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Abstract: Various active compounds isolated from natural sources exhibit remarkable benefits,
making them attractive for pharmaceutical and biomedical applications, such as antioxidant, an-
timicrobial, and anti-inflammatory activities, which contribute to the treatment of cardiovascular
diseases, neurodegenerative disorders, various types of cancer, diabetes, and obesity. However, their
major drawbacks are their reactivity, instability, relatively poor water solubility, and consequently low
bioavailability. Synthetic drugs often face similar challenges associated with inadequate solubility or
burst release in gastrointestinal media, despite being otherwise a safe and effective option for the
treatment of numerous diseases. Therefore, drug-eluting pharmaceutical formulations have been
of great importance over the years in efforts to improve the bioavailability of active compounds
by increasing their solubility and achieving their controlled release in body media. This review
highlights the success of the fabrication of micro- and nanoformulations using environmentally
friendly supercritical fluid technologies for the processing and incorporation of active compounds.
Several novel approaches, namely micronization to produce micro- and nano-sized particles, super-
critical drying to produce aerogels, supercritical foaming, and supercritical solvent impregnation, are
described in detail, along with the currently available drug delivery data for these formulations.

Keywords: supercritical fluid technologies; active compounds; drug formulation; drug delivery

1. Introduction

Despite considerable success in developing new drugs, trends show that the biophar-
maceutical potential of many newly manufactured chemical products has not yet been
realized because they suffer from poor solubility in aqueous media, low permeability, and
they are rapidly metabolized and excreted from the body with low tolerability due to the
increasing development of drugs with greater lipophilicity and higher molecular weight.
Poor solubility is the most challenging aspect and represents the majority of failures in the
development of new pharmaceuticals, accounting for approximately 40% of drugs with
marketing approval and 90% in the discovery pipeline. Such drugs with poor solubility are
classified as Class 2 and Class 4 in the Biopharmaceutical Classification System (BCS), which
necessitates the exploration of drug formulations using micro- and nano-encapsulation or
micronization techniques to improve the in vitro and in vivo performances of such drug
candidates and, consequently, their bioavailability [1,2].

Proteins, polysaccharides, vitamins, minerals, antioxidants, and enzymes from nat-
ural sources are also promising candidates for use in the nutraceutical, pharmaceutical,
biomedical, and cosmetic industries due to their diverse benefits, abundance in nature,
and affordability [3,4]. Proven positive therapeutic effects and growing environmental
concerns are the main motivations for researching natural bioactive compounds as possible
alternatives to synthetic drugs [5]. Growing evidence suggests that plant polyphenols,
which include anthocyanidins, catechins, flavanones, flavones, flavonols, isoflavones, hy-
droxybenzoic acids, hydroxycinnamic acids, lignans, and tannins, play an important role
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in the prevention of numerous diseases [4]. Polyphenols are usually secondary metabolites
of plants, consisting of an aromatic ring with one or more hydroxyl groups. They act as
antioxidants [6], have antibacterial and antifungal effects [7,8], and may alter the expression
of genes in the inflammatory pathway [9,10], thus playing a protective role against can-
cer [11], cardiovascular disease, diabetes, and Alzheimer’s disease [12,13]. However, their
disadvantages lie mainly in their instability and insolubility in body fluids and challenging
adsorption through membranes, resulting in poor bioavailability in the body [4,14].

For synthetic and natural active ingredients (AIs), current research is focused on
eliminating environmentally harmful chemicals and processing methods by implementing
environmentally friendly technologies [5]. The formulation of AIs with supercritical fluids
(SCFs) is one of the leading strategies incorporating environmentally friendly and eco-
nomically promising characteristics, and it provides quality products without using high
temperatures that could lead to the thermal degradation of AIs [15–17]. The higher bioavail-
ability of AIs is feasible by means of supercritical (SC) micronization [18,19] or by the
SCF-guided encapsulation of AIs into various polymeric matrices or frameworks [15,17,20].

This review comprehensively describes various well-established SCF technologies for
the formulation of AIs. It includes micronization methods, namely the rapid expansion
of supercritical solutions (RESS), antisolvent methods, and particles from gas-saturated
solutions (PGSSTM), which can improve bioavailability by reducing particle size, and the
technologies for encapsulating AIs in polymer carriers. The review also addresses the
preparation of aerogels and foams as porous drug carrier formulations for AIs. Finally, SC
solvent impregnation is used to incorporate AIs into prepared polymer carriers. Depending
on the role of the SCF as a solvent, antisolvent, or solute, the choice of the carrier material,
SCF interactions with the AIs and polymeric carriers, and the selected operating conditions,
different products with characteristic drug release kinetics can be fabricated. Therefore, this
paper will discuss in detail drug delivery from prepared SCF formulations and highlight
the future prospects in this field.

2. SCF Technologies for the Incorporation of AIs

In the last few decades, tremendous progress has been made in developing SCF
technologies for drug formulation. The main reasons for their use in the pharmaceutical
field are environmental concerns, as the processes are carried out in the absence of organic
solvents with detrimental effects, the production of high-quality products by utilizing SCFs
with adjustable properties under different processing conditions, and cost efficiency [21]. A
wide selection of substances can be used as SCFs, which can exist as a single phase above
the critical conditions, such as H2O, N2, Xe, SF6, N2O, C2H4, CHF3, ethylene, propylene,
propane, ammonia, n-pentane, ethanol, acetone, etc. However, CO2 has most frequently
been implemented for numerous reasons (Figure 1) [22]. It is an inert, nonpolar, non-
inflammable, and inexpensive gas generally recognized as safe (GRAS) by the Food and
Drug Administration (FDA) [23,24]. The main advantage of supercritical CO2 (SC-CO2)
is its low critical point at T = 304.21 K and P = 7.382 MPa, indicating low operating costs
and convenience when working with thermosensitive pharmaceutical compounds [25]. In
addition, CO2 has excellent transport properties in the SC state due to its liquid-like density,
gas-like diffusivity, and viscosity between gas and liquid [26], which can be tunable with
varying process parameters. It provides suitable solubility for polymers, while various
co-solvents can be added to increase the miscibility of polar substances. It is recyclable and
leaves little to no trace in the final product, as it can be easily separated in the final stage of
the process by depressurization to its gaseous state [25,27].

