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INTRODUCTION

The Archaeocyatha represent the first 
substantial diversification of the phylum 
Porifera, to which they are now generally 
assigned as a distinct class. They flourished 
in carbonate shelf and reef environments 
of the early Cambrian; a depauperate stock 
persisted into the late Cambrian. They were 
the first Paleozoic metazoans to engage in 
extensive bioconstruction, in some regions 
building reef complexes rivalling those of 
the present. Their exquisite, morphologi-
cally varied, calcareous skeletons provide the 
basis for a more or less precise biozonation, 
particularly well developed for the Siberian 
region. In situ archaeocyaths are known from 
all continents except South America, where 
archaeocyaths have recently been reported 
in allochthonous blocks.

HISTORICAL OVERVIEW

Archaeocyaths were first discovered 
along the shores of Forteau Bay in southern 
Labrador, Canada by the hydrographer 
Captain H. W. bAYFielD, who later (bAYFielD, 
1845) reported them as the coral Cyatho
phyllum. Specimens were renamed by bill-
ings (1861) as Archeocyathus (subsequently 
spelled Archaeocyathus), destined to become 
the eponymous genus for the entire group.

bornemAnn (1884, 1886) was the first 
to undertake a regional monographic study 
of archaeocyaths—from Sardinia—and to 
establish them as a group of high taxonomic 
rank: the class Archaeocyatha. The taxo-
nomic affinities of archaeocyaths have been 
debated since that time (Fig. 1). TAYlor 
(1910, p. 177) was the first author to recog-
nize and elaborate on their distinctiveness, 
considering them as intermediate between 
Porifera and Coelenterata.

Thereafter, archaeocyaths were seldom 
compared with sponges and were established as 
a separate phylum by vologDin and ZhurAv-
levA (1947) and oKuliTch and De lAubenFels 
(1953). These authors emphasized the differ-
ences between archaeocyaths and sponges, 
among which the total absence of spicules 
in archaeocyaths was thought particularly 
significant. Nevertheless, while paleontologists 
generally accepted the concept of an indepen-
dent phylum (e.g., ZhurAvlevA, 1960b, p. 79; 
Debrenne, 1964, p. 106–107; hill, 1965, 
p. 49, 1972, p. 50), some prescient sponge 
specialists (vAceleT, 1964, p. 109; Ziegler 
& rieTschel, 1970) remained opposed. 
The rediscovery of living sponges capable of 
secreting massive calcareous skeletons has since 
confirmed the archaeocyaths as members of the 
phylum Porifera.

The first higher subdivisions of Archaeo-
cyatha were established by TAYlor (1910, 
p. 105), who distinguished five families 
based on intervallum structure. oKuliTch 
(1935) and the beDForDs (R. beDForD & J. 
beDForD, 1936, 1937, 1939; r. beDForD & 
W. r. beDForD, 1934, 1936) subsequently 
united the families into orders according 
to their style of ontogenetic development. 
vologDin (1936, 1937a, 1937b) proposed 
two classes, Regularia and Irregularia, on 
the basis of morphological differences of 
the secondary calcareous skeleton, as now 
understood. Initially, vologDin was not 
supported by his contemporaries. oKuliTch 
(1943, 1955a, p. 8) established three classes: 
(1) one walled, with central cavity empty; 
(2) two walled; and (3) central cavity full. At 
that time, about 400 species of archaeocy-
aths had been described, of which over 230 
were due to vologDin’s studies on material 
from the former USSR (Siberian Platform, 
Altay-Sayan, Tuva, Urals, Kazakhstan) and 
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Fig. 1. History of phylogenetic interpretations of archaeocyaths (adapted from Rowland, 2001). 
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Mongolia. Rich collections from a diversity 
of localities provided him with much material 
for the study of morphology and the elabora-
tion of a theoretical approach to classification. 
However, it was ZhurAvlevA (1955b) who 
established a firmer basis for the distinction 
of the Regularia and Irregularia from her 
study of skeletal ontogeny. She also defined 
orders and families based on intervallar and 
wall structures respectively—criteria still 
broadly applied in the current classification. 
In 1960, she corrected the names Regularia 
and Irregularia to Regulares and Irregulares 
(as subclasses), to avoid confusion with the 
major subdivisions of the Echinoidea and 
Cystoidea (ZhurAvlevA, 1960b, p. 80, 267).

Since the early 1960s, the archaeocya-
than genus has become a taxonomic cate-
gory whose definition has achieved general 
consensus among specialists. It is based 
upon variations of skeletal elements, particu-
larly within designated categories of wall 
construction and the presence or absence of 
supplementary elements. An increase in the 
number of described genera from this time 
reflects both the publication of regional 
monographs and a tendency to oversplit 
taxa on criteria not now considered to be of 
generic significance.

By the mid-1970s, the Regulares had 
been intensively investigated. Their elegant 
porous skeleton proved to be an ideal model 
for the application of vAvilov’s (1922) 
principle of homologous series in hereditary 
variability, thus strengthening the basis for 
classification (roZAnov in roZAnov & 
missArZhevsKiY, 1966, p. 73; roZAnov, 
1973, p. 50, 1974). vAvilov’s principle 
postulates that within a particular clade, 
such as a family, constituent species and 
genera display a common, but limited set 
of homologous character states that have 
parallels in closely related clades. Morpho-
logical attributes of as yet undiscovered 
clade members may thereby be predicted. 
Archaeocyathan evolution was used to 
establish four early Cambrian stages in 
Siberia (roZAnov, 1973, p. 80). Compre-
hensive studies by ZhurAvlevA, Debrenne, 

roZAnov, and others were the basis for the 
successful revision of the Treatise on Inver
tebrate Paleontology, Part E, by hill (1972).

The 1970s and 1980s were a period of 
accumulation of comprehensive regional 
materia l .  Monographic compilat ions 
treated archaeocyaths from throughout the 
former USSR, Western Europe, Morocco, 
China, Australia, Antarctica, South Africa, 
and western and eastern North America, 
including Greenland.

The rediscovery of sponges having massive 
calcareous skeletons, with or without spicules, 
transformed conceptions of the affinities of 
groups such as archaeocyaths, sphinctozoans, 
stromatoporoids, and others. One of the 
most striking finds was of Vaceletia crypta 
(vAceleT), an extant chambered demosponge 
with a massive calcareous skeleton devoid of 
spicules (vAceleT, 1977). Such discoveries 
forced a reconsideration of the nature of 
archaeocyaths (Debrenne & vAceleT, 1984; 
PicKeTT, 1985; ZhurAvlev, 1985).

This accumulation of regional data, 
together with the new actualistic model 
of archaeocyathan functional morphology, 
culminated in a thorough revision of 
taxonomy, ontogeny, ecology, biostratig-
raphy, and biogeography by Debrenne, 
Z h u r Av l e v ,  a n d  r o Z A n o v  ( 1 9 8 9 ) , 
Debrenne, roZ Anov, and  ZhurAvlev 
(1990), and Debrenne and ZhurAvlev 
(1992b). This work resulted in a drastic 
decrease in the total number of genera in the 
group, from 587 before 1989 to 298. Aspects 
of the relationship between archaeocyaths 
and sponges were also extensively discussed, 
affirming the Archaeocyatha as a class within 
the phylum Porifera. These publications, 
together with the earlier compilation of 
hill (1972) and the summary revision of 
Debrenne, ZhurAvlev, and Kruse (2002), 
form the basis for the present work.

SYSTEMATIC POSITION 
AMONG METAZOA

On the basis of superficial similarities, 
archaeocyaths have been attributed to a 
variety of groups, including corals, sponges, 
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protists, and algae, regarded as an inde-
pendent phylum, or united with aphrosal-
pingoids (actually thalamid sponges) and 
receptaculitaleans (algae or lower inverte-
brates) as a separate kingdom (ZhurAvlevA 
& mYAgKovA, 1987, p. 174). A historical 
compendium of the systematic attributions of 
Archaeocyatha is provided by Debrenne and 
ZhurAvlev (1992b, table I). Extant sponges 
with a nonspiculate skeleton [Acanthochaetetes 
wellsi hArTmAn & goreAu, Vaceletia crypta 
(vAceleT), and others] show similarities to 
archaeocyaths in architecture, skeletal struc-
ture (both primary and secondary), func-
tional morphology, and evolutionary trends 
(Debrenne & vAceleT, 1984; PicKeTT, 1985; 
ZhurAvlev, 1985, 1989, 1993; Debrenne, 
ZhurAvlev, & roZAnov, 1989, p. 152; 
Debrenne, roZAnov, & ZhurAvlev, 1990, 
p. 197; Kruse, 1991a; sAvArese, 1992, 1995; 
WooD, ZhurAvlev, & Debrenne, 1992). 
Such similarities favor a close taxonomic 
relationship between archaeocyaths and calci-
fied sponges.

vAceleT  (1985) drew a comparison 
between Archaeocyatha and Hexactinel-
lida in that both groups have a compli-
cated skeleton, which in hexactinellides is 
probably due to their syncytial organiza-
tion and relatively advanced conductive 
system (bergquisT, 1985). Debrenne and 
ZhurAvlev (1994) proposed that shared 
similarities with regard to immune reac-
tions and modes of asexual reproduction, 
particularly intracalicular budding and the 
interpreted presence of crypt cells, support a 
closer affinity of Archaeocyatha with demo-
sponges than with other classes of Porifera. 
These hypotheses remain to be confirmed.

MORPHOLOGY
The archaeocyathan skeleton is typically 

a narrow conical cup with porous outer 
and inner walls, connected by longitu-
dinal partitions (septa and others). This 
architecture is distinctive of the archaeocy-
aths, though structures mimicking septa are 
known, for example, in the Early Devonian 
thalamid sponge Radiothalamos PicKeTT & 

rigbY (1983) and its allies. As well, archaeo-
cyaths exhibit almost the entire range of 
growth forms found in calcified sponges: 
thalamid (sphinctozoan) (ZhurAvlev, 1989; 
Debrenne & WooD, 1990), stromatopo-
roid (ZhurAvlev, 1990), and chaetetid 
(Debrenne, Kruse, & ZhAng, 1991) (Fig. 
2). Organisms with these skeletal morpholo-
gies were previously considered as separate 
groups of cnidarians, sponges, or even algae. 
However, studies of living representatives 
have established their individual system-
atic positions and hence their polyphyletic 
origin (vAceleT, 1979, 1983; vAn soesT, 
1984; reiTner & engeser, 1985; WooD, 
1987; WooD & reiTner, 1988; Debrenne, 
1991). Each group had been described with 
its own nomenclature; to avoid confusion, a 
synonymized nomenclature was proposed by 
ZhurAvlev, Debrenne, and WooD (1990). 

The remarkable similarity of thalamid 
archaeocyaths and extant thalamid demo-
sponges (Vaceletia PicKeT T)  has been 
frequently noted (Debrenne & vAceleT, 
1984; ZhurAvlev, 1985; Kruse, 1991a). A 
great diversity of morphological elements 
(senoWbAri-DArYAn & schäFer, 1986; 
rigbY, FAn, & ZhAng, 1989; senoWbAri-
DArYAn, 1990; boYKo, belYAevA, & ZhurAv-
levA, 1991, pl. 42,3) has been observed in 
thin sections of thalamid sponges, which 
are referable mainly to the demosponges, 
although a minority are calcareans. These 
structures are similar to some archaeocyathan 
elements (e.g., syringes, taenialike struc-
tures). The presence of outer wall micro-
porous sheaths in the two groups is espe-
cially significant for functional morphology. 
Some Carboniferous and Mesozoic chaetetid 
sponges have continuous tabulae (WesT 
& clArK, 1984) and porous calicles. In 
Chaetetes Fischer von WAlDheim, the fiber 
bundles forming the tabulae result from the 
progressive bending of fibers issuing from the 
longitudinal axis; they converge at the center 
of the functional cavity but do not coalesce, 
and a central pore may be present. On the 
contrary, chaetetid archaeocyathan tabulae 
are produced by the secondary skeleton and 
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are continuous. Both might correspond to an 
externalization of the soft tissue in the skel-
eton, but are nevertheless convergent. The 
facultative presence of intracalicular (septal) 
spines and astrorhizae has been reported in 
some genera of chaetetid demosponges and 
chaetetid archaeocyaths (WesT & clArK, 
1983; Debrenne & ZhurAvlev, 1994).

MORPHOLOGY OF 
PRIMARY SKELETON

Archaeocyathan taxonomy is derived from 
ontogenetic studies, which have established 
the order of appearance and complication 
of the various structural elements consti-
tuting the archaeocyathan cup (beDForD & 
beDForD, 1939; ZhurAvlevA, 1960b). On 
the principle that ontogenetically earlier 
appearing features are accorded higher 
taxonomic rank, orders are delineated by 
architecture of the cup; suborders by the 
basic intervallar structures present, and for 

modular forms, mode of increase (Fig. 3); 
superfamilies by the outer wall type; families 
by the inner wall type; genera by specified 
variants of wall and intervallar structures; 
and species by variation in shape, size, and 
number of skeletal constituents.

Six orders and 12 suborders are thus 
recognized within the class (Debrenne, 
ZhurAvlev, & roZAnov, 1989; Debrenne, 
roZAnov, & ZhurAvlev, 1990; ZhurAvlev, 
1990; Debrenne, 1991; Debrenne & 
ZhurAvlev, 1992b) (Fig. 2):
Monocyathida (one-walled conical cup)
Ajacicyathida (archaeocyathan architecture: 

two-walled cup with septa as radial 
partitions)

 Dokidocyathina (intervallum with septa 
bearing one longitudinal pore row)

 Ajacicyathina (intervallum with septa 
bearing several longitudinal pore rows)

 Erismacoscinina (intervallum with septa 
and plate tabulae)

a

b
c

d e

f

Fig. 2. Archaeocyathan architectures; a, one-walled conical; b, two-walled conical; c, multichambered conical 
(thalamid); d, single-chambered subspherical (Debrenne, Rozanov, & Zhuravlev, 1990); e, chaetetid; f, syringoid 

(Debrenne & Zhuravlev, 1992b; © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris).
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Putapacyathida (archaeocyathan architecture: 
two-walled cup with plate tabulae only)

Capsulocyathida (thalamid cup with inner 
wall of invaginal type)

 Capsulocyathina (cup single-chambered 
and subspherical, or multichambered 
without septa)

 Coscinocyathina (cup multichambered, 
intervallum with septa)

Archaeocyathida (archaeocyathan architec-
ture: two-walled cup with radial parti-
tions other than septa)

 Loculicyathina (pseudocolonies by inter-
parietal budding, intervallum with 
pseudosepta)

 Anthomorphina (pseudocolonies by 
external budding, intervallum with 
pseudosepta and membrane tabulae)

 Archaeocyathina (pseudocolonies by 
external budding and/or longitudinal 
subdivision, intervallum with taeniae, 
pseudosepta, or dictyonal network)

 Dictyofavina (branching or massive pseu-
docolonies by intercalicular budding, 
intervallum with calicles)

 Syringocnemina (pseudocolonies by 
longitudinal fission, intervallum with 
syringes)

Kazachstanicyathida (thalamid and stro-
matoporoid architecture)

 Kazachstanicyathina (initial chambers 
hollow and elongate, pillars in subse-
quent chambers)

 Altaicyathina (initial chambers subspher-
ical, pillars in all chambers).

Architecture

The architecture of a two-walled cup 
is determined by the development of its 
component longitudinal platelike elements. 
No other sponge group is known that 
exhibits an archaeocyathan architecture. 
This architecture, characterized by (pseudo)
septa, (pseudo)taeniae, tabulae, syringes, 
and/or dictyonal network, is typical of 
Ajacicyathida and Archaeocyathida.

The chaetetid architecture (intervallum 
with calicles), ontogenetically proceeds 
from a typical archaeocyathan development 

with taeniae, which, with growth, is trans-
formed into calicles (Fig. 2e). The syringoid 
architecture (Fig. 2f ) is developed from 
the chaetetid. Like the chaetetid, syringoid 
forms are not exclusive to the archaeocyaths, 
being known, for example, among Permian 
sphinctozoan sponges (e.g., Tebagathalamia 
in senoWbAri-DArYAn & rigbY, 1988).

The rare, thalamid architecture consists 
of a succession of chambers that are initially 
subspherical (Fig. 2c), but in some forms 
become more laterally elongate (Fig. 24b). 
Chambers generally contain longitudinal 
elements (pillars). Growth proceeds by the 
distal addition of chambers. It is a typical 
architecture of sphinctozoan demosponges 
and calcareans.

Cup Size and Shape

Across the above categories, the typical 
solitary conical cup may expand slowly or 
rapidly to generate a spectrum of shapes 
from subcylindrical, through narrowly 
and widely conical, to discoid. Increase 
in the rate of expansion with growth 
produces a bowl-shaped cup. A typical 
ajacicyathide conical cup is of the order 
of  5–15 mm in diameter  and several 
centimeters in height, but exceptionally 
may attain a height of 1.5 m. Discoid 
cups  such as  in  the  archaeocyathide 
Okulitchicyathus ZhurAvlevA may attain 
a diameter of half a meter but are gener-
ally several centimeters in diameter.

Transverse or longitudinal folding may 
complicate the basic conical cup shape. 
Where this is regular and affects both walls, 
as in some Ajacicyathida, it is treated as a 
generic criterion (e.g., Orbicyathus vologDin 
with periodic, synchronous, transverse folds 
of both walls giving rise to undulose longi-
tudinal section; Orbiasterocyathus ZhurAv-
levA with both walls longitudinally folded, 
resulting in stellate transverse section). The 
plicate wall, in which each intersept is indi-
vidually folded to form a sharp mid-inter-
septal longitudinal ridge, is also a generic 
criterion, e.g., Rozanovicoscinus Debrenne 
with plicate outer wall (Fig. 3, Fig. 4a).
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Fig. 3. Development of modular archaeocyath types based on module organization and mode of proliferation; 
possible evolutionary pathways from an ancestral solitary cup are indicated (Wood, Zhuravlev, & Debrenne, 1992).

Ajacicyathida
Monocyathida

L.F.

L.F.

solitary

branching

catenulate

pseudocerioid

?

Kazachstanicyathida

massive

Archaeocyathida
Putapacyathida

solitary

E.B.

?
branching

I.B.

L.F.

branching

branching

encrusting
Direction of water flow:
 inhalant
 exhalant
 
 Budding types
 L.F.: longitudinal fission
 I.B.: interparietal budding
 E.B.: external budding

 inferred soft tissue distribution

Archaeocyathida

In Archaeocyathida, only the outer wall 
may be folded, with transverse folds gener-
ating an undulose longitudinal section, 
e.g., Pycnoidocoscinus r. beDForD & W. r. 
beDForD (Fig. 5c).

Subspherical cups may show a variety 
of regularly or irregularly arranged promi-

nences and indentations, as in Capsu
locyathus  ZhurAvlevA  (Fig. 4b, d). In 
conical cups, such as those of Batschykicy
athus ZhurAvlev, prominences are evenly 
arranged in single planes, several to a cup 
(Fig. 4c). The distinctively shaped cup of 
Yukonensis ÖZDiKmen (Fig. 4e–f ) consists 
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a

b

c
d

e

f

Fig. 4. (For explanation, see facing page).
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of a subcylindrical cup with periodic 
constrictions, each with an accompanying 
umbrella-like corolla of hollow shafts and 
connecting membranes.

Cup Modularity

As with sponges generally, archaeocyaths 
were probably not true colonial organisms. 
However, it is possible to apply the concept 
of sponge modularity to archaeocyaths and 
hence to treat a single central cavity with its 
surrounding elements as analogous to the 
osculum of a sponge (KolTun, 1988) or to 
an aquiferous unit space in stromatoporoid 
sponges (WooD, 1987). Hence an archaeo-
cyathan skeleton that is not a single cup is 
described as modular (Fig. 3) (previously, 
colonial).

Modularity is common in the Archaeocy-
athida, Putapacyathida, and Kazachstanicy-
athida and also occurs in some members of 
most other orders (e.g., branching Archaeolyn
thus polaris (vologDin) in Monocyathida).

Modularity in archaeocyaths is understood 
in terms of the individual aquiferous unit: 
that portion of an archaeocyathan cup with 
a number of inhalant openings converging 
on a single exhalant opening (osculum) 
(WooD, ZhurAvlev, & Debrenne, 1992). 
Most archaeocyaths are therefore solitary, 
their conical cups bearing a single osculum 
represented by the central cavity orifice. 
Some, however, are multioscular and thus 
modular, generating branching, catenulate, 
pseudocerioid, massive, and encrusting 
forms (Fig. 6).

Proliferation of modules is by several 
methods: longitudinal fission and external, 

interparietal, and intercalicular budding 
(Debrenne, ZhurAvlev, & Kruse, 2002; 
longitudinal subdivision, external and 
intervallar budding respectively of WooD, 
ZhurAvlev, & Debrenne, 1992). Longitu-
dinal fission produces branching, catenulate 
and pseudocerioid morphology (Fig. 3, 
Fig. 6a–c, and see Fig. 34b). In external 
budding, a bud arises on the outer wall of 
the cup, whereas in interparietal budding, 
the bud arises within the intervallum. Both 
produce branching modularity (Fig. 3, and 
see Fig. 30d). Intercalicular budding gener-
ates buds inside a single calicle to produce 
branching and massive morphology (see 
Fig. 34a). As well, some encrusting and 
massive morphologies could form by indi-
vidualization of additional aquiferous units 
within a modular skeleton (Fig. 3, Fig. 
6d–e). 

Living organisms exhibit a wide spec-
trum of degrees of bodily integration, and 
archaeocyaths are no exception. In consid-
ering the archaeocyaths, WooD, ZhurAvlev, 
and Debrenne (1992) categorized branching 
and laminar modularity as having low inte-
gration, as constituent modules were either 
isolated or discrete yet connected. Catenu-
late and pseudocerioid forms, with adja-
cent confluent units having no separating 
wall, were considered to be of medium 
integration. Highly integrated forms were 
the massive and encrusting types, notably 
among the Kazachstanicyathida, that lack 
separating walls or septa between aquiferous 
units. Massive forms present thalamid-
stromatoporoid and chaetetid architectures 
(see Fig. 24b).

Fig. 4. Archaeocyathan cup shapes; a, longitudinally plicate cup of Rozanovicoscinus stellatus grAvesTocK, Botoman, 
Ajax Limestone, Mount Aroona, South Australia, Australia, oblique section, NL82013, MNHN, ×7 (Debrenne, 
Rozanov, & Zhuravlev, 1990; © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris); b, sub-
spherical cup of Capsulocyathus irregularis (ZhurAvlevA), Botoman, Salaany Gol Formation, Salaany Gol, Tsagaan 
Oloom province, western Mongolia, oblique longitudinal section, 3302/3023, PIN, ×16 (Voronin & others, 1982); 
c, regularly bulging outer wall in Batschykicyathus angulosus ZhurAvlev, Atdabanian, Pestrotsvet Formation, Bachyk 
Creek, Lena River, Yakutia, Russia, transverse section, paratype, 3848/504, PIN, ×22 (Zhuravlev, Zhuravleva, & 
Fonin, 1983); d, same as view b, transverse section, 3302/3025, PIN, ×17 (Voronin & others, 1982); e, multi-
chambered cup and corolla (at top and right) of Yukonensis yukonensis (hAnDFielD), Botoman, Adams Argillite, 
Tatonduk River, Alaska, United States, transverse section, 5156C, USGS, ×24 (M. Debrenne, new); f, Yukonensis 
yukonensis (hAnDFielD), cup with shafts of successive corollas (at right), Botoman, Mackenzie Mountains, Northwest 

Territories, Canada, oblique longitudinal section, 90149, GSC, ×7 (Voronova & others, 1987)
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a

b

c

d

Fig. 5. Transverse folds and pseudoseptal porosity; a, irregular pseudoseptal porosity in Cellicyathus sp., Botoman, 
Chara Formation, Peleduy River, Yakutia, Russia, longitudinal section (outer wall to left), 4451/18, PIN, ×20; 
b, coarsely porous pseudosepta in Cambrocyathellus proximus (Fonin), Tommotian, Pestrotsvet Formation, Lena 
River, Yakutia, Russia, longitudinal section, 4451/8, PIN, ×4.5 (Debrenne & Zhuravlev, 1992b; © Publications 
Scientifiques du Muséum national d’Histoire naturelle, Paris); c, transverse outer wall folds and finely porous 
pseudosepta in Pycnoidocoscinus pycnoideum r. beDForD & W. r. beDForD, Botoman, Ajax Limestone, Ajax Mine, 
South Australia, Australia, longitudinal section (outer wall to right), paratype, P991, SAM, ×5 (Debrenne, 1974a); 
d, aporose pseudosepta in Anthomorpha margarita bornemAnn, Botoman, Matoppa Formation, Cuccuru Contu, 
Sardinia, Italy, transverse section, paratype, M84138, MNHN, ×10 (Debrenne & Zhuravlev, 1992b; © Publica-

tions Scientifiques du Muséum national d’Histoire naturelle, Paris).
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a

b

c

d

e

Fig. 6. Modularity in archaeocyaths; a, longitudinal subdivision in branching Archaeolynthus polaris (vologDin), 
Tommotian, Pestrotsvet Formation, Zhurinskiy Mys, Lena River, Yakutia, Russia, longitudinal section, 3848/564, 
PIN, ×7.5 (Wood, Zhuravlev, & Debrenne, 1992); b, catenulate Pluralicyathus heterovallum (vologDin), Toyonian, 
Torgashino Formation, Uymen’ River, East Sayan, Altay Sayan, Russia, transverse section, institution and collec-
tion number not known, ×2 (Wood, Zhuravlev, & Debrenne, 1992); c, pseudocerioid Densocyathus sanashticolensis 
vologDin, Botoman, Verkhnemonok Formation, Sanashtykgol Spring, West Sayan, Altay Sayan, Russia, transverse 
section, 4327/7, PIN, ×5 (Wood, Zhuravlev, & Debrenne, 1992); d, massive Zunyicyathus grandis (YuAn & ZhAng), 
Botoman, Jindingshan  Formation, Jindingshan, Guizhou, China, transverse section, 85103, MNHN, ×5 (Debrenne, 
Kruse, & Zhang, 1991); e, encrusting Retilamina amourensis Debrenne & JAmes, Botoman, Forteau Formation, Mount 
St Margaret, Newfoundland, Canada, longitudinal section, paratype, 62127, GSC, ×5 (Debrenne & James, 1981).
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Fig. 7. Septal porosity in Ajacicyathida; a, completely porous septa in Nochoroicyathus sunnaginicus (ZhurAvlevA), 
Tommotian, Pestrotsvet Formation, Aldan River, Yakutia, Russia, oblique section, 2411-35/4, PIN, ×6.5 (Debrenne 
& Voronin, 1971); b, completely porous septa in Gordonicyathus xandarus (Kruse), Botoman, Mount Wright Vol-
canics, Mount Wright, New South Wales, Australia, longitudinal section (outer wall to right), FT.8475, holotype,
(Continued on facing page.) 
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MORPHOLOGY OF 
MONOCYATHIDA, AJACICYATHIDA, 

PUTAPACYATHIDA, AND 
CAPSULOCYATHIDA

Wall and intervallum structures are suffi-
ciently different between the above orders and 
the Archaeocyathida and Kazachstanicyathida 
to warrant separate treatments. Discussions by 
Debrenne, roZAnov, and ZhurAvlev (1990) 
and Debrenne and ZhurAvlev (1992b) 
provide the basis for the following outline.

INTERVALLUM STRUCTURES

One or a combination of a variety of radial, 
transverse, and longitudinal skeletal structures 
may be present within the intervallum of 
two-walled cups. Those directly connecting 
both walls are first-order intervallar structures, 
whose presence or absence represents ordinal 
or subordinal taxonomic criteria. Those devel-
oped upon or between these are second-order 
intervallar structures, generally of genus- and 
species-level taxonomic value.

