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Abstract. The primary goal of our article is to implement some standard spin geometry
techniques related to the study of Dirac and Laplace operators on Dirac vector bundles into
the multidimensional theory of Hilbert space operators. The transition from spin geometry
to operator theory relies on the use of Clifford environments, which essentially are Clifford
algebra augmentations of unital complex C∗-algebras that enable one to set up counterparts
of the geometric Bochner-Weitzenböck and Bochner-Kodaira-Nakano curvature identities for
systems of elements of a C∗-algebra. The so derived self-commutator identities in conjunction
with Bochner’s method provide a natural motivation for the definitions of several types
of seminormal systems of operators. As part of their study, we single out certain spectral
properties, introduce and analyze a singular integral model that involves Riesz transforms,
and prove some self-commutator inequalities.

Keywords: multidimensional operator theory, joint seminormality, Riesz transforms, Putnam
inequality.

Mathematics Subject Classification: 47B20, 47A13, 47A63, 44A15.

1. INTRODUCTION

The study of seminormal – i.e., hyponormal or cohyponormal – Hilbert space operators
started in the early 1950’s. Though their definitions are deceptively simple, the theory
of seminormal operators turned out to be quite intricate and far reaching. To begin
with, suppose that H is a complex Hilbert space, let L(H) be the C∗-algebra of
continuous linear operators on H, and for each T ∈ L(H) let T ∗ ∈ L(H) denote its
adjoint. The interaction between T and T ∗, which is controlled by their commutator
in L(H), plays an important part in deriving properties of T , and in this regard we
can either form the right self-commutator of T , given by

CR(T ) = [T ∗, T ] = T ∗T − TT ∗ ∈ L(H), (1.1)
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or the left self-commutator of T , defined as

CL(T ) = [T, T ∗] = TT ∗ − T ∗T ∈ L(H). (1.2)

Following the standard terminology, T ∈ L(H) is called a seminormal operator,
provided its associated right or left self-commutators are either positive or negative
semidefinite. Since obviously

CL(T ) = −CR(T ), (1.3)
we end up with just two types of seminormal operators, namely, hyponormal operators,
with the defining equivalent properties

CR(T ) ≥ 0 or CL(T ) ≤ 0, (1.4)

or cohyponormal operators, for which we assume that

CL(T ) ≥ 0 or CR(T ) ≤ 0. (1.5)

In addition, from yet another obvious identity,

CL(T ) = CR(T ∗), (1.6)

we get that T is hyponormal, or cohyponormal, if and only if T ∗ is cohyponormal,
or hyponormal, respectively. In spite of all such redundancies, we want to point
out that as soon as we decide to distinguish between left or right, the definition
of each class of seminormal operators can be stated by requiring just one of the
two associated directed self-commutators to be positive semidefinite. It is merely
a matter of fact, not at all surprising, that a change in direction – or a spin – yields
a negative semidefinite self-commutator. Eventually, in a multidimensional setting,
this observation will become quite relevant, and the apparently immaterial choice of
a direction will turn out to make a difference. There is just one constraint we need
to be aware of. The Hilbert space H must be infinite dimensional, because otherwise
any semidefinite self-commutator – regardless its direction – equals the zero operator,
and seminormality reduces to normality. As a second point, it would be worth to
notice that all the previous equations and definitions make perfect sense if instead of
operators in L(H) we use elements of a unital complex C∗-algebra.

We should also mention that the theory of seminormal operators was initially
developed for pairs (X,Y ) of self-adjoint operators in L(H) rather than a single
operator T ∈ L(H). Assuming that X = Re(T ) and Y = Im(T ), i.e., X is the real
part of T and Y is the imaginary part of T , from

T = X +
√
−1Y, T ∗ = X −

√
−1Y, (1.7)

in conjunction with (1.1) and (1.2) we have

CR(T ) = C(X,Y ) and CL(T ) = −C(X,Y ), (1.8)

where
C(X,Y ) = 2

√
−1 [X,Y ] = 2

√
−1 (XY − Y X) ∈ L(H). (1.9)
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It seems quite reasonable to refer to C(X,Y ) as the self-commutator of the pair
(X,Y ) – this time without distinguishing between left or right – and then to get the
two concepts of seminormal pairs of self-adjoint operators by basically restating the
definitions (1.4) or (1.5) above for the self-adjoint pair (X,Y ).