The selection of the supercritical process for the encapsulation of AIs is based mainly
on the product’s desired morphology, the solvents’ thermodynamic properties, the en-
capsulation materials and AIs used, and the solubility of the AI in SC-CO2. Different AI
formulations can be obtained depending on the role played by SC-CO2 as a solvent, antisol-
vent, solute, drying medium, or foaming agent, which are presented in detail below [22,24].
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Figure 1. Phase diagram of CO2 and its advantageous characteristics at supercritical conditions.
Adapted from [22].

2.1. Micronization

Micronization is a size reduction technique that produces small particles of less than
10 µm, which significantly increases the bioavailability of AIs with poor water solubility
due to the improved dissolution rate of micro- and nanosized compounds in gastrointestinal
media. When smaller particles are used, their solubility increases due to their higher surface
area in contact with water, crystal lattice defects, and changes in surface thermodynamic
properties, therefore requiring lower drug dosages [28,29]. The choice of micronization
technology greatly influences the shape, agglomeration behavior, particle size, and size
distribution [30]. In addition to SCF technologies, mechanical comminution, spray drying,
and other conventional methods are used in this regard but are associated with the disad-
vantages of having a broader particle size distribution, and often utilizing high temperatures
and organic solvents [29]. SCF micronization processes can be classified into three categories
depending on the SC-CO2 role, which can serve as a solvent by using the rapid expansion
of supercritical solutions (RESS) and derived processes, as an antisolvent with the use of a
supercritical antisolvent (SAS) and derived processes, or as a solute by using particles from
gas-saturated solutions (PGSSTM) and derived processes (Figure 2) [31].
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2.1.1. RESS

RESS is a micronization process first reported in the late 1980s [35] in which SC-CO2
plays the role of a solvent. The process consists of two sequential steps. The first step
includes the AI being dissolved in SC-CO2 (alone or in combination with the coating
material, e.g., a polymer), followed by a second step of rapid depressurization (<10−6 s)
through a nozzle, which leads to a density drop and high supersaturations. The consequent
high nucleation rate limits crystal growth and allows the formation of particles smaller than
500 nm with a narrow size distribution and high purity. The apparatus is comprised of four
main units, namely a dissolution unit where solids dissolve in SC-CO2, a thermostatted pre-
expansion unit, a nozzle through which the SC solution is expanded to ambient temperature
(T) and pressure (P), and a post-expansion unit where the gas is separated from the
microparticles [32].

The final particle morphology obtained by the RESS process is influenced by several
parameters, such as T, P, the selection of a co-solvent, the mass flow rate, and the AI
concentration in SC-CO2 [32]. In addition, these parameters significantly affect the release
of processed drugs in simulated body fluids (SBF). In particular, the choice of encapsulation
material and its ratio to the drug was found to have a greater influence on the drug
dissolution rate than the influence of particle size [36–38]. Vergara-Mendoza et al. [38]
showed that the coenzyme Q10 (coQ10) was encapsulated in either poly(ethylene glycol)
(PEG) or poly(lactic acid) (PLA), which were dissolved in SC-CO2 and co-solvent ethanol
or acetone. Figure 3 shows a comparison of the drug dissolution data obtained by different
processing parameters, such as the selected encapsulating polymer, the polymer/AI ratio,
and the selected co-solvent. The drug dissolved better when ethanol was used as the
co-solvent. Interestingly, drug dissolution increases at higher polymer concentrations, i.e.,
with a ratio of 1/0.5 or 2/1, and decreases at a polymer to AI ratio of 1/1. This phenomenon
occurs regardless of the final particle size, as a higher release of coQ10 can be observed for
PLA when the polymer concentration increases despite a larger particle diameter [38].
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Engineering Chemistry Research 51(17) 5840–5846, Copyright 2012, American Chemical Society.
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Despite the production of very small particles with a narrow size distribution, the
main drawbacks of RESS are related to the high gas demand due to the low solubility of the
solids (the ratio of SCF to solutes ranges from 10 to 1000 kg/kg). In addition, the solubility
of the solutes increases with pressure; therefore, the process generally operates at pressures
higher than 10 MPa. It is estimated that the process parameters of RESS typically range
between 10–40 MPa and 308–333 K, resulting in relatively high operating costs. Together
with the difficulty of separating the fine particles from the gas volume, these drawbacks
have limited the application of the RESS process to small scale applications [27,39].

2.1.2. Antisolvent Processes

When an AI is poorly soluble or insoluble in SC-CO2 (including gaseous or liquid CO2),
the latter can be used as an antisolvent to obtain micronized AI particles. The first antisolvent
process was introduced in 1989 and is referred to as the gas antisolvent process (GAS). It
involves an AI (or an AI in combination with the carrier) being dissolved in a liquid organic
solvent that is readily miscible with CO2, followed by the solution being brought into contact
with CO2, preferably injected into the precipitation unit from the bottom. CO2 dissolves
in the organic solvent and reduces its solvent power, resulting in the supersaturation and
precipitation of the solutes, which are collected after depressurization. The supersaturation
leads to a high nucleation rate and the formation of smaller particles [23,40].

Several variants of antisolvent processes differ in the initial feedstock and as to how
different phases are brought into contact. For example, GAS and the supercritical fluid
extraction of emulsions (SFEE) differ regarding feedstock, as SFEE uses emulsions as
starting materials, whereby SC-CO2 is used to extract the organic phase of the emulsion.
However, while GAS operates without a nozzle, the supercritical antisolvent process (SAS)
uses a nozzle to atomize a mixture of the solvent and the AI. It works on the principle that
droplets of the organic solvent and the AI are sprayed into the precipitation unit that is
already filled with CO2 in the supercritical state, causing the AI to precipitate [40]. Over
the years, many modifications of SAS have been developed, such as solution-enhanced
dispersion by supercritical fluids (SEDS), the atomization of a supercritical antisolvent-
induced suspension (ASAIS), the atomization and antisolvent precipitation process (AAS),
the aerosol solvent extraction system (ASES), SAS with enhanced mass transfer (SAS-EM),
etc. This review focuses on SAS, the most commonly used antisolvent process, since
detailed descriptions of the variants can be found elsewhere [23,41–43] and are beyond the
scope of this review [23,42].

