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Game theory is a discipline that is used 
to analyze problems of conflict among 
interacting decision makers. It may 
be considered as a generalization of 
decision theory to include multiple 
players or decision makers. 

The concepts used in game the- 
ory can be traced back to the work 
of Cournot, Bertrand, and van 
Stackelberg. However, it was not 
until 1928 that van Neumann pub- 
lished the general theory for solv- 
ing zero-sum games. The general 
theory for solving zero sum games 
became more widely known in 1944 
with the work of von Neumann and 
Morgenstern. Many of the impor- 
tant developments in the field took 
place during the period from 1950 
t o  1960. The best known among 
these is the concept of Nash equi- 
librium. Game theory gained addi- 
tional prominence as a subject in 
1994, when the Nobel prize for eco- 
nomics was awarded jointly to John 
Harsanyi, John Nash, and Rienhard 
Selten for their contributions to the 
analysis of equilibria in noncooper- 
ative games. 

Game theory can be classified 
into two areas: cooperative and non- 
cooperative. This tutorial provides a 
quick introduction to noncooperative 
game theory using applications in elec- 
tric power markets. 

Noncooperative 
Game Theory 
Noncooperative games can be zero-sum 
games or nonzero-sum games. In zero- 
sum games, the  gains of one player 
equal the losses of the other player. 
The solution of zero-sum games was 
first formulated by von Neumann and 
Morgenstern. In nonzeromm games, the 
gains of one player do not equal the 
losses of the other player. The solution 

for nonzero-sum games was first formu- 
lated by John Nash, and the Nash equi- 
librium is now a universally used 
solution concept. 

Noncooperative games can be 
described using two kinds for formats. 
The first format is the normal or strate 

oner’s dilemma. In the original version of 
the game, there are two players, A and B, 
who can either cooperate with each 
other and refuse to provide evidence or 
they can defect and implicate the other 
player. A concise representation of this 
game was provided by Aumann. Each 

gic form, and the second is the exten- 
sive form. In the sfrutegic form, one deals 
with a set of players, a set of choices or 
strategies available to the players, and a 
set of payoffs corresponding to these 
strategies. The payoff for a given player 
depends not only on the strategy cho- 
sen by that player but also on the strate 
gies chosen by t h e  other  players. 
Additionally, it is assumed that the rules 
of the game, the strategies available to 
the players, and the payoffs are com- 
mon knowledge. Each player is assumed 
to act rationally to maximize its profit. 

Perhaps the best known problem in 
noncooperative game theory is the pris- 

player A and B must announce to a refer- 
ee “Give me $1,000” or “Give the other 
player $3,000.” The money under either 
strategy comes from a third party. The 
cooperate strategy for each player is to 
give the other player $3,000, while the 
defect strategy is to take $1,000, The pay- 
offs for A and B can be represented as 
shown in Figure 1. 

The Nash equilibrium in this game 
involves each player choosing the  
defect strategy even though this is not 
the strategy that maximizes the payoff 
for a player. The payoffs for both play- 
e rs  can be increased i f  they both 
choose the cooperate strategy. Howev- 
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I Player B 1 Cooperate, Defect I Payoff ($) 

Figure 1. Prisoner’s dilemma 

er, this is not a stable outcome as each 
player has  an incentive t o  defect 
regardless of what the other player 
chooses. A Nash equilibrium exists if, 
for a given set of strategies chosen by 
other players, each player’s strategy is 
an optimal response to those strategies. 
Thus, at a Nash equilibrium, a player’s 
payoff decreases if it changes its strate- 
gy assuming all other players’ strategies 
remain the same. 

Finite nonzero-sum games are also 
called bimatrix games, given the nota- 
tion used to represent the payoffs in the 
game. A bimatrix game T(A, B) consists 
of two players, each of whom has a 
finite number of actions called pure 
strategies. When player I chooses pure 
strategy i and player II chooses pure 

strategy j ,  their payoffs or  
gains are represented by a,, 
and b,, respectively. A mixed 
strategy for player I is a vec- 
tor x whose i-th component 
represents the probability of 
choosing pure strategy i. 
Thus x ,  2 0 and Z x ,  = 1. A 
mixed strategy for player I1 is 
defined analogously. If x and y 
are a pair of mixed strategies 

for players I and II, their expected gains 
are x’Ay and x’By, respectively. A pair of 
mixed strategies (x*, y‘) is said to be a 
Nash equilibrium if 

(x*)’Ay* t YAY* V x t 0, Z X ~  = 1 

and 

(x*)’By* 2 (x*)’By V y t 0, Cyi = 1. 

In other words, (x*,y*) is a Nash equi- 
librium if neither player can gain by uni- 
laterally changing its strategy. 

A particularly interesting special 
case of a Nash equilibrium is a Nash 
equilibrium in pure strategies, i.e., one 
in which the probability of choosing a 
particular strategy is 1 for each player. 