Septa

Septa are radial-longitudinal partitions 
linking inner and outer walls in conical cups; 
in nonconical cases, such as catenulate cups, 
they are not strictly radial, but nevertheless 
retain a perpendicular orientation to the 
walls. Most septa are planar, but a minority 
are wavy, as, for example, in Leptosocyathus 
curviseptum vologDin. In some taxa, septa 
may bifurcate toward the outer wall.

With cup growth, new septa are inserted 
at the outer wall as a rudimentary plate when 
the number of interseptal pores reaches a 
maximum for the species. This plate then 
grows more or less rapidly toward the inner 
wall (ZhurAvlevA, 1960b).

Septal porosity has been widely accepted 
as a generic criterion ever since it was 
first espoused by Debrenne and voronin 
(1971). Two broad styles of septal porosity 
are thus recognized: completely porous and 
aporose to sparsely porous, based on the 
work of roZAnov (1973), who documented 
two corresponding pathways of ontoge-
netic porosity development. In the first, an 
initial netlike (large-pored) porosity results 
in completely porous septa with generally 
ordered longitudinal rows of pores covering 
the entire septal area; in the second, initial 
porosity rapidly reduces or disappears with 
growth, producing mature septa in which 
pores are restricted in their distribution or 
even virtually absent. Netlike (pore diameter 
much greater than lintel width) and finely 
porous (pore diameter subequal to lintel 
width) variants are noted by Debrenne, 
roZAnov, and ZhurAvlev (1990) among 
completely porous septa, and sparsely porous 
(with consistent presence of rare pores), scat-
tered porous (with porosity of only part of a 
septum), and perforate (with stirrup pores, 
together with scattered solitary pores, in 
median area of a septum) variants among 
aporose to sparsely porous septa, but these 
have only species-level significance (Fig. 7).

In the case of septa with stirrup pores only 
(among the most aporose septal porosities 
known), early ontogenetic stages show septa 
with an initial single row of pores adjacent to 
either or both walls. With cup growth, this 
pore row gradually migrates into the wall to 
form a row of stirrup pores (arrested initial 
stage of septal development of grAvesTocK 
[1984]) (Fig. 8a). In fact, this same ontoge-
netic lateral migration of pores also operates 
in septa with scattered porosity of several 
pores adjacent to one wall (Fig. 8b–c).

Fig. 7. (Continued from facing page). 
F.83827, AM, ×12 (Kruse, 1982); c, septa bearing a single longitudinal pore row in Dokidocyathus simplicissimus 
TAYlor, Botoman, Ajax Limestone, Ajax Mine, South Australia, Australia, longitudinal section, lectotype, T1589A-B, 
SAM, ×3.5 (Taylor, 1910); d, sparsely porous septa in Thalamocyathus tectus Debrenne, Botoman, Ajax Limestone, 
Ajax Mine, South Australia, Australia, longitudinal section (outer wall to left), 165, PU, ×10 (Debrenne, 1973); e, 
sparsely porous septa in Thalamocyathus trachealis (TAYlor), Botoman, Ajax Limestone, Ajax Mine, South Australia, 
Australia, longitudinal section (outer wall to left), paralectotype, T1585, SAM, ×10 (Debrenne, 1973); f, stirrup 
pores at junction of septa and inner wall in Stapicyathus stapipora (TAYlor), Botoman, Ajax Limestone, Ajax Mine, 
South Australia, Australia, longitudinal section (outer wall to right), paratype, 86782, PU, ×12 (Debrenne, 1974b).



14 Treatise Online, number 38

Kruse (1982), supported in part by grAve-
sTocK (1984), considered that the distinction 
between these two styles of septal porosity 
was independent of pore size and that septal 
coefficient (pore diameter:lintel width) is 
arbitrary and without biological significance. 
He proposed that pore distribution, rather 
than pore size, was diagnostic.

roZAnov (1973) related the observed 
ontogenetic reduction of septal porosity to 
the stratigraphic succession of archaeocyath 
taxa. Species with aporose to sparsely porous 
septa are descended from completely porous 

ancestors by heterochronic acceleration. 
Thus, Tommotian and Atdabanian forms 
with completely porous septa were gradu-
ally supplanted by less porous Botoman and 
Toyonian forms.

Alternatively, ZhurAvlev (1986a) reported 
an influence of facies upon septal porosity: 
genera with aporose to sparsely porous septa 
(Leptosocyathus vologDin, Plicocyathus 
vologDin, Robustocyathellus KonYushKov) 
were predominant in reef facies, while their 
completely porous analogues (Tennericy
athus roZAnov, Tumulocyathus vologDin, 

a

b

c

Fig. 8. Ontogenetic development of aporose to sparsely porous septa; a, arrested initial stage of pore development, 
in which a single pore row initially wholly within the septum migrates centrifugally during ontogeny to become 
a stirrup pore row along the outer wall, Kisasacyathus caecum (grAvesTocK), Atdabanian, Ajax Limestone, Mount 
Scott Range, South Australia, Australia, longitudinal section of apex, paratype, P21481, SAM, ×15 (Gravestock, 
1984); b, adult septal porosity concentrated adjacent to outer wall in Sagacyathus stonyx Kruse, Botoman, Mount 
Wright Volcanics, Mount Wright, New South Wales, Australia, longitudinal section (outer wall to left) FT.8492, 
paratype, F.83568, AM, ×10 (Kruse, 1982); c, same, juvenile septal porosity across entire septum, longitudinal 

section, FT.8491, holotype, F.83576, AM, ×10 (Kruse, 1982).
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Rotundocyathus vologDin) occupied back-
reef facies. Septal porosity may therefore 
be an ecological adaptation. This proposal 
draws some support from the flume tank 
testing of skeletal models, by which sAvArese 
(1992) concluded that porous septa are 
advantageous at low free-stream velocities, 
whereas aporose septa are better adapted to 
higher-energy environments. A compilation 
of field data from Mexico, South Australia, 
and Mongolia by Debrenne and ZhurAvlev 
(1996) provides some further support.

Synapticulae

Synapticulae are second-order, rodlike 
structures that link adjacent septa, perpen-
dicularly to obliquely, to provide structural 
support. They are typically of circular cross 
section, thickening slightly toward each 
septum. Associated septa tend to be bifur-
cating, with netlike porosity; synapticulae 
are rarely associated with aporose to sparsely 
porous septa, and never with pectinate 
tabulae. Where septa are wavy, synapticulae 
tend to link opposing septal crests. Synap-
ticulae are generally randomly arranged. In 
some cases, synapticulae are concentrated at 
discrete transverse planes to form synaptic-
ular tabulae, which may include additional 
linking lintels (Fig. 9f ).

With the sole known exception of the eris-
macoscinine Muchattocyathus roZAnov, all 
synapticulate genera belong to the Ajacicy-
athina. They are restricted to the Atdabanian 
and Botoman stages and equivalent strata. 
The presence or absence of synapticulae is a 
genus-level criterion.

Interseptal Plates

These porous plates link adjacent septa. 
They are known from the beginning of 
the Tommotian stage, in Nochoroicyathus 
sunnaginicus (ZhurAvlevA). Their taxonomic 
value is low.

Plate Tabulae

Plate tabulae are porous, flat to slightly 
arched transverse plates connecting the 
walls of two-walled cups. Unlike tabular 

walls (see below), walls in forms with plate 
tabulae are independent, with tabula and 
wall connecting at a high angle. Plate tabulae 
are characteristic of the Erismacoscinina, 
Putapacyathida, and some Loculicyathina. 
They may be densely or sparsely distributed, 
but in either case tend to be evenly spaced. 
In Erismacoscinina, they are usually located 
at the same level in all or several interseptal 
loculi.

Tabular porosity in erismacoscinines may 
consist of normal pores (pore diameter not 
greater than interpore distance), retiform 
(large, subpolygonal) pores, heterogeneous 
pores, or slitlike pores (Debrenne, roZAnov, 
& ZhurAvlev, 1990) (Fig. 9a–b). Only the 
last has generic significance.

In the more common case of  plate 
tabulae with normal porosity, pores are 
arranged in septa-parallel rows where septa 
are completely porous, or irregularly where 
septa are aporose to sparsely porous. In the 
former, the largest pores are near the septa, 
since tabular pores are often associated with 
septa or walls by means of stirrup pores. 
Within any loculus, pore diameter is almost 
constant, and because a loculus is necessarily 
trapezoidal in transverse section, the number 
of septa-parallel pore rows increases toward 
the outer wall.

Slitlike tabulae have two septa-parallel 
rows in each loculus, with component 
pores being elongate, parallel to the cup 
walls (Fig. 9e).

Plate tabulae in Putapacyathida are typi-
cally planar and generally bear pores of 
irregular size and shape. These tabulae are 
often associated with redimiculi.

Tabular walls are characteristic of the 
Coscinocyathina: each tabula is downturned 
so that it is smoothly continuous with the 
outer and/or inner wall—except that [other 
than Yukonensis yukonensis (hAnDFielD)] 
no genus with only an inner tabular wall is 
known (Fig. 9c).

No tabular-walled form is known that is 
also plicate. Contrastingly, pseudoclathrate 
wall structure is known only in forms with 
tabular walls.
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Fig. 9. Tabulae and tabula-like structures; a, regularly porous tabulae in Erismacoscinus oymuranensis ZhurAvlev, 
Atdabanian, Pestrotsvet Formation, Oy-Muran, Lena River, Yakutia, Russia, transverse section, 4220/13, PIN, 
×24; b, retiform tabulae in Erismacoscinus sp., Botoman, Uba Formation, Tyrga River, Altay Mountains, Altay 
Sayan, Russia, transverse section, 4327/32, PIN, ×17 (Debrenne, Rozanov, & Zhuravlev, 1990; © Publications
(Continued on facing page.) 

f
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The distinctive tabulae of Yukonensis 
yukonensis (hAnDFielD) (Capsulocyathina) 
comprise coplanar radial rods linked by 
lintels; rods are directed upward at a low 
angle from the inner to the outer wall and 
actually constitute a continuation of the 
inner wall (Fig. 4e–f ).

Pectinate Tabulae

Each interseptal loculus of a pectinate 
tabula comprises girdling bolsters from which 
coplanar spines project, giving the appear-
ance of opposed combs (Fig. 9d). Spines may 
bear secondary spinules along their length 
(plumose) or on the tip only (bushy), but 
spinules are generally absent. In some cases, 
the tips of these secondary spinules coalesce. 
Archaeocyaths with pectinate tabulae were 
at one time considered to be a separate 
suborder, Nochoroicyathina ZhurAvlevA 
in vologDin, 1956 (ZhurAvlevA, 1960b), 
but observation of the irregular, sporadic 
occurrence of pectinate tabulae (spacing of 
which may range from 0.1 mm to 30 mm in 
a single cup), their anomalously late appear-
ance in ontogeny, and the co-occurrence of 
otherwise identical forms with and without 
pectinate tabulae eventually led to their 
rejection as a high-level taxonomic criterion. 
Pectinate archaeocyaths are now placed in 
the Ajacicyathina (Debrenne, ZhurAvlevA, 
& roZAnov, 1973).

Synapticular Tabulae

F. Debrenne, m. Debrenne, and roZAnov 
(1976) documented synapticular tabulae in 
some species of Afiacyathus voronin (their 
Axiculifungia F. Debrenne & m. Debrenne). 
Such tabulae are constructed of coplanar 

synapticulae, in several adjacent intersepts 
or around the entire circumference of the 
cup (Fig. 9f ). Additional linking lintels may 
be present, as in A. tabulatus Debrenne, 
or absent, as in A. compositus (Debrenne). 
Initially accorded genus-level significance, 
synapticular tabulae are now regarded as a 
species-level criterion only.

WALL TYPES

Wall with Simple Porosity

Wall with simple porosity describes a 
simple perforate plate, generally 0.05–0.15 
mm thick, in which the pores are typically 
arranged in alternating longitudinal rows. In 
any one species, pore size and the number of 
pore rows per intersept tend to vary within 
narrow limits (see Fig. 25a); in septate, two-
walled forms, the number of rows increases 
immediately before the insertion of a new 
septum. In most two-walled species, there 
are more pore rows per intersept in the outer 
wall than in the inner, and the latter tend to 
be larger. Those with only a single inner wall 
pore row are distinguished on this basis from 
otherwise similar forms at the generic level, 
e.g., Rotundocyathus vologDin (one pore 
row) versus Nochoroicyathus ZhurAvlevA 
(several pore rows) in Ajacicyathidae. Stirrup 
pores, in which a pore row coincides with a 
septum, may be present in inner walls, either 
alone or together with additional interseptal 
pore rows (Fig. 7f ). In the former case, they 
constitute a generic criterion. Inner wall 
pores formed by flexure of the inner edges 
of the septa are also distinguished at the 
genus level, e.g., Kisasacyathus KonYushKov. 
Exceptionally, pores may be irregularly 
arranged.

Fig. 9. (Continued on facing page). 
Scientifiques du Muséum national d’Histoire naturelle, Paris); c, tabular outer wall in Clathricoscinus vassilievi 
(vologDin), Botoman, Shangan Formation, Shivelig-Khem River, Tuva, Russia, longitudinal section (outer wall 
to right), 20-7 NR-62, institution not known, ×12 (Zhuravleva & others, 1967); d, pectinate tabula in Nocho
roicyathus mirabilis ZhurAvlevA, Tommotian, Pestrotsvet Formation, Zhurinskiy Mys, Lena River, Yakutia, Russia, 
transverse section, 4327/34, PIN, ×24 (Debrenne, Rozanov, & Zhuravlev, 1990); e, slitlike tabulae in Retecoscinus 
sakhaensis ZhurAvlev, Tommotian, Medvezh’ya Formation, Moyero River, Krasnoyarsk region, Russia, transverse 
section, 1181 334b/1-b, PIN, ×8 (Zhuravleva, 1960b); f, tabula-like structure in Afiacyathus tabulatus Debrenne, 
Atdabanian, Amouslek Formation, Amouslek, Morocco, transverse section, M80254, MNHN, ×6 (F. Debrenne, 

M. Debrenne, & Rozanov, 1976). 
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Fig. 10. Outer wall simple pores and redimiculi; a–e, schematic sections of varieties of flat (a–d ) and convex (e) 
diaphragm pores in longitudinal section, intervallum to left (Gravestock, 1984); f, outer wall redimiculi (arrows) 
of Dokidocyathus lenaicus roZAnov, Atdabanian, Pestrotsvet Formation, Oy-Muran, Lena River, Yakutia, Russia, 
transverse section (outer wall at top), GIN3461/15, PIN, ×10; g, same, outer wall redimiculi (arrows) and intervallar 
flattened rods, tangential longitudinal section, 3848/585, PIN, ×6.5; h–k, schematic reconstructions of varieties of 
outer wall simple pores: h, normal pores, i, netlike pores, j, slitlike pores, k, elliptical pores (Debrenne, Rozanov, & 

Zhuravlev, 1990; © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris).
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While pore size tends to increase slightly 
with cup growth, the ratio of pore diam-
eter to the width of the intervening lintels 
remains more or less constant. This can be 
a useful measurement for distinguishing 
species. By definition, pore diameter equals or 
exceeds wall thickness (see Wall with Canals, 
herein p. 21). Pores may be cylindrical, funnel 
shaped or, in outer walls, bear thin skeletal 
diaphragms constricting the external orifice 
to a central hole (Fig. 10a–e). Funnel-shaped 
and diaphragm pores were promoted as 
family-group characters by ZhurAvlevA and 
elKinA (1974), but due to their inconsistent 
development within species, and even within 
individual cups, they are now regarded as 
a variant of simple porosity, without value 
above the species level.

Pore orifices are generally rounded to 
subquadrate or subhexagonal in shape, but 
in rare instances may be slitlike (Fig. 10h–k). 
The slitlike condition is distinguished from 
all other pore shapes as a generic criterion, 
as in Svetlanocyathus missArZhevsKiY and 
roZAnov (Fig. 10j). In a few cases, outer 
walls are penetrated by pores of two distinct 
size ranges (Cryptoporocyathus ZhurAvlevA, 
Kyarocyathus Kruse).

Simple walls may bear spines, protruding 
externally from an outer wall, into the 
central cavity from an inner wall, or within 
the plane of the pore orifice in either wall. 
Spines have a narrow base relative to bracts 
(see Wall with Bracts or Scales, below), and 
taper to a point at the free end. Redimiculi 
adorn the intervallum side of one or both 
walls in some forms (Fig. 10f–g).

Intersepts of either wall may be consis-
tently crenulate [smoothly convex, as in 
Nochoroicyathus kokoulini Korshunov and 
Rotundocyathus floris (voronin)] or plicate 
(folded to form a sharp mid-interseptal 
ridge, separating planar to subplanar lateral 
flanks, as in Rozanovicoscinus Debrenne) 
(Fig. 4a).

Wall with Bracts or Scales

Pores of an otherwise simple wall may be 
partially constricted by bracts or scales (Fig. 

11). All bracts are treated as having a cupped 
shape. Distinctive arcuate bracts on the inner 
wall of Kordecyathus missArZhevsKiY are here 
treated as modified cupped bracts and do 
not constitute a genus-level criterion. These 
bracts arch to link the lower and upper pore 
rims and may narrow toward upper rims.

Bracts cover a single pore; scales cover 
two or more pores. Scales are curved, 
S-shaped or V-shaped.  Fused bracts , 
covering several adjacent pores of a hori-
zontal file, are reminiscent of annuli, but 
remain incomplete; forms with fused 
bracts are categorized together with those 
bearing bracts or scales. Fused bracts are 
planar or S-shaped. Bracts or scales may 
also be supplementary additions to canals 
(see Wall with Canals, p. 21 herein). Bracts 
may also bear spines.

The distinction between spines (see 
Wall with Simple Porosity, p. 17 herein) 
and bracts is, in some cases, difficult to 
ascertain. Because of this, the classification 
provided in the systematics chapter of the 
Archaeocyatha (Treatise Online, Part E, 
Revised, vol. 4, Chapter 19A–B) is, in some 
respects, not universally accepted. The 
present definition of bracts is more restric-
tive than that used by previous authors, in 
that a bract is here taken to have an area of 
attachment to the wall that is sufficiently 
broad as to almost span the width of the 
associated pore, so that the attachment 
area thereby possesses a discernible curva-
ture around the pore rim. Structures with 
narrower attachment areas, which typically 
taper to a point, are regarded as spines. This 
somewhat arbitrary definition represents a 
compromise between two more opposed 
positions.

The first of these is to reevaluate the inner 
walls of those genera that are assigned to 
families with simple inner walls (see Treatise 
Online, Part E, Revised, vol. 4, Chapter 
19A–B), whose spines may yet prove to be 
cupped bracts. In the Ajacicyathina, of rele-
vance in this regard are, in the simple outer-
walled Ajacicyathidae: Orbicyathellus osAD-
chAYA, Robustocyathellus KonYushKov, and 
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Fig. 11. (For explanation, see facing page). 
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Nochoroicyathellus osADchAYA, all of which 
might better belong in the bractose Denso-
cyathidae; in the tumulose outer-walled 
Tumulocyathidae: Isiticyathus Korshunov 
and Kotuyicyathellus osADchAYA, which 
might belong in the Sanarkocyathidae. In 
the Erismacoscinina, in the simple-walled 
Asterocyathidae, Antoniocoscinus ZhurAvlev 
might belong in the bractose Rudanulidae; 
and the Rozanovicyathidae might require 
redefinition as a bractose inner-walled family 
based on Rozanovicyathus Korshunov.

The second distinct proposal is to treat 
bracts together with spines as a single wall type 
and to retain separate families only for those 
genera with inner wall scales. The consequence 
of this would be to transfer all such bractose 
genera to their corresponding simple inner-
walled family. Thus, for example, in the ajaci-
cyathine family Densocyathidae, genera such 
as Dailycyathus Debrenne, Deceptioncyathus 
grAvesTocK, and Khirgisocyathus voronin 
would be placed in the Ajacicyathidae.

These issues continue to be a matter of 
debate among specialists.

Wall with Annuli

Either wall may bear regularly spaced planar, 
S-shaped, or V-shaped annuli. Commonly, 
each inner wall intersept of an annulate form 
has only a single, longitudinal pore row; less 
commonly, there are several. Annuli are much 
more common on the inner wall than the 
outer: outer wall annuli are known only in the 

atabulate family Sigmocyathoidea, in which all 
three known constituent genera bear S-shaped 
annuli. V-shaped annuli may be upright or 
inverted (a genus-level distinction), or may 
bear a short, arête-like carina, extending from 
the apex of each V, and coplanar with one limb 
of the V (Fig. 12).

Most annuli have smooth inner rims; in a 
minority of genera these are denticulate, e.g., 
Sagacyathus Kruse (Fig. 12e).

Wall with Canals

By definition, canal length is greater than 
diameter. Inner wall canals may be noncom-
municating (Fig. 13), or communicating 
with their neighbors via porelike open-
ings along their length (Fig. 14). These 
two conditions are considered sufficiently 
distinct in their hydrodynamic properties to 
warrant placement in separate family-level 
taxa. Only noncommunicating canals are 
known for the outer wall.

Like simple pores, canals are typically 
arranged in alternating longitudinal rows, and 
forms with a single canal row per inner wall 
intersept are distinguished at the genus level 
from those with several canal rows per inner 
wall intersept. In yet other genera, each inner 
wall canal row coincides with a septum to form 
stirrup canals. Some genera have spongiose 
inner walls constructed of waved, anastomosing, 
communicating canals, e.g., Kiwicyathus 
Debrenne & Kruse (Fig. 14b). Genera such 
as Ethmophyllum meeK have complex, doubly 

Fig. 11. Bracts and scales; a, probable upwardly projecting cupped bracts on outer wall of Russocyathus rodionovae 
ZhurAvlevA, Botoman, Shangan Formation, Shivelig-Khem River, Tuva, Russia, external view of cup in longitudinal 
section (outer wall at bottom), 4137/14-4, PIN, ×14 (Debrenne, Rozanov, & Zhuravlev, 1990; © Publications 
Scientifiques du Muséum national d’Histoire naturelle, Paris); b, downwardly projecting cupped bracts on inner 
wall of Polycoscinus cymbricensis (Kruse), Botoman, Cymbric Vale Formation, Mount Wright, New South Wales, 
Australia, longitudinal section (outer wall to left), FT.12784, holotype, FT.8270, 8271, 8581, 8582, 12784, AM, 
×16 (Kruse, 1982); c, upwardly projecting S-shaped scales on inner wall of Xestecyathus zigzag Kruse, Botoman, 
Cymbric Vale Formation, Mount Wright, New South Wales, Australia, longitudinal section (outer wall to left), 
FT.12793, holotype, F.83405, AM, ×10 (Kruse, 1982); d, horizontal to upwardly projecting curved scales, fused 
into pseudoannuli on inner wall of Rectannulus sp., Botoman, Usa Formation, Kuznetsk Alatau, Russia, transverse 
section, 4327/76, PIN, ×7 (Debrenne, Rozanov, & Zhuravlev, 1990; © Publications Scientifiques du Muséum 
national d’Histoire naturelle, Paris); e, upwardly projecting planar fused bracts on inner wall of Cadniacyathus 
asperatus r. beDForD & J. beDForD, Botoman, Ajax Limestone, Ajax Mine, South Australia, Australia, internal 
view of cup in longitudinal section, lectotype, 86616(1), USNM, ×14 (Debrenne, 1974b); f, upwardly projecting 
S-shaped scales on inner wall of Tennericyathus malycanicus roZAnov, Atdabanian, Pestrotsvet Formation, Malykan, 
Lena River, Yakutia, Russia, transverse section, GIN2034/14, PIN, ×12 (Debrenne, Rozanov, & Zhuravlev, 1990; 

© Publications Scientifiques du Muséum national d’Histoire naturelle, Paris).
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zoned inner walls, with anastomosing, waved 
canals arising from the fluted inner edges of 
the septa, so that the wall has an overall upright 
V-shaped appearance (Fig. 14c–e).

Exceptionally, canals may span several 
intersepts, e.g., Gnaltacyathus Kruse (Fig. 
13b). Some genera (e.g., Ethmocyathus r. 
beDForD & W. r. beDForD) bear inner wall 
canals formed by flexure of the inner edges of 
the septa. Canals may be straight, S-shaped, 
or V-shaped, branching or nonbranching, 
discrete or anastomosing, and may project 
horizontally, obliquely upward, or obliquely 
downward with respect to the wall.

Some canal-bearing genera also bear 
supplementary structures, generally bracts, 
attached to the free ends of their canals; 
if canals and supplementary structures are 
obliquely, but oppositely, oriented, an overall 
upright or inverted V-shaped appearance 
is imparted to the wall. In practice, care is 
needed to distinguish this condition from 
true V-shaped canals. A spine or small plate 
may arise from the apex of each constituent 
canal-bract couplet in some such forms, e.g., 
the outer wall of Ethmophyllum (Fig. 14c).

Wall with Microporous Sheaths

Microporous sheaths are much more 
common on the outer wall than on the inner; 
examples of the latter are Membranacyathus 
roZAnov and Bipallicyathus ZhurAvlev. They 
are typically supported on an otherwise simple 
porous wall with constituent framework (or 
carcass) pores with a diameter of 0.15–0.25 
mm, but exceptionally they are supported on 
S-shaped canals in Hupecyathellus roZAnov.

roZAnov (1973) first elaborated the 
important distinction between the two 
major variants of the microporous sheath: 
attached and independent (his erbocyathoid 
and pretiosocyathoid types respectively) 
(Fig. 15). These two variants represent a 
suprafamilial criterion.

Attached sheaths are generally a feature of 
walls in which the framework pores are funnel 
shaped, widening toward the exterior so that 
the lintels are externally narrow and arête-like 
(see Fig. 25b). Finer rodlike or tapering lintels 
delineating the sheath micropores thereby 
radiate centripetally inward from the outer 
margins of the framework pores to form a 
more or less continuous sheet of micropores. 
Continuous sheaths cover the entire surface of 
the wall (Fig. 15b, Fig. 16a–d); discontinuous 
sheaths cover each framework pore separately 
(Fig. 15c, Fig. 16e–g). A common pattern 
of attached sheaths for any one framework 
pore is of a central micropore surrounded by 
a circlet of six similarly sized micropores (i.e., 
about seven micropores), but a greater or lesser 
number of micropores may be developed in 
different taxa (roZAnov, 1973; KAshinA, 
1979). A unique tylocyathoid-type of attached 
sheath is shown by Tylocyathus vologDin, in 
which the sheath is supported on longitudi-
nally subrectangular framework pores, with 
two rows of micropores per framework pore; 
each micropore bears an S-shaped bract (Fig. 
16j).

Independent sheaths are invariably 
continuous, supported by short perpen-
dicular rods arising from the lintels of the 
framework pores (Fig. 15a, Fig. 16h–i). 

