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ABSTRACT
With the continuous development of space and sensor technologies during the last 40 years, ocean remote
sensing has entered into the big-data era with typical five-V (volume, variety, value, velocity and veracity)
characteristics. Ocean remote-sensing data archives reach several tens of petabytes and massive satellite
data are acquired worldwide daily. To precisely, efficiently and intelligently mine the useful information
submerged in such ocean remote-sensing data sets is a big challenge. Deep learning—a powerful
technology recently emerging in the machine-learning field—has demonstrated its more significant
superiority over traditional physical- or statistical-based algorithms for image-information extraction in
many industrial-field applications and starts to draw interest in ocean remote-sensing applications. In this
review paper, we first systematically reviewed two deep-learning frameworks that carry out ocean
remote-sensing-image classifications and then presented eight typical applications in ocean internal-wave/
eddy/oil-spill/coastal-inundation/sea-ice/green-algae/ship/coral-reef mapping from different types of
ocean remote-sensing imagery to show how effective these deep-learning frameworks are. Researchers can
also readily modify these existing frameworks for information mining of other kinds of remote-sensing
imagery.
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INTRODUCTION
Theocean accounts for about 71%of Earth’s surface.
Humans had minimal ocean observations before
the Seasat, the first Earth-orbiting satellite designed
for remote sensing of Earth’s oceans, launched in
1978 [1]. Although Seasat only operated for 105
days, the sensors on board Seasat had acquired
much more data about the vast ocean than all
previous sensors combined. Such high-efficiency
data collection stimulated the fast development of
ocean-satellite remote sensing. Since then, more
and more satellites carrying microwave, visible,
infrared sensors have been launched to measure
various ocean physical, biological and other param-
eters that lead to significant improvement in our un-
derstanding of the ocean during the last 40 years
[2–7].

There are two types of remote-sensing sen-
sors: active and passive sensors. The active sen-
sors measure sea-surface height or SSH (altimeter),

sea-surface roughness (synthetic-aperture radar or
SAR), sea-surface wind (scatterometer, SAR). In
contrast, the passive sensors measure sea-surface
salinity, sea-surface temperature (SST) and water-
leaving radianceusingmicrowave/infrared radiome-
ters and optical sensors. According to the report
from theCommittee onEarthObservation Satellites
(CEOS), for each primary ocean-surface parameter,
there are currently a dozen satellites on-orbit mak-
ing the daily measurements (Fig. 1). Other tens of
satellites have also been approved or planned over
the next 20 years. The increase in satellite numbers
has resulted in a rapid rise in the volume of ocean-
satellite data archives that number tens of petabytes.
Also, due to the improvement of spatial, temporal
and spectral resolutions of various sensors, the vari-
ety of ocean-satellite data now increases. Ocean re-
mote sensing now has the typical five-V (volume,
variety, value, velocity and veracity) characteristics
of big data.
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Figure 1. Ocean remote sensing has entered into the big-data era with the rapid increase in on-orbit satellites, sensors and data-archive volume.
Ocean remote-sensing big data can offer abundant data fuel to data-driven deep learning, while data-driven deep learning provides a promising way
to make the best of ocean remote-sensing big data. The win–win combination of them will make future ocean remote sensing more precise, efficient
and intelligent. The numbers of sensors for the different ocean-measurement categories were calculated from the data of the Committee on Earth
Observation Satellites (CEOS) database (http://database.eohandbook.com/measurements/categories.aspx?measurementCategoryID = 3).

A dilemma is that big data do not always guaran-
tee that people can get more valuable information
from them because the useful information is usually
sparsely hidden in massive ocean-satellite data.
In the past 40 years, many efforts have been put
into the tasks to develop and validate retrieval
algorithms to generate a long-time series of many
standard global ocean parameters [6–8]. Currently,
we need efficient and even intelligent approaches
to improve information-extraction capability and
efficiency with emergent powerful deep-learning
(DL) technology. We need to strengthen our
skills in three aspects. First, some ocean phe-
nomena like internal waves and algal blooms
are locally generated and their signatures only
consist of a tiny percentage of an ocean remote-
sensing image. We cannot extract this type of
information as we do for the standardized ocean-
parameter (SST, etc.) products from the direct
measurements of satellites. Second, there is much
essential information hidden in these long-time se-
ries data that requires new data-driven information-
mining algorithms. Besides, extracting such informa-
tion from a high-rate downlink satellite data stream
requires high-speed data processing. Deep-learning-
based approaches can satisfy all these requirements.

Traditionally, we can categorize information
extraction in ocean remote-sensing images into two
types: supervised classification and object detection.
Supervised classification means classifying images
or pixels, usually referring to samples, according to
given classes. Pixel-level supervised classification,
also named supervised semantic segmentation, is
more often encountered in ocean-satellite-image ap-
plications. Oil spills, sea ice, eddy and algal blooms
usually have discriminable patterns in satellite
images with irregular shapes [9]. Extraction of such
information is an essentially supervised semantic
segmentation that includes light-spectrum combi-
nation, polarization decomposition, co-occurrence
matrices, spectrum analysis (e.g. wavelets) and
other methods. Object detection in ocean remote-
sensing imagery usually refers to detecting objects
(ships, oil rigs, etc.) that are distinguished from
the surrounding image backgrounds. A constant
false-alarm rate (CFAR) is the most common
statistical approach for ship detection in ocean
remote-sensing images [10]. The methods work
but may not be optimal for a specific end-to-end
(data-to-information) problem, since the traditional
supervised classification and object-detection ap-
proaches do not consider spatial structure features
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or use the features extracted by human-designed
operators.

An artificial intelligence (AI)method can help to
get better and fast results. AI based on an artificial
neural network (ANN) computational model that
can learn the relationship among its inputs and out-
puts from given training samples. Biological neural
networks initially inspired ANNdevelopment in the
1940s. Since then, ANNhas advanced from the sim-
ple McCulloch-Pitts and Perceptron models of the
1950s–1960s and the back-propagation algorithm
was developed in the 1960s–1980s (Fig. 1). The in-
troduction of convolutional layers and pooling lay-
ers occurred in the 1980s.And thepopular deepneu-
ral networks (DNNs) did not start until the early
2000s (Fig. 1). The introduction of convolutional
layers primarily reduces the number of network pa-
rameters by local-linking and weight-sharing, while
pooling layers reduce the size of the feature maps
by down-sampling [11–13]. Please note that aDNN
is different from a convolutional neural network
(CNN) in concept. DNNmeans the neural network
architecture is deep and complex, whileCNNmeans
convolutional layers are used in the neural network.
When aDNNcontains convolutional layers, it is also
a CNN. When a CNN is deep, it is also a DNN.
A deep structure with alternation of convolutional
and pooling layers gives DNNs the powerful capa-
bility to efficiently extract abstract features from im-
ages. DNN training is to find the optimal structure
and coefficients based on a large number of labeled
samples. Once trained, a DNN can better extract the
data features than the traditional approaches that use
human-designed rules and then infer the informa-
tion behind the data. DNNs achieved significant su-
periority over traditional classification approaches in
the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) 2012 and dominated the ILSVRCs
in the following years. In 2015, DNNs achieved bet-
ter performance (4.94% top-5 error) than human
(5.1% top-5 error)on the1000-class ImageNet 2012
classification data set [14] (Fig. 1).