Unlike GAS, SAS can operate continuously and is therefore suitable for industrial
scale application [40]. However, a deeper understanding of the process is still required
for more common use in the pharmaceutical industry, as particles with an irregular shape,
broad particle size distribution, and low encapsulation efficiency have previously been
collected. Since the process involves three components, the ternary phase equilibrium
must be carefully observed to obtain particles with the desired properties [23]. Both
crystalline and amorphous products can be obtained by adjusting the operating conditions.
Crystalline materials are precipitated at fixed temperatures and a P below the critical point
of the mixture. Meanwhile, amorphous materials can be obtained by increasing the P to
values well above the critical point and have been shown to accelerate the drug dissolution
rate in aqueous media [44,45].

Supercritical antisolvent fractionation (SAF) is a subvariant of the SAS method. This
relatively new method is in the foreground for the purification of target compounds with
high yield and purity. It exploits the likelihood that different compounds in the feed mixture
(e.g., a natural extract containing various bioactive compounds) will precipitate differently
under the same process conditions, such as P, T, the amount of solvent, and the choice of
antisolvent [46]. When SC-CO2 is brought into contact with the feed mixture and organic
solvent under pressure, the SC-CO2 dissolves the nonpolar compounds that are soluble in
the fractionation media and leads to selective precipitation of the polar compounds. [47,48].
For example, Villalva et al. used SAF to fractionate Achillea millefolium L. extract, resulting
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in two fractions, one rich in phenolic compounds with high antioxidant potential, and the
other rich in essential oil with high anti-inflammatory activity [49]. The complete or partial
separation and enrichment of a mixture containing AIs is feasible by obtaining two or more
fractions of compounds [47].

2.1.3. PGSSTM

PGSSTM uses SC-CO2 as a solute and is suitable for the micronization of AIs and coat-
ing materials insoluble in SC-CO2, but it can absorb large quantities of gas, which lowers
their melting point. An autoclave is filled with substances (AI alone or in combination with
a coating material) that are melted, emulsified, or suspended in the liquid. SC-CO2 is then
introduced into the autoclave to dissolve in the melt and form a gas-saturated solution. The
contents of the autoclave are then passed through a nozzle and sprayed in a spray tower at
atmospheric P, resulting in expansion. During expansion, the mixture’s temperature drops
considerably due to the Joules–Thompson effect, forming solidified micron-sized particles
separated from the stream of gaseous CO2 in a cyclone [39,50,51].

PGSSTM is one of the SC micronization processes most commonly used on an industrial
scale due to several advantages. First, the process is exceptionally economical due to the
low consumption of the SCF (starting at 1 g of CO2 per g of substance mixture), the
high precipitation yields, and operation at moderate T and P. In addition, the process
can be operated in batch mode or continuously, with relatively easy scale-up and low
investment costs. The micronized particles are also solvent-free and have the narrowest size
distribution, despite the disadvantage of the process being unable to fabricate submicron-
sized particles [22,27,39].

Various AIs have been formulated using PGSSTM [52–62]. Spheres, fibers, and porous
particles can be produced [54]. The morphology of the products varies depending on the
drug-loading level in the solid dispersion (SD), the P and T in the autoclave, the filling rate
of the autoclave, the nozzle diameter, the agitation speed, and the agitation time [52,53].
The impact of these parameters on drug dissolution was evaluated using an experimental
design approach in a study in which composite particles of SD-containing fenofibrate and
gelucire were prepared by PGSSTM. The most influential parameters were the autoclave T
and P, and the drug loading level in SD, and the optimal conditions found were T = 78 ◦C,
P = 80 bar, and wt.% = 220 mg drug per g SD. [52]. The selection of the carrier materials
is also critical for obtaining the desired drug kinetics. For example, S-(+)-ibuprofen was
encapsulated in different carrier materials by PGSSTM. Drug release tests in simulated
gastric and intestinal fluids demonstrated the faster solubility of ibuprofen for poloxamer
as the carrier material, while sustained, controlled release was observed for gelucire and
glyceryl monostearate [54].

2.2. SC Drying for the Preparation of Aerogels

Since Kistler’s invention thereof in 1931 [63], aerogels have been of great interest for
various applications, namely as thermal insulators in construction [64], in the packaging,
textile, and cosmetics industries [65], as catalysts [66], in the development of biosensors [67],
as energy storage devices [68], for space applications [69], as bioactive coatings in the
biomedical field [70], and as carriers of AIs in the pharmaceutical industry [71–74]. They
are known for their exceptional properties, as presented below:

I. a three-dimensional, highly porous structure (with a pore diameter smaller than
100 nm) [75],

II. a very low density (0.0011–0.5 g/cm3) [75],
III. a large specific surface area (70–1600 m2/g) [76],
IV. low thermal conductivity (as low as 0.012 W/mK in air at 1 atm and 300 K) [77],
V. a low dielectric constant,
VI. a low speed of sound, and
VII. a low refractive index [75,78].
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Kistler defined aerogels as materials derived from wet gels in which the liquid in the
pores is replaced by gas under conditions that preserve their volume [75]. A more exact
definition also describes them as an open, solid, colloidal, or polymeric network consisting
of loosely packed, interconnected particles or fibres [65].

They are produced by sol-gel synthesis and subsequent drying of the gels produced.
The process begins with the formation of a colloidal suspension “sol”, which is formed
by dispersing the precursor particles in the selected solvent. Adding a catalyst to the
solution stimulates polymerization reactions involving hydrolysis and polycondensation.
The physical or chemical crosslinking of the polymer leads to the formation of a wet gel, a
two-phase system consisting of a solid three-dimensional network and a solvent entrapped
in its pores. The bonds formed during gelation are initially weak. Therefore, gel aging
is required to strengthen the bonds in the network and to achieve mechanical stability.
Finally, the prepared wet gel is dried to remove the liquid solvent in the pores of the gel
and replace it with gas. Depending on the drying method, different end products can
be produced. Air drying or evaporation produces xerogels, freeze-drying/lyophilization
produces cryogels, and supercritical drying produces aerogels [79,80]. In SCF drying,
the transition from the liquid to the gaseous state is achieved without directly crossing
the phase boundary between the liquid and gaseous state. Instead, the transition occurs
through the supercritical region, which can avoid surface tension and the consequent failure
of the structure. Therefore, the advantage of drying with a SCF is that it preserves the
structural characteristics of the wet gel and forms highly porous end materials with a high
specific surface area [75,78]. SC-CO2 is most commonly used for the supercritical drying
of wet gels. Alcohol is often used as a substitute for the aqueous phase in the hydrogel
obtained by sol-gel synthesis to prepare so-called alcogels because the alcohol in the pores
is readily miscible with SC-CO2 and can therefore be easily removed [81,82].

