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Abstract: Fungi involved in lichen symbioses produce a large array of secondary metabolites
that are often diagnostic in the taxonomic delimitation of lichens. The most common lichen sec-
ondary metabolites—polyketides—are synthesized by polyketide synthases, particularly by Type
I PKS (TI-PKS). Here, we present a comparative genomic analysis of the TI-PKS gene content of
23 lichen-forming fungal genomes from Ascomycota, including the de novo sequenced genome of
Bacidia rubella. Firstly, we identify a putative atranorin cluster in B. rubella. Secondly, we provide
an overview of TI-PKS gene diversity in lichen-forming fungi, and the most comprehensive Type I
PKS phylogeny of lichen-forming fungi to date, including 624 sequences. We reveal a high number
of biosynthetic gene clusters and examine their domain composition in the context of previously
characterized genes, confirming that PKS genes outnumber known secondary substances. Moreover,
two novel groups of reducing PKSs were identified. Although many PKSs remain without functional
assignments, our findings highlight that genes from lichen-forming fungi represent an untapped
source of novel polyketide compounds.

Keywords: lichen; secondary compounds; comparative genomics; fungi; polyketide synthases (PKS);
Type I PKS

1. Introduction

Fungi synthesize an extensive array of chemically and functionally diverse natural
products, termed secondary metabolites, with roles in defense, self-protection and devel-
opment [1,2]. Based on their properties and the core enzymes and precursors involved in
their biosynthesis, four major groups of fungal secondary metabolites are distinguished:
polyketides, non-ribosomal peptides (NRPS), terpenoids and tryptophan derivatives [3].
Most fungal secondary metabolites are encoded by genes located adjacent to each other
(i.e., “clustered”) in the genome [2,4].

In lichen-forming fungi, polyketides are the most common class of secondary metabo-
lites [5,6]. Although lichen polyketides can be produced by mycobionts grown axenically
under appropriate conditions [7–10], they are usually formed in intact symbioses [11,12].
Many lichen polyketides are synthesized by Type I polyketide synthases (TI-PKS) [13],
the closest structural and functional analogue of which is the mammalian fatty acid syn-
thase [14]. In the minimal configuration, the domain structure of TI-PKSs always includes
a ketoacyl synthase (KS), an acyltransferase (AT), and an acyl carrier protein (ACP). These
domains are essential for polyketide synthesis [3]. This configuration can be supplemented
with domains such as starter unit-ACP transacylase (SAT), ketoreductase (KR), dehydratase
(DH), enoyl reductase (ER), methyltransferase (CMeT), and thioesterase (TE) [3].

The presence of optional domains has led to the classification of fungal PKSs into
three subgroups based on their ability to perform redox reactions. The first subgroup
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comprises non-reducing (NR) PKSs, which lack reductive domains and mainly produce
aromatic polyketides [13,15]. The second subgroup contains partially reducing (PR) PKSs,
typically having a single KR or a KR and DH domain. Finally, reducing (R) PKSs contain a
complete set of reductive domains, viz. KR, DH, and ER. All three subgroups can be found
in lichen-forming fungi. Previous work suggests various ecological roles of polyketides
in lichens ranging from light-screening and chemical weathering to allelopathic effects
and herbivore defense [3,6,16,17]. More broadly, secondary metabolite profiles including
polyketides are often characteristic of taxonomic groups and are thus extensively used to
identify lichens.

The first PKS gene from a lichen-forming fungus was cloned and analyzed by
Armaleo et al. in 2011 [18], and in recent years secondary metabolite research has ben-
efited from genome mining approaches in bacteria, fungi, and plants, uncovering hidden
diversity (e.g., [19–21]). The fact that genes encoding natural product biosynthetic path-
ways are often clustered in the genome [2] facilitates the identification of biosynthetic gene
clusters (BGCs) in whole genome sequences. In many cases, the chemical structure of
their products can be predicted from the biosynthetic logic of enzymes encoded in a BGC
and their similarity to known counterparts [22–25]. Despite this progress, the biosynthetic
genes for most secondary metabolites of lichen-forming fungi remain uncharacterized.
Observations that lichen-forming fungi contain more biosynthetic genes than characterized
chemical compounds also complicates clear gene assignments to particular metabolites.
Consequently, previous studies have focused only on a few well-known compounds,
e.g., usnic acid, grayanic acid, and atranorin (e.g., [18,25–29]). However, the increasing
availability of lichen-forming fungal genomes provides a largely untapped resource for
identifying additional biosynthetic genes [30].

Here, we investigate the diversity of BGCs in the de novo sequenced Bacidia rubella
(Hoffm.) A. Massal. (Ramalinaceae) genome within a two-level comparative genomic
framework. We aim to identify genes involved in the biosynthesis of atranorin, a secondary
metabolite present in many lichens including B. rubella. To achieve this, we examine the
secondary metabolite biosynthetic potential of B. rubella by comparing its genome to that
of Ramalinaceae species: Bacidia gigantensis, Ramalina intermedia and R. peruviana. The
secondary metabolites of these four closely-related species are known, and the chemical
substance profiles overlap. This facilitates comparison of the presence, absence and struc-
ture of PKS genes, and enables the evaluation of BGCs for previously characterized genes,
including those encoding for atranorin biosynthesis. We then extend this comparative
approach to include an additional nineteen, publicly available fungal genomes from the
Lecanoromycetes. Most of these genomes were obtained from pure cultures, with high
genome completeness and little contamination. By employing an in-silico approach com-
bined with phylogenetic reconstructions of previously characterized sequences, we gain
insight into the putative functions of TI-PKS BGCs in lichen-forming fungi. Our compar-
ative genomic results are congruent with previous work, indicating a high diversity of
BGCs in lichen-forming fungi that extends beyond what can be observed from chemical
profiles (e.g., [9,25]). This sheds new light on the potential of lichen–forming fungi to
produce different secondary metabolites, with direct relevance for natural product research
and production.

2. Materials and Methods
2.1. In Vitro Cultivation of the Bacidia rubella Mycobiont

The lichen-forming fungus Bacidia rubella was axenically cultivated from a specimen
collected from Germany (Bavaria, Lkr. Neuburg-Schrobenhausen, Markt Rennertshofen,
south-east of Bertoldsheim, Naturwaldreservat “Mooser Schütt”; mixed forest, on bark
of the trunk of Fraxinus sp., ca. 1.0 m above the ground, ca. 400 m asl.; M-0307710) in
April 2019. The mycobiont culture was obtained from a multispore discharge of a single
apothecium of B. rubella following the method of Yoshimura et al. [31]. Briefly, young and
middle-aged apothecia were detached from the thallus and soaked in sterile water for about
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an hour. Then, they were fixed to the top of a Petri dish lid using petroleum jelly while
keeping the lid slightly open to let the apothecia dry slowly. We used Bold’s Basal Media
(BBM) with doubled nitrate (25 g/L) as an initial substrate. Upon germination, the spores
were transferred to a malt-yeast extract medium (Lichen medium) [32]. The mycobiont
cultures were stored in a growth chamber (Wachstumsschrank Binder KBWF 720; Binder
GmbH, Tuttlingen) at 16 ◦C and 60% relative humidity. They were subcultured every two
to three months until a sufficient biomass for genomic analysis was obtained (ca. one year).

2.2. DNA Isolation and Sequencing

To obtain concentrated high-molecular-weight genomic DNA, about 1 cm2 of mycelium
was taken and ground in liquid nitrogen with a pre-cooled pistil. Genomic DNA was iso-
lated using the MagAttract HMW DNA Kit following the manufacturer’s protocol and
subsequent purification steps with magnetic beads (HMW genomic DNA from fresh or
frozen tissue protocol), resulting in a total yield of 1 µg. The final concentration was
9.53 ng/µL, measured with a NanoDrop 1000 spectrophotometer (Peqlab Biotechnologie,
GmbH, Erlangen, Germany) and Qubit 4 Fluorometer (ThermoFisher Scientific, Waltham,
MA, USA) using 1X dsDNA HS Assay Kits. DNA extraction, PCR amplification and Sanger
sequencing (using nrITS primers) were performed to evaluate possible contamination and
confirm the cultures’ identities. First, a paired-end library was constructed using Illumina
DNA Prep (earlier known as Nextera DNA Flex Library Prep) and sequenced on NovaSeq
6000 (NovaSeq SP 150 bp Paired-end Flow Cell, Illumina) at the Biomedical Sequencing
Facility (BSF, Vienna, Austria). A total concentration of 0.2 µg was used for Illumina library
preparation. To supplement the Illumina data, we prepared several Oxford Nanopore
libraries using the SQK-LSK109 kit and sequenced them on a MinION sequencer using
R9.4.1 flow cells (altogether, four runs were conducted). The total yield of DNA was in the
range of 0.12–0.31 µg.