For a comprehensive historical perspective on the development of the theory of
seminormal operators and the relationship with the theory of subnormal operators we
refer to the monographs by Putnam [36], Clancey [8], Xia [43], Martin and Putinar [28],
and Conway [9]. Our goal is to single out and motivate what we believe to be the most
natural counterparts of the previous equations and requirements in a multidimensional
setting, i.e., for systems of operators. Significant early contributions to the development
of the theory of joint seminormality, which prompted us to try and find a unifying
framework, are due to Athavale [1], Cho, Curto, Huruya, and Zelazko [7], Curto [11],
Curto and Jian [12], Curto, Muhly, and Xia [13], Douglas, Paulsen, and Yan [14],
Martin and Salinas [29], McCullough and Paulsen [31], and Xia [44]. The viewpoint
emphasized in our article was already outlined in Martin [19,22–24] and is based on
some techniques from Clifford analysis and spin geometry.

2. SPIN OPERATOR THEORY

This section outlines a spin geometry approach to multidimensional operator theory.
A few prerequisites from Clifford analysis and spin geometry are briefly summarized
in the first two subsections. As excellent introductions to these specific research fields
concerned with the study of Dirac, Cauchy-Riemann, and Laplace operators in either
a Euclidean, Hermitian, or a real or complex Dirac vector bundle setting, we refer to the
monographs by Berline, Getzler, and Vergne [2], Brackx, Delanghe, and Sommen [5],
Gilbert and Murray [15], and Lawson and Michelsohn [18].

2.1. EUCLIDEAN DIRAC AND LAPLACE OPERATORS

The real – or Euclidean – Clifford algebra Am(R), m ≥ 1, is defined as the real unital
C∗-algebra with generators {e1, e2, . . . , em}, called the Clifford units of Am(R), subject
to the Clifford relations,

ekel + elek = −2 δkl e0, and e∗k = −ek, 1 ≤ k, l ≤ m, (2.1)

where e0 denotes the unit of Am(R), and δkl, 1 ≤ k, l ≤ m, equals 1 or 0, according
as k = l or k 6= l, respectively. The Clifford units are identified with the standard
orthonormal basis for Rm, and consequently one gets an embedding of Rm into Am(R),
such that if ξ ∈ Rm ⊂ Am(R), then

ξ2 = −‖ξ‖2 e0, and ξ∗ = −ξ, (2.2)

where ‖ · ‖ is the Euclidean norm on Rm.
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Suppose next that S is an Am(R)-module, i.e., a Hilbert space on which Am(R)
is represented as an algebra of linear operators, and let C∞(Rm,S) be the space of
smooth functions from Rm into S. The associated Euclidean Dirac operator,

Deuc,m : C∞(Rm,S)→ C∞(Rm,S),

is the constant coefficient first-order differential operator given by

Deuc,m = e1 ∂/∂x1 + e2 ∂/∂x2 + · · ·+ em ∂/∂xm, (2.3)

where x1, x2, . . . , xm are the standard coordinate functions on Rm. From (2.1) one
gets that Deuc,m is formally self-adjoint, and its square turns out to be the Euclidean
Laplace operator on Rm,

∆euc,m : C∞(Rm,S)→ C∞(Rm,S),

defined as
∆euc,m = −( ∂2/∂x2

1 + ∂2/∂x2
2 + · · ·+ ∂2/∂x2

m ). (2.4)
Since ∆euc,m is elliptic, we conclude that Deuc,m is elliptic as well.

