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Abstract: Mitochondrial genomes (mitogenomes) are an excellent source of information for phy-
logenetic and evolutionary studies, but their application in marine invertebrates is limited. In the
present study, we utilized mitogenomes to elucidate the phylogeny and environmental adaptation
in deep-sea mussels (Mytilidae: Bathymodiolinae). We sequenced and assembled seven bathy-
modioline mitogenomes. A phylogenetic analysis integrating the seven newly assembled and six
previously reported bathymodioline mitogenomes revealed that these bathymodiolines are divided
into three well-supported clades represented by five Gigantidas species, six Bathymodiolus species,
and two “Bathymodiolus” species, respectively. A Common interval Rearrangement Explorer (CREx)
analysis revealed a gene order rearrangement in bathymodiolines that is distinct from that in other
shallow-water mytilids. The CREx analysis also suggested that reversal, transposition, and tandem
duplications with subsequent random gene loss (TDRL) may have been responsible for the evolution
of mitochondrial gene orders in bathymodiolines. Moreover, a comparison of the mitogenomes
of shallow-water and deep-sea mussels revealed that the latter lineage has experienced relaxed
purifying selection, but 16 residues of the atp6, nad4, nad2, cob, nad5, and cox2 genes have underwent
positive selection. Overall, this study provides new insights into the phylogenetic relationships and
mitogenomic adaptations of deep-sea mussels

Keywords: adaptation; deep-sea; extreme environment; mitochondrial genome; mussel

1. Introduction

Mytilidae is a family of highly diverse mussels that are widely distributed from fresh-
water to marine water and from coastal areas to the deep-sea [1,2]. This family is currently
divided into seven subfamilies. Although most of these subfamilies are represented by
shallow-water species, the subfamily Bathymodiolinae consists of exclusively deep-sea
species [2,3]. A previous study has established that Bathymodiolinae split from its shallow-
water sister group Modiolinae roughly 110.4 Million years ago (Ma) [4], but given the
difficulty in sampling these deep-sea animals, little is known about their biology. Members
of Bathymodiolinae, especially those belonging to the genera Bathymodiolus, Gigantidas, Idas,
and Tamu, are often conspicuous animals in chemosynthesis-based ecosystems, including
hydrothermal vents, cold seeps, and organic falls [5,6]. Despite the lack of phytoplankton-
derived food in the deep-sea, these mussels thrive in the special deep-sea habitats due
to their symbiosis with bacteria that are dependent on simple organic molecules, such as
methane and hydrogen sulfide, as a source of energy [1,4]. Owing to their ecological im-
portance and remarkable biological characteristics, deep-sea mussels have been considered
a suitable animal model for studying adaptation and symbiosis [4,7–10].

The taxonomy of Bathymodiolinae is in disarray because of their high morphological
plasticity. Molecular phylogenetic studies have divided deep-sea mussels previously
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referred to as Bathymodiolus into nine genera, namely, Gigantidas, Bathymodiolus, Adipicola,
Benthomodiolus, Idas, Tamu, Terua, Vulcanidas, and “Bathymodiolus” [5,11,12]. “Bathymodiolus”,
which is currently represented by only two species (“B.” aduloides and “B.” manusensis), is
vastly different from Bathymodiolus sensu stricto, but it has not been given a formal genus
name yet [6,12,13].

Previous phylogenetic studies of deep-sea mussels mainly used one or very few gene
fragments. Consequently, they provided limited information on the evolutionary history
of these animals. In the present study, we examined the phylogenetics and evolution of
the deep-sea mussels based on mitochondrial genomes (mitogenomes). Mitogenomes
carry useful evolutionary information and have been widely applied in phylogenetic and
evolutionary studies of terrestrial and shallow-water organisms, including mussels [14–17].
Given that the mitochondria play a key role in the energetic metabolism of metazoans,
the hypoxia and high hydrostatic pressure environments in cold seeps and hydrother-
mal vents could exert selective pressure on the evolution of these energy-producing
organelles [18–21]. However, only six Bathymodiolinae mitogenomes are currently avail-
able, thereby hindering our understanding of their evolution.