2.3. Data Generation and Initial Read-Quality Assessment

To obtain a high-quality genome, we used a hybrid assembly approach using Illumina
short-reads and Oxford Nanopore long reads. In total, we produced 17 Gbp of raw paired-
end Illumina reads with 500× coverage. Raw data inspection with FastQC v0.11.7 [33]
indicated high-quality reads (quality score (Q) above 34) and no excessive adapter contam-
ination or read duplication. Basecalling of Nanopore raw signals was performed using
Flappie v2.1.3 (git commit 4de542f; https://github.com/nanoporetech/flappie) into a total
of 22 Gbp of raw sequences up to 94.5 Kb of read length.

2.4. Genome Completeness and Quality Assessment

The paired-end Illumina reads and unpaired nanopore reads were assembled us-
ing hybridSPAdes [34] with k-mer sizes of 33, 55, 77 and 127. To examine the assembly
for potential non-target contigs, de novo assembly was subjected to BLASTX using DIA-
MOND [35] against a custom database comprising the protein sets of the NCBI nr database
(downloaded in July 2018). The results of this DIAMOND search were used as input for
blobtools v1.1.1 [36]. The final results showed the absence of foreign contigs; therefore,
further filtering was unnecessary. The quality of the assembly and genome statistics were
assessed using QUAST v5.0.2 [37]. The completeness of the genomes was assessed using all
single-copy BUSCO genes of the ascomycota_odb9 set (part of the phylociraptor pipeline;
git commit 4cfd3c4; accessed on 2 July 2021; see below).

2.5. Dataset Construction

The dataset consists of the de novo sequenced genome of B. rubella and
twenty-two additional representative genomes of Lecanoromycetes, the largest radiation of
lichen-forming fungi. We included in our study twenty-three genomes obtained from pure
fungal cultures with the exception of B. gigantensis and R. intermedia, which were obtained
by sequencing the whole thallus (Table 1). The dataset aims to identify known and possible
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unknown BGCs placing them together with previously characterized PKSs from other fungi
and bacteria. The genomes were downloaded using phylociraptor, which automatically
downloads genomes from NCBI and combines them with additionally specified genomes
provided by the user [38]. We kept the original taxon names from NCBI for convenience,
even though the current taxonomic status might differ.

Table 1. Starting material, sequencing strategy and genome quality statistics of Ramalinaceae
genomes analyzed in this study.

Nuclear Genome Bacidia rubella Bacidia gigantensis Ramalina intermedia Ramalina peruviana

Substrate bark bark rock twig

Growth form crustose crustose fruticose fruticose

Source Axenic culture Whole thallus Whole thallus Axenic culture

Sequencing method Illumina NovaSeq SP;
MinION PromethION 24 Illumina MiSeq Illumina MiSeq

Raw reads produced 17 Gbp; 22 Gbp
(roughly) 32 Gbp 13.33 Gbp -

Coverage 500× 500× 290× 2.0×
Assembly size (Mb) 33.52 33.11 26.19 25.53

Largest scaffold (bp) 2,353,056 3,530,911 898,913 694,821

Average scaffold (bp) 657,358 1,379,912 148,821 25,764

Number of scaffolds 51 24 176 991

N50 1,771,855 1,807,239 282,362 43,940

GC (%) 45.28 44.67 51.90 50.58

Num of predicted genes 8773 8451 7405 6756

Num of predicted proteins 8728 8400 7355 6706

Number of unique proteins 2514 2343 1099 1088

tRNAs 45 51 50 50

Proteins with at least
one ortholog 5860 5711 6111 5467

Single-copy orthologs 2345 2345 2345 2345

Secreted proteins (SignalP) 678 612 464 384

2.6. Genome Annotation

The publicly available genomes were sequenced with different sequencing technolo-
gies at different times and are thus of varying quality. To make annotations comparable,
we performed ab initio gene calling and functional annotations for all of them. The down-
loaded genomes were analyzed using the smsi-funannotate (https://github.com/reslp/
smsi-funannotate; git commit 398a144; accessed on 4 June 2021) pipeline based on funan-
notate v.1.8.7 [39]. First, we removed duplicated identical contigs (funannotate clean) in
each assembly. To avoid long contig/scaffold names, we sorted our assembly by contig
length and then renamed the fasta headers (funannotate sort). Afterwards, we made a
soft repeat masking of the assembly using tantan (funannotate mask) [40]. The follow-
ing steps included gene prediction using the gene-callers Augustus v3.3.2 [41], snap [42],
GlimmerHMM v3.0.4 [43] and Genemark ES v4.68 [44]. For Augustus, we used Aspergillus
nidulans as a pre-trained species. All the pipelines were run on the cluster of the University
of Graz and our in-house Linux Server at LMU Munich. The genome statistics are summa-
rized in Table 4 (See Section 3.2. Biosynthetic Gene Composition in Twenty-Three Annotated
Fungal Genomes). The output files of the newly annotated genomes from NCBI and JGI
used in this study are available on figshare (http://doi.org/10.6084/m9.figshare.19487837).

https://github.com/reslp/smsi-funannotate
https://github.com/reslp/smsi-funannotate
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2.7. Annotation of Biosynthetic Gene Clusters

The identification, annotation and analysis of secondary metabolite BGCs in the
studied fungal genome sequences were performed with antiSMASH v6.0 as a part of the
smsi-funannotate pipeline and thus all BGC numbers are referred to antiSMASH prediction.
We chose all BGCs from the annotation results that contained orthologous core TI-PKSs for
our comparative genomic and phylogenetic analyses. The GBK output files with annotated
BGCs and predicted genes were visualized on the antiSMASH webserver (fungal version;
accessed: November 2021) [45].

2.8. Identification of Atranorin Biosynthetic Gene Cluster and Phylogeny

To identify atranorin candidate genes, we downloaded sequences from PKS16
of Cladonia grayi (GenBank: ADM79459; 2089 aa) and PKS23 of Stereocaulon alpinum
(GenBank: QXF68953; 2500 aa). Both PKSs were previously reported as possible
candidates involved in the biosynthesis of atranorin (see Section 3.1.1 Atranorin in
Section 3 Results and Discussion for details). As atranorin synthesis involves an
oxidation, the cluster must contain a cytochrome P450 as well as additional genes,
O-methyltransferase (OMT), and transporter gene [29]. The presence of these genes
was verified by our annotation results, showing OMT (PF08241), cytochrome P450
(PF00067), and transporter gene (PF00400) present in the putative atranorin BGC in
B. rubella. The gene arrows plot, comparing two atranorin clusters in Bacidia rubella and
Cladonia rangiferina, was drawn using the gggenes v0.4.1 R package (https://github.
com/wilkox/gggenes/; accessed on 20 April 2022).

We used BLASTP v2.9.0+ [46] to detect the orthologs of those characterized sequences
in all PKS sequences we identified on the twenty-three studied genomes. We filtered BLAST
output to retain sequences with a minimum identity of 30% over the alignment length and
a minimum query coverage of 50%, sorted for the highest bit score and lowest e-value.
Additionally, we used the best blast subject hits with the highest percent similarity to
the query gene. The best hits from the blast results (>30%) were selected for the PKS23
alignment. The taxon selection was confirmed with the clade from the large TI-PKS
phylogenetic tree.

We aligned the 29 identified amino acid sequences using MAFFT v7.480 [47] and
calculated the maximum likelihood using IQ-TREE v2.1.4 [48] with 1000 ultrafast
bootstrap replicates, after selecting the best-fitting substitution model (LG+G8+F) with
ModelFinder [49]. The final alignment comprised 29 sequences from 16 taxa, with 2320
amino acid sites, 2071 distinct patterns, 1756 parsimony-informative, 221 singleton
sites, and 343 constant sites.

2.9. Topology Test to Confirm Atranorin Biosynthetic Genes

Our maximum-likelihood phylogeny recovered the B. rubella (Ramalinaceae) atra-
norin gene (bacrubpred_000804) as sister to a clade comprised of Cladonia rangiferina
and S. alpinum (claranpred_005882 and QXF68953, respectively), which both belong
to Cladoniaceae. Miadlikowska et al. [50] recovered Parmeliaceae as the closest rela-
tive of Cladoniaceae, with a clade of these two families being sister to Ramalinaceae.
Thus, we tested if the monophyly of a clade comprising Bacidia + Cladoniaceae is
significantly supported against the expected phylogenetic relationship comprising
Parmeliaceae + Cladoniaceae. For this, we compared (1) an unconstrained ML tree to
recover Bacidia + Cladoniaceae as monophyletic, and (2) a constrained tree with Bacidia
sister to Cladoniaceae + Parmeliaceae (Figure 1).

https://github.com/wilkox/gggenes/
https://github.com/wilkox/gggenes/
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Figure 1. Two alternative topologies used for comparison in the topology test. Topology 1, recover-
ing Bacidia + Cladoniaceae as monophyletic; Topology 2, recovering Cladoniaceae + Parmeliaceae
as monophyletic.