Different strategies are available for the incorporation of AIs into the carrier (Figure 4).
For example, AIs can be incorporated into the aerogel structure during aerogel preparation
or after SC drying. Despite the need for high AI dosages, the most straightforward strategy
is to add the AIs to the precursor solution of the gel before crosslinking and SC drying.
However, this is only possible for AIs soluble in the precursor solution and insoluble in
alcohol and the SCF to avoid premature extraction [83]. Alternatively, if the AI is soluble
in alcohol and insoluble in SCF, it can be incorporated into the gel structure during the
solvent exchange step in the preparation of the alcogel from the alcoholic solution [83,84].
Loading AIs that are soluble in SC-CO2 (e.g., various essential oils) is also feasible during
SC drying [83,85,86]. After preparation, the final strategy is to load the AIs by diffusion
through the pore network into the aerogels. Supercritical impregnation can achieve this,
which is advantageous because only small dosages of AIs are required, there are no solvent
residues, the process occurs at low working temperatures, and it is generally suitable for
water-insoluble drugs [83].

Aerogels can be made from various inorganic [87–89] and organic materials [90,91],
thus contributing to their unique characteristics and wide application. Conventional aero-
gels based on inorganic and petrochemical materials such as silica, graphene, titanium,
and their oxides have certain shortcomings in biomedical and pharmaceutical applications.
Many are not environmentally friendly; for example, silica-based aerogels are considered
biocompatible but not biodegradable. Therefore, various biodegradable organic polysaccha-
ride materials have been investigated as carriers of AIs for oral drug delivery applications
because they are formulated from natural components and because they are abundant, envi-
ronmentally friendly, biodegradable, and biocompatible [92]. Examples of polysaccharides
used to prepare aerogels include cellulose [93], starch [94], carrageenan [73], chitosan [95],
alginate [82,96], and pectin [97,98]. The structural characteristics of such aerogels differ
based on their chemical properties and the methods used to prepare the gels [92,99]. Op-
timizing the drug release kinetics controlled by the diffusion mechanism and polymer
degradation for a particular application is very important. Successful attempts have already
been made to achieve the controlled release of AIs from biodegradable aerogels in simulated
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gastric and intestinal fluids [100,101]. In addition, the solubility of AIs with a hydrophobic
character was significantly improved by their incorporation into aerogels [94,97,102].
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2.3. SC Foaming

In SC foaming, SC-CO2 is used alone or in combination with other gasses as a blowing
agent. The most frequently used foaming processes are batch foaming, extrusion, and
injection molding. Batch foaming is mainly employed on a laboratory scale and offers
good control of the processing variables. In this process (Figure 5), CO2 is first dissolved
in a selected polymer under pressure to produce a polymer/gas solution [103]. Reducing
the P or increasing the T then triggers the foaming process resulting from thermodynamic
instability due to the supersaturation of the CO2 dissolved in the polymer [104]. The
foaming process consists of bubble nucleation and bubble growth (expansion), and it is
completed before the vitrification or crystallization of the polymer to avoid cell coalescence,
which could lead to the rupture of the cell wall and the collapse of the foam structure.
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Although the concept seems comprehensible, understanding the parameters, such as
gas concentration, the diffusivity of the gas in the polymer, temperature, the decompression
rate, and the thermodynamic properties of the polymer, is crucial to obtaining stabilized
end products with the desired morphology. In particular, the plasticization effect of the
polymer is an important parameter that greatly assists in stabilizing the foam. The glass
transition temperature of the polymer is typically reduced upon exposure to CO2. However,
when the polymer/gas solution leaves the nozzle, the CO2 is desorbed, resulting in the loss
of the plasticization effect, which helps stabilize the foam obtained. In addition, the foam
generation process requires the good solubility of the foaming agents in a selected polymer
and an adequate melt strength [103]. Usually, amorphous polymers are used because they
have a low glass transition temperature, such as polystyrene [106], poly(ε-caprolactone)
(PCL) [107], PLA [108–110], poly(lactic-co-glycolic acid) (PLGA) [16,110–112], etc. PCL,
PLA, and PLGA are used particularly in biomedical and pharmaceutical applications due
to their biocompatibility, good degradability, and mechanical properties [113]. Porous
matrices obtained by the SC foaming of these polymers are desirable for developing drug
delivery systems as their open pore structure provides a large specific surface area allowing
drug loading and controlled local release. Various strategies have been developed for
incorporating drugs into foamed polymers, including single-step foaming and the drug
impregnation of the polymer matrix. In this process, the polymer and drug are placed in a
vessel and saturated with CO2, followed by establishing the supercritical conditions. When
the glass temperature of the polymer falls below the process temperature, the polymer
chains swell. Upon CO2 leaving the system by depressurization, the process of nucleation
begins due to the supersaturation of the polymer matrix. During this process the active
ingredient can easily disperse in the porous structure of the foam [114,115]. Such one-step
systems are possible by using the polymer, SC-CO2 and the drug, or by adding a co-solvent
to the polymer. For example, Álvarez et al. prepared a gemcitabine-loaded PLGA foam by
adding the drug to an ethyl lactate and PLGA mixture, followed by the slow introduction of
high-pressure CO2 into the system to dissolve it in the mixture [116]. Alternatively, various
two-step strategies have been developed to introduce the drug into a foam. Rojas et al. [117]
prepared PLA foams loaded with cinnamaldehyde by SC foaming and the subsequent CO2-
assisted impregnation of the obtained PLA foams. Ong et al. [112] developed a two-step
system consisting of an emulsification-solvent evaporation microencapsulation technique
and the foaming of the polymer. Similarly, a two-step spray-drying and foaming process
was presented by Lee et al. [118] and Nie et al. [111]. Current findings on drug dissolution
from polymeric carriers obtained by SC foaming in most cases has revealed prolonged
release in phosphate-buffered saline (PBS), often lasting more than a month, thus showing
great promise for biomedical applications [110,111,118,119].