U-Net is a representative DNN for semantic seg-
mentation [15,16]. U-Net has the encoder–decoder
structure and the skip connection between the en-
coder and the decoder, and these make U-Net have
excellent performance. The DNNs for object detec-
tion can be divided into one-stage networks (e.g.
single-shot multi-box detector (SSD)) and two-
stage networks with a new network branch for initial
screening (e.g. Faster-RCNN) [17,18]. Generally,
one-stage networks have higher computational
efficiency because of simpler designs. Essentially,
there is no difference in information extraction
between ocean remote sensing and conventional
images. Therefore, powerful DNNs also have mas-

sive potential for mining information from ocean
remote-sensing data and, conversely, ocean-satellite
big data can provide data to fuel the DNNs.

As shown below, the information extraction of
ocean remote-sensing data is undergoing the evo-
lution from human-designed rule-based models to
end-to-end learningmodels in the big-data era.Most
of the previous ANN models applied in ocean re-
mote sensing were based on fully connected neu-
ral networks (FNNs). The critical shortcoming
of FNNs is their inefficiency in processing high-
dimension data, including extracting contextual fea-
tures from images. Therefore, a remedy was often
made in previous FNN-based classifications by in-
creasing an additional preprocessing step to ob-
tain contextual features as inputs of FNN using
human-designed rules. For instance, people need to
extract textural features of ocean remote-sensing im-
ages in oil spills and sea-ice classification. This ad-
ditional step is called feature engineering in the
field of machine learning. Since this extra level uses
human-designed rules, the FNN-based classification
models are still not end-to-end models. The power-
ful capability of the feature extraction of DNNs can
overcome this problem. Recent studies have shown
that DNNs have achieved excellent performance
in information extraction from the ocean remote-
sensing data of oceans and others, although both op-
portunities and challenges still exist [19].

AI oceanography development is just in its in-
fancy. And potential deep-learning applications in
the oceanography field urgently need to be widely
studied. Besides the classification and semantic-
segmentation tasksmentioned above, deep-learning
models as well as other AI models can also find
their positions in observational data fusion, pa-
rameter retrieval, forecast, etc. of the ocean and
atmosphere [7,20–24]. In very recent times, a
deep-learning model has successfully made skillful
forecasts of El Niño/Southern Oscillation, show-
ing great potential in solving this complex scien-
tific problem [24]. Other new advances were also
achieved in applying deep-learning models to make
short-term forecasts of tropical cyclone tracks and
intensity [22,23].

The deep-learning frameworks can be blended.
The blended models can achieve more com-
plex functions and have improved accuracy and
increased efficiency. We can also combine the deep-
learning model with a physical equation-based
numerical weather-prediction model. The poten-
tial combinable aspects include quality control,
parameterization, post-processing, etc. Application
of DL technology in weather and ocean forecasting
is an up-and-coming research area, as it is possible
to fulfill the advantages of both DL and numerical
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modeling jointly. Recent work in the research area
has been well reviewed by Boukabara et al. [23].
Additionally, ensemble learning for improving
classification performance in the field of machine
learning can also be used to combine DL models
and scientists have been exploring some in remote-
sensing retrievals and ocean forecasts [7,25–27].

In this review paper, we first systematically
review two deep-learning frameworks that carry out
ocean remote-sensing image classification and then
present eight typical applications in ocean internal-
wave/eddy/oil-spill/coastal-inundation/sea-ice/
green-algae/ship/coral-reef mapping from different
types of ocean remote-sensing imagery to show
how effective these deep-learning frameworks are
(Fig. 1).

DNN FRAMEWORKS OF CLASSIFICATION
AND DETECTION
As mentioned above, in order to extract sparse
but valuable information from a large volume of
ocean remote-sensing data, we need to construct
end-to-end DNN models. There are two basic tasks
to mine multidimensional, or even multi-source,
ocean remote-sensing data—that is, pixel-level clas-
sification and object-level detection. The applica-
tions presented in the next section can be cate-
gorized into these two tasks, although they may
have different conventional terms, such as internal-
wave-signature extraction, coastal-inundation map-
ping and mesoscale-eddy detection. In this review,
for the pixel-level classification and object-level de-
tection tasks in ocean remote-sensing data, we con-
struct DNN models based on two classic, widely
applied network frameworks—that is, U-Net [15]
and SSD [17], respectively.The two frameworks are
briefly introduced as follows.

Framework of U-Net
Although developed initially for the semantic
segmentation of biomedical images [15], U-Net
achieves successful applications in many fields.
U-Net is so named because of its almost symmetric
encoder–decoder network architecture that can be
depicted by a U-shaped diagram (Fig. 2a). U-Net
uses the skip connection to pass the intermediate
feature maps extracted by the encoder to the
decoder. This idea helps to reduce the information
loss caused by the resolution decrease in the data
stream of the encoder.

U-Net extracts the features from an input image
by outputting a class confidence for each pixel. The
maximum confidence of a pixel indicates the class

that the pixel is in.Then, the pixel-level classification
map of the input data is generated.

As illustrated in Fig. 2a, U-Net consists of an en-
coder (left half in blue) and a decoder (right half in
green).The encoder is used to extract image features
at different resolutions. Along the data stream in
the encoder, composite layers of cascaded convolu-
tional layers alternate with max-pooling layers, and
the feature-map resolution in the stream decreases
after each max pooling. These composite layers
can also be changed for more sophisticated ones
(e.g. ResNet blocks [28]). The lowest-resolution
feature maps extracted by the encoder are input into
the decoder through the bottleneck at the bottom.
Although those feature maps in which the grids
have the largest receptive fields make the best use of
the context in the input data, the more exceptional
image features essential for the localization accu-
racy of semantic segmentation are lost due to the
down-sampling caused by the max-pooling layers.
To reduce the resolution loss, U-Net also passes the
intermediate higher-resolution feature maps to the
decoder by the skip connection (denoted by yellow
modules in Fig. 2a). Contrary to the encoder, the
decoder has an expansive data stream upward for
resolution restoration. Its network architecture is
almost themirror of the encoder architecture, where
the max-pooling operations are changed with up-
sampling ones. The up-sampling operations can be
realized by transposed convolutional layers or more
efficient interpolation layers. After up-sampling, the
decoded feature maps are concatenated with the
encoder feature maps at the same resolution passed
by the skip connection. Then, the concatenated
feature maps are further decoded by the upper com-
posite layer. The above procedure is repeated until
the feature maps in the data stream have the same
resolution as the input data. Then, these feature
maps are processed by soft-max classification to
yield the class confidence of each pixel.

Outlines of the object areas are delineated in
raw image samples to generate pixel samples for the
training of U-Net. Each pixel of the images is given
a class label according to the outlines. Then, the la-
bel of each pixel is encoded into a one-hot vector
that contains the ground-truth class confidence of
the pixel. Such a pair of a pixel and its class confi-
dence is a pixel sample.