In the present study, we sequenced seven complete Bathymodiolinae mitogenomes
and analyzed them together with the previously published mitogenomes to infer their
phylogenetic relationships, understand their gene order rearrangement patterns, determine
their divergence times, and ascertain the adaptive evolution of protein-coding gene (PCGs).

2. Results
2.1. Genome Organizations and Gene Rearrangement

The size of the seven newly assembled mitogenomes ranged from 17,138 bp (B. marisindi-
cus) to 18,376 bp (B. sp. 5 South) (Table 1). They all included 13 PCGs and two rRNA genes.
However, the number of tRNA genes varied (23–28), an observation consistent with that
reported for other groups of bivalves [22,23]. Within the Gigantidas group, some species
had multiple copies of trnT and trnG: G. platifrons had three copies of trnG and four copies
of trnT, G. childressi had three copies of trnG and trnT, and G. haimaensis had two copies of
trnG and trnT. These copies of trnT and trnG were located between trnW and cob. Within
the Bathymodiolus group, all species had two copies of trnL1, except for B. marisindicus.
Both species of the “Bathymodiolus” group had two copies of trnK and trnY. A comparison
among the bathymodioline mitogenomes revealed that they had a highly conserved gene
order, except for the translocation or inversion of some tRNAs (Figure 1). The four Modiolus
species and L. curta from shallow seawater and L. fortunei from freshwater lacked the atp8
gene (Figure 1). Regions homologous to the atp8 gene were detected in the mitogenomes
of four Modiolus species using the Align by Muscle model implemented in MEGA v.7.0.
These regions were located between nad1 and cox1, but the gene structure was incomplete.

Table 1. Complete mitochondrial genomes used for phylogenetic analysis in this study.

Species Subfamily bp Accession No. Reference

Gigantidas japonicus Bathymodiolinae 17,510 AP014560 Robicheau et al. (2017)
Gigantidas platifrons Bathymodiolinae 17,653 AP014561 Robicheau et al. (2017)

Bathmodiolus septemdierm Bathymodiolinae 17,069 AP014562 Robicheau et al. (2017)
Bathymodiolus thermophilus Bathymodiolinae 18,819 MK721544 Lee et al. (2019)
Bathymodiolus securiformis Bathymodiolinae 17,199 NC_039552 -
Bathymodiolus manusensis Bathymodiolinae 16,801 KY270856 -
Bathymodiolus sp. 5 South Bathymodiolinae 18,376 MT916740 This study

Bathymodiolus aduloides Bathymodiolinae 17,243 MT916741 This study
Bathymodiolus azoricus Bathymodiolinae 17,598 MT916742 This study
Bathymodiolus brooksi Bathymodiolinae 17,728 MT916743 This study

Bathymodiolus childressi Bathymodiolinae 17,637 MT916744 This study
Bathymodiolus marisindicus Bathymodiolinae 17,138 MT916745 This study

Gigantidas haimaensis Bathymodiolinae 18,283 MT916746 This study
Modiolus modiolus Modiolinae 15,816 KX821782 Robicheau et al. (2017)
Modiolus kurilensis Modiolinae 16,210 KY242717 -

Modiolus nipponicus Modiolinae 15,638 MK721547 Lee et al. (2019)
Modiolus philippinarum Modiolinae 16,389 KY705073 Sun et al. (2017)