2.4. SC Solvent Impregnation (SSI)

SSI is used in various fields, including textile dyeing, wood impregnation, biomedicine
(e.g., tissue engineering, wound dressings), and the development of controlled-release drug
delivery systems [120]. The process takes advantage of the physicochemical properties of
SC-CO2, especially its density, which is close to a liquid and ranges from 0.2 to 1.5 g/cm3,
and its gas-like diffusivity. Due to its high density, it has good solvation power and
can solubilize various compounds, while its high diffusivity enables the diffusion of
hydrophobic drugs with CO2 into polymeric matrices. The process in the SSI apparatus
(Figure 6) involves first dissolving the drug in SC-CO2 by adding it separately to the reactor
with the polymer. For biomedical applications, impregnated polymers are typically various
biodegradable polyesters (poly(l-lactic acid) (PLLA), poly(d-l-lactic acid) (P(D,L)LA), PLGA,
PCL), hydrogels, aerogels, silicon-based copolymers, poly(methyl methacrylate) (PMMA),
etc. The desired P (90–200 bar) and T (35–55 ◦C) are then established, allowing contact
between SC-CO2 and the drug with the polymer, which facilitates the diffusion of the drug
into the polymeric matrix [25]. Under these conditions, the compressed fluid may also
induce swelling or act as a plasticizer agent for the polymer, thereby aiding the diffusion of
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the drug into the polymer matrix [121]. Afterwards, depressurization allows the CO2 to
change into a gaseous state upon venting, and the impregnated polymer can be recovered.
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Usually, the loading of the AI into the polymer is determined, and the impregnation
efficiency is evaluated using the partitioning coefficient K, which indicates the relative
affinity of the drug for the polymer and CO2 under certain conditions [25]. Depending on
the contact between the AI and the polymer, impregnation can be static or dynamic. In
static impregnation, the SC-CO2, AI, and polymer are placed in a reactor and subjected
to the desired T and P, while in the dynamic method, the SC-CO2 is continuously passed
over the polymer matrix. In both cases, the process is influenced by several parameters,
namely the P, T, hydrodynamics, depressurization rate, solubility of the AI in SC-CO2, and
diffusion coefficient [122]. When used appropriately, the physical, chemical, or mechanical
properties of the AIs, polymers, and additives are not altered [121].

One of the most remarkable advantages of SSI is that no solvent residues remain in
the final product. Furthermore, in addition to energy and raw material savings, the process
offers the homogeneous distribution of AIs, high yields, and a relatively short operating
time. SSI is usually employed for the AIs with good solubility in SC-CO2 and thus poor
water solubility. It has been demonstrated that the impregnation of polymer matrices with
such AIs successfully improves their dissolution in SBF [123–125]. However, more complex
systems have also been explored in which a co-solvent is added to the reactor to change the
polarity of CO2 and the solubility of the hydrophilic drugs in SC-CO2 [25,122].

3. Drug Delivery from Formulations Prepared by SCF Technologies

The earliest report related to controlled drug delivery dates back to 1952, when a
sustained release formulation was first introduced [126]. Since then, various delivery
technologies have been developed, which can be divided into three generations. The first
generation refers to the development of oral and transdermal controlled release systems.
The second generation refers to the development of systems with zero-order release kinet-
ics, self-regulated drug delivery, long-term depot formulations, and the development of
nanotechnologies for drug delivery. This also includes research on smart polymers and
hydrogels, environmentally sensitive systems (e.g., triggered by T, pH), biodegradable
systems, etc. The third generation focuses on developing targeted drug delivery (anti-
cancer drugs, siRNA), insulin delivery systems, long-term delivery systems (6–12 months
release), and in vitro–in vivo correlation by predispositioning the release profiles. The
delivery of AIs with the desired release kinetics requires a sufficient understanding of
the physicochemical properties of the active ingredients. In this manner, carrier selec-
tion, release mechanisms, and kinetics, which are the most important factors in ensuring
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an appropriate drug delivery system, can be determined. Before in vivo pharmacoki-
netic studies are performed, the suitability of the obtained formulations is confirmed by
in vitro testing [127]. The United States Pharmacopeia (USP) apparatus is most commonly
used for oral and transdermal in vitro drug delivery systems. Seven variations of the
USP apparatus (1—basket, 2—paddle, 3—reciprocating cylinder, 4—flow-through cell,
5—paddle over the disc, 6—cylinder, and 7—reciprocating holder) enable an evaluation
of drug release from the carrier into the SBF and the determination of release profiles
by measuring drug concentrations released over a period of time [128]. Detection is
usually performed by UV-Vis spectrophotometry [129–131] or high performance liquid
chromatography (HPLC) [132–134]. In addition to various modifications of the USP ap-
paratus, the oscillating tube apparatus, the Levy–Hayes beaker apparatus, the NF XII
apparatus (rotating-bottle type), the Büchner funnel apparatus, and the Wiley apparatus
are also employed for drug release testing [135]. In vitro release studies are performed as
part of the preliminary testing of drug formulations and serve as quality control to support
batch release, to conduct indirect measurements of drug availability, and to predict the
impact of formulation methods, drug-carrier interactions, and various other factors on drug
bioavailability [128]. Such studies are pivotal for predicting and optimizing drug release ki-
netics from prepared formulations at lower cost by reducing the number of bioequivalence
studies required for scale-up [136].

The formulation of AIs using SCFs enables the development and control of drug
particle size [137], as well as the preparation of porous carriers suitable for the loading of
AIs [138] and the AI impregnation of carriers [139]. This is feasible by taking advantage
of the tunable properties of SCFs, particularly SC-CO2, and operating with them under
different processing conditions. The interaction of the polymeric carrier with SC-CO2 is
an important factor in selecting SC technology. Soh et al. [22] emphasized that materials
fitting for SAS processing are often not suitable for RESS or PGSSTM as they are not soluble
in SC-CO2. In addition, PLGA, for example, is promising for SC foaming due to its low
glass transition temperature. However, processing PLGA with SAS is reportedly difficult.
Furthermore, the choice of SCF technology depends mainly on the interactions of AI
with SC-CO2. When an AI is nonpolar and highly soluble in SC-CO2, the RESS process
is primarily used for its micronization. Micronization with RESS greatly increases the
dissolution of AIs in SBF compared to untreated AIs, thus significantly improving their
bioavailability [140]. SSI can also be employed when AI is soluble in SC-CO2 because
SC-CO2 serves as a transport medium and allows the diffusion of AI into the polymer
matrix. Accordingly, nonpolar AIs are impregnated into polymeric carriers, which, due to
their (porous) structural properties, allow the enhanced release of AIs into SBF compared
to unprocessed AIs [123,124]. On the contrary, when AI is poorly soluble in SC-CO2,
antisolvent processes (GAS, SAS, etc.) and PGSSTM are used for its micronization or
encapsulation. However, depending on the organic solvents and co-solvents used, these
methods can also be used for a wider range of AIs of different polarity [19,52,60,141].