Moreover, if one starts with a differential operator Deuc,m as in equation (2.3) and
only assumes that the coefficients {e1, e2, . . . , em} are some continuous linear operators
on a Hilbert space S, the properties

D2
euc,m = ∆euc,m and D∗euc,m = Deuc,m (2.5)

would lead back to the Clifford relations (2.1).
The complex – or Hermitian – Clifford algebras Am(C),m ≥ 1, are defined as

complexifications of their real counterparts, i.e., Am(C) = Am(R)⊗C, m ≥ 1. Actually,
we will only be interested in the case whenm is even. To make a point, ifm = 2n, n ≥ 1,
instead of using the Clifford units {e1, e2, . . . , e2n−1, e2n} to generate A2n(C), a new
set {ε1, ε2, . . . , εn} of just n generators – which are referred to as the Grassmann units
– can be introduced by setting

εi = (ei −
√
−1 en+i)/2, 1 ≤ i ≤ n, (2.6)

with the following set of Grassmann relations,

εiεj + εjεi = 0, εiε
∗
j + ε∗jεi = δije0, 1 ≤ i, j ≤ n. (2.7)

The standard Clifford units can be easily recovered from

ei = εi − ε∗i , en+i =
√
−1 (εi + ε∗i ), 1 ≤ i ≤ n. (2.8)

As a special property of the complex Clifford algebra A2n(C) – that would eventually
play an important part in our subsequent development of spin operator theory – we
should recall that A2n(C) has a unique irreducible representation on the graded space
of complex spinors S#

n = S#
n (C). As a Hilbert space,

S#
n (C) = Λ#[Cn] =

n⊕

p=0
Λp[Cn], (2.9)
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where Λ#[Cn] is the complex exterior — or Grassmann – algebra of Cn. To get a simple
description of S#

n , suppose that {σ1, σ2, . . . σn} is the standard orthonormal basis
for Cn, and let Ip

n, 0 ≤ p ≤ n, be the set of all p-element subsets of {1, 2, . . . , n}.
Obviously I0

n = {∅}. If 1 ≤ p ≤ n, any I ∈ Ip
n will be expressed as an ordered p-tuple,

I = (i1, i2, . . . , ip), 1 ≤ i1 < i2 < · · · < ip ≤ n.
To each I ∈ I#

n = ∪n
p=0 I

p
n we associate the element σI ∈ S#

n , which is given by
σ∅ = 1 ∈ C = S0

n if p = 0, and by
σI = σi1 ∧ σi2 ∧ · · · ∧ σip

if I = (i1, i2, . . . , ip) ∈ Ip
n, 1 ≤ p ≤ n. (2.10)

The so defined elements {σI : I ∈ I#
n } provide an orthonormal basis for S#

n . To
each vector σ ∈ Cn ≡ S1

n, one associates the linear operator ∧(σ) of left exterior
multiplication by σ on S#

n = Λ#[Cn], as well as its adjoint ∧(σ)∗. The standard
orthonormal basis {σ1, σ2, . . . , σn} for Cn yields the operators

εi = ∧(σi), ε∗i = ∧(σi)∗, 1 ≤ i ≤ n, (2.11)
which satisfy the Grassmann relations (2.6), and consequently,

A2n(C) ≡ L(S#
n ). (2.12)

We next identify R2n = Rn×Rn with Cn, n ≥ 1, by assigning to each pair (x, y) ∈ R2n,
where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), the point z = (z1, z2, . . . , zn) ∈ Cn

given by
z = x+

√
−1 y, i.e., zi = xi +

√
−1 yi, 1 ≤ i ≤ n. (2.13)

Assuming that S is an arbitrary A2n(C)-module, we take the Euclidean Dirac operator
Deuc,2n – regarded now as on operator on C∞(Cn,S) – and then, using (2.3) and (2.8)
we decompose it into a sum,

Deuc,2n = Dher,n +D∗her,n, (2.14)
of two Hermitian semi-Dirac operators,

Dher,n =
n∑

i=1
εi

(
∂/∂xi +

√
−1 ∂/∂yi

)
= 2

n∑

i=1
εi ∂/∂z̄i, (2.15)