The classification loss of U-Net is a soft-max loss,
measuring the deviation of the output class confi-
dences from ground-truth ones. The soft-max loss
here is the sumof soft-max cross-entropy loss at each
pixel. In the classicU-Net, to cause the contributions
of some critical pixels to be large in the classifica-
tion loss, a pixel-wise weight map is introduced in
the soft-max loss, and the above sum is replacedwith
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Figure 2.Moduled frameworks for pixel-level classification and object-level detection in ocean remote-sensing data. (a) The
framework of U-Net. (b) The framework of single-shot detection (SSD).

the weighted sum.The above essential pixels can be
the pixels that are challenging to classify or the pixels
of the classes having high importance but low occur-
rence frequency.Theweight map can be used to bal-
ance the class-occurrence frequencies. An instance
of a weight map is given in [16].

Framework of SSD
SSD is a typical one-stage DNN for object detection
without any fully connected layers [17]. SSD was
proposed for efficiency. Tested on the VOC2007
data set, SSD run several times faster than the two-
stage benchmark network Faster-RCNN[18]with a

little higher accuracy in terms of mean Average Pre-
cision [17]. Different from other networks, SSD di-
rectlymakes object detection in themulti-resolution
feature maps of an input image, which enables SSD
to detect objects at different scales.

SSD recognizes objects in an input image and
outputs the rectangular areas (boxes) occupied by
the objects as well as the confidences of the objects
for different classes.Themaximum confidence of an
output box indicates the class that theobject occupy-
ing the box is in.Theoutput boxes are representedby
their encoded center locations, widths and heights.
The output boxes are redundant.Therefore, after the
above representation is decoded, the output boxes
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are screened by non-maximum suppression to get
the final boxes.

As shown in Fig. 2b, the backbone of SSD con-
sists of two parts. The first part is to extract gen-
eral features of objects from an input image, where
feature-extraction modules of other networks can
be adopted. In the classic SSD, VGG-16 [29] is
used as the part and the fully connected layers in
VGG-16 are replaced with convolutional layers.The
second part is made up of several convolutional lay-
ers cascading the first part. The second part gener-
ates the multi-resolution feature maps. These multi-
resolution feature maps progressively decrease in
size with increasing network depth by a two-stride-
step convolution. Accordingly, the receptive fields
of the feature-map grids enlarge. SSD adopts a de-
sign similar to anchor boxes in Faster-RCNN [30].
Several boxes with different widths and heights are
set at each grid of the multi-resolution feature maps.
These boxes are called default boxes or prior boxes
in SSD. The default boxes are also multi-resolution.
Thatmeans that thedefault boxesof the featuremaps
at different resolutions have different scales relative
to the input image. As the grid receptive fields en-
large, the box scales increase.The second part of the
backbone has several network branches.The feature
maps at different resolutions are further processed in
the corresponding branches with small-kernel con-
volution, soft-max classification and bounding-box
regression to get the class confidences, encoded cen-
ter locations, widths and heights of the output boxes
of each grid.

Ground-truth boxes and classes of objects are la-
beled in raw image samples to generate training sam-
ples of SSD.Then, intersection-over-union (IoU) is
calculated between each ground-truth box and each
default box. A boxed pair that has themaximum IoU
of the ground-truth box in the pair is considered as a
positive sample. The box pairs with IoU larger than
a threshold (e.g. 0.5) are also considered as positive
samples. Still according to the rule: a ground-truth
box can match multiple default boxes in the posi-
tive samples, but a default box can only match one
ground-truth box.The locations, widths and heights
of the ground-truth boxes in the positive samples are
encoded for the calculation of SSD loss. The rest of
the default boxes are negative samples. Additionally,
the strategy of hard-negative mining is also used to
further balance the numbers of negative and positive
samples. The strategy is that only the negative sam-
ples with the highest confidence loss are involved in
the calculation of SSD loss rather than all the nega-
tive samples.Theratiobetween thenegative andpos-
itive samples is at most 3:1.

The total SSD loss is a weighted sum of two com-
ponents that are for bounding-box regression and

classification, respectively. The first component is a
smooth L1 loss to measure the loss between the en-
coded locations, widths and heights of the output
boxes and those of the ground-truth boxes in posi-
tive samples. Another component is a soft-max loss
to measure the classification loss, which is the sum
of the soft-max cross-entropy losses of the samples
used for training. The weight in the total SSD loss is
usually set at one. Some detected objects (e.g. ships)
have orientations. SSD can also be designed to have
orientation-detection capability by adding the ori-
entation angles of objects in the outputs and corre-
spondingly modifying the first SSD loss component
[31,32].

APPLICATION EXAMPLES
In this section,we review theDNN-based supervised
classification and object-detection applications in
extracting several typical oceanic phenomena in
ocean remote-sensing imagery. The applications in-
clude using geostationary satellite images for ocean
internal wave information extraction; using SAR im-
ages for coastal-inundation mapping, sea-ice map-
ping, oil-spill mapping and ship detection; using the
standard ocean remote-sensing AVISO (Archiving,
Validation, and Interpretation of Satellite Oceano-
graphic) SSH product for global ocean eddy detec-
tion; and using the MODIS (Moderate Resolution
Imaging Spectroradiometer) images for Enteromor-
pha extraction. Using underwater-camera images,
we also showed that theDNN-basedmodel could be
readily applied to extract coral-reef information from
the seafloor.

Internal-wave-signature extraction
The oceanic internal wave (IW) is a ubiquitous fea-
ture of oceans. It has attracted considerable research
interest because of its essential role in ocean acous-
tics, ocean mixing, offshore engineering and subma-
rine navigation [33–35]. Scientists have long rec-
ognized the potential for using satellite imagery for
studying IWs [36–38]. Satellite images can compen-
sate for the in situ observations to study the gen-
eration, propagation, evolution and dissipation of
the IWs. In the past few decades, algorithms and
techniques for automateddetectionof IWsignatures
from SAR imagery using basic image-processing
methods have been studied significantly [39–41].
SAR is an active sensor thatmeasures the sea-surface
roughness. It is not affected by cloud cover and can
image the ocean surface at a meter to tens of me-
ters of spatial resolution under all weather condi-
tions, day and night. The nature of SAR coverage is
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(a)
(c)

(d)

(e)(b)

IWs
Non-IWs misclassified as IWs
IWs misclassified as Non-IWs

Loss function: α-balanced cross-entropy

Precision: 0.90            Recall: 0.89

Figure 3. Four examples of the 40 testing results. (a) shows the study area. (b–e) are the input Himawari-8 images overlaid
with their corresponding trained model extraction results. The four images were acquired at 05:40 on 30 May, 05:20 on 26
May, 06:00 on 21 May and 05:10 on 26 June 2018 (UTC), respectively.

low. Therefore, scientists have also tried to extract
IW information from geostationary satellite images
that have lower spatial (250–500m) but higher tem-
poral (10 minutes) resolution under suitable solar-
illumination conditions. Cloud cover and solar flares
make the IWsignaturesmuchweaker andmore chal-
lenging to extract fromgeostationary satellite images
than that from the SAR images [42].

In recent years, machine-learning methods
have been used widely to extract robust high-level
information from satellite images. In this case, we
applied a modified U-Net (Fig. 2a) framework to
obtain IW-signature information in Himawari-8
images under complex imaging conditions.