Depending on the selected AI, carrier material, and the composition of the final
product, the processing of the AI into aerogels can facilitate both the immediate and delayed
release of the AI. Many studies have confirmed that embedding the AI in biodegradable
polysaccharide aerogels is promising for oral drug delivery. Compared to crystalline
AIs, these aerogels achieve more controlled release over a period of several hours to
several days of testing [100,102,142]. Compared to the incorporation of AIs into aerogels,
SC foaming often achieves long-term release of several days to 1–2 months due to the
structural properties of polymer foams (PCL, PLA, PLGA), which is why their application
is often focused on biomedical purposes (implant coatings, tissue engineering) [118,143].
The outcomes of AI release studies from SC formulations are summarized in detail in
Table 1, which shows the results of AI release according to the SC technology used, the
selected AI, and the release system in which the AI is incorporated.
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Table 1. The results of AI release in in vitro drug dissolution tests, obtained by the selected SC
technique, AI, and system of AI incorporation.

SC Technique AI System AI Release Reference

RESS

Carbamazepine AI in SC-CO2

Submicron carbamazepine has a dissolution
rate coefficient that is up to two times

higher than that of the original material.
[144]

coQ10

AI with PEG and PLA in
SC-CO2 + co-solvent

(ethanol/acetone)

PEG: A higher release rate when the
concentration of the PEG is higher than that
of coQ10 (a smaller particle size is produced)
and by ethanol as a co-solvent, maintaining

the same PEG/coQ10 ratio.PLA: a higher
release rate when the PLA concentration is
higher than coQ10.The best dissolution rate

occurs at a PLA/coQ10 ratio of 2/1.

[38]

Ethosuximide AI in SC-CO2
Enhanced dissolution rate in PBS compared

to the unprocessed material. [145]

Fenofibrate AI in SC-CO2

Enhanced dissolution rate in water with
0.05 M SLS: 8.1 times higher dissolution rate

coefficient for the micronized AI.
[146]

Letrozole AI in SC-CO2 + co-solvent
(menthol)

Improved dissolution rate: 14.86 times
higher dissolution rate coefficient for the

micronized drug.
[147]

Lonidamine AI in SC-CO2
Improved dissolution rate of the micronized

drug in aqueous media. [148]

Naproxen AI in SC-CO2

Improved dissolution rate in SBF: higher
dissolution rate coefficients of the
micronized drug compared to the

unprocessed drug at pH = 2.0 and pH = 7.4.

[149]

Progesterone AI in SC-CO2
Enhanced drug dissolution rate after

RESS treatment. [150]

SAS

Cetirizine dihy-
drochloride and

ketotifen
AIs in zein and SC-CO2

Prolonged (controlled) release of both
processed antihistamines. [151]

Curcumin

AI and poly (vinyl
pyrrolidone) in an

ethanol/acetone mixture with
SC-CO2

Up to 600 times increased solubility of the
processed AI compared to unprocessed. [45]

Fenofibrate AI in the polymers P407 and
TPGS with SC-CO2

95.1% ± 2.5% improved drug dissolution
rate compared to the unprocessed drug. [19]

Ketoprofen and
nimesulide

AIs in β-cyclodextrin with
SC-CO2

An enhancement of the drug dissolution
rate of up to 21 (nimesulide) and

7 (ketoprofen) times.
[152]

Mangiferin

AI with N,
N-dimethylformamide (DMF)
as the solvent and SC-CO2 as

the antisolvent

4.26, 2.1, and 2.5 times better solubility of
the processed AI in water, simulated gastric

fluid, and simulated intestinal fluid,
respectively.

[153]

Rutin AI in acetone and DMSO with
SC-CO2

A dissolution rate of micronized AI particles
up to 10 times faster than nonprocessed AI. [141]

Trans-
resveratrol

AI in alcohol (methanol or
ethanol) and dichloromethane

mixtures with SC-CO2

Improved release rate of the
processed drug. [154]

GAS Rosemary
extract

AI encapsulated in PCL
dissolved in dichloromethane,

antisolvent SC-CO2

Burst release in an aqueous medium,
first-order kinetic model. [155]
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Table 1. Cont.

SC Technique AI System AI Release Reference

PGSSTM

Epigallocatechin
gallate

AI in OSA-starch, soybean
lecithin and β-glucan with

SC-CO2

Rapid release for polysaccharide matrices,
namely OSA-starch and β-glucan, and
somewhat more controlled release for

amphiphilic lecithin.

[60]

Eucalyptol PEG and/or PCL with SC-CO2

Significantly delayed release of AI in PEG
and/or PCL compared to the pure AI (an

average of 40% released AI from the
polymer and 96% released unencapsulated

AI in 120 min).

[56]

Fenofibrate AI in Gelucire® 50/13 with
SC-CO2

Slow, controlled release [52]

Fenofibrate,
nimodipine and

o-vanillin

AIs in Brij S100 and PEG 4000
with SC-CO2

Increased dissolution rate of Brij S100
micronized nimodipine, Brij S100

micronized fenofibrate, and Brij S100/PEG
4000 micronized o-vanillin compared to the

unprocessed AIs.

[59]

Ibuprofen
AI in pluronic poloxamers,

gelucire and glyceryl
monostearate with SC-CO2

Accelerated release rate of AI in pluronic
carriers, prolonged/controlled release in

gelucire and glyceryl monostearate.
[54]

Nifedipine AI in PEG 4000 with SC-CO2
Increased dissolution rate of micronized AI

compared to the unprocessed AIs. [156]

Omega-3
polyunsaturated
fatty acids and

astaxanthin-rich
salmon oil

AIs in PAG-6000 with SC-CO2
Rapid release of oil in distilled water: up to

65% within 30 min. [55]

Aerogels

Ampicillin AI loaded liposomes
entrapped in alginate aerogels

Slow and controlled release of AI from
aerogel over 100 h compared to the burst

release of pure AI within the first 5 h.
[96]

Celecoxib AI in potato starch aerogel

Faster dissolution rate of AI from aerogel
compared to pure AI in simulated gastric
and intestinal fluids over a period of 7 h.