D∗her,n =
n∑

i=1
ε∗i
(
−∂/∂xi +

√
−1 ∂/∂yi

)
= −2

n∑

i=1
ε∗i ∂/∂zi. (2.16)

Since
D2

her,n = 0 and D∗2her,n = 0, (2.17)
for the Euclidean Laplace operator ∆euc,2n on R2n ≡ Cn one gets the equation

∆euc,2n = Dher,nD∗her,n +D∗her,nDher,n. (2.18)

Perhaps it should be noticed that if S = S#
n , the spaces C∞(Cn,Sp

n), 0 ≤ p ≤ n,
coincide – up to an isomorphism – with the spaces of complex differential forms of
type (0, p) on Cn, and subject to this identification one gets

Dher,n =
√

2 ∂̄ and D∗her,n =
√

2 ∂̄∗.
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2.2. DIRAC AND LAPLACE OPERATORS ON DIRAC VECTOR BUNDLES

The theory of Euclidean Dirac and Laplace operators is an essential part of Clifford
analysis. More general Dirac and Laplace operators are defined and studied in spin
geometry, which could be regarded as Clifford analysis on smooth inner product vector
bundles over Riemann manifolds.

To be specific, suppose that M is a Riemann manifold, and let TM and T∗M
be the tangent and cotangent bundles of M . Further, assume that E is a smooth
inner product vector bundle over M , and let Γ∞(M,E) be the space of its smooth
sections. On E one can introduce differential operators of various orders, define their
principal symbols, and — more importantly — single out classes of operators with
special properties. Of a particular interest is the class of Laplace operators on E, which
consists of second order, formally self-adjoint, elliptic differential operators

∆ : Γ∞(M,E)→ Γ∞(M,E),

with a principal symbol s2(∆) that assigns to each x ∈M a quadratic form

s2(∆)x : TMx → L(Ex)

from the tangent space to M at x into the space of linear operators on the fiber Ex

of E at x, such that

s2(∆)x(τx) = −‖ τ x‖2x · IdEx
, τx ∈ TMx, (2.19)

where ‖ · ‖x is the Riemann norm on TMx, and IdEx
∈ L(Ex) is the identity operator

on Ex, x ∈M .
By definition, a Dirac operator D on E — if any — is a formally self-adjoint first

order differential operator on E which is a square root of a Laplace operator. The
existence of Dirac operators on E requires two additional geometric structures on E
compatible with the inner product structure.

(i) First, a smooth Clifford action γ : TM ⊗E → E of the tangent bundle TM on E,
that assigns to each tangent vector τx ∈ TMx, x ∈M , a skew-adjoint linear operator
γ(τx) ∈ L(Ex), such that

γ(τx)2 = −‖ τ x‖2x · IdEx . (2.20)

(ii) Second, a linear connection∇ : Γ∞(M,E)→ Γ∞(M,T∗M⊗E) on E that preserves
both the inner product structure and the Clifford action γ on E.

Following the terminology employed in Lawson and Michelsohn [18], we will refer
to such smooth vector bundles E as Dirac bundles over M . Each Dirac bundle E has
a canonically associated Dirac operator,

D : Γ∞(M,E)→ Γ∞(M,E),

which is the first order differential operator defined as the composition of

Γ∞(M,E) −→ Γ∞(M,T∗M ⊗ E) −→ Γ∞(M,TM ⊗ E) −→ Γ∞(M,E), (2.21)
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where the left arrow stands for the linear connection ∇, the middle arrow is induced
by the isometric identification of T∗M with TM , and the right arrow is the mapping
determined by the Clifford action γ. As required, D is a formally self-adjoint first
order differential operator on E, with a principal symbol s1(D) that assigns to each
x ∈M the linear operator valued form

s1(D)x : TMx → L(Ex), s1(D)x(τx) = γ(τx), τx ∈ TMx. (2.22)