Fig. 12. Annuli; a, upwardly projecting S-shaped annuli on inner wall of Stillicidocyathus sigmoideus (r. beDForD & 
J. beDForD), Botoman, Ajax Limestone, Ajax Mine, South Australia, Australia, internal view of cup in longitudinal 
section, holotype, 86750, PU, ×4.5 (Debrenne, 1970a); b, upright V-shaped annuli on inner wall of Thalamocy
athus trachealis (TAYlor), Botoman, allochthonous, Whichaway Nunataks, Antarctica, oblique section, S8413-5, 
NHM, ×5 (Hill, 1965); c, upright V-shaped annuli on inner wall of Aporosocyathus gnaltaensis Kruse, Botoman, 
Cymbric Vale Formation, Mount Wright, New South Wales, Australia, longitudinal section (outer wall to left), 
FT.14168, paratype, F.83604, AM, ×10 (Kruse, 1982); d, schematic section of inverted V-shaped annuli on inner 
wall of Svetlanocyathus primus missArZhevsKiY & roZAnov, Botoman, Shangan Formation, Shivelig-Khem River, 
Tuva, Russia, longitudinal section (outer wall to right), ×9 (Missarzhevskiy & Rozanov, 1962); e, upright V-shaped 
annuli bearing denticulate rims on inner wall of Sagacyathus stonyx Kruse, Botoman, Cymbric Vale Formation, 
Mount Wright, New South Wales, Australia, oblique section, FT.8499, paratype, FT.8498–8500, AM, ×3.5 (Kruse, 
1982); f, ?horizontally projecting planar annuli bearing short beams that support microporous sheath on inner wall 
of Compositocyathus muchattensis (ZhurAvlevA), Atdabanian, Pestrotsvet Formation, Mukhatta Creek, Lena River, 

Yakutia, Russia, transverse section, holotype, 205/47a, TsSGM, ×10 (Zhuravleva & Zelenov, 1955).
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Fig. 12. (For explanation, see facing page).
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Fig. 13. (For explanation, see facing page).
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There is no direct participation of the pore 
lintels in this sheath variant, and pores 
need not be funnel shaped. The common 
micropore pattern is one of more or less 
regular, alternating rows. Micropores may 
be rounded or subpolygonal.

Wall with Tumuli

Tumuli are hollow, porous, hemispherical 
to prolately ellipsoidal domes covering the 
pores of outer walls; they are not known on 
inner walls. Tumulose walls exist in two vari-
ants: with simple or multiperforate tumuli 
(Fig. 17). Simple tumuli have a single small 
pore, usually located toward the lower side 
of the tumulus (Fig. 17b–c). In some cases, 
bracts have been incorrectly identified as 
tumuli, e.g., Tumulifungia ZhurAvlevA, 
which actually bears cupped bracts on the 
outer wall. True tumuli will have similar 
morphology in either transverse or longitu-
dinal section, and only rarely will the single 
pore be intersected.

Multiperforate tumuli, in contrast, possess 
many small pores, typically covering the 
entire surface of the tumulus (Fig. 17d–e).

Other Types of Wall

Other distinctive wall types are the clath-
rate type, with closely spaced longitudinal 
ribs (Fig. 17f ); and the pseudoclathrate 
type, with longitudinal ribs and transverse 
linking lintels, together supported by short 
rods (Fig. 17a).

UPPER SURFACE STRUCTURES

Certain skeletal elements were evidently 
developed only once in the ontogeny of 

some cups, since they are always observed 
crowning the tops of cups but are never 
found within cups.

Peltae

Peltae are unique to the Monocyathida. 
They are horizontal, slightly convex plates 
developed as a continuation of the wall. 
Two broad types, nonporous and porous, 
can be recognized, but the distinction is 
accorded little taxonomic importance, 
even at species level. Earlier authors (e.g., 
ZhurAvlevA, 1963b; oKunevA & rePinA, 
1973; vologDin, 1977) recognized many 
more variants, but these were based on 
differing orientations of section through 
the cup.

Nonporous peltae possess a central sag, 
bearing an orifice. The orifice may support a 
concave, finely perforated, saclike membrane 
directed into the inner cavity (Fig. 18,1). 
Nonporous peltae are known in some 
Archaeolynthus TAYlor, Palaeoconularia 
chuDinovA, Tumuliolynthus ZhurAvlevA, 
and Propriolynthus oKunevA.

Porous peltae are present in some other 
species of Archaeolynthus TAYlor, Palaeo
conularia, and Propriolynthus, and in some 
Sajanolynthus vologDin & KAshinA and 
Melkanicyathus belYAevA. Their porosity 
invariably matches that of the cup wall. 
Thus, in Propriolynthus vologdini (YAKovlev) 
and Melkanicyathus operculatus (mAslov), 
the marginal area of the pelta bears bracts 
oriented in a reverse sense to those of the 
wall (Fig. 18,2b). Archaeolynthus cipis 
(vologDin) has spines on the wall and 
pelta (Fig. 18,2a).

Fig. 13. Noncommunicating canals; a, horizontal to upwardly projecting straight canals on inner wall of Inessocyathus 
spatiosus (bornemAnn), Botoman, Matoppa Formation, San Pietro, Sardinia, Italy, transverse section, topotype, 
M84074, MNHN, ×2.3 (Debrenne, 1964); b, horizontal to upwardly projecting straight canals, each canal spanning 
several intersepts on inner wall of Gnaltacyathus nodus Kruse, Botoman, Cymbric Vale Formation, Mount Wright, 
New South Wales, Australia, transverse section, FT.8495b, holotype, FT.8453, 8454, 8495b, AM, ×8 (Kruse, 
1982); c, horizontal to upwardly projecting S-shaped canals on inner wall of Rasetticyathus acutus (bornemAnn), 
Botoman, Matoppa Formation, Monte Cuccurinu, Sardinia, Italy, longitudinal section, M84036, MNHN, ×10 
(Debrenne, 1972); d, horizontal to upwardly projecting S-shaped canals, bearing supplementary bracts externally 
on outer wall and inverted V-shaped canals on inner wall of Porocoscinus rudens (Kruse), Botoman, Cymbric Vale 
Formation, Mount Wright, New South Wales, Australia, longitudinal section (outer wall to left), FT.8295, holotype, 

F.83933, AM, ×8.5 (Kruse, 1982).
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Fig. 14. (For explanation, see facing page).
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Rims

Rims are restricted to two-walled cups. 
They include types in which the outer wall 
curves toward the inner wall (e.g., in Cordil
leracyathus blussoni hAnDFielD [Fig. 18,3] 
and species of Irinaecyathus ZhurAvlevA, 
Tegerocyathus KrAsnoPeevA, Plicocyathus 
vologDin, and Sekwicyathus hAnDFielD). 
This type of rim is favored in genera with 
aporose to sparsely porous septa. Alterna-
tively, the rim is the result of growth of 
the inner wall, complicated by fringelike 
skeletal processes [e.g., in Nochoroicyathus 
sunnaginicus (ZhurAvlevA) and Formoso
cyathus bulynnikovi vologDin]. In a third 
type, the rim is a horizontal plate covering 
the intervallum, as observed, for example, 
in Nochoroicyathus ZhurAvlevA, Baikalocy
athus YAZmir, Dokidocyathus TAYlor (Fig. 
18,4 ), and Siderocyathus Debrenne & 
gAngloFF. 

MORPHOLOGY OF 
ARCHAEOCYATHIDA AND 
KAZACHSTANICYATHIDA

INTERVALLUM STRUCTURES

Intervallar structures in these two orders 
are more diverse than in those orders previ-
ously discussed.

Taeniae

Taeniae are homologous to septa in the 
other orders but are not limited to a single 
plane. Rather, component lintels diverge 

in orientation so that taeniae appear wavy. 
Most Archaeocyathida have taeniae, at least 
in early ontogeny. Some genera exhibiting 
taeniae throughout cup development were 
formerly described as bearing buttresses 
or struts adjacent to one or both walls, as 
in Aruntacyathus Kruse (=Spirocyathella 
vologDin) by Kruse and WesT (1980) 
(Fig. 19a) and Spirillicyathus r. beDForD 
& J. beDForD by grAvesTocK (1984) (Fig. 
19b), or as wavy and dichotomous taeniae 
in Pycnoidocyathus TAYlor by Fonin (1985) 
(Fig. 19c).

True taeniae are present only in adult 
cups of Archaeocyathina. Two taenial 
porosity types—coarsely porous and finely 
porous—are recognized, but porosity may 
vary between the two types in a single cup. 
In such cases, larger pores tend to be nearer 
the outer wall. Synapticulae (see below) are 
typically associated with taenial cups, but are 
not regularly arranged.

Pseudosepta

All other radial-longitudinal, platelike 
elements are ontogenetic derivatives of 
taeniae. Pseudosepta develop ontogeneti-
cally from taeniae as ordered, planar, porous 
partitions. They comprise regularly arranged 
lintels yet differ from true septa in their 
developmental pathway. Pseudosepta differ 
from septa in having no regularity in size or 
shape of their pores (Fig. 5a).

Ps e u d o s e p t a  m a y  b e  c o a r s e l y  o r 
f ine ly  porous in Locul icyathina and 

Fig. 14. Communicating canals; a, horizontal to upwardly projecting straight stirrup canals, branching toward central 
cavity, on inner wall of Diplocyathellus retezona (TAYlor), Botoman, Ajax Limestone, Ajax Mine, South Australia, 
Australia, longitudinal section, paralectotype, T1591, SAM, ×7 (Taylor, 1910); b, horizontal to upwardly projecting 
straight stirrup canals on inner wall of Kiwicyathus nix Debrenne & Kruse, Botoman, Mt. Egerton, Byrd Glacier, 
Antarctica, longitudinal section, holotype VC19, VU, ×4.5 (Debrenne & Kruse, 1986); c, subspherical chambered 
canals each with base commencing in intervallum, canals subdivided by stipules on outer wall, and anastomosing, 
horizontal to upwardly and laterally projecting waved canals, arising from fluted inner edges of septa, on inner wall 
of Ethmophyllum whitneyi meeK, Botoman, Rosella Formation, Kechika Mountains, British Columbia, Canada, 
longitudinal section (outer wall to right), 69269, GSC, ×7; d, same specimen, transverse section, ×7 (Mansy, 
Debrenne, & Zhuravlev, 1993); e, detail of anastomosing, horizontal to upwardly and laterally projecting waved 
canals, arising from fluted inner edges of septa, on inner wall of Ethmophyllum whitneyi meeK, Botoman, Atan 
Group, Good Hope Lake, British Columbia, Canada, longitudinal section (intervallum to right), 25333, GSC, 
×9 (Handfield, 1971); f, downwardly projecting straight canals, bearing supplementary bracts or annuli on central 
cavity side, on inner wall of Irinaecyathus schabanovi roZAnov, Toyonian, Elanskoe Formation, Elanskoe, Lena 
River, Yakutia, Russia, oblique transverse section, GIN4434/9, PIN, ×3 (Debrenne, Rozanov, & Zhuravlev, 1990; 

© Publications Scientifiques du Muséum national d’Histoire naturelle, Paris). 
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Archaeocyathina, or aporose in Loculicy-
athina and Anthomorphina (Fig. 5b–d).

Synapticulae are not typically associated 
with pseudosepta.

Pseudotaenial and Dictyonal Network

Pseudotaenial structure comprises taeniae 
with regularly distributed synapticulae 

linking taeniae at each interpore lintel (Fig. 
20a). Pseudotaeniae are invariably coarsely 
porous. They characterize the Archaeocy-
athina.

Pseudotaenial structure is morphologi-
cally transitional between true taeniae and 
dictyonal network. This latter comprises 
equidimensional synapticulae and radial and 
longitudinal taenial lintels, together forming 
an orthogonal network of rods, which may 
arch between the inner and outer wall in 
some taxa (Fig. 20c) and remain planar in 
others (Fig. 20b).

Calicles

By analogy with other sponges of chae-
tetid architecture, longitudinal tubelike 
elements in archaeocyaths are termed calicles 
(WesT & clArK, 1983). Calicles develop 
ontogenetically from taeniae and are diag-
nostic of the Dictyofavina (Fig. 21,1). They 
are tetragonal or hexagonal in cross section. 
Hexagonal calicles bear one or two longitu-
dinal pore rows per facet, whereas tetragonal 
calicles invariably bear only one.

Syringes

Syringes (ZhurAvlevA & mYAgKovA, 
1981) are diagnostic of the Syringocnemina. 
These are stacked radial tubes of hexagonal 
cross section, transverse across much of the 
intervallum, but typically curving downward 
near the inner wall (Fig. 21,3). 

Like taeniae, syringes can be coarsely 
or finely porous, corresponding to one or 

a

 b

c

Fig. 15. Schematic sections of types of microporous 
sheath; a, independent sheath supported on short 
pillars; b, attached sheath, continuous over external 
surface; c, attached sheath, discontinuous, restricted to 

framework pore openings (Gravestock, 1984).

Fig. 16. Microporous sheaths; a, continuous attached sheath on outer wall of Erugatocyathus krusei grAvesTocK, 
Atdabanian, Wilkawillina Limestone, Wilkawillina Gorge, South Australia, Australia, tangential section, holotype, 
P21599, SAM, ×38 (Gravestock, 1984); b–d, continuous attached sheath on outer wall of Erugatocyathus howchini 
grAvesTocK, Atdabanian, Ajax Limestone, Mount Scott Range, South Australia, Australia; b, tangential section, 
paratype, P21630, SAM, ×38; c–d, holotype, P21590-1, SAM, ×38; c, oblique section through outer wall; d, 
longitudinal section (intervallum to left) (Gravestock, 1984); e–g, partially discontinuous attached sheath on outer 
wall of Erugatocyathus mawsoni grAvesTocK, Atdabanian, Ajax Limestone, Mount Scott Range, South Australia, 
Australia; e, tangential section, paratype, P21473-2, SAM, ×38; f, transverse section, intervallum to left, paratype, 
P21474-2, SAM, ×38; g, tangential section, paratype, P21466-2, SAM, ×38 (Gravestock, 1984); h–i, indepen-
dent sheath on outer wall of Agyrekocyathus dissitus (Kruse), Botoman, Mount Wright Volcanics and Cymbric 
Vale Formation, Mount Wright, New South Wales, Australia; h, transverse section, FT.8176, paratype, F.83942, 
AM, ×15; i, oblique section through outer wall, FT.8179, paratype, F.87962, AM, ×15 (Kruse, 1982); j, attached 
microporous sheath, each micropore bearing a cupped bract, on outer wall of Tylocyathus bullatus (ZhurAvlevA), 
Botoman, Lenyaka Formation, Schamanikha River, Kolyma River basin, Russia, tangential section, specimen 
3900/53, PIN, ×24 (Debrenne, Rozanov, & Zhuravlev, 1990; © Publications Scientifiques du Muséum national 

d’Histoire naturelle, Paris).
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Fig. 17. Tumuli, clathri, and pseudoclathri; a, pseudoclathrate outer wall of Clathricoscinus sp., Botoman, Shangan 
Formation, Shivelig-Khem River, Tuva, Russia, external view, 4327/5, PIN, ×12 (Debrenne, Rozanov, & Zhuravlev, 
1990; © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris); b, detail of simple tumulus 
on outer wall of Tumulocyathus kotuyikensis (ZhurAvlevA), ×100 (Zhuravleva, 1960b); c, simple tumuli on plicate 
outer wall of Plicocyathus rozanovi (hAnDFielD), Botoman, Sekwi Formation, Mackenzie Mountains, Northwest 
Territories, Canada, oblique longitudinal section, 90125, GSC, ×12 (Debrenne, Rozanov, & Zhuravlev, 1990; © 
Publications Scientifiques du Muséum national d’Histoire naturelle, Paris); d, multiperforate tumuli on outer wall
(Continued on facing page.) 
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Fig. 17. (Continued from facing page). 
of Lenocyathus lenaicus ZhurAvlevA, schematic external view of cup, ×2.5 (Zhuravleva, 1960b); e, multiperforate 
tumuli on outer wall of Torosocyathus provisus KAshinA, Botoman, Usa Formation, Kuznetsk Alatau, Russia, trans-
verse section (outer wall at top), GIN3878-4, PIN, ×45 (Debrenne, Rozanov, & Zhuravlev, 1990; © Publications 
Scientifiques du Muséum national d’Histoire naturelle, Paris); f, clathrate outer wall of Clathrithalamus mawsoni 
Debrenne & Kruse, Botoman, Skackleton Limestone, Holyoake Range, Nimrod Glacier, Antarctica, tangential 

section, holotype, MG511, IGNS, ×20 (Debrenne & Kruse, 1986). 

several radial pore rows per component facet, 
respectively. The number of pore rows per 
facet (one versus several) is a generic crite-
rion in this suborder. In most genera, this 
number is invariant for all facets. However, 
in Pseudosyringocnema hAnDFielD and 
Williamicyathus ZhurAvlev, porosity of the 
two transverse facets differs from that of the 
four lateral facets comprising each syrinx, 
with one pore row per transverse facet and 
several pore rows per lateral facet (Fig. 21,2).

T h e  s y r i n g e s  o f  Sy r i n g o t h a l a m u s 
Debrenne, gAngloFF, & ZhurAvlev bear 
a single radial row of coarse pores per facet. 
In oblique section, these could potentially 
be confused with pseudotaenial or dictyonal 
network.

Tabulae

Pectinate tabulae are not known in these 
two orders. Most Archaeocyathina possess 
segmented tabulae, generally formed by 
the outer wall, and a few Loculicyathina 
(Mikhnocyathus mAslov) have plate tabulae.
Only Anthomorpha bornemAnn and its 
allies (Anthomorphina) bear independent 
(membrane) tabulae. Membrane tabulae show 
some similarity to pectinate tabulae in Ajacicy-
athida, in that they are developed separately in 
each intersept. They are pierced by two poorly 
delineated radial rows of irregular pores per 
loculus, which are identical in morphology to 
that of the outer wall (Fig. 22).

The more common segmented tabulae 
tend to be irregularly spaced along the length 
of the cup, and between different cups, even 
from the same locality. A few genera, such as 
Claruscoscinus hAnDFielD, Pycnoidocoscinus 
r. beDForD & W. r. beDForD, and Gabriel
socyathus Debrenne, show regular spacing of 
segmented tabulae. However, although these 
genera mimic Coscinocyathina and Kazach-

stanicyathida in this regard, their segmented 
tabulae develop late in ontogeny; this is not 
the case in these two ordinal taxa.

Segmented tabulae are extensions of the 
outer and/or inner wall, and so reflect the 
porosity of the parent wall. Thus, segmented 
tabulae of simple porosity accompany simple 
outer walls. Such tabulae are finely porous 
(Fig. 23a) or coarsely porous (Fig. 23b), 
according to wall porosity. In some Pycnoido
coscinus R. beDForD & W. r. beDForD 
(outer wall basic simple), the tabular pores 
are slitlike (Fig. 23c).

Likewise, in Archaeocyathoidea (outer 
wall concentrically porous), tabular porosity 
is concentric (Fig. 23d), and in Metacy-
athoidea (outer wall compound), it is 
compound (Fig. 23f ).

However, in the case of concentrically 
porous and compound walls, the tabular 
porosity is inconsistently conserved in some 
taxa. In Archaeopharetra R. beDForD & W. R. 
beDForD, for example, concentric porosity 
can cover only the outer portion of a tabula, 
or can be completely absent. In some Dictyo
sycon ZhurAvlevA, also with concentrically 
porous outer wall, segmented tabulae are 
nevertheless constructed only of coplanar, 
rodlike, intervallar elements (Fig. 23e).

Tabulae with canals are known in Maian
drocyathus Debrenne and Beltanacyathus 
R. beDForD & J. beDForD (grAvesTocK, 
1984), both Beltanacyathoidea (outer wall 
with subdivided canals).

Astrorhizae and Tubuli

Astrorhizae are recognized as a diag-
nostic feature of choanocyte-bearing 
organisms (hArTmAn, 1983; boYAJiAn & 
lAbArberA, 1987). It is quite possible that 
many archaeocyaths had astrorhizal canals 
embedded in the soft tissue, as in some 
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Fig. 18. Upper surface structures of cup; 1, schematic reconstruction of nonporous pelta on cup of Propriolynthus 
vologdini (YAKovlev) with various possible sections, section B corresponding to Globosocyathus bellus oKunevA (De-
brenne, Rozanov, & Zhuravlev, 1990); 2a–b, porous peltae; 2a, porous pelta with spines on cup of Archaeolynthus 
cipis (vologDin), Botoman, Usa Formation, Sukhie Solontsy, Batenev Range, Kuznetsk Alatau, Russia, longitudinal 
section, holotype, 1924-43, PIN, ×16; 2b, porous pelta with bracts on cup of Melkanicyathus operculatus (mAslov), 
Atdabanian, Usa Formation, Bol’shaya Erba, East Sayan, Altay Sayan, Russia, longitudinal section, 1923-41-2, PIN, 
×16 (Debrenne, Rozanov, & Zhuravlev, 1990); 3, rim in which outer wall curves toward inner wall, Cordilleracyathus 
blussoni hAnDFielD, Botoman, Sekwi Formation, Mackenzie Mountains, Northwest Territories, Canada, oblique 
longitudinal section, 90140, GSC, ×8 (Debrenne, Rozanov, & Zhuravlev, 1990); 4, rim as horizontal plate covering 
intervallum in Dokidocyathus sp., Botoman, Terekla Formation, Kurogan-Sakmara zone, western flank of Southern 
Urals, Russia, longitudinal section, 4327/38, PIN, ×20 (Debrenne, Rozanov, & Zhuravlev, 1990; © Publications 

Scientifiques du Muséum national d’Histoire naturelle, Paris).

1

2a

3

42b

A

B

C

D

A

A

B

B

C

C

D



General Features of the Archaeocyatha 33

extant demosponges with nonspiculate 
skeletons. Traces of this system were perhaps 
replicated in the secondary calcareous skel-
eton of some Archaeocyathus yichangensis 
YuAn & ZhAng (Fig. 24a). However, in only 
three species, Palaeoconularia triangulata 
(YAZmir), Altaicyathus vologdini (YAvorsKY) 
(Fig. 24b), and Landercyathus lewandowskii 
Debrenne & gAngloFF (Fig. 24d), have 
traces of the astrorhizal canals been retained 
in the primary calcareous skeleton. Other 
species of Altaicyathus vologDin (Fig. 24c) 

and Retilamina Debrenne & JAmes (Fig. 
6e) lack astrorhizae but possess chimney-
like outpockets on the outer wall. Such 
a chimney might become a new central 
cavity during ontogeny. It is thus possible to 
consider these as homologous to astrorhizae.

Juvenile Archaeocyathus billings cups may 
also have tubelike structures on the outer 
wall, but, unlike chimneys, these are incur-
rent rather than excurrent adaptations. They 
are homologous to the exaulos of thalamid 
sponges sensu FinKs (1983).

a

b

c

Fig. 19. Taeniae; a, taeniae with strutlike bifurcation adjacent to both walls in Spirocyathella toddi (Kruse), Atda-
banian, Todd River Dolostone, Ross River, Northern Territory, Australia, transverse section, FT.9947, specimen 
F.132942, AM, ×12 (Kruse & West, 1980); b, taenial bifurcation in intervallum and adjacent to outer wall (strut-
like) in Spirillicyathus tenuis r. beDForD & J. beDForD, Atdabanian, Ajax Limestone, Mount Scott Range, South 
Australia, Australia, transverse section, P21411-2, SAM, ×5 (Gravestock, 1984); c, taenial bifurcation in intervallum 
of Pycnoidocyathus sekwiensis hAnDFielD, Botoman, Sekwi Formation, Caribou Pass, Northwest Territories, Canada, 
transverse section, 12362, GSC, ×2 (Debrenne & Zhuravlev, 1992b; © Publications Scientifiques du Muséum 

national d’Histoire naturelle, Paris).
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Fig. 20. Pseudosepta, pseudotaeniae, and dictyonal network; a, coarsely porous pseudotaeniae in Archaeocyathus 
decipiens r. beDForD & J. beDForD, Botoman, Ajax Limestone, Ajax Mine, South Australia, Australia, longitudinal 
section, holotype, 86670-247, PU, ×5.3 (Debrenne & Zhuravlev, 1992b); b, pseudosepta in Graphoscyphia graphica 
(r. beDForD & W. r. beDForD), Botoman, Ajax Limestone, Ajax Mine, South Australia, Australia, longitudinal 
section (outer wall to right), paralectotype, P947-68, SAM, ×6 (Debrenne & Zhuravlev, 1992b; © Publications 
Scientifiques du Muséum national d’Histoire naturelle, Paris); c, dictyonal network in Fenestrocyathus complexus 
hAnDFielD, Botoman, Sekwi Formation, Mackenzie Mountains, Northwest Territories, Canada, longitudinal sec-

tion, paratype, 25390, GSC, ×4.5 (Handfield, 1971).

Fig. 21. Calicles and syringes; 1, calicles of hexagonal cross section in Usloncyathus araneosus (grAvesTocK), 
Atdabanian, Wilkawillina Limestone, Wilkawillina Gorge, South Australia, Australia, transverse section, paratype, 
P21663-3, SAM, ×10 (Gravestock, 1984); 2a–d, schematic reconstructions of varieties of syrinx; 2a, several pore 
rows per facet, as in Syringocnema, Kruseicnema, Fragilicyathus, Tuvacnema; 2b, one pore row per transverse facet and 
several pore rows per lateral facet, as in Pseudosyringocnema; 2c, one pore row per facet, as in Syringothalamus; 2d, 
complex syrinx with one pore row per transverse facet and several pore rows per lateral facet, as in Williamicyathus 
(Debrenne & Zhuravlev, 1992b; © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris); 3, 
syringes of hexagonal cross section with several pore rows per facet, Syringocnema favus TAYlor, Botoman, Cymbric 
Vale Formation, Mount Wright, New South Wales, Australia, longitudinal section (outer wall to right), FT.9486, 

specimen F.83936, AM, ×10 (Kruse, 1982).
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Fig. 21. (For explanation, see facing page).
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Some cups contain porous, longitudinal, 
tubular structures in the central cavity 
(Fig. 5d). These structures were called 
tubuli by Fonin (1963) and are part of the 
secondary skeleton. Tubuli can be located 
anywhere within the central cavity; when 
located at its upper part, they act as excur-
rent adaptations. Tubuli could thus be 

related to excurrent canals of the cup, like 
similar structures in inozoan calcareans or 
in lithistide demosponges. All the above 
mentioned features (astrorhiza, chimney, 
exaulos, tubulus) can be well developed, or 
completely missing, in individuals of the 
same species.

Pillars

Pillars are longitudinal, rodlike elements 
directly linking adjacent tabulae. They 
characterize sponges with a stromatopo-
roid or thalamid architecture, and, among 
archaeocyaths, the Kazachstanicyathida 
(with composite architecture). They may 
be superposed in successive chambers, but 
otherwise show no regularity of arrange-
ment (Fig. 24b–c and Fig. 27c). In Korovi
nella rADugin, pillars can bifurcate at their 
distal ends. Ontogenetically, pillars probably 
develop in a proximal direction from the 
chamber ceiling.

OUTER WALL TYPES

Observations on outer wall morphology 
by grAvesTocK (1984), and modifications 
by Debrenne and ZhurAvlev (1992b), are 
the basis for the present account.

Simple Walls

Simple walls are united in possessing 
simple pores. Several subtypes are recog-
nized. 

Simple wall–Rudimentary .—In this 
wall type, the outer edges of intervallar 
elements open directly to the exterior. 
There may be some thickening of the 

Fig. 22. Membrane tabulae with two radial rows of 
irregular pores per loculus in Shiveligocyayhus plenus 
Fonin, Botoman, Shangan Formation, Shivelig-Khem 
River, Tuva, Russia, transverse section (outer wall to 
left), 1915/814, PIN, ×9.5 (Debrenne & Zhuravlev, 
1992b; © Publications Scientifiques du Muséum na-

tional d’Histoire naturelle, Paris).