For the topology test, we used PKS23 sequences in the strict sense, i.e., from the
species known as atranorin produces with Gyalolechia flavorubescens and Xanthoria elegans
as outgroups. The constrained tree can be multifurcating and need not contain all species;
therefore, finally, we shortened our tree to the taxa we wanted to test. First, we performed a
constrained search for both topologies using the LG model for the amino acid dataset. Then,
we concatenated both trees and implemented tree topology tests, based on the Kishino-
Hasegawa test [51], Shimodaira–Hasegawa test [52], Expected Likelihood Weight [53], and
approximately unbiased (AU) test [54] using IQ-TREE (-m LG -z concatenated_trees.treels
-n 0 -zb 10,000 -au). We considered tree topology to be unlikely if its test p-value was <0.05
(marked with a “-” sign). The trees were visualized and examined using FigTree 1.3.1 [55].

2.10. Identification of Orthologues and Orthogroups with BUSCO and OrthoFinder

Orthofinder uses a hybrid approach based on sequence similarity estimated by a
BLAST all-vs-all search with DIAMOND and subsequent reconstruction of gene trees and
a species tree to identify (single copy) orthologs and paralogs. To identify orthologues of
extracted PKSs, we inferred orthogroups with Orthofinder v2.5.4 [56] for (1) all predicted
proteins and (2) all extracted TI-PKSs, independently. The independent runs for two
datasets were conducted to check for the concordance of the final results. As the results
were not contradictory, we discussed the result of TI-PKS only. The Markov Cluster (MCL)
inflation parameter was set up by default (1.5). The trees utilized by Orthofinder were
reconstructed using Fasttree v2.1.10 (-m msa, -A muscle, and -S diamond (default)) [57].

2.11. Type I Iterative PKS Alignment

We performed a phylogenetic analysis of all TI-PKSs identified in twenty-three studied
genomes of Lecanoromycetes, to assess the relationship of non-reducing PKSs (NR-PKS)
and reducing PKSs (R-PKS) (including partly reducing PKSs). First, we prepared a list
of all identified TI-PKS based on our functional annotations. We retrieved the sequences
based on the corresponding gene ID numbers included in the gff3 file of each genome
using a custom python script (select_transcript.py: https://github.com/reslp/genomics/
blob/master/select_transcripts.py; accessed on 13 October 2021). We included predicted

https://github.com/reslp/genomics/blob/master/select_transcripts.py
https://github.com/reslp/genomics/blob/master/select_transcripts.py
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ketoacyl synthase (KS) amino acid alignment reported by Kroken et al. [14] to enhance our
dataset. The inclusion of reference PKSs enables us to compare the tree topology proposed
in Kroken et al. [14] to our larger sampling of putative PKS genes.

All TI-PKS sequences were combined into a single file and aligned using MAFFT
v7.480 [47]. We chose the E-INS-i alignment strategy because it performs better when
aligning sequences with several conserved motifs interspersed in long, unalignable
regions. We trimmed the alignment using trimAl v.1.4.rev15 [58]. Initial testing of
different trimming settings (e.g., -gappyout, -strict, and -automated), showed that
parameter combination (-gt 0.70 -resoverlap 0.70 -seqoverlap 60) is a good trade-off be-
tween removing ambiguously aligned sites and keeping phylogenetically informative
sites of the PKS sequences. The final data matrix consisted of 624 amino acid sequences
with 1049 amino acid sites, 1049 distinct patterns, and 1043 parsimony-informative
sites from 61 taxa (23 studied genomes and 38 other fungal and bacterial taxa from
Kroken et al. [14]). In addition, PKS23 from Stereocaulon alpinum (QXF68953) and PKS16
from Cladonia grayi (ADM79459) from NCBI were included. The alignment is available
on figshare (http://doi.org/10.6084/m9.figshare.19487837).

We selected the best-fitting substitution model (LG+F+G4) according to the Akaike
and Bayesian Information Criteria using the ModelFinder implemented in IQ-TREE [49] on
our TI-PKS alignment. We calculated a phylogenetic tree using maximum-likelihood (ML)
analysis implemented in IQ-TREE v2.1.4 [48], with 1000 ultrafast bootstrap replicates [59].
We also calculated a tree using RAxML-NG v1.0.3 [60] with parameters –all –bs-trees
100 –model LG+F+G4 –threads 16 –data-type AA. The inferred phylogenetic tree was then
rooted with Bacterial Type II polyketide sequences using phyx [61].

To compare the congruence of the trees, we utilized Dendroscope v3.7.6 [62] using
Tanglegram (Algorithms). The resulting tree was visualized using FigTree 1.3.1 [55] and a
custom R script, with additional annotations added in Adobe Illustrator v24.0.3.

3. Results and Discussion
3.1. General Characteristics of De Novo Bacidia rubella Genome

We report the de novo assembled genome of the lichen-forming fungus
Bacidia rubella obtained from an axenic fungal culture. Our hybrid approach to se-
quencing, using Illumina short-read with Oxford Nanopore long-read, resulted in a
high-quality genome assembly of B. rubella. The final assembly had a size of 33.52 Mb in
51 scaffolds, an N50 of 1.77 Mb (Table 1), and was 98% BUSCO complete (fungi_odb9).
Using multiple ab-initio gene-calling methods, 8773 genes were identified (Table 1).
The similarity of standard genome metrics between B. rubella and B. gigantensis [63]
suggests a high-quality B. rubella genome (Table 1).

The genome of B. rubella contains 31 BGCs (Table 2), including six non-reducing and
four reducing TI-PKS sequences. This TI-PKS biosynthetic arsenal is similar to that of
B. gigantensis, containing 11 identified TI-PKS genes (seven NR-PKSs and four R-PKSs,
respectively; Table 2). Despite the overall similarity of TI-PKS gene numbers in B. rubella
and B. gigantensis, our BLAST-based comparison of these biosynthetic clusters showed
only two significant hits between the two species: one for R-PKS (bacgigpred_003963 and
bacrubpred_000636), and one for NR-PKS (bacgigpred_008278 and bacrubpred_000202),
with 62.8 and 63% similarity in amino-acid sequences, respectively. This result is not
surprising, given that both fungal species differ in their secondary metabolite profiles.
The only secondary compound of B. rubella is atranorin, which is the most widespread
secondary metabolite found in the genus Bacidia s. lat. (Ekman 1996) [64]. In contrast, B.
gigantensis is currently the only known Bacidia species to produce homosekikaic acid [65].

http://doi.org/10.6084/m9.figshare.19487837
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Table 2. Overview of biosynthetic gene clusters and polyketide synthase families found in the
twenty-three studied fungal genomes. The occurrence of the major secondary substance of B. rubella,
atranorin, is highlighted. All sequences except the de novo sequenced B. rubella genome are from
NCBI, if not otherwise specified in the first column.

Species
(NCBI)

Species
Tag

Genome
Size
(Mb)

No of
Clusters

Type I
PKS

(Total)

Type I
NR-PKS

Type I
R-PKS PR-PKS

Hybrid
PKS-

NRPS

NRPS/
Putative
NRPS

Metabolites
Reported

Alectoria sarmentosa
(ASM973377v1) alesarpred 39.5 36 12 5 7 0 1 2/12

Usnic acid,
alectoronic acid

(major), thamnolic,
squamatic and
barbatic acids

Bacidia gigantensis
(ASM1945646v1) bacgigpred 33.1 31 11 7 4 0 1 5/10 Homosekikaic acid

Bacidia rubella
(this study) bacrubpred 33.5 31 10 6 4 0 0 3/7 Atranorin

Cladonia grayi
(JGI: Cgr/DA2myc/
ss v2.0)

clagrapred 34.4 48 21 8 12 1 0 2/11

4-O-
demethylgrayanic

acid, colensoic acid,
confumarprotoce-

traric acid,
divaronic acid,

fumarprotocetraric
acid, grayanic acid,
protocetraric acid,
stenosporonic acid

Cladonia macilenta
(Clmac_v1) clamacpred 36.8 55 25 15 10 0 2 3/9

Thamnolic acid,
barbatic acid,
didymic acid,

squamatic acid,
usnic acid,

rhodocladonic acid

Cladonia
metacorallifera
(KoLRI002260_v2)

clametpred 36.6 51 24 10 14 0 1 1/11
Usnic acid, didymic
acid, squamatic acid,
rhodocladonic acid

Cladonia rangiferina
(ASM614605v1) claranpred 34.5 68 34 14 20 0 2 3/12

Atranorin,
protocetraric acid,
fumarprotocetraric

acid

Cladonia uncialis
(ASM292778v1) clauncpred 30.7 61 30 15 14 1 2 1/11 Usnic acid,

squamatic acid

Cyanodermella
asteris
(Astra)

cyaastpred 28.6 35 11 5 5 1 1 3/10 Astin, skyrin

Dibaeis baeomyces
(JGI) dibbaepred 34.2 55 27 11 15 1 0 4/14 Baeomycic acid,

squamatic acid

Endocarpon
pusillum
(Z07020)

endpuspred 36.2 32 14 4 9 1 1 3/4 Not reported

Evernia prunastri
(ASM318436v1) eveprupred 40.2 86 36 16 19 1 4 3/20

Usnic acid,
atranorin, and

chloroatranorin,
evernic acid

Graphis scripta
(JGI: CBS 132367) grascrpred 34.8 54 21 6 15 0 1 6/14 Not reported

Gyalolechia
flavorubescens
(KoLRI002931)

gyaflapred 34.4 41 16 8 8 0 1 3/8 Parietin, emodin,
fallacinal, fragilin

Lasallia hispanica
(ASM325442v1) lashispred 39.7 28 15 8 6 1 1 0/3

Gyrophoric acid,
lecanoric acid,

umbilicaric acid,
skyrin

Lasallia pustulata
(ASM863619v1) laspuspred 32.9 26 17 9 7 1 0 0/4

Gyrophoric acid,
lecanoric acid,

hiascinic acid, skyrin

Letharia columbiana
(Lecol_v1.0) letcolpred 52.2 43 14 7 7 0 2 3/6 Vulpinic acid and

atranorin
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Table 2. Cont.