From (2.21), (2.20), and (2.19) one easily gets that

∆ = D2 is a Laplace operator, (2.23)

called the Dirac-Laplace operator on the Dirac bundle E. Actually, there is another
naturally defined Laplace operator ∆c on E, called the connection, or Bochner-Laplace
operator, which is given by

∆c = ∇∗∇, (2.24)
where ∇∗ : Γ∞(M,T∗M ⊗ E)→ Γ∞(M,E) is the formal adjoint of ∇. Since ∇ and
D uniquely determine each other, the two Laplace operators on a Dirac bundle E are
related by an equation of the form

∆ = ∆c + R, (2.25)

referred to as the Bochner-Weitzenböck identity, where the remainder R is an operator
of order zero that only depends on the curvature operator of E associated with the
linear connection ∇.

We next turn our attention to complex manifolds and complex vector bundles.
Specifically, we assume that M is a Kähler manifold, and let E be a holomorphic
hermitian Dirac bundle over M , with the property that the canonical Chern linear
connection ∇ on E preserves the Clifford action. It is a basic fact that each complex
differential one form on M decomposes into the sum of a (0,1) and a (1,0) form, and
for that reason the linear connection ∇ has two components,

∇ = ∇0,1 +∇1,0. (2.26)

Consequently, the Dirac operator D can be expressed as

D = D +D∗, (2.27)

where D is a first order differential operator on E, D∗ is its formal adjoint, and

D2 = 0, D∗2 = 0. (2.28)

As a result of these splittings, one gets two equations,

DD∗ +D∗D = 2(∇0,1)∗∇0,1 + R0,1, (2.29)

and
DD∗ +D∗D = 2(∇1,0)∗∇1,0 + R1,0, (2.30)
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referred to as the Bochner-Kodaira-Nakano identities. The two remainders R0,1 and
R1,0 are operators of order zero on E, and likewise R in (2.25) they can be computed
using the curvature operator on E.

The Bochner-Weitzenböck identity (2.25) is just the average of the two
Bochner-Kodaira-Nakano identities (2.29) and (2.30). Specifically,

∆ = DD∗ +D∗D, (2.31)

∆c = (∇0,1)∗∇0,1 + (∇1,0)∗∇1,0, (2.32)
2R = R0,1 + R1,0. (2.33)

We would like to point out that though we assumed that ∇ is the Chern linear
connection on E, there is an entire family of linear connections that make all equations
(2.26)–(2.33) true.

The nice features of the reminders R, R0,1, and R1,0 provide the basis of a method
discovered by Bochner [3] that yields various vanishing theorems under appropriate
positivity assumptions on the curvature operator. Some of the monographs referred to
above, as well as Bochner and Yano [4] and Goldberg [16], offer a good deal of relevant
examples.

2.3. SELF-COMMUTATOR IDENTITIES IN OPERATOR THEORY

We will now move from spin geometry to operator theory. Suppose that H is a complex
Hilbert space and let T = (T1, T2, . . . , Tn), n ≥ 1, be an n-tuple of operators in L(H).
We form the adjoint T ∗ = (T ∗1 , T ∗2 , . . . , T ∗n) of T , and then take the real and imaginary
parts of T denoted by

X = Re(T ) = (X1, X2, . . . , Xn) and Y = Im(T ) = (Y1, Y2, . . . , Yn). (2.34)

Their components are self-adjoint operators on H, and for convenience we will refer to
(X,Y ) as a self-adjoint pair. The relationships between T , T ∗, X, and Y are exactly
as in equation (1.7), namely,

T = X +
√
−1Y, T ∗ = X −

√
−1Y. (2.35)

Next we introduce the Hilbert space S#
n [H] of H-valued spinors given by

S#
n [H] = S#

n ⊗H, (2.36)

where S#
n = S#

n (C) is the A2n(C)-module of complex spinors defined by equation
(2.9). Obviously S#

n [H] is an A2n(C)-module and from (2.12) we get that

L(S#
n [H]) = A2n(C)⊗ L(H). (2.37)

The elements of L(S#
n [H] ) will be subsequently referred to as operator forms.