Lithophaga curta Lithophaginae 16,580 MK721546 Lee et al. (2019)
Limnoperna fortunei Limnoperninae 18,145 KP756905 Uliano-Silva et al. (2016)
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Common interval Rearrangement Explorer (CREx) analysis was performed to de-
termine the likely gene order rearrangement events that occurred during the evolution
of deep-sea mussels. After incomplete and duplicated gene constitutions were removed,
six unique gene arrangements among the 19 mitogenomes analyzed were detected. All
bathymodioline mitogenomes possessed a gene order notably different from that of other
mussels. Three gene order rearrangements were detected in the four Modiolus species,
indicating that this group has a higher diversity of gene orders than the other groups.
We designated the gene order of L. curta as the ancestral Bathymodiolinae gene order
for CREx analysis because it is an outgroup taxon that shares a similar gene order with
Bathymodiolinae and Modiolinae species [2]. CREx analysis suggested that the distinct
gene order of bathymodioline mussels might have evolved from the putative ancestral
bathymodioline gene order through five evolutionary steps (Figure 2). These steps included
one reversal, one transposition, and three complex tandem duplications with subsequent
random gene losses (TDRLs). Aside from the recurrent rearrangements of tRNAs, rear-
rangements were also observed in the PCGs. Specifically, the gene cluster cox3+trnF+trnS1
moved from between trnL1 and trnT to a position between trnN and rrnL, nad3 moved
from between trnY and trnI to a position between trnC and trnL1, and cob moved from
between trnM1 and rrnS to between trnT and nad4L. When the tRNA genes were excluded
from the comparisons, three conserved gene blocks (A, trnV–nad4–trnN–cox3–trnF; B, rrnL–
trnS2–trnD–nad6-I–nad2; C, cob–nad4L–trnA–trnH–nad5–cox2–nad1) were identified in the
mitogenomes of Bathymodiolinae and Modiolinae species.
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2.2. Phylogenetic Relationships and Divergence Times

A total of 3243 amino acid positions were found in the aligned sequence dataset.
The best sequence evolution models identified herein by using PartitionFinder included
JTT+G+F for atp6, nad2, nad3, nad4L, nad5, and nad6; LG+G+F for cox2, cox3, and nad1; and
MTART+G+F for cob, cox1, and nad4 (Table S1).

The phylogenetic trees constructed using both the maximum likelihood (ML) and
Bayesian inference (BI) methods consistently showed that bathymodioline mussels ana-
lyzed were divided into three separate clades (L1, L2, and L3) with high support values
(Figure 3). Molecular dating results indicated that the three clades diversified in the last
32.08 Ma (Figure 4). The five Gigantidas species formed the L1 clade, which included species
from cold seeps and those that harbor mainly methane-oxidizing symbionts. The Gigantidas
clade diverged from the other bathymodiolines, approximately 21.24 Ma. The L2 clade
consisted of six Bathymodiolus species, including B. marisindicus, B. septemdierum, and B.
azoricus, as well as a species from hydrothermal vents that has not been formally described
(Bathymodiolus sp. 5 South), and B. brooksi from cold seeps. Two species from hydrothermal
vents, namely, “Bathymodiolus” aduloides, and “Bathymodiolus” manusensis, comprised the
L3 clade. These results are consistent with those of a previous study that showed that
these two species do not belong to Bathymodiolus [6] but had higher bootstrap values in
the tree. The present estimate for the divergence between “Bathymodiolus” mussels and
Bathymodiolus mussels was 30.88 Ma (Figure 4).

2.3. Genetic Distance

The Kimura-2-parameter (K2P) distance of the cox1 sequences of the bathymodiolines
analyzed herein varied from 0.8% to 18.85%, whereas that for Modiolus species ranged from
12.33% to 33.36% (Table S2). The K2P distance of the combined PCG sequences varied from
1.04% to 23.16% for the bathymodiolines and from 11.39% to 44.82% for the modiolines.
Among the bathymodiolines, the smallest genetic distance was between B. marisindicus and
B. septemdierum regardless if it was based on cox1 or the combined PCG sequences. Based
on the cox1 gene, the highest genetic distances among the three major bathymodioline
clades were 17.99% (between the L1 and L2 clades), 16.58% (between the L1 and L3 clades),
and 18.85% (between the L2 and L3 clades).
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2.4. Elevated Nucleotide Substitution Rates in Deep-Sea Mussels

CodeML from the PAML package was used to evaluate whether positive selection
might have contributed to the adaptation of mussels to deep-sea environments. No signifi-
cant differences were observed between the one- and two-ratio models of ω (Ka/Ks) for all
PCGs (Table S3). This result suggested that ω did not change more quickly than expected
along the Bathymodiolinae branch. Moreover, the ω values of all mitochondrial PCGs
in both models were substantially lower than 1, ranging from 0.00105 to 0.14038 for all
PCGs for the deep-sea bathymodiolines and from 0.00239 to 0.06698 for the shallow-water
mussels. Nevertheless, compared with shallow-water mussels, the deep-sea mussels had
higher ω values for all PCGs, except for cox1.

