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Abstract: Mycosphaerellaceae is a highly diverse fungal family containing a variety of pathogens
affecting many economically important crops. Mitochondria play a crucial role in fungal metabolism
and in the study of fungal evolution. This study aims to: (i) describe the mitochondrial genome
of Pseudocercospora fijiensis, and (ii) compare it with closely related species (Sphaerulina musiva,
S. populicola, P. musae and P. eumusae) available online, paying particular attention to the Sigatoka
disease’s complex causal agents. The mitochondrial genome of P. fijiensis is a circular molecule of
74,089 bp containing typical genes coding for the 14 proteins related to oxidative phosphorylation,
2 rRNA genes and a set of 38 tRNAs. P. fijiensis mitogenome has two truncated cox1 copies, and
bicistronic transcription of nad2-nad3 and atp6-atp8 confirmed experimentally. Comparative analysis
revealed high variability in size and gene order among selected Mycosphaerellaceae mitogenomes
likely to be due to rearrangements caused by mobile intron invasion. Using fossil calibrated Bayesian
phylogenies, we found later diversification times for Mycosphaerellaceae (66.6 MYA) and the Sigatoka
disease complex causal agents, compared to previous strict molecular clock studies. An early
divergent Pseudocercospora fijiensis split from the sister species P. musae + P. eumusae 13.31 MYA while
their sister group, the sister species P. eumusae and P. musae, split from their shared common ancestor
in the late Miocene 8.22 MYA. This newly dated phylogeny suggests that species belonging to the
Sigatoka disease complex originated after wild relatives of domesticated bananas (section Eumusae;
27.9 MYA). During this time frame, mitochondrial genomes expanded significantly, possibly due to
invasions of introns into different electron transport chain genes.

Keywords: banana; diversification times; mitochondrial genome; Mycosphaerellaceae; plant pathogens;
Pseudocercospora; sigatoka disease

1. Introduction

Mycosphaerellaceae is a highly diverse fungal family containing endophytes, saprobes,
epiphytes, fungicolous and phytopathogenic species in more than 56 genera [1,2]. Family
members can cause significant economic losses to a large number of important plants
including ornamentals, food crops and commercially propagated trees [3–8]. Three My-
cosphaerellaceae members, Pseudocercospora eumusae, P. fijiensis, and P. musae, [1] are major
pathogens of bananas and plantains. They comprise the so-called Sigatoka disease complex
which is responsible for one of the most economically destructive diseases for banana
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growers [9,10]. Diseases caused by these three pathogens induce plant physiological
alterations including a reduction in photosynthetic capacity, crop yield, and fruit qual-
ity [9]. The Sigatoka disease complex causal agents form a robust clade, with P. fijiensis
diverging earlier (39.9–30.6 MYA) than sister species P. eumusae and P. musae (22.6–17.4
MYA) [10–12]. Among them, Pseudocercospora fijiensis (teleomorph Mycosphaerella fijiensis)
is the causal agent of black leaf streak disease (BLSD; aka Black Leaf Spot Disease), one the
most damaging and costly diseases for banana and plantain worldwide [13].

Fungal mitochondrial genomes (mitogenomes) are circular or linear, usually AT en-
riched and range in size from 1.1 kb (Spizellomyces punctatus) [14] to 272 kb (Morchella
importuna) [15]. Their size variation is mostly due to the presence or absence of accessory
genes including RNA and DNA polymerases, reverse transcriptases and transposases,
mobile introns, and size variation in intergenic regions [16,17]. In spite of the variation in
size, their core gene content is largely conserved, even though their relative gene order is
highly variable, both between and within the major fungal phyla [18–20]. Mitogenomes
have introns and intronic open reading frames (ORFs) classified as group I and group
II introns, which differ in their sequence, structure and splicing mechanisms [16,21–25].
Typically, group-II introns contain ORFs that code for reverse-transcriptase-like proteins. In
contrast, group-I introns encode proteins with maturase and/or endonuclease activity [16].
Because of the limited comparative analysis of complete fungal mitogenome sequences,
it has been difficult to estimate the timeframes and molecular evolution associated with
mitochondrial genes or genomes [26].

Mitochondria have proven to be useful in evolutionary biology and systematics be-
cause they contain their own genome capable of independent replication, uniparental
inheritance [27], near absence of genetic recombination, and uniform genetic backgrounds
for some species [28]. Attempts to determine a time frame for fungal evolution are ham-
pered by the lack of reliable fossil records. Hence, so far studies have focused on relating
rates of DNA base substitutions and molecular clocks [29], based on the assumption that
mutation rates of nuclear genes are similar to their counterparts in organisms with datable
fossils [19]. Mitochondria plays a major role in fungal metabolism and fungicide resistance
but until now only two annotated mitogenomes have been published in Mycosphaerel-
laceae (Zasmidium cellare and Zymoseptoria tritici) [30,31]. Sigatoka disease comparative
mitogenome studies will provide answers on the evolution and adaptation of these plant
pathogenic fungi.

This study aimed to: (i) sequence and characterize the complete mitogenome of
Pseudocercospora fijiensis; (ii) compare mitogenomes of P. fijiensis with closely related species
P. eumusae, and P. musae (causal agents of Sigatoka), and species with publicly available
high throughput data such as Sphaerulina musiva and S. populicola (causal agents of leaf spot
and canker diseases in poplar); and (iii) estimate timeframes and mitochondrial molecular
evolution using fossil records to calibrate the Sigatoka disease complex phylogeny. We
found that in mitogenomes analyzed herein, there were differences in content of free-
standing and intronic Homing Endonuclease Genes (HEGs), genes coding for hypothetical
proteins, and accessory genes such as DNA/RNA polymerases, reverse transcriptases and
transposases. This work contributes to the understanding of mitogenome organization in
Mycospharellaceae. In addition, new fossil calibrations for the Sigatoka’s complex species
and mitochondrial comparative analysis aid in our understanding of the tempo and mode
of evolution of these plant fungal pathogens.

