WO2019238082A1 - 一种渗透式热能利用方法和装置 - Google Patents

一种渗透式热能利用方法和装置 Download PDF

Info

Publication number
WO2019238082A1
WO2019238082A1 PCT/CN2019/091023 CN2019091023W WO2019238082A1 WO 2019238082 A1 WO2019238082 A1 WO 2019238082A1 CN 2019091023 W CN2019091023 W CN 2019091023W WO 2019238082 A1 WO2019238082 A1 WO 2019238082A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
solute
solution
membrane
semi
Prior art date
Application number
PCT/CN2019/091023
Other languages
English (en)
French (fr)
Inventor
毛靖宇
Original Assignee
毛靖宇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 毛靖宇 filed Critical 毛靖宇
Publication of WO2019238082A1 publication Critical patent/WO2019238082A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis

Definitions

  • the invention relates to the field of infiltration and thermal energy utilization, and in particular to a method and device for utilizing thermal energy in an infiltration manner.
  • a thin film that is selective for a transmissive substance is called a semi-permeable membrane.
  • a thin film that can penetrate only a solvent but not a solute is regarded as an ideal semipermeable membrane.
  • thermodynamics The second law of thermodynamics: Clausius stated that it is impossible to transfer heat from low-temperature objects to high-temperature objects without causing other changes; Kelvin stated that it is impossible to take heat from a single heat source and completely convert it into useful work without causing Other changes; it can also be stated that the second type of perpetual motion machine is impossible to achieve.
  • the second type of perpetual motion machine is a machine that can take heat from a single heat source and make it completely useful work without any other impact.
  • the invention overcomes the prejudice for understanding the infiltration phenomenon and solves the problems of the infiltration theory and the microstructure. Based on this, the prejudice regarding the utilization of thermal energy was overcome, the problem of the utilization of low-temperature heat sources was solved, and a method of utilizing thermal energy by infiltration was developed. For all heat sources, as long as the temperature of the heat source is not lower than the lowest temperature at which the infiltration phenomenon can occur, this method can utilize the heat source.
  • the solute can be dissolved in the solvent, indicating that on the interface between the solution and the pure solute ( Figure 1-1), the force F 2 of the solvent molecule on the solute molecule is gravitational and will not be much smaller than the intermolecular force of the pure solute.
  • F 1 in most cases, F 2 ⁇ F 1 , the solute molecules on the contact surface will continuously enter the solvent to form a dissolution phenomenon, and the intermolecular forces change with the intermolecular distance. It is concluded that the solute molecules on the contact surface between the solution and the pure solute have a force equilibrium interface 8 that the first layer of solute molecules that have been close to the pure solute have even crossed the first layer of solute molecules into the pure solute.
  • solute molecules on the contact surface are also affected by the force F 1 ′ of other solute molecules in the solution, which is getting larger and larger, because the distance between solute molecules in the solution is very large at the molecular level. Therefore, F 1 ′ is gravitational, which means that the dissolution rate becomes faster and faster as the solution concentration increases.
  • the solute can be dissolved in the solvent, indicating that the potential energy of the solute molecules in the solution is smaller than the potential energy of the pure solutes, so the solute molecules preferentially fill the low potential energy region.
  • the energy changes include: the molecular potential energy Ep 1 of the pure solute molecules increases greatly, the molecular potential energy Ep 2 between the solute molecules outside the solution and the solvent molecules decreases sharply, and the The molecular potential energy Ep 2 ′ decreases slightly, and the molecular potential energy Ep 1 ′ between solute molecules in the solution decreases slightly.
  • dissolution is a phenomenon in which the molecular potential energy between the solvent molecules and the solute molecules is converted into the molecular potential energy between the solute molecules.
  • both Ep 1 ′ and Ep 2 ′ decrease, and the difference between the potential energy of the solute molecules in the solution and the potential energy of the solute molecules in the pure solute increases, which means that the rate of dissolution increases with the concentration of the solution. Increasing faster and faster.
  • the solvent molecules thermal motion rms rate i.e. It is the thermal root mean square velocity of liquid.
  • the thermal root mean square velocity V 1rms of solute molecules in solution is much larger than the thermal root mean square velocity of liquid solutes. It can be concluded that the thermal root mean square velocity V 1rms of solute molecules in solution is close to that of gas molecules.
  • solute mass M 1 M 2 increases the mass of solvent and solvent molecules thermal motion rms V 2rms rate remain unchanged, can be derived thermal motion of molecules in solution the solute concentration of the solution increases mean square root With rate V 1rms While decreasing.
  • Micro on the contact surface of the solution and semi-permeable membrane, solution and wall, or solution and air, when the solute molecules reach the outside of the solvent, they are subject to the force of the solvent molecules—gravity F 2 , and other solute molecules in the solution.
  • the force on it, the gravitational force F 1 ′, is subjected to the force F 3 on it by molecules of the semi-permeable membrane, wall or air.
  • F 2 Under the action of F 2 , the kinetic energy of the solute molecule decreases, and the corresponding solvent molecule increases the kinetic energy. Its value is the work done by F 2 during the entire process of the solute molecule moving outside the solvent.
  • Macro The solute is dissolved in the solvent, so when the solute molecules move to the contact surface of the solution and any substance, the solvent will prevent the solute from leaving the solution range.
  • the solute molecules return directly to the solution under the action of the solvent
  • the molecular kinetic energy Ek 1 ′ of the solute is greatly reduced
  • the molecular kinetic energy Ek 2 of the solvent is greatly increased
  • the molecular potential energy Ep 1 ′ of the solute molecules in the solution near the contact surface is decreased
  • the molecular potential energy Ep of the solvent in the solution near the contact surface is decreased. 2 increases slightly; the other is that the solute molecules first reach the surface of the substance in contact with the solvent and then return to the solution.
  • the molecular kinetic energy Ek 1 ′ of the solute is greatly reduced, and the molecular kinetic energy Ek 2 of the solvent is greatly increased.
  • the molecular kinetic energy Ek 3 of the substance increases slightly, the molecular potential energy Ep 1 ′ of the solute molecules in the solution near the contact surface decreases slightly, and the molecular potential energy Ep 2 of the solvent in the solution near the contact surface increases slightly; the third is that the solute molecules leave the solution Attached to the surface of the contacted substance, the molecular kinetic energy Ek 1 ′ of the solute is greatly reduced, and the molecular kinetic energy Ek 2 of the solvent is greatly increased, solute molecules
  • the molecular potential energy Ep 3 with other substance molecules is greatly reduced, the molecular potential energy Ep 2 between solute molecules and solvent molecules outside the solution is greatly increased, and the molecular potential energy Ep 2 ′ between solute molecules and solvent molecules in the solution is increased slightly.
  • the molecular potential energy Ep 1 ′ of the solute molecule increases slightly. These three cases are all driven by the molecular kinetic energy Ek 1 ′ of the solute in the solution.
  • the molecular kinetic energy Ek 2 of the solvent increased greatly, the molecular potential energy Ep 2 of the solvent increased slightly, and the increase of some molecular kinetic energy Ek 2 and molecular potential energy Ep 2 showed macroscopic increase in solution surface activity, The freezing point is lowered and the freezing point is lowered. Part of the overall increase in molecular kinetic energy Ek 2 will converge into a macroscopic solvent movement.
  • Micro on the contact surface between solution and pure solute, solution and wall, or solution and semi-permeable membrane, when the solute molecules reach outside the solvent, they are subject to the force of the solvent molecules on it—gravity F 2 , and other solutes in the solution.
  • V 1 When the velocity of the solute molecules moving outside the solvent in the solution is V 1 > V 1 8 , it will leave the solution and return to the pure solute, which is the solute precipitation phenomenon.
  • the reverse transformation requires the molecular kinetic energy in the solution before the solute molecules in the changed state change Ek 1 ′ > ⁇ (Ek 1 + Ek 2 ).
  • Ek 1 ′ > ⁇ (Ek 1 + Ek 2 )
  • Ek 1 + Ek 2 the number of solute molecules satisfying the molecular kinetic energy
  • Ek 1 '> ⁇ (Ek 1 + Ek 2 ) increases, and the rate of precipitation and transformation increases.
  • the saturated state is the dynamic balance of precipitation transformation and dissolution transformation. Condensation and pollution are the replacement of Ep 1 on the right with Ep 3 -the molecular potential energy of solute molecules and other substance molecules is converted to the left.
  • the potential energy of the solute molecules in the solution is smaller than that in the pure solute.
  • the kinetic energy of the solute molecules in the solution is greater than the kinetic energy of the solute in the pure solute, which changes under the impetus of the high energy. It is driven by high potential energy, and the precipitation is driven by the high kinetic energy of solute molecules in the solution.
  • the solution concentration increases, the difference between the potential energy of the solute molecules in the solution and the potential energy of the solute molecules in the pure solute increases, and the number of solute molecules with high kinetic energy in the solution increases, that is, the cycle rate of dissolution and precipitation increases with the solution concentration. Increase faster and faster.
  • the latter is the macroscopic chemical thermodynamic description of the "permeation phenomenon".
  • the infiltration phenomenon also includes a series of energy conversions after infiltration. Therefore, it can only be said that one result of the phenomenon of penetration is the release of the chemical potential of the solvent in the solution from the chemical potential of the pure solvent. Van't Hoff's theory is closest to the actual situation, and the only problem is the object of the solute molecule collision.
  • the permeation phenomenon is caused by the solute molecules in the solution impacting the membrane composed of the outermost solvent molecules on the boundary of the solution. This reason not only produces the phenomenon of permeation, but also produces two phenomena-the increase of the surface activity of the solution, the decrease of the freezing point, the decrease of the freezing point, and the phenomenon of water absorption and circulation on the wall.
  • the rate of the osmosis phenomenon—that is, the size of the osmotic pressure is not only positively related to the concentration and temperature of the solution, but also positively related to the maximum kinetic energy of the solute molecules that cannot pass through the solvent membrane.
  • Various factors such as the type, the type of solvent, the material of the semi-permeable membrane, the solution pressure, and the solution concentration are jointly determined.
  • Permeation phenomenon wall water absorption cycle phenomenon, solution surface activity increase, freezing point decrease, and freezing point decrease.
  • the separation of the solvent and the solute in the solution are considered as two individuals, and there is mainly the conversion of the molecular kinetic energy of the solute. It is the molecular kinetic energy of the solvent, that is, the heat of the solute is transferred to the solvent.