The Himawari-8 satellite provides visible images
of Earth’s surface at a spatial resolution of 0.5–1 km
and a 10-minute temporal resolution [43]. It is a
useful tool to monitor and investigate the IWs in

the South China Sea (SCS) [44]. We collected 160
Himawari-8 red-band images (1-km resolution)
containing IW signatures around Dongsha Atoll in
the northern SCS (Fig. 3) in May and June 2018.

The details of this modified U-Net framework is
shown in Fig. 3. IW-signature extraction is essen-
tially a binary pixel-wise classification problem. Typ-
ically, the loss function is a cross-entropy loss. How-
ever, in this IW-extraction case, IWonly exists in very
few pixels of the image, making the samples highly
unbalanced and the use of cross-entropy loss invalid.
To solve the class-imbalance problem, we adopted
theα-balanced cross-entropy of Lin et al. [45] as the
loss function and achieved excellent results (we set
α to 0.99). To reduce the computation cost without
losing generalization ability, we converted the im-
ages to the gray level and divided them into 256 ×
256 pixel sub-images.
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One hundred and twenty images, with their cor-
responding manually annotated ground-truth map
for IW signatures (white) and surroundings (black),
were randomly selected to train the U-Net frame-
work, with the remaining 40 used as the testing im-
ages. After 200 epochs, themean precision and recall
of the testing set are 0.90 and 0.89, respectively.

Figure 3 shows the four examples from the 40
testing results. One can see that the sea-surface sig-
natures of IWs were being not only overlaid with
different types of clouds, but also strongly contami-
nated by solar flares as well as inhomogeneous dark-
ness induced by other oceanic processes, all making
the target signatures relativelyweaker anddifficult to
extract. However, compared to the manually anno-
tated ground-truthmaps, the results from theU-Net
model are good. Figure 3c captures a group of rarely
observed reflected IWs propagating towards the
east [46].

The statistical results (Fig. 3), relatively high
mean precision and recall value of the 40 testing im-
ages showed that the U-Net framework is promising
for the extraction of IW information in satellite im-
ages, even under complex imaging conditions.

Coastal-inundation mapping
Tropical cyclone (TC)-induced coastal inundation
is a typical compound natural hazard. It is the
combination of storm-surge-caused inundation
and heavy-rain-induced river flooding. TC-induced
coastal inundation causes a huge loss of life and
property in coastal areas [47–49]. Accurate map-
ping of coastal inundation from remote-sensing
data can not only assist in the management of
performing better disaster relief, but also help
researchers to better understand the inundation
mechanisms and develop more accurate forecast-
ing models. SAR is a suitable sensing means for
coastal inundation because it can provide day-
and-night, all-weather observation abilities and
high-resolution images of the flooded areas. The
traditional ways of coastal-inundation mapping
from SAR images include: histogram thresholding
[50], active contour segmentation [51], region
growing [52], change detection [53] and statistical
classification [54]. The traditional methods are
based on human-crafted features or rules to mine
multidimensional SAR-image data for inundation
mapping. It is difficult for them to provide robust
performance under several influential factors:
(i) the inherent speckle noise of SAR images;
(ii) SAR-system factors; (iii) meteorological influ-
ences; and (iv) environmental influential factors.

Deep convolutional neural network (DCNN)
models, composed of DNN-basedmodels with con-
volutional layers, can provide a promising way to

solve coastal-inundation-mapping problems. In the
DCNN methods, the features for robust pattern
classification for coastal-inundation mapping are
mined from themultidimensional SAR data, instead
of being predefined. This end-to-end, data-driven
pattern-classification design is suitable for robust
coastal-inundation mapping. Kang et al. [55] used
the fully convolutional network model to verify that
DCNN-based flooding detection is more accurate
than the traditional methods. Rudner et al. [56] pre-
sented a DCNN-based method that is useful for
flooded-building detection in urban areas. Liu et al.
[57] proposed an improvedDCNNmethod that has
robust performance for coastal-inundationmapping
frombi-temporal and dual-polarization SAR images.

To highlight the advantage of AI applications
in coastal-inundation mapping, we constructed a
DCNN framework to study this phenomenon. This
framework can be generalized into studies involving
multi-temporal SAR-information mining.

The framework is based on U-Net, as shown in
Fig. 2a. The left part of the framework is the en-
coding part. It extracts abstracted features for accu-
rate classification. It is composed of four encoding–
decoding modules, as indicated by module 1/2
in Fig. 2a. Each encoding module includes two
convolutional layers and one max-pooling layer.
The right decoding part restores the feature-map res-
olution for pixel-level classification. Each decoding
module includesoneup-sampling layer and twocon-
volutional layers. The input multidimensional SAR
data are composed of pre-event, post-event and dif-
ference images of VH and VV polarizations (VH,
vertical transmit and horizontal receive; VV, ver-
tical transmit and vertical receive). This physics-
based input information design fuses temporal and
polarimetric information for more accurate coastal-
inundation mapping. In the output module, as indi-
cated by module 4 in Fig. 2a, a SpatialDropout2D
layer is added before the classification to regular-
ize the model for better generalization abilities [58].
Since inundation mapping is a binary classification
problem, the binary cross-entropy is used for the
loss function [45].The detailedmodel design can be
found in [57].

We used the 10-m-resolution Sentinel-1 SAR
data to perform the experiments. We applied radio-
metric calibration, 7×7boxcar filtering andgeocod-
ing to the SAR images. The ground-truth labels
were extracted from Copernicus Emergency Man-
agement Service Rapid Mapping products [59] and
human delineation with the help of Google Earth
and OpenStreetMap.

The training/testing samples were generated
from 2017 Harvey-induced coastal inunda-
tion in Houston, Texas, USA and from 2019
Lekima-induced coastal inundation in Zhejiang,
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Figure 4.Deep-learning-based mapping result of Lekima-caused coastal inundation in Zhejiang, China. (a) The path of Lekima
2019. (b) The mapping result (upper image) and the pre-event SAR image (lower image) of the scene around Linhai city,
Zhejiang. (c) The Sentinel-2 optical image of Linhai city. (d) The mapping result superimposed onto the SAR image in Linhai.
(e) Picture taken after the passage of Lekima shows severe flooding in Linhai.

China, respectively. The 2019 Lekima path and
the mapping result are shown in Fig. 4a and b. The
orange areas are correctly extracted inundation.
The red areas are missed detections and the cyan
areas are false alarms. The precision and recall of
the result are both around 0.90. The result shows
the severe inundation in Linhai city, Zhejiang, as
illustrated in Fig. 4d. The Sentinel-2 optical image
of Linhai is shown in Fig. 4c. The picture taken after
the passage of Lekima confirms that Linhai was
severely flooded, as shown in Fig. 4e.

TheAI technology, particularly theDCNNmeth-
ods, can mine multidimensional SAR data for accu-
rate and robust coastal-inundation mapping. In the
future, the model can be extended to work under
multiple image-source conditions for more practical
applications.

Global mesoscale-eddy detection
Mesoscale eddies are circular currents of water bod-
ies that widely exist in the global oceans.They play a
significant role in the transport ofmomentum,mass,
heat, nutrients, salt and other seawater chemical el-
ements across the ocean basins. They also impact
global ocean circulation, large-scale water distribu-
tion and biological activities effectively [60–63].