Noncooperative games a r e  t h e  
foundation for some of the standard 
models in oligopoly. The study of oli- 
gopoly models is essential to study 
market power. 

Cournot Duopoly 
A Cournot model involves a duopoly 
game in which two firms produce an 
identical product and must decide how 
much to produce without knowing the 
output decision of the other. For conve- 
nience, assume that each firm’s cost is 
0. Assume that xI and x, represent the 
output decisions of each firm. The mar- 
ket price is represented by p(x,+x,), 
where p ( x )  is the  inverse demand 
curve. The profits or payoffs for each 
firm are 1, = p(x, t x,)x? The strategy of 
each firm is to choose xi in order to 
maximize its profit without knowing the 
decision of the other firm. 

Bertrand Duopoly 
Under a Bertrand model, each firm must 
choose the price at which it is willing to 
produce. Ignoring bounds on output, 
we can assume that the lower priced 
firm will capture market share and that 
both firms will have equal outputs at 
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ma. If both players cooperate, 
they can both charge the  
monopoly price. However, 
each player has an incentive to 
reduce its price slightly and 
capture market share ,  even 
though it knows that both play- 
ers will be worse off i f  they 
both cut price. 

Market Power 
Mitigation 
Market power can be defined 
as the ability of a market par- 
ticipant to raise prices above 
t h e  competit ive level by 
restricting output or restrict- 
ing new entrants. Horizontal 
market power is often associ- 
ated with a single firm or a few 
firms controlling a large part of 
the supply. 

Although generation divesti- 
ture has been used as a reme- 
dy for this  problem in t h e  
electric power industry, it is 
not always a viable option. In 
such instances, financial con- 
tracts such as contracts for 
differences (CfD) can be used 
to accomplish what might be 
termed as virtual divestiture. 
Game theory can be used to 
study the effects of CfDs on 
bidding incentives. The pur- 
pose of a CfD is to insulate the 
supplier against the temporal 
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Figure 5. A two generation game 

equal price. If x@) represents the mar- 
ket demand function, the payoff or prof- 
it of firm 1 can be represented as 

P A P , )  if  PI <P2 

%(PIA)= P I ~ ( P I ) ~ ~  if p I = p 2  (1) i. if PI > P I  

A Bertrand game has a structure 
similar to that of the prisoner's dilem- 

the strike price, and the buyer pays 
the seller if the pool price falls below 
the strike price. A one-way CfD is simi- 
lar to a financial option contract and 
also includes an option fee in addition 
to the strike price and contract quan- 
tity. Under a one way contract, differ- 
ence payments are made only if the 
pool pr ice  rises above t h e  s t r ike 
price, as shown in Figure 3. 

The  effect of a CfD is t o  fix or  
bourid the revenue for a generator. In 
the extreme, where the entire output 
of a generator is contracted under a 
CfD, the generator's revenue will be 
completely insulated from market 
price variations, and, consequently, 
the generator should have no incen- 
tive to raise prices. Ideally, one would 
like to contract just the appropriate 
fraction of output required to mitigate 
market power. 

To illustrate how CfDs can elimi- 
nate incentives to raise prices, we will 
set up a simple Cournot model with 
two generators (A and B) and one 
load, as shown in Figure 5. Each of the 
generators has an incremental cost of 
$lO/MWh and a maximum output of 
75 MW. The strategic decision for the 
generators is to choose a level of out- 
put that maximizes their profits. The 
price is se t  by t h e  demand curve,  
which is also shown in Figure 5. We 
will assume tha t  each generator  
chooses between two levels of output, 
a high output of 75 MW and a low out- 
put of 20 MW, as shown in Figure 6. 
The low output may be interpreted as 

- - pricc ai111 t l i e  
prc-vui li iig iiiiir- High 
k r t  or pool 1 A 

A Cil) call be ~. 

-- . ..l--T- , A's output 
75 9 s  output 
20 ' 20 A'soutput 

price, as clrpict- LOW 
c d  i i i  Figure 2. 75 20 9 s  outpu1 

- . .  

either twc-way or Figure 6 Output decisions of A and B 
one-way. A two- 

way CfD is similar to a 
financial futures contract 
and is defined in terms of 
a strike price ($/MWh), 
and a quantity (MWh). As 
shown in Figure 2, for the 
defined quantity, the sell- 
er pays the buyer if the 
pool price rises above 

Generator B 

High I Low 
Price ($/MWh) 

Figure 7. Prices corresponding to output decisions 
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Figure 8. Profits without CfD 

withholding of capacity with a motiva- 
tion t o  increase prices. If prices 
increase sufficiently, the generator can 
make a higher profit at the low output. 