  • the temperature of the solute should be from the equivalent solvent inside the solution to the solution boundary lower than the solvent, that is, this is a naturally occurring heat transferred from a low-temperature object to a high-temperature object. The phenomenon.
  • the solution In the permeation phenomenon and the wall water absorption cycle phenomenon, the solution is considered as a whole, and the macroscopic movement of the solvent on the contact surface is a phenomenon that takes heat from a single heat source, the solution, and completely changes it into useful work without other effects. That is, the above three phenomena are evidence that the second law of thermodynamics does not hold.
  • the method of claim 1, comprising: using a solute restriction device to lock part or all of the solute to form an osmotic pressure on both sides of the semipermeable membrane; under the action of the osmotic pressure, the solvent passes through the semipermeable membrane to the other side,
  • a and B can be adopted, and finally the structure and the external flow as a whole form a complete solvent or solution flow cycle, A) the solvent reduction side Directly or indirectly communicate with the increasing side of the solvent, B) Directly or indirectly connecting the decreasing side of the solvent to the solvent reservoir or natural solvent source; use the energy of a certain part of the circulating fluid as power to generate electricity or drive other devices.
  • the initial motive force of the solvent movement originates from the thermal energy of the solution. If the solute is limited to the area near one side of the membrane, so that it does not stay away from the membrane with the occurrence of infiltration and the flow of the solvent, it can continuously take heat from the solution and turn it into solvent movement.
  • a solute restriction device is used to restrict the locked part or all of the solute in a certain area on the side of the semipermeable membrane, so that the solute does not move with the occurrence of infiltration and the flow of the solvent, so that the result of the infiltration phenomenon becomes the solvent flow rate. This solvent flow is then used as a power output.
  • the "solute limiting device” is a device that restricts the area of solute movement in a certain way; "locking part or all of the solute” means that part or all of the solute cannot be completely freely moved and kept in a certain fixed area , Does not move with the occurrence of infiltration and solvent flow; “directly or indirectly connected” means: directly connected by a pipeline, or through a pipeline through several other devices, other devices such as check valves, fluid energy utilization devices, valves, etc .; “External flow” refers to the solvent reservoir or natural solvent source that is connected to the reduced solvent side and the increased solvent side when the method B is adopted, or the solvent or solution flow rate between the two, or when the structure is semi-open, The flow of solvent or solution between two open ends, this part of the flow is included in the cycle; “complete solvent or solution flow cycle” refers to: a cycle consisting of solvent or solution movement; “mode A”: when only one When the group penetrates, it means that the only solvent-reducing side is connected to the sole solvent
  • the solvent increasing side does not specifically refer to a certain solvent increasing side, it may be the solvent increasing side corresponding to the solvent decreasing side, or it may not be the solvent increasing side corresponding to the solvent decreasing side, it may be One penetrating solvent-increasing side may be a combination of several penetrating solvent-increasing sides, as long as it satisfies a sufficient amount of solvent source.
  • Methods A and B These two methods are optional methods of "providing a sufficient amount of solvent source for the solvent reduction side".
  • Claim 2 The method according to claim 1, further comprising: the structure of the solute limitation device comprises any one or more of the following structures: a) an electric field, b) a magnetic field, c) a membrane separating the solvent and Structure for the membrane distillation process consisting of a device that cools gaseous solvents to a liquid state, d) a semi-permeable membrane, e) an ion exchange membrane, f) a substance that can react with solutes, and g) the temperature is lower than that of semi-permeable in permeation The area of the membrane temperature, h) the heating structure in the area where the infiltration phenomenon occurs.
  • the structure of the solute limitation device comprises any one or more of the following structures: a) an electric field, b) a magnetic field, c) a membrane separating the solvent and Structure for the membrane distillation process consisting of a device that cools gaseous solvents to a liquid state, d) a semi-permeable membrane, e) an i
  • a "solute limiting device” is a device that limits the area of solute movement in some way.
  • a, b, c, d, e, f can be used as the main restriction structure
  • a, b, d, e, f, g, h can be used as the auxiliary restriction structure.
  • the electric field is to use the potential energy distribution to place the ionic solute at a low potential energy position, which is suitable for the case where there is an ionic solute in the solution
  • the magnetic field is to use the effect of the magnetic field on the charged particles so that the ionic solute cannot be perpendicular to The magnetic field passing through the magnetic field area is suitable for the presence of ionic solutes in the solution
  • Non-volatile solutes are separated by a solvent-resolving membrane, which is suitable for cases where non-volatile solutes are contained in volatile solvents.
  • D) Semi-permeable membranes are thin films that are selective for permeable substances. The solute cannot pass, but due to the phenomenon of permeation, the semi-permeable membrane cannot be used as a limiting structure alone; e) the ion-exchange membrane is a kind of polymer membrane containing ion groups and having selective permeability for ions in the solution. Also known as ion-selective permeable membrane, it combines with a DC electric field to form an electrodialysis method, which returns ionic solutes to the solution participating in permeation through the ion-exchange membrane.
  • Claim 3 The method according to claim 2, further comprising: the magnetic field generating structure includes any one or more of the following: a) a permanent magnet, b) an electromagnet, and c) a superconducting magnet.
  • Permanent magnet A magnet that can maintain its magnetic properties for a long time.
  • Electromagnet A device consisting of a magnetic core and a coil that generates a magnetic field when a current flows through the coil.
  • Superconducting magnet A magnet using a superconducting wire as the excitation coil.
  • Claim 4 The method according to any one of claims 2 or 3, further comprising: the electric field generating structure includes any one or more of the following: a) an electric conductor, b) a permanent electric body, c) Capacitor structure.
  • Electric conductor A substance that has the ability to conduct electric charges.
  • Permanent electric body also known as electret, is a kind of dielectric with permanent polarization.
  • Capacitor structure two conductors insulated from each other.
  • Claim 5 The method according to claim 4, when the solute limiting device structure contains an electric field, a positive ion group and a negative ion group are arranged, and the positive ion group uses the electric field to lock part or all of the positive ion solute to form permeation on both sides of the semipermeable membrane.
  • the negative ion group uses an electric field to lock some or all of the negative ion solutes to form osmotic pressure on both sides of the semi-permeable membrane, the positive ion group solvent increasing side and the negative ion group solvent reducing side communicate directly or indirectly, the negative ion group solvent increasing side and the positive ion group solvent reducing side Direct or indirect communication, further comprising: connecting the positive ion group solvent reducing side and the positive ion group solvent increasing side by a check valve, and the negative ion group solvent reducing side and the negative ion group solvent increasing side are connected by a check valve, so that the solvent reducing side
  • the solution can reach the solvent-increasing side through the check valve, and the solution on the solvent-increasing side cannot pass through the one-way valve, so that the solute accumulated on the solvent-reducing side due to the occurrence of infiltration is transported to the solvent-increasing side intermittently.
  • the positive ion group and the negative ion group are arranged.
  • the positive ion group uses the electric field to lock part or all of the positive ion solute to form osmotic pressure on both sides of the semipermeable membrane, and the positive ion group solvent increases the side and the negative ion group solvent decreases.
  • the side is directly or indirectly connected.
  • the negative ions on the positive ion group solvent increase side are restricted away from the membrane by the electric field and with the increase of the solvent flow, they are transferred to the solvent reduction side of the negative ion group. Affects the permeation process. As the amount of negative ions on the negative ion group solvent reduction side increases, the permeation rate is reduced.
  • the negative ion group solvent reduction side and the negative ion group solvent increase side are connected by a check valve, so that the solution on the negative ion group solvent reduction side can pass through the single
  • the valve reaches the negative ion group solvent increasing side, so that the negative ions accumulated on the negative ion group solvent reducing side are supplemented to the negative ion group solvent increasing side.
  • the negative ions on the negative ion group solvent increasing side provide the osmotic pressure of the negative ion group, that is, the one-way valve is used to make this part of negative ions. Does not decrease the permeation rate but increases the permeation rate, The same set of ions.
  • a osmotic thermal energy utilization device comprising: a semi-permeable membrane, a solute limiting device, a conversion device capable of converting the energy of a fluid into mechanical energy, and a cavity on one side of the semi-permeable membrane communicating directly or indirectly with the conversion device.
  • Solute restriction device is a device that restricts the area of solute movement in some way; "a conversion device that can convert fluid energy into mechanical energy”, such as hydraulic turbines, hydraulic motors, etc .; “directly or indirectly connected” means: directly connected by pipes Or use pipes to communicate through several other devices, such as check valves, fluid energy utilization devices, valves, etc.
  • the structure of the solute limitation device includes any one or more of the following structures: a) an electric field, b) a magnetic field, and c) a sol-solvent separation membrane and Structure for the membrane distillation process consisting of a device that cools gaseous solvents to a liquid state, d) a semi-permeable membrane, e) an ion exchange membrane, f) a substance that can react with solutes, and g) the temperature is lower than that of semi-permeable in permeation The area of the membrane temperature, h) the heating structure in the area where the infiltration phenomenon occurs.
  • Figure 1 is a general diagram of the solution phenomenon
  • Figure 1-1 is a microscopic schematic diagram of the dissolution phenomenon
  • Figure 1-2 is a microscopic schematic diagram of the thermal movement of the solute molecules
  • Figure 1-3 is a phenomenon of penetration / wall water absorption cycle / solution
  • the microscopic schematic diagram of the freezing point and freezing point reduction phenomenon is shown in Figure 1-4. Saturation phenomenon / solute appearance phenomenon / solute condensation phenomenon / membrane pollution phenomenon.
  • Figure 2 is a basic embodiment illustrating the method.