Automatic eddy-identification algorithms
include the physical-parameter-based method
[64–66], the flow-direction-based method [67]
and the SSH-based method [61]. All these al-
gorithms lack the computational efficiency of
contour iterations or have complex calculation
processes.

In the introduction part, we described that the
DNN-based framework can solve many practical
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problems such as pattern recognition and computer
vision with high efficiency. It is natural to propose
using the DNN framework to detect mesoscale ed-
dies that have prominent patterns in the global SSH
maps. In the literature, Lguensat et al. [68] devel-
oped ‘EddyNet’ that was based on the encoder–
decoder network U-Net (Fig. 2a) to detect oceanic
eddies in the southwest Atlantic. Franz et al. [69]
also use the U-Net architecture to identify and track
oceanic eddies in Australia and the East Australia
current. Du et al. [70] developed ‘DeepEddy’ based
on PCAnet (Principal Component Analysis Net-
work) and spatial pyramid pooling to detect oceanic
eddies based on SAR images. Xu et al. [71] ap-
plied thepyramid sceneparsingnetwork ‘PSPNet’ to
catch eddies in the North Pacific Subtropical Coun-
tercurrent region.These regional studies proved that
theDNNperformedwell in detectingmesoscale ed-
dies in territorial seas. The DNN performance on
global mesoscale-eddy detection remained unveri-
fied.

In this section, we applied a generalized DNN
framework to detect global mesoscale eddies. The
framework is based on the U-Net architecture
(Fig. 2a) consisting of ResNet blocks. Each ResNet
block is composed of a 3 × 3 convolutional layer,
followed by a batch normalization (BN) and a
rectified linear unit (ReLU) activation, then a 3 ×
3 convolutional layer and a BN layer. The output is
added to the input to be activated by a ReLU layer.
For the encoder path, each block is followed by 2×
2 max pooling and dropouts. For the decoder path,
transposed convolutions are used to restore the
original resolution. The dice loss function, which
is widely used in segmentation problems, is the
cost function. The 0.25◦ × 0.25◦ spatial resolution
and daily SSH product during 2000–11 was gen-
erated by Ssalto/Duacs and distributed by AVISO.
Mesoscale eddies that identified by the SSH-based
method [61] during the same period were used as
the ground-truth data set. Pixels were labeled as
‘1’, ‘−1’ and ‘0’ inside anticyclonic eddies (AEs),
cyclonic eddies (CEs) and background regions.

Figure 5a shows the mesoscale eddies identified
by the DNN method on 1 January 2019. There are
a total of 3314 (2963 ground-truth) AEs and 3407
(3056 ground-truth) CEs in the global ocean. Com-
pared to the SSH-basedmethod, the accuracy of the
DNN-based eddy-detection method is 93.79% and
themean IoU is 88.86%. Figure 5b clearly shows that
the DNN-based framework identified many more
small-scale eddies. Besides, it takes <1 minute for
the DNN-based method costs to identify eddies in
the global ocean, while the SSH-basedmethod takes
>16 hours [72].

The satellite-tracked drifter is used to validate the
eddy-detection results of the DNN-based method.
The drifters have their drogues centered at 15-m
depth to measure the surface currents and make ei-
ther a cycloidal or a looping trajectory when trapped
in an eddy. As shown in Fig. 5c, a drifter (ID: 43677)
was trapped in aCE in the easternNorth Pacific on 1
May 2011. After 20 days, the drifter captured in the
CEmoved as a counterclockwise loop (Fig. 5d). An-
other two counterclockwise loops of drifter trajec-
tory can be seen in the CE in Fig. 5e and f, after 25
and 30 days, respectively. Such a result is consistent
with the concept that CEs rotate counterclockwise
in the Northern Hemisphere.

In conclusion, the DNN-based eddy-detection
method can not only identify many more small-
scale eddies, but also significantly improve the com-
putational efficiency. Further development of the
DNN-based framework includes adding other types
of ocean remote-sensing images, i.e. SST, chloro-
phyll concentration, etc., to amulti-parameter-based
DNN framework.

Oil-spill detection
Oil spill is typical marine pollution. Oil floating on
the sea and beaching on the shore could seriously
affect surrounding marine fisheries, aquaculture,
wildlife, ecosystems, maritime tourism and trans-
portation, among others. For example, the Deepwa-
ter Horizon (DWH) oil spill is an example of se-
vere marine-pollution disasters. It happened in the
Gulf of Mexico on 20 April 2010 and an estimated
7.0 × 105 m3 of oil was released into the sea before
the well was capped on 15 July 2010 [73]. Accurate
detection of oil spills from remote-sensing data can
help disaster-relief managers to perform targeted re-
sponses and it can also assist scientists in forecast-
ing the movement and dissipation processes of oil
spills. SAR is a suitable sensor for oil-spill detec-
tion because the oil dampens the sea-surface capil-
lary waves so that they appear dark in SAR intensity
images [74–76]. Besides, oil slicks alsomodulate the
surface-scattering matrix received by advanced po-
larization SAR [77–83]. As a result, oil slicks also
have significant signatures in the full-polarization
SAR images.

In the big-ocean-data era, AI technology has the
potential to mine information from a high volume
of polarization SAR images acquired under different
meteorological conditions and systemparameters. It
is promising todevelop a robust feature-detection al-
gorithm using such technology. For example, Chen
et al. [84] used the DNN framework to optimize the
polarimetric SAR feature sets to reduce the feature
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Figure 5. (a) Mesoscale eddies detected by the AI-based method in the global ocean on 1 January 2019. (b) Mesoscale
eddies detected by the SSH-based method and AI-based method in the SCS on 1 January 2019. A drifter is captured by a CE
that was detected by the AI-based method in the eastern North Pacific and rotated with the CE on (c) 1 May 2011, (d) 21 May
2011, (e) 15 June 2011 and (f) 17 July 2011 (the color denotes SSHA— sea surface height anomaly).

dimension for oil-spill detection and classification.
Guo et al. [85] proposed a DNN-based polariza-
tion SAR-image-discriminationmethod for oil slicks
and lookalikes. Guo et al. [86] used the DNN-based
semantic-segmentation model to detect oil spills by
using backscattering energy information.

To demonstrate that the AI technology has great
potential for robust oil-spill detection and charac-
terization under various meteorological and SAR-
acquisition conditions, we constructed a generalized
AI framework to study oil detection in polarization
SAR data.

The framework is based on U-Net, as shown in
Fig. 2a.The leftencodingpart extracts abstracted fea-
tures with four encoding modules, each including
two convolutional layers and onemax-pooling layer.
The right decoding part restores the feature-map res-

olution with four decoding modules, each including
one up-sampling layer and two convolutional lay-
ers. The input configuration is to use the diagonal
components of the polarimetric coherence matrix
[87], T11,T22,T33,with andwithout the incidence
angle. In the output module, a Spatial-Dropout2D
layer [57] is added before the classification to reg-
ularize the model for better generalization. Since
oil-spill detection is a binary classification prob-
lem, we selected the binary cross-entropy as a loss
function [45].

