 2',3'-cyclic nucleotide 2'-		88-156	3.57e-04
phosphodiesterase/3'-nucleotidase precursor protein;			
Reviewed			
Bv80/Bb-1, partial (2)	Babesia bovis	99-158	1e-11, 1e-
			10
Bv80/Bb-1, partial	Babesia bovis	98-172	2e-11
Bv80/Bb-1, partial	Babesia bovis	89-158	4e-11
85 kDa protein	Babesia bovis	99-158	1e-10
Bv80, partial (3)	Babesia bovis	98-158	1e-10-4e-
			10
Cell surface protein, partial	Bacillus thuringiensis	95-175	4e-10
S-layer protein precursor	Bacillus thuringiensis	95-175	4e-10
Protein B602L, partial	Columba livia	98-173	8e-10
85 kDa protein	Babesia bovis	98-158	2e-09
Cell surface protein	Bacillus thuringiensis	96-175	4e-09
85 kDa merozoite protein	Babesia bovis	102-158	5e-09
ORF-132 protein	•	1	
	Lymantria dispar multiple	96-175	1e-08
	Lymantria dispar multiple nucleopolyhedrovirus	96-175	1e-08

	nucleopolyhedrovirus		
GH24581	Drosophila grimshawi	88-176	2e-06
Type I restriction modification protein	Mycoplasma pneumoniae	98-174	2e-06
Restriction endonuclease, S subunit	Mycoplasma pneumoniae	98-170	9e-06
Type I restriction modification protein	Mycoplasma pneumoniae	98-170	1e-05
Restriction endonuclease, S subunit	Mycoplasma pneumoniae	98-173	1e-05
PSIBLAST			
Cell surface protein	Bacillus thuringiensis	96-175	5e-09
Bv80, partial (3)	Babesia bovis	98-158	4e-08-1e-
			05
Outer membrane autotransporter barrel domain-	Escherichia coli	95-158	3e-07
containing protein			
Response regulator receiver domain protein (CheY-	Nodularia spumigena	92-158	3e-07
like)			
orf-126 protein	Lymantria dispar multiple	96-158	6e-07
	nucleopolyhedrovirus		
Central variable region protein	African swine fever virus	82-160	2e-06
Bv80, partial (3)	Babesia bovis	102-157	3e-06-2e-
			05
Bv80, partial	Babesia bovis	102-158	5e-06
9RL protein	African swine fever virus	87-162	1e-05
Central variable region protein	African swine fever virus	82-158	1e-05
B602L protein (8)	African swine fever virus	95-160	2e-05-4e-
			04
9RL, partial	African swine fever virus	82-160	3e-05
B602L (4)	African swine fever virus	82-158	4e-05-
			0.003
Bv80/Bb-1 (5)	Babesia bovis	106-157	5e-05-1e-
			04
B602L, partial	African swine fever virus	82-151	7e-05
B602L protein	African swine fever virus	88-160	1e-04
B602L protein	African swine fever virus	87-157	1e-04
9RL protein (2)	African swine fever virus	87-174	1e-04,
			0.004
9RL, partial	African swine fever virus	82-158	2e-04
9RL protein, partial	African swine fever virus	87-160	2e-04

Peptidase	Actinoplanes sp. SE50/110	109-157	2e-04
B602L protein	African swine fever virus	87-159	3e-04
9RL (2)	African swine fever virus	97-162	3e-04,
			0.001
CG3108	Drosophila melanogaster	95-168	3e-04
Type I restriction modification protein, partial	Mycoplasma pneumoniae	100-158	3e-04
9RL protein	African swine fever virus	87-157	4e-04
B602L protein	African swine fever virus	88-158	4e-04
Central variable region protein	African swine fever virus	82-174	5e-04, 7e-
			04
9RL protein (2)	African swine fever virus	82-174	6e-04,
			0.001
B602L protein (3)	African swine fever virus	87-158	7e-04,
			0.002
B602L protein	African swine fever virus	88-174	8e-04
B602L protein (4)	African swine fever virus	88-157	9e-04-
			0.004
B602L, partial	African swine fever virus	82-155	0.001
pB602L (3)	African swine fever virus	82-157	0.001
9RL protein, partial	African swine fever virus	97-174	0.001
B602L protein	African swine fever virus	88-162	0.001
pB602L, partial	African swine fever virus	87-171	0.001
Cell division protein FtsK	Ralstonia solanacearum	89-181	0.001
B602L protein	African swine fever virus	98-162	0.002
pB602L	African swine fever virus	82-157	0.002
GG21615	Drosophila erecta	87-160	0.002
B602L protein	African swine fever virus	88-166	0.002
GI15252	Drosophila mojavensis	91-177	0.002
Involucrin repeat protein	Ophiostoma piceae	96-157	0.002
B602L protein	African swine fever virus	87-155	0.003
9RL	African swine fever virus	97-162	0.003
Type IV secretion protein Rhs, partial	Nocardioides sp. URHA0020	98-172	0.004
9RL protein, partial	African swine fever virus	96-174	0.004
EFG1p-dependent transcript 1 protein	Candida albicans	113-174	0.004
I-TASSER		1	1
Type I hyperactive antifreeze protein	Pseudopleuronectes		1.07, 2.30

	americanus		
Accumulation associated protein	Staphylococcus epidermidis		1.44
Cellulosomal scaffoldin adaptor protein B	Acetivibrio cellulolyticus		1.00
Internalin K	Listeria monocytogenes		1.04
Myc box dependent interacting protein 1	Homo sapiens		1.41
30S ribosomal protein S10	Thermus thermophilus		1.09
Survival motor neuron protein	Homo sapiens		1.24, 1.26
Tropomyosin	Oryctolagus cuniculus		1.48
Type I hyperactive antifreeze protein	Pseudopleuronectes		0.821
	americanus		
Dynamin family protein	Nostoc punctiforme		0.644
Phospholipase C beta	Meleagris gallopavo		0.629
RhUL123	Macacine herpesvirus 3		0.608
Interferon-induced guanylate-binding protein 1	Homo sapiens		0.600
Tyrosine-protein kinase Fes/Fps	Homo sapiens		0.599
1-phosphatidylinositol 4,5-bisphosphate	Homo sapiens		0.594
phosphodiesterase beta-3			
LEOA	Escherichia coli		0.580
Apolipoprotein A-IV	Homo sapiens		0.575
Predict Protein			
Protein binding		30, 72,	
		74, 92,	
		179, 183	
Polynucleotide binding		27	
Cytoplasm			
Proteoglycan 4 (11)	Mus musculus		7e-07-0.18
Protein psiA (6)	Dictyostelium discoideum		0.047-0.21
Atome2			
Ubiquitin carboxyl-terminal hydrolase 28	Homo sapiens		82.82
Hydrophilic protein; has cysteine rich putative zinc	Saccharomyces cerevisiae		62.08
finger essential for function; Vps27p			
80 kDa MCM3-associated protein	Homo sapiens		58.91
Delta sleep inducing peptide immunoreactive peptide	Sus scrofa		56.98
12 kDa heat shock protein	Saccharomyces cerevisiae		55.06
Nucleoprotein			
	Andes virus		52.84

	americanus	
Sensory rhodopsin II	Natronomonas pharaonis	46.16
Zinc resistance-associated protein	Salmonella enterica	38.16
Autocrine motility factor receptor, isoform 2	Homo sapiens	28.24

Supplementary Table XXXVI. Utterbackia imbecillis H-ORF sequences 5 & 6 function

Hits (n)	Species	Position	Probability
HHpred			
TIGR03304 outer membrane insertion C-terminal		71-74	99.19
signal			
TIGR04294 prepilin-type processing-associated H-X9-		13-15	99.14
DG domain			
TIGR01167 LPXTG cell wall anchor domain		97-99	98.86
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		43-45	97.45
TIGR03501 GlyGly-CTERM domain		55-70	96.72
TIGR00756 pentatricopeptide repeat domain		48-57	94.26
CG12522-PA	Drosophila melanogaster	96-143	92.71
DumPY: shorter than wild-type family member (dpy-10)	Caenorhabditis elegans	23-88	92.56
CG12522-PA	Drosophila melanogaster	94-147	91.67
G protein-coupled receptor 152	Homo sapiens	2-146	88.69
F57B1.3	Caenorhabditis elegans	29-89	88.16
COLlagen family member (col-102)	Caenorhabditis elegans	47-89	87.04
Y54E10BL.2	Caenorhabditis elegans	44-89	86.74
DumPY: shorter than wild-type family member (dpy-14)	Caenorhabditis elegans	42-89	86.56
T10E10.5	Caenorhabditis elegans	34-89	86.53
COLlagen family member (col-69)	Caenorhabditis elegans	32-89	86.49
C12D8.8	Caenorhabditis elegans	41-89	86.44

BLIstered cuticle family member (bli-2)	Caenorhabditis elegans	38-92	85.59
DumPY: shorter than wild-type family member (dpy-9)	Caenorhabditis elegans	43-89	83.99
ROLler: helically twisted, animals roll when moving	Caenorhabditis elegans	44-89	83.51
family member (rol-8)			
W08D2.6	Caenorhabditis elegans	40-91	83.28
F54B11.1	Caenorhabditis elegans	31-89	82.65
COLlagen family member (col-2)	Caenorhabditis elegans	43-89	81.76
COLlagen family member (col-145)	Caenorhabditis elegans	46-89	81.14
F15A2.1	Caenorhabditis elegans	41-89	80.78
COLlagen family member (col-101)	Caenorhabditis elegans	38-89	80.34
DumPY: shorter than wild-type family member (dpy-3)	Caenorhabditis elegans	34-89	79.98
COLlagen family member (col-166)	Caenorhabditis elegans	33-89	79.95
T10E10.2	Caenorhabditis elegans	34-89	79.75
COLlagen family member (col-162)	Caenorhabditis elegans	47-89	79.50
F11G11.11	Caenorhabditis elegans	38-89	79.38
COLlagen family member (col-176)	Caenorhabditis elegans	41-89	79.11
COLlagen family member (col-14)	Caenorhabditis elegans	15-89	79.11
C30F2.1	Caenorhabditis elegans	45-89	78.99
C44C10.1	Caenorhabditis elegans	34-89	78.67
DumPY: shorter than wild-type family member (dpy-2)	Caenorhabditis elegans	26-82	78.54
COLlagen family member (col-65)	Caenorhabditis elegans	37-82	78.49
T06E4.4	Caenorhabditis elegans	46-83	78.21
COLlagen family member (col-173)	Caenorhabditis elegans	35-89	77.98
T10E10.7	Caenorhabditis elegans	23-82	77.84
COLlagen family member (col-183)	Caenorhabditis elegans	33-89	77.60
COLlagen family member (col-75)	Caenorhabditis elegans	43-82	77.59
COLlagen family member (col-110)	Caenorhabditis elegans	43-89	77.42
T05A1.2	Caenorhabditis elegans	43-89	77.31
COLlagen family member (col-185)	Caenorhabditis elegans	43-100	76.07
SQuaT family member (sqt-2)	Caenorhabditis elegans	33-89	75.48
SYNtaxin family member (syn-2)	Caenorhabditis elegans	42-68	75.43
F33A8.9	Caenorhabditis elegans	32-89	75.34
COLlagen family member (col-165)	Caenorhabditis elegans	46-89	75.28
F08G5.4	Caenorhabditis elegans	46-89	75.09
Y38C1BA.3	Caenorhabditis elegans	44-85	74.64
F54D1.3	Caenorhabditis elegans	34-82	74.50

C34F6.3	Caenorhabditis elegans	30-82	74.06
COLlagen family member (col-166)	Caenorhabditis elegans	11-89	74.01
COLlagen family member (col-51)	Caenorhabditis elegans	20-89	73.99
T06E4.6	Caenorhabditis elegans	46-93	73.78
F54B11.2	Caenorhabditis elegans	43-85	73.73
T10E10.1	Caenorhabditis elegans	34-89	73.70
F56D5.1	Caenorhabditis elegans	33-89	73.68
SQuaT family member (sqt-1)	Caenorhabditis elegans	42-89	73.49
T11F9.9	Caenorhabditis elegans	42-89	73.06
ZK1010.7	Caenorhabditis elegans	46-89	72.96
COLlagen family member (col-114)	Caenorhabditis elegans	33-89	72.74
C29F4.1	Caenorhabditis elegans	44-89	72.59
F32G8.5	Caenorhabditis elegans	45-90	72.30
F15H10.1	Caenorhabditis elegans	35-89	71.80
COLlagen family member (col-91)	Caenorhabditis elegans	47-89	71.67
LysM, putative peptidoglycan-binding, domain	Mus musculus	46-70	71.61
containing 3			
ROLler: helically twisted, animals roll when moving	Caenorhabditis elegans	47-89	71.51
family member (rol-6)			
Glutamate receptor, ionotropic, N-methyl D-asparate-	Homo sapiens	28-84	71.25
associated protein 1			
Glutamate receptor, ionotropic, N-methyl D-asparate-	Homo sapiens	28-84	71.25
associated protein 1			
COLlagen family member (col-120)	Caenorhabditis elegans	27-89	71.07
F55C10.2	Caenorhabditis elegans	42-89	71.05
D2023.7	Caenorhabditis elegans	47-89	70.90
COLlagen family member (col-137)	Caenorhabditis elegans	42-89	70.76
COLlagen family member (col-33)	Caenorhabditis elegans	35-92	70.35
COLlagen family member (col-84)	Caenorhabditis elegans	50-92	70.32
C09G5.5	Caenorhabditis elegans	47-94	70.32
Y41C4A.19	Caenorhabditis elegans	30-89	70.21
F38A3.1	Caenorhabditis elegans	42-91	70.06
DumPY: shorter than wild-type family member (dpy-8)	Caenorhabditis elegans	38-82	69.77
COLlagen family member (col-92)	Caenorhabditis elegans	46-89	69.51
Reticulon 1 isoform A	Homo sapiens	10-71	69.25
Y41C4A.16	Caenorhabditis elegans	30-92	69.20