  • FIG. 3 shows an embodiment of a solute limiting device structure including a) an electric field, b) a magnetic field, f) a substance capable of reacting with a solute, and h) a heating structure in a region where a permeation phenomenon occurs.
  • FIG. 4 is an embodiment in which a positive ion group and a negative ion group are arranged when an a) electric field is included in the structure of the solute limiting device.
  • FIG. 5 is an example of a solute limiting device structure including a) an electric field, b) a magnetic field, e) an ion exchange membrane, and f) a substance that can react with a solute.
  • FIG. 6 shows an embodiment of a solute confinement device including a) an electric field and d) a semi-permeable membrane.
  • FIG. 7 shows an embodiment of a solute limiting device structure including b) a magnetic field and d) a semi-permeable membrane.
  • FIG. 8 is an example of a structure for performing a membrane distillation process including c) a solvent separation membrane and a device for cooling a gaseous solvent to a liquid state in the structure of the solute limiting device.
  • FIG. 9 shows an embodiment of the solute limiting device structure including f) a substance that can react with the solute.
  • FIG. 10 shows an example of a heating structure in which the solute limiting device structure includes d) a semi-permeable membrane, f) a region having a temperature lower than the temperature of the semi-permeable membrane in the permeation phenomenon, and g) a region in which the permeation phenomenon occurs.
  • 1 is pure solute
  • 2 is pure solvent
  • 3 is solution
  • 4 is semi-permeable membrane
  • 5 is container wall
  • 6 is solute molecule
  • 7 is solvent molecule
  • 8 is the contact surface between solution and pure solute.
  • 9 is the solution and wall or solution and semipermeable membrane contact surface solute molecule force equilibrium interface
  • 10 is the gas molecule in the air
  • 11 is the molecule of the container wall
  • 12 is the semipermeable membrane molecule
  • F 1 is the intermolecular force of pure solutes
  • F 2 is the force of solvent molecules on solute molecules
  • F 3 is the force of molecules of semi-permeable membrane, wall or air on it
  • F 1 ′ is between solute molecules in solution
  • Acting force 13 is a solution with ionic solutes
  • 14 is a dilute solution or solvent
  • 15 is the positive electrode of the electric field
  • 16 is the negative electrode of the electric field
  • 17 is the magnetic field, where the
  • Figure 2 is a basic embodiment illustrating the method.
  • a complete solvent or solution flow cycle can be formed as a whole.
  • a device that uses fluid energy, such as a fluid generator, is installed 21 in a certain part.
  • some non-essential structures are omitted, for example, a filtering device between 23 natural solvent sources or solvent reservoirs and 19 solvent reducing side communication, a valve structure between each communication, and the like.
  • Each structure in this embodiment is a simple schematic, and the embodiments of the method cannot be limited by the schematic structure in the figure.
  • complex structures such as multi-membrane composites and special-shaped membranes are often used in specific infiltration implementations, which belong to 4 semi-permeable membranes and 5 Refers to the range of the structure of the container wall.
  • Embodiments of the method are not limited to this basic embodiment, and all deformations that can be associated with those skilled in the art to which the method belongs belong to the protection scope of the method.
  • FIG. 3 shows an embodiment of a solute limiting device structure including a) an electric field, b) a magnetic field, f) a substance capable of reacting with a solute, and h) a heating structure in a region where a permeation phenomenon occurs.
  • the main limiting structure is a) electric field.
  • the electric field is the 15-electrode positive electrode and the 16-electrode negative electrode. The entire space is divided into two areas, the solution side and the film side, with the contact surface of the solution and the semi-permeable membrane as the boundary.
  • the double-membrane structure has two film-side regions and one In the solution-side region, the positions of the 15-electrode positive electrode and the 16-electrode negative electrode are shown only in one of the solution-side and film-side regions.
  • the symbols of 15-electrode positive and 16-electrode negative are just for illustration.
  • the electric field can adopt any form of electric field, uniform electric field, point electric field, special-shaped electric field, etc. When the 15-electrode positive and 16-electrode negative electrodes are on the same side, AC electric field can be used.
  • the auxiliary restriction structure is b) 17 magnetic field, where the arrows are several schematic magnetic field lines, which can be used in either the horizontal or vertical layout as shown in the diagram.
  • the vertical magnetic field solution flow velocity is smaller than the horizontal method, so the required magnetic field strength is smaller than the horizontal direction.
  • FIG. 4 is an embodiment in which a positive ion group and a negative ion group are arranged when an a) electric field is included in the structure of the solute limiting device.
  • This embodiment is one of the preferred embodiments.
  • the left side of the figure is the negative ion group, which provides the osmotic pressure with negatively charged ions
  • the right side is the positive ion group, which provides the osmotic pressure with positively charged ions.
  • corresponding 27 ion exchange membranes can be arranged as shown in the figure to reduce the escape of critical ion solutes, or as shown in the figure 24 can be arranged to react with the corresponding ion solutes to purify the escaped critical ion solutes, negative ions.
  • the anion-exchange membrane with the sign and 24 can react with the corresponding negatively charged ionic solute, and the positive ion group corresponds to the 27 band
  • the symbolic cation exchange membrane and 24 are substances that can react with the corresponding positively charged ionic solutes.
  • the amount of remaining ionic solutes in this structure corresponds to the strength of the electric field.
  • the situation where a) the electric field is the limiting structure is the most One of the preferred embodiments; the other case is often used as an auxiliary limiting structure, and there is no requirement for the electric field strength.
  • the electric field increases or decreases the osmotic pressure of an ionic solute near the semi-permeable membrane in a certain area. The more significant the raising or lowering effect is, it can also be used as the main restriction structure, using multiple sets of permeation, arranging positive and negative ion groups 4, for example, the embodiment shown in the drawings in conjunction with each other on both sides of the semipermeable membrane osmotic pressure difference increases.
  • the flow velocity of the fluid in the area where the magnetic field is located should be limited.
  • the magnetic field does not do work and can only change the direction of movement of the ionic solute.
  • the fast flowing solution will carry the ionic solute through the magnetic field area.
  • the area, the type of ions, the fluid flow speed, and the temperature of the fluid are related.
  • the strength of the magnetic field required for different structures is also different. In specific structures, the magnetic field strength should meet the maximum speed of ions at this temperature.
  • the radius of the circular motion in the magnetic field is much smaller than the magnetic field. The width can be determined by calculation or experiment.
  • FIG. 5 is an example of a solute limiting device structure including a) an electric field, b) a magnetic field, e) an ion exchange membrane, and f) a substance that can react with a solute.
  • the main limiting structure is an electrodialysis structure composed of a) an electric field and e) an ion exchange membrane.
  • the electric field is the 15-electrode positive electrode and the 16-electrode negative electrode. The entire space is divided into two areas, the solution side and the film side, with the contact surface of the solution and the semi-permeable membrane as the boundary.
  • the double-membrane structure has two film-side regions and one In the solution-side region, the positions of the 15-electrode positive electrode and the 16-electrode negative electrode are shown only in one of the solution-side and film-side regions.
  • the symbols of 15-electrode positive and 16-electrode negative are for illustration only.
  • the electric field can adopt any form of electric field, uniform electric field, point electric field, special-shaped electric field, and so on.
  • e) 27 ion exchange membranes with The symbol is that the cation exchange membrane is on the same side as the negative electrode of the 16 electric field. The symbol is that the anion exchange membrane is on the same side as the 15-field positive electrode.
  • FIG. 6 shows an embodiment of a solute confinement device including a) an electric field and d) a semi-permeable membrane.
  • the main limiting structure is d) 4 semipermeable membrane.
  • the electric field is the 15-field positive electrode and the 16-field negative electrode, so that the ion solute is redistributed to ensure that the ion concentration near the 4 semi-permeable membrane in the confinement structure is lower than the ion concentration near the 4 semi-permeable membrane in the permeable structure.
  • Positively charged ionic solutes provide osmotic osmotic pressure. It is suitable for the case where the total number of positively charged ionic solutes is greater than that of negatively charged ionic solutes.
  • the 15 electric field positive electrode and 16 electric field negative electrode positions are exchanged, that is, the osmotic structure is negatively charged.
  • the ionic solute provides osmotic pressure, which is suitable for the case where the total number of negatively charged ionic solutes is greater than that of positively charged ionic solutes.
  • FIG. 7 shows an embodiment of a solute limiting device structure including b) a magnetic field and d) a semi-permeable membrane.
  • the main limiting structure is d) 4 semipermeable membrane.
  • the 17 magnetic field is arranged near the 4 semi-permeable membrane in the restricted structure to reduce the ionic solutes from reaching the 4 semi-permeable membrane in the restricted structure.
  • FIG. 8 shows an example of a structure for performing a membrane distillation process including c) a solute limiting membrane and a device for cooling a gaseous solvent to a liquid state in a solute limiting device structure.
  • Membrane distillation technology is a membrane separation technology used to separate non-volatile solutes in aqueous solution.
  • the membrane distillation technology is borrowed and extended, which is applicable to the case where the volatile solvent contains non-volatile solutes.
  • This embodiment is one of the preferred embodiments using a solvent that is volatile at normal temperature.
  • FIG. 9 shows an embodiment of the solute limiting device structure including f) a substance that can react with the solute.
  • the main limiting structure is f) 24 substances that can react with solutes.
  • This embodiment is more common in nature. All plants are similar to this embodiment. They absorb solutes-nutrients from soil, absorb solvents-water with osmotic pressure, and transport solutes-nutrients to react with solutes. The substance-in the leaf, the leaf absorbs nutrients, the water is analyzed or evaporated, and finally it returns to the soil. The cost of manual implementation is too high. Only in special cases where the reactions and products are valuable and needed, can it be meaningful to implement manually.
  • FIG. 10 shows an example of a heating structure in which the solute limiting device structure includes d) a semi-permeable membrane, f) a region having a temperature lower than the temperature of the semi-permeable membrane in the permeation phenomenon, and g) a region in which the permeation phenomenon occurs.
  • the main limiting structure is d) 4 semipermeable membrane. This embodiment needs to be under the condition of naturally occurring temperature difference before it can be implemented.