We applied this DNN-based model to a set of
L-band Uninhabited Aerial Vehicle SAR
(UAVSAR) images taken during the DWH
oil-spill event by the National Aeronautics and
Space Administration (NASA) [88]. The UAVSAR
is a full-polarization SAR with fine resolution (7 m),
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Figure 6. Deep-learning-based mapping result of the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico. (a) The DWH
oil spill in the world map. (b) The polarimetric SAR images used in the training and testing. The polarimetric SAR image in the
dashed blue rectangle was used for testing and performance evaluation. (c) The PauliRGB pseudo-color image of the testing
area. (d) The deep-learning-based result without the incidence angle. (e) The deep-learning-based result with the incidence
angle. (f) The relationship of the polarimetric coherence matrix components and the incidence angle of the oil and water
areas in (e).

stable calibration and low noise floor. Radiometric
calibration and 7 × 7 boxcar filtering were ap-
plied to the data. To show the incidence angle’s
influence, geocoding was not used. According to
the detailed analysis with in situ observations of
[89], we manually extracted ground-truth labels.
The training/testing samples were from different
UAVSAR images with flight ID 14010/32010.

Figure 6 shows the testing image with PauliRGB
pseudo-color [87]. From left to right, the incidence
angle increases from22◦ to 65◦.We can observe that
the incidence angle has an impact on the oil–water
discrimination capability. Anoil area (in the red rect-
angle) and a water area (in the blue box) were se-
lected to show the trends of the T11, T22 and T33
components with incidence angle, as illustrated in
Fig. 6c. We can see that the incidence angle influ-
ences the oil–water discrimination capability. Below

30◦, it is challenging to discriminate oil from water.
Moreover, according to [89], the backscattered in-
formation is influenced by the noise floor, especially
above 60◦. The detection results without and with
incidence angle are shown in Fig. 6d and e, respec-
tively.The correctly detected areas are in orange, the
missed detections are in red and the false alarms are
in cyan.The recall and precision of the result without
using the incidence angle are 0.95 and 0.96, respec-
tively. The recall and accuracy of the result with the
incidence angle are both improved to 0.97.With the
incidence angle in training and testing, the AI tech-
nology can mine reliable features for robust pattern
classification, even with a minimal incidence angle.

AI technology, particularly the DCNNmethods,
can mine multi-polarization SAR data for accurate
oil-spill detection. It shows the potential for robust
detection under various influential factors. In the
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future, a more extensive range of factors should be
considered and analysed for practical use.

Sea-ice detection
Sea ice is a significant threat to marine naviga-
tion and transportation safety. The change of
sea-ice distribution reflects the interaction of the
atmosphere–cryosphere–hydrosphere and global
climate change. Sea-ice detection and monitoring
draw attentionwidely. SAR, which is independent of
sun illumination and cloud conditions, plays an vital
role in sea-ice monitoring [90]. A series of studies
have been devoted to the SAR sea-ice-detection
problem. The critical challenge is to develop a
robust model that captures domain-specific expert
knowledge for discriminating between ice and
water using SAR backscatter characteristics. To
achieve this goal, different types of sea-ice-detection
models based on backscatter thresholding [91],
regression techniques [92], expert systems [93],
Bayesian techniques [94], gray-level co-occurrence
matrix and the support vector machine (SVM)
hybrid method [95], among others [96], are
proposed.

Recently, with the rapid progress of AI technol-
ogy, researchers have employedDNN to extract fea-
tures automatically to improve the accuracy and ef-
ficiency of sea-ice classification. Xu and Scott [97]
introduced an earlier CNN-based model AlexNet
and transferred learning to classify sea ice and open
water. Gao et al. [98] integrated transfer learning
and dense CNN blocks to form a transferred multi-
level fusion network (MLFN). The MLFN outper-
formed the PCAKM [99], the NBRELM [100] and
the GaborPCANet [101] in classifying sea ice and
open water. Similar DL-based studies were carried
out by other researchers [102,103]. More and more
researchers are trying to constructDL-basedmodels
to achieve end-to-end sea-ice detection with higher
accuracy and stability.

To highlight the advantage of AI applications in
sea-ice classification, we constructed a generalized
AI framework based on U-Net (Fig. 2a). The input
was a 256 × 256 SAR image. We stacked four en-
codermodules to extract features level by level. Each
encoder was composed of two convolutional layers
with ReLU units followed by a max-pooling layer.
One bottleneck module that was composed of two
stacking convolutional layers with ReLU units was
added onto the last encoder module. Four decoder
modules were stacked upon the bottleneck mod-
ule. Each decoder module was composed of one up-
sampling layer and two stacking convolutional lay-
ers with ReLU units.The concatenationmodule was
applied to fuse the encoder module and the decoder

module at the same level. The output module con-
sisted of one CNN layer with one activation layer,
which outputted the predicted value of each pixel.
We transformed the detection procedure as a binary
classification problem: sea ice or open water. Thus,
we applied sigmoid as the activation function. If the
predicted value is >0.5, the pixel belongs to sea ice.
Otherwise, the pixel is open water.The loss function
is binary cross-entropy.

To show the effectiveness of this AI model, we
acquired six Sentinel-1 SAR images in the Bering
Strait between February and April 2019. The 10-m-
resolution VV channel of the ground range detected
SARproductwas selected as the experiment data set.
We scaled all SAR pixel values between 0 (water)
and 1 (sea ice). Each SAR image was divided into
small chips with a size of 256× 256 pixels.

There were 1340 chips in the training set. The
batch size was 16. The initial learning rate was
0.0001. We split 20% samples from the training set
as the validation set.The early stopping strategy was
adopted to avoid overfitting. Finally, the model ran
86 training epochs. The precision and the recall of
the testing set were 0.95 and 0.91, respectively. As
shown in Fig. 7b–e, most of the sea ice, including
small chunks and sinuous ice edges, could be suc-
cessfully detected. However, the rough sea surfaces
resulted in somemisclassifications, which need to be
further addressed.

The proposed U-Net-based model is capable of
detecting sea ice from SAR images at the pixel
level. The detection framework is an end-to-end
model without manual feature engineering and ex-
pert knowledge.The detection results (Fig. 7) show
that details such as the boundary between sea ice and
open water can be successfully detected. In the fu-
ture, employing DNN-basedmodels to detect or es-
timate more parameters of sea ice, such as the type,
the thickness and the intensity, etc., should be new
challenges.

Green-algae detection
Enteromorpha prolifera (EP), as a kind of large-sized
green algae, is fulminant and drift in the East and
Yellow Seas of China in spring and summer seasons.
Sporadic EP first occurred along the coast of Jiangsu
province at about 35◦54′ in Fig. 8a, then drifted
northward driven by the wind and current. During
the drifting process, when meeting the appropriate
water-quality conditions, large-scale proliferation
and aggregation occurred. Since 2008, a high
concentration of EP has beached along the coast
every year, causing a so-called green-tide disaster
affecting ship traffic, the environment, coastal
ecosystems, public health and the tourism
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Figure 7. Testing results of the proposed sea-ice-detection framework. (a) The overall location of the study area. (b) Detection
results of the first testing SAR image. (c–e) Detection results of the second testing SAR image.

industry, among others [104,105]. Mapping and
tracking EP in near real time facilitates treatment
processing.