C34F6.2	Caenorhabditis elegans	32-94	69.05
BLASTP/PSIBLAST			
ORF-132 protein	Lymantria dispar multiple	96-159	2e-11/7e-
	nucleopolyhedrovirus		08
LdOrf-129 peptide	Lymantria dispar multiple	96-149	4e-10/2e-
	nucleopolyhedrovirus		06
85 kDa protein	Babesia bovis	91-146	9e-09/4e-
			05
Bv80/Bb-1, partial (5)	Babesia bovis	98-146	7e-08-1e-
			04
Bv80/Bb-1, partial	Babesia bovis	89-146	4e-07,
			0.002
PSIBLAST			
S-layer protein precursor	Bacillus thuringiensis	95-156	2e-05
Cell surface protein, partial	Bacillus thuringiensis	95-156	2e-05
Cell surface protein	Bacillus thuringiensis	96-154	7e-05
Cell surface protein	Bacillus thuringiensis	97-154	9e-05
orf-126 protein	Lymantria dispar multiple	96-142	1e-04
	nucleopolyhedrovirus		
85 kDa protein (2)	Babesia bovis	98-146	1e-04
Bv80, partial	Babesia bovis	88-146	4e-04
Outer membrane autotransporter barrel domain-	Escherichia coli	95-154	5e-04
containing protein			
GH24581	Drosophila grimshawi	98-146	6e-04
Autotransporter protein, partial	Escherichia coli	90-146	7e-04
Outer membrane autotransporter barrel domain-	Escherichia coli	90-146	8e-04
containing protein			
GG21615	Drosophila erecta	87-156	0.001
Bv80, partial	Babesia bovis	98-146	0.002
Proteoglycan 4	Tupaia chinensis	105-146	0.005
I-TASSER			
Internalin K (2)	Listeria monocytogenes		1.46, 1.43
Type I hyperactive antifreeze protein	Pseudopleuronectes		1.21
	americanus		
Antigen MTB48, Mycobacterial protein	Mycobacterium smegmatis		1.13
Tropomyosin	Oryctolagus cuniculus		1.12

DNA stabilization protein	Salmonella phage		1.09
Telomerase-binding protein EST1A	Homo sapiens		1.04
Hexon protein	Human adenovirus 5		1.01
Human T-cell leukemia virus type II matrix protien	Human T-lymphotropic virus 2		1.00
Type I hyperactive antifreeze protein	Pseudopleuronectes		0.714
	americanus		
Formin-binding protein 1	Homo sapiens		0.632
Phospholipase C beta	Meleagris gallopavo		0.632
Cdc42-interacting protein 4	Homo sapiens		0.628
Sensor protein torS	Escherichia coli		0.611
Tyrosine-protein kinase Fes/Fps	Homo sapiens		0.608
GEM-interacting protein	Homo sapiens		0.607
SH3-containing GRB2-like protein 2	Homo sapiens		0.605
Brain-specific angiogenesis inhibitor 1-associated	Mus musculus		0.604
protein 2-like protein 2			
Predict Protein			
Protein binding		63, 66-72,	
5			
		74-77	
Secreted		74-77	
Secreted Atome2		74-77	
Secreted Atome2 IQ motif and SEC7 domain-containing protein 1	Homo sapiens	74-77	80.62
Secreted Atome2 IQ motif and SEC7 domain-containing protein 1 Ubiquitin carboxyl-terminal hydrolase 28	Homo sapiens Homo sapiens	74-77	80.62 71.92
Secreted Atome2 IQ motif and SEC7 domain-containing protein 1 Ubiquitin carboxyl-terminal hydrolase 28 Rep (DNA-binding domain)	Homo sapiens Homo sapiens Escherichia coli	74-77	80.62 71.92 66.15
Secreted Atome2 IQ motif and SEC7 domain-containing protein 1 Ubiquitin carboxyl-terminal hydrolase 28 Rep (DNA-binding domain) S-adenosylmethionine:tRNA ribosyltransferase-	Homo sapiens Homo sapiens Escherichia coli Thermotoga maritima	74-77	80.62 71.92 66.15 65.28
Secreted Atome2 IQ motif and SEC7 domain-containing protein 1 Ubiquitin carboxyl-terminal hydrolase 28 Rep (DNA-binding domain) S-adenosylmethionine:tRNA ribosyltransferase- isomerase	Homo sapiens Homo sapiens Escherichia coli Thermotoga maritima	74-77	80.62 71.92 66.15 65.28
Secreted Atome2 IQ motif and SEC7 domain-containing protein 1 Ubiquitin carboxyl-terminal hydrolase 28 Rep (DNA-binding domain) S-adenosylmethionine:tRNA ribosyltransferase- isomerase S-adenosylmethionine:tRNA ribosyltransferase-	Homo sapiens Homo sapiens Escherichia coli Thermotoga maritima Bacillus subtilis	74-77	80.62 71.92 66.15 65.28 54.31
Secreted Atome2 IQ motif and SEC7 domain-containing protein 1 Ubiquitin carboxyl-terminal hydrolase 28 Rep (DNA-binding domain) S-adenosylmethionine:tRNA ribosyltransferase- isomerase S-adenosylmethionine:tRNA ribosyltransferase- isomerase	Homo sapiens Homo sapiens Escherichia coli Thermotoga maritima Bacillus subtilis	74-77	80.62 71.92 66.15 65.28 54.31
Secreted Atome2 IQ motif and SEC7 domain-containing protein 1 Ubiquitin carboxyl-terminal hydrolase 28 Rep (DNA-binding domain) S-adenosylmethionine:tRNA ribosyltransferase- isomerase S-adenosylmethionine:tRNA ribosyltransferase- isomerase Protein phosphatase 1 regulatory subunit 12A	Homo sapiens Homo sapiens Escherichia coli Thermotoga maritima Bacillus subtilis Homo sapiens	74-77	80.62 71.92 66.15 65.28 54.31 50.87
Secreted Atome2 IQ motif and SEC7 domain-containing protein 1 Ubiquitin carboxyl-terminal hydrolase 28 Rep (DNA-binding domain) S-adenosylmethionine:tRNA ribosyltransferase- isomerase S-adenosylmethionine:tRNA ribosyltransferase- isomerase Protein phosphatase 1 regulatory subunit 12A TRPM7 channel	Homo sapiensHomo sapiensEscherichia coliThermotoga maritimaBacillus subtilisHomo sapiensRattus norvegicus	74-77	80.62 71.92 66.15 65.28 54.31 50.87 44.52
Secreted Atome2 IQ motif and SEC7 domain-containing protein 1 Ubiquitin carboxyl-terminal hydrolase 28 Rep (DNA-binding domain) S-adenosylmethionine:tRNA ribosyltransferase- isomerase S-adenosylmethionine:tRNA ribosyltransferase- isomerase Protein phosphatase 1 regulatory subunit 12A TRPM7 channel Nucleoprotein	Homo sapiens Homo sapiens Escherichia coli Thermotoga maritima Bacillus subtilis Homo sapiens Rattus norvegicus Andes virus	74-77	80.62 71.92 66.15 65.28 54.31 50.87 44.52 42.17
Secreted Atome2 IQ motif and SEC7 domain-containing protein 1 Ubiquitin carboxyl-terminal hydrolase 28 Rep (DNA-binding domain) S-adenosylmethionine:tRNA ribosyltransferase- isomerase S-adenosylmethionine:tRNA ribosyltransferase- isomerase Protein phosphatase 1 regulatory subunit 12A TRPM7 channel Nucleoprotein Adhesin yadA	Homo sapiensHomo sapiensEscherichia coliThermotoga maritimaBacillus subtilisHomo sapiensRattus norvegicusAndes virusYersinia enterocolitica	74-77	80.62 71.92 66.15 65.28 54.31 50.87 44.52 42.17 40.69
Secreted Atome2 IQ motif and SEC7 domain-containing protein 1 Ubiquitin carboxyl-terminal hydrolase 28 Rep (DNA-binding domain) S-adenosylmethionine:tRNA ribosyltransferase- isomerase S-adenosylmethionine:tRNA ribosyltransferase- isomerase Protein phosphatase 1 regulatory subunit 12A TRPM7 channel Nucleoprotein Adhesin yadA Activating signal cointegrator 1 complex subunit 2	Homo sapiensHomo sapiensEscherichia coliThermotoga maritimaBacillus subtilisHomo sapiensRattus norvegicusAndes virusYersinia enterocoliticaHomo sapiens	74-77	80.62 71.92 66.15 65.28 54.31 50.87 44.52 42.17 40.69 36.50
Secreted Atome2 IQ motif and SEC7 domain-containing protein 1 Ubiquitin carboxyl-terminal hydrolase 28 Rep (DNA-binding domain) S-adenosylmethionine:tRNA ribosyltransferase- isomerase S-adenosylmethionine:tRNA ribosyltransferase- isomerase Protein phosphatase 1 regulatory subunit 12A TRPM7 channel Nucleoprotein Adhesin yadA Activating signal cointegrator 1 complex subunit 2 Bacterioferritin	Homo sapiensHomo sapiensEscherichia coliThermotoga maritimaBacillus subtilisHomo sapiensRattus norvegicusAndes virusYersinia enterocoliticaHomo sapiensPseudomonas aeruginosa	74-77	80.62 71.92 66.15 65.28 54.31 50.87 44.52 42.17 40.69 36.50 35.14
Secreted Atome2 IQ motif and SEC7 domain-containing protein 1 Ubiquitin carboxyl-terminal hydrolase 28 Rep (DNA-binding domain) S-adenosylmethionine:tRNA ribosyltransferase- isomerase S-adenosylmethionine:tRNA ribosyltransferase- isomerase Protein phosphatase 1 regulatory subunit 12A TRPM7 channel Nucleoprotein Adhesin yadA Activating signal cointegrator 1 complex subunit 2 Bacterioferritin Fibroin-modulator binding protine 1	Homo sapiensHomo sapiensEscherichia coliThermotoga maritimaBacillus subtilisHomo sapiensRattus norvegicusAndes virusYersinia enterocoliticaHomo sapiensPseudomonas aeruginosaBombyx mori	74-77	80.62 71.92 66.15 65.28 54.31 50.87 44.52 42.17 40.69 36.50 35.14 31.12

Estrogen-related receptor gamma	Homo sapiens	7.58

Supplementary Table XXXVII. *Utterbackia imbecillis* H-*ORF* sequences 7 function predictions

Hits (n)	Species	Position	Probability
HHpred	I		
TIGR03304 outer membrane insertion C-terminal		71-74	99.28
signal			
TIGR04294 prepilin-type processing-associated H-X9-		13-15	99.16
DG domain			
TIGR01167 LPXTG cell wall anchor domain		49-64	98.89
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		43-45	97.53
TIGR03501 GlyGly-CTERM domain		71-79	96.97
TIGR00756 pentatricopeptide repeat domain		87-98	94.00
BLIstered cuticle family member (bli-2)	Caenorhabditis elegans	34-92	94.88
CG12522-PA	Drosophila melanogaster	130-198	94.68
F57B1.3	Caenorhabditis elegans	29-99	94.44
DumPY: shorter than wild-type family member (dpy-10)	Caenorhabditis elegans	23-88	94.43
CG12522-PA	Drosophila melanogaster	134-199	94.43
T10E10.5	Caenorhabditis elegans	34-96	94.01
DumPY: shorter than wild-type family member (dpy-3)	Caenorhabditis elegans	34-102	93.68
DumPY: shorter than wild-type family member (dpy-14)	Caenorhabditis elegans	42-89	93.55
Y54E10BL.2	Caenorhabditis elegans	44-89	93.36
COLlagen family member (col-102)	Caenorhabditis elegans	47-96	92.99
COLlagen family member (col-166)	Caenorhabditis elegans	33-96	92.93
SQuaT family member (sqt-2)	Caenorhabditis elegans	34-89	92.72
F33A8.9	Caenorhabditis elegans	32-96	92.68
F54B11.1	Caenorhabditis elegans	33-92	92.25