Abstract

一种渗透式热能利用方法和装置,包括:利用溶质限制装置(22)锁定部分或全部溶质在半透膜(4)两侧形成渗透压;在渗透压作用下,溶剂(14)通过半透膜(4)从溶剂减少侧(19)到达溶剂增加侧(20);通过将两侧直接或间接连通或者将溶剂减少侧(19)直接或间接连通至自然溶剂源或溶剂库(23)为溶剂减少侧(19)提供足量的溶剂(14)来源;最终整体形成循环,在循环路线上安装利用流体能量的装置(21),以流体能量为动力,进行发电或带动其他装置。

Description

一种渗透式热能利用方法和装置 技术领域
本发明涉及渗透和热能利用领域,具体涉及一种采用渗透方式利用热能的方法和装置。
背景技术
对透过的物质具有选择性的薄膜称为半透膜。一般将只能透过溶剂而不能透过溶质的薄膜视为理想的半透膜。当把稀溶液和浓溶液分别置于一容器的两侧,中间用半透膜阻隔,稀溶液中的溶剂将自然的穿过半透膜,向浓溶液侧流动,此现象即是渗透现象。流动一段时间,浓溶液侧的液面会比稀溶液的液面高出一定高度,形成一个压力差,达到渗透平衡状态,此压力差即为渗透压。
目前,基础化学教科书上对于渗透现象的解释是:由于半透膜两边溶剂的浓度不相同,以至单位时间内由纯溶剂扩散进入溶液的溶剂分子数目要比从溶液扩散进入纯溶剂的溶剂分子数多,从而导致了渗透现象的发生,并认为渗透压不是溶质分子的压力,而是溶剂扩散引起的。宏观的化学热力学认为:渗透现象是溶液中溶剂的化学势与纯溶剂的化学势差造成的。范特霍夫(Van’t Hoff)是1901年以渗透压和化学动力学的研究成果而获第一位诺贝尔化学奖的世界著名科学家,他发现,稀溶液的渗透压居然等于溶质在相同温度下转化为理想气体并占有溶液体积时产生的气压。因此他认为:“气体产生气压和溶液产生渗透压的实质机理是相同的,不仅是形式上的相似而已。在气体场合,气压是由气体分子冲击容器壁产生的;在溶液情况下,由于溶质分子冲击半透膜而产生渗透压。至于溶剂分子,由于存在于半透膜两边,可以自由穿行,因此不产生压力作用”。
近年来全球能源紧缺,环境问题日益严重,渗透发电技术作为一种可持续发展的清洁再生能源技术受到了广泛的关注。在沿海地区,可作为渗透原料的海水储量丰富,目前已有多国建造渗透海水发电设施,用于对“压力延缓渗透(PRO)海水发电”技术的研发。在内陆地区,没有大量可作为渗透原料的溶液,但存在广泛的热源,因而有些技术人员提出了用热能对渗透后的溶液进行分离,从而再生渗透原料的方式,这样便形成一种渗透热能发电技术。
热力学第二定律:克劳修斯表述,不可能把热量从低温物体传到高温物体而不引起其他变化;开尔文表述,不可能从单一热源取热,使之完全转换为有用的功而不引起其他变化;也可表述为,第二类永动机不可能实现,第二类永动机是一种能从单一热源取热,使之完全变为有用功而不产生其他影响的机器。
发明内容
本发明克服了对于渗透现象认识的偏见,解决了渗透理论及微观结构的难题。并在此基础上,克服了关于热能利用的偏见,解决了低温热源利用的难题,开发出一种利用渗透方式利用热能的方法。对于一切热源,只要热源温度不低于渗透现象可以发生的最低温度,本方法便可利用该热源。
对于渗透现象的几种理论解释,均存在着很多难以自圆其说之处,说明这些理论还有待商榷。“迄今还没有一个可以接受的理论能解释渗透的微观结构”,在上世纪80年代末,由美国物理学评述委员会组织的等离子体和流体物理学专门小组曾这样描述。因此,他们将渗透现象的微观结构列为20世纪90年代的物理学重要课题之一。但直到现在,仍没有取得实质性的进展。
以下将从微观宏观两方面分析溶液中的各种现象及其微观结构,并提出渗透理论。
溶解现象。
微观:溶质能溶解到溶剂中,说明在溶液和纯溶质的接触面(附图1-1)上,溶剂分子对溶质分子的作用力F 2是引力且不会远小于纯溶质分子间作用力F 1,绝大多数情况下,F 2≥F 1,接触面上的溶质分子才会不断进入溶剂中,形成溶解现象,而分子间作用力皆是随着分子间距离而改变的,即可以得出溶液和纯溶质接触面上的溶质分子受力平衡界面8已经贴近纯溶质的第一层溶质分子甚至已经越过第一层溶质分子进入纯溶质内。随着溶解的溶质越来越多,接触面上溶质分子还受到溶液中其他溶质分子对其作用力F 1'且越来越大,因溶液中的溶质分子间距离在分子级别上是非常大的,故F 1'是引力,意味着溶解的速率随着溶液浓度的增大越来越快。
宏观:溶质能溶解到溶剂中,说明溶质分子在溶液中的势能小于其在纯溶质中的势能,故溶质分子优先排满低势能区域。在溶解过程中,能的变化有:纯溶质分子间分子势能Ep 1大幅增大,溶液外溶质分子与溶剂分子之间的分子势能Ep 2大幅减小,溶液中溶质分子与溶剂分子之间的分子势能Ep 2'少量减小,溶液中溶质分子间分子势能Ep 1'微量减小,大部分情况下溶液的分子动能(Ek 1+Ek 2)增大,等式△Ep 2+△Ep 2'+(△Ep 1')=△Ep 1+△(Ek 1+Ek 2)成立,(△Ep 1')可以近似忽略。变化的势能中,Ep 1和Ep 2在纯溶质中,Ep 1'和Ep 2'在溶液中,由溶质分子在溶液中的势能小于其在纯溶质中的势能得出Ep 1+Ep 2>Ep 1'+Ep 2',变换可得(Ep 2-Ep 2')>(Ep 1'-Ep 1)。由以上两式皆可得出溶解是溶剂分子与溶质分子之间的分子势能转化为溶质分子间分子势能的现象。随着溶液浓度的增大,Ep 1'和Ep 2'均减小,溶质分子在溶液中的势能和溶质分子在纯溶质中的势能之差增大,意味着溶解的速率随着溶液浓度的增大越来越快。
溶液中溶质分子热运动状态、扩散现象。
微观:对于溶液中的溶质分子进行受力分析(附图1-2),其受到溶剂分子对其的作用力F 2,受到溶液中其他溶质分子对其作用力F 1',溶剂分子在溶液中均匀分布,故综合考虑F 2相互近似抵消,仅会溶质分子的运动路线产生影响,不会对溶质分子的运动状态产生过大影响,而溶液中的溶质分子间距离在分子级别上是非常大的,故F 1'很小,综上,溶液中的溶质分子受力状态近似于气体中气体分子受力状态,可得出溶液中溶质分子热运动近似于气体分子热运动的结论。随着溶液浓度增加,作用力F 1'也会缓慢增大,意味着溶液中溶质分子热运动随着溶液浓度的增大而减弱。
宏观:将溶液中的溶剂和溶质分割作为两个个体考虑,它们处于同一环境,相互密切接触,故温度趋于一致,即热交换单位区域内两者热运动的总动能趋于一致,溶质质量为M 1、分子热运动方均根速率为V 1rms,溶剂质量为M 2、分子热运动方均根速率为V 2rms,则有M 1V 1rms 2/2=M 2V 2rms 2/2,在单位区域溶液中溶质的质量M 1通常远远小于溶剂的质量M 2,所以溶 质分子热运动方均根速率V 1rms远大于溶剂分子热运动方均根速率V 2rms,宏观即表现为扩散现象,溶剂分子热运动方均根速率即是液体的热运动方均根速率,溶液中溶质分子热运动方均根速率V 1rms远大于液体的热运动方均根速率,可得出溶液中溶质分子热运动方均根速率V 1rms接近于气体分子热运动方均根速率。随着溶液浓度增加,溶质质量M 1增大而溶剂质量M 2和溶剂分子热运动方均根速率V 2rms均不变,可得出溶液中溶质分子热运动方均根速率V 1rms随着溶液浓度的增大而减小。
渗透现象/壁面吸水循环现象/溶液冰点、凝点降低现象。