Returning to the n-tuple T , or to the associated self-adjoint pair (X,Y ), as a first
step towards the development of spin operator theory we form the holomorphic
hermitian product vector bundle E = E(T ), or E = E(X,Y ), given by

E = Cn ×S#
n [H],
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on which we obviously have a Clifford action γ. The space of smooth sections of E
equals the space C∞(Cn,S#

n [H]) of smooth functions from Cn into S#
n [H]. To make

E a Dirac vector bundle over Cn we take the metric preserving linear connection ∇
which depends on (X,Y ), and therefore on T , defined by

∇ =
m∑

i=1

{
∧(dxi)

(
∂

∂xi
+
√
−1 e0 ⊗Xi

)
+ ∧(dyi)

(
∂

∂yi
+
√
−1 e0 ⊗ Yi

)}
.

Using the notation introduced in Subsections 2.1 and 2.2, direct calculations show
that the Dirac operator D associated with ∇ reduces to

D = Deuc,2n + D(X,Y ), (2.38)

where D(X,Y ) ∈ L(S#
n [H] ) = A2n(C)⊗ L(H) is the operator form given by

D(X,Y ) =
√
−1

n∑

i=1
(ei ⊗Xi + en+i ⊗ Yi), (2.39)

which will be called the Dirac operator form of the pair (X,Y ), or of T .
Though the linear connection∇ is not the Chern connection of E, we can decompose

it as in equation (2.26), and then split the Dirac operator D as in equation (2.27).
Actually, the resulting new form of equation (2.27) is just a combination of equations
(2.14), (2.15), (2.16), and the next equation,

D(X,Y ) = D(T ) +D∗(T ), (2.40)

where

D(T ) =
√
−1

n∑

i=1
εi ⊗ Ti, D∗(T ) = −

√
−1

n∑

i=1
ε∗i ⊗ T ∗i . (2.41)

The two components D(T ) and D∗(T ) of D(X,Y ) will be referred to as the semi-Dirac
operator forms of T . As yet another related object, we are now in a position to define
the Laplace operator form ∆(T ) of T by setting

∆(T ) = D(T )D∗(T ) +D∗(T )D(T ), (2.42)

which obviously is consistent with equation (2.31). Finally, from the two
Bochner-Kodaira-Nakano identities (2.29) and (2.30), we get the next Bochner-Kodaira-
-Nakano self-commutator identities in multidimensional operator theory.

Lemma 2.1. For any n-tuple T = (T1, T2, . . . , Tn), n ≥ 1, we have

∆(T ) = e0 ⊗∆c
L(T ) +RL(T ), BKNL(T )

and
∆(T ) = e0 ⊗∆c

R(T ) +RR(T ), BKNR(T )
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where

∆c
L(T ) =

n∑

i=1
T ∗i Ti, ∆c

R(T ) =
n∑

i=1
TiT

∗
i , (2.43)

and

RL(T ) =
n∑

i,j=1
εiε
∗
j ⊗ [Ti, T

∗
j ], RR(T ) =

n∑

i,j=1
ε∗i εj ⊗ [T ∗i , Tj ]. (2.44)

The two operators ∆c
L(T ) and ∆c

R(T ), and the two operator forms RL(T ) and
RR(T ) defined above will be referred to as the left and right Laplace operators of T ,
and the left and right self-commutator operator forms of T , respectively.