COLlagen family member (col-101)	Caenorhabditis elegans	38-89	92.19
F11G11.11	Caenorhabditis elegans	38-93	92.18
COLlagen family member (col-69)	Caenorhabditis elegans	32-99	92.09
Armadillo repeat containing, X-linked 4	Homo sapiens	102-225	92.06
F55C10.2	Caenorhabditis elegans	30-98	92.04
COLlagen family member (col-110)	Caenorhabditis elegans	43-99	91.98
T10E10.2	Caenorhabditis elegans	34-96	91.71
COLlagen family member (col-2)	Caenorhabditis elegans	42-92	91.71
C44C10.1	Caenorhabditis elegans	34-96	91.67
COLlagen family member (col-165)	Caenorhabditis elegans	34-98	91.35
C12D8.8	Caenorhabditis elegans	41-90	91.17
DumPY: shorter than wild-type family member (dpy-9)	Caenorhabditis elegans	43-93	91.04
ROLler: helically twisted, animals roll when moving	Caenorhabditis elegans	44-96	90.69
family member (rol-8)			
COLlagen family member (col-14)	Caenorhabditis elegans	18-89	90.52
COLlagen family member (col-162)	Caenorhabditis elegans	46-90	90.35
C30F2.1	Caenorhabditis elegans	45-98	90.17
T11F9.9	Caenorhabditis elegans	42-98	90.04
W08D2.6	Caenorhabditis elegans	40-91	89.95
COLlagen family member (col-145)	Caenorhabditis elegans	46-90	89.58
COLlagen family member (col-36)	Caenorhabditis elegans	38-91	89.54
COLlagen family member (col-75)	Caenorhabditis elegans	43-89	89.53
Y41C4A.19	Caenorhabditis elegans	30-89	89.29
T05A1.2	Caenorhabditis elegans	43-89	89.12
F56D5.1	Caenorhabditis elegans	33-89	88.98
DumPY: shorter than wild-type family member (dpy-2)	Caenorhabditis elegans	26-89	88.62
COLlagen family member (col-43)	Caenorhabditis elegans	29-93	88.54
F15H10.1	Caenorhabditis elegans	35-92	88.45
F15A2.1	Caenorhabditis elegans	41-90	88.29
SQuaT family member (sqt-1)	Caenorhabditis elegans	43-89	88.28
COLlagen family member (col-173)	Caenorhabditis elegans	43-89	88.21
Axon STeering defect family member (ast-1)	Caenorhabditis elegans	103-189	88.10
COLlagen family member (col-114)	Caenorhabditis elegans	33-106	87.88
G protein-coupled receptor 152	Homo sapiens	2-203	87.87
COLlagen family member (col-120)	Caenorhabditis elegans	38-89	87.74
COLlagen family member (col-176)	Caenorhabditis elegans	41-89	87.59

Armadillo repeat containing, X-linked 4	Homo sapiens	105-209	87.27
F11G11.12	Caenorhabditis elegans	35-89	87.16
COLlagen family member (col-183)	Caenorhabditis elegans	33-89	87.09
Y41C4A.16	Caenorhabditis elegans	30-96	87.00
F08G5.4	Caenorhabditis elegans	46-89	86.97
DumPY: shorter than wild-type family member (dpy-8)	Caenorhabditis elegans	38-106	86.89
T10E10.1	Caenorhabditis elegans	34-98	86.85
COLlagen family member (col-137)	Caenorhabditis elegans	42-89	86.42
Reticulon 1 isoform A	Homo sapiens	10-95	86.29
Protein involved in bud-site selection	Saccharomyces cerevisiae	47-88	85.95
COLlagen family member (col-3)	Caenorhabditis elegans	44-93	85.46
COLlagen family member (col-117)	Caenorhabditis elegans	44-93	85.46
F32G8.5	Caenorhabditis elegans	45-91	85.42
F52F12.2	Caenorhabditis elegans	46-99	85.33
AC3.6	Caenorhabditis elegans	33-93	85.31
C29F4.1	Caenorhabditis elegans	44-96	85.17
T10E10.7	Caenorhabditis elegans	23-96	85.12
D2023.7	Caenorhabditis elegans	47-93	85.11
CG33203-PC	Drosophila melanogaster	2-84	85.07
F14F7.1	Caenorhabditis elegans	32-89	85.01
COLlagen family member (col-166)	Caenorhabditis elegans	11-96	84.99
COLlagen family member (col-65)	Caenorhabditis elegans	37-89	84.85
Lysosomal associated transmembrane protein 4 beta	Homo sapiens	12-82	84.84
COLlagen family member (col-45)	Caenorhabditis elegans	33-103	84.84
COLlagen family member (col-34)	Caenorhabditis elegans	41-92	84.75
F15H10.2	Caenorhabditis elegans	35-92	84.65
ROLler: helically twisted, animals roll when moving	Caenorhabditis elegans	47-89	84.62
family member (rol-6)			
COLlagen family member (col-50)	Caenorhabditis elegans	43-89	84.57
DumPY: shorter than wild-type family member (dpy-5)	Caenorhabditis elegans	44-96	84.57
COLlagen family member (col-77)	Caenorhabditis elegans	38-93	84.50
ROLler: helically twisted, animals roll when moving	Caenorhabditis elegans	43-89	84.43
family member (rol-8)			
COLlagen family member (col-14)	Caenorhabditis elegans	15-82	84.38
F54D1.3	Caenorhabditis elegans	34-89	84.34
COLlagen family member (col-93)	Caenorhabditis elegans	30-89	84.28

F12F6.9	Caenorhabditis elegans	43-89	84.27
Y38C1BA.3	Caenorhabditis elegans	44-89	84.23
F54C9.4	Caenorhabditis elegans	37-89	84.22
T06E4.4	Caenorhabditis elegans	46-89	84.12
BLASTP/PSIBLAST		1	
Ribonuclease E; Reviewed		94-226	1.13e-06
Ehrlichia tandem repeat (Ehrlichia_rpt)		98-226	3.34e-03
Bv80/Bb-1, partial (2)	Babesia bovis	98-227	5e-29, 1e-
			26
PSIBLAST			
Protein B602L, partial	Columba livia	106-225	3e-23
Bv80, partial	Babesia bovis	105-227	2e-21
Bv80/Bb-1, partial	Babesia bovis	101-227	4e-21
Bv80/Bb-1, partial	Babesia bovis	101-217	1e-20
85 kDa protein (2)	Babesia bovis	106-225	1e-20, 4e-
			20
Bv80, partial	Babesia bovis	102-217	3e-20
B602L, partial (2)	African swine fever virus	82-226	4e-20, 8e-
			14
Bv80, partial	Babesia bovis	105-225	2e-19
9RL	African swine fever virus	98-226	1e-18
9RL protein	African swine fever virus	87-225	1e-18
9RL	African swine fever virus	96-226	2e-18
B602L protein	African swine fever virus	88-226	4e-18
Bv80, partial	Babesia bovis	105-213	9e-18
B602L, partial	African swine fever virus	82-215	2e-17
B602L protein	African swine fever virus	87-222	3e-17
9RL	African swine fever virus	103-225	3e-16
B602L, partial	African swine fever virus	82-211	4e-16
B602L protein	African swine fever virus	88-223	7e-16
B602L (2)	African swine fever virus	87-215	1e-15, 4e-
			15
B602L protein	African swine fever virus	111-219	2e-15
B602L, partial	African swine fever virus	82-203	1e-14
S-layer protein precursor	Bacillus thuringiensis	102-190	1e-14
pB602L (2)	African swine fever virus	82-225	2e-14, 7e-

			14
Cell surface protein (3)	Bacillus thuringiensis	102-190	2e-14-4e-
			14
Bv80/Bb-1, partial	Babesia bovis	107-178	8e-14
B602L protein	African swine fever virus	107-219	8e-14
BV80 merozoite protein	Babesia bovis	109-201	1e-13
9RL	African swine fever virus	111-219	2e-13
B602L protein (2)	African swine fever virus	87-203	5e-13, 7e-
			13
B602L, partial (4)	African swine fever virus	82-195	5e-13, 4e-
			11
85 kDa protein	Babesia bovis	99-177	5e-13
Type IV secretion protein Rhs, partial	Nocardioides sp. URHA0020	102-195	1e-12
9RL	African swine fever virus	103-203	2e-12
Glutamate/valine-rich protein	Natronorubrum sulfidifaciens	54-223	2e-12
9RL protein (2)	African swine fever virus	87-203	2e-12, 4e-
			12
Liver stage antigen 3	Plasmodium falciparum	102-227	3e-12
B602L (2)	African swine fever virus	82-207	3e-12, 1e-
			08
B602L protein (8)	African swine fever virus	103-203	3e-12-2e-
			11
B602L protein (5)	African swine fever virus	87-188	4e-12-2e-
			09
B602L protein, partial (3)	African swine fever virus	87-195	4e-12-4e-
			11
9RL protein	African swine fever virus	87-179	5e-12
pB602L, partial	African swine fever virus	87-209	1e-11
Central variable region protein	African swine fever virus	82-188	2e-11
B602L, partial	African swine fever virus	82-188	5e-11
B602L protein	African swine fever virus	87-191	6e-11
GH24581	Drosophila grimshawi	99-212	6e-11
B602L, partial	African swine fever virus	82-179	1e-10
Cellulosomal scaffoldin anchoring protein	Trichomonas vaginalis	98-226	2e-10
9RL protein, partial	African swine fever virus	103-218	3e-10
Transcription factor IIIB 50 kDa subunit	Xenopus tropicalis	48-226	3e-10

pB602L	African swine fever virus	82-215	4e-10
B602L protein	African swine fever virus	107-226	2e-09
pB602L	African swine fever virus	82-219	2e-09
9RL	African swine fever virus	96-179	2e-09
Chitinase	Deefgea rivuli	104-215	8e-09
9RL protein, partial	African swine fever virus	107-223	2e-08
pB602L	African swine fever virus	82-203	3e-08
PT repeat family protein	Aspergillus fumigatus	102-174	6e-08
Glutamate/valine-rich protein	Halosarcina pallida	108-227	8e-08
Cellulosomal scaffoldin anchoring protein C	Trichomonas vaginalis	98-226	2e-07
PT repeat family protein	Neosartorya fischeri	100-210	2e-07
Liver stage antigen 3	Plasmodium falciparum	92-225	4e-07, 3e-
			05
LdOrf-129 peptide	Lymantria dispar multiple	149-222	6e-07
	nucleopolyhedrovirus		
Liver stage antigen 3	Plasmodium falciparum	92-227	1e-06
9RL protein, partial (2)	African swine fever virus	131-223	1e-06
Pullulanase, type I	Lachnospiraceae bacterium	98-195	1e-06
Liver stage antigen 3 precursor	Plasmodium knowlesi	90-227	2e-06
B602L protein	African swine fever virus	131-223	2e-06
CG3108	Drosophila melanogaster	97-222	2e-06
pB602L	African swine fever virus	82-185	5e-06
ORF-132 protein	Lymantria dispar multiple	134-227	7e-06
	nucleopolyhedrovirus		
Involucrin repeat protein	Ophiostoma piceae	114-226	7e-06
BA71V-B602L (9RL)	African swine fever virus	82-187	9e-06
Snaclec 3	Toxocara canis	97-225	1e-05
LPXTG-motif cell wall anchor domain protein	Nannochloropsis gaditana	101-223	2e-05
Central variable region protein	African swine fever virus	82-178	2e-05
Pathway-specific nitrogen regulator	Metarhizium guizhouense	98-186	2e-05
9RL protein (2)	African swine fever virus	82-178	2e-05, 3e-
			05
Liver stage antigen-3	Plasmodium falciparum	88-227	4e-05
Glutamate/valine-rich protein	Natrinema pallidum	33-227	5e-05
Liver stage antigen 3	Plasmodium falciparum	102-195	7e-05
Liver stage antigen 3	Plasmodium falciparum	103-227	7e-05