Branch-site models were employed to detect positively selected sites in the mi-
togenomes of deep-sea mussels. Sixteen residues located on atp6, nad4, nad2, cob, nad5, and
cox2 were detected as positively selected sites along the Bathymodiolinae branch (>95%)
(Table 2). These results suggested that the bathymodiolines were affected more heavily
than the shallow-water species after they diverged from their common ancestor.

Table 2. Possible sites under positive selection in the deep-sea mussels.

Gene Codon Amino Acid BEB Values

atp6 50 L 0.994
nad4 76 P 0.992

234 K 0.991
nad2 34 S 0.991

37 S 0.995
59 K 0.991
60 S 0.994
122 W 0.997
331 G 0.992

cob 54 S 0.991
317 N 0.991
351 L 0.994

nad5 85 S 0.995
439 S 0.997
503 S 0.991

cox2 95 K 0.993

3. Discussion
3.1. General Features of Bathymodiolinae Mitogenomes

Seven complete Bathymodiolinae mitogenomes ranging in length from 17,138 bp
(B. marisindicus) to 18,376 bp (B. sp. 5 South) were newly assembled in the present study.
This narrow range of genome size was consistent with that of a previous study that
reported that the size of the mitogenomes of four other bathymodioline species ranging
from 17,069 bp to 18,819 bp [2,24]. The variations in genome size were mainly attributed to
the size differences in the control region [2], ranging from 469 bp in B. marisindicus to 1963 bp
in G. haimaensis. The arrangement and number of tRNA genes are highly variable among
different mussel subfamilies, which is also true for other bivalves [2,22]. Nevertheless,
when tRNA genes are not included, the mitogenomes of mussels in Bathymodiolinae and
Modiolinae have similar gene contents and gene order arrangements. However, although
atp8 is present in most of the sequenced mitogenomes of mussels in other subfamilies of
Mytilidae, including all species of deep-sea mussels, this gene is missing in some species
of Modiolinae, Lithophaginae, Limnopernimae, and Brachidontinae [2], or has become a
pseudogene [25].

3.2. Molecular Phylogeny of Deep-Sea Mussels

The topologies inferred from the amino acid sequences of PCGs via the BI and ML
methods were consistent. Results showed that the deep-sea mussels investigated could
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be divided into three clades (L1, L2, and L3) with high branch support values (Figure 3).
These results are consistent with the findings of earlier studies [5,12], which support the
classification of deep-sea mussels that species in the L3 clade belong to Nipponiomodiolus
and those in the L1 clade belong to Gigantidas [6,12,13]. Nevertheless, the present results
do not completely concur with those of previous studies that analyzed a combined dataset
of mitochondrial and nuclear gene sequences [3,6]. For instance, the present study placed
Gigantidas (L1 clade) as the sister group of (L2 + L3); in contrast, a recent molecular analysis
using a combined dataset of mitochondrial and nuclear gene sequences indicates that this
genus is closely clustered with the L2 clade [3]. Moreover, B. aduloides and B. manusensis
(L3 clade) form a sister group to the L2 clade. This result is consistent with that of our
previous works [12,13] but in stark contrast to that of some earlier phylogenetic analyses of
few mitochondrial and nuclear datasets that argued that these two species are more closely
related to the L1 clade (Gigantidas) [5,26]. Furthermore, the tree topology test rejected the
hypothesis that the L3 clade is sister to the L1 clade (Table S4).

CREx analysis revealed that all bathymodioline species analyzed herein had identical
gene order arrangements, a remarkable result because the gene orders in many other groups
of Mytilidae substantially vary [2]. These deep-sea bathymodiolines are phylogenetically
closely related, indicating that their gene orders have not changed since their common
ancestor diverged from other lineages of mussels. The K2P genetic distance between the
bathymodiolines analyzed herein varied from 0.8% to 18.95% for cox1 and from 1.04% to
23.16% for all PCGs. These results demonstrated that these bathymodiolines (L1 + L2 + L3)
are a monophyletic group, consistent with the findings of previous studies [3,13,26]. Unlike
Bathymodionae species, which have only one gene order, the Modiolinae species analyzed
herein have three gene orders, and their K2P genetic distances varied from 11.39% to
44.82% for PCGs. Nevertheless, the taxonomic distribution of the available samples in this
study was biased toward Bathymodiolinae, and several genera of this subfamily were not
included in the analysis due to the lack of access to specimens.