微观:在溶液和半透膜、溶液和壁或溶液和空气的接触面上,当溶质分子到达溶剂外时,其受到溶剂分子对其的作用力——引力F 2,受到溶液中其他溶质分子对其作用力——引力F 1',受到半透膜、壁或空气的分子对其的作用力F 3。在F 2的作用下溶质分子的动能减小,相应的溶剂分子会增加动能,其值为溶质分子在溶剂外运动的整个过程中F 2所做的功。当接触半透膜或壁时,溶剂分子增加动能的速度指向溶剂外溶质分子的方向,该速度在附近各种分子的共同作用下反向朝向溶液内部,然后此部位便会吸引附近其他的溶剂分子,形成渗透现象或壁面吸水循环现象;当接触空气时,溶剂分子的动能增加表现为溶液表面活性增大、冰点降低、凝点降低。
宏观:溶质是溶解在溶剂中,所以当溶质分子运动到溶液和任何物质的接触表面上时溶剂会阻止溶质脱离溶液范围,此时有三种情况:一种是溶质分子在溶剂作用下直接返回溶液中,溶质的分子动能Ek 1'大幅减小,溶剂的分子动能Ek 2大幅增大,接触面附近溶液中溶质分子的分子势能Ep 1'少量减小,接触面附近溶液中溶剂的分子势能Ep 2少量增大;另一种是溶质分子在溶剂作用下先到达所接触物质的表面而后返回溶液中,溶质的分子动能Ek 1'大幅减小,溶剂的分子动能Ek 2大幅增大,所接触物质的分子动能Ek 3少量增大,接触面附近溶液中溶质分子的分子势能Ep 1'少量减小,接触面附近溶液中溶剂的分子势能Ep 2少量增大;第三种是溶质分子脱离溶液附着在所接触物质的表面,溶质的分子动能Ek 1'大幅减小,溶剂的分子动能Ek 2大幅增大,溶质分子与其他物质分子的分子势能Ep 3大幅减小,溶液外溶质分子与溶剂分子之间的分子势能Ep 2大幅增大,溶液中溶质分子与溶剂分子之间的分子势能Ep 2'少量增大,溶质分子的分子势能Ep 1'微量增大。以上这三种情况都是由溶液中溶质的分子动能Ek 1'驱动的。溶液和任何物质的接触面上,溶剂的分子动能Ek 2大幅增加,溶剂的分子势能Ep 2少量增大,部分分子动能Ek 2和分子势能Ep 2的增大宏观表现为溶液表面活性增大、冰点降低、凝点降低,部分整体增加的分子动能Ek 2会汇聚为宏观的溶剂运动,在不同接触面分别是渗透现象、壁面吸水循环现象。
饱和现象/溶质析出现象/溶质凝结现象/膜污染现象。
微观:在溶液和纯溶质、溶液和壁或溶液和半透膜的接触面上,当溶质分子到达溶剂外时,其受到溶剂分子对其的作用力——引力F 2,受到溶液中其他溶质分子对其作用力——引力F 1',受到纯溶质分子对其的作用力F 1,或受到壁、半透膜对其的作用力F 3,溶液中溶质分子可以到达溶液与纯溶质接触面上溶质分子受力平衡界面8的最小速度为V 1 8,溶液中溶质分子可以到达溶液和壁或溶液和半透膜接触面上溶质分子受力平衡界面9的最小速度为V 1 9。当运动到溶剂外的溶质分子在溶液中的速度V 1>V 1 8,其会脱离溶液返回纯溶质,即是溶质析出现象,当此过程与溶解过程达到平衡时,溶液即达到饱和状态。当运动到溶剂外的溶质分子在溶液中的速度V 1>V 1 9,其会脱离溶液到达壁或半透膜表面,此即是溶质凝 结现象或膜污染现象。
宏观:溶解过程中有等式△Ep 2+△Ep 2'+(△Ep 1')=△Ep 1+△(Ek 1'+Ek 2)成立,等式左边为:溶液外溶质分子与溶剂分子之间的分子势能Ep 2,溶液中溶质分子与溶剂分子之间的分子势能Ep 2',溶液中溶质分子间分子势能Ep 1';等式右边为:纯溶质分子间分子势能Ep 1,溶液的分子动能(Ek 1'+Ek 2)。溶解是由等式左边向右边的转化,析出即是反向的转化,反向转化要求变化状态的溶质分子变化前在溶液中的分子动能Ek 1'>△(Ek 1+Ek 2),随着溶液浓度的增加,溶质分子数量增多,满足分子动能Ek 1'>△(Ek 1+Ek 2)的溶质分子数目增多,析出转化的速率增大。饱和状态即是析出转化和溶解转化的动态平衡。凝结和污染是右侧的Ep 1替换为Ep 3——溶质分子与其他物质分子的分子势能后向左侧的转化。溶质分子在溶液中的势能小于其在纯溶质中的势能,溶质分子在溶液中的动能大于其在纯溶质中的动能,在高能的推动下发生变化,即溶解是溶质分子在纯溶质中的高势能推动的,析出是溶质分子在溶液中的高动能推动。随着溶液浓度的增加,溶质分子在溶液中的势能和溶质分子在纯溶质中的势能之差增大,溶液中具有高动能的溶质分子数量增多,即溶解和析出的循环速率随着溶液浓度的增大越来越快。
教科书的溶剂扩散理论,没有任何根据,完全就是臆想。而宏观的化学热力学的看法,若将渗透前的浓溶液和溶剂与渗透后的稀溶液进行比较,溶质分子与溶剂分子之间的分子势能Ep 2'减小,溶质分子间分子势能Ep 1'减小,似乎可得出“渗透现象是溶液中溶剂的化学势与纯溶剂的化学势差造成的”。但是这之中存在认识偏差,渗透现象是溶剂自发穿过半透膜的现象,而不是浓溶液和溶剂合并变为稀溶液的现象,后者即宏观的化学热力学描述的“渗透现象”不仅仅包含渗透现象还包含渗透后一系列的能量转化。所以,只能说是渗透现象的一种结果是释放了溶液中溶剂的化学势与纯溶剂的化学势差。范特霍夫(Van’t Hoff)的理论是最接近实际情况的,唯一的问题是溶质分子碰撞的对象。
综上所述,渗透现象是溶液中溶质分子冲击溶液边界上最外层溶剂分子所组成的膜造成的。此原因不仅产生渗透现象,还产生两种现象——溶液表面活性增大、冰点降低、凝点降低现象,壁面吸水循环现象。渗透现象的速率——即渗透压的大小不仅与溶液的浓度、温度正相关,还与不能穿过溶剂膜的溶质分子的最大动能正相关,不能穿过溶剂膜的溶质分子的最大动能由溶质种类、溶剂种类、半透膜材质、溶液压强、溶液浓度等多个因素共同决定。
渗透现象,壁面吸水循环现象,溶液表面活性增大、冰点降低、凝点降低现象,这三个现象中,将溶液中的溶剂和溶质分割作为两个个体考虑,其主要存在溶质的分子动能转化为溶剂的分子动能,即是溶质的热量传给溶剂,此时溶质的温度应是由溶液内部等同溶剂到溶液边界低于溶剂,即这是一种自然存在的热量由低温物体传到高温物体的现象。渗透现象和壁面吸水循环现象中,将溶液整体考虑,接触面上溶剂宏观的运动,即是从单一热源——溶液取热,使之完全变为有用功而不产生其他影响的现象。即上述三个现象是热力学第二定律不成立的证据。
权利要求1.一种渗透式热能利用方法,其包括:利用溶质限制装置锁定部分或全部溶质在半透膜两侧形成渗透压;在渗透压作用下,溶剂通过半透膜到达另一侧,为溶剂减少侧提供足量的溶剂来源,可以采用以下方式A和B中的任一种或两种,最终使结构和外部流量的整体形成完整的溶剂或溶液流量循环,A)将溶剂减少侧与溶剂增加侧直接或间接连 通,B)将溶剂减少侧直接或间接连通至溶剂库或自然溶剂源;以循环某部分流体的能量作为动力,进行发电或带动其他装置。
由上述渗透理论可知,溶剂运动的初始动力来源于溶液的热能。若将溶质限制在膜一侧附近区域内,使其不随渗透的发生和溶剂的流动而远离膜,便可以源源不断从溶液取热,使之变为溶剂运动。本方法是,利用溶质限制装置限制锁定部分或全部溶质在半透膜一侧的某部分区域内,使溶质不随渗透的发生和溶剂的流动而移动,从而使渗透现象的结果变为溶剂流量,再利用此溶剂流量作为动力出力。权利要求1中,“溶质限制装置”是利用某种方式限制溶质运动区域的装置;“锁定部分或全部溶质”是指:使部分或全部溶质不能完全自由的移动,保持在某一固定区域内,不随渗透的发生和溶剂的流动而移动;“直接或间接连通”指:直接用管道连通,或用管道经过几个其他装置连通,其他装置例如单向阀、流体能量利用装置、阀门等;“外部流量”指:当采用方式B时,与溶剂减少侧连通的溶剂库或自然溶剂源,溶剂增加侧,上述这两者之间的溶剂或溶液流量,或当结构为半开放式时,两个开放端之间的溶剂或溶液流量,此部分流量包含在循环内;“完整的溶剂或溶液流量循环”指:一个由溶剂或溶液运动组成的循环;“方式A”:当只存在一组渗透时,即指唯一的溶剂减少侧与唯一的溶剂增加侧相连,当存在多组渗透时,为一个溶剂减少侧搭配一个足量的溶剂来源,该溶剂增加侧并不特指某一个溶剂增加侧,可以是该溶剂减少侧相对应的溶剂增加侧,也可以不是该溶剂减少侧相对应的溶剂增加侧,可以是一个渗透的溶剂增加侧,也可以是几个渗透的溶剂增加侧的组合,只要满足其渗透足量的溶剂来源即可。“方式A和B”:此两种方式为“为溶剂减少侧提供足量的溶剂来源”的可选方式,可以采用此两种方式的任一种或两者,但不局限于此两种方式,只要满足上下文“为溶剂减少侧提供足量的溶剂来源”“最终使结构和外部流量的整体形成完整的溶剂或溶液流量循环”的任何方式,都符合本方法的原意。