2. Materials and Methods
2.1. Fungal Strain, DNA Extraction, and Library Construction and Sequencing

P. fijiensis isolate 081022 was obtained from naturally infected banana leaves coming
from a commercial plantation located in Carepa, Antioquia, Colombia. Taxonomic affil-
iation has been confirmed based on both morphological criteria and Polymerase Chain
Reaction (PCR) [32]. For DNA extraction mycelia from 7-day old culture were transferred
to potato dextrose broth and incubated for 5–7 days at room temperature in a rotary
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shaker. Then, mycelia were harvested from the liquid using vacuum filtration. Total DNA
was extracted using a previously described Cetyl Trimethylammonium Bromide (CTAB)
method [33]. DNA quality and quantity were measured using a fluorometer (Qubit 3.0,
Thermo Fisher Scientific, Waltham, MA, USA). Furthermore, genomic DNA was visualized
on 1% agarose gel to check for any break/smear or multiple bands. Library construction
was performed using Illumina platform with TruSeq DNA kit (Illumina, San Diego, CA,
USA) to acquire as paired-end 2 × 150-bps, with about a 350-bp insert size. Next-generation
sequencing was performed by an external service (North Carolina University, Chapel Hill,
NC, USA) Hiseq 2500 system®.

2.2. Sequence Sources, Data Filtering and Assemblies

Eleven mitochondrial genome (mitogenomes) sequences were used for this study.
Seven belonging to Mycosphaerellaceae: Pseudocercospora fijiensis (syn. Mycosphaerella
fijiensis), Pseudocercospora eumusae (syn. Mycosphaerella eumusae), Pseudocercospora musae (syn.
Mycosphaerella musicola), Sphaerulina musiva (syn. Septoria musiva), Sphaerulina populicola
(syn. Septoria populicola), Zasmidium cellare, and Zymoseptoria tritici (syn. Mycosphaerella
graminicola). One species is from Capnodiales: Pseudovirgaria hyperparasitica and three are
from Pleosporales, the sister group of Capnodiales: Didymella pinodes (syn. Mycosphaerella
pinodes), Parastagonospora nodorum (syn. Phaeosphaeria nodorum), and Shiraia bambusicola
(Table S1). Mitogenomes were obtained either from our own sequencing data, or sequence
data available at GenBank [34], RefSeq [35] or MycoCosm [36]. Authors, seq ID and
databases are listed in Table S1.

Read quality was assessed using FastQC v. 0.11.5 [37] for the P. fijiensis isolate 081022
raw reads recovered here. Low-quality reads and/or bases were trimmed using Trim-
momatic version 0.36 [38]. First, we de novo assembled whole DNA using Spades 3.9.0
(parameter “-careful”) [39] at different k-mer sizes (k = 61, 71, 81, and 91). The assem-
bly with the highest N50 and assembly size was scaffolded by SSPACE version 3.0 [40].
Remaining gaps between scaffolds were closed using GapFiller version 1.10 [41] and a
final genome assembly was evaluated by REAPR version 1.0.18 [42]. Scaffolds from the
whole genome sequencing assembly were mapped to a draft and an unpublished P. fijiensis
mitogenome available in MycoCosm [36] using Geneious 9.1.5 [43]. Mitogenomes were also
filtered from de novo whole-genome assemblies for Pseudocercospora musae and P. eumusae
available online [8,10]. To separate mitochondrial contigs or scaffolds from the nuclear
contigs or scaffolds, we used BLASTn [44] and the Electron Transport Chain Conserved
Mitochondrial Protein Coding Genes (CMPCGs) compiled from published mitogenomes of
Zasmidium cellare, Zymoseptoria tritici, Didymela pinodes, Phaeosphaeria nodorum and Sharaia
bambusicola as queries [30,31,45,46].

Even though the Sphaerulina musiva mitogenome was available online [8] we reassem-
bled it using raw reads available at NCBI (SRA: SRR3927043). Our major motivation
was a 9322 bp inversion detected around the 10,000 bp position of this mitogenome.
This inversion was splitting the gene nad2 and we wanted to make sure this inversion
was present in the S. musiva mitogenome. First, raw reads were filtered using BBtools
(https://sourceforge.net/projects/bbmap/ (accessed on 10 February 2021)) in Geneious
9.1.5 [43]. Then, MITObim version 1.8 [47] used cox1 as bait to map all filtered reads
that partly or fully overlap with the bait. Eventually, this leads to an extension of the
reference sequence and a reduction of gaps until completion of the whole mitogenome [47].
This inversion in the Sphaerulina musiva mitogenome was found to be an artifact after
reassembling raw reads.

Annotated mitochondrial genomes filtered from whole-genome assembly projects for
Pseudocercospora musae and P. eumusae or reassembled for Sphaerulina musiva are available
in Figshare (dataset: https://doi.org/10.6084/m9.figshare.12101058.v1 (accessed on 10
February 2021)).

https://sourceforge.net/projects/bbmap/
https://doi.org/10.6084/m9.figshare.12101058.v1
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2.3. Annotation

Mitochondrial genomes of Pseudocercospora fijiensis, P. eumusae, P. musae, Sphaerulina
populicola, S. musiva and Pseudovirgaria hyperparasitica were annotated in this study using
a combination of software. First, predicted ORFs were determined with a translation
code for “mold mitochondrial genomes” using Geneious 9.1.5 [43]. Second, genes were
identified using BLASTP version 2.4.0 [48] against the non-redundant protein database
from NCBI (downloaded August and December 2016); genes were also identified using
MITOS [49]. Third, protein domains and sequence patterns were searched with PFAM [50]
and PANTHER 11.0 [51]. Additionally, mitogenome annotation was performed using
multiple alignments among the fourteen CMPCGs using MUSCLE version 3.8.31 [52] and
CLUSTAL W version 2.0 [53]. Inconsistencies regarding length and position of genes was
solved paying particular attention to start and stop codons. Identified ORFs larger than
300 bp with start and stop codons that did not show results with the above-mentioned
annotation strategies were considered as hypothetical proteins. Circular mitogenome maps
were constructed using Geneious 9.1.5. and Geneious prime [43].

2.4. PCR Amplification of cox1 Gene Copies in P. fijiensis

A PCR assay was performed to confirm the presence of two different cox1 copies:
a truncated copy (cox1_1) and a complete cox1 copy with an intron (cox1_2). Primers
were designed to amplify regions between the first copy (cox1_1) and the second (cox1_2),
including the exons of this last copy. First, a set of primers encompassed cox1_2 exon1
and cox1_2 exon 2. A second pair of primers encompassed cox1_1 and cox1_2 exon 2. PCR
amplifications were carried out in a total volume of 10 µL, containing 20 ng genomic
DNA, 0.15 µM of each primer, 1× PCR buffer (without MgCl2), 0.75 mM MgCl2, 4 µM
of each dNTP and 0.65 U recombinant Taq DNA polymerase (Thermo Fisher Scientific,
Waltham, Massachusetts, USA). Cycling parameters were: 3 min at 94 ◦C, followed by 35
cycles of 30 s at 94 ◦C, 30 s at a 50 to 60 ◦C temperature gradient to determine annealing
temperature, 1 min at 72 ◦C, and a final elongation step of 5 min at 72 ◦C. PCR products
were separated by electrophoresis in a 1% (w/v) agarose gel and visualized with GelRed®

(Biotium, Fremont, CA, USA) under UV light.