DNA barcoding is widely used for species delimitation [27]. Thubaut et al. (2013) used
a 2.0% K2P genetic distance as the threshold for species delimitation in bathymodioline
mussels [6]. However, among the recognized species, the genetic divergence between B.
septemdierum and B. marisindicus is 0.8% for the cox1 gene and 1.04% for all PCGs (Table S2).
Therefore, these two species are likely conspecific [26,28].

3.3. Mitochondrial Gene Rearrangement

Mollusks have been utilized as animal models for investigating mitogenome gene
order rearrangements [29,30]. In the present study, a novel gene order was observed in
the mitogenomes of deep-sea Bathymodiolinea mussels that greatly differed from the
gene orders of other mussel groups. Although these deep-sea mussels have an identical
mitochondrial gene order, the shallow-water mussels used in this study possess three
mitochondrial gene orders, suggesting only one rearrangement following the divergence of
bathymodiolines from the other mussels. Given that the mitochondrial gene order in deep-
sea Bathymodiolinae species is different from that of shallow-water modioline mussels,
including Modiolus and Lithophaga, we speculate that this unique gene order rearrangement
pattern might have occurred after the shallow-water mussels invaded the deep-sea. Future
studies should examine the mitochondrial gene order of other genera of deep-sea mussels,
especially Benthomodiolus species, which usually inhabit sunken woods or whale falls that
are considered as transitional habits to the most specialized vent and seep habitats [5,6].

Mitochondrial gene order arrangement involves four gene rearrangement types,
namely, transpositions, reverse transpositions, inversions, and TDRL [31,32]. CREx anal-
ysis suggested that transposition and TDRL are associated with the evolution of the mi-
togenomes of deep-sea mussels. These substantial rearrangements indicated that dramatic
mitogenome organizations occurred during the invasion of the deep-sea by mussels. This
result is consistent with that of other studies of deep-sea species showing their gene orders
were also altered, including tRNA and PCG transportation or gene cluster invasion, during
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their invasion into the deep-sea [33–35]. How such gene order rearrangements might be
adaptive to deep-sea mussels is unknown. Nevertheless, gene recombination has been
suggested to enhance the survival of deep-sea species by offsetting the high mutational
rates of mitochondrial DNA [17,36].

3.4. Adaptations to Deep-Sea Environments

As reported by earlier studies, mitochondrial PCGs may experience positive selec-
tion in deep-sea animals and thus may help them adjust their metabolism to tolerate the
deep-sea conditions [37–39]. In the present study, potential positive selection was evalu-
ated in deep-sea mussels by using CodeML in the PAML package. Analyses of branch
models showed that the Ka/Ks ratios for all PCGs in both one- and two-ratio models were
substantially lower than 1 (Table S3), implying strong purifying selection has driven the
evolution of the mitogenomes of these mussels. In addition, the ω values for all PCGs,
except for the cox1 gene, in deep-sea mussels were higher than those in sublittoral species,
indicating that the mitogenomes of deep-sea mussels underwent a more relaxed purifying
selection. Low ω values for mitochondrial PCGs were also reported in other deep-sea
animals, including deep-sea vesicomyids [3,21], a giant Bathynomus sp. [40], and deep-sea
polynoids [35]. Moreover, previous studies found that positive selection usually occurs
within a short period of evolutionary time and acts on only a few sites. Thus, the sparse
signals of positive selection are usually overwhelmed by those for continuous purifying
selection on most sites in a gene sequence [41,42].