Equity arguments call 
for solutions that allocate 
costs  t o  coalitions in a 
manner that guarantees 
that all coalition members 
are at least as well off as 
they would be if they were 
not a part of the coalition. 
This is sometimes called 
the stand-alone test. Solu- 
tions that exactly allocate 
the total costs and satisfy 
the stand-alone test, are 

called core solutions. Alternative solu- 
tion concepts such a s  the Shapley 
Value are also possible. 

I 550 -500 A's profit I 2475 I -500 I Bsprofit I A Low 

figure 9. Profits with CfD for 30 MW 

There are four possible cases to 
consider, depending on the decision 
of each generator. The prices corre- 
sponding to these cases are shown in 
Figure 7. Figure 8 shows a Nash equi- 
librium for the case when both gener- 
ators choose low levels of output to 
maximize their profits. However, if a 
CfD is applied to 30 MW of the genera- 
tors  output,  t he  Nash equilibrium 
changes, as shown in Figure 9. The 
strike price in the CfD is assumed to 
equal t he  competit ive price of 
$40/MWh. In this case,  profits a r e  
maximized at the competitive price 
corresponding to the high output by 
each generator. Similarly, Figure 10 
shows the profits if a CfD is applied to 
10 MW of the output. 

Cooperative Game Theory 
Cooperative game theory, which is 
quite different from noncooperative 
game theory, is generally applied to 
solve allocation problems. The vari- 
ous solutions proposed for coopera- 
tive games can be  interpreted a s  
alternative solutions to an allocation 
problem. The key ideas involve the 
concept of coalitions or groups that 
are formed to benefit from economies 
of scale. 

I 
- I 

strained Unit Commitment; Market Power 
Evaluation in Power Systems with Conges- 
tion; Market Power Mitigation; Some 
Things Experiments Reveal About Market 
Power Opportunities Offered by a Con- 
strained Transmission System; The Best 
Game in Town: NERC's TLR Rules; and 
Hacking with Megawatts: Gaming via Gov- 
ernor Control in a Competitive Generation 
Environment. 
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The emphasis in cooperative game 
theory is on solutions that are equi- 
table. In contrast ,  noncooperative 
game theory helps us study efficient 
solutions under new market designs. 
Just as we study the stability of an 
engineering system, we can s tudy 
how efficient a market design might 
be by using game theory. 

The examples in this article were 
highly simplified. There are  many 
other problems that deal with the 
behavior of market participants in 
transmission networks under con- 
gestion that the reader will find of 
interest. 

Acknowledgment 
This tutorial is based on excerpts from the 
Game Theory Applications in Electric Power 
Markeb tutorial, which was prepared for 
presentation at the 1999 IEEE PES Winter 
Meeting. The 103-page multiauthor tutori- 
al book (99TP-136) can be ordered 
through IEEE Customer Service. Chapters 
include: Introduction; Analyzing Strategic 
Bidding Behavior in Transmission Net- 
works; Using Game Theory to Study Mar- 
ket Power in Simple Networks; Bidding 
Strategies for Lagrangian Relaxation Based 
Power Auctions; Risk Management Using 
Game Theory in Transmission Con- 

London, 1987. 
D. Fudenberg, J. 

Tirole, Game Theo- 
ry, The MIT Press, 
Cambridge, 1991. 

D. Fudenberg, 
D.K.  Levine, "The 
Theory of Learning 
in  Games," T h e  
MIT Press, Cam- 
bridge, 1998. 

D.A. Kreps. Game 
Theory and Economic Modeling, Clarendon 
Press, Oxford, 1990. 

H.R.Varian, Microeconomic Analysis, 
W.W. Norton and Co., New York, third edi- 
tion, 1992. 

J .  von Neumann, 0. Morgenstern, 
Theory o f  Games and Economic Behavior, 
Princeton University Press, Princeton 
NJ, 1944. 

H.P. Young, "Cost Allocation," in Hand- 
book o f  Come Theory with Economic Appli- 
cations, volume 2 ,  eds. R. Aumann, S. Hart, 
North Holland, Elsevier. Amsterdam, 1994. 

Biography 
Harry Singh is manager of Electricity Eco- 
nomics at PG&E Energy Services (PG&E 
Energy Services is not the same company as 
Pacific Gas and Electric Company, the utility 
PG&E Energy Services is not regulated by 
the California Public Utilities Commission, 
and you do not have to buy PG&E Energy 
Services' products in order to continue to 
receive qualip regulated services from Pacif- 
ic Gas and Electric Company.) Prior to join- 
ing PG&E Energy Services, he worked with 
the Pacific Gas and Electric Company in 
San Francisco, where he was a part of the 
team responsible for setting up the Califor- 
nia IS0 and PX. He received a PhD in elec- 
trical engineering from the University of 
Wisconsin at Madison. 

22 IEEE ComputerApplications in Power 

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 10, 2009 at 13:27 from IEEE Xplore.  Restrictions apply.