2.5. Transcriptome de novo Assembly

RNA-seq raw reads of S. musiva (SRR1652271) and P. fijiensis (SRR3593877, SRR3593879)
were downloaded from the European Bioinformatics Institute (EMBL EBI) database. Reads
were quality filtered and trimmed using BBDuck from BBtools (https://sourceforge.net/
projects/bbmap/ (accessed on 10 February 2021)) before carrying out transcriptome
de novo assemblies with Trinity version 2.3.1 [54]. The P. eumusae (GDIK00000000.1)
and P. musae assembled transcriptomes (GDIN00000000.1) were also downloaded from
GeneBank. RNA-seq Geneious 9.1.5. plugins were used to map the assembled transcripts
to mitogenomes of either S. musiva, P. fijiensis, P. eumusae or P. musae paying particular
attention to gene pairs atp6-atp8, nad2-nad3.

2.6. RT–PCR Assays for Mitochondrial Gene Pairs of P. fijiensis

Total RNA was extracted from P. fijiensis (isolate: 081022) mycelium after fifteen days
of culture using TRIzol® (Life Technologies, Carlsbad, CA, USA) according to the manu-
facturer’s instructions. RNA concentrations were measured at 260 nm using a NanoDrop
ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies, Thermo Fisher). DNAse I
(Thermo Fisher Scientific, Waltham, MA, USA) was used for cDNA synthesis from RNA as
template for amplification using the Maxima First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific, Waltham, MA, USA) according to manufacturer’s instructions. Primers
were designed such that the amplified product encompassed the end of one gene and
the beginning of another. We used pairs of NADH-Ubiquinone Oxidoreductase Chain 3
and 2 (nad3-nad2) and mitochondrial encoded ATP Synthase Membrane Subunits 6 and
8 (atp8-atp6). Both genes and their intergenic sequences were partially amplified. PCR

https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
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products were run in a 1% agarose gel electrophoresis purified using the GFX PCR DNA
and gel band purification kit, according to manufacturer’s instructions (GE Healthcare,
Chicago, IL, USA). Purified PCR products were sequenced using Sanger Technology at
Macrogen Inc. (Seoul, Korea). All sequences are available in GeneBank: atp6-atp8 cDNA
(GenBank: MN171334); atp6-atp8 DNA (GenBank: MN171335); nad2-nad3 DNA (GenBank:
MN171336); nad2-nad3 cDNA (GenBank: MN171337); cob DNA (GenBank: MN171338); cob
cDNA (GenBank: MN171339); nad5 cDNA (GenBank: MN171340).

2.7. Identification of Repetitive Elements

Repetitive sequences in mitogenomes of Mycosphaerellaceae were identified and
annotated using Geneious Primer Tandem Repeats Finder and using a minimum repeat
length of 100, excluding repeats up to 10 bp longer [43]. Simple sequence repeat (SSR)
markers and loci were identified using the MicroSAtellite Identification tool (MISA) [55]
(https://doi.org/10.6084/m9.figshare.12101013 (accessed on 10 February 2021)).

2.8. Phylogenetic Analysis and Divergence Times Estimates

Until now, only nuclear markers and strict clock calibration have been used to calcu-
late diversification times for the Sigatoka disease complex species. We aimed to compare
these analyses with fossil calibrated Bayesian phylogenies and mitochondrial markers.
A phylogenetic tree was reconstructed to calculate diversification times. Since most mi-
togenomes are uniparentally inherited we used our mitochondrial phylogeny to compare
topologies with already published nuclear ones for the Sigatoka disease complex species.
Didymella pinodes [56], Pseudovirgaria hyperparasítica [57], Phaeosphaeria nodorum [45] and
Shiraia bambusicola [46] were used as outgroups. Ten core mitochondrial genes (cox1, cox3,
atp6, cob, nad1, nad2, nad4, nad4L, nad5, nad6) were aligned one by one for all species us-
ing CLUSTAL W version 2.0 [53]. Then, all aligned genes were concatenated in a single
alignment for phylogenetic reconstruction. Cox2, atp8, atp9 and nad3 were excluded from
the alignment either because they could not be fully recovered in P. musae (atp9, nad3) or
because they were missing in outgroups S. bambusicola (atp8 atp9), P. nodorum (atp8, atp9)
and D. pinodes (atp8, atp9, cox2).

A Generalized time-reversible (GTR) model was used with an estimated gamma
parameter of rate heterogeneity to build maximum likelihood (ML) trees using the Ran-
domized Accelerated Maximum Likelihood RAxML version 8.0 [58] and PhyML version
3.0 [59] programs. One hundred bootstrapped trees were generated and used to assign
bootstrap support values to the consensus trees. A Bayesian phylogeny and divergence
time analysis was carried out using BEAST2 version 2.5.1 [60]. Separate partitions for each
gene were created with BEAUti2 (available in BEAST2). More suitable substitution models
for each gene were found using the software package jModelTest2 version 2 [61] according
to the Bayesian Information Criterion (BIC) [62]. To accommodate for rate heterogeneity
across the branches of the tree we used an uncorrelated relaxed clock model [63] with a
lognormal distribution of rates for each gene estimated during the analyses. We also used
a strict clock for further comparison of results.

The fossil Metacapnodiaceae [64] was used, assuming this to be a common ancestor of
the order Capnodiales with a minimum age of 100 MYA (gamma distribution, offset 100,
mean 180, maximum softbound 400). Capnodiales nodes were constrained to monophyly
based on the results obtained from ML analysis. A birth/death tree prior was used to
model the speciation of nodes in the topology, with gamma priors on the probability of
splits and extinctions. We used vague priors on the substitution rates for each gene (gamma
distribution with mean 0.2 in units of substitutions per site per time unit). All XML files
used to build our Bayesian phylogenies are available at Figshare (https://doi.org/10.608
4/m9.figshare.12101055.v1 (accessed on 10 February 2021)). To ensure convergence we
ran analyses five times for 50 million generations each, sampling parameters every 5000
generations, assessing convergence and sufficient chain mixing (Effective Sample Sizes
> 200) using Tracer version 1.5 [65]. After removal of 20% of each run as burn-in, the

https://doi.org/10.6084/m9.figshare.12101013
https://doi.org/10.6084/m9.figshare.12101055.v1
https://doi.org/10.6084/m9.figshare.12101055.v1
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remaining trees were combined using LogCombiner (available in BEAST2), summarized
as maximum clade credibility (MCC) trees in TreeAnnotator (available in BEAST2), and
visualized using FigTree version 1.3.1 [66].