Branch-site models are used to identify possible positively selected sites in deep-sea
mussels. Results suggested that 16 residues located in the atp6, nad4, nad2, cob, nad5,
and cox2 genes could have experienced positive selection along the branch ancestral to
Bathymodiolinae. As a proton pump, the NADH dehydrogenase complex is the largest
and foremost enzyme complex of the respiratory chain. The efficiency of proton pumping
procedures can be affected by protein mutation, and thus it may be crucial to adaptive
evolution [43,44]. In the deep-sea shrimp family Alvinocarididae, the greatest residues of
positively selected sites are within nad1-5 [39], a gene also known to be related to deep-sea
hydrothermal vent adaptation. The nad3 and nad5 genes in the mitogenome of the deep-sea
crab Chaceon granulates also harbor positively selected residues [20]. Similarly, 11 residues
are considered positively selected in the nad2 and nad4 genes of the deep-sea sea cucumber
Benthodytes marianensis [39]. Cytochrome c oxidase stimulating the terminal reduction of
oxygen and with three mitochondrial PCGs (cox1, cox2, and cox3) that encode the catalytic
core is an important positive selection target in hypoxia adaptation [45,46]. In deep-sea
clams belonging to the family Vesicomyidae, positively selected residues are found in the
cox1 and cox3 genes [20]. The ATP synthase Fo subunit 6 or complex V drives the last
step of oxidative phosphorylation for electron transport chain. Evidence supporting the
adaptive evolution of the atp6 gene has been reported in the mitogenome of Glyptothorax
macromaculatus [47], deep-sea fish [19], and deep-sea polynoids [20]. Although cob is a
conserved gene, it is crucial to the ability of the mitochondria to generate energy through
reversible electron transfer from ubiquinol to cytochrome c along with proton translocation.
cob was shown to have undergone positive selection in deep-sea fish [19] and deep-sea
clams [21]. Therefore, mitochondrial genes, particularly atp6, nad4, nad2, cob, nad5, and cox2,
may help deep-sea mussels to survive and/or thrive under harsh deep-sea conditions.

4. Materials and Methods
4.1. Acquisition of Mitochondrial Genome Sequences

We analyzed the mitogenomes of 19 species of mussels, 13 of which were deep-sea
bathymodiolines (Table 1). Six of the mitogenomes were downloaded from GenBank,
whereas seven were newly assembled herein. Out of the newly assembled mitogenomes,
four were based on DNA sequences downloaded from GenBank (Bathymodiolus sp. 5 South
(ERP115508), B. azoricus (ERP105025), B. brooksi (SRP178172), G. childressi (ERP021949)),
and three were based on DNA sequences produced herein: “Bathymodiolus” aduloides was
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collected from the F-site methane seep in the South China Sea (22◦06.921′ N, 119◦17.131′

E, depth 1122 m), B. marisindicus was gathered from the Longqi hydrothermal vent field
in the Southwest Indian Ocean Ridge (37◦47′ S 49◦39′ E, depth 2800 m), and G. haimaensis
was obtained from the Haima Cold Seep in the South China Sea (16◦44′ N, 110◦29′ E,
depth 1390 m). The adductor muscle of an individual of these three species was dissected,
and its DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen, Hilden,
Germany). DNA library construction and sequencing were conducted by Novogene,
Beijing. Sequencing was conducted in paired-end mode on an Illumina platform to produce
approximately 5 Gb of reads of 150 bp read length. Whole genome sequencing datasets
were assembled using NOVOPlasty v.3.8.3 under default settings [48].

4.2. Genome Sequence Annotation and Gene Arrangement Analysis

The MITOS webserver was used to annotate the mitogenomes assembled herein [49].
The boundaries of 13 PCGs and two ribosomal RNA (rRNA) genes were determined by com-
paring them with the homologous genes of other bathymodioline species. Transfer RNA
(tRNA) genes were predicted using the programs MiTFi [50] in the MITOS pipeline [49],
ARWEN v1.2.3.c [51], and tRNAscan-SE v1.21 [52]. The gene order of Lithophaga curta
mitogenome was considered as the ancestral gene order of Bathymodiolinae. Pairwise
comparisons of mitogenomes were conducted using Common interval Rearrangement Ex-
plorer (CREx) [53] to reconstruct the likely gene order rearrangement events (i.e., reversal,
transposition, reverse transposition, tandem duplication/random loss (TDRL)) that might
have occurred during the evolution of this lineage of mussels.