9RL protein (2)	African swine fever virus	139-223	8e-05, 9e-
			05
Liver stage antigen 3	Plasmodium falciparum	102-227	8e-05
Liver stage antigen 3	Plasmodium falciparum	99-227	9e-05
Glutamate/valine-rich protein	Natrinema sp. J7-2	33-227	1e-04
B602L protein	African swine fever virus	139-223	1e-04
Cell division protein, partial	Streptococcus sanguinis	113-225	1e-04
Glutamate/valine-rich protein	Natronorubrum tibetense	45-187	2e-04
Liver stage antigen 3	Ectocarpus siliculosus	93-219	2e-04
Glutamate/valine-rich protein	Natrinema gari	33-227	2e-04
von Willebrand factor type A	Streptomyces fulvissimus	109-187	3e-04
Liver stage antigen 3	Plasmodium falciparum	102-225	4e-04,
			0.001
Liver stage antigen-3	Plasmodium falciparum	103-225	4e-04
Glutamate/valine-rich protein	Natrinema altunense	102-223	0.001
Cellulosomal scaffoldin anchoring protein	Trichomonas vaginalis	99-226	0.002
Liver stage antigen 3	Plasmodium falciparum	107-227	0.004
I-TASSER			
Survival motor neuron protein (4)	Homo sapiens		1.12-1.01
Type I hyperactive antifreeze protein	Pseudopleuronectes		2.56
	americanus		
Myc box dependent interacting protein 1 (2)	Homo sapiens		1.13, 1.94
Accumulation associated protein	Staphylococcus epidermidis		1.56
60S ribosomal protein L28	Saccharomyces cerevisiae		2.32
Survival motor neuron protein (4)	Homo sapiens		1.12-1.01
Predict Protein		•	•
Protein binding		8, 66	
Polynucleotide binding		27, 32,	
		34-35	
Cytoplasm			
Opioid growth factor receptor (4)	Homo sapiens		2e-11-2e-
			08
Proteoglycan 4 (10)	Mus musculus		2e-08-0.92
Cell surface glycoprotein 1 (17)	Clostridium thermocellum		0.001-
			0.010
Atome2			

TuSp1	Nephila antipodiana	78.07
80 kDa MCM3-associated protein	Homo sapiens	55.44
12 kDa heat shock protein	Saccharomyces cerevisiae	45.97
Interferon alpha-inducible protein 27-like protein 1	Homo sapiens	24.35
ICP47	Herpes simplex virus	1.72

Supplementary Table XXXVIII. Margaritifera margaritifera H-ORF sequence 1

Hits (n)	Species	Position	Probability
HHpred			
TIGR03304 outer membrane insertion C-terminal		5-7	99.23
signal			
TIGR04294 prepilin-type processing-associated H-X9-		5-8	99.16
DG domain			
TIGR01167 LPXTG cell wall anchor domain		43-59	98.88
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		60-67	97.66
TIGR03501 GlyGly-CTERM domain		47-59	96.99
TIGR00756 pentatricopeptide repeat domain		23-27	93.25
T24B1.1	Caenorhabditis elegans	21-63	91.85
Occlusion-derived virus envelope protein ODV-E18		33-73	74.97
d.24.1 Pili subunits (54523) SCOP seed sequence:		42-61	74.24
d1oqwa_			
d.24.1 Pili subunits (54523) SCOP seed sequence:		42-61	74.20
d2pila_			
Serine protease inhibitor		48-107	71.24
Chitin synthesis regulation, resistance to Congo red		43-61	70.62
Activator of basal transcription 1	Homo sapiens	5-33	69.40
Occlusion-derived virus envelope protein ODV-E18		34-73	68.30

function predictions

CG17785-PA	Drosophila melanogaster	16-65	68.04
General secretion pathway protein H	Beggiatoa sp. PS	42-61	67.36
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-64	63.72
member (pqn-90)			
Secreted protein	Beggiatoa sp. PS	42-61	61.88
CG32708-PA	Drosophila melanogaster	5-33	61.30
Activator of basal transcription	Mus musculus	5-33	59.95
COLlagen family member (col-93)	Caenorhabditis elegans	29-67	57.32
Alpha defensin		50-61	57.29
COLlagen family member (col-34)	Caenorhabditis elegans	30-67	56.89
C17H11.6c	Caenorhabditis elegans	20-70	56.74
Cytochrome c550	Bacillus subtilis	38-72	56.20
RCR		43-61	52.93
ComB		18-61	52.89
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-66	52.79
member (pqn-2)			
COLlagen family member (col-91)	Caenorhabditis elegans	42-67	51.23
UCP036704		29-35	51.11
TATA-binding protein binding (2)	Arabidopsis thaliana	5-33	50.96
General secretion pathway protein J	Yersinia pestis	42-61	50.70
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-66	50.59
member (pqn-78)			
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-66	49.73
member (pqn-79)			
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-66	49.73
member (pqn-76)			
Essential nucleolar protein involved in pre-18S rRNA	Saccharomyces cerevisiae	5-33	49.71
processing			
CG6999-PA	Drosophila melanogaster	5-33	49.32
T-cell receptor-associates transmembrane adapter 1		42-59	49.10
Thymidine kinase (2)	Herpes virus	23-34	48.70
K08F4.5	Caenorhabditis elegans	42-61	48.36
Essential cell division protein	Escherichia coli	36-85	48.20
GRP: Glycine rich protein family		46-64	47.31
FAST kinase-like protein, subdomain 1		5-54	46.87
COLlagen family member (col-94)	Caenorhabditis elegans	29-67	46.72

TIGR03544 DivIVA domain	Bacillus subtilis	20-35	51.87
COLlagen family member (col-165)	Caenorhabditis elegans	29-67	45.84
Activated in Blocked Unfolded protein response family	Caenorhabditis elegans	45-66	45.83
member (abu-7)			
PulG Type II secretory pathway, pseudopilin PulG		42-61	45.03
COLlagen family member (col-139)	Caenorhabditis elegans	30-67	44.54
F27E5.3	Caenorhabditis elegans	42-61	44.44
Light-harvesting complex subunits	Rhodospirillum rubrum	39-63	43.91
General secretion pathway protein G	Beggiatoa sp. PS	42-61	43.24
COLlagen family member (col-92)	Caenorhabditis elegans	29-67	43.10
General secretion pathway protein H	Beggiatoa sp. PS	42-61	43.05
CG32706-PA	Drosophila melanogaster	5-33	42.51
ABC transporter, permease protein	Methanosarcina mazei	11-64	42.42
COLlagen family member (col-102)	Caenorhabditis elegans	42-67	41.89
Light-harvesting complex subunits	Rhodospirillum rubrum	39-63	41.47
COLlagen family member (col-114)	Caenorhabditis elegans	29-67	41.33
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-66	41.32
member (pqn-91)			
PulG: Type II secretory pathway pseudopilin		42-61	41.30
F420-nonreducing hydrogenase II, subunit cytochrome	Methanosarcina mazei	33-61	41.29
В			
EGF-like-domain, multiple 9 (2)	Homo sapiens	45-62	40.73
Y45G12B.2a	Caenorhabditis elegans	37-62	40.38
I-TASSER			
Tropomyosin	Oryctolagus cuniculus		1.12
Nck-associated protein 1	Homo sapiens		0.511
Predict Protein			
Protein binding		16, 19,	
		27-31, 34-	
		37, 60-61,	
		64, 92	
Secreted			
Atome2			
39 kDa initiator binding protein	Trichomonas vaginalis		67.83
Octamer-binding transcription factor 1	Homo sapiens		59.87
BA3-type cytochrome-c oxidase	Thermus thermophilus		55.07

Electron transfer flavoprotein-ubiquinone	Sus scrofa	50.03
oxidoreductase		
Degenerin mec-4	Caenorhabditis elegans	48.90
Cytochrome b-c1 complex subunit 1, mitochondrial	Saccharomyces cerevisiae	28.76
Integrin alpha-IIb	Homo sapiens	28.20
Fimbrial protein	Neisseria gonorrhoeae	23.71
Fimbrial protein	Pseudomonas aeruginosa	21.80
Fimbrial protein	Dichelobacter nodosus	21.07
Cycloviolacin O14	Viola odorata	17.54
Histone peptide	Homo sapiens	15.68
Cytochrome c oxidase subunit 1	Thermus thermophilus	13.57

Supplementary Table XXXIX. Margaritifera margaritifera H-ORF sequences 2 & 4

function predictions

Hits (n)	Species	Position	Probability
HHpred			•
TIGR03304 outer membrane insertion C-terminal		5-7	99.23
signal			
TIGR04294 prepilin-type processing-associated H-X9-		5-8	99.16
DG domain			
TIGR01167 LPXTG cell wall anchor domain		43-60	98.93
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		61-67	97.50
TIGR03501 GlyGly-CTERM domain		47-59	96.99
TIGR00756 pentatricopeptide repeat domain		23-27	93.25
T24B1.1	Caenorhabditis elegans	21-63	92.10
d.24.1 Pili subunits (54523) SCOP seed sequence:		42-61	75.70
d2pila_			
RCR		43-61	75.43

d.24.1 Pili subunits (54523) SCOP seed sequence:		42-61	75.42
d1oqwa_			
Occlusion-derived virus envelope protein ODV-E18		33-73	75.30
Activator of basal transcription 1	Homo sapiens	5-33	69.31
Activated in Blocked Unfolded protein response family	Caenorhabditis elegans	45-64	69.18
member (abu-1)			
Occlusion-derived virus envelope protein ODV-E18		34-73	68.67
Serine protease inhibitor		48-107	68.30
General secretion pathway protein H	Beggiatoa sp. PS	42-61	65.38
Secreted protein	Beggiatoa sp. PS	42-61	64.26
CG17785-PA	Drosophila melanogaster	16-65	64.05
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-64	62.89
member (pqn-90)			
CG32708-PA	Drosophila melanogaster	5-33	61.19
Activator of basal transcription	Mus musculus	5-33	59.86
ComB		18-61	59.66
C17H11.6c	Caenorhabditis elegans	20-70	59.31
RCR		43-61	58.19
COLlagen family member (col-34)	Caenorhabditis elegans	30-67	56.67
Cytochrome c550	Bacillus subtilis	38-72	56.62
COLlagen family member (col-93)	Caenorhabditis elegans	29-67	54.67
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-66	52.52
member (pqn-2)			
General secretion pathway protein J	Yersinia pestis	42-61	51.73
UCP036704		29-35	51.14
TATA-binding protein binding	Arabidopsis thaliana	5-33	50.88
TATA-binding protein binding	Arabidopsis thaliana	5-33	50.88
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-66	50.32
member (pqn-78)			
T-cell receptor-associated transmembrane adapter 1		42-59	49.77
Essential nucleolar protein involved in pre-18S rRNA	Saccharomyces cerevisiae	5-33	49.60
processing			
Glycine rich protein family		46-64	49.40
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-66	49.22
member (pqn-79)			
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-66	49.22

member (pqn-76)			
CG6999-PA	Drosophila melanogaster	5-33	49.21
Thymidine kinase	Herpes virus	23-34	48.81
K08F4.5	Caenorhabditis elegans	42-61	48.72
Thymidine kinase	Herpes virus	23-34	48.23
COLlagen family member (col-91)	Caenorhabditis elegans	42-67	47.33
PulG Type II secretory pathway, pseudopilin PulG		42-61	47.33
Membrane spanning protein in TonB-ExbB-ExbD	Escherichia coli	41-85	46.99
complex			
FAST kinase-like protein, subdomain 1		5-54	46.88
Alpha defensin		50-61	46.56
TIGR03544 DivIVA domain		20-35	51.80
Activated in Blocked Unfolded protein response family	Caenorhabditis elegans	45-66	45.52
member (abu-7)			
F27E5.3	Caenorhabditis elegans	42-61	44.20
COLlagen family member (col-94)	Caenorhabditis elegans	29-67	43.99
COLlagen family member (col-165)	Caenorhabditis elegans	29-67	43.29
General secretion pathway protein G	Beggiatoa sp. PS	42-61	43.29
ABC transporter, permease protein	Methanosarcina mazei	11-64	43.09
CG32706-PA	Drosophila melanogaster	5-33	42.39
COLlagen family member (col-139)	Caenorhabditis elegans	30-67	41.82
PulG: Type II secretory pathway pseudopilin		42-61	41.79
Essential cell division protein	Escherichia coli	36-85	41.62
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-66	41.35
member (pqn-91)			
General secretion pathway protein H	Beggiatoa sp. PS	42-61	41.33
RCR		42-62	41.12
Integral membrane protein	Streptomyces coelicolor	15-66	41.11
F420-nonreducing hydrogenase II, subunit cytochrome	Methanosarcina mazei	33-61	41.03
В			
Type II secretion system protein I		39-63	40.83
DevC protein	Nostoc punctiforme	14-64	40.55
I-TASSER			
Tropomyosin	Oryctolagus cuniculus		1.07
Predict Protein			
Protein binding		1-2, 16,	