Species
(NCBI)

Species
Tag

Genome
Size
(Mb)

No of
Clusters

Type I
PKS

(Total)

Type I
NR-PKS

Type I
R-PKS PR-PKS

Hybrid
PKS-

NRPS

NRPS/
Putative
NRPS

Metabolites
Reported

Letharia lupina
(Lelup_v1.1) letluppred 49.2 48 18 11 7 0 2 3/11

Vulpinic acid and
atranorin in the

cortex, with
norstictic acid in the

hymenium of the
apothecia

Pseudevernia
furfuracea
(Pfur_oli_TBG_2151)

psefurpred 37.8 48 26 8 18 0 3 3/11
Atranorin, physodic

acid and
oxyphysodic acid

Ramalina intermedia
(RamPxa02_v1.0) ramintpred 26.2 54 31 13 17 1 3 5/9

Usnic acid (major);
medulla with

homosekikaic acid
(major), sekikaic

acid (major), 4’-O-
methylnorhomosekikaic

acid (minor)

Ramalina peruviana
(RamPxa01_v1) ramperpred 25.5 43 17 9 7 1 1 4/10

Usnic acid,
homosekikaic acid
(major), sekikaic
acid (major), and

4’-O-
methylnorhomosekikaic

acid and 4’-O-
methylnorsekikaic

acid (minor)

Usnea hakonensis
(Uhk_1.0) usnhakpred 40.4 70 23 10 12 1 3 5/22 Usnic and norstictic

acids

Xanthoria elegans
(ASM1131630v1) xanelepred 44.2 63 25 7 18 0 1 7/17

Parietin (major),
fallacinal, emodin,

teloschistin and
parietinic acid

The two species Ramalina intermedia and R. peruviana belong to the same family as the
genus Bacidia but differ in having many more BGCs compared to B. gigantensis and B. rubella.
In detail, R. intermedia contains 54 BGCs, including thirteen non-reducing, seventeen
reducing and one partially reducing TI-PKS sequences. Ramalina peruviana, on the other
hand, contains 43 BGCs including nine non-reducing and seven reducing genes, and one
partially reducing gene (Table 2).

3.1.1. Atranorin

Atranorin is the main secondary compound known in B. rubella [64], and its biosyn-
thetic pathway has received attention in previous studies on lichen-forming fungi [26,29].
Our phylogenetic results—which included previously identified sequences of genes in-
volved in atranorin production from Cladonia species and Stereocaulon alpinum—revealed a
putative PKS23 homolog in B. rubella. This is consistent with the phylogenetic investigation
of Kim et al. [29], where PKS23 sequences were reported to group together with sequences
from atranorin-producing lichen-forming fungi (see Section 3.3 Type I PKS phylogeny). The
domain configuration of B. rubella PKS23 also supports our phylogenetic results, showing
the same organization of putative atranorin BGC in B. rubella as has been reported for
Cladonia rangiferina (Figure 2). The B. rubella PKS23 cluster contains a cytochrome P450
domain (atr2) required for oxidation, as well as an O-methyltransferase (OMT) domain
(atr3) and transporter gene (atr4), which are involved in atranorin biosynthesis [29]. A
BLASTp search of the OMT domain (atr3) in B. rubella PKS23 resulted in 36% protein
sequence identity to Trt5 (UniProtKB accession no. Q0C8A3). This level of similarity is
consistent with previous findings by Kim et al. [29] for C. rangiferina PKS23.
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Figure 2. Organization of putative atranorin BGCs in Bacidia rubella and Cladonia rangiferina. The
genes PKS23 (atr1), Cytochrome 450 (atr2), O-methyltransferase (atr3), and transporter gene (atr4)
are present on the left side of the gene arrow plot. The BLAST percent similarity between two genes
is 73% for atr1, 74% for atr2, 78% for atr3, and 91.5% for atr4. APH, phosphotransferase enzyme
family (PF01636); DUF, domain of unknown function; FMO-like, flavin-containing monooxygenase
family (PF00743); HCP60, HSP60 chaperone family (PF00118); HP, hypothetical protein; MFS, Major
Facilitator Superfamily, transporter gene (PF07690); R-PKS, reducing PKS (in this case from R-VIII
group); OrsD, Orsellinic acid/F9775 biosynthesis cluster protein D family (PF12013); TFIIH, Ssl1-like
protein, subunit of the transcription factor II H complex (PF04056); Sugar_tr, Sugar transporter family
(PF00083); WD-40, WD40 repeat (PF00400).

The newly identified, putative PKS23 sequence of B. rubella was recovered as a sister to
PKS23 sequences from C. rangiferina and S. alpinum, suggesting a sister-group relationship
of Bacidia with Cladoniaceae (See Figure 3 in Section 3.3: Type I PKS Phylogeny), whereby
this clade formed a sister-group to the PKS23 sequences from Parmeliaceae (schematically
shown in Figure 1).

This is in contrast to the family-level taxonomy previously established, e.g., by
Peršoh et al. [66] and Miadlikowska et al. [50], where Cladoniaceae is more closely re-
lated to Parmeliaceae than to Ramalinaceae. To test the monophyly of the clade comprising
Bacidia + Cladoniaceae compared to a group comprised of Parmeliaceae and Cladoniaceae,
we performed a phylogenetic tree topology test on the PKS23 dataset. Specifically, we
compared the unconstrained ML tree recovering Bacidia + Cladoniaceae as monophyletic
(Topology 1) versus the constrained tree recovering Cladoniaceae + Parmeliaceae as mono-
phyletic and Bacidia sister to that branch (Topology 2; Figure 1).

Our results showed that the topology constraining Cladoniaceae + Parmeliaceae as
monophyletic is significantly less likely (0.8%, Figure 1, Table 3). Possible explanations
are that the ancestor of Bacidia may have acquired the PKS23 gene from an ancestor
of Cladoniaceae via horizontal gene transfer or that the PKS23 genes were generated
by convergent evolution. It is obvious that these hypotheses require additional testing
with augmented sampling of PKS23 sequences from Cladoniaceae, Parmeliaceae, and
Ramalinaceae. Both scenarios may also explain the scattered occurrence of atranorin
in Ramalinaceae.
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Table 3. Parameters for the topology test. Topology 1, recovering Bacidia + Cladoniaceae as mono-
phyletic; Topology 2, recovering Cladoniaceae + Parmeliaceae as monophyletic. Value for the
Kishino–Hasegawa test (Kishino and Hasegawa, 1989), Shimodaira and Hasegawa, 1989), expected
likelihood weights (Strimmer and Rambaut, 2002) and approximately unbiased (AU) test (Shimodaira,
2002) are given.

Tree logL Deltal p-KH p-SH c-ELW p-AU

Bacidia + Cladoniaceae −28,054.52811 2.062 × 10−8 0.495+ 0.814+ 0.496+ 0.566+

Cladoniaceae + Parmeliaceae −28,108.54142 54.013 0.0126− 0.0126− 0.00853− 0.0081−
deltaL: logL difference from the maximal logl in the set. p-KH: p-value of one-sided Kishino–Hasegawa test (1989).
p-SH: p-value of Shimodaira–Hasegawa test (2000). c-ELW: Expected Likelihood Weight (Strimmer and Rambaut
2002). p-AU: p-value of approximately unbiased (AU) test (Shimodaira, 2002).