EP has distinguished features in sea-surface-
reflectance images acquired by the MODIS sensors
on board NASA Aqua and Terra satellites. The ag-
gregation of seaweed and its decomposition alter the
water-surface-reflectance values [106]. For EP and
other typesof floatinggreen-algaedetection inocean
remote-sensing images, multiband ratio methods,
e.g. NDVI (normalized difference vegetation index
[107]) andFAI (floating algae index [108])werede-
veloped. In general, these methods have reasonable
visual interpretation and low error rates.

As we pointed out in the introduction part,
DNN has significant superiority over the physical-
based algorithms for image classification. For exam-
ple, Arellano-Verdejo et al. [109] proposed a DNN
framework model named ‘ERISNet’ to classify the

presence/absence of pelagic sargassum along the
coastline of Mexico. The model is based on a 1D
CNN and achieves a probability of 90.08% in the
classification at the pixel level. In this section, we
customized an EPNet model based on the U-Net
framework (Fig. 2a) for EP classification inMODIS
imagery. The significant difference between ‘ERIS-
Net’ and ‘EPNet’ is that we used 2D convolution in
theDNNmodel.The intermediate architecture con-
sists of symmetrical ascending anddescending struc-
tures, which include five encoder and decoder mod-
ules, respectively, and the binary cross-entropy is the
loss function.

We manually extracted EP labels from the
MODIS true-color images (bands: 1/4/3). To
construct a labeled data set, we collected different
types of tags (banded, lumpy and dotted types)
under different environmental conditions. We also
followed the common practice of expanding the
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Figure 8. Enteromorpha prolifera (a type of green algae) detection. (a) Study area. (b) MODIS images and its corresponding
Enteromorpha prolifera classification result. (c) and (d) The fallout ratio or the omission ratio in some pixels due to the cloud
contamination of the optical images. (e) Picture taken after Enteromorpha prolifera bloom.

sample size by rotation of the sample images by
90◦, 180◦ and 270◦. For MODIS images acquired
between 2008 and 2019, we obtained 1680 pairs of
MODIS EP slices and their corresponding labels
(128 × 128 pixels). A randomly selected 1460 and
220 pairs were used as training and testing sets,
respectively.

Figure 8a shows the EP blooms in the Yellow
Sea of China. EPNet achieves an overall classifi-
cation accuracy of 0.96 with a mean IoU of 0.53
(Fig. 8b). However, there are some fallout ratios or
omission ratios in some pixels in Fig. 8c and d. The
misclassification is due to the cloud contamination
of the optical images. Nevertheless, our analysis
shows that the DNN framework can be readily
implemented to identify EP.

Ship detection
Ship detection plays a significant role in marine
surveillance. SAR has been widely used in marine-
ship detection because it is capable of monitoring
ocean targets under all weather conditions, day and
night [110–112]. For decades, a series of studies
have been devoted to detecting ships and other tar-
gets in SAR images. The algorithms can be divided
into conventional methods and AI-based methods.
A typical conventional method is threshold-based
methods that focus on finding bright pixels operat-
ing accurate clutter statistical modeling. Algorithms
built on the theory of CFAR filtering [10] and gen-
eralized likelihood ratio testing (GLRT) [113] are
representations. The main drawback of the conven-
tional methods is that they need prior professional
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knowledge to manually design features, which has
been a common challenge faced bymost fields in the
era of big data [11].

The cutting-edge AI framework, deep learning,
can extract features automatically, which has been a
great achievement in computer vision. Faster region-
based convolutional network (Faster-RCNN) [18]
is a complete end-to-end CNN target-detection
model. Researchers have introduced Faster-RCNN
to detect ships in SAR images [114]. Other studies
tried to introduce rotatable bounding boxes into de-
tection models to represent ships more accurately.
Liu et al. [115] proposed a detector using rotatable
bounding boxes (DRBox), which optimized the tra-
ditional SSD [17] by rotating the prior box. DRBox
outperformed traditional SSD and Faster-RCNN
in detecting densely arranged ships. Other rotated
detectors such as rotation dense feature pyramid
networks (R-DFPN) [31] and DRBox-v2 [116]
were proposed successively.Notably,DRBox-v2 im-
proved DRBox by integrating new DL tricks such as
a feature pyramid network (FPN) [117] and focal
loss (FL) [45], which outperformed R-DFPN and
DRBox in detecting ships and airplanes [116].Com-
pared with conventional methods, the DNN-based
ship-detection models significantly simplify feature
engineering and achieve end-to-end detection with
higher accuracy and stability.

To highlight the advantage of AI applications
in ship detection, we constructed a generalized AI
framework based on SSD (Fig. 2b) to fulfill the task.

The input was a 300× 300 pixels SAR image.We
stackedfive encodermodules to extract features.The
output module performed convolution on feature
maps and generated the location and the confidence
of the detected boxes. Different from DRBox-v2,
the detected boxes were generated based on the
last four feature maps (DRBox-v2 is the last three).
The new added shallow feature map helps to detect
small targets. FPN was adopted to fuse features at
different levels and the rotation box was adopted.
The loss function (L) consists of two parts: the
confidence loss (Lconf) and the location loss (Lloc):

L = 1
N1 + N2

Lconf +
1
N2

Lloc, (1)

where N1 is the number of negative samples and
N2 is the number of positive samples. Lconf is the
cross-entropy between the output and the ground
truth, which can be defined as follows:

Lconf = −
∑

i∈Pos
log(c i ) −

∑

i∈Neg
log(1 − cj ),

(2)

where ci is the confidence of the ith positive samples
and cj is the confidence of the jth negative sam-
ples; Pos and Neg are positive and negative sets,
respectively. Hard-negative mining (HNM) [17]
and FL are employed to overcome the problem of
the imbalance between the positive and negative
samples. For location loss,Llocmeasures the location
difference between the predicted rotation bounding
box and the matched ground truth, which can be
calculated as follows:

Lloc =
∑

i∈Pos

∑

j∈Grd

∑

k∈{x,y ,l ,w,θ}
Iij smoothL1

× (
pki − g kj

)
, (3)

where k is the location vector consisting of center
coordinates (x, y), length (l), width (w) and angle
(θ) of the box. pi is the prediction location of the
ith positive box and gj corresponds to the jth ground
truth. smoothL1 means L1 norm. Grd is the ground-
truth sets. Iij means if the ith prior box matches the
jth ground truth: Iij = 1 when matching, otherwise
Iij = 0.

The OpenSARShip [118], a data set dedicated
to Sentinel-1 ship interpretation, was employed as
the sample data set. We labeled the ship by a rota-
tion bounding box with a MATLAB tool shared in
DRBox-v2.

The training and testing sets included 1600 and
338 ship chips, respectively.Thebatch sizewas eight.
After 8200 training epochs, the loss value was<0.01
and the model stopped. Finally, 297 ships were suc-
cessfully detected by the proposed model.ThemAP
(mean Average Precision) and mean IoU were 0.86
and 0.68, respectively. The original DRBox-v2 de-
tected 267 ships and its mAP and mean IoU were
0.75 and 0.66, respectively. As shown in Fig. 9, some
ships that were not successfully detected by the orig-
inal DRBox-v2 model were successfully detected by
the optimized one.

TheproposedSSD-based framework is capableof
detecting ships from Sentinel-1 images. By adding a
shallow feature map, the detection accuracy was im-
proved significantly. In the future, constructing end-
to-endAI-basedmodels to identify the type and geo-
metric parameters of ships from SAR images should
drawmore attention.