3. Results
3.1. P. fijiensis Mitochondrial Genome

The whole-genome assembly of P. fijiensis had an N50 = 39,827 bp and a size of
70.53 Mb in 8040 scaffolds. Recovered scaffolds had an estimated genome coverage of
50X. To separate scaffolds belonging to P. fijiensis mitogenome, whole-genome scaffolds
were mapped to a draft and unpublished P. fijiensis mitogenome (see Table S1). Scaffolds
belonging to the mitogenome of P. fijiensis were recovered and assembled in a circular
sequence deposited in GenBank (accession number: MK754071).

P. fijiensis mitogenome is a circular molecule of 74,089 bp in length containing 14
Electron Transport Chain Conserved Mitochondrial Protein Coding Genes (CMPCG), two
ribosomal RNAs, 38 tRNA genes and twelve putative Open Reading Frames (ORFs) of
unknown function (Figure 1, Table 1). CMPCGs included ATP Synthase subunits (atp6, atp8,
and atp9), Cytochrome Oxidase subunits I, II, and III (cox1, cox2, and cox3), Nicotinamide
Adenine Dinucleotide Ubiquinone Oxidoreductase subunits nad2 and nad1, 3, 5, 6, nad4L
(Figure 1A, Table 1).
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in a clockwise direction (forward). (A) Annotated introns, hypothetical Open Reading Frames (ORFs), group I mobile
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and introns; orange arrows: hypothetical ORFs; blue arrows: genes of large and small ribosomal subunits; bright yellow
arrows: tRNAs genes; grey arrow: HEGs. Circular mitogenomes were generated by using the Geneious Primer [43].

Twelve putative ORFs of unknown function were predicted to produce hypothetical
proteins containing 77 to 583 amino acids, which were described as ORF1-ORF11 and
ORF Cytb-like. CMPCGs covered 65.55% of the genome (including 11.77% putative ORFs)
(Figure 1A, Table 1). tRNA genes and both rnl and rns corresponded to 8.8% and 10.67%
respectively (Figure 1B, Table 1). These values were similar to those reported for other
representatives of the Ascomycota phylum (Table 2). Overall, P. fijiensis mtDNA has a
nucleotide composition of: 36.6% of A, 13.4% of C, 12.6% of G and 37.7% of T. GC-content
was 26% with coding and non-coding parts of the genome having, on average, the same
GC-percentage.
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Table 1. Characteristics and organization of annotated genes in the mitogenome of P. fijiensis.

Gene Start
Position

Stop
Position

Length
(bp) Direction Start

Codon
Stop

Codon
GC

Contents Product

nad6 435 1109 675 forward ATA TAA 23% subunit 6 of NADH
dehydrogenase

nad5 1922 7012 5091 reverse ATA TAA 24.8 NADH dehydrogenase
subunit 5

ORF1 3253 5001 1749 reverse ATG TAA 22.8 hypothetical protein

LAGLIDADG 5042 5722 681 reverse TTA TAA 24.4 LAGLIDADG domain
containing endonuclease

nad4L 7009 7278 270 reverse TTA TAA 23.7 NADH dehydrogenase
subunit 4L

trnN(gtt) 9370 9440 71 reverse - - - tRNA-Asn
trnP(tgg) 9480 9552 73 reverse - - -

ORF2 9600 10271 672 reverse ATG TAA 29.9 hypothetical protein
ORF3 11452 11973 522 forward TTA TAG 26.2 hypothetical protein
ORF4 12481 12969 489 forward ATG TAA 33.5 hypothetical protein
ORF5 14399 15151 753 reverse ATA TAA - hypothetical protein
Large

subunit
rRNA

15433 21413 5981 forward - - - large subunit ribosomal
RNA

ORF6 16699 17037 339 forward ATT TAA 14.7 hypothetical protein
cob 23991 26209 2219 reverse TTA TAA 29.3 cytochrome b

LAGLIDADG 24749 25492 744 reverse - - - LAGLIDADG domain
containing endonuclease

trnH(gtg) 26876 26948 73 reverse - - - tRNA-His
trnQ(ttg) 26974 27046 73 reverse - - - tRNA-Gln
trnL1(tag) 29371 29454 84 reverse - - - tRNA-Leu
trnF(gaa) 29531 29603 73 reverse - - - tRNA-Phe
trnA(tgc) 30770 30841 72 reverse - - - tRNA-Ala
trnE(ttc) 31173 31244 72 reverse - - - tRNA-Glu

trnL2(taa) 31253 31335 83 reverse - - - tRNA-Leu
trnM(cat) 31478 31550 73 reverse - - - tRNA-Met
trnM(cat) 31555 31625 71 reverse - - - tRNA-Met
trnT(tgt) 31714 31784 71 reverse - - - tRNA-Thr
trnR(tct) 32001 32071 71 reverse - - - tRNA-Arg
trnC(gca) 32105 32175 71 reverse - - - tRNA-Cys
trnR(acg) 32212 32290 79 reverse - - - tRNA-Arg

nad4 32730 34220 1491 reverse ATA TAA 25.4 NADH dehydrogenase
subunit 4

ORF7 34319 35902 1584 reverse ATG TAA 22.9 hypothetical protein
trnR(cct) 36840 36910 71 reverse - - - tRNA-Arg

trnS2(tga) 37775 37862 88 reverse - - - tRNA-Ser
trnI(gat) 37911 37982 72 reverse - - - tRNA-Ile

trnW(tca) 38019 38090 72 reverse - - - tRNA-Trp
trnS1(gct) 38154 38234 81 reverse - - - tRNA-Ser
trnD(gtc) 38279 38351 73 reverse - - - tRNA-Asp
trnG(tcc) 38481 38551 71 reverse - - - tRNA-Gly

ORF8 38798 39094 297 forward ATG TAG 19.5 hypothetical protein

cox3 43007 43816 810 reverse ATG TAA 31.7 Cytochrome c oxidase
subunit III

atp9 44999 45223 225 reverse ATG ATG 40.9 ATP Synthase
Membrane Subunit 9

trnK(ttt) 45506 45578 73 reverse - - - tRNA-Lys
trnV(tac) 45607 45679 73 reverse - - - tRNA-Val
trnM(cat) 45915 45987 73 reverse - - - tRNA-Met

cox2 46989 47738 750 reverse TAA TAA 29.9 cytochrome c oxidase
subunit II
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Table 1. Cont.