Even though a PKS16 gene from Cladonia grayi was first shown to be involved in
grayanic acid production by Armaleo et al. [18], a homolog of this gene from C. rangiferina
was later suggested to be involved in atranorin production by Elshobary et al. [26]. In our
phylogeny, these genes group together with genes from several other Cladonia and lichen-
forming fungi (PKS16 clade, See Figure 3 in Section 3.3: Type I PKS Phylogeny), but not
all of them are known as atranorin producers (Table 2). Moreover, atranorin is a B-orcinol
depside, and a corresponding biosynthetic gene would require a CMeT domain to add a
methyl group to the depside ring. This is not the case for PKS16, which is thought to be
involved in the synthesis of orcinol depsides [25]. Our comparison of known metabolites in
lichen-forming fungi containing PKS16 does not reveal a clear pattern either (See Figure 3 in
section: Type I PKS Phylogeny, Group NR-I, PKS16 clade; Table 2). As such, the biosynthetic
role of PKS16 genes remains elusive.

3.1.2. Homosekikaic Acid

Homosekikaic acid is a major secondary metabolite in Bacidia gigantensis as well as in
both Ramalina intermedia and R. peruviana. However, it has not been found in B. rubella. To
our knowledge, there was no putative PKS reported as being involved in the biosynthesis of
homosekikaic acid, and its biosynthesis has not been characterized using gene expression or
heterologous expression experiments. To identify candidate genes involved in the biosyn-
thesis of homosekikaic acid in these three species, we used BLASTp on all predicted BGC
sequences from the two Bacidia and Ramalina species. We identified three BGC candidates
with BLAST similarity ranging from 53 to 93%, but none of them were a TI-PKS. Instead,
we recovered Type 3-PKS homologs from B. gigantensis (BGC 1.2), R. intermedia (BGC 6.1)
and R. peruviana (BGC 223.1) as potential homosekikaic biosynthetic genes; however, none
of B. rubella BGCs showed a high similarity to them. Furthermore, our TI-PKS phylogeny
did not reveal any clade with both Ramalina species and B. gigantensis that excluded B.
rubella. A possible explanation for the observed pattern is that the BGC responsible for
synthesizing homosekikaic acid is present in the genome of B. rubella, but not expressed,
and therefore homosekikaic acid is not produced in detectable amount. This hypothesis
requires testing with gene expression experiments and analyses of substance profiles.

3.1.3. Other Biosynthetic Genes Identified In Silico in the Two Bacidia Species

Using further in silico analyses with antiSMASH, we were able to identify genes en-
coding enzymes to synthesize secondary metabolites such as clavaric acid (100% similarity)
and squalestatin S1 (40% similarity). These terpenes have been identified in both Bacidia.
Moreover, we identified a monascorubrin biosynthetic gene in B. rubella confirmed by
100% BLAST identity to the monascorubrin biosynthetic gene from Talaromyces (Penicillium)
marneffei (PKS3: HM070047) [67]. Apart from monascorubrin biosynthesis, PKS3 genes
were suggested to be involved in the production of the well-known toxin citrinin, as well as
a yellow pigment, ankaflavin [67]. Monascorubrin and its related compounds are polyke-
tides used as natural red colorants for food [68]. In B. rubella, monascorubrin could be
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responsible for the characteristic orange to the orange-brown coloration of the apothecia.
However, these substances have not yet been reported from B. rubella.

In the genome of B. gigantensis, we identified genes possessing high sequence
similarity with genes involved in the production of pyranonigrin E (100% similarity to
BGC0001124), naphthopyrone (100% similarity to BGC0000107), and melanin (100%
similarity to BGC0001265). However, in most cases, only a part of the sequences showed
a high percentage of similarity; therefore, our in-silico based report is provisional.
Additional detailed studies are necessary to confirm these first functional assignments.

3.2. Biosynthetic Gene Composition in Twenty-Three Annotated Fungal Genomes

The basic statistics for all twenty-three studied genomes are provided in Table 4.
According to BUSCO homology searches against the fungal dataset (fungi_odb9), most
genomes were highly gene complete. We included only two genomes with completeness
below 90%, namely Alectoria sarmentosa (75.8%) and Graphis scripta (88.6%). The number
of predicted genes was in the range of 6756 to 11,072. The lowest number of predicted
genes was observed for Ramalina peruviana (most likely due to issues in the quality of the
assembly given the lower sequencing depth of 2×), and the highest number was observed
for Evernia prunastri (Table 4).

Table 4. Genome basics for twenty-three studied fungal genomes.

Assembly No. of
Contigs

Largest
Contig (bp)

Total Length
(Mb) GC (%) N50 (bp) N75 (bp) BUSCO

Completeness (%)
Genes
Predicted

Proteins
Predicted

Alectoria
sarmentosa 915 400,628 39.9 40.22 93,085 44,808 75.8 8440 8406

Bacidia
gigantensis 24 3,530,911 33.1 44.67 1,807,239 1,552,797 95.8 8451 8400

Bacidia rubella 246 2,353,056 33.7 45.25 1,771,855 1,480,693 97.9 8773 8728

Cladonia grayi 414 958,967 34.6 44.44 243,412 104,892 96.8 9215 9168

Cladonia
macilenta 240 2,265,542 37.1 44.68 1,469,036 1,071,353 96.8 8183 8135

Cladonia
metacorallifera 30 2,400,105 36.6 44.91 1,591,850 1,304,658 97.5 8357 8313

Cladonia
rangiferina 1008 751,829 35.6 45.46 273,041 142,056 98.2 9264 9218

Cladonia
uncialis 2124 143,175 32.8 46.38 34,871 18,367 91.7 8706 8645

Cyanodermella
asteris 37 3,440,352 28.6 53.29 1,790,936 1,105,189 97.2 7946 7851

Dibaeis
baeomyces 1369 352,342 35.2 47.02 70,496 37,098 97.9 9799 9756

Endocarpon
pusillum 908 803,103 37.1 46.00 178,225 78,254 93.1 8446 8392

Evernia prunastri 277 732,541 40.3 48.97 264,454 154,311 97.9 11,072 10,979

Graphis scripta 1453 383,549 36.2 46.66 78,723 38,837 88.6 9808 9744

Gyalolechia
flavorubescens 36 2,816,824 34.4 41.89 1,693,300 1,515,355 97.5 8062 8008

Lasallia
hispanica 1619 615,827 41.2 51.28 145,035 51,438 97.9 8218 8162

Lasallia
pustulata 43 3,307,933 32.9 51.67 1,808,250 1,551,388 98.2 6973 6936

Letharia
columbiana 161 2,188,364 52.2 39.57 666,803 377,091 92.0 9966 9890

Letharia lupina 31 3,031,725 49.2 38.73 2,098,233 1,574,492 96.2 9266 9206

Pseudevernia
furfuracea 46 3,053,396 37.7 47.86 1,178,799 859,355 97.2 9148 9082
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Table 4. Cont.

Assembly No. of
Contigs

Largest
Contig (bp)

Total Length
(Mb) GC (%) N50 (bp) N75 (bp) BUSCO

Completeness (%)
Genes
Predicted

Proteins
Predicted

Ramalina
intermedia 196 898,913 26.2 51.89 273,318 142,876 97.5 7405 7355

Ramalina
peruviana 1657 694,821 26.9 50.75 40,431 15,829 90.0 6756 6706

Usnea
hakonensis 879 624,317 41.1 45.57 166,123 71,534 96.5 10,700 10,641

Xanthoria
elegans 261 990,773 44.3 40.70 385,707 188,494 98.2 9033 8911

We investigated the BGCs predicted in all twenty-three studied genomes that belong
to different taxonomic groups and synthesize a plethora of secondary metabolites (Table 2;
Table 4). Our results revealed a high number of BGCs, with an average of 48 clusters per
genome. The smallest number was recovered in the genome of Lasallia pustulata (26 BGCs),
and the highest in Evernia prunastri (86 BGCs), which agrees with the results reported by
Calchera et al. based on 15 lichenized genomes [6]. In nearly half the genomes, NR-PKSs
are more common than R-PKS (Table 2). This evidence is in contrast to previous results
reporting that R-PKS gene numbers exceed the number of NR-PKS genes [6]. As such, a
larger data set is necessary to confirm whether R-PKS or NR-PKSs are more numerous in the
genomes of lichen-forming fungi. The total number of TI-PKSs identified across all studied
genomes was 478. Of those, 44.35% were of the non-reducing (NR), 53.35% of reducing
(R), and 2.3% of partly reducing (PR) PKSs. The highest number of PKS genes was found
in E. prunastri (36 TI-PKS clusters) and C. rangiferina (34 clusters) and the lowest numbers
were in B. rubella (10 TI-PKS clusters), B. gigantensis (11 clusters), and Cyanodermella asteris
(10 clusters) (Table 2).

Our broad genomic sampling provides phylogenetic context for the NR-PKS genes
of B. rubella and B. gigantensis. The six TI-PKS genes from B. rubella are NR-PKSs (three
in Subclade I and three in Subclade II), while for B. gigantensis seven TI-PKS genes are
NR-PKSs (all are in Subclade I).

The discrepancy between the large number of recovered TI-PKS sequences and the
few experimentally verified secondary metabolites (Table 2) raises questions about the
role these genes play in the secondary metabolism, and about the products they produce
(e.g., [9,24,25,29]. However, results linking PKS genes to lichen secondary metabolites
beyond in silico methods are still scarce.