Coral-reef detection
Marine species are a vital part of the ocean and
play an essential role in the trophic chain of the
ecosystems. Detection and identification of marine
species are one of the crucial ways to explore ma-
rine biodiversity. Traditional methods of biometric
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Figure 9. Testing results of the proposed ship-detection framework. (a) Detection re-
sults of the proposed optimized DRbox-v2 model. (b) Detection results of the original
DRbox-v2 model. The red rectangle represents correct detection and the orange rect-
angle represents missed detection. The number in each white box represents the de-
tection confidence.

identification are based on morphology and molec-
ular genetics, or even the start-of-the-art DNA (de-
oxyribonucleic acid) sequencing under electron mi-
croscopy in the laboratory. Although these methods
are accurate, we can not carry out such experiments
in the actual marine environment. Another issue is
that ex situ detection often causes organisms to be-
come inactive or die.

To solve these issues, we can apply AI-based
methods to detect marine species on the fly. As
we have shown in previous sections, DNN has a
significant advantage in satellite-image classifica-
tion. The same technology can also be applied to
underwater-camera-image classification. Recently,
Villon et al. [119] used the CNN framework to
detect and classify fish and they showed the CNN
outperformed the traditional SVM classifier. Xu
et al. [120] presented a comprehensive review of
the computer-vision techniques for marine-species
recognition from the perspectives of both classifi-
cation and detection. They further compared the
machine-learning techniques with deep-learning
techniques and discussed the complementary
issues between these two approaches. Using a new
genetic-programming approach, Marini et al. [121]
achieved high reliability when tracking fish varia-
tions at different time scales but failed to classify
fish while monitoring. Saqib et al. [122] adopted an
end-to-end Faster-RCNN for surveillance and pop-
ulation estimation of marine animals. Faster-RCNN
significantly improves the mAP, but the detection
speed is prolonged. Pedersen et al. [123] used the
YOLOv3 (You only look once) [124] framework
and the Brackish Dataset to detect big fish, small
fish, crab, jellyfish, shrimp and starfish.

To highlight the advantage of AI applications, we
constructed a generalized AI framework based on

SSD(Fig. 2b) for coral-reef detection inunderwater-
camera images. SSD is a one-stage classifier. We can
train an SSD model by simultaneously optimizing
classification loss and localization loss. Compared
with the two-stage classifier, SSD is much faster
while still ensuring classification accuracy [17]. As a
result, SSD makes real-time underwater-species de-
tection and classification possible. Our SSD frame-
work is based on VGG16 [29], which is pre-trained
on the ILSVRC CLS-LOC data set [125]. We con-
verted fc6 (the sixth fully connected layer) and fc7 to
convolutional layers, subsampleparameters from fc6
and fc7 and after that removed all the dropout layers
and the fc8 layer using SSDWeighted Loss Function
[17].Weadjusted theoutcomemodel using stochas-
tic gradient descent (SGD) with an initial learning
rate of 0.0004, 0.9 momenta, 0.0005 weight decay
and a batch size of 32.

The experimental marine organisms included
Chrysogorgia ramificans [126], Chrysogorgia binata
[126], Paragorgia rubra, [127] and Metallogorgia
macrospina, which were collected by RV (research
vessel)KEXUE.We split videos of these four species
into frames and annotated pictures manually. In the
data preprocessing, we referred to the Australian
benthic data set [128]. We randomly divided the
samples into training, validation and test according
to a certain proportion. To make the SSD-based
model robust, we selected training-set images
containing different types of species collected
under different underwater conditions and shooting
angles. Data preprocessing included two parts: data-
format conversion and image-size standardization.

We applied the SSD-based model to 59 test
images. Among all the four different coral species,
Fig. 10 shows that the SSD-based model achieved
0.96 mAP with an average IoU value of 0.79. This
result is remarkable and the SSD-based model can
be used in coral-reef classification in real time. To
further detect small-sized coral reef, we need to
increase the sample size and species categories.

CONCLUSION AND FUTURE
PERSPECTIVES
Ocean remote sensing has entered the big-data era
with typical five-V characteristics. In the age, ideal
data-mining technology should be able to extract
sparse but valuable information from enormous
ocean remote-sensing data volumes precisely,
efficiently and with very little human involve-
ment. The technology should also be smart and
robust enough to cope with various problems that
ocean remote-sensing big data contain. The above
requirements can be summarized into three Hs
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Figure 10. (a) Chrysogorgia binata [126], (b) Paragorgia rubra [127], (c) Chrysogorgia ramificans [126], (d) Metallogorgia
macrospina. The number in each white box represents the detection confidence.

(high precision, high efficiency and high intelli-
gence). Emergent deep-learning technology satisfies
the three-H requirements and provides a promising
way for such information extraction.

Pixel-level classification and object-level de-
tection are two fundamental tasks in information
extraction. As a result, we introduced two rep-
resentative DL frameworks (U-Net and SSD)
to demonstrate the powerful capability of DL
technology to fulfill these tasks.

Although DL is a potent tool and demonstrates
its advantages for information mining from ocean
remote-sensing imagery, we still need to consider
some key issues when we look ahead.

First, the DL-based technology is data-hungry.
Notably, the DL-based technology needs enormous
amounts of highly accurate labels. Currently, objects
of interest are usually manually labeled and the la-
bel accuracy is subject to human experience and er-
rors. As a result, the DL model trained with those
labels inevitably introduces errors into the output
results (e.g. statistics of shapes, sizes and areas of
objects). For DL technology to reveal oceanic re-
ality, we should provide labels from reliable in situ
measurements, which requires world-level collabo-
rations. Standard data sets with joint efforts of the
entire community should boost theDL-based ocean
remote-sensing imagery-information mining. If big

data are the door to AI ocean remote sensing, then
DL technology is the key to the door. For some stud-
ies, we still rely on expert knowledge to provide the
ground truth. It is essential to combine the knowl-
edge of different expert groups to eliminate human
bias. One possible solution is to develop unsuper-
vised DL methods that avoid the limitations of hu-
man knowledge.

Second, most DL models for ocean remote-
sensing imagery-information mining come from the
computer-vision community. These models are de-
veloped initially to extract spatial and temporal pat-
terns to solve vision problems.These models should
and could be guided and specially tailored to serve
the purpose of ocean-science applications. To tackle
a specific problem, the combination of the knowl-
edge of big-data scientists and particular domain sci-
entists would help to reveal the real world more ef-
fectively than ever before.

Third, for DL-based ocean remote-sensing
imagery-information mining, the trained DL
models are often sensitive to sensors, as shown in
this study. If we train these different models for
different sensors, it is computationally expensive
and labor-costly. We need to study practical ways of
transferring models from one sensor to another and
improve themodel’s generalization capability under
different sensing conditions.
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In this paper,we reviewedeight typicalDL frame-
work applications in ocean internal-wave/eddy/oil-
spill/coastal-inundation/sea-ice/green-algae/ship/
coral-reef mapping from different types of ocean
remote-sensing imagery. We described the general
deep-learning model set up for data mining in ocean
remote sensing and showed that theU-Net and SSD
models achieved superior performances in these
topics.
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