Gene Start Position Stop
Position Length (bp) Direction Start Codon Stop

Codon GC Contents Product

nad1 50440 51600 1161 forward ATG TAA 30 NADH dehydrogenase
subunit 1

Small subunit
rRNA 51849 53773 1925 forward - - - small subunit ribosomal RNA

trnY(gta) 53797 53881 85 forward - - - tRNA-Tyr
cox1 55837 57708 1872 forward TTA TAG 32.2 cytochrome c oxidase subunit I

ORF cytb-like 59442 59672 231 reverse TTA TAA 22.5 cytb-like ORF
trnH(gtg) 60291 60363 73 reverse - - - tRNA-His
trnQ(ttg) 60389 60461 73 reverse - - - tRNA-Gln

ORF9 60802 61359 558 forward ATG TAA 35.1 hypothetical protein
trnF(—) 64038 64111 74 reverse - - - tRNA-Phe

trnA(tgc) 64155 64226 72 reverse - - - tRNA-Ala
trnE(ttc) 64498 64569 72 reverse - - - tRNA-Glu
ORF10 64714 65247 534 reverse ATA TAG 27 hypothetical protein
trnI(tat) 65672 65744 73 reverse - - - tRNA-Ile

trnM(cat) 65749 65819 71 reverse - - - tRNA-Met
trnT(tgt) 65908 65978 71 reverse - - - tRNA-Thr
trnR(tct) 66182 66252 71 reverse - - - tRNA-Arg
trnC(gca) 66286 66356 71 reverse - - - tRNA-Cys
trnR(acg) 66393 66465 73 reverse - - - tRNA-Arg

ORF11 68278 69276 999 reverse ATG TAA 21.5 hypothetical protein
trnG(tcc) 69523 69593 71 forward - - - tRNA-Gly

nad3 69768 70139 372 reverse ATG TAA 27.2 NADH dehydrogenase
subunit 3

nad2 70140 71819 1680 reverse ATG TAA 24.5 NADH dehydrogenase
subunit 2

atp8 72609 72758 150 forward ATT TAA 24 ATP Synthase Subunit 8
atp6 72801 73589 789 forward ATA TAA 27.8 ATP Synthase Subunit 6

Table 2. Comparison of mitogenomes of Pseudocercospora fijiensis and closely related species (Sphaerulina musiva, S. populicola,
P. musae, P. eumusae and Zasmidium cellare, Zymoseptoria tritici). Intragenic (genic) regions include regions of standard
CMPCGs (Conserved Mitochondrial Protein Coding Genes), open reading frame (ORFs), rRNAs, and tRNAs. Intergenic
regions include regions among standard CMPCGs, ORFs, rRNAs, and tRNAs.

Item P. musae P. eumusae P. fijiensis S. musiva S. populicola Z. cellare Z. tritici

Genome size (bp) 51,645 59,236 74,089 53,234 139,606 23,743 43,964
GC content (%) 27.80 27 19.2 24.5 31.70 27.80 31.90
No. of introns 1 1 2 6 28 0 0

No. of standard Protein
Coding Genes (CMPCGs) 14 14 14 14 14 14 14

No. of rRNAs 2 2 2 2 2 2 2
No. of tRNAs 24 25 38 29 29 25 27

Genic regions (%) 63.25 40.73 65.55 65.06 98.25 79.39 67.79
Intergenic regions (%) 36.75 59.27 46.45 34.94 1.75 20.51 32.21
Number of GIY-YIG
intragenic regions 0 0 0 1 5 0 0

Number of GIY-YIG
intergenic regions 1 1 0 0 2 0 0

Number of LAGLIDADG
intragenic regions 0 0 0 3 18 0 0

Number of LAGLIDADG
intergenic regions 0 0 2 1 3 0 0

Number of Repetitive
Sequences 32 43 29 8 20 2 0

The three most frequent codons were TTA (708 counts), ATA (498 counts) and TTT (498
counts) encoded amino acids leucine, isoleucine, and phenylalanine, respectively. These
amino acids have hydrophobic side chains commonly found in transmembrane helices.
These three codons accounted for 6.9% of all codons in the mitogenome. Eight codons
(ATA, ATT, TTA, and TTG encoding methionine; CGA, CGC, CGG encoding arginine and
TAG encoding a stop codon) were under-represented, being used from one to five times
each. CMPCGs started with ATA, ATG, ATT or TTA encoding methionine translation
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initiation codon. The preferred stop codon was TAA, present in 21 protein-coding genes;
the alternative stop codon was TAG. Codon usage of the ORFs was similar to that of the
protein-coding loci. Atp9 also contained the highest GC contents (40.9%) among all the
CMPCGs (Table 1).

Thirty-eight tRNAs encoded by the mitogenome of P. fijiensis carry all 20 amino acids
(Figure 1B, Table 1). Two tRNA iso-acceptors were identified for serine and leucine, and
four for arginine and methionine. Among the 38 tRNAs, tRNA-Val, tRNA-Tyr, tRNA-Asp,
tRNA-Lys, tRNA-Asn, tRNA-Pro occurred singly (Table 1). tRNA genes were grouped into
nine clusters. (Figure 1B).

Twenty-nine repeat regions ranging from 611 bp to 128 bp were located in non-coding
regions of the mtDNA, but only one was present three times (length 193 bp) (Table 2).
A search within the P. fijiensis mitogenome detected 33 SSR markers. The most common
SSR were mononucleotide (30 SSR), and only three dinucleotide SSR were found (https:
//doi.org/10.6084/m9.figshare.12101058 (accessed on 10 February 2021)). A difference of
seven nucleotides between P. fijiensis isolate 081022 and the unpublished mitochondrial
genome available in MycoCosm was found, being 99% identical (Table S1).

3.1.1. Presence of Truncated Conserved Mitochondrial Protein-Coding Genes (CMPCGs)

P. fijiensis mitogenome had truncated copies of four CMPCGs. They were considered
truncated copies because they have PFAM and PANTHER domains and high local sequence
similarity (>90%) with a complete CMPCG copy despite being an incomplete sequence
without start and/or stop codons. Truncated copies included atp6 (two truncated copies
and one complete gene sequence), and cox1, cob, nad2 and atp9 (one truncated copy and
one complete gene sequence). PCR amplifications were performed to confirm the presence
of CMPCG copies in the P. fijiensis mitochondrial genome (Figure 2). The annotation
showed that cox 1 had one complete copy with an intron and a second truncated copy (see
Figure 2A). Primers were designed to amplify three intra and intergenic regions in these
two copies (Figure 2A–D). The amplified PCR bands were of the expected size showing
that the assembly on this region was correct (Figure 2B). The presence of an intron in the
complete cytochrome b (cob) gene of P. fijiensis was also experimentally confirmed by PCR
amplification (Figure S1).