Fig. 23. Segmented tabulae; a, finely porous segmented tabula in Claruscoscinus mactus (Fonin), Toyonian, Usa 
Formation, Matur River, Kuznetsk Alatau, Altay Sayan, Russia, oblique transverse section (outer wall at top), 
2851/28, PIN, ×12; b, coarsely porous segmented tabula in Cellicyathus sp., Botoman, Chara Formation, Olekma 
River, Russia, oblique transverse section (outer wall at top), 4451/30, PIN, ×16 (Debrenne & Zhuravlev, 1992b; 
© Publications Scientifiques du Muséum national d’Histoire naturelle, Paris); c, slitlike pores in segmented tabula 
of Pycnoidocoscinus pycnoideum r. beDForD & W. r. beDForD, Botoman, Ajax Limestone, Ajax Mine, South 
Australia, Australia, oblique transverse section (outer wall at top), paratype, P991, SAM, ×9 (Debrenne, 1974a); 
d, concentric porosity in segmented tabula of Markocyathus clementensis Debrenne, Botoman, Puerto Blanco 
Formation, Caborca, Sonora, Mexico, oblique transverse section, 90178, GSC, ×18; e, coplanar rodlike interval-
lar elements in segmented tabulae of Dictyosycon sp., Atdabanian, Altay Sayan, Russia, oblique transverse section, 
4451/21, PIN, ×11; f, compound porosity in segmented tabulae of Tabulacyathellus bidzhaensis missArZhevsKiY, 
Atdabanian, Salaany Gol Formation, Khasagt-Khayrkhan Range, Tsagaan Oloom province, western Mongolia, 
oblique longitudinal section, 4451/39, PIN, ×18 (Debrenne & Zhuravlev, 1992b; © Publications Scientifiques 

du Muséum national d’Histoire naturelle, Paris).
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Fig. 23. (For explanation, see facing page).
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Fig. 24. Astrorhizae and chimneys; a, canals in secondary skeleton, possibly replicating astrorhizal canals in origi-
nal soft tissue, in central cavity of Archaeocyathus yichangensis YuAn & ZhAng, Toyonian, Tianheban Formation, 
Yichang, Hubei, China, transverse section, M85082, MNHN, ×3.3 (Debrenne, Gandin, & Zhuravlev, 1991); b, 
astrorhizal canals in primary skeleton of Altaicyathus vologdini (YAvorsKY), Botoman, Torgashino Formation, East 
Sayan, Altay Sayan, Russia, longitudinal section, 4451/52, PIN, ×10; c, chimneys on outer wall of Altaicyathus 
sp., Botoman, Adams Argillite, Tatonduk River, Alaska, United States, 2549, UAM, ×20; d, astrorhizal canals in 
primary skeleton of Landercyathus lewandowskii Debrenne & gAngloFF, Botoman, Valmy Formation, Iron Can-
yon, Nevada, United States, oblique longitudinal section, 38115, UCMP, ×5.5 (Debrenne & Zhuravlev, 1992b; 

© Publications Scientifiques du Muséum national d’Histoire naturelle, Paris).

marginal intervallar elements, but effec-
tively there is no distinct outer wall. True 
rudimentary outer walls characterize some 
Dictyofavina (Usloncyathus Fonin, Zuny
icyathus  Debrenne, Kruse, & ZhAng) 

and Syr ingocnemina (Auli s cocyathus 
Debrenne) (Fig. 26a).

Simple wall–Basic.—Basic simple walls 
incorporate  the marginal  interval lar 
elements, but with additional linking lintels 
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(Fig. 25c, Fig. 26b). This wall type is found 
in the Archaeocyathina only (Debrenne & 
ZhurAvlev, 1992b). 

Simple wall–Cambroid.—This is the new 
designation for the so-called simple wall of 
Cambrocyathellus-type of Debrenne and 
ZhurAvlev (1992b, p. 49). Restricted to the 
Loculicyathina, this simple wall subtype is 
most similar to the simple wall of Monocy-
athida, Ajacicyathida, Putapacyathida, and 
Capsulocyathida. It is a continuous plate 
pierced by simple pores. Constituent pores 
may be rounded, irregularly rounded, or irreg-
ularly quadrate (Fig. 26c–f). 

Pore orifices may bear flat to convex 
diaphragms, as, for example, in Loculicyathus 
membranivestites vologDin. Stirrup pores are 
rare. There may be one or several pore rows 
per intersept, but where there is only one, 
pores gently zigzag along the row (Fig. 26f ).

Simple wall–Anthoid.—Found only in the 
Anthomorphina, this is the proposed new 
name for so-called simple wall of Antho
morpha-type of Debrenne and ZhurAvlev 
(1992b, p. 49). It comprises transverse lintels 
linking adjacent pseudosepta to form a single 
row of slightly subquadrate large pores (Fig. 
27a). In some cases, additional lintels define 
several poorly expressed discontinuous pore 
rows per intersept (Fig. 27b).

Microporous membranes superficially 
similar to the attached microporous sheath 
in Ajacicyathida can be intermittently devel-
oped (Fig. 5d). The structure of these is 
identical to that of membrane tabulae.

Simple wall–Altoid.—Not unlike the 
anthoid wall subtype, the altoid simple wall 
is found in Kazachstanicyathida (Altaicy
athus vologDin and Korovinella rADugin). 
In this wall, lintels link the distal ends of 
pillars to form a continuous plate pierced by 
frequent polygonal pores (Fig. 27c). This is 
the so-called simple wall of Altaicyathus-type 
of Debrenne and ZhurAvlev (1992b, p. 49).

Concentrically Porous Walls

This wall type is found in Archaeocy-
athina and Syringocnemina. It consists of 
a continuous membrane bearing irregu-

larly arranged pores clustered within inter-
vallar cells, bounded in Archaeocyathina by 
pseudo taeniae and synapticulae or by taeniae 
and linking transverse rods (Fig. 25d); and, 
in Syringocnemina, by individual syringes 
(Fig. 27e). There is no clear organization of 
pores into longitudinal rows. 

grAvesTocK (1984) introduced the term 
centripetal for this wall type, but because that 
term is also used to describe wall develop-
ment, the wall type is here termed concentri-
cally porous. Prior to grAvesTocK (1984), this 
wall type was commonly described as simple, 
comparable to the simple outer wall in Mono-
cyathida, Ajacicyathida, Putapacyathida, and 
Capsulocyathida (e.g., ZhurAvlevA, 1960b; 
YAroshevich, 1966), or as double (e.g., 
KrAsnoPeevA, 1961; osADchAYA & others, 
1979; Fonin in voronin & others, 1982). 
Thus, some genera were described twice: 
with simple outer wall (Archaeocyathus bill-
ings, Archaeopharetra R. & W. R. beDForD) 
and with microporous sheath (“Syringsella” 
KrAsnoPeevA, “Salanycyathus” Fonin).

Fig. 25. Schematic reconstructions of outer walls; a, outer 
wall with simple pores in Ajacicyathida; b, outer wall with 
attached microporous sheath in Ajacicyathida; c, basic 
simple outer wall in Archaeocyathida; d, concentrically 
porous outer wall in Archaeocyathida; I, distal elements 
of intervallum; II, outer wall; III, microporous sheath 
(Debrenne & Zhuravlev, 1992b; © Publications Scien-
tifiques du Muséum national d’Histoire naturelle, Paris).
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Fig. 26. (For explanation, see facing page).



General Features of the Archaeocyatha 41

Compound Walls

In compound walls (grAvesTocK, 1984), a 
discontinuous porous membrane is attached 
to marginal intervallar cells. Two variants are 
accorded genus-level significance: walls with 
incipient subdivision of intervallar cells (Fig. 
28c) and walls with completely subdivided 
pores (Fig. 27d, Fig. 28a).

In the first variant, thick spines arise 
from pore lintels but are not completely 
connected; in the second, the spines are 
completely connected to form irregular 
micropores. Compound walls are present in 
Archaeocyathina and Dictyofavina.

Pustular Walls

This wall type is known in Putapacy-
athida (Chabakovicyathus KonYushKov), 
Loculicyathina (Sakhacyathus Debrenne & 
ZhurAvlev), Archaeocyathina (Naimarkcyathus 
WronA & ZhurAvlev), and Syringocnemina 
(Kruseicnema Debrenne, grAvesTocK, & 
ZhurAvlev). It is characterized by pustulae 
with a single central pore (Fig. 28d). In the 
last two genera, the pustulae are low cones, 
but in Chabakovicyathus KonYushKov, they are 
hemispherical domes. Pustulae are similar to 
simple tumuli in Monocyathida, Ajacicyathida, 
and Capsulocyathida, which, however, differ 
in having the pore located toward the bottom.

Walls with Canals

Three types of outer wall canals are 
known in Archaeocyathida and Kazach-
stanicyathida:

1. Straight oblique canals, as in Fragili
cyathus belYAevA and Warriootacyathus 
grAvesTocK (Fig. 28b).

2. Subdivided canals, as in Beltana
cyathus R. beDForD & J. beDForD (Fig. 
28e); these are short oblique canals with 
incipient or complete subdivision of external 
orifices by short protrusions of the canal 
wall. Debrenne and ZhurAvlev (1992b) 
interpreted the outer walls of Ataxiocyathus 
Debrenne and Maiandrocyathus Debrenne 
as extreme developments of such protrusions 
to form an additional microporous sheath 
with elongate irregular pores (Fig. 28f ).

3. S-shaped canals, as in Tchojacyathus 
roZAnov (Fig. 29,1) and canals with supple-
mentary bracts, having a V-shaped appearance, 
as in Chankacyathus YAKovlev (Fig. 29,2).

Tabellar Walls

This wall type is known only in Taeniae
cyathellus ZhurAvlevA (Archaeocyathina). 
It  comprises longitudinal r ibs l inked 
by transverse lintels (Fig. 29,4 ). Fonin 
(1963) provided the first comprehensive 
description of this wall type. However, due 
to the common occurrence of an adherent 
pellis, Fonin oriented the longitudinal 
ribs (his tabellae) and transverse lintels 
(his metulae) perpendicular to their true 
orientation.

Aporose Walls

This outer wall is not comparable to 
other wall types in that it is characteristic 

Fig. 26. Outer walls in Archaeocyathida; a, rudimentary simple outer wall in Auliscocyathus multifidus (r. beDForD 
& W. r. beDForD), Botoman, Ajax Limestone, Ajax Mine, South Australia, Australia, external view in longitudinal 
section, 245, PU, ×6; b, basic simple outer wall, Graphoscyphia graphica (r. beDForD & W. r. beDForD), Botoman, 
Ajax Limestone, Ajax Mine, South Australia, Australia, external view in longitudinal section, paralectotype, 85, PU, 
×5 (Debrenne & Zhuravlev, 1992b; © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris); 
c, simple outer wall with rounded pores of cambroid type, Ardrossacyathus endotheca r. beDForD & J. beDForD, 
Botoman, Parara Limestone, Ardrossan, South Australia, Australia, tangential section, topotype, P32041, SAM, 
×6 (Zhuravlev & Gravestock, 1994); d, simple outer wall with irregularly rounded pores of cambroid type, Oku
litchicyathus discoformis (ZhurAvlevA), Tommotian, Pestrotsvet Formation, Zhurinskiy Mys, Lena River, Yakutia, 
Russia, tangential section, 4451/59, PIN, ×20; e, simple outer wall with irregularly quadrate pores of cambroid 
type, Neoloculicyathus sibiricus (sunDuKov), Atdabanian, Pestrotsvet Formation, Oy-Muran, Lena River, Yakutia, 
Russia, tangential section, 4451/1, PIN, ×20; f, simple outer wall with one row of pores of cambroid type per 
intersept, Cambrocyathellus proximus (Fonin), Tommotian, Pestrotsvet Formation, Titirikteekh Creek, Lena River, 
Yakutia, Russia, tangential section, 4451/5, PIN, ×20 (Debrenne & Zhuravlev, 1992b; © Publications Scientifiques 

du Muséum national d’Histoire naturelle, Paris).
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of early ontogenetic stages in all suborders 
of Archaeocyathida and Kazachstanicy-
athida, except Loculicyathina, which never 
passes through an aporose outer wall stage. 
One possible exception is Chouberticyathus 
Debrenne (Archaeocyathina) (Fig. 29,3). 
The aporose outer wall is usually a laminated 
structure, similar to epitheca of other calci-
fied sponges.

INNER WALL TYPES

Inner walls are less diverse than outer 
walls, as in all orders of Archaeocyatha.

Simple Walls

Simple inner walls in Archaeocyathida 
and Kazachstanicyathida typically comprise 
a single longitudinal pore row per intersept. 
Forms with several pore rows per intersept 
are the exception. Pores may be rounded, 
elliptical, or subquadrate (Fig. 30a–c). 
Rarely, pore lintels bear spines (e.g., in 
Copleicyathus R. beDForD & J. beDForD, 
Spinosocyathus ZhurAvlevA).

Walls with Bracts, Fused Bracts, 
or Pore Tubes

In Archaeocyathida, there is a structural 
continuum between these otherwise dispa-
rate wall types, so they are treated collec-
tively in this order. This wall type is found in 
Archaeocyathina and Syringocnemina. Fused 
bracts have often been described as scales or 
annuli but are distinguished from these 
latter by their undulating outline, indica-
tive of their constituent, semi-independent 
units. All formerly recognized so-called 

scales in this order are here regarded as fused 
bracts. Fused bracts are planar or S-shaped. 
With the exception of Taeniaecyathellus 
ZhurAvlevA inner walls, all these variant 
walls possess only one longitudinal pore row 
per intersept.

In the present suborders, fused bracts 
typically develop into oblique canals during 
ontogeny. They may in turn fuse to form 
annulus-like structures (Fig. 30d). Fused 
and nonfused bracts and pore tubes can 
arbitrarily appear in the same or different 
cups of the same species.

Pore tubes are generally described as 
straight (Fig. 31a), but a minority are 
clearly S-shaped, e.g., in Sigmofungia R. 
beDForD & W. R.. beDForD (Fig. 31b), 
while others are intermediate, with both 
types intergradational, e.g., in Fenestrocy
athus hAnDFielD.

Walls with Canals

Inner wall canals are known only in Locu-
licyathina and Anthomorphina, and stirrup 
canals only in Anthomorphina. Canals are 
straight in Shiveligocyathus missArZhevsKiY 
and S-shaped in Tchojacyathus roZAnov.

Uniquely, the inner wall of Eremita
cyathus ZAmArreño & Debrenne has a single 
continuous opening along each intersept, 
bounded by longitudinal plates (Fig. 31c). 
These openings are treated as canals.

Compound Walls

Compound inner walls bear similarity 
to compound outer walls. As in the latter, 
the pore subdivision of inner walls can be 

Fig. 27. Outer walls in Archaeocyathida and Kazachstanicyathida; a, simple outer wall with pores of anthoid type, 
Anthomorpha margarita bornemAnn, Botoman, Matoppa Formation, Serra Scoris, Sardinia, Italy, tangential section, 
M84144, MNHN, ×10; b, simple outer wall with pores of anthoid type, Tollicyathus nelliae (Fonin), Botoman, 
Shangan Formation, Ulug-Shangan River, Tuva, Russia, oblique transverse section, 4451/12, PIN, ×10; c, outer 
wall with simple pores of altoid type, Altaicyathus notabilis vologDin, Botoman, Verkhneynyrga Formation, Altay 
Mountains, Altay Sayan, Russia, oblique transverse section, 290/2957, TsNIGRm, ×9; d, compound outer wall with 
completely subdivided pores, Spirillicyathus pigmentus r. beDForD & J. beDForD, Atdabanian, Mount Scott Range, 
South Australia, Australia, tangential section, P21747, SAM, ×10 (Debrenne & Zhuravlev, 1992b; © Publications 
Scientifiques du Muséum national d’Histoire naturelle, Paris); e, concentrically porous outer wall, Syringocnema 
favus TAYlor, Botoman, Cymbric Vale Formation, Mount Wright, New South Wales, Australia, tangential section, 

FT.9487, specimen, F.83936, AM, ×4 (Kruse, 1982).
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Fig. 28. Outer walls in Archaeocyathida; a, compound outer wall with completely subdivided pores, Copleicyathus 
scottensis grAvesTocK, Atdabanian, Mount Scott Range, South Australia, Australia, tangential section, holotype, 
P21423-1, SAM, ×19 (Gravestock, 1984); b, horizontal to upwardly projecting straight canals in outer wall, 
Warriootacyathus wilkawillinensis grAvesTocK, Atdabanian, Wilkawillina Limestone, Wilkawillina Gorge, South 
Australia, Australia, transverse section, paratype, P21806-2, SAM, ×2 (Gravestock, 1984); c, compound outer wall 
with incipient subdivision of intervallar cells, Jugalicyathus tardus grAvesTocK, Atdabanian, Ajax Limestone, Mount 
Scott Range, South Australia, Australia, tangential section, holotype, P21747, SAM, ×7.5; d, pustular outer wall, 
Kruseicnema gracilis (gorDon), Botoman, Parara Limestone, Minlaton 1 drillhole, Yorke Peninsula, South Aus-
tralia, Australia, oblique longitudinal section, P32047, SAM, ×5 (Debrenne & Zhuravlev, 1992b; © Publications 
Scientifiques du Muséum national d’Histoire naturelle, Paris); e, subdivided canals in outer wall, Beltanacyathus 
wirrialpensis (TAYlor), Atdabanian, Ajax Limestone, Ajax Mine, South Australia, Australia, external view in longi-
tudinal section, holotype of junior synonym ionicus r. beDForD & J. beDForD, 86718-275, PU, ×7 (Debrenne, 
1974a); f, subdivided canals in outer wall, Maiandrocyathus insigne (r. beDForD & W. r. beDForD), Botoman, Ajax 
Limestone, Ajax Mine, South Australia, Australia, external view in longitudinal section, holotype, P986-168, SAM, 
×4.5 (Debrenne & Zhuravlev, 1992b; © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris).
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2a

2b
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4

Fig. 29. Outer walls in Archaeocyathida; 1, horizontal to upwardly projecting S-shaped canals on both walls of Tchoja
cyathus validus roZAnov, Atdabanian, Uba Formation, Tyrga River, Altay Mountains, Altay Sayan, Russia, longitudinal 
section (outer wall to left), GIN3447/7-8, PIN, ×3.5; 2a–b, horizontal to upwardly projecting straight canals, bearing 
supplementary bracts externally, on outer wall of Chankacyathus strachovi YAKovlev; 2a, Botoman, Dmitrievka Forma-
tion, Kar’ernaya Hill, Far East, Russia, transverse section, 133/52, PGU, ×3.5; 2b, Botoman, Khanka Lake area, Far 
East, Russia, longitudinal section (outer wall to left), 1768-12b, PGU, ×17; 3, imperforate (possibly rudimentary) 
outer wall in Chouberticyathus clatratus Debrenne, Botoman, Issafen Formation, Tizi Oumeslema, Morocco, external 
view of outer wall, M80272, MNHN, ×8.5 (Debrenne & Zhuravlev, 1992b; © Publications Scientifiques du Muséum 
national d’Histoire naturelle, Paris); 4, schematic reconstruction of tabellar outer wall in Taeniaecyathellus tectus Fonin, 

external view, ×85 (Fonin, 1963).
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Fig. 30. Inner walls in Archaeocyathida; a, inner wall with rounded simple pores, Cambrocyathellus tuberculatus (volog-
Din), Atdabanian, Salaany Gol Formation, Zuune-Arts, Tsagaan Oloom province, western Mongolia, oblique trans-
verse section, 4451/10, PIN, ×7.5; b, inner wall with elliptical simple pores in Anthomorpha margarita bornemAnn, 
Botoman, Matoppa Formation, Cuccuru Contu, Sardinia, Italy, tangential section, M84253, MNHN, ×5 (Debrenne 
& Zhuravlev, 1992b; © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris); c, inner wall with 
subquadrate simple pores, Paranacyathus parvus (r. beDForD & W. r. beDForD), Botoman, Ajax Limestone, Ajax 
Mine, South Australia, Australia, oblique transverse view, holotype, P992, SAM, ×6 (Debrenne, 1974c); d, annulus-like 
(Continued on facing page.)
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incipient (e.g., Changicyathus Debrenne & 
ZhurAvlev, Metaldetes TAYlor) (Fig. 31e) 
or complete (e.g., Archaeosycon TAYlor, 
Pycnoidocoscinus R. beDForD & W. R. 
beDForD) (Fig. 31d).

However, some compound inner walls 
differ structurally from the compound outer 
wall. Thus, while in Metacyathoidea the 
inner wall pore subdivision mirrors that of 
the outer wall, in Archaeosycon and Pycnoido
coscinus the inner wall is formed from the 
superposition of wall and tabular structure.

SKELETAL 
MICROSTRUCTURE

PRIMARY SKELETON

The well-preserved primary archaeocya-
than skeleton shows a uniformly micro-
granular microstructure comprising a mosaic 
of interlocking isometric polyhedral micro-
granules with randomly oriented c-axes 
(hinDe, 1889; TAYlor, 1910, p. 162; hill, 
1964b). There are no spicules. hinDe (1889) 
described the archaeocyathan microstructure 
as minutely granular, and some 70 years 
later, ZhurAvlevA (1960b, p. 22) reported 
a mosaic of grains. All these observations 
relied on normal thin sections, which permit 
a maximum magnification of about 300× 
only. From 1970, two new methods were 
introduced: polished ultrathin sections (thick-
ness 3 µm) and scanning electron microscopy. 
Both techniques permit greater magnification 
(up to 4000×, although 2000× is generally 
sufficient for microstructural studies). The 
first result obtained by the new methods was 
a more precise definition of the microgran-
ules (lAFusTe & Debrenne, 1970): these are 
uniformly polyhedral crystallites, the surfaces 
of which are embossed by irregular cupules 
and protruberances (Fig. 32,1–2).

Surveys of various archaeocyath taxa 
from different regions and ranging in age 
from Tommotian to Botoman demonstrate 
a general uniformity of microstructure 
among the Archaeocyatha in time, space, 
and systematic position (Fig. 32,3–4) 
(Debrenne ,  ZhurAvlev, & roZ Anov , 
1989, p. 40; Kruse & Debrenne, 1989; 
Debrenne, roZAnov, & ZhurAvlev, 1990, 
p. 60). The maximum size of microgranules 
is within the range of 0.5–20 µm, but more 
commonly 4–8 µm (Kruse & Debrenne, 
1989). Some difference has been observed 
between Monocyathida (one-walled cups) 
and Ajacicyathida: component granules in 
the former measure 1.7 × 1.1 µm, versus 4 
× 3 µm in the latter (lAFusTe & Debrenne, 
1982; Debrenne, ZhurAvlev, & roZAnov, 
1989, pl. 10,1–4; Debrenne, roZAnov, & 
ZhurAvlev, 1990, pl. 10,1–4 ).

SECONDARY SKELETON

Inves t ing  the  pr imary  ske le ton of 
some archaeocyath cups is a later-formed 
secondary skeleton, termed stereoplasm 
by voronin (1963). Although observed 
occasionally in other suborders, it is most 
characteristic of the Archaeocyathina. The 
secondary skeleton envelops the external 
surface of the cup (Fig. 22, Fig. 32,2), either 
as a thin sheet (pellis), as thicker encrusta-
tions of the cup apex (radicatus), or other-
wise protruding from the cup (buttresses) 
(Fig. 33). Within the cup, it infills spaces 
between primary skeletal elements, as 
bubblelike vesicles in the intervallum and/
or central cavity (Fig. 32,3), or as tubular 
structures (tubuli) in the central cavity (Fig. 
5d, Fig. 24a). There is continuity between 
exostructures, endostructures, and inter-
vallar structures. Secondary skeleton is typi-
cally laminated, indicating repeated episodic 

Fig. 30. (Continued from facing page).
structures developed from upwardly projecting S-shaped fused bracts on inner wall of Syringothalamus crispus De-
brenne, gAngloFF, & ZhurAvlev, Botoman, Poleta Formation, Westgard Pass, California, United States, oblique 
transverse section, B4008, UCMP, ×5 (Debrenne & Zhuravlev, 1992b; © Publications Scientifiques du Muséum 
national d’Histoire naturelle, Paris); e, upwardly projecting straight pore tubes on inner wall of Pycnoidocyathus 
sekwiensis hAnDFielD, Botoman, Sekwi Formation, Caribou Pass, Northwest Territories, Canada, tangential section, 

holotype, 25384, GSC, ×4 (Handfield, 1971).
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Fig. 31. Inner walls in Archaeocyathida; a, upwardly projecting straight pore tubes on inner wall of Beltanacyathus 
digitus grAvesTocK, Atdabanian, Wilkawillina Limestone, Wilkawillina Gorge, South Australia, Australia, longitu-
dinal section (outer wall to right), paratype, P21825, SAM, ×3 (Gravestock, 1984); b, upwardly projecting S-shaped 
pore tubes on inner wall of Sigmofungia undata (Debrenne), Botoman, Puerto Blanco Formation, Cerro Rajon, 
Sonora, Mexico, longitudinal section (outer wall to right), holotype, M83098, MNHN, ×5.5 (Debrenne, Gandin, 
& Rowland, 1989); c, longitudinally continuous canal-like openings in inner wall of Eremitacyathus fissus Debrenne, 
Atdabanian, Pedroche Formation, Las Ermitas, Cordoba, Spain, tangential section, holotype, M84016, specimen Spe 
10-1a, MNHN, ×12; d, compound inner wall with complete pore subdivision in Archaeosycon billingsi (WAlcoTT), 
Botoman, Forteau Formation, Treasure Reef, Labrador, Canada, tangential section, 62119, GSC, ×7.5; e, compound 
inner wall with incipient pore subdivision in Metaldetes profundus (billings), Botoman, Forteau Formaton, Mount 
St. Margaret, Newfoundland, Canada, tangential section, 103937, GSC, ×10 (Debrenne & Zhuravlev, 1992b; © 

Publications Scientifiques du Muséum national d’Histoire naturelle, Paris).
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accretion. It has no fixed morphology and is 
no longer accorded taxonomic significance.

Secondary skeleton in archaeocyaths was 
apparently of dual origin. On the one hand, 
it was initiated while the archaeocyath was 
still alive, forming canals similar to the 
crypts of Merlia normani KirKPATricK. On 
the other hand, while the cells responsible 
for this process die, early diagenesis may 
modify the secondary skeleton even as the 
organism continues to function normally in 
the upper part of the cup. Microstructural 
differences delimit the early diagenetic skel-
eton (reiTner & engeser, 1987).

lAFusTe and Debrenne (1977) were the 
first to document the microstructure of the 
secondary skeleton, in Archaeocyathus atlan
ticus billings from Labrador. Like the primary 
skeleton, the secondary skeleton is micro-
granular, but finer than the former, in the 
size range of 0.5–4 µm, but commonly 2–3 
µm. Slight variations in microgranule size 
define the laminations. Additionally, rims of 
palisading crystallites, 0.75 × 2.0 µm in size, 
were identified by these authors, separating the 
primary and secondary skeletons of Archaeocy
athus atlanticus billings from the same area. 
Less distinct palisades were observed between 
individual laminations of the secondary skel-
eton. Palisades were also present in Archaeo
sycon billingsi (WAlcoTT) from the same 
locality (Debrenne & JAmes, 1981).

Vesicles are an aspect of the secondary 
calcareous skeleton characteristic of many 
sessile organisms, namely sponges, corals, 
rudists, bryozoans, brachiopods (e.g., 
Richthofenia KAYser), and some cirripedes 
(seilAcher & seilAcher-Drexler, 1986). 
The widespread occurrence of vesicles in 
cups of Archaeocyathida (Fig. 32,3) is 
considered to be indicative of the progres-
sive withdrawal of the living matter toward 
the distal end of the cup with growth 
(vologDin, 1962a; Ziegler & rieTschel, 
1970), by analogy with the living Vaceletia 
crypta (vAceleT), with the soft body being 
restricted to the uppermost millimeters 
of the cup (Debrenne & vAceleT, 1984). 
A similar ratio of skeleton to living tissue 

is observed in many extant nonspiculate 
skeleton-bearing sponges and Mesozoic 
stromatoporoids (WooD, 1987). Conversely, 
Ajacicyathida and Putapacyathida are gener-
ally devoid of vesicles, suggesting that the 
living matter occupied virtually the entire 
cup throughout growth in these orders 
(Debrenne, 1991).