		27-31, 34-	
		38, 60,	
		92 100-	
		102	
		102	
Mitochondrion membrane			
Atome2			
39 kDa initiator binding protein (C-domain, residues	Trichomonas vaginalis		84.16
127-341)			
Electron transfer flavoprotein-ubiquinone	Sus scrofa		63.11
oxidoreductase			
Photosystem Q(B) protein	Thermosynechococcus		39.25
	vulcanus		
Photosystem Q(B) protein	Thermosynechococcus		37.01
	elongatus		
Apocytochrome f	Chlamydomonas reinhardtii		32.77
Integrin alpha-IIb (transmembrane and cytoplasmic	Homo sapiens		32.70
domains, residues 991-1039)			
Cytochrome b-c1 complex subunit 1, mitochondrial	Saccharomyces cerevisiae		32.68
Cytochrome b6 (2)	Mastigocladus laminosus		26.41,
			26.19
Fimbrial protein	Neisseria gonorrhoeae		26.33
Fimbrial protein	Pseudomonas aeruginosa		24.49
Fimbrial protein	Dichelobacter nodosus		23.78
Cycloviolacin O14	Viola odorata		23.59
Cytochrome c oxidase subunit 1	Thermus thermophilus		14.67

Supplementary Table XL. Margaritifera margaritifera H-ORF sequence 3 function

Hits (n)	Species	Position	Probability
HHpred		1	1
TIGR03304 outer membrane insertion C-terminal		5-7	99.19
signal			
TIGR04294 prepilin-type processing-associated H-X9-		5-8	99.14
DG domain			
TIGR01167 LPXTG cell wall anchor domain		43-60	98.94
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		61-67	97.43
TIGR03501 GlyGly-CTERM domain		47-60	96.95
TIGR00756 pentatricopeptide repeat domain		23-27	93.37
T24B1.1	Caenorhabditis elegans	21-63	91.45
d.24.1 Pili subunits (54523) SCOP seed sequence:		42-61	79.09
d2pila_			
d.24.1 Pili subunits (54523) SCOP seed sequence:		42-61	78.95
d1oqwa_			
RCR		43-61	77.34
Occlusion-derived virus envelope protein ODV-E18		33-73	77.10
Activated in Blocked Unfolded protein response family	Caenorhabditis elegans	45-64	70.87
member (abu-1)			
Occlusion-derived virus envelope protein ODV-E18		34-66	70.71
General secretion pathway protein H	Beggiatoa sp. PS	42-61	69.93
Secreted protein	Beggiatoa sp. PS	42-61	67.77
Activator of basal transcription 1	Homo sapiens	5-33	66.74
C17H11.6c	Caenorhabditis elegans	20-70	63.78
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-64	63.28
member (pqn-90)			
CG17785-PA	Drosophila melanogaster	16-65	61.12
RCR		43-61	60.93
COLlagen family member (col-34)	Caenorhabditis elegans	30-67	58.47
CG32708-PA	Drosophila melanogaster	5-33	58.17
Activator of basal transcription	Mus musculus	5-33	57.26
Serine protease inhibitor		48-116	56.16
COLlagen family member (col-93)	Caenorhabditis elegans	29-67	55.87

General secretion pathway protein J	Yersinia pestis	42-61	55.83
Cytochrome c550	Bacillus subtilis	38-72	54.89
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-66	54.43
member (pqn-2)			
T-cell receptor-associated transmembrane adapter 1		42-59	53.90
Membrane spanning protein in TonB-ExbB-ExbD	Escherichia coli	41-85	52.51
complex			
COLlagen family member (col-91)	Caenorhabditis elegans	42-67	52.18
PulG Type II secretory pathway, pseudopilin PulG		42-61	51.91
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-66	51.81
member (pqn-79)			
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-66	51.81
member (pqn-76)			
Glycine rich protein family		46-64	51.77
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-66	51.24
member (pqn-78)			
ComB		18-61	49.37
K08F4.5	Caenorhabditis elegans	42-61	48.67
Alpha defensin		50-61	48.02
TATA-binding protein binding	Arabidopsis thaliana	5-33	47.96
TATA-binding protein binding	Arabidopsis thaliana	5-33	47.96
FAST kinase-like protein, subdomain 1		5-54	47.41
Essential nucleolar protein involved in pre-18S rRNA	Saccharomyces cerevisiae	5-33	46.17
processing			
CG6999-PA	Drosophila melanogaster	5-33	46.16
Activated in Blocked Unfolded protein response family	Caenorhabditis elegans	45-60	45.70
member (abu-7)			
F27E5.3	Caenorhabditis elegans	42-61	45.70
COLlagen family member (col-94)	Caenorhabditis elegans	29-67	45.33
Type II secretion system protein I		39-63	44.95
F18A12.1	Caenorhabditis elegans	42-99	44.63
General secretion pathway protein H	Beggiatoa sp. PS	32-61	44.03
COLlagen family member (col-139)	Caenorhabditis elegans	30-67	43.90
COLlagen family member (col-102)	Caenorhabditis elegans	42-67	43.79
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	45-68	43.37
member (pqn-91)			
UCP036704		29-35	42.69
---	--------------------------	------------	------------
RCR		42-62	42.53
COLlagen family member (col-165)	Caenorhabditis elegans	25-67	41.85
F38A3.1	Caenorhabditis elegans	25-67	41.82
ABC transporter, permease protein	Methanosarcina mazei Go1	11-64	41.51
EGF-like-domain, multiple 9 (2)	Homo sapiens	45-62	41.43
PulG: Type II secretory pathway pseudopilin		42-61	41.24
Essential cell division protein	Escherichia coli K12	33-85	41.21
Y54E10BL.2	Caenorhabditis elegans	44-67	41.18
COLlagen family member (col-133)	Caenorhabditis elegans	29-67	41.00
TIGR03544 DivIVA domain		20-35	46.94
F420-nonreducing hydrogenase II, subunit cytochrome	Methanosarcina mazei Go1	33-61	40.67
В			
COLlagen family member (col-92)	Caenorhabditis elegans	29-67	40.64
PSIBLAST	I	1	1
BnaC08g34590D	Brassica napus	43-134	2e-04, 3e-
			04
I-TASSER		1	
Type I hyperactive antifreeze protein	Pseudopleuronectes		1.63
	americanus		
Predict Protein		1	I
Protein binding		1, 11-13,	
		27-31, 35,	
		37-39, 91-	
		92, 98-	
		104	
Secreted			
Atome2			
39 kDa initiator binding protein	Trichomonas vaginalis		85.93
Electron transfer flavoprotein-ubiquinone	Sus scrofa		64.08
oxidoreductase			
Degenerin mec-4	Caenorhabditis elegans		51.62
Adenovirus fiber	Human adenovirus 2		34.11
Receptor tyrosine-protein kinase erbB-3	Homo sapiens		30.21
Fiber protein 2	Human adenovirus 41		29.74
Cytochrome b6 (4)	Mastigocladus laminosus		28.52-

		20.59
Nitrate/TMAO reductases, membrane-bound	Desulfovibrio alaskensis	26.62
tetraheme cytochrome c subunit		
Fimbrial protein	Neisseria gonorrhoeae	25.11
Fimbrial protein	Pseudomonas aeruginosa	22.24
Fimbrial protein	Dichelobacter nodosus	20.69

NOTE : For Supplementary Tables XI-XLV HHpred and @tome 2 use probabilities /100;

I-TASSER Z scores > 1.0 and TM scores > 0.5 are significant; BLASTP & Predict

Protein E-values < 1.0 are significant (adjusted from developer's recommendation of

10.0); PSIBLAST E-values < 0.001 are significant; Motif Scan N-scores do not have a

significance threshold, a higher score indicates a better match.

Hits (n) Species Position Probability HHpred TIGR01167 LPXTG cell wall anchor domain 24-41 99.01 TIGR04294 prepilin-type processing-associated H-X9-134-135 98.98 DG domain TIGR03304 outer membrane insertion C-terminal 40-44 98.46 signal TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats 189-194 97.44 33-44 96.69 TIGR03501 GlyGly-CTERM domain TIGR00756 pentatricopeptide repeat domain 17-23 93.27 CG17248-PA, isoform A Drosophila melanogaster 16-81 91.85 CG17248-PC, isoform C 91.85 Drosophila melanogaster 16-81 CG17248-PE, isoform E 16-81 90.04 Drosophila melanogaster CG17248-PB, isoform B Drosophila melanogaster 16-81 90.04 G-protein-linked Acetylcholine Receptor family Caenorhabditis elegans 6-52 84.25 member (gar-1) Nostoc punctiforme 2-43 81.29 sensor protein cAMP responsive element binding protein 3-like 2 8-50 80.14 Mus musculus CG33517-PB, isoform B 6-52 78.13 Drosophila melanogaster Vesicle-associated membrane protein 2 (synaptobrevin 16-43 78.05 Homo sapiens 2)

Supplementary Table XLI. Toxolasma lividus H-ORF function predictions

CG3856-PC, isoform C	Drosophila melanogaster	8-52	77.12
CG3856-PA, isoform A	Drosophila melanogaster	8-52	77.12
CG33517-PC, isoform C	Drosophila melanogaster	8-52	76.96
Histamine receptor-related G-protein coupled receptor		8-52	76.91
K08F4.5	Caenorhabditis elegans	20-43	76.75
ATGLR2.4	Arabidopsis thaliana	4-39	76.65
Septation ring formation regulator EzrA	Staphylococcus aureus	20-42	76.59
ABC Transporter	Sulfolobus solfataricus	9-59	76.52
C-type LECtin family member (clec-39)	Caenorhabditis elegans	8-47	76.41
G-protein-linked Acetylcholine Receptor family	Caenorhabditis elegans	3-52	75.76
member (gar-2)			
Syndecan 3	Mus musculus	10-42	75.43
G-protein-linked Acetylcholine Receptor family	Caenorhabditis elegans	6-52	74.50
member (gar-2)			
Integral membrane sensor signal transduction histidine	Nostoc punctiforme	14-44	74.45
kinase			
F02E9.7	Caenorhabditis elegans	3-49	74.18
Dentin matrix protein 1	Mus musculus	32-49	73.94
COLlagen family member (col-77)	Caenorhabditis elegans	8-42	73.16
C17H11.6c	Caenorhabditis elegans	1-52	73.01
CG4356-PA, isoform A	Drosophila melanogaster	6-63	72.19
TonB family protein	Nostoc punctiforme	1-45	71.31
Membrane-bound protease FTSH (cell division protein)	Mycobacterium tuberculosis	14-40	71.19
DumPY: shorter than wild-type family member (dpy-2)	Caenorhabditis elegans	4-42	70.87
Histidine kinase	Nitrosopumilus maritimus	13-42	70.83
Y26D4A.6	Caenorhabditis elegans	28-49	70.46
CG16720-PB, isoform B	Drosophila melanogaster	8-52	69.15
CG16720-PA, isoform A	Drosophila melanogaster	8-52	69.15
C49D10.10	Caenorhabditis elegans	14-48	68.66
G-protein-linked Acetylcholine Receptor family	Caenorhabditis elegans	8-52	68.38
member (gar-2)			
Phosphonate ABC transporter	Nostoc punctiforme	13-37	68.13
T06E4.6	Caenorhabditis elegans	19-42	66.32
Syntaxin		8-41	66.31
CG18208-PA	Drosophila melanogaster	6-52	65.73
Cuticle protein		30-49	65.60

LCR9	Arabidopsis thaliana	19-39	65.51
Cation efflux system protein czcA-1	Synechococcus sp. CC9311	17-72	65.27
Extracellular solute-binding protein	Thermofilum pendens	14-38	64.33
T06E4.8	Caenorhabditis elegans	14-61	64.21
COLlagen family member (col-77)	Caenorhabditis elegans	6-40	63.74
Cytochrome c-550	Nostoc punctiforme	19-40	63.62
DOPamine receptor family member (dop-3)	Caenorhabditis elegans	1-52	63.59
N-terminal TM domain of oligopeptide transport		30-69	63.54
permease C			
K08F4.5	Caenorhabditis elegans	26-47	62.68
Structural constituent of cell wall	Arabidopsis thaliana	4-71	62.58
Glycophorin		23-43	62.12
Vesicle-associated membrane protein 8	Mus musculus	4-45	62.00
High affinity copper uptake protein 1	Homo sapiens	32-43	61.97
Cell-division initiation protein	Bacillus subtilis	8-43	61.88
C44C10.1	Caenorhabditis elegans	8-40	61.69
COLlagen family member (col-173)	Caenorhabditis elegans	5-44	60.97
CG9778-PA	Drosophila melanogaster	20-78	60.97
Molybdate-binding protein	Methanosarcina mazei	12-43	60.58
Vesicle-associated membrane protein 1 isoform 1	Homo sapiens	16-43	60.32
LCR5	Arabidopsis thaliana	19-39	60.27
serine protease SpIA	Staphylococcus aureus	14-33	60.15
RNase_BN		6-44	60.11
Activated in Blocked Unfolded protein response family	Caenorhabditis elegans	32-44	60.05
member (abu-11)			
Sulfate ABC transporter, periplasmic sulfate-binding	Nostoc punctiforme	5-36	59.68
protein			
Cholinergic receptor, muscarinic 3	Homo sapiens	8-52	59.63
DOPamine receptor family member (dop-2)	Caenorhabditis elegans	6-52	59.47
DOPamine receptor family member (dop-3)	Caenorhabditis elegans	10-52	59.43
I-TASSER			
Survival motor neuron protein	Homo sapiens		1.97, 1.36
Type I hyperactive antifreeze protein	Pseudopleuronectes		2.63, 1.18
	americanus		
Myc box dependent interacting protein 1	Homo sapiens		1.39
Accumulation associated protein	Staphylococcus epidermidis		1.65