3.3. Type I PKS Phylogeny

Our maximum-likelihood phylogeny of TI-PKS with a total of 624 sequences recovered
from twenty-three fungal genomes and supplemented with previously published sequences
is the largest analysis of biosynthetic gene content of various TI-PKS genes in lichen-forming
fungi to date.

The TI-PKSs phylogenetic tree is divided into six main subgroups (Figure 3): Bacterial
Type II PKS (including bacterial and mitochondrial ketoacyl-ACP-synthetases; used as
outgroup), Bacterial Type I PKS (also including some fungal sequences), animal fatty acid
synthase (FAS), PR-PKS, NR-PKS, and R-PKS. Lichen PKS genes are distributed across the
three of these main subgroups, viz. PR-PKS, NR-PKS, and R-PKS. These groups were also
recognized by Kroken et al. [14] and Calchera et al. [6], but both used the single KS domain
for tree reconstruction, and the latter subsumed PR-PKS and R-PKS.
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Figure 3. Maximum-likelihood phylogeny of Type I PKS genes inferred by IQ-TREE using Type II
Bacterial PKSs as outgroup. Clades containing lichen-forming fungi are highlighted and the corre-
sponding Orthogroups (1 to 9, respectively) are indicated by different colors. PR-PKS corresponds
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to Orthogroup 1 (green); the nine NR-PKS groups (NR-I to NR-IX) belong to Orthogroups 2, 3
and 4 (dark blue, pink and light green, respectively); the ten R-PKS groups (R-I to R-X) belong
to Orthogroups 5, 6, 7, 8, and 9 (light blue, red, peach, orange, and lilac, respectively). Char-
acteristic secondary substances for the groupings are given in the corresponding colored boxes.
Groups not containing lichen-forming fungal genes are indicated by grey boxes. For each group, the
domain arrangement of PKS is highlighted with distinct colors: SAT—starter unit-ACP transacy-
lase; KS—ketoacyl synthase; AT—acyltransferase; ACP—acyl carrier protein; KR—ketoreductase;
DH—dehydratase; ER—enoyl reductase; CMeT—methyltransferase; TE—thioesterase; HTH—helix-
to-helix; ADH—adhydrolase; NAD—NAD-binding; Carn—Choline/Carnitine O-acyltransferase
domain.

• TI-PKS domain content mostly corresponds to phylogeny

TI-PKS genes encode for multi-domain enzymes, with each domain executing a specific
function. The order and domain content of the PKSs thus defines the class of polyketides
produced by the corresponding BGC. The presence or absence of individual domains has
led to the classification of fungal PKSs into three main subgroups. The first subgroup
comprises NR-PKSs, which lack reductive domains. The generalized domain content of
NR-PKS in fungi studied here is SAT-KS-AT-DH-ACP-[ACP]-HTH-CMeT-[TE or ADH or
NAD]-[Peptidase S9] (NR-I to NR-IX; Figure 3).

The second subgroup comprises PR-PKSs containing a single KR domain or KR and
DH domains. The generalized domain content in PR-PKS according to our phylogeny is
KS-AT-[DH]-KR-ACP (PR-PKS; Figure 3).

Finally, the third subgroup—R-PKSs—contains a complete set of reductive domains,
viz. KR, DH, and ER and thus exhibit the following domain structure: KS-AT-DH-CMeT-
ER-KR-ACP-[Carn] (R-I to R-X; Figure 3). Additional domains, such as helix-to-helix
(HTH), adhydrolase (ADH), NAD-binding (NAD), Peptidase S9, and Choline/Carnitine
O-acyltransferase domain (Carn) were not shown in the previous studies of TI-PKS in
lichen-forming fungi. We discuss them in detail below in the corresponding sections.

• The discrepancy of grouping PKS genes

Assigning PKS genes to different groups in fungi on the account of gene domain
composition and their synthesized products was introduced by Kroken et al. [14] and later
refined based on DH-domain pocket sizes by Ahuja et al. [69] and Liu et al. [70]. This
classification was used in several studies investigating PKS gene diversity in lichen-forming
fungi, e.g., [29,71]. Despite this existing classification, it remains unclear if all groups indeed
form monophyletic clades and if all genes from one group synthesize the same (or at least
chemically similar) substances. In our phylogeny, previously proposed groups were not
always monophyletic (e.g., NR-II; Figure 3), and experimentally characterized genes from
one group have been shown to produce different substances (e.g., PKS81 and AGNPKS1 in
NR-V; Figure 3). Additionally, we performed an ortholog clustering using Orthofinder on
all TI-PKS sequences to provide an objective way of identifying groups of sequences. This
resulted in nine orthogroups (Figure 3: colored clades), named Orthogroup 1 to Orthogroup
9, respectively. Orthogroup 1 corresponds to the PR-PKSs (Figure 3). NR-PKSs are spread
across Orthogroups 2, 3, and 4 but none of them correspond explicitly to any of the nine
groups identified before by Pizarro et al. [71] and Kim et al. [29]. Orthogroups 5, 6, 7, 8, and
9 contain R-PKSs, where only Orthogroup 6 (R-IV) and 7 (R-V) agree with groups defined in
Kroken et al. [14] and Punya et al. [72]. However, all Orthogroups identified here form well
supported clades in the PKS phylogeny (Figure 3). The discrepancy between our results
and previous studies needs to be investigated in subsequent studies. In our phylogeny,
several groups of the NR-PKS and R-PKS showed differences in the PKS domains present
corresponding to the supported clades; these groups do contain support from different
sources and thus merit discussion (see below).
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3.3.1. Lichen-Forming Fungi Contain Only a Few Partially Reducing PKSs in the
Phylogenetic Neighbourhood to Bacterial PKSs

The PR-PKS sequences formed a well-supported clade sister to bacterial Type I PKS
sequences with other fungal PKSs (PR-PKS; Figure 3). Their domain configuration is KS-
AT-[DH]-KR-ACP, including only a single reductase domain (KR). In contrast to the large
NR- and R-PKS groups, PR-PKS contains genes mainly from Aspergillus and Penicillium,
and only a few genes from lichen-forming fungi. Genes from the studied fungal genomes
have the typical PR-PKS domain composition, but in two genes from two Ramalina (ram-
intpred_001715 and ramperpred_002012), the DH domain was missing. PR-PKS genes
form a sister clade to Bacterial Type I PKSs (Figure 2). Bacterial T1-PKSs often possess a
KR domain catalyzing the first step in the reductive modification of beta-carbonyl centers
in the growing polyketide chain. This domain requires NADPH to reduce the keto- to a
hydroxy group [73].

The “simple” domain configuration of Bacterial and PR-PKS genes compared to NR-
and R-PKSs has not escaped our attention. Our study was not designed to specifically test
how PKS genes in Ascomycetes were acquired and how they diversified. However, the
placement of Bacterial and NR-PKS sequences as the earliest branches in our phylogeny
supports the hypothesis suggested by Kroken et al. [14] that fungal TI-PKS genes could
have been acquired by an ancient horizontal gene transfer event between bacteria and
fungi. Additionally, our results suggest that ancestral TI-PKS genes may have been partially
reducing. Under this scenario, NR- and R-PKS evolution could have been connected to
domain structure modification (such as gaining SAT in NR-PKS) and subsequent func-
tional diversification. However, this cannot be concluded with certainty without a greatly
expanded sample of genomes from other fungal groups, including genomes from early
branching fungal lineages and comprehensive ancestral state reconstructions.

3.3.2. Fungal PKSs Producing Non-Reduced Polyketides

The Diversity of NR-PKS Sequences

In previous studies, NR-PKSs were divided into nine major groups based on protein
sequence similarity and PKS domain content [14,29,69,71]. Similar to previous studies, we
observed characteristic domain configurations for the different clades in our phylogeny.
The domain structure of NR-PKSs in the studied fungi can be generalized as SAT-KS-
AT-DH-ACP-[ACP]-HTH-CMeT-[TE or ADH or NAD]-[Peptidase S9]; however, some
PKS genes may deviate from this structure. The observed domain content variations
are not random but rather occur in two main patterns: either through the duplication
of the ACP domain, or through the addition of an N-terminal TE domain. PKS genes
possessing an additional ACP domain are scattered throughout different NR-PKS clades,
suggesting multiple independent gains. However, the functional significance of ACP
domain duplications is still unknown [14].

Most of the NR-PKS sequences belong to a large clade containing groups NR-I to NR-V
and NR-VIII, with domain configuration containing a TE domain at the N-terminal end.

The irregularly present additional TE domain is involved in a thioesterase-mediated
product release, which is the most common release mechanism in TI-PKS [74]. It
regularly extends to a C-C Claisen cyclization domain (TE/CLC domain), e.g., in
Aspergillus parasiticus PksA [75]. Although CYC domains have previously been reported
from various fungi [14,69,70], we could not identify them in our analyses and thus did
not indicate them in the phylogeny.