Of the diverse functions proposed for 
the secondary skeleton (see Debrenne 
& ZhurAvlev, 1992b, p. 56–57), those 
relating to anchoring a cup to the substrate 
(buttresses; grAvesTocK, 1983) and sealing 
vacated portions of a cup (vesicles) seem 
the best founded. The secondary skeleton 
also prevents the introduction of parasitic 
organisms and epibionts into dead parts of 
the skeleton, heals injuries to the skeleton, 
and may assist in the regulation of water flow 
through the skeleton. When secondary layers 
fill skeletal injuries, no gaps are observed 
between them and the primary skeleton 
(Debrenne & roZAnov, 1978). These func-
tions imply facultative secretion by the host 
cup, and not by any foreign organism. They 
were evidently responsible for the develop-
ment of complex exocyathoid structures. 
Exocyathoid structures look superficially 
like independent archaeocyathan cups, but 
their contiguity with the parent cup may 
be interpreted as a process of anchoring the 
cup on the substrate, as demonstrated by 
grAvesTocK (1983) (Fig. 33).

Putative archaeocyathan spicules (triac-
tines, tetractines) in archaeocyaths from 
Atdabanian reefs of Australia, figured 
and discussed by reiTner (1992, p. 293, 
pl. 59,1–10; reiTner & mehl, 1995), 
were discounted as archaeocyathan by 
Debrenne and ZhurAvlev (1992b), who 
emphasized that such spicules invari-
ably occur within the secondary skeleton. 
In fact, any fine allochthonous material 
from the immediate environment may 
be incorporated into the archaeocyathan 
secondary skeleton: these authors illus-
trated trilobite fragments likewise trapped 
in this manner (Debrenne & ZhurAvlev, 
1992b, pl. 35,2) in Toyonian reefs of 
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Fig. 32. (For explanation, see facing page).
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China to demonstrate that the so-called 
archaeocyathan spicules are adventitious. 
No undoubted spicules have been recorded 
from the primary skeleton of archaeocy-
aths. In other groups of calcified sponges, 
the spicules are incorporated into the 
primary skeleton as they are secreted in 
the earliest stage of biomineralization 
(WenDT, 1980). The apparent absence 
of genuine spicules among archaeocy-
aths favors comparison with the Demo-
spongiae, as Calcarea and Hexactinellida 
invariably possess spicules, whereas demo-
sponges can construct a calcareous or kera-
tose nonspiculate skeleton (e.g., Vaceletia 
PicKeTT, Pacific population of Astrosclera 

lisTer, Dictyoceratida, Dendroceratida) 
(vAceleT, 1979).

BIOMINERALIZATION AND 
DIAGENESIS

The uniformity of archaeocyathan micro-
structures implies some measure of organic 
matrix-mediated mineralization (loWen-
sTAm, 1981), whereby mineral nucleation 
and growth occur in contact with a precursor 
organic template (Debrenne & vAceleT, 
1984). Matrix mediation is suggested by the 
reactions of archaeocyathan cups in close 
proximity, the younger of which tend to 
distort in response to their encroachment 
upon the older; this implies an initially 

Fig. 32. Archaeocyathan microstructure; 1a–e, microstructure in ultrathin section, ×1700; a, Archaeolynthus; b, 
Nochoroicyathus (Debrenne, 1983); c, primary skeleton of Archaeocyathus; d, secondary skeleton of Archaeocyathus 
(Lafuste & Debrenne, 1977); e, schematic reconstruction of microgranule comprising archaeocyathan skeleton 
(Debrenne, 1983); 2, primary skeletal element of a taenia (center) limited by secondary palisading tissue (arrows) 
and further invested above and below by laminae of secondary thickening (stereoplasm) with fine-grained external 
limit; coarsely crystalline darker areas at top and bottom are cement, Archaeocyathus atlanticus billings, Botoman, 
Forteau Formation, Mount St. Margaret, Newfoundland, Canada, SEM image of transverse section, 62107, GSC, 
×200 (Debrenne & James, 1981); 3, portions of taeniae (primary skeleton; center, top right and bottom right) 
invested by secondary vesicles (dark; arrows); cavities occluded by calcite spar mosaic (pale), Archaeocyathus atlanticus 
billings, Botoman, Forteau Formation, Taylors Gulch, Labrador, Canada, transverse section, M83136, MNHN, 
×70; 4, same, contact of coarser-crystalline primary taenia (above) and finer-crystalline secondary vesicle (below), 

ultrathin transverse section, ×350 (Lafuste & Debrenne, 1977).

a

b

Fig. 33. Buttresses; a, successive development of exocyathoid and tersioid buttresses upon a Somphocyathus coral
loides TAYlor cup, Atdabanian, Wilkawillina Limestone, Wirrealpa, South Australia, Australia, transverse section, 
86673-376, PU, ×5; b, tersioid buttresses upon a Polycoscinus papillatus (r. beDForD & W. r. beDForD) cup 
(top) abutting a Coscinoptycta convoluta (TAYlor) cup (bottom), Botoman, White Point Conglomerate, Emu Bay, 
Kangaroo Island, South Australia, Australia, transverse section, M82007-9, MNHN, ×7 (Debrenne & Zhuravlev, 

1992b; © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris).
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unmineralized growing edge. In support of 
this, brAsier (1976) observed that archaeo-
cyaths in the Wilkawillina Limestone (South 
Australia) were often distorted where juve-
niles had attached, suggesting that the 
disturbed portion of the organism was origi-
nally elastic. This hypothesis is preferred to 
the so-called biologically induced mineral-
ization assumed by some authors (loWen-
sTAm, 1981; bArsKov, 1984), which results 
in component crystal habits similar to those 
produced by inorganic precipitation. In the 
case of the Archaeocyatha, the presence of 
embossed surfaces is in favor of organic 
secretion, as mineral precipitation generates 
only planar surfaces; the interlocking gran-
ules, despite the fact that axes have random 
orientation, are therefore most probably the 
result of an organic matrix-mediated process, 
albeit at a primitive stage.

Microgranular microstructures are shared 
by several fossil groups: cribricyaths, some 
calcareous algae, probable calcified cyano-
bacteria (Renalcis vologDin and others), 
some foraminifers, some calcified sponges 
and hydrocorals (Fenninger & FlAJs, 1974; 
FlAJs, 1977; Jones, 1979; roZAnov, 1979; 
WenDT, 1979, 1984; roZAnov & sAYuTinA, 
1982; boYKo, 1984). In all these groups, 
granules differ in size and shape, being 
much smaller and less embossed than in 
archaeocyaths. No conclusions can be drawn 
concerning possible affinities between these 
groups on the basis of microstructure alone. 
The microgranular structure is a primitive 
one and may have given rise to a variety of 
more elaborate secretion products in the 
course of evolution.

Altogether, this microstructure is finer 
than that expected from the neomorphism 
of aragonite, so an original calcitic miner-
alogy is assumed. Comparative petrographic 
study of Labrador reef fabrics and faunas by 
JAmes and KlAPPA (1983) led these authors 
to conclude that archaeocyaths were prob-
ably originally of magnesium calcite compo-
sition. This conclusion is supported by 
the common occurrence of microdolomite 
inclusions in the skeleton, an increased 

magnesium content, synsedimentary marine 
epitaxial fibrous cement developed in optical 
continuity with skeletal elements, and less 
altered carbon and oxygen isotope signatures 
(brAsier & others, 1994; ZhurAvlev & 
WooD, 2008).

BIOLOGY OF 
ARCHAEOCYATHA

INFERRED CHOANOCYTES

The presence of choanocyte chambers in 
archaeocyaths can only be indirectly demon-
strated. bAlsAm and vogel (1973) pioneered 
the empirical study of archaeocyathan func-
tional morphology using generalized metal 
models in flume tanks. These authors, and 
subsequently ZhurAvlev (1989, 1993) and 
sAvArese (1992, 1995), concluded that the 
archaeocyathan cup was admirably suited 
to passive filtration. Due to the velocity 
gradient induced within the cup, water 
entered the cup through the outer wall pores, 
passed through the intervallum, and exited 
via the inner wall pores and central cavity. 
This is the water flow direction in sponges. 
Hypotheses suggesting a passive ingress of 
water into the cup through the central cavity 
or intervallum and its egress through the 
outer wall (vologDin, 1962a; ZhurAvlevA, 
1974c) are inconsistent with the principles 
of hydrodynamics.

The absence of septa in sponges was one 
of the major arguments of oKuliTch and De 
lAubenFels (1953) against the assignment 
of archaeocyaths to Porifera. However, 
Ziegler and rieTschel (1970) noted that 
the presence of septa only means that the 
water flow did not stream diffusely through 
the soft tissue, but was channelled. This 
proposal has been confirmed by sAvArese 
(1992), who found that his septate models 
did not leak fluid from the outer wall, 
enhancing the excurrent fluid flow through 
the central cavity. Thus, certain Devonian 
and Triassic thalamid sponges also devel-
oped septalike structures (oTT, 1974; 
PicKeTT & rigbY, 1983). It is thus clear 
why the intervallar rods of dokidocyathine 
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archaeocyaths are arranged in regular 
longitudinal rows (grAvesTocK, 1984; 
Debrenne & roZAnov, 1985; ZhurAvlev, 
1989) rather than arbitrarily: they form a 
structure which is indeed a septum with a 
single longitudinal row of pores.

In summary, the archaeocyathan skeleton 
was to some degree suited to passive filtra-
tion—although, as in extant sponges with 
nonspiculate skeletons, this need not exclude 
active filtration and, indeed, given the now 
established poriferan nature of the group, 
choanocytes are inferred to be present.

An auxiliary observation, favoring the 
presence of choanocyte chambers in archaeo-
cyaths, concerns forms having an outer wall 
consisting of an attached microporous sheath 
mantling funnel-shaped pores. As in extant 
demosponges, only a choanocyte chamber 
system could prevent the blockage of such a 
porous structure by external particles (rigbY 
& PoTTer, 1986).

IMMUNE RESPONSES

Archaeocyaths display a wide range of 
skeletal reactions in response to the prox-
imity of other species (brAsier, 1976; 
Debrenne & ZhurAvlev, 1992b, 1994; 
WooD, ZhurAvlev, & Debrenne, 1992) 
(Fig. 34). These are comparable with the 
al lograph, autograph, and xenograph 
immune behaviors of demosponges (vAn 
De vYver & buscemA, 1985; ilAn & loYA, 
1990). The development of archaeocyathan 
secondary calcareous laminations might be 
analogous to the formation of a collagen 
barrier between demosponge bodies (vAn De 
vYver & buscemA, 1985).

Partial atrophy and maintenance of spatial 
separation due to juvenile attachment or 
proximity to adjacent adult cups (Kruse, 
1991a) have been recognized to be more 
pronounced among the Ajacicyathida than 
the Archaeocyathida or Kazachstanicy-
athida, that is, there is a spectrum of allo-
genic incompatibility in the class (WooD, 
ZhurAvlev, & Debrenne, 1992). The greater 
incompatibility demonstrated by the Ajaci-
cyathida hinders mutual encrustation, and 

thereby greatly limits the ability of ajacicy-
athides to construct rigid reef framework. 
Conversely, allogenic reactions are minimal 
among the Archaeocyathida and Kazach-
stanicyathida, and these orders played a 
much greater bioconstructional role in reefs.

These inferences alone cannot be used 
as a definitive argument in favor of the 
taxonomic proximity of archaeocyaths and 
demosponges; data on immune responses in 
calcified sponges are lacking, thus precluding 
comparison. Furthermore, the comparison of 
secondary calcareous skeleton with collagen 
barriers can only be a working hypothesis at 
present. Nevertheless, it is interesting to note 
the similarities in interspecific interactions 
within the two groups.

ASEXUAL REPRODUCTION IN 
CHAETETID ARCHAEOCYATHS

The modularity of chaetetid archaeocy-
aths results from two processes: in Gataga
cyathus Debrenne & ZhurAvlev, by external 
budding evolving into a branching modular 
form (Fig. 34a); and in Usloncyathus Fonin 
(Fig. 21,1) and Zunyicyathus Debrenne, 
Kruse, & ZhAng (Fig. 6d), by the sepa-
ration of new aquiferous units within a 
thin sheath of soft tissue covering the skel-
eton (Debrenne & ZhurAvlev, 1994). In 
chaetetid sponges, two similar budding 
modes have been noted by WesT and clArK 
(1983): calicular longitudinal fission and 
addition of new calicles at the periphery. 
A third mode of asexual reproduction is 
observed in most chaetetid archaeocyaths: 
the arising of small buds connected with 
a single calicle. The cavity of the parent 
calicle extends into the atrium of the 
offspring bud and the parent calicle’s facets 
become the bud’s inner wall, as in Zuny
icyathus grandis (YuAn & ZhAng), Gataga
cyathus mansyi Debrenne & ZhurAvlev, 
Uslon cyathus araneosus (grAvesTocK), U. 
obtusus (grAvesTocK), and Zunyicyathus 
pianov skajae (ZhurAvlevA) (ZhurAvlevA 
& others, 1970, p. 45; Debrenne, Kruse, 
& ZhAng, 1991; Debrenne & ZhurAvlev, 
1994). This process may correspond to the 
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Fig. 34. Modularity and immune responses; a, intercalicular budding on surface of skeleton of Gatagacyathus 
mansyi Debrenne & ZhurAvlev, Botoman, Poleta Formation, Mount Lida, Nevada, United States, oblique 
longitudinal section, M83138, MNHN, ×10 (Debrenne & Zhuravlev, 1994); b, interaction of modules in 
pseudocerioid Sajanocyathus ussovi vologDin, Botoman, Verkhnemonok Formation, West Sayan, Altay Sayan, 
Russia, transverse section, 4451/55, PIN, ×2.7; c, interaction of Keriocyathus arachnaius Debrenne & gAn-
gloFF (Archaeocyathida; top) and Siderocyathus duncanae Debrenne & gAngloFF (Ajacicyathida; bottom),
(Continued on facing page). 
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intercalicular budding of WesT and clArK 
(1983). In living chaetetid demosponges, 
peculiar buds are connected with certain 
calicles (vAceleT, 1991; vAceleT & others, 
1992). These buds are spectacular in Acan
thochaetetes wellsi hArTmAn & goreAu 
(reiTner, 1991; WooD, 1991). A similarity 
in skeletal structure of chaetetid archaeocy-
aths and chaetetid demosponges, together 
with an even greater similarity in the nature 
of their budding, suggests the presence of 
crypt cells in some archaeocyaths.

SYMBIONTS

Microscopic ovoid and rodlike bodies, 
0.25 mm in diameter, observed in samples 
from early Cambrian reefs of Sardinia, were 
interpreted by cAmoin, Debrenne, and 
gAnDin (1989) as bacteria and bacterial 
aggregates. They occur within all three major 
components of these bioconstructions: 
archaeocyaths, calcimicrobes, and sedi-
ment. As bacteria, they have been consid-
ered responsible for the precipitation of 
the micritic sedimentary matrix (burne & 
moore, 1987), as well as participating in 
the calcification of archaeocyathan skeleton. 
Within archaeocyathan skeletons, the puta-
tive bacteria are generally clustered, but 
within interskeletal spaces (pores or loculi) 
cemented by calcite spar, they are generally 
isolated and only rarely clustered.

The observation of putative bacteria 
within the skeletal elements of archaeocy-
aths might suggest a symbiotic relationship 
similar to that practiced by many Recent 
sponges (vAceleT, 1975). However, precise 
studies by surge and others (1997) of carbon 
stable isotope ratios in archaeocyathan skel-
etons collected from shallow-water and deep-
water bioherms in the Ajax Limestone (South 
Australia) showed no significant variation 
in isotope ratio within either category of 

bioherm, but they did reveal a significant 
difference between shallow and deep samples. 
The observed difference parallels the upward 
increase in δ13C in present oceans. These 
authors concluded that the archaeocyathan 
skeleton was precipitated in equilibrium with 
seawater and that archaeocyaths therefore did 
not possess photosymbionts. This need not 
preclude the presence of chemotrophic or 
heterotrophic symbionts.

Evidence for the presence of photosymbi-
onts is necessarily indirect: the so-called thin-
tissue syndrome and the lack of correlation 
between archaeocyathan abundance and high 
nutrient supply, as indicated, for example, by 
phosphate-enriched strata (coWen, 1988; 
roWlAnD & gAngloFF, 1988; TAlenT, 1988; 
roWlAnD & shAPiro, 2002; cf. WooD, 
ZhurAvlev, & Debrenne, 1992; WooD, 
1995, 1999). Many archaeocyaths did possess 
a large skeletal surface area mantled by a thin 
veneer of soft matter amenable to photo-
symbionts. However, such forms tended 
to be mud dwellers favoring turbid waters, 
presumably inimical to photosymbionts 
(ZhurAvlevA, 1972a; Kruse, ZhurAvlev, & 
JAmes, 1995; ZhurAvlev, 2001c). Similarly, 
the plot of archaeocyathan generic diversity 
through time matches that of phosphatic-
shelled genera (lingulates+tommotiids+mob-
ergellans+protoconodonts), suggesting that 
there is indeed a positive correlation between 
archaeocyathan diversity and phosphate input 
(ZhurAvlev, 2001b).

SYSTEMATICS OF 
ARCHAEOCYATHA

HISTORY OF CLASSIFICATION

The first major step in archaeocyathan 
studies was by bornemAnn (1884, 1886, 
1891a, 1891b). In contrast to North Amer-
ican discoveries up to that time, the material 

Fig. 34. (Continued from facing page).
Botoman, Valmy Formation, Iron Canyon, Nevada, United States, transverse section, collection number not known, 
UCMP, ×6.8; d, interaction of Archaeocyathus sp. (Archaeocyathida; top) and Tegerocyathus edelsteini (vologDin) 
(Ajacicyathida; bottom), Toyonian, Torgashino Formation, East Sayan, Altay Sayan, Russia, transverse section, 
4451/73, PIN, ×4.5 (Debrenne & Zhuravlev, 1992b; © Publications Scientifiques du Muséum national d’Histoire 

naturelle, Paris).
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he collected in Sardinia from 1868 onward 
was plentiful and well preserved. bornemAnn 
distinguished most of the fundamental 
skeletal elements. His interpretations of 
their nature and significance in some ways 
foreshadowed modern concepts (longitu-
dinal radial partitions, now Ajacicyathina; 
horizontal partitions, now Coscinocyathina; 
vegetative stages as the basis of different 
Archaeocyathina), which are the basis of 
the present systematics (Debrenne, 1996, p. 
35). Importantly, he recognized the distinc-
tiveness of the group in creating a separate 
class, Archaeocyathinae, ostensibly allied to 
sponges and cnidarians (bornemAnn, 1884).

TAYlor (1910) was the first to organize 
genera into families to create the beginnings 
of an archaeocyath systematics. These fami-
lies were based on differences in intervallar 
structures, now the basis for subordinal 
categories, such as Dokidocyathina (his 
Dictyocyathidae), Ajacicyathina (Archaeocy-
athidae), Archaeocyathina (Spirocyathidae), 
Syringocnemina (Syringocnemidae), and 
Coscinocyathina (Coscinocyathidae).

Subsequently, archaeocyathan system-
atics were strongly influenced by oKuliTch 
(1935, 1943), vologDin (1936, 1937b, 
1940a, 1940b), and the beDForDs (r. 
beDForD & W. r. beDForD, 1934, 1936; 
R. beDForD & J. beDForD, 1936, 1937, 
1939) and. Archaeocyaths were recognized 
as a subphylum of the Porifera and divided 
into classes Regulares and Irregulares, based 
on differences in skeletal ontogeny. Concur-
rently, Ting (1937) and simon (1939) viewed 
the group as merely a superfamily in the 
suborder Tetracladina of siliceous sponges. 
Their opinion derived from the observation 
that some Australian archaeocyaths were 
silicified and that Archaeocyathus minganensis 
billings had spicules. That species, however, 
is a true Ordovician anthaspidellid sponge, 
the type species of the genus Archaeoscyphia 
(hinDe, 1889). They also criticized those 
systematists who followed TAYlor (1910); in 
their opinion, wall structures, and not inter-
vallar structures, should form the framework 
for archaeocyathan systematics.

Developments up to the early 1950s were 
summarized by oKuliTch (1955a).

It was ZhurAvlevA’s (1960b, p. 48–51) 
classification that laid the basis for the modern 
systematics of so-called regular archaeocyaths 
(Monocyathida, Ajacicyathida, Tabulacy-
athida [=Putapacyathida herein], Capsulocy-
athida). She applied ontogenic principles and 
demonstrated from the order of appearance 
and complication of skeletal structures that 
intervallar elements had hierarchical primacy 
over outer wall structures that, in turn, had 
primacy over inner wall structures. Thus, 
suborders were established on intervallar 
features, superfamilies on outer wall features, 
and families on inner wall features. This 
scheme was further developed by Debrenne 
(1964, p. 112–117), hill (1965, p. 46–49; 
1972, p. 50–103) and roZAnov (1973, p. 
85–86). Only KrAsnoPeevA (1953, 1978) 
persisted with systematics in the style of Ting, 
while KonYushKov (1978) attempted to 
construct a system based on purely theoretical 
ideas concerning the integration of soft tissue 
in various archaeocyathan groups. roZAnov 
(1973) introduced vAvilov’s (1922) principle 
of homologous variability, which facilitated 
the recognition of features of equal weight in 
related lineages (roZAnov & missArZhevsKiY, 
1966, p. 73; roZAnov, 1973, p. 80).

The taxonomy of so-called irregular 
archaeocyaths (Archaeocyathida, Kazach-
stanicyathida) has proven more difficult, due 
to the abundance of secondary calcareous 
skeleton, which tends to obscure primary 
features, as well as to the lesser diversity of 
skeletal features in this group. At least five 
independent schemes have been established 
(see Debrenne & ZhurAvlev, 1992b, tables 
7–8). KrAsnoPeevA (1953, 1969, 1980) 
considered that all Irregulares possess inter-
vallar tubes (class Syringoidea), whereas all 
one-walled archaeocyaths represented the 
initial stages of development of two-walled 
cups. ZhurAvlevA (1960b, p. 267–315), by 
analogy with her Regulares scheme, distin-
guished among the Irregulares: one-walled 
cups (order Rhizacyathida), two-walled 
cups (Archaeocyathida), and forms with 
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tubular intervallum (Syringocnematida). 
The Archaeocyathida were subdivided into 
forms without tabulae (Archaeocyathina) 
and with tabulae (Archaeosyconiina). This 
proposal was adopted in the Treatise on 
Invertebrate Paleontology classification of 
hill (1972, p. 103–130), with the nomen-
clatural change of Rhizacyathida to Thalas-
socyathida. Debrenne (1970a, 1974a) 
employed the combination of intervallar 
elements and attempted to establish homolo-
gous series, as in the Regulares. Later, Fonin 
(1981, 1985, p. 35) and grAvesTocK (1984, 
p. 23) used skeletal ontogenetic data, but 
they arrived at different results.

As archaeocyaths are generally studied 
using thin sections, or incomplete silicified or 
dolomitized cups, overestimation of the taxo-
nomic value of certain features can become 
inevitable. The suborders Globosocyathina 
and Nochoroicyathina were proposed on this 
basis. The former was established on oblique 
thin sections of Monocyathida with peltae 
(Fig. 18,1), whereas the latter was described 
from occasional thin sections intersecting 
pectinate tabulae. At the same time, all 
regular septate archaeocyaths with porous 
tabulae were assigned to a single suborder, 
Coscinocyathina, independently of skeletal 
ontogeny. It was subsequently demonstrated 
that such archaeocyaths represented at least 
two different groups (now suborders Eris-
macoscinina and Coscinocyathina of the 
orders Ajacicyathida and Capsulocyathida, 
respectively). In the ontogeny of Erismacos-
cinina, tabulae appeared after septa and were 
independent of the cup wall, whereas in the 
Coscinocyathina, the cup is distinguished 
by a thalamid architecture with later devel-
opment of septa (ZhurAvlev, 1986a). The 
tabula presence/absence problem in irregular 
taenial archaeocyaths creates even more diffi-
culties. In some cases, as in Metacyathellus 
caribouensis (hAnDFielD) or Pycnoidocoscinus 
serratus (KAWAse & oKuliTch) as rede-
scribed from Canada by ZhurAvlev (in 
voronovA & others, 1987, p. 38, 40), 
tabulae are scarce and similar in construc-
tion to the outer wall. The chance of missing 

such structures in transverse thin section 
is therefore great, and consequently pairs 
of twin genera have been established, for 
example, Sigmofungia-Palmericyathellus, 
Metaldetes-Metacoscinus, and Archaeocy
athus-Claruscyathus, the synonymy of which 
need to be confirmed. As well, forms with 
frequent tabulae do not constitute a single 
discrete group: in Altaicyathus vologDin, 
cup development begins with a spherical 
chamber with pillars, while in Korovinella 
rADugin, it begins with a one-walled cup 
with tabula, differences that substantiate the 
distinction of Kazach stanicyathina and Alta-
icyathina. On the other hand, in Paracoscinus 
R. beDForD & W. R. beDForD and similar 
forms, tabulae appear later than the other 
intervallar elements, and cup development 
is similar to that in typical Archaeocyathida 
and comparable with that in Ajacicyathida.

A further problem is the interpretation of 
juvenile taenial archaeocyaths. For example, 
hill (1972, p. 131–132) doubted the reality 
of Rhizacyathus R. beDForD & J. beDForD as 
an independent genus, whereas grAvesTocK 
(1984, p. 40) demonstrated from Austra-
lian material that many one-walled or even 
two-walled irregular cups were juveniles of 
various genera of Irregulares. Indeed, while 
mature one-walled regular archaeocyaths 
are readily distinguishable from one-walled 
juvenile stages of two-walled regular species, 
all described one-walled, and even some two-
walled irregular archaeocyaths, are identical 
in size and morphology to the initial stages 
of the Irregulares present in the same locality. 

All these inconsistencies were recognized 
during a major revision of the archaeocyaths 
by Debrenne, ZhurAvlev, and roZAnov 
(1989; Debrenne, roZAnov, & ZhurAvlev, 
1990; Debrenne & ZhurAvlev, 1992b), 
which allowed these authors to compile a 
completely new systematics for irregular 
archaeocyaths and to significantly rework 
the systematics of regular archaeocyaths. 
Their scheme is adopted here with further 
modification. Their revision has led to the 
rejection of the customary subdivision of 
archaeocyaths into (sub)classes Regulares 
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and Irregulares, now superseded by six 
orders, based on structural differences and 
skeletal ontogeny: Monocyathida, Ajacicy-
athida, Putapacyathida, Capsulocyathida, 
Archaeocyathida, and Kazachstanicyathida. 
The two most diverse orders are Ajacicy-
athida and Archaeocyathida, approximately 
corresponding to the former subdivision into 
Regulares and Irregulares, respectively.

CURRENT PRINCIPLES OF 
CLASSIFICATION

The present archaeocyathan systematics 
are based on three principal datasets: (1) 
skeletal ontogeny; (2) morphological func-
tional analysis; and (3) limits of homologous 
variability. The ontogenetic observations 
allow the determination of the order of 
appearance of skeletal elements and of stabi-
lization of adult features, and thence, in 
accordance with principles of heterochrony, 
the use of these data for the establishment 
of the taxonomic hierarchy. Morphological 
functional analysis, coupled with paleo-
ecological observations, provides the basis 
for the discrimination of genotypic from 
phenotypic features. Finally, knowledge of 
the series of homologous variability allows 
us to establish those features of equal taxo-
nomic weight in different evolutionary 
lineages, and even to forecast the features of 
taxa that could conceivably exist. Data on 
skeletal microstructure and paleogeographic 
and stratigraphic distribution are consistent 
with the systematics derived on the three 
above-mentioned criteria.