权利要求2.根据权利要求1所述的方法,其进一步包括:所述溶质限制装置结构中包含以下任一种或几种结构:a)电场,b)磁场,c)由疏溶剂分离膜和冷却气态溶剂到液态的装置组成的用来进行膜蒸馏过程的结构,d)半透膜,e)离子交换膜,f)可与溶质发生反应的物质,g)温度低于渗透现象中半透膜温度的区域,h)在渗透现象发生区域的加热结构。
“溶质限制装置”是利用某种方式限制溶质运动区域的装置。上述结构中,a、b、c、d、e、f可作为主要限制结构,a、b、d、e、f、g、h可作为辅助限制结构。其中,a)电场,是利用电势能的分布使离子溶质处于低电势能的位置,适用于溶液中存在离子溶质的情况;b)磁场,是利用磁场对带电粒子的作用使离子溶质不能垂直于磁场方向的通过磁场区域,适用于溶液中存在离子溶质的情况;c)由疏溶剂分离膜和冷却气态溶剂到液态的装置组成的用来进行膜蒸馏过程的结构,利用溶质的非挥发性限制非挥发性溶质通过疏溶剂分离膜,适用于可挥发溶剂中含有非挥发性溶质的情况;d)半透膜,是一种对透过的物质具有选择性的薄膜,其利用半透性使溶质不可通过,但由于会发生渗透现象,半透膜不能单独作为限制结构;e)离子交换膜,是一种含离子基团的、对溶液里的离子具有选择透过能力的高分子膜,也称为离子选择透过性膜,其和直流电场组合形成电渗析法,使离子溶质通过离子交换膜返回参与渗透的溶液中,适用于溶液中存在离子溶质的情况;f)可与溶质发生反应的物质,利用反应使溶质不能通过该物质所在区域,可作为清除通过其他结构微量溶质的辅助结构;g)温度低于渗透现象中半透膜温度的区域,利用溶质随温度溶解度的变化限制溶质,通 常作为e半透膜的辅助结构;h)在渗透现象发生区域的加热结构,利用溶质随温度溶解度的变化来增加渗透区域溶质浓度,同时增加渗透现象速率,是最优辅助结构。
权利要求3.根据权利要求2所述的方法,其进一步包括:所述磁场的产生结构中包含以下任一种或几种:a)永磁体、b)电磁体、c)超导磁体。
永磁体:能够长期保持其磁性的磁体。电磁体:由磁芯和线圈构成,当线圈中有电流流过时能产生磁场的装置。超导磁体:用超导导线作励磁线圈的磁体。
权利要求4.根据权利要求2或3之一所述的方法,其进一步包括:所述电场的产生结构中包含以下任一种或几种:a)电导体、b)永电体、c)电容器结构。
电导体:具备传导电荷能力的物质。永电体:又称驻极体,是一种具有持久性极化的电介质。电容器结构:两个彼此绝缘的导体。
权利要求5.根据权利要求4所述的方法,溶质限制装置结构中含有电场时,布置正离子组和负离子组,正离子组利用电场锁定部分或全部正离子溶质在半透膜两侧形成渗透压,负离子组利用电场锁定部分或全部负离子溶质在半透膜两侧形成渗透压,正离子组溶剂增加侧和负离子组溶剂减少侧直接或间接连通,负离子组溶剂增加侧和正离子组溶剂减少侧直接或间接连通,其进一步包括:将正离子组溶剂减少侧与正离子组溶剂增加侧用单向阀连通,负离子组溶剂减少侧与负离子组溶剂增加侧用单向阀连通,使溶剂减少侧的溶液可以通过单向阀到达溶剂增加侧,溶剂增加侧的溶液不能通过单向阀,从而间歇的将溶剂减少侧因渗透发生而堆积的溶质运送到溶剂增加侧。
溶质限制装置结构中含有电场时,布置正离子组和负离子组,正离子组利用电场锁定部分或全部正离子溶质在半透膜两侧形成渗透压,正离子组溶剂增加侧和负离子组溶剂减少侧直接或间接连通,正离子组溶剂增加侧的负离子被电场限制远离膜而随着增加的溶剂流量转移到负离子组的溶剂减少侧,负离子组溶剂减少侧的少量负离子被电场限制远离膜而不影响渗透过程,随着负离子组溶剂减少侧的负离子量增大会减小渗透速率,将负离子组溶剂减少侧与负离子组溶剂增加侧用单向阀连通,使负离子组溶剂减少侧的溶液可以通过单向阀到达负离子组溶剂增加侧,从而将负离子组溶剂减少侧堆积的负离子补充到负离子组溶剂增加侧,负离子组溶剂增加侧的负离子提供负离子组的渗透压,即利用单向阀使这部分负离子不会减小渗透速率反而增大渗透速率,正离子组同理。
权利要求6.一种渗透式热能利用装置,其包括:半透膜,溶质限制装置,可将流体的能量转化为机械能的转化装置,半透膜一侧腔体与转化装置直接或间接连通。
“溶质限制装置”是利用某种方式限制溶质运动区域的装置;“可将流体的能量转化为机械能的转化装置”,例如水轮机、液压马达等;“直接或间接连通”指:直接用管道连通,或用管道经过几个其他装置连通,其他装置例如单向阀、流体能量利用装置、阀门等。
权利要求7.根据权利要求6所述的装置,其进一步包括:所述溶质限制装置结构中包含以下任一种或几种结构:a)电场,b)磁场,c)由疏溶剂分离膜和冷却气态溶剂到液态的装置组成的用来进行膜蒸馏过程的结构,d)半透膜,e)离子交换膜,f)可与溶质发生反应的物质,g)温度低于渗透现象中半透膜温度的区域,h)在渗透现象发生区域的加热结构。
附图说明
附图1是溶液现象总图,附图1-1是溶解现象微观示意图,附图1-2是溶质分子热运 动微观受力示意图,附图1-3是渗透现象/壁面吸水循环现象/溶液冰点、凝点降低现象微观示意图,附图1-4饱和现象/溶质析出现象/溶质凝结现象/膜污染现象微观示意图。
附图2是示意本方法的基础实施例。
附图3是溶质限制装置结构中包含a)电场,b)磁场,f)可与溶质发生反应的物质,h)在渗透现象发生区域的加热结构的的实施例。
附图4是溶质限制装置结构中包含a)电场时,布置正离子组和负离子组的实施例。
附图5是溶质限制装置结构中包含a)电场,b)磁场,e)离子交换膜,f)可与溶质发生反应的物质的实施例。
附图6是溶质限制装置结构中包含a)电场,d)半透膜的实施例。
附图7是溶质限制装置结构中包含b)磁场,d)半透膜的实施例。
附图8是溶质限制装置结构中包含c)由疏溶剂分离膜和冷却气态溶剂到液态的装置组成的用来进行膜蒸馏过程的结构的实施例。
附图9是溶质限制装置结构中包含f)可与溶质发生反应的物质的实施例。
附图10是溶质限制装置结构中包含d)半透膜,f)温度低于渗透现象中半透膜温度的区域,g)在渗透现象发生区域的加热结构的实施例。
图中标注为:1为纯溶质,2为纯溶剂,3为溶液,4为半透膜,5为容器壁,6为溶质分子,7为溶剂分子,8为溶液和纯溶质接触面上的溶质分子受力平衡界面,9为溶液和壁或溶液和半透膜接触面上溶质分子受力平衡界面,10为空气中气体分子,11为容器壁的分子,12为半透膜的分子,F 1为纯溶质分子间作用力,F 2为溶剂分子对溶质分子的作用力,F 3为半透膜、壁或空气的分子对其的作用力,F 1'为溶液中溶质分子之间作用力,13为带离子溶质的溶液,14为稀溶液或溶剂,15为电场正极,16为电场负极,17为磁场,其中箭头为几种示意磁场线,18为溶液流动方向,19为溶剂减少侧,20为溶剂增加侧,21为利用流体能量的装置,例如流体发电机等,22为溶质限制装置,23为自然溶剂源或溶剂库,24为可与溶质发生反应的物质,25为在渗透现象发生区域的加热结构,26为单向阀,27为离子交换膜,其中带
Figure PCTCN2019091023-appb-000001
符号的为阳离子交换膜,带
Figure PCTCN2019091023-appb-000002