Subclade I of NR-PKSs (Including Groups NR-I to NR-V, and NR-VIII)

Group NR-I

The paraphyletic group NR-I contains several clades with previously characterized
sequences involved in the biosynthesis of aromatic compounds derived from orsellinic acid,
such as grayanic acid (PKS16), physodic acid and olivetoric acid [24,25], lecanoric acid [76],
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xanthones, aflatoxin, and naphthoquinones [14]. In addition, the clade also comprises
PKS13 sequences from several lichen-forming fungi and Gibberella zeae as well as a PKS15
sequence from Botryotinia fuckeliana with unknown functions.

Group NR-II

Our results show that NR-II is a diverse group, comprised of several clades con-
taining sequences from lichen-forming fungi interspersed with characterized PKS genes
proposed to be involved in the biosynthesis of various substances. The earliest branch-
ing clade contains genes involved in the 6-hydroxymellein biosynthesis (NR-II; Figure 3),
a key intermediate in terrein biosynthesis [77]. Terrein, produced in large quantities
by Aspergillus terreus, has phytotoxic activity and has the potential to serve as a novel
antibiotic [78]. Our phylogeny revealed sequences of four lichen-forming fungi (cla-
grapred_001463, clauncpred_002890, psefurpred_002946, and grascrpred_004317) clus-
tering together with terA gene in A. terreus. A BLAST search of terA (GenBank: EAU38791)
against these sequences revealed 58 to 67% similarity at the amino acid level, indicating
a high degree of conservation despite an approximate 350-million-year split of Euro-
tiomycetes (Aspergillus) and Lecanoromycetes [79]. Terrein has not been reported from
lichen-forming fungi; therefore, without further experiments and detailed substance char-
acterization, terrein production in lichen-forming fungi remains hypothetical.

Another important pattern is the occurrence of characterized melanin genes and
melanin precursors in different clades. Melanins are a diverse group of substances that
play a role in virulence, morphogenesis or the response to environmental stress, and can
be synthesized via different pathways [80]. PKSs produce two forms of melanin: either
1,8-dihydroxynaphtalene (DHN) melanin or Deoxybostrycoidein-melanin [81]. Melanins
are insoluble and thus cannot be studied by standard biochemical methods [80]. In the PKS
gene survey by Kroken et al. [14], all melanin synthesizing genes were grouped together
in a single monophyletic clade. In our analysis, they are recovered in at least three clades
containing sequences from several Lecanoromycetes and Endocarpon pusillum. Sister to
NR-II is a clade containing sequences from Colletotrichum lagenarium (PKS1), Glarea sp.,
Nodulisporium sp., and C. heterostrophus (PKS18), which were also characterized as producers
of melanin [14]. The high number of genes from lichen-forming fungi close to characterized
melanin biosynthetic genes suggests an essential role of melanins in lichens.

Groups NR-III and NR-IV

The sister groups NR-III and NR-IV contain sequences of proteins producing large
polyketide chains, such as conidial yellow pigment Alb1 (NR-III) or aflatoxin/
sterigmatocystin of A. nidulans (NR-IV) [14,71,82].

NR-III additionally contains characterized PKSs producing duclauxin (35–71% simi-
larity) and naphthopyrone (100% similarity). Duclauxins are dimeric, heptacyclic fungal
polyketides with various activities [83], while bis-naphthopyrones act in herbivore defense
in filamentous ascomycetes [84].

Several genes recovered in the NR-IV group are potentially involved in producing
different fungal pigments. The genes from Ramalina intermedia (ramintpred_005964) and
Cladonia grayi (clagrapred_006320) were assigned to an FSR1 gene, which is involved in
producing highly pigmented naphthoquinones fusarubins responsible for fruiting body
coloration of Fusarium fujikuroi [85]. A BLAST search of the R. intermedia gene (ram-
intpred_005964) revealed 72.3% similarity to a PKS of Cladonia metacorallifera (GenBank:
QIX11499) that is involved in the biosynthesis of the red compound cristazarin, character-
ized by antibacterial and antitumor activity [86]. Sequences of Bacidia rubella and several
Cladonia species producing red pigments were recovered sister to the putative Ramalina
intermedia FSR1 gene. Interestingly, R. intermedia, at the same time, lacks red pigments [87].
This close phylogenetic proximity raises the possibility that combinations of substances
synthesized by different PKS genes could be responsible for red-colored pigments (see also
discussion on monascorubrin above), particularly for the red fruiting bodies in B. rubella.
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Group NR-V

According to the previous studies, NR-V contains PKSs without the TE domain [71];
however, in the characterized PKSs in our phylogeny, the TE or R domains were present in
all clades. The genes in the NR-V group are suggested to be involved in the production of
different mycotoxins, such as desertorin (Aspergillus nidulans) and atrochrysone (Aspergillus
fumigatus) [71,88,89].

The crown clades in the NR-V group include the annotated PKS81 orthologs from
Cladonia metacorallifera, C. macilenta, Lasallia pustulata and L. hispanica as sister to a PKS19
sequence from Cochliobolus heterostrophus and two clades with characterized Agnpks1 also
from several lichen-forming fungi. Agnpks1 (Atrochrysone carboxylic acid synthase) was
originally described from Penicillium divaricatum and is involved in the biosynthesis of
agnestins and dihydroxy-xanthone metabolites [90]. Xanthones and related benzophe-
nones are produced by various filamentous fungi. They exhibit insecticide, antioxidant,
antibacterial, anti-inflammatory, and anticancer activities [91]. Examples include desmethyl-
sterigmatocystin, a key intermediate of the aflatoxin group of mycotoxins produced by
Aspergillus flavus, and a norlichexanthone from the lichen-forming Lecanora straminea [90].
An additional BLAST search of norlichexanthone synthase from L. straminea (GenBank:
D7PI15) against our annotated fungal sequences showed at least 37% similarity to sequences
from the clade containing PKS81 and Agnpks1. The relationship between these two genes
remains unclear, but given our results, PKS81 might belong to or have evolved from Ag-
npks1. Additional closer investigations will be necessary to show the role of PKS81 and
Agnpks1 orthologs in lichen-forming fungi and their possible role in xanthone biosynthesis.

Subclade II of NR-PKSs (Including Groups NR-VI, NR-VII, and NR-IX)

The second largest clade of NR-PKSs includes the previously recovered groups NR-VI,
NR-VII, and the recently defined group NR-IX [29] (Figure 3). The generalized domain
arrangement in these groups is SAT-KS-AT-DH-ACP-[ACP]-[HTH]-CMeT-[ADH/NAD]-
[Peptidase S9], deviating from the generalized arrangement for other NR-PKS (see above).
Although previously reported from all NR-PKS groups except group NR-V [69,71], we did
not observe TE domains in groups NR-VI, NR-VII, and NR-IX. Instead, we observed NAD
and ADH domains—in some cases followed by a Peptidase S9 (PFAM: PF00326) domain.
Peptidase S9 belongs to proteolytic enzymes that consume serine in their catalytic activity,
and they are ubiquitously found in viruses, bacteria, and eukaryotes [92]. We also observed
a helix-turn-helix domain (HTH) being inserted after one or two ACP domains in several
groups. The HTH domain was previously found in PKSs in fungi but it has not been shown
in the arrangement of the NR-PKSs of lichen-forming fungi before. Proteins with an HTH
motif are, for example, involved in DNA repair, RNA metabolism, and protein–protein
interaction [93], and could thus be involved in developmental or morphogenic processes.

Group NR-VI

Characterized PKSs in this group include PKS18 and PKS19 genes from Botryotinia
fuckeliana. Genes from this group were suggested to be involved in usnic acid biosyn-
thesis [71], and according to Kim et al. [29] they belong to PKS8. Our results show that
this group is divided into two clades. The first clade contains genes of known usnic acid
producers such as Ramalina intermedia, R. peruviana, Cladonia metacorallifera, C. macilenta, C.
uncialis, Evernia prunastri, Alectoria sarmentosa, Letharia columbiana, and Usnea hakonensis,
interspersed with genes from lichen-forming fungi known not to produce usnic acid. The
second clade includes genes mostly from lichen-forming fungi not producing usnic acid,
including a gene from B. rubella (bacrubpred_000551). However, sequences from Cladonia
macilenta, C. uncialis, and Evernia prunastri were also recovered in this clade.
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Group NR-VII

The only genes characterized in this group are PKS17 from Botryotinia fuckeliana and
PKS21 from Cochliobolus heterostrophus. These genes have been proposed to produce cit-
rinin or lovastatin [14,94,95]. The other identified genes from the lichen-forming fungi
in this group had 50 to 70% BLAST similarity to genes involved in the biosynthesis of
monascorubrin, citrinin, conidial yellow, azanigerone A, and stipitatic acid (see also discus-
sion on monascorubrin above). As mentioned above, the biosynthetic gene from B. rubella
(bacrubpred_007642) has a 100% identity to the monascorubrin biosynthetic gene.