Skeletal Ontogeny

Archaeocyathan skeletons preserve much 
information on the ontogeny of individual 
species. As ontogenetic patterns are reca-
pitulated in the stratigraphic distribution of 
related species and genera, their significance 
is assured. The intensive study of archaeocy-
athan skeletal ontogeny commenced as early 
as bornemAnn (1886) and was continued 
by TAYlor (1910, p. 82), the beDForDs (r. 
beDForD & W. r. beDForD, 1934, 1936; 
R. beDForD & J. beDForD, 1936, 1937, 

1939), oKuliTch (1935, 1943, p. 32), 
vologDin (1957a, 1959b) and especially by 
ZhurAvlevA (1960b, p. 40) and roZAnov 
(1973, p. 27). These data were summa-
rized and supplemented by significant new 
observations, especially on Capsulocyathida, 
Archaeocyathida, and Kazachstanicyathida, 
by Debrenne, ZhurAvlev, and roZAnov 
(1989, p. 80; Debrenne, roZAnov, & 
ZhurAvlev, 1990, p. 65; Debrenne & 
ZhurAvlev, 1992b, p. 76). The following 
generalizations are applicable to archaeocya-
than skeletal ontogeny.

1. There are three major types of skeletal 
ontogeny among two-walled archaeocyaths:

a. The septal type begins with a juvenile 
conical cup resembling one-walled archaeo-
cyaths (Monocyathida) and proceeds via 
the initial development of a centripetal 
inner wall, open below the lowermost rods 
of the septa supporting it, and by the initial 
parts of the septa, irrespective of their adult 
morphology, bearing a single longitudinal 
row of pores. The septal type is restricted 
to the orders Ajacicyathida and Archaeocy-
athida. In succeeding ontogeny, the distinc-
tion between these two orders appears: 
multiporous septa begin to develop in 
ajacicyathides, but multiporous taeniae 
in archaeocyathides. The initial multipo-
rous septa in the ajacicyathide suborders 
Ajacicyathina and Erismacoscinina are 
always retiform. Archaeocyathide taeniae 
can persist until maturity or evolve into 
pseudosepta (as in Loculicyathina and 
Anthomorphina), into a pseudotaenial 
or dictyonal network (Archaeocyathina), 
or into calicles (Dictyofavina). In turn, 
calicles can be reorganized into syringes 
(Syringocnemina).

b. The second type of skeletal ontogeny 
is the thalamid type, in which the juvenile 
cup is subspherical in shape, the inner wall 
is of invaginal type and is a continuation of 
the outer wall, and the inner wall is closed 
at the base. Such juvenile cups characterize 
the order Capsulocyathida.

c. The Kazachstanicyathida have their 
own distinctive type of ontogeny: initial 
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chambers are empty (Kazachstanicyathina) 
or contain pillars (Altaicyathina), and the 
entire skeletal ontogeny is limited to the 
successive accretion of similar chambers.

The nature of cup ontogeny in the order 
Putapacyathida is still uncertain.

2. The relative rapidity of stabilization 
of outer wall features was greater than for 
other skeletal elements. In late Atdabanian 
and Botoman forms, the outer wall could 
acquire the characteristic structures of a 
given species even at the one-walled stage 
in Ajacicyathina, before the appearance of 
tabulae in Erismacoscinina, and before the 
appearance of septa in Coscinocyathina.

Characteristics of first-order intervallar 
elements (septa, plate, and segmented 
tabulae) are established earlier than those of 
the inner wall. Exceptionally, in forms with 
aporose septa and a complex outer wall, 
mostly of late Atdabanian and Botoman age, 
the sequence is reversed due to heterochrony.

Overall, stabilization of cup features 
thus occurred in the following sequence: 
outer wall—intervallar elements of the first 
order—inner wall.

Intervallar elements of the second order 
(pectinate and membrane tabulae, synap-
ticulae, and spines) could appear at any stage 
after the initiation of development of the 
first-order intervallar elements, this varying 
even in different individuals of the same 
species. Pectinate tabulae could appear after 
all other elements had acquired the features 
characteristic of species.

The shapes of cup elements (pore outlines, 
additional elements on the inner wall) 
typical of a given species of Ajacicyathida or 
Capsulocyathida were stabilized earlier than 
the size of those elements.

Spines or bracts always preceded fused 
bracts, scales, annuli, or canals developed 
on the inner wall in adult forms.

3. The secondary calcareous skeleton, 
as well as traces of the aquiferous system 
(astrorhizae, exaules, tubuli), could appear 
irregularly at any stage of development 
but always after the primary calcareous 
skeleton.

These morphogenetic observations suggest 
that, on the basis of architecture, archaeocy-
aths can be subdivided into the presently 
accepted six orders. Aspects of intervallar 
development allow further division into the 
twelve aforementioned suborders. As the 
order of stabilization of cup elements during 
ontogeny suggests the primacy of outer wall 
features over inner wall features, outer wall 
structure defines the superfamily level, and 
inner wall structure defines the family level.

Functional Morphology

bAlsAm and vogel (1973) pioneered the 
empirical study of archaeocyathan functional 
morphology using generalized metal models 
of the archaeocyathan skeleton in flume 
tanks. They concluded that the porous, 
upright skeleton was admirably suited 
to passive filtration in ambient flow and 
that water must enter the cup through the 
outer wall pores, pass to the central cavity 
via the inner wall pores, and ultimately 
exit the osculum at the top of the central 
cavity. Further research on fossil material 
(ZhurAvlev, 1989, 1993; Debrenne & 
ZhurAvlev, 1992b, p. 96, 1994, 1996; 
WooD, ZhurAvlev, & Debrenne, 1992; 
WooD, ZhurAvlev, & chimeD Tseren, 
1993 ;  r i D i n g  & Z h u r Av l e v ,  1995 ; 
ZhurAvlev & WooD , 1995) and with 
models (signor, sAvArese, & DennY, 1989; 
sAvArese, 1992, 1995) has focused on the 
significance of specific skeletal elements in 
archaeocyathan functional morphology.

These results have led to the synonymy 
of many species, genera, and higher taxa, 
which were found to reflect phenotypic 
variations only. The two former major 
archaeocyathan subdivisions, the classes 
Regulares and Irregulares, were rejected 
as they proved to represent two general-
ized archaeocyathan adaptations only. It 
has been postulated that the majority of 
the former regular archaeocyaths (Mono-
cyathida and Ajacicyathida) were adapted 
mainly to soft, shifting substrates and 
low ambient energy (WooD, ZhurAvlev, 
& ch i m e D Ts e r e n,  1993;  ri D i n g  & 
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ZhurAvlev, 1995; Debrenne & ZhurAvlev, 
1996) and/or turbidity (ZhurAvlev, 1999). 
Ajacicyathide cups were relatively material-
efficient structures (signor, sAvArese, 
& DennY, 1989) and so facilitated more 
rapid growth. In contrast, the bulk of 
former irregular archaeocyaths (Archaeo-
cyathida) were presumably restricted to 
l ithified substrates and high ambient 
energy (WooD, ZhurAvlev, & chimeD 
Tseren, 1993; riDing & ZhurAvlev, 1995; 
Debrenne & ZhurAvlev, 1996). According 
to ZhurAvlev and WooD (1995), the two 
thalamid orders (Capsulocyathida and 
Kazachstanicyathida) were, with few excep-
tions, obligate cryptobionts. Together with 
ontogenetic data that indicate closer rela-
tionships between Monocyathida, Ajacicy-
athida, and Archaeocyathida, a subdivision 
according to adaptive strategies does not 
permit a Regulares-Irregulares distinction.

The archaeocyathine adaptation to lith-
ified substrates and high ambient energy 
prompted strong development of the 
secondary calcareous skeleton in order to 
anchor the cup. Aspects of the secondary 
skeleton that served this function, such as 
an elaborated radicatus, secondary thick-
enings, and buttresses, were in the past 
overstated as criteria for the establishment 
of genera (e.g., Retecyathus vologDin, a 
junior synonym of Archaeocyathus billings 
with less developed secondary thicken-
ings) and even orders (e.g., Somphocy-
athida, established for Ajacicyathida with 
buttresses). In addition, observations show 
that secondary calcareous skeleton served 
to cicatrize damaged skeleton, isolate extra-
neous bodies on the growing surface, seal 
off abandoned parts of the cup, and protect 
from neighboring organisms (Debrenne & 
ZhurAvlev, 1992b, p. 62).

On a smaller scale, features such as 
cup shape, modularity, septal and tabular 
porosity, orientation of inner wall elements, 
presence of synapticulae and pectinate 
tabulae, number of wall pores per inter-
sept, development of double inner walls, 
and stirrup pores were analyzed in order to 

clarify their systematic significance as generic 
criteria.

Among these, platelike cup shape and 
outer wall transverse bulging were found to 
lack generic significance, as the first relates 
to substrate softness, and the second depends 
on the degree of development of segmented 
tabulae. Nevertheless, the mutual longitu-
dinal (e.g., Orbiasterocyathus ZhurAvlevA) 
or transverse folding of both walls (e.g., 
Orbicyathus vologDin) warrants generic 
status, as this generates two cup shapes that 
maintain a constant locular volume during 
growth and thus maintain the outer-inner 
wall pore area ratio. In some genera, this 
ratio may be regulated by the development 
of longitudinal outer wall plication (as, for 
example, in Rozanovicoscinus Debrenne). 
In contrast, outer wall transverse bulging 
(as in Batschykicyathus ZhurAvlev) did 
not maintain this ratio. A thalamid wall, 
however, which is also expressed in outer 
and inner wall bulging, does not represent a 
single feature and must be treated together 
with the entire set of features of the thalamid 
architecture.

As modular organization confers many 
ecological advantages in reef-building 
settings, such as indeterminate growth 
leading to larger size, greater powers of 
regeneration, and the ability to encrust 
and gain secure attachment to substrates, 
modularity was one of the main pathways 
of archaeocyathan evolution (WooD , 
ZhurAvlev, & Debrenne, 1992). As such, 
it developed independently and repeat-
edly in all major archaeocyathan lineages 
( suborders ) .  Some atypica l  budding 
types, such as intercalicular budding, 
suggest close affinities between archaeo-
cyaths and demosponges (Debrenne & 
ZhurAvlev, 1994). Although certain types 
of modular organization and development 
are restricted to particular archaeocyathan 
suborders, the same features are wide-
spread among other sponges and even 
other sessile animals. Consequently, only 
species can be defined with certainty by 
this feature.
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Archaeocyathan models must be treated 
with caution as they do not take account of 
soft tissue mantling the skeleton. Nonethe-
less, such models provide some constraints on 
functional morphology. Thus, flume experi-
ments with archaeocyathan skeletal models 
predict that archaeocyaths with completely 
porous septa would filter more effectively 
under low current speeds, while those with 
aporose septa would be advantaged under 
high free-stream velocities (sAvArese, 1992). 
Such a conclusion is confirmed by ecological 
observations: archaeocyathan communities 
living in low-energy environments were 
dominated by individuals with porous septa 
(e.g., deeper facies of the Pestrotsvet Forma-
tion, Siberian Platform [ZhurAvlev, 1986a]; 
upper Sellick Hill Formation, South Australia 
[Debrenne & grAvesTocK, 1990]), while 
those that developed in high-energy environ-
ments are dominated by species with aporose 
septa (e.g., reef-core facies of Pestrotsvet 
Formation, Siberian Platform [ZhurAvlev, 
1986a]; oncoid archaeocyathan rudstone of 
Salaany Gol Formation, Mongolia [WooD, 
ZhurAvlev, & chimeD Tseren, 1993]). The 
restriction of the latter to warmer waters with 
normal salinity (Debrenne & ZhurAvlev, 
1996) may also be explained by the greater 
filtration rates correlated with increased water 
temperature, as observed among Recent 
sponges (riisgArD, 1993). Septal porosity 
thus indicates two modes of adaptation: 
archaeocyaths possessing completely porous 
septa are generalists, while those with aporose 
septa are specialists. Septal porosity is thus a 
genotypic rather than a phenotypic feature 
and may be used as a generic criterion if 
all individuals of the same species consis-
tently show the same type of septal porosity. 
However, the advantage of aporose septa 
in tall cups encountering higher ambient 
currents may lead to a loss of septal porosity 
during ontogeny. In such cases (roZAnov, 
1973, p. 38, 70; grAvesTocK, 1984, p. 
37), this feature would have intraspecific 
value only. Further, in some ajacicyathines 
with inner walls of communicating canals, 
the enhanced soft tissue communication 

thereby provided apparently compensated 
for a reduction of porosity in the septa. The 
majority of such genera thus either lack septal 
pores (e.g., Ethmophyllum meeK, Stephenicy
athus ZhurAvlev) or possess a transitional 
porosity varying between the porous and 
aporose states in different populations (e.g., 
Formosocyathus vologDin, Irinaecyathus 
ZhurAvlevA, Tegerocyathus KrAsnoPeevA).

Similarly, a temperature gradient is observed 
in the distribution of genera possessing pecti-
nate tabulae, which are restricted to warmer 
waters, whereas synapticulate genera are more 
eurythermic (ZhurAvlevA, 1981; Debrenne 
& ZhurAvlev, 1996). This mutual paleo-
geographic substitution of synapticulae and 
pectinate tabulae is further confirmation 
of the homology of these elements, which, 
while functionally interchangeable, are not 
completely identical. Possibly, synapticulae 
add some rigidity to the skeleton, as they are 
present only in archaeocyaths with coarsely 
porous septa or similar structures.

The number of pore rows per intersept 
is another feature that reflects the differing 
functions of the outer and inner walls. Thus, 
a general trend to (1) reduce the mutual 
friction between currents outflowing the 
intervallum; and (2) to increase the speed 
of the cental cavity outflow in order to 
avoid water recycling; would and did lead 
to the dominance of a uniporous interseptal 
state of the inner wall. Thus, among 187 
genera of Ajacicyathina and Erismacos-
cinina listed by Debrenne, roZAnov, and 
ZhurAvlev (1990, table 9), genera with a 
uniporous inner wall comprise 58% of the 
total. Chronologically, this ratio increased 
from 0% in the early Tommotian to 67% 
in the middle Toyonian. The transition 
from the multiporous interseptal state of 
the inner wall to the uniporous state is 
thus a significant functional threshold for 
the archaeocyathan filtration system that 
warrants use as a generic criterion. However, 
the number of pore rows per intersept of the 
outer wall has no effect on current inflow, 
and so this feature lacks generic value. For 
the inner wall, stirrup pores and canals were 
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significant only if there were no additional 
intervening pores.

Many other features of the inner wall, 
such as the shape of the primary elements 
(annuli and canals) and the development of 
fused bracts and fused ethmophylloid-type 
canals, presumably served to increase the 
initial velocity of the cumulative exhalant 
jet. The progressive development of such 
structures was among the major evolutionary 
trends in Ajacicyathida and Coscinocyathina 
(ZhurAvlev, 1993). However, in Archaeocy-
athida, whose aquiferous system was restricted 
to the uppermost few millimeters of the soft 
tissue, the same elements probably play a 
protective function only, and intraspecific 
variability in the development of spines, 
bracts, and even fused bracts is observed 
(Debrenne & ZhurAvlev, 1992b, p. 55).

Another trend is revealed by the appear-
ance on the inner wall of various structures 
(spines, narrow bracts) that probably served 
a protective function. Their presence is 
the rule rather than the exception, and 
taxonomically, such structures, attached to 
otherwise simple pores, should be grouped 
as elements of the simple inner wall type. 
Subsidiary elements (spines, bracts, annuli, 
and microporous membranes) covering 
the primary elements on the central cavity 
side typically present a high intraspecific 
variability (ZhurAvlevA, 1960b, p. 160; 
rePinA & others, 1964, p. 214) and could be 
considered of equivalent significance. 

The orientation of spines and narrow bracts 
and the development of modified bracts, 
canals, scales, and annuli upon them would 
be expected to reduce mutual friction between 
currents (ZhurAvlev, 1993). However, the 
significance, and thus the taxonomic value 
of the shape of these structures, is difficult to 
evaluate without the testing of models.

Homologous Variability

The principle of homologous (parallel) 
series in hereditary variability was advanced 
by vAvilov (1922). He proposed that the 
variability of related taxa is not merely an 
arbitrary set of traits, but a repetition of the 

same limited set of features. Thus, species 
of the one genus have similar series of vari-
ability, genera of the one family potentially 
contain a parallel set of species bearing the 
same features, and so on. The principle 
implies the operation of genetic constraints 
on morphological variability, which are 
shared among allied genera or families. It 
means that the number of possible features 
in a given group of organisms is limited, 
so that the whole set of characters of a yet 
undiscovered form can be predicted.

vAvilov’s Principle was successfully applied 
to regular archaeocyathan genera by roZAnov 
(roZAnov & missArZhevsKiY, 1966, p. 73; 
roZAnov, 1973, p. 50, 1974), and the 
history of this application is documented by 
Debrenne, ZhurAvlev, and roZAnov (1989, 
p. 77; Debrenne, roZAnov, & ZhurAvlev, 
1990, p. 89). Archaeocyaths provide an excel-
lent example of vAvilov’s concept: the first of 
roZAnov’s tables of homologous variability 
(roZAnov & missArZhevsKiY, 1966, fig. 45) 
forecast many genera of regular archaeocy-
aths, which were subsequently discovered in 
various localities and described by different 
specialists. A corresponding table of homolo-
gous variability for irregular archaeocyaths 
was first given by Debrenne and ZhurAvlev 
(1992b, table 5).

Homologous features include the diverse 
types of outer and inner walls and intervallar 
structures. For example, a pustular outer wall 
occurs in Loculicyathina, Archaeocyathina, 
Syringocnemina, and Putapacyathida, while 
a somewhat similar tumulose outer wall is 
known in Monocyathida, Dokidocyathina, 
Ajacicyathina, Erismacoscinina, and Capsu-
locyathina. Similarly, inner walls with scales 
or fused bracts are known in all suborders 
(except Coscinocyathina) of two-walled 
archaeocyaths, and so on. 

Homologous series can be established 
through recurrences. The concept of recur-
rences (Debrenne & ZhurAvlev, 1992b, 
p. 87), or repeating polymorphic sets, was 
introduced by meYen (1988) under the 
term refrains. According to meYen, the 
existence of recurrences can be attributed 



General Features of the Archaeocyatha 63

to a certain inherited genotypic unity. In 
the case of archaeocyaths, recurrences can 
be represented by identical vectors corre-
sponding to a certain order in the appear-
ance of structures during skeletal ontogeny; 
for example, simple pores, then bracts, then 
canals on the inner wall in a set of related 
archaeocyathan lineages. Thus, the struc-
tures belonging to the same recurrence are 
homologous.

The table of homologous variability 
may serve as a key for the determination 
of genera, as a prognosis of taxa that may 
conceivably exist and as a basis for the esti-
mation of the systematic value of a character. 
This does not mean that every empty cell of 
the table will eventually be occupied, but 
that any new form found and described 
will be accommodated within such a table. 
Such consistency permits the construction 
of taxonomic keys (Kerner, vignes lebbe, 
& Debrenne, 2011).

Innovations in Archaeocyathan Taxonomy

Archaeocyathan taxonomy (see Treatise 
Online, Part E, Revised, vol. 4, Chapter 
19A–B) takes account of developments up 
to and including the most recent revision, 
that of Debrenne, ZhurAvlev, and Kruse 
(2002). Two significant taxonomic innova-
tions are additionally introduced here.

Role of supplementary wall features.—
Debrenne, ZhurAvlev, and Kruse (2002) 
introduced the concept of supplementary 
features in walls comprising a combina-
tion of different wall types. These authors 
applied it mainly among ajacicyathine 
genera bearing walls with canals, most 
notably the Ethmocyathidae (inner wall 
with noncommunicating canals) and Saja-
nocyathidae (inner wall with commu-
nicating canals) among the Bronchocy-
athoidea (outer wall with simple pores), 
and the Ethmophylloidea (outer wall 
with canals). Studies of several of these 
genera had disclosed that some taxa did 
not possess straight or V-shaped canals 
as commonly described, but in fact bore 
a combination of straight canals with 

terminal bracts. These bracts were termed 
supplementary by Debrenne, ZhurAvlev, 
and Kruse (2002).

In the systematics chapter of the Archaeo-
cyatha (see Treatise Online, Part E, Revised, 
vol. 4, Chapter 19A–B), this concept is 
extended consistently to combination walls 
of all types, not only those with component 
bracts. In any wall comprising two different 
wall types, the fundamental wall type is 
the element adjacent to the intervallum, 
whereas the supplementary wall type is the 
constituent facing the exterior (on outer 
walls) or the central cavity (on inner walls). 
The fundamental wall type remains the 
family-level criterion; the supplementary 
elements are of genus-level significance only.

The major outcomes of this innovation 
are the following.

1. In Ajacicyathina, synonymy of Hupecy-
athelloidea (outer wall with canals and inde-
pendent microporous sheath) with Ethmo-
phylloidea, the independent microporous 
sheath of the former is now treated as supple-
mentary. Hupecyathellidae becomes a junior 
subjective synonym of Carinacyathidae.

2. In Erismacoscinina, synonymy of 
Lunulacyathoidea (outer wall with spinose 
screen and bracts or scales) with Polycosc-
inoidea (outer wall with attached micro-
porous sheath), the bracts or scales of the 
former are now treated as supplementary. 
Lunulacyathidae becomes a junior subjective 
synonym of Polycoscinidae.

3. In Erismacoscinina, synonymy of 
Schumnyicyathoidea (outer wall with non-
communicating canals and attached micro-
porous sheath) with Porocoscinoidea (outer 
wall with noncommunicating canals), the 
attached microporous sheath of the former is 
now treated as supplementary. Schumnyicy-
athidae becomes a junior subjective synonym 
of Tatijanaecyathidae.

Tabulacyathida versus Putapacyathida.—
vologDin (1956) erected the order Tabu-
locyathida [subsequently corrected by hill 
(1972) to Tabulacyathida] based on his 
tabulate, nonseptate genus Tabulacyathus 
vologDin, 1932. Subsequently, Debrenne, 
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ZhurAvlev and roZAnov (1989), Debrenne, 
roZAnov, and ZhurAvlev (1990) and 
Debrenne (1991) retained Tabulacyathina 
as a suborder within the Ajacicyathida. 
The taxon was restored to ordinal status by 
Debrenne, ZhurAvlev, and Kruse (2002).

Regrettably, in erecting the nominate genus 
Tabulacyathus and its type species T. taylori, 
vologDin (1932, p. 30–33, fig. 24 and pl. 
7,3) figured two specimens in the type series 
of T. taylori but failed to designate either 
as holotype. Furthermore, as subsequently 
established by ZhurAvlevA, KonYushKov, 
and roZAnov (1964, p. 124–126), the two 
specimens figured by vologDin (1932) were 
of different taxa. These authors designated 
the specimen figured by vologDin (1932, 
fig. 24) with a tabular outer wall as “holotype” 
(i.e., lectotype, in accordance with Article 
74 of the International Code of Zoological 
Nomenclature, ICZN, 1999), and KonY-
ushKov (in ZhurAvlevA, KonYushKov, & 
roZAnov, 1964, p. 102–104) assigned the 
second specimen (with plate tabulae between 
independent walls) to his new genus and 
species Galinaecyathus lebedensis.

On the basis of page precedence and 
a claimed better accord with the original 
generic diagnosis, Debrenne, ZhurAvlev, 
and ro Z A n ov  (1989,  p.  67–68)  and 
Debrenne, roZAnov, and ZhurAvlev (1990, 
p. 94) invalidly argued for this lectotype 
designation to be reversed and diagnosed 
their Tabulacyathina accordingly.

Confirmation from examination of the 
type material in 1990 by A. Yu. ZhurAvlev 
that the designated lectotype is indeed a 
specimen of Altaicyathus notabilis vologDin 
(1932, p. 26), as already acknowledged 
by Debrenne, ZhurAvlev, and roZAnov 
(1989) and Debrenne ,  roZAnov ,  and 
ZhurAvlev (1990), means that Tabulacy
athus taylori is a junior subjective synonym 
of that species. Tabulacyathus (together 
with its derivatives Tabulacyathidae and 
Tabulacyathida) is therefore removed from 
the order formerly named Tabulacyathida 
and transferred to Altaicyathina as a junior 
subjective synonym of Altaicyathus.

The ordinal  taxon Putapacyathida 
vo lo g D i n  (1961) now embraces  the 
remaining genera formerly united in Tabu-
lacyathida.

EVOLUTIONARY TRENDS

The major temporal trends in archaeo-
cyathan evolution were: (1) oligomerization 
(increase in size of outer wall pores within 
fixed limits)—compensation (formation of 
microporous sheaths, thus decreasing pore 
sizes)—renewed oligomerization (roZAnov, 
1973, p. 62); (2) increased modularity 
(WooD, ZhurAvlev, & Debrenne, 1992); 
(3) reduction of septal porosity (grAvesTocK, 
1984; WooD, ZhurAvlev, & Debrenne, 
1992); (4) development of annular and 
oblique upwardly projecting structures on 
the inner wall (ZhurAvlev, 1993); and (5) 
transition from a multiporous interseptal 
state of the inner wall to a uniporous state. 
These are all consistent with the evolution of 
archaeocyaths as filter feeders (ZhurAvlev, 
1989, 1993; sAvArese, 1992).

BIOSTRATIGRAPHY

The first archaeocyathan zonation was 
proposed by vologDin (1940b, 1957a, 
1957b, 1961), based mainly on faunas of 
the Altay Sayan Fold Belt of Siberia. Unfor-
tunately, his schemes were supported neither 
by evolutionary patterns within the group 
nor by an accurate lithostratigraphy.

The archaeocyathan zonation of ZhurAv-
levA (1960b), based on the relatively contin-
uous lower Cambrian sections of the Siberian 
Platform, was honed by ZhurAvlevA, Kors-
hunov, and roZAnov (1969), roZAnov and 
others (1969), and vArlAmov and others 
(1984) to form the basis of the current 
archaeocyathan zonation for Siberia. This 
comprehensive scheme, and its associated 
stages, are the only ones officially approved 
in the former USSR and now in Russia 
(sPiZhArsKiY & others, 1983; sPiZhArsKi & 
others, 1986; AsTAshKin & others, 1991). 
The scheme comprises four lower Cambrian 
stages, in ascending order: Tommotian (with 
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three archaeocyath zones), Atdabanian (four 
zones), Botoman (one zone at the base), and 
Toyonian (one medial zone).

Tommotian
 Tom.1. Nochoroicyathus sunnaginicus Zone
 Tom.2. lower Dokidocyathus regularis Zone
 Tom.3. upper Dokidocyathus regularis Zone
 Tom.4. Dokidocyathus lenaicus–
  Tumuliolynthus primigenius Zone
Atdabanian
 Atd.1. Retecoscinus zegebarti Zone
 Atd.2. Carinacyathus pinus Zone
 Atd.3. Nochoroicyathus kokoulini Zone
 Atd.4. Fansycyathus lermontovae Zone
Botoman
 Bot.1. Carinacyathus squamosus–
  Botomocyathus zelenovi Zone
 Bot.2. unzoned
 Bot.3. unzoned
Toyonian
 Toy.1. unzoned
 Toy.2. beds with Irinaecyathus grandiperforatus
 Toy.3. unzoned

This Siberian Platform zonation is supple-
mented by archaeocyathan zonations devel-
oped for other regions of the former USSR in 
accordance with the then prevailing national 
stratigraphic rules. Such local zones (lonas) 
were established for the Russian Far East 
and Altay Sayan, so that the Botoman and 
Toyonian stages each have three zones (rePinA 
& others, 1964; ZhurAvlevA, rePinA, & 
KhomenTovsKiY, 1967; boroDinA & others, 
1973; oKunevA & rePinA, 1973; belYAevA 
& others, 1975; osADchAYA & others, 1979; 
belYAevA, 1988; AsTAshKin & others, 1995).