The release kinetics follow the
Korsmeyer–Peppas model.

[94]

Curcumin AI in pectin- and
chitosan-coated pectin aerogels

Enhanced dissolution of AI from aerogels
after 2 h in gastric fluid and 22 h in

intestinal fluid. The fastest AI release is
obtained from pure pectin aerogels.

[97]

Diclofenac
sodium,

indomethacin

AIs in pectin and
xanthan aerogels

Release of the two AIs within 24 h. The
release profile of indomethacin showed a
higher initial release rate compared with

diclofenac and slower release after
5 h of testing.

[70]

Esomeprazole

AI incorporated in alginate,
pectin, chitosan, and

composite aerogels via
diffusion or supercritical

impregnation

Slower and more controlled release of AI
from aerogels in gastric and intestinal fluids

compared to pure AI. The slowest drug
release is achieved from pectin and chitosan

composite aerogels.

[100]

Ibuprofen,
ketoprofen,

triflusal

AIs in 14 silica-gelatin aerogels
of different composition

Depending on the composition of the
aerogels, both immediate and delayed

release are possible.
[142]
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Table 1. Cont.

SC Technique AI System AI Release Reference

Aerogels

Ketoprofen,
quercetin

AIs loaded in pure alginate
and composite pectin,

κ-carrageenan, and alginate
aerogel microparticles by

supercritical impregnation

The release of AIs from the aerogels is
slower and more controlled than that of

unprocessed AIs within the 60-min
test period.

[101]

Nifedipine
Guar, xanthan, pectin, and

alginate aerogels prepared by
novel ethanol induced gelation

Prolonged release of AI up to 14 days for
guar and xanthan aerogels, steady release

within 6 h for alginate and pectin aerogels in
simulated gastric and intestinal fluids. Drug
release from pectin aerogels is controlled by
the Hixson-Crowell model, from alginate in

PBS by the first-order model, and in HCl
media by the Korsmeyer–Peppas model.

[82]

Resveratrol AI loaded in TEMPO-oxidized
cellulose aerogels

After the initial burst release (within the
first 15 min), controlled release of AI from
aerogels in simulated gastric and intestinal
fluids is achieved. After 5 h, 35–50% of the
AI is released from the aerogels, compared

to 90% of pure AI within the same
time period.

[93]

Theophylline

AI loaded in pectin aerogels
prepared with different

solution pH and calcium
concentrations

Drug release from all aerogels shows an
initial burst release followed by a more

controlled release. The low pH of the pectin
starting solutions results in faster release of
the AI, while calcium crosslinking decreases

the rate of AI release. The main release
mechanism is shown to be the

Peppas-Sahlin model.

[98]

Tetracycline
hydrochloride

κ-carrageenan aerogels
prepared with the addition of

potassium salts as
crosslinking agents

Initial burst release followed by a plateau at
approximately 60 min, corresponding to

90% of the released active ingredient in PBS,
with a pH of 7.4.

[73]

Vancomycin AI loaded in chitosan
aerogel beads

Burst release within the first hour, followed
by a plateau during the remaining test

period (2 days). The release profile is fitted
to a first-order release model.

[95]

Vitamin D3 AI loaded in alginate aerogels
Significantly improved dissolution of

impregnated AI compared to crystalline AI
within 7 h.

[102]

SC foaming

Cinnamaldehyde AI in PLA foam

An initial burst release, followed by a
slowed release over the 300-min test period;

Quasi-Fickian diffusion, fitting the
Korsmeyer–Peppas mathematical model.

[117]

Curcumin,
gentamicin AIs loaded in PLGA foam

Diffusion-controlled release; the drugs were
not completely released in the 14-day test

period. A slower release is obtained
for curcumin.

[112]

Gemcitabine AI in PLGA foam

An initial burst release with over 80% of the
drug released in the first 5 days, followed
by prolonged release over the 20-day test
period. The drug release is first controlled

by a diffusion process, followed by the
internal transfer of mass and

polymer degradation.

[116]
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Table 1. Cont.

SC Technique AI System AI Release Reference

SC foaming

DNA
DNA loaded in PLGA or

composite
chitosan/PLGA foams

An initial burst release followed by slow
release over a 40-day period for

composite foams.
[111]

Mesoglycan AI loaded in PCL foam

Dissolution tests demonstrated prolonged
release of the AI from the PCL foam of up to

70 times longer compared to the pure AI
during the 3-day testing period.

[143]

Nimesulide AI in PCL foam
3.5 times prolonged release of the AI from
the PCL foam compared to the pure AI in

the 3-day test period.
[115]

Paclitaxel AI in PLGA or
PLGA-PEG foams

Continuous and nearly linear AI release
from the foams, with approximately 50% of

release within 8 weeks.
[118]

Thymol AI loaded in PLA and
PLGA foams

Prolonged release of the AI in PBS over the
1.5-month testing period. [110]

Transglutaminase

AI crosslinked with
glutaraldehyde in PCL foam

containing chitosan and
hydroxyapatite

Prolonged AI release for up to 30 days. [119]

SSI

Acetylsalicylic
acid

AI in barley and yeast
β-glucan aerogels

Faster release of AI from barley aerogel and
more sustained release from yeast β-glucan

aerogel during the 25-h test period.
[86]

Cholesterol AI loaded in PMMA,
PMMA/PCL microspheres

Faster dissolution of the AI in PMMA and
more sustained release from PMMA/PCL

during the 450-h test period.
[124]

Fenofibrate AI in mesoporous silica
Improved drug dissolution of impregnated
AI compared to crystalline AI during the

120-min test period.
[125]

Flurbiprofen AI in PMMA/β-tricalcium
phosphate biocomposites

50% of the AI released within the first 4 h of
measurement in an ethanol solution. [157]

Ibuprofen AI in Soluplus®
Improved dissolution of AI loaded by SSI
compared to the physical mixture during

the 140-h test period.
[158]

Ketoconazole
AI in poly (vinyl pyrrolidone)

(PVP) and hydroxy propyl
methyl cellulose (HPMC)

Improved dissolution of AI impregnated in
polymers by SSI compared to the physical

mixture during the 75-min test period.
[159]

Ketoprofen AI in PVP

Fastest release of AI (87% in the first 30 min)
from the impregnated polymer compared to

the physical mixture with crystalline or
amorphous AI (micro-tablets). Drug

dissolution is controlled by
polymer degradation.