3.1.2. Homing Endonucleases and Introns in the P. fijiensis Mitogenome

A total of two different mobile introns were annotated in the mitogenome of P. fijiensis
(Figure 1A). All encoding introns were characterized as group I intron type, which encodes
homing endonucleases (HE) [67]. They belonged to the LAGLIDADG family and were 680
bp for an intronic-ORF of 2968 bp length in nad5 and 743 bp long for an intronic-ORF of
1056 bp length in cob (Figure 1, Tables 2 and 3).

Table 3. Comparison between divergence time of some clades among different studies.

Present Study Chang et al. 2016

Molecular Clock Relaxed-Log normal Strict clock Strict clock

Type of Data 13 mitochondrial protein-coding genes 13 mitochondrial protein-coding
genes 46 nuclear single-copy genes

Divergence Time estimation method Bayesian analysis in BEAST2 v2.5.1 Bayesian analysis in BEAST2 v2.5.1 Penalized likelihood analysis in the
program r8s v1.7

Fossil calibration Capnodiales-Metacapnodiaceae Fossil Capnodiales- Metacapnodiaceae
Fossil Dothideomycetes crown group

Capnodiales 108.81 (100.17–121.35 MYA, 95% HPD) 151.96 (101.04–232.179 MYA, 95%
HPD) 234.2–180.2 MYA

Mycosphaerellaceae 66.66 (55.47–78.27 MYA, 95% HPD) 97.24 (64.27–155 MYA, 95% HPD) 186.7–143.6 MYA
Sphaerulina 13.39 (9.39–17.69 MYA, 95% HPD) 30.31 (19.69–48.63 MYA, 95% HPD) near 10 MYA

Pseudocercospora + Sphaerulina 48.1 (39.34–57.86 MYA, 95% HPD) 84.46 (55.6–134.54 MYA, 95% HPD) 146.6–112.8 MYA

Pseudocercospora 13.31 MYA (9.49–17.28 MYA, 95% HPD) 27.66 MYA (17.8–44.27MYA, 95%
HPD) 39.9–30.6 MYA

P. eumusae + P. musae 8.22 MYA (5.6–11.07 MYA, 95% HPD) 17.87 MYA (11.5–28.71 MYA, 95%
HPD) 22.6–17.4 MYA

https://doi.org/10.6084/m9.figshare.12101058
https://doi.org/10.6084/m9.figshare.12101058
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Figure 2. Duplicated Protein-coding genes in the mitogenome of Pseudocercospora fijiensis. (A) A
truncated cox1 copy and a complete copy with an intron that are localized in tandem. (B) PCR
amplification including intra and intergenic regions between truncated cox1 copies. (C) Pairwise
alignments of truncated cox1 copies reveal a region of around 600 bp of low similarity between them
(non-identical sites appear in black in the alignment). (D) Primers used for the amplification of both
cox1 copies.

3.2. Comparative Analysis among Mitochondrial Genomes of Selected Mycosphaerellaceae

The mitochondrial phylogeny of selected species of Mycosphaerellaceae confirms evo-
lutionary relationships found in nuclear phylogenies (((Sphaerulina musiva + Sphaerulina pop-
ulicola) + (P. fijiensis + (P. eumusae + P. musae)) Zymoseptoria tritici) Zasmidium cellare) [10,12]
(Figure 3). We used this phylogeny to compare mitogenomes of Pseudocercospora fijien-
sis, P. eumusae, P. musae, Sphaerulina populicola, and S. musiva, and previously published
mitogenomes of Zymoseptoria tritici and Zasmidium cellare. They showed a GC content of
between 27% and 32% and a variability in genome size from 23,743 bp in “cellar mold”
Zasmidium cellare to 136,606 bp in poplar pathogen Sphaerulina populicola (Table 2, Figure 3
and Figure S2).

Annotated genes of seven selected Mycosphaerellaceae mitogenomes showed the
presence of a set of 14 Conserved Mitochondrial Protein-Coding Genes (CMPCGs), namely
the subunits of the electron transport chain complex I (nad1, nad2, nad3, nad4, nad4L, nad5
and nad6), complex III (cob), complex IV (cox1, cox2 and cox3), and ATP synthase subunits
(atp6, atp8 and atp9) (Figure 4, Table S2). There was a small ribosomal subunit RNA (rns), a
large ribosomal subunit rRNA (rnl), and a set of 24 to 38 tRNAs (Table 2).

In addition to these core genes, five out of seven mitogenomes also have hypothetical
protein coding genes, accessory genes, additional copies of CMPCGs and genetic mobile
elements (Figure 3, Table S2). Genome sizes, gene numbers and contents are heterogeneous
among species (Table 2, Figure 3). All annotated genomes were found to have truncated
gene duplications of some CMPCGs (Table S2). Alignments of truncated gene copies
showed their sequences were not identical. However, one of the copies always had a
complete coding sequence with a start and a stop codon (https://doi.org/10.6084/m9
.figshare.13542191 (accessed on 10 February 2021)). Mitochondrial genomes from P. musae
and P. eumusae also had RNA and DNA polymerases (Table S2).

https://doi.org/10.6084/m9.figshare.13542191
https://doi.org/10.6084/m9.figshare.13542191
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Figure 3. Comparison of mitochondrial genome sizes among Mycosphaerellaceae and contribution of, Conserved Mito-
chondrial Protein-Coding Genes (CMPCGs), hypothetical proteins, Homing Endonuclease Genes (HEGs) related Open
Reading Frames (ORFs) and accessory genes, to genetic content of mitochondrial genomes. Mitochondrial genomes of
Mycosphaerellaceae members are different in terms of genome size, and content of accessory genes and HEGs. Some
genomes contain only CMPCGs while others exhibit HEG invasion. Phylogenetic relationships were inferred here.
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Figure 4. Comparison of Conserved Mitochondrial Protein Coding Genes (CMPCGs) order and orientation among selected
Mycosphaerellaceae species. Gene order is not conserved across members even for closely related species except for
Sphaerulina species. Colored gene pairs were always recovered as neighbors; asterisks indicate atp8 is neighbor to cox1 in
P. eumusae. Ellipsis in P. musae and P. eumusae mean these genomes were both recovered in different contigs each (two and
three respectively); where nad6 and atp9 could not be assembled to any contig we not complete a circular mitogenome.