The composite Siberian scheme does not 
take account of evolutionary events within 
monophyletic lineages of the group, or 
even of the complete stratigraphic ranges 
of constituent taxa. Its component zones 
are Oppel zones sensu heDberg (1976), 
that provide convenient, relatively rich 
fossil assemblages that are easily traceable 
between sections. Some zone boundaries 
were subsequently recognized as markers of 
significant evolutionary events within the 
group (roZAnov, 1973). Thus, for example, 

the base of the first Atdabanian zone repre-
sents the mass appearance of archaeocyaths 
with complex walls, and the base of the 
first Botoman zone was thought to mark 
the rise of a variety of advanced wall types 
(e.g., attached microporous sheaths on the 
outer wall, communicating canals on the 
inner wall). Some of these proposals were 
subsequently confirmed, whereas others were 
not. Nevertheless, by default, the Siberian 
scheme became the reference zonation for 
determining the ages of faunas in other 
regions of the globe up to the 1980s. It 
remains the most comprehensive archaeo-
cyathan zonation available, and the Siberian 
Platform zonation is the basis for the listed 
age ranges of individual genera in the present 
Archaeocyatha, Cribricyatha, and Radiocy-
atha systematic sections.

In the 1980s and 1990s, early Cambrian 
archaeocyathan zonations based on the 
same approaches were proposed for other 
regions, namely Australia (grAvesTocK, 
1984; ZhurAvlev & grAvesTocK, 1994), 
Spain (Pe r e J ó n ,  1984, 1994),  North 
America (voronovA  & others,  1987; 
mAnsY, Debrenne, & ZhurAvlev, 1993; 
mcmenAmin, Debrenne, & ZhurAvlev, 
2000), Morocco (Debrenne & Debrenne, 
1995), and Mongolia (ZhurAvlev, 1998). In 
China, several discrete archaeocyathan assem-
blages are recognized (YuAn & ZhAng, 1981; 
YuAn & others, 2001; YAng & others, 2005).

Although archaeocyathan zonations now 
embrace the principal regions of archaeocya-
than distribution, they are still primarily of 
regional use only. From the very beginning, 
the number of zones has exceeded their 
correlation potential. Interprovincial correla-
tion is still effected at the genus level; there 
are no species in common between the prin-
cipal areas of archaeocyathan development, 
namely the Siberian Platform (including 
Kolyma Uplift) and the bordering part 
of the Russian Far East (Yudoma–Maya 
Depression and Shevli terrane); Altay Sayan 
together with Mongolia and Transbaikalia; 
South Urals; Kazakhstan; Central-East 
Asia (Tajikistan, Uzbekistan, and Tarim of 
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China); Morocco; Spain-Germany-Poland 
(biAłeK & others, 2007); France, together 
with southwestern Sardinia; South China; 
Laurentian part of present North America 
and Koryakia; and Australia and Antarc-
tica with South African, Falkland Islands 
(sTone & ThomPson, 2005), and Argentine 
(gonZáleZ, TorTello, & DAmboreneA, 
2011) allochthonous clasts.

Nevertheless, the value of archaeocy-
aths as index fossils remains, in that within 
any one region the archaeocyathan assem-
blages maintain the same species compo-
sition within the same lithofacies, irre-
spective of distance. Thus, a correlation of 
Australia and Antarctica, eastern and western 
Laurentia, or Altay Sayan and Mongolia 
is available at the zonal level (Debrenne 
& Kruse, 1989; WronA & ZhurAvlev, 
1996; ZhurAvlev, 1998; mcmenAmin, 
Debrenne, & ZhurAvlev, 2000), whereas 
other lower Cambrian fossil groups thus 
far provide only a tentative correlation 
within these same regions (TheoKriToFF, 
1982; PAlmer & rePinA, 1993; PAlmer 
& roWell, 1995; lAnDing & bArToWsKi, 
1996; lAnDing, 1998). Furthermore, certain 
distinct, stratigraphically restricted archaeo-
cyathan genera are useful for correlation of 
lower Botoman strata between such remote 
regions as Western Europe, southern China, 
and Australia (Rudanulus, Porocoscinus); as 
well as Altay Sayan, Mongolia, and Lauren-
tian North America (Krasnopeevaecyathus, 
Polythalamia, Claruscoscinus, Altaicyathus); 
western Europe, Altay Sayan, and Australia 
(Aptocyathus); and Australia and North 
America (Sigmofungia, Pseudosyringocnema). 
Early Atdabanian assemblages in Morocco, 
western Europe, Kazakhstan, Altay Sayan, 
and Mongolia are characterized by Urcy
athus, Retecoscinus, Agyrekocyathus, and 
Usloncyathus, and allied species of Tegerocy
athus, Archaeocyathus, and Pycnoidocyathus 
are present in middle Toyonian strata world-
wide. In general, at least three archaeocy-
athan assemblages—early Atdabanian, early 
Botoman, and middle Toyonian—are useful 
for global correlation of lower Cambrian 

strata (especially in conjunction with other 
fossil groups).

Regrettably, regional zonations are not 
necessarily comprehensively applicable 
within their own geographic ambit, due to 
lithofacies variation among archaeocyathan 
assemblages. This is illustrated particularly 
in the key Lena-Aldan River area of the 
southeastern Siberian Platform, where corre-
lation between lithofacies has proven diffi-
cult. Whereas species composition, and even 
proportions of individuals, may vary little 
for hundreds of kilometers within the same 
lithofacies, correlation between adjacent 
lithofacies only a few kilometers apart may 
be impossible. This pattern is particularly 
well expressed during the late Tommotian–
early Atdabanian interval, where a transi-
tional phase of especially rapid turnover 
is evident within reef paleocommunities. 
The rapidity of this reorganization was 
related to the dispersion of reef biota into 
a variety of environments from extremely 
shallow, agitated waters to relatively deep, 
calm conditions below fair-weather wave 
base. Eventually, such communities had no 
species in common. As a result, two different 
archaeocyathan zones were established for 
the base of the Atdabanian stage in the area 
of its type section, and correlation of these 
is still under debate. Thus, even similar 
archaeocyath genera are rare in Dictyosycon
Khasaktia boundstone developed in the 
Leptosocyathus polyseptus Zone, as compared 
to RenalcisEpiphyton mudmounds of the 
Retecoscinus zegebarti Zone (ZhurAvlevA, 
Korshunov, & roZAnov, 1969; vArlAmov 
& others, 1984; ZhurAvlev & nAimArK, 
2005). Other early Cambrian animal groups, 
for example, trilobites (PAlmer, 1998; Pegel, 
2000; álvAro & others, 2003), were probably 
similar in this respect.

Correlation difficulties are compounded 
in the mobile belts of the Altay Sayan and 
Mongolia. From the beginning, it has been 
suggested that archaeocyathan assemblages 
containing the simplest genera should be 
the oldest, independently of any lithofacies 
restriction (roZAnov & missArZhevsKiY, 



General Features of the Archaeocyatha 67

1966). As a result, assemblages that include 
forms with attached microporous sheath, 
inner wall communicating canals, and 
other complicated cup elements have been 
assigned to younger horizons. Thus, for 
example, an assemblage of morphologically 
complex taxa (Alataucyathus jaroschevitschi, 
Tabulacyathellus bidzhaensis, Pretiosocyathus 
subtilis) from the Salaany Gol Formation of 
Mongolia has been treated as latest Atdaba-
nian or even early Botoman (voronin & 
others, 1982; AsTAshKin & others, 1995). 
However, subsequent analysis of Mongolian 
reef taxa, as well as new data on contin-
uous sections in the Altay Sayan (Tuva, 
East Sayan, Kuznetsk Alatau) and Trans-
baikalia, have revealed a rich species pool 
already present by the earliest Atdabanian 
stage in these regions as well (ZhurAvlevA 
& others, 1997a, 1997b; osADchAYA & 
KoTel’niKov, 1998; ZhurAvlev, 1998; 
DYATlovA & sYchevA, 1999). The afore- The afore-
mentioned Alataucyathus jaroschevitschi–
Tabulacyathellus bidzhaensis–Pretiosocyathus 
subtilis assemblage in these mobile belts has 
proven to be earliest Atdabanian.

It is noteworthy that taxonomic disparity 
among the environmentally much more 
heterogeneous palaeocommunities of the 
Altay Sayan, Russian Far East, and Mongolia 
is greater than that among their less diverse 
Siberian Platform counterparts (ZhurAvlev 
& nAimArK, 2005). These regions spanned 
a number of different volcanic arcs (West 
Sayan, Altay, Far Eastern Gerbikan–Nel’kan 
River area), accretionary wedges, micro-
continents, and seamounts (East Sayan, 
Kuznetsk Alatau), whereas on the Siberian 
Platform, reef communities occupied a 
relatively simple, ramplike margin of a 
broad, epeiric platform (suKhov, 1997; 
KherAsKovA & others, 2003). Comparison 
of community and taxonomic diversity for 
the Siberian Platform and these mobile belts 
reveals that seascape heterogeneity, signifi-
cantly more varied in the latter, was the 
underlying determinant. Thus, in the Altay 
Sayan and Russian Far East, different zona-
tions were applied to lithologically different 

Botoman successions, such as carbonate 
(East Sayan, Kuznetsk Alatau), volcanic-
carbonate (Tuva), and volcanic-siliciclastic-
carbonate (Altay, West Sayan) (osADchAYA 
& others, 1979).

Analogous dissimilarity of archaeocy-
athan assemblages, even within the same 
basin, has also been noted in the Stansbury 
Basin of South Australia, where Atdabanian 
archaeocyaths of the Yorke Peninsula are 
totally different from the coeval fauna of 
the Fleurieu Peninsula (Debrenne & grAve-
sTocK, 1990; ZhurAvlev & grAvesTocK, 
1994; grAvesTocK & others, 2001), and in 
the Ossa-Morena tectonosedimentary zone 
of Iberia, where seven Ovetian (Atdabanian-
?Botoman) archaeocyathan biostratigraphic 
zones established by PereJón (1984, 1994); 
and PereJón and moreno-eiris (2006) 
could, to a certain extent, represent coeval 
palaeocommunities developing in different 
environments.

The influence of lithofacies needs to be 
taken into account also with respect to other 
early Cambrian fossil groups, including 
trilobites, acritarchs, mollusks, hyoliths, 
and small skeletal fossils (ZhurAvlev, 1995; 
PAlmer, 1998). Considered in isolation, 
any one group can provide a basis for a 
provisional correlation chart only. Global 
correlation charts based purely on archaeo-
cyath, trilobite, or acritarch assemblages 
differ as a result (Debrenne & ZhurAvlev, 
1992b, fig. 43; viDAl, mocZYDłoWsKA, & 
ruDAvsKAYA, 1995, fig. 9; geYer & sher-
golD, 2000; ZhurAvlev & riDing, 2001; 
shergolD & geYer, 2003). Archaeocyathan 
assemblages are thereby commonly regarded 
as relatively young, whereas trilobite assem-
blages are assumed to be relatively old, and 
acritarch assemblages, significantly older. 
For example, some trilobite assemblages 
from the Holyoake Range of Antarctica have 
been correlated with Atdabanian assem-
blages of the Siberian Platform, whereas 
archaeocyaths from the same localities have 
been interpreted as Botoman (Debrenne 
& ZhurAvlev, 1992b; PAlmer & roWell, 
1995). The underlying problem is that none 
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of these assemblages has a definite analogue 
on the Siberian Platform, and reliance on 
such broad entities as the superfamily Fallo-
taspidoidea or suborder Syringocnemina 
cannot yield precise correlation. 

Robust correlation requires a synthesis of 
data from several fossil groups.

In the current provisional global chron-
ostratigraphic scheme (Peng & bAbcocK, 
2011), archaeocyaths range through the 
Terreneuvian Series (Stage 2) to Cambrian 
Series 2 (Stage 4) interval, and single species 
are restricted to each of Cambrian Series 
3 (Guzhangian Stage) and the Furongian 
Series (Paibian Stage).

PALEOECOLOGY
Archaeocyaths were adapted to a narrow 

range of temperature, salinity, and depth, 
but, in concert with calcimicrobes, were 
among the earliest widespread metazoan 
reef builders.

TEMPERATURE

Archaeocyaths were stenothermal organ-
isms, corresponding to intertropical climatic 
conditions (ZhurAvlevA, 1981; Debrenne & 
courJAulT-rADé, 1994). Paleogeographic 
reconstructions indicate that the regions 
farthest from the paleoequator were Morocco 
and southern Europe to the south, and 
possibly Yangtze (southern China) and an 
enigmatic (nonconfirmed) locality in Korea 
to the north (courJAulT-rADé, Debrenne 
& gAnDin, 1992, fig. 1). The Moroccan–
southern European and Chinese archaeo-
cyathan assemblages are characterized by (1) 
low generic diversity; (2) a predominance of 
morphologically simple, solitary forms with 
highly porous septa (Nochoroicyathus ZhurAv-
levA) or additionally with plate tabulae 
(Erismacoscinus Debrenne), even during late 
Atdabanian–Botoman time; (3) an almost 
complete lack of forms with aporose septa 
during the Atdabanian-Botoman; (4) the 
absence of forms with pectinate tabulae; 
and (5) a prevalence of forms with synap-
ticulae (Afiacyathus voronin, Sibirecyathus 
vologDin) (PereJón, 1984; Debrenne & 

gAnDin, 1985; Debrenne & JiAng, 1989; 
Debrenne, gAnDin, & Debrenne, 1993; 
YAng & others, 2005; PereJón & moreno-
eiris, 2006).

SALINITY

Archaeocyaths were stenohaline organ-
isms. Increased salinity impoverished 
archaeocyathan communities; only the 
simplest forms, with simple walls and porous 
septa, tolerated more saline conditions. 
Archaeocyaths could survive in lime muds 
deposited during brief salinity decreases, 
although not in evaporitic environments.

Such a trend has been observed on the 
Siberian Platform, particularly in the Cari
nacyathus pinus Zone (Atdabanian). Along 
the Lena River, westward shallowing and 
associated salinity increase is accompanied 
by a drastic drop in species diversity and 
changes in the distribution of archaeo-
cyathan skeletal features (Debrenne & 
ZhurAvlev, 1996, fig. 1). 

The same salinity intolerance is observed 
in South Australia in the direction of the 
formerly lagoonal northern Lake Torrens 
area (upper Andamooka Limestone), by 
comparison with the correlative marine 
Wirrealpa Limestone in the Flinders Ranges.

Siberian and Australian archaeocyathan 
communities inhabiting equivalent high-
salinity environments comprise species of the 
same genera (Nochoroicyathus ZhurAvlevA) 
with similar morphological features (highly 
porous septa and spinose walls), despite 
the great distance separating these regions. 
Taxonomic similarity among archaeocyathan 
communities was thus dependent upon 
environmental as well as phylogenetic and 
dispersive factors.

BATHYMETRY

The depth zonation proposed by ZhurAv-
levA and Zelenov (1955)—cited in the revi-
sion of Part E of the Treatise on Invertebrate 
Paleontology (hill, 1972, fig. 26) and still 
occasionally quoted—of archaeocyathan 
growth between 10 and 100 m depth is no 
longer accepted for normal archaeocyathan-
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calcimicrobial buildups. The use of calcimi-
crobes as depth indicators was rejected by 
riDing (1975) on the basis of uncertainties in 
both growth limits and taxonomic affinities of 
the claimed calcimicrobial depth indicators.

Archaeocyaths were stenobathic organ-
isms. They lived anchored in soft substrates 
in intertidal to subtidal zones but probably 
did not occupy the subphotic zone. Their 
preference for shallow water is evidenced by 
(1) their development mainly in carbonate-
dominated lithofacies; (2) their common 
association with ooid and bioclast lime-
stones; (3) their association with siltstone 
and quartz arenite exhibiting oscillation 
and interference ripples and other tidal-
flat features, indicating nearshore settings; 
(4) their common occurrence interbedded 
with a variety of hemispheroidal stro-
matolites and oncoids (roWlAnD, 1981; 
WooD, ZhurAvlev, & chimeD Tseren, 
1993; PereJón & others, 2000; hicKs & 
roWlAnD, 2009; gAnDin & Debrenne, 
2010); and (5) the coexistence of macro-
boring organisms in Labrador patch reefs 
(JAmes & KobluK, 1978).

On the Siberian Platform, there is a 
progressive basinward disappearance and 
eventual termination of archaeocyaths in 
bioherms. In the Tommotian stage, only 
solitary Archaeolynthus TAYlor and Nocho
roicyathus ZhurAvlevA have been reported 
from the outer shelf facies (KhomenTovsKiY 
& KArlovA, 1986; Pel’mAn & others, 1990). 
The Atdabanian distal assemblage was more 
diverse, as it reflects the general archaeocya-
than diversification at that time. Propriolyn
thus oKunevA, Batschykicyathus ZhurAvlev, 
Nochoroicyathus ZhurAvlevA, Tumulocy
athus vologDin, Geocyathus ZhurAvlevA, 
Jakutocarinus ZhurAvlevA, Japhanicyathus 
Korshunov, Fansycyathus Korshunov & 
roZAnov, and Coscinocyathus bornemAnn 
were present, for example, in the middle 
Atdabanian (Carinacyathus pinus Zone) in 
the facies seaward of a carbonate barrier. 
But again, this assemblage was poor by 
comparison with the reef belt proper and 
deeper backreef facies; it completely lacked 

any modular or irregular forms. Addition-
ally, the distal archaeocyathan assemblage 
was restricted mainly to biohermal cavities. 
Archaeocyaths were completely absent from 
the deepest buildups, which were stroma-
tactis-bearing mudmounds (ZhurAvlev, 
2001c).

From the abundance of spicules (hexac-
tinellide, calcarean, and heteractinide), it 
seems that basinward, spiculate sponges 
dominated over calcified sponges during the 
early Cambrian (Debrenne & ZhurAvlev, 
1996). In the Flinders Ranges of South 
Australia (JAmes & grAvesTocK, 1990), 
on the Siberian Platform, and in Mongolia 
(ZhurAvlev, 2001c; ZhurAvlev & nAimArK, 
2005), these spicule-archaeocyath assem-
blages appear to be restricted to deeper 
water settings. Elsewhere in South Australia, 
isolated bioherms in the upper Sellick Hill 
Formation and lower Fork Tree Limestone 
were deposited in deep water on a mildly 
unstable ramp adjoining a shallow shelf 
(AlexAnDer & grAvesTocK, 1990). They 
contain an oligotypic fauna of ajacicy-
athide archaeocyaths only, with extensive 
development of exocyathoid buttresses 
(Debrenne & grAvesTocK, 1990). This 
community appears relatively undifferenti-
ated in comparison to the coeval shallower 
water community in the uppermost Kulpara 
Formation and lowermost Parara Limestone 
(ZhurAvlev & grAvesTocK, 1994).

The striking characteristic of these deeper 
communities is the extreme development 
of secondary skeletal structures in practi-
cally all species. A similar behavior has been 
observed in the deepest bioherms of the 
Tommotian stage of the Siberian Platform 
(Kruse, ZhurAvlev, & JAmes, 1995), but 
in archaeocyathide archaeocyaths (Dictyo
cyathus bornemAnn) only.

Toward the shallower limit of the archaeo-
cyathan depth range, episodic erosional 
events can be demonstrated for archaeocya-
than settings in only a few cases: the Punta 
Manna Member of the Nebida Formation, 
Sardinia (selg, 1986; Debrenne, gAnDin, 
& PillolA, 1989) and the upper Tommotian 
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portion of the Tyuser Formation, Khara-
Ulakh Mountains,  Siberian Platform 
(ZhurAvlevA, 1966). In the latter, a distinc-
tive archaeocyathan strategy consists of 
Dictyocyathus bornemAnn encrusting the 
biohermal surface (Debrenne & ZhurAvlev, 
1996, fig. 2).

WATER ENERGY AND TURBIDITY

As passive filter feeders, archaeocy-
aths were more adapted to habitats with 
reduced turbulence and increased currents 
and nutrient supply, as are Recent calcified 
sponges (WilKinson & evAns, 1989). The 
dominance of certain morphological features 
within some archaeocyathan communities 
might be due to local environmental condi-
tions such as turbulence, detrital input, or 
volcanic ashfall (PrATT & others, 2001; 
ZhurAvlev, 2001c).

Clathrate outer walls, associated with 
complex inner walls, have been ascribed to 
volcanogenic facies (e.g., Verkhnemonok 
Formation of West Sayan; Ust’toka Forma-
tion of Dzhagdy Range, Russian Far East; 
Cymbric Vale Formation of New South Wales, 
Australia) (rePinA & others, 1964; belYAevA 
& others, 1975; Kruse, 1982). However, 
where present in these facies, archaeocyaths 
are preserved in pure limestone. Although 
Botomocyathus ZhurAvlevA, the most wide-
spread clathrate genus, was typical of Siberian 
Platform areas where volcanic rock was totally 
absent, a significant input of siliciclastic and 
sometimes of tuffaceous particles, combined 
with agitated water conditions, characterized 
many of these areas.

Putapacyathida also show an association 
with volcanogenic facies (West Sayan and 
New South Wales) (Debrenne, roZAnov, & 
ZhurAvlev, 1990, table 9).

Other types of complex outer and inner 
walls (e.g., in Ethmophyllum meeK, Sekwicy
athus hAnDFielD, Aulocricus Debrenne, 
Cordilleracyathus hAnDFielD) were, with few 
exceptions, typical of Laurentia, especially 
throughout the Cordillera. A significant 
terrigenous input has been noted for most 
localities there (morgAn, 1976; Debrenne, 

gA n D i n, & roW l A n D, 1989; mo u n T 
& signor, 1992; mAnsY, Debrenne, & 
ZhurAvlev, 1993). These complex outer 
wall systems [downwardly oriented bract, 
intrapore spine(s), or V-shaped canal] 
could be interpreted as a resistant screen 
preventing the clogging of pores by terrig-
enous particles.

In the Achchagyy Tuoydakh–Churan 
profile along the Lena River, Siberia, 
modular forms and species with sparsely 
porous to aporose septa were evidently more 
frequent in shallower platform areas with 
greater current activity. In contrast, species 
with compound outer and inner walls were 
dominant eastward, in deeper environments 
with gentler ambient currents. Seemingly, 
the compound outer wall enhanced the 
inhalant flow by narrowing the pore area, 
while complex inner walls enhanced the 
initial velocity of the exhalant water jet, 
reducing the possibility of recycling the 
used water (Debrenne & ZhurAvlev, 1996, 
fig. 1).

ARCHAEOCYATHAN 
INTERACTIONS

Archaeocyathan skeletons display a variety 
of reactions in response to the proximity of 
other species (brAsier, 1976; Kruse, 1991a; 
Debrenne & ZhurAvlev, 1992b, p. 163, 
1994; WooD, ZhurAvlev, & Debrenne, 
1992). These range from a simple intraspe-
cific competition between two individuals 
with antagonistic rejection and atrophy of 
the weaker (Ajacicyathida-Ajacicyathida; 
Fig. 34b), to an acute rejection and resorp-
tion (Archaeocyathida-Ajacicyathida). The 
competitive superiority of the Archaeocy-
athida over the Ajacicyathida was presum-
ably due to the former’s possession of a 
more mobile aquiferous system (Debrenne 
& ZhurAvlev, 1992b, p. 99), related to 
their morphofunctional dissimilarity in 
distribution of soft tissue. On contact, the 
archaeocyathide cup overgrew the ajacicy-
athide and usually completely suppressed it 
by ultimately obscuring it with secondary 
thickening (Fig. 34c–d).
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Archaeocyathides were more compatible 
with each other in both conspecific and 
interspecific interactions than were other 
orders. Their relationships may be inter-
preted as mutualism. In Archaeocyathida-
Archaeocyathida interactions, secondary 
skeletal layers were generally developed on 
both individuals in the immediate area of 
contact. Complete fusion could be achieved 
in the interaction of several branching units 
of the same archaeocyathide modular form.

The dominance of solitary forms among 
the Ajacicyathida is the consequence of their 
high degree of individualization, which is 
itself tied to the pattern of soft tissue distri-
bution in the cup. Being passive filter feeders 
using an elaborate skeletal sieve system, 
ajacicyathides could presumably pump at 
fairly low exhalant and inhalant velocities. 
Consideration of similar Recent sponges 
(reisWig, 1971) shows that such forms were 
resistant to the occlusion of their incurrent 
system. Among the Archaeocyathida, the 
sealing of all basal ostia by secondary skel-
eton was also a response to high sedimenta-
tion rates in order to prevent sediment infil-
tration into the choanoderm (Debrenne & 
ZhurAvlev, 1992b, p. 62; KrAuTTer, 1994).

Modular archaeocyathides and dendritic 
renalcid calcimicrobes (Gordonophyton 
KorDe, Tubomorphophyton KorDe) evidently 
outcompeted solitary ajacicyathides, but 
even the modular archaeocyathides were 
locally subdued by the renalcids. In turn, 
ajacicyathides, as well as their superiors, 
were able to outcompete chambered and 
tubular renalcids and stromatolite-associated 
noncalcified microbes (ZhurAvlev, 2001c).

Massive modular Kazachstanicyathida 
were especially successful, because of the 
considerable flexibility of their aquiferous 
system (Debrenne & ZhurAvlev, 1992b, 
pl. 38,5).

BIOCONSTRUCTION 

The bioconstruct ional  capaci ty  of 
archaeocyaths has been documented in many 
recent works, representing all regions and 
spanning their appearance in the Tommo-

tian to their virtual demise in the Toyonian 
(ZhurAvlevA, 1960b, p. 59, 1966, 1972a; 
JAmes & KobluK, 1978; JAmes & KlAPPA, 
1983; gAnDin & Debrenne, 1984, 2010; 
roWlAnD, 1984; roWlAnD & gAngloFF, 
1988; Debrenne, gAnDin, & roWlAnD, 
1989; JAmes, KobluK, & KlAPPA, 1989; 
rees, PrATT, & roWell, 1989; JAmes & 
grAvesTocK, 1990; Debrenne, gAnDin, & 
ZhurAvlev, 1991; KennArD, 1991; Kruse, 
1991b; WooD, ZhurAvlev, & chimeD 
Tseren, 1993; Kruse, ZhurAvlev, & JAmes, 
1995; riDing & ZhurAvlev, 1995; Kruse 
& others, 1996; ZhurAvlev, 1996, 2001c; 
WooD, 1999; coPPer, 2001; PrATT & 
others, 2001; roWlAnD & shAPiro, 2002; 
Kiessling, Flügel, & golonKA, 2003). 
The resultant bioconstructions (meter-
scale mounds) all had the same basic plan 
and can be categorized into component 
domains occupied by associations of lime 
mud, archaeocyaths, renalcid calcimicrobes, 
and/or cement. Whereas the frame-building 
capacity of solitary archaeocyaths was low, 
modular archaeocyaths did produce genuine 
framework, particularly in the later early 
Cambrian. Additionally, both types provided 
substrate for the frame-building renalcids 
and/or cement, as well as furnishing addi-
tional opportunities for cavity development.