Major vault protein	Rattus norvegicus		1.61
Type I hyperactive antifreeze protein	Pseudopleuronectes		0.716
	americanus		
Dynamin family protein	Nostoc punctiforme		0.606
Tyrosine-protein kinase Fes/Fps	Homo sapiens		0.563
Interferon-induced guanylate-binding protein 1	Homo sapiens		0.559
BAI1-associated protein 2 isoform 1	Homo sapiens		0.546
Phospholipase C beta	Meleagris gallopavo		0.544
Brain-specific angiogenesis inhibitor 1-associated	Mus musculus		0.539
protein 2-like protein 2			
TcdA1	Photorhabdus luminescens		0.537
Predict Protein			
Protein binding		1-2	
Secreted			
Cell surface protein (5)	Bacillus cereus		1e-06-5e-
			05
DNA-directed RNA polymerase II subunit RPB1	Homo sapiens		0.30
DNA-directed RNA polymerase II subunit RPB1	Mus musculus		0.29
Agglutinin receptor	Streptococcus gordonii		0.28
Muscle M-line assembly protein unc-89	Caenorhabditis elegans		
Atome2		1	I
Glucose-1-phosphate thymidylyl transferase	Pseudomonas aeruginosa		72.22
VPU (3)	Human immunodeficiency		33.16-
	virus 1		27.03
GDP-mannose mannosyl hydrolase	Escherichia coli		30.48

Supplementary Table XLII. Lasmigona compressa H-ORF sequence 1 function

Hits (n)	Species	Position	Probability
HHpred			
TIGR04294 prepilin-type processing-associated H-X9-DG		17-20	99.15
domain			
TIGR01167 LPXTG cell wall anchor domain		2-13	98.90
TIGR03304 outer membrane insertion C-terminal signal		23-24	98.77
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		79-92	97.64
TIGR03501 GlyGly-CTERM domain		2-12	96.49
TIGR00756 pentatricopeptide repeat domain		14-34	93.03
C53B4.8	Caenorhabditis elegans	75-198	87.53
C53B4.8	Caenorhabditis elegans	52-196	86.53
W02B8.6	Caenorhabditis elegans	53-198	71.92
W02B8.6	Caenorhabditis elegans	76-198	70.34
W02B8.3	Caenorhabditis elegans	51-204	56.63
F32A11.7	Caenorhabditis elegans	30-198	56.42
TonB family protein	Nostoc punctiforme	2-25	50.10
W02B8.3	Caenorhabditis elegans	51-198	49.98
RNA binding/nucleic acid binding	Arabidopsis thaliana	55-207	46.78
W02B8.4	Caenorhabditis elegans	53-198	42.83
Sterol reductase/lamin B receptor		7-36	40.81
Related to CHS7 - control of protein export from the ER		3-27	40.45
(like chitin synthase III)			
COLlagen family member (col-102)	Caenorhabditis elegans	1-35	40.42
Neuropeptide-Like Protein family member (nlp-16)	Caenorhabditis elegans	1-17	40.23
RNA binding/nucleic acid binding	Arabidopsis thaliana	48-202	39.87
Delta-notch-like EGF repeat-containing transmembrane	Homo sapiens	1-101	39.77
W02B8.4	Caenorhabditis elegans	76-196	38.59
F19H8.4	Caenorhabditis elegans	75-196	35.09
Defensin, beta 104B precursor (2)	Homo sapiens	1-24	33.93
Chs3p: Chitin synthase III catalytic subunit (2)		3-34	33.08,
			28.76
F58A4.1	Caenorhabditis elegans	2-10	29.62
Y41C4A.19	Caenorhabditis elegans	1-35	27.84

Phosphatidylinositol glycan, class B	Homo sapiens	2-25	27.40
Subunit X of cytochrome bc1 complex	Saccharomyces cerevisiae	1-25	25.83
CTAGE family, member 5 isoform 1	Homo sapiens	1-29	25.31
Plasmodium falciparum S-antigen		1-19	24.47
RCR		1-19	24.31
B0379.7	Caenorhabditis elegans	2-19	24.10
CG7685-PA	Drosophila melanogaster	2-30	23.18
CG8764-PA	Drosophila melanogaster	2-25	22.39
Sar8.2 family		1-42	22.36
Subunit 9 of the ubiquinol cytochrome-c reductase complex	Saccharomyces cerevisiae	1-25	22.29
Ergosterol biosynthesis ERG4/ERG24 family		8-36	22.13
C35A5.4	Caenorhabditis elegans	47-61	22.03
Activated in Blocked Unfolded protein response family	Caenorhabditis elegans	5-29	21.87
member (abu-11)			
T26E3.1	Caenorhabditis elegans	1-11	21.62
SRB6		11-30	21.50
SH3 type 3 domain-containing protein	Nostoc punctiforme	2-21	21.10
DumPY: shorter than wild-type family member (dpy-5)	Caenorhabditis elegans	1-30	21.03
Transmembrane protein	Mycobacterium	1-31	20.90
	tuberculosis		
Cytochrome b-c1 complex subunit 9	Saccharomyces cerevisiae	1-25	20.65
PVC2		1-34	20.55
C04H5.7	Caenorhabditis elegans	2-23	20.51
F29B9.9	Caenorhabditis elegans	1-25	20.18
Transcriptional regulator, XRE family	Beggiatoa sp. PS	10-32	20.10
Ubiquinol-cytochrome c reductase complex 7.2kDa protein	Homo sapiens	2-25	20.01
isoform a			
BLASTP/PSIBLAST			
Viral protein TPX	Histoplasma capsulatum	39-201	1e-10
Proteoglycan	Histoplasma capsulatum	32-199	6e-10, 5e-
			09
Histone-lysine N-methyltransferase ATXR3	Medicago truncatula	77-199	1e-04
Histone-lysine N-methyltransferase E(z)	Medicago truncatula	77-199	1e-04
	Ŭ		
Adhesin	Rahnella aquatilis	43-192	2e-04
Adhesin BNIP2 motif containing molecule at the carboxyl terminal	Rahnella aquatilis Camelus ferus	43-192 35-191	2e-04 3e-04

Chitinase III	Acanthocheilonema viteae	35-199	0.001
BLASTP	L		
CRE-CLEC-85 protein	Caenorhabditis remanei	41-207	0.033
YadA domain-containing protein	Rahnella sp. Y9602	49-192	0.075
Phage protein	Methanosarcina vacuolata	37-191	0.085
GG21511	Drosophila erecta	49-200	0.13
Glycosyl transferase family 1	Myxococcus sp.	72-197	0.67
PSIBLAST	1		
Quinolinate phosphoribosyl transferase	Burkholderia sp. MSh2	56-191	0.001
I-TASSER	<u> </u>		
Myeloma immunoglobulin D delta	Homo sapiens		1.39
Survival motor neuron protein	Homo sapiens		2.59, 1.35,
			2.23, 2.15
Type I hyperactive antifreeze protein	Pseudopleuronectes		2.47
	americanus		
Myc box dependent interacting protein 1	Homo sapiens		1.28, 2.16
Accumulation associated protein	Staphylococcus		2.24
	epidermidis		
Long tail fiber protein P37	Enterobacteria phage T4		1.01
Survival motor neuron protein	Homo sapiens		0.805
Predict Protein			
Protein binding		1, 186-	
		187, 206	
Secreted			
DNA-directed RNA polymerase (7)	Babesia bigemina		6e-20-
			0.002
DNA-directed RNA polymerase (6)	Phaeodactylum tricornutum		2e-20-4e-
			10
DNA-directed RNA polymerase (9)	Phytophthora ramorum		4e-20-
			0.002
Paternally-expressed gene 3 protein (12)	Bos taurus		1e-08-5e-
			06
DNA-directed RNA polymerase II subunit RPB1 (3)	Caenorhabditis elegans		8e-11-3e-
			05
DNA-directed RNA polymerase II subunit RPB1 (6)	Homo sapiens		1e-09-3e-
			04

DNA-directed RNA polymerase II subunit RPB1 (6)	Mus musculus	2e-09-3e-
		04
DNA-directed RNA polymerase (2)	Aphanomyces astaci	1e-19, 4e-
		19
Atome2		
Photosystem II: Subunit PsbA	Thermosynechococcus	75.97
	vulcanus	
Cytosolic leucyl-tRNA synthetase	Candida albicans	51.50
Cytochrome b6 (3)	Mastigocladus laminosus	37.79-
		24.69

Supplementary Table XLIII. Lasmigona compressa H-ORF sequence 2 function

Hits (n)	Species	Position	Probability
HHpred			
TIGR04294 prepilin-type processing-associated H-X9-DG		27-30	99.17
domain			
TIGR01167 LPXTG cell wall anchor domain		7-23	99.09
TIGR03304 outer membrane insertion C-terminal signal		33-34	98.82
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		112-125	97.62
TIGR03501 GlyGly-CTERM domain		7-17	97.02
CG7685-PA	Drosophila melanogaster	1-25	94.48
TIGR00756 pentatricopeptide repeat domain		24-44	92.77
C53B4.8	Caenorhabditis elegans	62-183	87.67
W02B8.6	Caenorhabditis elegans	62-191	83.43
W02B8.6	Caenorhabditis elegans	63-185	80.49
C53B4.8	Caenorhabditis elegans	62-185	78.70
Glycine rich protein family		4-22	78.30

Saliv_gland_allergen_Aed3		1-18	75.93
Glycine rich protein family		4-25	74.77
COLlagen family member (col-102)	Caenorhabditis elegans	1-45	73.01
Signal transduction histidine kinase	Lactobacillus casei	1-35	72.62
Secreted protein	Streptomyces coelicolor	5-23	72.05
LPS export ABC transporter permease LptF		1-28	71.89
Delta-notch-like EGF repeat-containing transmembrane	Homo sapiens	8-111	71.68
W02B8.4	Caenorhabditis elegans	62-185	71.01
CG13969-PA	Drosophila melanogaster	2-43	70.23
TonB family protein	Nostoc punctiforme	2-29	69.50
C46H11.8	Caenorhabditis elegans	5-19	68.92
CG3066-PD, isoform D	Drosophila melanogaster	1-26	67.62
Y81G3A.5	Caenorhabditis elegans	1-45	66.66
W02B8.3	Caenorhabditis elegans	61-191	66.37
CG18628-PA	Drosophila melanogaster	5-66	64.46
RCR		7-25	64.15
MoLTing defective family member (mlt-10)	Caenorhabditis elegans	56-185	63.65
Two component system histidine kinase	Methanosarcina mazei	1-39	63.59
Secreted protein	Beggiatoa sp. PS	1-34	63.36
Diguanylate cyclase/phosphodiesterase	Beggiatoa sp. PS	1-34	61.98
W02B8.3	Caenorhabditis elegans	61-185	61.51
R160.4	Caenorhabditis elegans	1-35	61.27
Rhodanese-like protein	Beggiatoa sp. PS	1-21	60.53
Prion-like-(Q/N-rich)-domain-bearing protein family member	Caenorhabditis elegans	5-24	60.21
(pqn-2)			
Cytochrome C-type protein NapC	Beggiatoa sp. PS	1-34	60.08
SVM protein signal sequence		1-22	59.94
CG11020-PA, isoform A	Drosophila melanogaster	1-37	59.85
Synoviolin 1 isoform a	Homo sapiens	2-35	59.82
T27F7.3a	Caenorhabditis elegans	1-35	59.62
Synoviolin 1 isoform b	Homo sapiens	2-35	59.50
H/K_exch_ATPase_C		1-29	58.96
T19H12.3	Caenorhabditis elegans	5-20	58.92
Prion-like-(Q/N-rich)-domain-bearing protein family member	Caenorhabditis elegans	5-24	58.55
(pqn-90)			
F59E11.5	Caenorhabditis elegans	1-30	58.32