符号的为阴离子交换膜,28为疏溶剂分离膜,29为冷却气态溶剂到液态的装置,30为温度低于渗透现象中半透膜温度的区域。
具体实施方式
附图2是示意本方法的基础实施例。利用22溶质限制装置锁定部分或全部溶质在半透膜两侧的渗透发生区域,使渗透的结果变为溶剂由19溶剂减少侧移动到20溶剂增加侧,通过连接使溶液沿18溶液流动方向流动,可以直接连通19溶剂减少侧和20溶剂增加侧,也可以连通至23自然溶剂源或溶剂库,按图中示意的线路或其变形,整体形成完整的溶剂或溶液流量循环即可,在循环某部分安装21利用流体能量的装置,例如流体发电机等。本实施例中省略了部分非重要结构,例如:23自然溶剂源或溶剂库与19溶剂减少侧连通之间的过滤装置、各连通之间的阀门结构等等。本实施例中各结构均为简单示意,不能以图中示意结构限制本方法的实施例,例如在具体渗透实施中常采用多膜复合、异形膜等复杂结构,均属于图中4半透膜和5容器壁组成的结构的指代范围。本方法的实施例不局限于此基础实施例,一切本方法所属领域的技术人员可以联想到的变形,均属于本方法的保护范围。
附图3是溶质限制装置结构中包含a)电场,b)磁场,f)可与溶质发生反应的物质, h)在渗透现象发生区域的加热结构的实施例。其中主要限制结构为a)电场。a)电场即15电场正极和16电场负极,以溶液与半透膜的接触面为界,将整个空间划分为溶液侧和膜侧两个区域,双膜结构则有两个膜侧区域和一个溶液侧区域,15电场正极和16电场负极的位置仅表示在溶液侧和膜侧区域的其中一个中。15电场正极和16电场负极的符号仅为示意,电场可以采用任意形式电场,匀强电场、点电场、异形电场等等,当15电场正极和16电场负极在相同侧时,可采用交流电场。辅助限制结构为b)17磁场,其中箭头为几种示意磁场线,可以采用图示横向或纵向任一种布置方式,垂直磁场方向溶液流速纵向方式小于横向方式,故所需磁场强度纵向小于横向,f)24可与溶质发生反应的物质,清除越过之前限制结构的少量溶质,h)25在渗透现象发生区域的加热结构,增加渗透区域温度,加快渗透速率。
附图4是溶质限制装置结构中包含a)电场时,布置正离子组和负离子组的实施例,此实施例为最优实施例之一。图示左侧为负离子组,以带负电的离子提供渗透压,右侧为正离子组,以带正电的离子提供渗透压。在增加侧可以如图示布置相应的27离子交换膜来减少关键性离子溶质的脱逃,或可如图示布置24可与相应的离子溶质发生反应的物质来净化脱逃的关键性离子溶质,负离子组对应27带
Figure PCTCN2019091023-appb-000003
符号的阴离子交换膜和24可与相应的带负电的离子溶质发生反应的物质,正离子组对应27带
Figure PCTCN2019091023-appb-000004
符号的阳离子交换膜和24可与相应的带正电的离子溶质发生反应的物质。此结构中的任意一个连通,都应确保连通中流体不完全连通,以避免关键性离子由连通管道转移至其电势能更低的位置。
以a)电场作为限制结构有两种情况,一种情况常作为主要限制结构,电场强度要求高,溶液中总的离子溶质量少,循环基本为纯净的溶剂循环,离子溶质基本被电场完全限制在半透膜附近,对于不同结构和离子溶质,其离子溶质的量和需求电场强度对应关系不同,具体实施中,可以通过试验得出其对应关系,在确定的结构中保持一定的电场强度,使渗透持续进行直到20溶剂增加侧流出的流体变为纯净的溶剂,此时,剩余的离子溶质的量在此结构中与该电场强度相对应,以a)电场作为限制结构的此情况属于最优实施例之一;另一种情况常作为辅助限制结构,对电场强度无要求,在一定区域内电场使半透膜附近某种离子溶质的渗透压升高或降低,电场强度越大,其升高或降低效果越显著,也可作为主要限制结构,采用多组渗透,布置正离子组和负离子组,例如附图4所示实施例相互结合使半透膜两侧渗透压差增大。
以b)磁场作为限制结构,应限制磁场所在区域流体的流动速度,磁场不做功,只能改变离子溶质的运动方向,快速流动的溶液会带着离子溶质穿过磁场区域,磁场的强度与磁场区域、离子种类、流体流动速度、流体温度相关,对于不同的结构所需磁场的强度也不同,具体结构中,磁场强度应满足离子在该温度下最大速度在磁场中圆周运动的半径远小于磁场宽度,可通过计算或试验确定磁场强度。
附图5是溶质限制装置结构中包含a)电场,b)磁场,e)离子交换膜,f)可与溶质发生反应的物质的实施例。其中主要限制结构为a)电场和e)离子交换膜组成的电渗析结构。a)电场即15电场正极和16电场负极,以溶液与半透膜的接触面为界,将整个空间划分为溶液侧和膜侧两个区域,双膜结构则有两个膜侧区域和一个溶液侧区域,15电场正极和16电场负极的位置仅表示在溶液侧和膜侧区域的其中一个中。15电场正极和16电场负极的符号仅为示意,电场可以采用任意形式电场,匀强电场、点电场、异形电场等等。e)27离子交换膜,其中带
Figure PCTCN2019091023-appb-000005
符号的为阳离子交换膜与16电场负极在同一侧,带
Figure PCTCN2019091023-appb-000006
符号的为阴离子交换膜与 15电场正极在同一侧。
附图6是溶质限制装置结构中包含a)电场,d)半透膜的实施例。其中主要限制结构为d)4半透膜。a)电场即15电场正极和16电场负极,使离子溶质重新分布以确保限制结构中4半透膜附近离子浓度低于渗透结构中4半透膜附近离子浓度,此示意实施例渗透结构以带正电的离子溶质提供渗透的渗透压,适用于带正电的离子溶质总数量大于带负电的离子溶质的情况,将15电场正极和16电场负极位置交换,即转变为,渗透结构以带负电的离子溶质提供渗透的渗透压,适用于带负电的离子溶质总数量大于带正电的离子溶质的情况。
附图7是溶质限制装置结构中包含b)磁场,d)半透膜的实施例。其中主要限制结构为d)4半透膜。b)17磁场布置在限制结构中4半透膜附近,以减少离子溶质到达限制结构中4半透膜附近。此实施例可以和附图6实施例组合,也可作为一种优选实施例。
以d)半透膜作为限制结构,需确保限制结构中的溶剂理论通量大于渗透结构中,避免渗透中13带离子溶质的溶液室压力上升,损坏4半透膜。随着使用时间增加,限制结构中的d)4半透膜会不可避免的出现污染现象,应及时清洗更换。
附图8是溶质限制装置结构中包含c)由28疏溶剂分离膜和29冷却气态溶剂到液态的装置组成的用来进行膜蒸馏过程的结构的实施例。此结构中同样需确保限制结构中的溶剂理论通量大于渗透结构中。膜蒸馏技术是用于分离水溶液中的非挥发溶质的膜分离技术,此处借用了膜蒸馏技术并进行拓展,适用于可挥发溶剂含有非挥发溶质的情况。采用某种常温易挥发的溶剂,此实施例为最优实施例之一。
附图9是溶质限制装置结构中包含f)可与溶质发生反应的物质的实施例。其中主要限制结构为f)24可与溶质发生反应的物质。此实施例在自然界较为常见,所有的植物均类似于此实施例,从土壤中吸取溶质——营养物质,以渗透压吸收溶剂——水并将溶质——营养物质运输到可与溶质发生反应的物质——叶片中,叶片吸收营养物质,水分析出或蒸发经过自然的循环最终再回到土壤中。人工实施成本过高,只有特殊情况——其反应和产物是有价值且需要的情况下,才有人工实施的意义。
附图10是溶质限制装置结构中包含d)半透膜,f)温度低于渗透现象中半透膜温度的区域,g)在渗透现象发生区域的加热结构的实施例。其中主要限制结构为d)4半透膜。此实施例需要有天然存在的温差条件下,才有实施的价值。
本发明的实施方式包括以上列举的几种实施例,但不局限于这几种实施例。一切本发明所属领域的技术人员可以联想到的变形,均属于本发明的保护范围。