The order of CMPCGs among selected Mycosphaerellaceae mitogenomes was vari-
able, except for sister species Sphaerulina populicola and S. musiva (Figure 4). Despite this
variability, gene pair order was always conserved for gene pairs nad4L-nad5, nad3-nad2 and
atp8-atp6 among all mitogenomes (Figure 4). We mapped RNAseq assembled transcripts
from transcriptomes available online for S. musiva (SRR1652271), P. fijiensis (SRR3593877,
SRR3593879), P. eumusae (GDIK00000000.1) and P. musae (GDIN00000000.1) to P. fijiensis,
S. musiva, P. musae and, P. eumusae mitochondrial genomes and found neighbor genes
were always part of the same transcript for each species. This suggested that they were
transcribed as a single mRNA. RT-PCR amplification and subsequent Sanger sequencing
confirmed bicistronic expression for nad3-nad2, atp8-atp6 gene pairs in P. fijiensis (Figure 5).
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Major differences in genome size among members of Mycosphaerellaceae seemed to
be related to the invasive presence of HEG and ORFs in some mitogenomes. Zasmidium
cellare and Zymoseptoria tritici have compact mitogenomes with core mitochondrial genes
(CMPCGs) and lack of HEG. While, in other Mycosphaerellaceae, the presence of sequences
containing LAGLIDADG or GIY-YIG domains related to Homing Endonuclease Genes
(HEGs) was observed (Table 2). These ORFs ranged from one in Pseudocercospora musae and
P. eumusae to 28 in Sphaerulina populicola (Table 2). S. populicola has the largest mitogenome
report in this study (139,606 bp), suggesting HEGs might have caused fragmentation of
CMPCGs. In almost all instances, pieces of CMPCGs were collinearly distributed and each
fragment was found to be followed by an insertion of a HEG related sequence. An extreme
case of HEG invasion to CMPCGs was found in cox1 of Sphaerulina populicola (CDS: 1542
bp). This gene has twelve fragments distributed along 22,070 bp, each of them containing a
piece of cox1 followed by a HEG related domain (Figure S3).

3.3. Inferred Mitochondrial Phylogeny and Diversification Times

A robust phylogeny with posterior probabilities greater than 0.97 was recovered,
containing two main lineages (Pleosporales + Capnodiales). Divergence time estimates
using fossil calibration are shown in Figure 6, with horizontal bars representing the 95%
Highest Posterior Density (HPD) intervals for each node. According to our data, My-
cosphaerellaceae diverged from the rest of Capnodiales at the end of the Mesozoic or the
early Paleogene, about 66.66 MYA (55.47–78.27 MYA, 95% HPD). The earliest split within
Mycosphaerellaceae gave rise to Zasmidium cellare. The species Zymoseptoria tritici diverged
from (Sphaerulina + Pseudocercospora) also at the end of the Mesozoic or the early Paleogene
59.88 MYA (49.7–70.91 MYA, 95% HPD). The sister genera Sphaerulina + Pseudocercospora
diverged in the Eocene, 48.1 MYA (39.34–57.86 MYA, 95% HPD). The sister clade to the
species in the Sigatoka complex includes the species Sphaerulina musiva and S. populicola
sharing their last common ancestor during the Miocene, 13.39 MYA (9.39–17.69 MYA, 95%
HPD). The origin of Pseudocercospora members of the Sigatoka disease complex in bananas
was dated to around 13.31 MYA (9.49–17.28 MYA, 95% HPD) during the Miocene while the
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sister species P. eumusae and P. musae split from their shared ancestor in the late Miocene
8.22 MYA (5.6–11.07 MYA, 95% HPD) (Figure 6).
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Divergence times were also estimated using strict clock, in order to validate differences
between mean node ages using relaxed lognormal clock versus strict clock. For a strict
clock, 95% highest posterior density (HPD) intervals were significantly broader (27–131
MY) in comparison to (6–23 MY) and mean node ages were among 9–43 MY older (Table 3)
(https://doi.org/10.6084/m9.figshare.13542938.v1 (accessed on 10 February 2021)).

4. Discussion

In this study, the complete mitochondrial genome of a plant pathogenic fungus, Pseu-
docercospora fijiensis, was sequenced and annotated. We also used comparative analysis and
fossil calibration phylogenies to further understand the evolution of Mycosphaerellaceae
mitogenomes. To date, more than 700 complete fungal mitogenomes are available online,
but the mitogenomes of Pseudocercospora species have not been reported in the organelle
genome database of NCBI (August 2017). The mitogenome of P. fijiensis and related species
provides a molecular basis for further studies on molecular systematics and evolutionary
dynamics of Ascomycota fungi especially belonging to Dothideomycetes.

Ascomycetes mitochondrial genomes like most mitochondrial genomes along the tree
of life generally consist of: two ribosomal subunits (rnl and rns), a distinct set of tRNAs
and fourteen genes of the respiratory chain complexes (cox1, cox2, cox3, cob, nad1 to nad6,
atp6, atp8 and atp9) [17]. The mtDNA of P. fijiensis contains the 14 mitochondrial inner
membrane proteins involved in electron transport and coupled oxidative phosphorylation,
as well as rnl and rns (Figure 1). These genes were also found in mitochondrial genomes of
selected Mycosphaerellaceae species studied here. Additionally, DNA polymerases, RNA
polymerases and Reverse transcriptases were found in Pseudocercospora musae, P. eumusae
and S. populicola (Table S1). These polymerases and transcriptases might come from
mitochondrial plasmids integrated into their mitochondrial genomes [21,68,69].

A variable number of open reading frames of unknown function and introns related
to homing endonuclease genes (HEG), often including GIY-YIG or LAGLIDADG protein
domains, were found in several Mycosphaerellaceae genomes including P. fijiensis (Table 2;

https://doi.org/10.6084/m9.figshare.13542938.v1
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Figure 1). Despite not being ubiquitous in Ascomycete mitogenomes these mobile elements
are fairly common [16,17,22,67,70]. Differences in mitogenome sizes, gene order and
gene duplication among Mycosphaerellaceae are attributed to heterogeneous content of
accessory genes, and intron mobile sequences (Table 1, Figures 3 and 4).