Histidine kinase	Nitrosopumilus maritimus	1-35	58.32
	SCM1		
TonB family protein	Nostoc punctiforme	1-29	58.29
DumPY: shorter than wild-type family member (dpy-5)	Caenorhabditis elegans	1-40	58.24
Temporarily Assigned Gene name family member (tag-254)	Caenorhabditis elegans	5-20	58.11
Synoviolin 1	Mus musculus	2-36	57.24
F55A11.3	Caenorhabditis elegans	2-29	56.91
Nuclease	Nostoc punctiforme	1-32	56.83
F38A3.2	Caenorhabditis elegans	2-45	56.31
LPS export ABC transporter permease LptG.		1-28	56.31
CG15225-PA	Drosophila melanogaster	6-55	56.27
Neuropeptide-Like Protein family member (nlp-16)	Caenorhabditis elegans	5-17	55.98
Sensory box histidine kinase PhoR	Staphylococcus aureus	1-35	55.95
GDSL family lipase	Nitrosopumilus maritimus	5-29	55.81
Predict Protein			
Protein binding		33, 38-	
		40, 95,	
		97, 127,	
		143,	
		150,	
		173-	
		174,	
		192-193	
Nucleus			
DNA-directed RNA polymerase (5)	Saprolegnia parasitica		2e-24- 5e-
			14
DNA-directed RNA polymerase (5)	Chlamydomonas reinhardtii		2e-24-1e-
			12
DNA-directed RNA polymerase (7)	Phaeodactylum tricornutum		4e-25- 2e-
			13
DNA-directed RNA polymerase (5)	Thalassiosira oceanica		2e-24-1e-
			15
DNA-directed RNA polymerase (4)	Bathycoccus prasinos		2e-24-4e-
			11
DNA-directed RNA polymerase II subunit RPB1 (5)	Caenorhabditis briggsae		8e-15-6e-
			05

DNA-directed RNA polymerase II subunit RPB1 (3)	Caenorhabditis elegans		3e-17-2e-
			07
DNA-directed RNA polymerase II subunit RPB1 (6)	Homo sapiens		6e-15- 9e-
			09
DNA-directed RNA polymerase II subunit RPB1 (7)	Mus musculus		1e-14-2e-
			07
Cell surface glycoprotein 1 (10)	Clostridium thermocellum		1e-04-8e-
			04
BLASTP/PSIBLAST			
Proteoglycan	Histoplasma capsulatum	49-186	5e-09
Viral protein TPX	Histoplasma capsulatum	53-188	1e-05
BNIP2 motif containing molecule at the carboxyl terminal	Camelus ferus	45-186	3e-04
region 1-like protein			
Rnd efflux system, outer membrane lipoprotein, NodT	Sodalis praecaptivus	58-169	3e-04
family			
Proteoglycan	Histoplasma capsulatum	42-186	3e-04
BLASTP			
General transcription factor 3C polypeptide 2	Aegilops tauschii	55-182	0.008
Histone-lysine N-methyltransferase ATXR3	Medicago truncatula	60-186	0.017
Histone-lysine N-methyltransferase E(z)	Medicago truncatula	60-186	0.018
Chitinase III	Acanthocheilonema viteae	45-186	0.030
Neurofilament protein	Doryteuthis pealeii	45-186	0.052
CRE-CLEC-85 protein	Caenorhabditis remanei	51-184	0.056
Adhesin	Rahnella aquatilis	53-186	0.25
Filamentous hemagglutinin outer membrane protein	Stanieria cyanosphaera	63-168	0.44
I-TASSER			
myeloma immunoglobulin D delta	Homo sapiens		1.36
Survival motor neuron protein (4)	Homo sapiens		2.06-1.91
Type I hyperactive antifreeze protein	Pseudopleuronectes		2.52
	americanus		
Myc box dependent interacting protein 1 (2)	Homo sapiens		1.28, 2.25
Accumulation associated protein	Staphylococcus		1.80
	epidermidis		
Restin	Homo sapiens		1.07
Survival motor neuron protein	Homo sapiens		0.748
Atome2			

Capsid protein	Rubella virus	83.05
Apocytochrome f	Chlamydomonas reinhardtii	53.92
Vpu protein	Human immunodeficiency	43.79
	virus 1	
BA3-type cytochrome-c oxidase	Thermus thermophilus	43.07
Vpu protein (2)	Human immunodeficiency	40.31-
	virus 1	40.28
PInJ	Lactobacillus plantarum	22.71
Signal recognition 54 kDa protein	Sulfolobus solfataricus	22.38

Supplementary Table XLIV. Lasmigona subviridis H-ORF sequence 1 function

Hits (n)	Species	Position	Probability
HHpred	·		
TIGR03304 outer membrane insertion C-terminal signal		1-5	99.24
TIGR04294 prepilin-type processing-associated H-X9-DG		34-37	99.14
domain			
TIGR01167 LPXTG cell wall anchor domain		14-30	99.03
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		95-101	97.61
TIGR03501 GlyGly-CTERM domain		14-24	96.98
CG7685-PA	Drosophila melanogaster	5-32	94.64
TIGR00756 pentatricopeptide repeat domain		31-51	92.73
F32A11.7	Caenorhabditis elegans	53-187	93.21
W02B8.6	Caenorhabditis elegans	60-188	93.18
MoLTing defective family member (mlt-10) (2)	Caenorhabditis elegans	65-188	92.62,
			84.40
W02B8.4	Caenorhabditis elegans	53-188	91.89
W02B8.6	Caenorhabditis elegans	66-188	91.77

F32A11.7	Caenorhabditis elegans	66-186	91.00
W02B8.4	Caenorhabditis elegans	66-188	88.18
W02B8.3	Caenorhabditis elegans	60-188	84.25
TMEM156 protein family		7-33	83.15,
			83.08
W02B8.3	Caenorhabditis elegans	103-188	80.80
Conserved inner membrane protein	Escherichia coli	1-35	80.68
Sensory box histidine kinase PhoR	Staphylococcus aureus	7-42	79.66
SrtB		5-40	78.93
Sensor histidine kinase	Streptococcus pneumoniae	7-42	78.59
LptF_YjgP LPS export ABC transporter permease LptF.		5-35	78.20
Glycine rich protein family		11-29	72.98
CG11020-PA, isoform A	Drosophila melanogaster	7-44	72.67
CbiN ABC-type cobalt transport system, periplasmic		7-42	72.51
component			
Saliv_gland_allergen_Aed3		8-25	71.19
Peptidoglycan-associated lipoprotein Pal	Yersinia pestis	6-25	70.56
Cytochrome c-type biogenesis protein cycj	Bartonella henselae	3-48	69.67
Glycine rich protein family		11-32	69.14
Urinary protein (RUP)/acrosomal protein SP-10.		3-33	68.77
DumPY: shorter than wild-type family member (dpy-5)	Caenorhabditis elegans	7-47	68.71
LPS export ABC transporter permease LptG.		5-35	67.34
TWiK family of potassium channels family member (twk-11)	Caenorhabditis elegans	4-29	66.04
CG13969-PA	Drosophila melanogaster	9-50	65.81
MORN repeat protein	Beggiatoa sp. PS	7-31	64.41
Signal transduction histidine kinase	Lactobacillus casei	8-42	63.91
Secreted protein	Streptomyces coelicolor	12-30	63.54
TonB family protein	Nostoc punctiforme	9-36	63.16
C53B4.8	Caenorhabditis elegans	65-185	62.28
H/K_exch_ATPase_C		7-36	62.23
Lipoprotein required for capsular polysaccharide	Escherichia coli	7-25	61.73
translocation through the outer membrane			
R160.4	Caenorhabditis elegans	7-42	61.58
SVM protein signal sequence		8-29	61.27
Nitric oxide reductase subunit C; metal-binding, membrane	Pseudomonas aeruginosa	5-32	60.51
protein, immune system-oxidoreductas			

COLlagen family member (col-102)	Caenorhabditis elegans	7-52	60.47
Cytoplasmic membrane protein	Bartonella henselae	7-40	60.06
CG3066-PD, isoform D	Drosophila melanogaster	8-33	59.22
Synoviolin 1 isoform a	Homo sapiens	7-42	59.11
Protein-export membrane protein	Agrobacterium tumefaciens	6-30	58.68
CG7875-PA	Drosophila melanogaster	2-44	58.12
Synoviolin 1 isoform b	Homo sapiens	7-42	57.82
C46H11.8	Caenorhabditis elegans	12-26	57.66
Permease YjgP/YjgQ family protein	Nostoc punctiforme	5-36	57.45
RCR		14-32	57.43
F55A11.3	Caenorhabditis elegans	7-36	57.42
BLASTP/PSIBLAST			
Herpes virus major outer envelope glycoprotein (BLLF1)	Herpes virus	69-195	2.73e-03
small proline-rich protein 3	Mus musculus	69-195	3e-04
ARF GAP-like zinc finger-containing protein	Trichomonas vaginalis	45-194	4e-04
aggrecan core protein precursor	Sus scrofa	57-192	8e-04
viral protein TPX	Histoplasma capsulatum	64-192	0.003
BLASTP			1
Proteoglycan (3)	Histoplasma capsulatum	59-192	0.008-
			0.048
Small proline-rich protein 3 (2)	Rattus norvegicus	68-197	0.033
FecR protein	Cylindrospermum stagnale	53-195	0.065
Peptidase S8	Actinobacillus capsulatus	71-193	0.10
Aggrecan core protein	Bos mutus	62-192	0.56
CD5 antigen-like protein	Chelonia mydas	54-191	1.00
I-TASSER			1
Chaperone protein PAPD	Escherichia coli		1.13
Survival motor neuron protein (2)	Homo sapiens		1.89, 1.92
Type I hyperactive antifreeze protein (2)	Pseudopleuronectes		1.77, 1.18
	americanus		
Myc box dependent interacting protein 1 (2)	Homo sapiens		1.04, 2.07
Major capsid protein	Synechococcus phage		1.66
	Syn5		
Type I hyperactive antifreeze protein	Pseudopleuronectes		0.767
	americanus		

Phospholipase C beta	Meleagris gallopavo		0.574
LEOA	Escherichia coli		0.573
Interferon-induced guanylate-binding protein 1	Homo sapiens		0.571
TcdA1	Photorhabdus luminescens		0.563
Tyrosine-protein kinase Fes/Fps	Homo sapiens		0.559
RhUL123	Macacine herpesvirus 3		0.547
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase	Homo sapiens		0.545
beta-3			
Predict Protein		-	
Protein binding		37, 50-	
		51, 63,	
		124,	
		151-	
		153,	
		169-171	
Cytoplasm			
Merozoite surface protein 1	Plasmodium reichenowi		4e-18
Protein piccolo (5)	Rattus norvegicus		4e-04-0.35
Merzoite surface protein 1	Plasmodium reichenowi		6e-22, 1e-
			08
Cell surface glycoprotein 1 (21)	Clostridium thermocellum		0.011-0.85
Atome2		1	1
Protein kinase BYR2	Schizosaccharomyces		51.37
	pombe		
Cell wall surface anchor family protein	Streptococcus pneumoniae		46.70
Apocytochrome f	Chlamydomonas reinhardtii		33.57
Cytochrome B6 (3)	Mastigocladus laminosus		23.23-
			19.48
Bone marrow stromal antigen 2	Homo sapiens		22.50
30S ribosomal protein S27E	Archaeoglobus fulgidu	1	21.44
SERCA1a	Oryctolagus cuniculus		20.68

NOTE : For Supplementary Tables XI-XLV HHpred and @tome 2 use probabilities /100; I-TASSER Z scores > 1.0 and TM scores > 0.5 are significant; BLASTP & Predict Protein E-values < 1.0 are significant (adjusted from developer's recommendation of 10.0); PSIBLAST E-values < 0.001 are significant; Motif Scan N-scores do not have a significance threshold, a higher score indicates a better match.