Claims (7)

  1. 一种渗透式热能利用方法,其包括:
    利用溶质限制装置锁定部分或全部溶质在半透膜两侧形成渗透压;
    在渗透压作用下,溶剂通过半透膜到达另一侧,为溶剂减少侧提供足量的溶剂来源,可以采用以下方式A和B中的任一种或两种,最终使结构和外部流量的整体形成完整的溶剂或溶液流量循环,A)将溶剂减少侧与溶剂增加侧直接或间接连通,,B)将溶剂减少侧直接或间接连通至溶剂库或自然溶剂源;
    以循环某部分流体的能量作为动力,进行发电或带动其他装置。
  2. 根据权利要求1所述的方法,其进一步包括:
    所述溶质限制装置结构中包含以下任一种或几种结构:a)电场,b)磁场,c)由疏溶剂分离膜和冷却气态溶剂到液态的装置组成的用来进行膜蒸馏过程的结构,d)半透膜,e)离子交换膜,f)可与溶质发生反应的物质,g)温度低于渗透现象中半透膜温度的区域,h)在渗透现象发生区域的加热结构。
  3. 根据权利要求2所述的方法,其进一步包括:
    所述磁场的产生结构中包含以下任一种或几种:a)永磁体、b)电磁体、c)超导磁体。
  4. 根据权利要求2或3所述的方法,其进一步包括:
    所述电场的产生结构中包含以下任一种或几种:a)电导体、b)永电体、c)电容器结构。
  5. 根据权利要求4所述的方法,溶质限制装置结构中含有电场时,布置正离子组和负离子组,正离子组利用电场锁定部分或全部正离子溶质在半透膜两侧形成渗透压,负离子组利用电场锁定部分或全部负离子溶质在半透膜两侧形成渗透压,正离子组溶剂增加侧和负离子组溶剂减少侧直接或间接连通,负离子组溶剂增加侧和正离子组溶剂减少侧直接或间接连通,其进一步包括:
    将正离子组溶剂减少侧与正离子组溶剂增加侧用单向阀连通,负离子组溶剂减少侧与负离子组溶剂增加侧用单向阀连通,使溶剂减少侧的溶液可以通过单向阀到达溶剂增加侧,溶剂增加侧的溶液不能通过单向阀,从而间歇的将溶剂减少侧因渗透发生而堆积的溶质运送到溶剂增加侧。
  6. 一种渗透式热能利用装置,其包括:半透膜,溶质限制装置,可将流体的能量转化为机械能的转化装置,半透膜一侧腔体与转化装置直接或间接连通。
  7. 根据权利要求6所述的装置,其进一步包括:
    所述溶质限制装置结构中包含以下任一种或几种结构:a)电场,b)磁场,c)由疏溶剂分离膜和冷却气态溶剂到液态的装置组成的用来进行膜蒸馏过程的结构,d)半透膜,e)离子交换膜,f)可与溶质发生反应的物质,g)温度低于渗透现象中半透膜温度的区域,h)在渗透现象发生区域的加热结构。
PCT/CN2019/091023 2018-06-15 2019-06-13 一种渗透式热能利用方法和装置 WO2019238082A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810621112.7A CN108744973A (zh) 2018-06-15 2018-06-15 一种渗透式热能利用方法和装置
CN201810621112.7 2018-06-15

Publications (1)

Publication Number Publication Date
WO2019238082A1 true WO2019238082A1 (zh) 2019-12-19

Family

ID=63978231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091023 WO2019238082A1 (zh) 2018-06-15 2019-06-13 一种渗透式热能利用方法和装置

Country Status (2)

Country Link
CN (1) CN108744973A (zh)
WO (1) WO2019238082A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108744973A (zh) * 2018-06-15 2018-11-06 毛靖宇 一种渗透式热能利用方法和装置
CN110605026A (zh) * 2018-06-15 2019-12-24 毛靖宇 一种离子渗透调节方法和装置
CN111285525B (zh) * 2020-02-24 2021-02-02 山东大学 一种基于余热回收及除盐的逆流式prmd-pro系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742259A1 (de) * 1997-09-25 1999-04-01 Schmidt Luesmann Jochen Dr Ing Verfahren zur Energieerzeugung
JP2009047012A (ja) * 2007-08-14 2009-03-05 Mitsubishi Electric Corp 浸透圧発電システム
CN102725053A (zh) * 2009-10-28 2012-10-10 Oasys水有限公司 正向渗透分离工艺
CN103172189A (zh) * 2013-04-09 2013-06-26 中国科学院化学研究所 一种利用渗透能发电的装置
CN108744973A (zh) * 2018-06-15 2018-11-06 毛靖宇 一种渗透式热能利用方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742259A1 (de) * 1997-09-25 1999-04-01 Schmidt Luesmann Jochen Dr Ing Verfahren zur Energieerzeugung
JP2009047012A (ja) * 2007-08-14 2009-03-05 Mitsubishi Electric Corp 浸透圧発電システム
CN102725053A (zh) * 2009-10-28 2012-10-10 Oasys水有限公司 正向渗透分离工艺
CN103172189A (zh) * 2013-04-09 2013-06-26 中国科学院化学研究所 一种利用渗透能发电的装置
CN108744973A (zh) * 2018-06-15 2018-11-06 毛靖宇 一种渗透式热能利用方法和装置

Also Published As

Publication number Publication date
CN108744973A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2019238082A1 (zh) 一种渗透式热能利用方法和装置
Jia et al. Blue energy: Current technologies for sustainable power generation from water salinity gradient
EP2407233B1 (en) Apparatus for osmotic power generation and desalination using salinity difference
CN101573173B (zh) 渗透式热机
Post et al. Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis
McGinnis et al. A novel ammonia–carbon dioxide osmotic heat engine for power generation
Post Blue Energy: electricity production from salinity gradients by reverse electrodialysis
Goh et al. The water–energy nexus: solutions towards energy‐efficient desalination
Jiao et al. Membrane-based indirect power generation technologies for harvesting salinity gradient energy-A review
Choi et al. Evaluation of fouling potential and power density in pressure retarded osmosis (PRO) by fouling index
He et al. Modelling of osmotic energy from natural salt gradients due to pressure retarded osmosis: Effects of detrimental factors and flow schemes
Xu et al. Influential analysis of concentration polarization on water flux and power density in PRO process: Modeling and experiments
Emami et al. A brief review about salinity gradient energy
WO2019238081A1 (zh) 一种离子渗透调节方法和装置
KR101758979B1 (ko) 염도차 발전 시스템 및 염도차 발전 방법
CN105048870A (zh) 一种通过反电渗析装置利用工业生产中产生的中低温废热发电的方法
Wu et al. Fluidics for energy harvesting: from nano to milli scales
ITMI20090373A1 (it) Dispositivo e procedimento atto a generare energia elettrica che utilizza soluzioni con differente concentrazione ionica
Buonomenna Nano-Enhanced and Nanostructured Polymer-Based Membranes for Energy Applications
Mukherjee et al. Role of thermodynamics and membrane separations in water‐energy nexus
Saleem et al. Pure water and energy production through an integrated electrochemical process
Tshuma et al. Hydraulic energy generation for RO (reverse osmosis) from PRO (pressure retarded osmosis)
Mishchuk Prospects for Electricity Production by the Reverse Electrodialysis Method
Terashima et al. Effect of salt concentration on permeation performance in hollow fiber type PRO membrane module
CN109555636A (zh) 一种海岸波浪能综合利用系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820217

Country of ref document: EP

Kind code of ref document: A1