4.3. Phylogenetic Analyses and Divergence Time Estimation

Out of the 19 mitochondrial genome sequences used for phylogenetic analyses, two
were outgroups (L. curta and Limnoperna fortunei). The amino acid sequences of 12 PCGs
were allied separately by using MAFFT v.7.407 [54] under defaults settings. The atp8 gene
was not included in the analysis because shallow-water mussels lack this gene. Poorly
aligned positions were removed using Gblocks v.0.91b [55]. The best-fit substitution models
for the dataset and the best partition schemes were determined using PartitionFinder
version 2.1.1 (Australian National University, Canberra, ACT, Australia) [56].

Phylogenetic relationships were reconstructed via the Maximum Likelihood (ML)
method implemented in RAxML v.8.2.9 [57] and the Bayesian inference (BI) method imple-
mented in MrBayes v.3.2.7a [58]. For the ML analysis, 10,000 replicates were employed. For
the BI analysis, the Markov chain Monte Carlo (MCMC) method was applied considering a
chain for 10 million generations, and a tree was sampled every 500 generations. The initial
25% of the runs were discarded as burn-in. Alternative tree topologies were assessed via
the approximately unbiased test implemented in IQ-TREE v.2.0 [59] with 20,000 bootstrap
replicates. After phylogenetic tree construction, the timing of species divergences was
estimated via the Bayesian method by using MCMCTree in the PAML package v.4.9h [60].
Two nodes were time-calibrated. According to previous studies [4,7], bathymodioline and
shallow-water mussels split about 110.4 Ma, and G. childressi and B. thermophilus diverged
between 21.12 and 32.98 Ma. For the MCMC analysis, 100,000 samples were applied,
and the first 20% of all samples were discarded as burn-in. An independent rate model
(clock = 2), which follows a lognormal distribution, was used for the MCMC search. The
phylogenetic tree was visualized in FigTree v.1.4.3 [61].

Genetic distances between the species tested herein were computed using the Kimura-
2-parameter (K2P) model (Kimura, 1980) implemented in MEGA v.7.0 [62] for both cox1
and the combined mitochondrial PCGs.

4.4. Positive Selection Analysis

Positive selection in the branches leading to the deep-sea Bathymodiolinae was de-
termined using the branch model and the branch-site model in the PAML package [60].
Selection pressure was determined by applying the overall database of 12 mitochondrial
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PCGs. The topology of the phylogenetic tree generated in the previous section was utilized
in this analysis. For the branch model, the one-ratio model (model = 0, assuming a single
ω0 ratio for all branches in the phylogenetic tree) was used to assess ω distribution values
(dN/dS ratio), which were taken as the basis for the probability of adaptive evolution of
gene sequences. Subsequently, the two-ratio model (model = 2, setting the bathymodioli-
nae branch as foreground lineages, ω2; setting all other branches as background lineages,
ω1) was ran. Furthermore, the one- and two-ratio models were compared to investigate
whether the clade of deep-sea mussels is under greater selection pressure than shallow-
water mussels. If the two-ratio model showed a significantly higher probability than
the one-ratio model and ω2 > 1, then the deep-sea mussels were considered to be under
positive selection. Afterward, positively selected sites in the deep-sea Bothymodiolinae
lineage (marked as foreground lineage) were determined via a branch-site model. Bayesian
posterior probability of the positively selected sites was obtained via Bayes Empirical Bayes
(BEB) analysis.

5. Conclusions

In summary, the mitogenomes of various genera of Bathymodiolinae were found to
have a conserved gene order, which differs remarkably from the gene orders of shallow-
water mussels. Our results suggested that gene order rearrangements in bathymodiolines
can be explained by reversal, transposition, and TDRL of an ancestral mitogenome. Finally,
multiple mitochondrial genes carry signals of positive selections in some amino acid
residues in deep-sea mussels, a condition indicating adaptation to deep-sea environments.
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Bathymodiolus, Modiolus, Lithophaga and Limnoperna, Table S3: Models of selection pressure on the
mitochondrial protein-coding genes of the deep-sea mussels, Table S4: The result of approximately
unbiased (AU) test.
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