Supplementary Table XLV. Lasmigona subviridis H-ORF sequence 2 function

Hits (n)	Species	Position	Probability
HHpred		1	I
TIGR04294 prepilin-type processing-associated H-X9-DG		28-31	99.07
domain			
TIGR01167 LPXTG cell wall anchor domain		8-24	98.98
TIGR03304 outer membrane insertion C-terminal signal		91-93	98.86
TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats		91-95	97.52
TIGR03501 GlyGly-CTERM domain		8-18	96.88
CG7685-PA	Drosophila melanogaster	1-26	94.13
W02B8.6	Caenorhabditis elegans	54-220	93.06
TIGR00756 pentatricopeptide repeat domain		25-45	92.04
MoLTing defective family member (mlt-10)	Caenorhabditis elegans	59-219	90.37
W02B8.6	Caenorhabditis elegans	60-219	89.42
F32A11.7	Caenorhabditis elegans	47-219	87.42
W02B8.4	Caenorhabditis elegans	47-220	87.08
F32A11.7	Caenorhabditis elegans	98-219	85.50
W02B8.4	Caenorhabditis elegans	60-218	85.32
W02B8.3	Caenorhabditis elegans	54-226	81.65
Sensory box histidine kinase PhoR	Staphylococcus aureus	1-36	77.99
Sensor histidine kinase	Streptococcus pneumoniae	1-36	75.75
Glycine rich protein family		5-26	73.02
MoLTing defective family member (mlt-10)	Caenorhabditis elegans	93-227	72.96
LPS export ABC transporter permease LptF.		1-29	72.07
Saliv_gland_allergen_Aed3		2-19	69.33
Glycine rich protein family		5-26	68.78
CbiN ABC-type cobalt transport system, periplasmic		1-36	68.50
component			
Conserved inner membrane protein	Escherichia coli	1-29	67.92
CG11020-PA, isoform A	Drosophila melanogaster	1-38	66.15

DumPY: shorter than wild-type family member (dpy-5)	Caenorhabditis elegans	1-41	64.12
CG13969-PA	Drosophila melanogaster	3-44	63.05
Secreted protein	Streptomyces coelicolor	6-24	62.50
Bromodomain adjacent to zinc finger domain, 2A	Homo sapiens	47-220	61.40
TonB family protein	Nostoc punctiforme	3-30	61.29
SVM protein signal sequence		2-23	61.17
Lipoprotein required for capsular polysaccharide	Escherichia coli	1-19	60.26
translocation through the outer membrane			
Signal transduction histidine kinase	Lactobacillus casei	2-36	60.14
MORN repeat protein	Beggiatoa sp. PS	1-25	59.96
F55A11.3	Caenorhabditis elegans	1-30	59.87
CG3066-PD, isoform D	Drosophila melanogaster	2-27	59.58
Synoviolin 1 isoform a	Homo sapiens	1-36	59.21
LPS export ABC transporter permease LptG.		1-29	58.32
Synoviolin 1 isoform b	Homo sapiens	1-36	58.28
RCR		8-26	58.05
W02B8.3	Caenorhabditis elegans	135-220	57.96
Y81G3A.5	Caenorhabditis elegans	2-46	57.87
Urinary protein (RUP)/acrosomal protein SP-10		1-27	57.72
COLlagen family member (col-102)	Caenorhabditis elegans	2-46	57.55
Diguanylate cyclase/phosphodiesterase	Beggiatoa sp. PS	2-35	56.03
T27F7.3a	Caenorhabditis elegans	2-36	55.88
C46H11.8	Caenorhabditis elegans	6-20	55.51
Synoviolin 1	Mus musculus	1-37	54.77
C53B4.8	Caenorhabditis elegans	97-217	54.61
Ttwo component system histidine kinase	Methanosarcina mazei	2-40	53.60
H/K_exch_ATPase_C		1-30	53.59
CG15225-PA	Drosophila melanogaster	7-56	52.77
Rhodanese-like protein	Beggiatoa sp. PS	2-22	52.41
Cytochrome C-type protein NapC	Beggiatoa sp. PS	2-35	51.59
Cytochrome c family protein	Beggiatoa sp. PS	1-23	51.54
Cytoplasmic membrane protein	Bartonella henselae	1-34	51.46
Prion-like-(Q/N-rich)-domain-bearing protein family	Caenorhabditis elegans	6-25	51.39
member (pqn-2)			
UCP031802		1-40	51.24
Secreted protein	Beggiatoa sp. PS	1-30	51.14

R160.4	Caenorhabditis elegans	1-36	51.13
BLASTP			
Peptidase S8	Actinobacillus capsulatus	70-230	0.078
Aggrecan	Bos mutus	85-224	0.081
Aggrecan (5)	Bos taurus	56-224	0.046-0.27
CD5 antigen-like protein	Chelonia mydas	48-223	0.38
Protein FAM186A, partial	Picoides pubescens	48-227	0.57
Small proline-rich protein 3	Mus musculus	158-225	1.0
BLASTP/PSIBLAST			
Herpes virus major outer envelope glycoprotein (BLLF1)	Herpes virus	40-227	4.85e-04
aggrecan core protein precursor	Sus scrofa	51-224	5e-08
RTX toxin RtxA	Vibrio cholerae	62-172	3e-04
proteoglycan	Histoplasma capsulatum	53-223	3e-04
RTX toxin	Vibrio cholerae	62-172	3e-04
RTX toxin RtxA	Vibrio cholerae	62-204	3e-04
PSIBLAST			
RTX toxin RtxA	Vibrio cholerae	62-172	4e-04
peptidase C80 (3)	Vibrio cholerae	62-172	4e-04-5e-
			04
RTX toxin RtxA	Vibrio cholerae	49-172	6e-04
RTX toxin, partial	Vibrio cholerae	62-172	8e-04
proteoglycan	Histoplasma capsulatum	53-223	8e-04
viral protein TPX	Histoplasma capsulatum	58-224	0.001
peptidase C80	Vibrio cholerae	62-204	0.002
ACAN protein	Homo sapiens	63-223	0.003
Aggrecan core protein isoform 1 precursor	Homo sapiens	63-223	0.003
Aggrecan core protein isoform 2 precursor	Homo sapiens	63-223	0.003,
			0.004
FecR protein	Cylindrospermum stagnale	47-230	0.003
Large aggregating cartilage proteoglycan core protein	Homo sapiens	63-223	0.004
PSIBLAST			
RTX toxin (9)	Vibrio vulnificus	62-172	3e-04-
			0.001
Peptidase C80 (5)	Vibrio vulnificus	62-172	0.001
RTX toxin, partial	Vibrio vulnificus	62-172	0.001
RTX toxin RtxA (6)	Vibrio vulnificus	62-172	0.001-

			0.002
Peptidase C80 (19)	Vibrio cholerae	62-172	0.001-
			0.004
RTX toxin RtxA domain protein	Vibrio cholerae	62-172	0.001
RTX toxin, partial	Vibrio vulnificus	62-172	0.001
RTX toxin RtxA (5)	Vibrio cholerae	62-172	0.002-
			0.003
Autotransporter adhesin	Vibrio ordalii	62-172	0.002
PGAP1-like family protein	Vibrio cholerae	62-172	0.002
ARF GAP-like zinc finger-containing protein	Trichomonas vaginalis	72-226	0.003
RTX toxins determinant A	Vibrio cholerae	62-172	0.003
rtxA repeat family protein (2)	Vibrio cholerae	49-172	0.003
RTX toxins determinant A and related Ca2+-binding	Vibrio cholerae	62-172	0.003
proteins			
Peptidase C80	Photorhabdus asymbiotica	62-172	0.003
Peptidase C80	Photorhabdus luminescens	62-172	0.003
RTX (Repeat in toxin) cytotoxin	Vibrio albensis	49-172	0.004
I-TASSER			
DNA (cytosine-5)-methyltransferase 1	Zea mays		1.21, 1.20
Survival motor neuron protein (3)	Homo sapiens		1.15-2.72
Survival motor neuron protein (3) Short tail fiber protein	Homo sapiens Enterobacteria phage T4		1.15-2.72 2.14
Survival motor neuron protein (3) Short tail fiber protein Myc box dependent interacting protein 1 (2)	Homo sapiensEnterobacteria phage T4Homo sapiens		1.15-2.72 2.14 1.09, 2.12
Survival motor neuron protein (3) Short tail fiber protein Myc box dependent interacting protein 1 (2) Major capsid protein	Homo sapiensEnterobacteria phage T4Homo sapiensSynechococcus phage		1.15-2.72 2.14 1.09, 2.12 2.19
Survival motor neuron protein (3) Short tail fiber protein Myc box dependent interacting protein 1 (2) Major capsid protein	 Homo sapiens Enterobacteria phage T4 Homo sapiens Synechococcus phage Syn5 		1.15-2.72 2.14 1.09, 2.12 2.19
Survival motor neuron protein (3) Short tail fiber protein Myc box dependent interacting protein 1 (2) Major capsid protein Accumulation associated protein	 Homo sapiens Enterobacteria phage T4 Homo sapiens Synechococcus phage Syn5 Staphylococcus 		1.15-2.72 2.14 1.09, 2.12 2.19 1.80
Survival motor neuron protein (3) Short tail fiber protein Myc box dependent interacting protein 1 (2) Major capsid protein Accumulation associated protein	 Homo sapiens Enterobacteria phage T4 Homo sapiens Synechococcus phage Syn5 Staphylococcus epidermidis 		1.15-2.72 2.14 1.09, 2.12 2.19 1.80
Survival motor neuron protein (3) Short tail fiber protein Myc box dependent interacting protein 1 (2) Major capsid protein Accumulation associated protein Major capsid protein	 Homo sapiens Enterobacteria phage T4 Homo sapiens Synechococcus phage Syn5 Staphylococcus epidermidis Synechococcus phage 		1.15-2.72 2.14 1.09, 2.12 2.19 1.80 0.714
Survival motor neuron protein (3) Short tail fiber protein Myc box dependent interacting protein 1 (2) Major capsid protein Accumulation associated protein Major capsid protein	 Homo sapiens Enterobacteria phage T4 Homo sapiens Synechococcus phage Syn5 Staphylococcus epidermidis Synechococcus phage Syn5 		1.15-2.72 2.14 1.09, 2.12 2.19 1.80 0.714
Survival motor neuron protein (3) Short tail fiber protein Myc box dependent interacting protein 1 (2) Major capsid protein Accumulation associated protein Major capsid protein T7-like capsid protein	 Homo sapiens Enterobacteria phage T4 Homo sapiens Synechococcus phage Syn5 Staphylococcus epidermidis Synechococcus phage Syn5 Prochlorococcus phage P- 		1.15-2.72 2.14 1.09, 2.12 2.19 1.80 0.714 0.559
Survival motor neuron protein (3) Short tail fiber protein Myc box dependent interacting protein 1 (2) Major capsid protein Accumulation associated protein Major capsid protein T7-like capsid protein	 Homo sapiens Enterobacteria phage T4 Homo sapiens Synechococcus phage Syn5 Staphylococcus epidermidis Synechococcus phage Syn5 Prochlorococcus phage P- SSP7 		1.15-2.72 2.14 1.09, 2.12 2.19 1.80 0.714 0.559
Survival motor neuron protein (3) Short tail fiber protein Myc box dependent interacting protein 1 (2) Major capsid protein Accumulation associated protein Major capsid protein T7-like capsid protein Coat protein	 Homo sapiens Enterobacteria phage T4 Homo sapiens Synechococcus phage Syn5 Staphylococcus epidermidis Synechococcus phage Syn5 Prochlorococcus phage P- SSP7 Enterobacteria phage P22 		1.15-2.72 2.14 1.09, 2.12 2.19 1.80 0.714 0.559 0.520
Survival motor neuron protein (3) Short tail fiber protein Myc box dependent interacting protein 1 (2) Major capsid protein Accumulation associated protein Major capsid protein T7-like capsid protein Coat protein Phage-related protein	 Homo sapiens Enterobacteria phage T4 Homo sapiens Synechococcus phage Syn5 Staphylococcus epidermidis Synechococcus phage Syn5 Prochlorococcus phage P- SSP7 Enterobacteria phage P22 Bordetella bronchiseptica 		1.15-2.72 2.14 1.09, 2.12 2.19 1.80 0.714 0.559 0.520 0.511
Survival motor neuron protein (3) Short tail fiber protein Myc box dependent interacting protein 1 (2) Major capsid protein Accumulation associated protein Major capsid protein T7-like capsid protein Coat protein Phage-related protein Predict Protein	 Homo sapiens Enterobacteria phage T4 Homo sapiens Synechococcus phage Syn5 Staphylococcus epidermidis Synechococcus phage Syn5 Prochlorococcus phage P- SSP7 Enterobacteria phage P22 Bordetella bronchiseptica 		1.15-2.72 2.14 1.09, 2.12 2.19 1.80 0.714 0.559 0.520 0.511
Survival motor neuron protein (3) Short tail fiber protein Myc box dependent interacting protein 1 (2) Major capsid protein Accumulation associated protein Major capsid protein T7-like capsid protein Coat protein Phage-related protein Protein binding	 Homo sapiens Enterobacteria phage T4 Homo sapiens Synechococcus phage Syn5 Staphylococcus epidermidis Synechococcus phage Syn5 Prochlorococcus phage P- SSP7 Enterobacteria phage P22 Bordetella bronchiseptica 	1, 229	1.15-2.72 2.14 1.09, 2.12 2.19 1.80 0.714 0.559 0.520 0.511

DNA polymerase (6)	Macaca fascicularis	7e-26-4e-
		22
Proteoglycan 4 (7)	Mus musculus	1e-04-0.15
Cell surface glycoprotein 1 (20)	Clostridium thermocellum	0.18-0.12
SH3 domain-containing protein C23A1.17 (4)	Schizosaccharomyces	5e-05- 0.28
	pombe	
Atome2	· · · ·	
30S ribosomal protein S27E	Archaeoglobus fulgidus	75.63
Cytochrome b6 (5)	Mastigocladus laminosus	72.09-
		52.50
Bone marrow stromal antigen 2	Homo sapiens	48.08
SERCA1a	Oryctolagus cuniculus	41.59
Serine/threonine-protein kinase MARK2	Homo sapiens	23.04