Calcimicrobial-archaeocyathan biocon-
structions may be termed reefs sensu lato, 
but most are strictly bioherms, having 
topographic relief and biogenic frame-
work, but of uncertain capacity for wave 
resistance. The majority probably grew in 
mesotrophic to mildly eutrophic waters, 
with the relative dominance of archaeo-
cyaths or renalcids and other associated 
organisms determined by nutrient and 
terrigenous siliciclastic input, wave energy, 
sedimentation rate, and depth (WooD, 
ZhurAvlev, & Debrenne, 1992; WooD, 
ZhurAvlev, & chimeD Tseren, 1993). 
Sedimentologically, archaeocyathan reefs 
were similar to later Phanerozoic reefs in 
possessing synoptic relief, synsedimentary 
cements, and growth-framework cavities 
housing cryptobionts (JAmes & KlAPPA, 
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1983; Kruse, ZhurAvlev, & JAmes, 1995; 
Zh u r Av l ev & Wo o D ,  1995).  Among 
the archaeocyaths, Ajacicyathida were 
highly competitive, and their incompat-
ibility often involved spatial separation 
between adjacent cups, preventing them 
from becoming good binders (Debrenne 
& ZhurAvlev, 1992b, p. 164; WooD, 
ZhurAvlev & Debrenne, 1992). Their 
elaborate skeletal sieve system allowed 
them to proliferate on mud substrates, in 
habitats with low turbulence and a high 
sedimentation rate, where the probability of 
pore clogging was high (WooD, ZhurAvlev 
& Debrenne, 1992; WooD, ZhurAvlev & 
chimeD Tseren, 1993). They populated the 
immediate periphery and the internal cavi-
ties of reefs where calcareous mud is domi-
nant (Debrenne, gAnDin, & Debrenne, 
1993). In contrast, in Archaeocyathida 
and Kazachstanicyathida, the development 
of secondary skeleton, distal localization 
of living tissue, and greater integration 
favored modularity over individualization 
and hence a greater tolerance to the prox-
imity of other species. This enhanced their 
bioconstructional capability as binders and 
bafflers (WooD, ZhurAvlev, & Debrenne, 
1992). Such capacities allowed the archaeo-
cyathides to constitute up to 99% of 
the total archaeocyathan population in 
some bioherms (Debrenne, gAnDin, & 
gAngloFF, 1990).

Within early Cambrian reefs, the two 
groups engaged in competition for space, 
with resultant suppression of weaker indi-
viduals (Debrenne & ZhurAvlev, 1992b; 
WooD, ZhurAvlev, & Debrenne, 1992; 
K r u s e ,  Z h u r Av l e v ,  & J A m e s ,  1995; 
ZhurAvlev & WooD, 1995; ZhurAvlev, 
1996). Direct overgrowth of one organism 
by another led to incomplete or even patho-
logical development of the primary skeleton, 
extreme production of secondary skeleton, 
especially along mutual contacts, and/or 
dwarfing or complete immuration of the 
weaker competitor.

Together with archaeocyaths, coralo-
morphs (e.g., Cysticyathus ZhurAvlevA, 

Hydroconus KorDe), radiocyaths, cribricy-
aths, and especially renalcid calcimicrobes 
(e.g., Renalcis vologDin, Epiphyton borne-
mAnn) were common constituents in early 
Cambrian reefs. Archaeocyath-coralomorph 
and archaeocyath-radiocyath interactions 
show no hierarchy. All these organisms used 
each other as a substrate.

Exceptionally, cribricyaths appear to have 
considerably disrupted archaeocyathan 
growth (Debrenne & ZhurAvlev, 1992b, 
pl. 38,6 ), suggesting that cribricyaths facul-
tatively behaved as parasites on archaeo-
cyaths. This observation contradicts the 
view that cribricyaths may have been a type 
of archaeocyathan larva (ZhurAvlevA & 
oKunevA, 1981; belYAevA, 1985; belYAevA 
& ZhurAvlevA, 1990).

The relationship between archaeocy-
aths and renalcid calcimicrobes was more 
varied. Renalcids were tiny, dendritic 
(Epi phyton bornemAnn, Gordonophyton 
KorDe, Tubomorphophyton KorDe), cham-
bered (Chabakovia vologDin, Renalcis 
vologDin, Tarthinia DroZDovA), fanlike 
(Bija vologDin), or tubular (Batinevia 
KorDe, Girvanella nicholson & eTher-
iDge, Razumovskia vologDin) calcareous 
organisms. Their simple morphology and 
common facultative occurrence in reef cavi-
ties imply that they were calcified bacteria, 
probably cyanobacteria (riDing, 2001). 
Conversely, their distinct microgranular 
microstructure, typical of eukaryotes 
(roZAnov & sAYuTinA, 1982), the appear-
ance of obligate cryptobionts (ZhurAvlev 
& WooD, 1995), and the lack of vital 
effects on carbon isotopic values (surge & 
others, 1997) do not favor a cyanobacterial 
assignment.

All these factors tended to displace the 
ajacicyathides toward marginal, at times 
harsh, environments (extremely shallow, 
deep, agitated, or turbid).

This engendered three principal associa-
tions: modular archaeocyaths and Gordono
phyton-Tubomorphophyton  occupying 
optimal niches; solitary ajacicyathides and 
Renalcis-Tarthinia in intermediate locales; 
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and skeletal and nonskeletal stromatolites in 
marginal settings (ZhurAvlev, 2001c).

Branching forms (e.g., Cambrocyathellus 
ZhurAvlevA) were mainly bafflers, whereas 
encrusting (e.g., Retilamina Debrenne & 
JAmes) and massive examples (e.g., Korovi
nella rADugin) were binders. Colonization 
by encrusting and massive archaeocyaths 
required a hard substrate.

Reefs were either dominantly renalcid 
calcimicrobial or (rarely) dominated by 
metazoans (ZAmArreño, 1977; gAnDin & 
Debrenne, 1984; selg, 1986; sTePAnovA, 
1986; Debrenne, gAnDin, & roWlAnD, 
1989; rees, PrATT, & roWell, 1989; 
Debrenne & grAvesTocK, 1990; JAmes & 
grAvesTocK, 1990; WooD, ZhurAvlev, 
& chimeD Tseren, 1993; moreno-eiris, 
1994). Indeed, historically, Tommotian 
archaeocyaths initially invaded purely calci-
microbial reefs, which had first proliferated 
in the preceding basal Cambrian Nemakit–
Daldynian stage.

Reefs were presumably initiated during 
episodes when mud input slowed or ceased, 
allowing localized cementation or stabiliza-
tion of seafloor mud (Kruse, ZhurAvlev, & 
JAmes, 1995; riDing & ZhurAvlev, 1995; 
roWlAnD & shAPiro, 2002). The large 
monospecific domains that formed the bulk 
of many biohermal communities suggest 
that archaeocyathan larvae were of vivipa-
rous origin, as they apparently did not travel 
far after release. This reproductive strategy 
is typical of sponges and other sessile organ-
isms subject to high disturbance (AYling, 
1980; hoPPe, 1988).

The early Cambrian reef ecosystem was 
largely composed of generalists and oppor-
tunistic filter- and suspension-feeders, which 
were dependent upon a relatively high 
supply of nutrients. Many reefs were domi-
nated by only one or two archaeocyathan 
species, implying that these communities 
were the result of rapid colonization and 
subsequent growth from one or a few larval 
spat falls (WooD, ZhurAvlev, & chimeD 
Tseren, 1993). Such trophic organization 
is similar to some other Paleozoic reefs, but 

contrasts fundamentally with some Mesozoic 
and most Cenozoic and Recent reefs, which 
are dominated by mixo- and phototrophs 
adapted to low-nutrient conditions (WooD, 
1993, 1995, 1999).

ZhurAvlev (2001c) has proposed an 
ecological succession for these early Cambrian 
reefs: (1) settlement on muddy substrate 
of solitary ajacicyathides tolerant of turbid 
conditions (pioneer stage); (2) encrusting 
of resulting floatstone-rudstone by modular 
archaeocyaths to produce framework (stabili-
zation stage); (3) strengthening of framework 
by binding Renalcis vologDin and occupa-
tion of reef cavities by an array of monocy-
athides, capsulocyathides, cribricyaths, and 
boring organisms (diversification stage); (4) 
either via intrinsic reef growth or extrinsic 
sea level fall, growth into the marginal peri-
tidal or surf zone, with development of a 
species-impoverished, commonly mono-
specific, archaeocyathan community (e.g., 
Protopharetra-“Paranacyathus” community 
in the Poleta Formation at Stewart’s Mill, 
Nevada, United States; roWlAnD & shAPiro, 
2002). Despite their small size, a number of 
early Cambrian reefs represent such complete 
ecological successions. Others were initi-
ated and dominated by calcimicrobes, with 
archaeocyaths as subordinate dwellers contrib-
uting only modestly to reef construction.

Cryptic cavities have provided archaeocy-
aths with a hard substate since their incep-
tion. Cavities and cavity dwellers have been 
described in reefs (KobluK & JAmes, 1979), 
among them a large variety of archaeocyaths, 
some of which are thought to have been obli-
gate cryptobionts, e.g., thalamid forms such 
as Polythalamia Debrenne & WooD (Capsu-
locyathida) and Altaicyathus vologDin 
(Kazachstanicyathida), and archaeocyaths of 
chaetetid organization, such as Usloncyathus 
Fonin (ZhurAvlev & WooD, 1995).

Cryptic niches are not limited to reefs. 
A remarkable cryptic community in the 
Ovetian (Atdabanian) Pedroche Formation 
of southern Spain comprises archaeocyaths 
and other cryptobionts encrusting the walls 
and ceilings of crevices formed during 
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synsedimentary fracturing of Neoprotero-
zoic andesite (vennin & others, 2003). 
These cavity dwellers additionally repre-
sent the earliest known metazoan rocky 
community.

I t  m a y  b e  t h a t  a r c h a e o c y a t h a n -
calcimicrobial competitive interactions, in 
which dendritic renalcids were dominant, 
contributed to the eventual near-total elimi-
nation of archaeocyaths from the Cambrian 
reef biota in the Toyonian stage (ZhurAvlev, 
1996).

PALEOBIOGEOGRAPHY
Global archaeocyathan distribution was 

fundamentally controlled by the availability 
and mutual proximity of normal-marine 
carbonate depositional tracts. Resulting 
biogeographic patterns were influenced 
by rapid tectonic changes, particularly 
those accompanying rifting (liebermAn, 
1997; ZhurAvlev & mAiDAnsKAYA, 1998; 
Debrenne, mAiDAnsKAYA, & ZhurAvlev, 
1999), as well as by evolution within the 
group, leading to the frequent appearance 
of short-lived, specialized, endemic taxa 
(nAimArK & roZAnov, 1997).

Among global paleogeographic recon-
structions proposed for the early Cambrian 
(e .g . ,  ro Z A n ov,  1984;  Zo n e n s h A i n, 
KuZmin, & Kononov, 1985; scoTese 
& mcKerroW, 1990; courJAulT-rADé, 
Debrenne, & gAnDin, 1992; KirschvinK, 
1992; mcKerroW, scoTese, & brAsier, 
1992; sToreY, 1993; DAlZiel, DAllA sAlDA, 
& gAhAgAn, 1994; TorsviK & others, 1996; 
KirschvinK, riPPerDAn, & evAns, 1997; 
liebermAn, 1997; smiTh, 2001; golonKA, 
2002; meerT & liebermAn, 2008; rino 
& others, 2008), those that best fit the 
archaeocyathan distribution portray a post-
supercontinental world (Rodinian or Panno-
tian) with the major epicontinental basins 
within the intertropical zone. The inferred 
pathways of archaeocyathan migration, 
coupled with the use of the Jaccard simi-
larity coefficient applied to the total local 
Cambrian faunas, calculated for Nemakit-
Daldynian–early Tommotian, early Atda-

banian, and late Atdabanian–Botoman 
intervals, support those paleogeographic 
reconstructions suggesting the existence 
of East and West Gondwana in the early 
Cambrian, as proposed by moores (1991) 
and KirschvinK (1992), with their subse-
quent collision by the late early Cambrian 
(cAWooD, 2005; PAulsen & others, 2007), 
the rifting of Laurentia from the Australian-
Antarctic margin, and the drift of suspect 
terranes toward Siberia (Debrenne, mAiD-
AnsKAYA, & ZhurAvlev, 1999). Terrane 
theory, with the prospect of more complex 
models incorporating suspect terranes and 
drifting microcontinents (coneY, Jones, & 
monger, 1980), provides further options 
for the reconstruction of archaeocyathan 
paleobiogeography. 

Archaeocyaths appeared within the tran-
sitional Anabar–Sinsk tract of the Siberian 
Platform at the beginning of the Tommotian 
stage and had dispersed to the Altay Sayan 
Fold Belt (East Sayan and Kuznetsk Alatau) 
and Far East (Shevli Basin) only by the very 
end of this stage. The Siberian Platform, the 
first center of archaeocyathan diversification 
(roZAnov, 1980), was located at low lati-
tudes, mostly south of the paleoequator and 
was geographically inverted relative to its 
present position (cocKs & TorsviK, 2007).

A longstanding puzzle has been the rela-
tively late appearance of archaeocyaths in 
suitable lithofacies in Altay Sayan, Trans-
baikalia, Mongolia, and other nearby areas, 
together with the organization of archaeo-
cyathan assemblages in distinct circumplat-
formal belts according to age and composi-
tion. Three sets of terranes are currently 
recognized in the archaeocyath-bearing 
regions of present Central Asia: Kazakhstan 
terrane group (Kazakhstan-Turkmenistan-
Tajikistan-Kyrgyzstan), Altay Sayan–Trans-
baikalia-Mongolia terranes, and Far East 
terranes (KhAin & others, 2003; KherAs-
KovA & others, 2003; senniKov & others, 
2004; cocKs & TorsviK, 2007; gorDienKo 
& others, 2007). Overall, Central Asia is 
a complex of accretionary (Altay, Sayans, 
Transbaikalia, Mongolia, Kazakhstan) 
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and collisional terranes (northern China, 
southern Mongolia, Dzhungaria, southern 
Tien Shan, northern Pamir). Their appear-
ance has been linked to the postulated devel-
opment of several paleooceans (ZonenshAin, 
KuZmin, & Kononov, 1985; KherAsKovA 
& others, 2003), of which the earliest 
Paleoasian Ocean was probably never wide. 
Intense tectonism, including volcanism, 
took place in the latest Ediacaran and earliest 
Cambrian along the northern periphery 
of East Gondwana, where a rift-to-drift 
transition involved a number of Central 
Asian microcontinents (e.g., Zavkhan, Tuva-
Mongolia, South Gobi, North Tien Shan). 
Tectonic and sedimentological analyses 
suggest that these blocks drifted from north-
western East Gondwana toward Siberia 
during that interval (KherAsKovA & others, 
2003; cocKs & TorsviK, 2007). Paleo-
magnetic and paleontological data have 
further confirmed and constrained this 
scenario (ZhurAvlev & mAiDAnsKAYA, 1998; 
meTelKin & KAZAnsKiY, 2002; miKhAl’Tsev, 
KAZAnsKiY, & senniKov, 2002).

Ot h e r  r e g i o n s  we r e  n o t  s u i t a b l e 
for archaeocyathan colonization at that 
time, with phosphate-rich sedimentation 
prevailing in northern peri-East Gond-
wana terranes (Yangtze, Mongolia, and 
Kazakhstan) and West Gondwana (West 
Africa and Iberia [PArrish & others, 1986; 
viDAl, mocZYDłoWsKA, & ruDAvsKAYA, 
1995; culver & others, 1996]), extensive 
evaporite basins in subequatorial parts of 
Siberia (Turukhansk-Irkutsk-Olekma tract) 
and northern West Gondwana (Oman–
southern Iran–Saudi Arabia, northern Paki-
stan [WolFArT, 1983; AsTAshKin & others, 
1991]), and mainly fluviatile and deltaic silic-
iclastic sediments elsewhere (hollAnD, 1971, 
1974; gAnDin, minZoni, & courJAulT-
rADé, 1987; roZAnov & łYDKA, 1987; 
cooK, 1988; lAnDing & others, 1988; FriTZ 
& others, 1991; borDonAro, 1992; PillolA 
& others, 1994).

During the first half of the Atdababian 
Stage, when marine transgression generated 
widespread carbonate sedimentation in the 

Altay Sayan Fold Belt, Mongolia, Iberia, 
Germany, Poland, Morocco, and Australia 
(shergolD & others, 1985; moreno-eiris, 
1987; AsTAshKin & others, 1991, 1995; 
elicKi, 1995; geYer, lAnDing, & helD-
mAier, 1995; biAłeK & others, 2007; álvAro 
& others, 2010), archaeocyaths of Siberian 
affinity (e.g., Sibirecyathus vologDin, Geocy
athus ZhurAvlevA, Retecoscinus ZhurAv-
levA, Capsulocyathus vologDin, Dictyocy
athus bornemAnn) reached western Europe 
(Normandy, Spain) and Morocco, where a 
new center of diversification developed and 
endemic forms appeared. roZAnov’s (1984) 
and mcKerroW, scoTese, and brAsier’s 
(1992) paleogeographic reconstructions 
showing a close proximity of Siberia to 
the northern West Gondwana margin are 
consistent with a postulated Siberian-Euro-
Moroccan archaeocyathan dispersal pathway. 
Avalonia was unsuitable for archaeocyaths 
due to its temperate location (lAnDing & 
mAc gAbhAnn, 2010).

By the terminal Atdabanian and initial 
Botoman stages, continued transgression 
had finally initiated carbonate accumula-
tion and hence archaeocyathan prolifera-
tion on Yangtze, Australia, and Laurentia. 
Archaeocyaths migrated along the northern 
periphery of West Gondwana from the 
European-Moroccan center of diversifica-
tion, and via Mongolia and Kazakhstan, 
to populate Yangtze. [Note that archaeocy-
aths reported from intervening Sinai and 
Iran by omArA (1972), bAsAhel and others 
(1984), mel’niKov and others (1986), and 
lAsemi and Amin-rAsouli (2007) should be 
discounted, as the Iranian so-called archaeo-
cyaths are eocrinoids, spiculate demosponges, 
microbialites, and ooids, whereas the Sinai 
material could be the enigmatic, tubelike 
Cloudina germs. As well, putative Hima-
layan archaeocyaths have proved to be 
microstromatolites (Debrenne, gAngloFF, 
& ZhurAvlev, 1990)]. A number of genera, 
for example, Rasetticyathus Debrenne, Poro
coscinus Debrenne, Rudanulus Debrenne, 
and Spirillicyathus R. beDForD & J. beDForD, 
were restricted or almost exclusive to Yangtze, 
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western Europe–Morocco, and/or Australia 
(Debrenne & JiAng, 1989). By the end of the 
Botoman Stage, archaeocyaths had dispersed 
from Australia to Antarctica, where some 
50% of species were in common with the 
former (Debrenne & Kruse, 1986, 1989; 
WronA & ZhurAvlev, 1996; Kruse & shi 
in brocK & others, 2000).

Austra l ia  became one of  the pr in-
cipal Botoman centers of diversification 
(roZAnov, 1980; Debrenne & ZhurAvlev, 
1992b, fig. 40c). Archaeocyathida with outer 
wall canals (Warriootacyathus grAvesTocK) 
and subdivided canals (Beltanacyathus R. 
beDForD & J. beDForD, Ataxiocyathus 
Debrenne, Maiandrocyathus Debrenne), as 
well as erismacoscinines with attached micro-
porous sheath (Polycoscinus R. beDForD & J. 
beDForD), were restricted entirely to this 
center of diversification. A possible indepen-
dent center of diversification, the Russian 
Far East, was proposed by belYAevA (1987). 
Some centers of diversification are also char-
acterized by the presence of peculiar forms 
difficult to place in the classification system, 
for example, Eremitacyathus ZAmArreño & 
Debrenne in Spain, Retilamina Debrenne 
& JAmes in North America.

By the late Atdabanian, the Cordilleran 
margin of Laurentia crossed the paleo-
equator, providing suitable conditions 
for archaeocyathan settlement. At the 
same time, Laurentia and Siberia moved 
toward each other, facil itating faunal 
migration. The first Laurentian archaeocy-
aths probably originated from Australian 
stock: Metaldetes TAYlor, Metacyathellus 
Debrenne & ZhurAvlev, Sigmofungia R. 
beDForD & W. R. beDForD, and Pycnoido
coscinus R. beDForD & W. R. beDForD 
are known only from these two regions 
(mAnsY, Debrenne, & ZhurAvlev, 1993). 
By the end of the Botoman Stage, the 
distance between Laurentia and Siberia 
was not great, facilitating migration of 
common genera and perhaps even species 
(Tegerocyathus KrAsnoPeevA, Krasnopeevae
cyathus roZAnov, Polythalamia Debrenne 
& WooD ,  Claruscoscinus  hAnDFielD). 

Laurentia, in turn, became a center of 
diversification (roZAnov, 1980; Debrenne 
& ZhurAvlev, 1992b, fig. 40c).

Fu r the r  no r thwa rd  movement  o f 
Laurentia allowed archaeocyaths and other 
reef-building organisms to spread to the 
Appalachian margin, while simultaneously 
they were significantly reduced along its 
Cordilleran margin (Debrenne, mAiDAn-
snKAYA, & ZhurAvlev, 1999; mcmenAmin, 
Debrenne, & ZhurAvlev, 2000).

Early Cambrian transgression attained its 
maximum in the Botoman Stage, leading to 
the relative isolation of those regions inhab-
ited by archaeocyaths. Archaeocyathan ende-
micity was thus greatest at that time. The 
percentage of endemic genera in the various 
centers of diversification was 22% in Europe-
Morocco, 21% in Australia-Antarctica and 
38% in Laurentia (Debrenne & ZhurAvlev, 
1992b, p. 96). Similarly, archaeocyathan 
gamma diversity, which expresses the degree 
of provinciality, was highest in the Botoman 
and indicates that geographic isolation 
was among the major factors controlling 
archaeocyathan diversification. A further 
factor was environmental heterogeneity, as 
revealed by beta diversity analysis. Again, 
beta diversity was highest in the Botoman 
(ZhurAvlev & nAimArK, 2005, fig. 2a, 3). 
On this collective basis, an early Cambrian 
paleogeographic division, based on archaeo-
cyaths, into Afro-Siberian-Antarctic and 
American-Koryakian provinces was suggested 
(ZhurAvlev, 1986a) and since employed by 
other authors (gAngloFF, 1990; Debrenne 
& ZhurAvlev, 1992b, fig. 40d). This broad 
division has been confirmed by cluster anal-
ysis of more current generic distribution 
data, by which Kruse and shi (in brocK & 
others, 2000) recognized two archaeocyathan 
realms, Eurasian and Lauraustral, the former 
embracing Siberia-Mongolia, Central–East 
Asia, and Europe-Morocco provinces, and 
the latter the Australia-Antarctica and North 
America–Koryakia provinces.

Intraprovincial lithofacies-based subdi-
vision has been proposed by osADchAYA 
(1979) for the Altay Sayan Fold Belt. She 
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recognized carbonate-, mixed siliciclastic-
carbonate-, and mixed volcanic-carbonate-
dominant provinces, the last two of which 
have recognizable counterparts in Mongolia 
(ZhurAvlev, 1998).

The appearance of new centers of diversi-
fication does not seem to be associated only 
with regional isolation; the high Botoman 
endemism is also due to the rapid diver-
sification of certain superfamilies (e.g., 
Ethmophylloidea in Laurentia, and Anap-
tyctocyathoidea and Beltanacyathoidea in 
Australia). In addition, diverse and distinct 
genera appeared in both regions among the 
Metacyathoidea. All these superfamilies were 
characterized by complicated outer wall 
structures, which might have provided an 
improved screen, preventing the clogging 
of pores by particles, as discussed above. 
Thus, inferred unsuitable conditions might 
have increased the specialization rate within 
these taxa and consequently contributed to 
endemicity.

On the whole, the Atdabanian–Botoman 
witnessed the greatest extent of carbonate 
platforms in the entire early Cambrian, facil-
itating extensive calcimicrobial-archaeocya-
than reef building within the belt extending 
30º to either side of the paleoequator 
(Debrenne & courJAulT-rADé, 1994).

The middle Botoman peak of the early 
Cambrian transgression was marked by 
extensive accumulation of black shale and 
black, thin-bedded limestone in low lati-
tudes: Siberia, some microcontinents of the 
Altay Sayan Fold Belt, Transbaikalia, Russian 
Far East, Kazakhstan, Iran, Turkey, South 
Australia, Yangtze (chen & others, 1982; 
shergolD & others, 1985; AsTAshKin & 
others, 1991, 1995; hAmDi, 1995). These 
deposits reflected an anoxic-dysoxic event 
adversely affecting archaeocyathan commu-
nities (ZhurAvlev & WooD, 1996). Seem-
ingly, archaeocyaths survived this event in 
refugia, some of which were island arcs, in 
West Sayan and Tuva of the Altay Sayan 
Fold Belt, the Dzhagdy Basin of the Russian 
Far East, Kazakhstan, and some regions of 
Australia, where the most complete Botoman 

record of archaeocyathan assemblages is 
preserved. The late Botoman archaeocyathan 
fauna included abundant Erbocyathoidea, 
Tercyathoidea, Clarucoscinidae, and Kazach-
stanicyathida.

The late Botoman–Toyonian probably 
coincides with the major early Cambrian 
regression, variously termed in different 
regions the Hawke Bay, Daroca, or Toyo-
nian regression. The Toyonian sedimen-
tary record is characterized by widespread 
Skolithos piperock in Iberia, Morocco, 
eastern Laurentia, and other intertidal silici-
clastic tracts of Baltica, the Midde East, and 
Laurentia. Sabkha conditions prevailed over 
large areas of Siberia, Australia, and Yangtze 
(PAlmer & JAmes, 1980; bergsTrÖm & 
Ahlberg, 1981; brAngulis & others, 1986; 
cooK, 1988; mel’niKov & others, 1989; 
AsTAshKin & others, 1991; FriTZ & others, 
1991; mccollum & miller, 1991; mAnsY, 
Debrenne, & ZhurAvlev, 1993; goZAlo & 
others, 2007; lAsemi & Amin-rAsouli, 2007; 
álvAro & clAusen, 2008). Together with the 
preceding anoxic-dysoxic event, this regres-
sion decimated the archaeocyaths and other 
invertebrate reef dwellers by substantially 
reducing the shallow marine platform area.

During the middle Toyonian, low-
diversity archaeocyathan communities 
consisting mainly of surviving Tegerocyathus 
KrAsnoPeevA, Archaeocyathus billings, and 
Pycnoidocyathus TAYlor species became 
widespread (Debrenne & ZhurAvlev , 
1992b, fig. 40d).

A general foundering of carbonate and 
mixed-sedimentary ramps at the beginning 
of the middle Cambrian (Amgan stage) led 
to the virtual extinction of the archaeocy-
aths. This foundering was expressed in the 
accumulation of deeper-water (including 
black) shale in the Siberia,  northern 
Mongolia–Transbaikalia,  Russian Far 
East, and Kazakhstan terranes (AsTAshKin 
& others, 1991, 1995; KherAsKovA & 
others, 2003). The postulated transition 
from coldhouse to greenhouse condi-
tions during the late early to late middle 
Cambrian was probably also a major factor 
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in this extinction (ZhurAvlev & WooD, 
2008; lAnDing & mAcgAbhAnn, 2010; 
lAnDing, 2011). Prior emission of green-
house gases from the Botoman-age Kalkar-
indji continental flood basalt province 
of northern Australia offers a potential 
trigger for this warming (glAss & Phil-
liPs, 2006; hough & others, 2006). In 
addition, drift of the European-Moroccan 
margin of  Gondwana toward higher, 
temperate latitudes, beyond the limits of 
carbonate development (courJAulT-rADé, 
Debrenne, & gAnDin, 1992), no doubt 
hindered the reestablishment of archaeo-
cyathan populations within this region. 
The same probably held true for Australia, 
due to a counterclockwise rotation of 
Gondwana (KirschvinK, 1992). Thus, 
Antarctica alone remained in low paleolat-
itudes, so furnishing both known species 
of post–early Cambrian archaeocyaths 
(Debrenne, roZAnov, & Webers, 1984; 
WooD, evAns, & ZhurAvlev, 1992).
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