[123]

4. Conclusions and Outlooks

This paper provides an overview of supercritical fluid technologies as a promising
tool for formulating active ingredients, which can be carried out by particle generation
or by encapsulating active ingredients in polymeric carriers allowing controlled release.
The review outlines the fabrication of drug delivery systems using micronization tech-
niques wherein supercritical CO2 can act as a solvent, antisolvent, or solute; the use of
supercritical CO2 as a drying medium to produce aerogels; supercritical foaming for the
fabrication of polymer foams with incorporated active ingredients; and finally, supercritical
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solvent impregnation for the impregnation of preprepared matrices with supercritical
fluid-soluble active ingredients. Demands for investigating novel environmentally friendly
processes, solvents, and pharmaceuticals with improved bioavailability are increasing.
Compared to conventional methods, supercritical fluid-based processes offer the possi-
bility of environmentally friendly, straightforward, and economical operation (e.g., the
supercritical conditions of CO2 are achieved at low temperatures) to obtain high-value,
solvent-free final products. In addition, depending on the process parameters, the tunable
thermodynamic and fluid dynamic properties of supercritical CO2 allow for the tailored
formulation of active ingredients of different sizes and morphologies, enabling improved
drug delivery performance.

Despite the evident advantages and immense progress brought about by supercritical
fluid technologies, further research is required to optimize the process parameters and to
provide the stability data for the formulations obtained. In addition, methods to improve
reproducibility in terms of particle size, the structural characteristics of the products, the
yield, and the release kinetics need to be investigated. To date, some supercritical fluid
technologies still have not reached industrial implementation due to the lack of in-depth
studies on phase behavior, especially in the case of multi-component mixtures (the utiliza-
tion of co-solvents, multiple active ingredients, etc.). In the future, establishing a detailed
database on the impact of process parameters on the final properties of the obtained for-
mulations should be the focus of research for the successful scale-up of supercritical fluid
technologies in the pharmaceutical industry. This includes investigating and optimizing
controlled and targeted release from supercritical fluid formulations, particularly in de-
veloping personalized drug delivery systems that enable the controlled release of active
ingredients at concentrations and kinetics tailored to individual needs. The drawbacks of
using supercritical fluid technologies in the pharmaceutical industry can also be attributed
to the high investment costs and the only recent consideration of environmental concerns,
as most legislation continues to allow the use of conventional organic solvents. Once these
challenges associated with poor motivation to use environmentally friendly processes and
the current knowledge gaps are overcome, supercritical fluid technologies will add a new
dimension to the pharmaceutical and biomedical fields regarding the production of novel,
sophisticated, and profitable drug delivery systems. Moreover, by investigating super-
critical antisolvent fractionation for the fractionation of active ingredients from complex
mixtures, the industrial purification of targeted active ingredients with high yields will be
possible in the future by means of supercritical fluids.
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81. Şahin, İ.; Özbakır, Y.; İnönü, Z.; Ulker, Z.; Erkey, C. Kinetics of supercritical drying of gels. Gels 2017, 4, 3. [CrossRef] [PubMed]

http://doi.org/10.1016/j.supflu.2013.06.010
http://doi.org/10.1016/j.lwt.2018.03.009
http://doi.org/10.1039/C9RA06419B
http://www.ncbi.nlm.nih.gov/pubmed/35528904
http://doi.org/10.3390/pharmaceutics12090870
http://www.ncbi.nlm.nih.gov/pubmed/32932682
http://doi.org/10.1016/j.supflu.2015.07.010
http://doi.org/10.1016/j.supflu.2018.01.021
http://doi.org/10.1039/C6RA13499H
http://doi.org/10.1021/ie102016r
http://doi.org/10.1016/j.supflu.2011.01.007
http://doi.org/10.1038/127741a0
http://doi.org/10.1016/j.carbpol.2021.118130
http://doi.org/10.1146/annurev-chembioeng-060816-101458
http://doi.org/10.1021/cr0101306
http://www.ncbi.nlm.nih.gov/pubmed/12428989
http://doi.org/10.1039/D0AN00681E
http://www.ncbi.nlm.nih.gov/pubmed/32573601
http://doi.org/10.1039/C4TA06735E
http://doi.org/10.1016/j.micromeso.2014.06.003
http://doi.org/10.1016/j.carbpol.2017.03.008
http://www.ncbi.nlm.nih.gov/pubmed/28385244
http://doi.org/10.1016/j.bioactmat.2017.02.001
http://www.ncbi.nlm.nih.gov/pubmed/29744410
http://doi.org/10.1039/C7NR08464A
http://doi.org/10.1016/j.matchemphys.2020.123290
http://doi.org/10.1016/j.actbio.2020.01.016
http://www.ncbi.nlm.nih.gov/pubmed/31953196
http://doi.org/10.3390/polym11040726
http://www.ncbi.nlm.nih.gov/pubmed/31010008
http://doi.org/10.1557/JMR.1994.0731
http://doi.org/10.1002/anie.201709014
http://doi.org/10.3390/gels4010003
http://www.ncbi.nlm.nih.gov/pubmed/30674780


Pharmaceutics 2022, 14, 1670 20 of 22
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97. Pantić, M.; Horvat, G.; Knez, Ž.; Novak, Z. Preparation and characterization of chitosan-coated pectin aerogels: Curcumin case
study. Molecules 2020, 25, 1187. [CrossRef]

98. Groult, S.; Buwalda, S.; Budtova, T. Tuning bio-aerogel properties for controlling theophylline delivery. Part 1: Pectin aerogels.
Mater. Sci. Eng. C 2021, 126, 112148. [CrossRef]

99. Mikkonen, K.S.; Parikka, K.; Ghafar, A.; Tenkanen, M. Prospects of polysaccharide aerogels as modern advanced food materials.
Trends Food Sci. Technol. 2013, 34, 124–136. [CrossRef]
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