The comparative study of Mycosphaerellaceae species selected mitogenomes showed
that sizes and gene order are not conserved among members of the family (Figures 3
and 4). Divergence times within sister clades Pseudocercospora 13.31 MYA (9.49–17.28
MYA, 95% HPD) and Sphaerulina 13.39 MYA (9.39–17.69 MYA, 95% HPD) are roughly
the same (Table 3; Figure 6). But gene order in Sphaerulina species is conserved while in
Pseudocercospora species it is not (Figures 4 and 6). Nonetheless, some gene pairs were
always found together, atp6-atp8, nad2-nad3, nad4L-nad5, in most studied species (Figure 4).
Gene order variation among Mycosphaerellaceae could be due to mtDNA rearrangements
caused by different processes, such as fusion, fission, recombination, plasmid integration
and mobility [21]. Aguileta et al. (2014) compared 38 fungal mitogenomes to understand
mitochondrial gene order evolution. They found evidence of gene rearrangements and
a relationship with intronic ORFs and repeats. Their results support recombination in
all fungal phyla. Despite rearrangements being pervasive in fungal mitogenomes, they
found conserved gene pairs nad2-nad3 and nad4L-nad5 in most species [20]. Bicistronic
transcription of atp6-atp8, nad2-nad3 gene pairs was confirmed experimentally in P. fijiensis
using RT-PCR (Figure 5). Maintenance of such proximity through evolution is important
for mitochondria functions and modifications of such proximity can negatively affect
organisms [71].

Even though sister species Sphaerulina musiva and S. populicola shared core gene content
and gene order, their genomes sizes were quite different (53,234 bp and 139,606 bp). This
could be due to a widespread occurrence of homing endonucleases HEG related to ORFs
and accessory genes in the S. populicola mitogenome (Table S1, Figure S2). Mitogenome size
variability due to the occurrence of mobile elements and accessory gene invasions was also
observed in nine phylogenetically related species belonging to the genera Aspergillus and
Penicilium [72]. In a phytopathogenic fungus Sclerotinia borealis mitogenome size expansion
was also shown to be due to plasmid-like sequences and HEGs related to ORFs [73].

Mitochondrial gene duplication is seldom described in fungi. HEGs invasion has
been previously described in fungal mtDNA, where truncated genes were ubiquitous [74].
P. fijiensis and other Mycosphaerellaceae mitogenomes have 2 to12 truncated copies of
Conserved Mitocondrial Protein Coding Genes (CMPCGs) (Table S1). Truncated CMPCGs
have partial sequences lacking start and/or stop codons. Truncated gene copies did not
have a particular distribution pattern; they were either close to each other or dispersed
in the genomes. Mardanov et al. (2014) found duplications of truncated extra copies
of atp9 and atp6 in the phytopathogenic fungus Sclerotinia borealis [73]. Two incomplete
copies of atp6 were also found on different strands of the mtDNA of Shiraia bambusicola
(Pleosporales) [46]. However, it is not common to find highly fragmented genes such as the
cox1 of Sphaerulina populicola (Figure S3). A similar case was reported in the mitogenome of
Sclerotinia borealis, where thirteen introns of cox1 and truncated copies of CMPCGs were
found [73].

Fossil calibrated phylogenies for the Mycospharellaceae had later diversification
times 66.66 MYA (55.47–78.27 MYA, 95% HPD) compared to previous studies 186.7–143.6
MYA [10]. The Sigatoka disease complex had an early divergent Pseudocercospora fijiensis,
that splits from sister species P. musae + P. eumusae 13.31 MYA (9.49–17.28 MYA, 95% HPD);
while sister species P. eumusae and P. musae split from their shared ancestor in the late
Miocene 8.22 MYA (5.6–11.07 MYA, 95% HPD) (Figure 6). Chang et al. (2016) estimated
the divergence of P. fijiensis from their last common ancestor with P. musae + P. eumusae to
be between 39.9–30.6 MYA and the divergence of P. musae and P. eumusae to be between
22.6–17.4 MYA. Diversification ages estimated here were based on mitochondrial markers
and Bayesian analysis using both relaxed and strict clock models. These have placed all
diversification times in the Mycosphaerellaceae at later times than those calculated by
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Chang et al. (2016) using nuclear markers, penalized maximum likelihood analysis and
strict clock, except for that of Sphaerulina (Table 3).

These differences in diversification times compared to Chang et al. (2016) could be
due to different calibration points and dating methods. Chang et al. (2016) implemented
r8s Likelihood methods [75] and a calibration at the origin of the Dothideomycetes crown
group (394–285 MYA) using previous Bayesian estimations [76]. For this study Bayesian
analysis in BEAST2 [60] using fossil calibration with a Metacapnodiaceae fossil was im-
plemented [64]. We found that Sigatoka disease members (13.31 MYA (9.49–17.28 MYA,
95% HPD)) appeared after the genus Musa (27.9 MYA (21.5–34.4, 95% HPD)) [77]. Species
member of this genus within the section Eumusa sensu latto comprise cultivated banana and
are the host of the Sigatoka disease complex. This naturally prompts a further question: did
the Sigatoka disease complex originate through host-tracking evolution? This hypothesis
explains that a pathogen is likely to be younger than the host until changes related to the
genetics of the pathogens or/and exogenous factors have observed alterations in their
virulence spectra [70]. We are currently limited in terms of a good taxonomic sampling
and biogeographical analysis for Pseudocercospora species in arriving at an answer to this
question. A host tracking coevolution hypothesis has also been proposed for Zymoseptoria
tritici (syn. Mycosphaerella graminicola) [5].

5. Conclusions

We successfully sequenced and analyzed mitochondrial genomes of Pseudocercospora
fijiensis, P. eumusae, P. musae, Sphaerulina populicola and S. musiva. A robust mitochondrial
phylogeny containing two main lineages (Pleosporales + Capnodiales) was obtained and
divergence times were estimated using fossil calibration. Fossil calibrated phylogenies are
reported for the first time here for fungal plant pathogens that had later diversification
times for the origin of all the species involved, compared to previous studies. Genome size
variation and organization among Mycosphaerellaceae could be related to the proliferation
of type I and II introns, gene duplications and possible plasmid insertions, phenomena
known for many fungal mitogenomes. Despite their order variability, some genes were
always recovered as neighbors in all mitogenomes analyzed. Bicistronic expression for
nad3-nad2, atp8-atp6 gene pairs in P. fijiensis was confirmed experimentally. Further gene
editing and virulence assays will be important to shed light on fungal adaptation and more
effective disease control strategies. Phylogenomic studies including a good taxonomic
sampling and biogeographical analysis for Pseudocercospora species will further clarify
whether the Sigatoka disease-causing species virulence flared-up after Musa domestication.
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