Group NR-IX

The recently recognized group NR-IX [29] contains several predicted PKS23 sequences,
involved in the biosynthesis of atranorin (see sections on 3.1.1 Atranorin and 3.1.2 Ho-
mosekikaic acid above) and methylated orsellinic acid derivatives. In contrast to the groups
NR-VI and NR-VII, NR-IX sequences always contain an ADH and lack a NAD domain after
CMeT, while Peptidase S9 is only sporadically present. It is necessary to note that only one
ACP domain was present in the PKS23, including atranorin producers. In addition, other
characterized PKSs of this group are from Cochliobolus heterostrophus (PKS22 and PKS23)
and Botryotinia fuckeliana (PKS16 and PKS20).

3.3.3. Fungal PKSs Producing Reduced Polyketides

The Diversity of R-PKS Sequences

R-PKS genes are involved in synthesizing various reduced, usually linear polyketides.
Many are precursors of toxins that are active in animals (e.g., lovastatin, citrinin, and
fumonisin) or plants (e.g., T-toxin and PM-toxin) [96–99]. We follow this classification
in our discussion whenever possible, while also highlighting deviations. Compared to
NR-PKSs, less is known about the possible roles of R-PKSs. In our phylogeny, R-PKSs
formed a large clade sister to NR-PKSs with many well-supported subclades. Unlike what
has been shown in previous studies, all studied R-PKSs here lacked a second ACP domain,
and in some cases, ACP was missing. According to Kroken et al. [14], four major groups
(R-I to R-IV) of R-PKS genes can be distinguished based on their overall domain structure
and produced compounds. This classification was later extended to groups R-V to R-VIII
by Punya et al. [72]. Over 70% of the studied fungal sequences could be assigned to groups
designated by Kroken et al. [14] and Punya et al. [72] with the general domain content:
KS-AT-DH-[CMeT]-ER-KR-[ACP]. Two clades recovered by Punya et al. [72] are missing
from our tree, namely R-VI and R-VIII. Clade VI contained uncommon PKS-NRPS hybrids
with four additional domains after ACP, viz. condensation (C), adenylation (A), thiolation
(T), and reductase (R) [72]. As our study focused on the TI-PKSs, it did not include hybrid
NRPS-PKS genes. The sequences from R-VIII were not present in our phylogeny, and are
thus not feasible to identify with confidence.

Based on our phylogenetic results, we identified two R-PKS clades that did not match
any of the R-PKS groups reported in previous studies. Sequences in those two clades
had characteristic domain structures and were recovered as distinct orthogroups in our
Orthofinder analysis. This leads us to propose these clades as new reducing PKS groups,
R-IX and R-X, following the numbering scheme by Kroken et al. [14] and Punya et al. [72].

Groups of R-PKSs

Group R-I

Group R-I is the largest group of R-PKSs in our tree. It contains one of the R-PKS
genes synthesizing the diketide portion of lovastatin and citrinin, T-toxin, and PM-
toxin [14]. Our results show that the genes of this group, recovered in a monophyletic
clade by Kroken et al. [14], were nested in different clades in our analysis; therefore, R-I
assignment is not complete.
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Group R-II

Group R-II forms a well-supported clade and it was previously characterized by the
absence of an ER domain [14]. In our phylogeny, however, ER domain was present in
all lichen-forming fungi. The group includes many previously published sequences and
orthologs from Cladonia and Letharia species, Xanthoria elegans, Pseudevernia furfuracea, and
Ramalina intermedia. The R. intermedia ortholog was assigned to PKS19. It was predicted to
be involved in the production of heptaketides with a role in a lesion of rice leaves formation
in Magnaporthe oryzae [100]. Two characterized proteins from A. terreus lovB and P. citrinum
mlcA synthesize the cyclic nonaketide portion of lovastatin and citrinin.

Group R-III

Group R-III forms a clade comprised of four sequences previously assigned to this
group by Kroken et al. [14], and a sequence from Cyanodermella asteris. PKSs from this clade
do not possess a CMeT domain. The experimentally characterized gene in group R-III is
C. heterostrophus PKS2, which, along with PKS1, is required for the synthesis of T-toxin [14].
This group contains several sequences from Kroken et al. [14] interspersed with sequences
from various lichen-forming fungi.

Group R-IV

Genes belonging to R-IV may contain a conserved CMeT domain. Thus, their domain
configuration somewhat resembles that of groups R-I and R-II. However, N-terminal
domains ER, KR, and ACP can be present or absent in R-IV. The only characterized PKS
in this group is G. moniliformis FUM1 (Gm_FUM1_AAD43562), which makes the linear
polyketide precursor of the toxin fumonisin [98]. This group contains several sequences
from Kroken et al. [14] interspersed with sequences from various lichen-forming fungi.

Group R-V

Sequences in group R-V have similar domain composition like sequences from Or-
thogroup 7: KS-AT-DH-ER-KR-[KR]-ACP. However, a second KR domain is only present in
Dibaeis baeomyces (dibbaepred_000831). We recovered genes from several lichen-forming
fungi in this group. Again, experimentally characterized genes from Gibberella moniliformis
(Gm_PKS13) and Botryotinia fuckeliana (Bf_PKS10) also recovered here indicate a possible
role in toxin biosynthesis (Figure 3) [14].

Group R-VII

This group contains several previously characterized sequences as well as sequences
from R. intermedia, P. furfuracea, G. furfuracea, and C. macilenta where we could assign PKS5
annotations. Additional sequences from lichen-forming fungi also recovered here had no
functional annotations; as such the role of these genes remains unclear. The characterized se-
quences of Aspergillus (Aspergillus_terreus_lovF) and Penicillium (Penicillium_citrinum_mlcB)
indicate a role in the production of the diketide portion of lovastatin and citrinin, but they
were assigned to group R-I by Kroken et al. [14].

Novel group R-IX

A new group of reducing PKSs can be delineated based on a specific domain compo-
sition and our orthogroup assignment. We tentatively call this group R-IX following the
naming scheme of Kroken et al. [14] and Punya et al. [72]. R-IX is sister to group R-VII and
differs from all other groups by having a facultative Choline/Carnitine O-acyltransferase
domain (Carn) following the ACP domain: KS-AT-DH-[CMeT]-ER-KR-[ACP]-[Carn]
(Figure 3). The Carn domain can be found in several eukaryotic acetyltransferases and
also at the C terminus of a highly reducing polyketide synthase (SdnO), where it is
part of a gene cluster mediating the biosynthesis of glycoside antibiotics sordarin and
hypoxysordarin [101].
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Novel group R-X

Similar to R-IX, a second group of reducing PKSs can be identified based on a specific
domain composition and orthogroup assignment. This group R-X, recovered as Orthogroup
9, contains only genes from lichen-forming fungi. Together with Group R-II, they share a
sister-group relationship to all other R-PKSs in our phylogeny (Figure 3). Genes from this
group may not have DH, ER and ACP domains, resulting in the following domain content:
KS-AT-[DH]-[ER]-KR-[ACP]. Most fungal genes recovered here are missing the DH and
ER domain. However, the genes from Lasallia hispanica (lashispred_001760) and Evernia
prunastri (eveprupred_001763) contain a complete domain configuration: KS-AT-DH-ER-
KR-ACP.

4. Conclusions and Limitations

This study presents a comprehensive analysis of the PKS gene content of the de novo
sequenced genome of B. rubella and twenty-two publicly available genomes of mainly
lichen-forming fungi. Our results reveal that a BGC including PKS23 is likely involved in
biosynthesis of atranorin in B. rubella. Similar to previous studies (e.g., [6,23,24,29]), we
observed a large diversity of PKS genes in lichen-forming fungi as well as B. rubella, much
larger than expected based on their recorded secondary metabolite profiles. This highlights
the potential of lichen-forming fungi to produce a much higher number of substances than
previously assumed, as mentioned by Calchera et al. [6] focusing on foliose lichens. Our
in silico approach provides first insights into the possible roles of PKS genes in crustose
B. rubella; however, we are aware that this comes with limitations. Only detailed studies
of individual BGCs combining gene expression analyses with analytical chemistry and
metabolomics will allow thorough testing of the hypotheses proposed here. The prospects
for this are promising as an increasing number of studies succeeded in the heterologous
expression of lichen-forming fungal genes, (e.g., [29,76,86,102,103]). Subsequent in vivo
studies of metabolite profiles in lichen-forming fungi supplemented by high-resolution
MS/MS spectra [104] or metabolic profiling based on stable isotope analysis [105] will
contribute to our knowledge on how secondary metabolites in lichen-forming fungi are
produced and what roles they play. Combined with the growing number of available
lichen-forming fungal genomes, we will be able to refine our understanding and formulate
novel hypotheses about the biosynthetic potential of lichens.
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