As a matter of fact, both self-commutator identities in Lemma 2.1 can be deduced
in a straightforward way from (2.39), (2.40), (2.41) and (2.42) by relying on the
Grassmann relations (2.27) in conjunction with (2.28). The main reason we pursued an
indirect route rests upon our desire to decrypt the geometric origin of these identities.
Moreover, instead of using Hilbert space operators, we can start with an arbitrary unital
complex C∗-algebra A, and assume that T = (T1, T2, . . . , Tn), n ≥ 1, is an n-tuple
of elements of A. Consequently, T ∗, as well as X and Y , are n-tuples of elements
of A. The only change we need to make is that the operator forms associated with
either (X,Y ), or with T , are now elements of what we would like to call the Clifford
environment En(A) of A, which is defined as the Clifford algebra augmentation of A
given by

En(A) = A2n(C)⊗ A, n ≥ 1. (2.45)

We proceed with a couple of observations. First, we notice that the two
Bochner-Kodaira-Nakano self-commutator identities for n-tuples of elements of
a C∗-algebra A are related to each other. To make the point, let θ ∈ A2n(C) denote
the unitary operator on S#

n – a disguise of the the Hodge ?-operator – given by

θ = (ε1 + ε∗1)(ε2 + ε∗2) · · · (εn + ε∗n) = (−
√
−1)nen+1en+2 · · · e2n.

A repeated use of (2.27) shows that

θεi = (−1)n−1ε∗i θ, εjθ = (−1)n−1θε∗j , 1 ≤ i, j ≤ n.

We next introduce the unitary element Θ = θ ⊗ IA ∈ A2n(C) ⊗ A , where IA is the
unit of A, and observe that

Θ∗D(T ∗) Θ = (−1)n−1D∗(T ), Θ∗∆(T ∗) Θ = ∆(T ), Θ∗RR(T ∗) Θ = RL(T ).

Therefore, the left identity BKNL(T ) for T coincides – up to a unitary equivalence –
with the right identity BKNR(T ∗) for T ∗, so we may just choose one equation as the
basic form of the Bochner-Kodaira-Nakano self-commutator identity. Our choice is
the right identity BKNR(T ) for T , and we rewrite it as

∆(T ) = e0 ⊗∆c(T ) +R(T ), BKN(T )



Seminormal systems of operators in Clifford environments 91

where ∆c(T ) = ∆c
R(T ) and R(T ) = RR(T ). We can now replace BKNL(T ) with

∆(T ∗) = e0 ⊗∆c(T 8) +R(T ∗). BKN(T ∗)

The second observation we want to make is about the Bochner-Weitzenböck identity
(2.25), which in its turn has a counterpart in terms of the self-adjoint n-tuples X and
Y , at least in the geometric setting when the entries of T are Hilbert space operators.
Since the linear connection ∇ that we used in this setting was not the Chern connection,
some of the nice properties pointed out in Subsection 2.2 are not true. However, it can
be proved that we still have the important property (2.28), as well as (2.31), (2.32), or
(2.33), provided T is a commuting n-tuple. For a complete proof we refer to Martin [19].
Nevertheless, we would like to have a Bochner-Weitzenböck self-commutator identity
for the self-adjoint pair (X,Y ) in the general setting of a Clifford environment, derived
as the average of the Bochner-Kodaira-Nakano identities, and – more importantly
– without imposing additional assumptions. To this end, we introduce the following
combinations of the operators involved in BKN(T ) and BKN(T ∗),

∆(X,Y ) = 1
2 {∆(T )−∆(T ∗) } , (2.46)

∆c(X,Y ) = 1
2 {∆c(T )−∆c(T ∗) } , (2.47)

R(X,Y ) = 1
2 {R(T )−R(T ∗) } . (2.48)

From BKN(T ) and BKN(T ∗) we get the following Bochner-Weitzenböck self-
-commutator identity in multidimensional operator theory.

Lemma 2.2. For any pair (X,Y ) of self-adjoint n-tuples, n ≥ 1, we have

∆(X,Y ) = e0 ⊗∆c(X,Y ) +R(X,Y ), BW(X,Y )

where

∆c(X,Y ) =
√
−1

n∑

i=1
[Xi, Yi], (2.49)

and

R(X,Y ) =
√
−1

n∑

i,j=1
ε∗i εj ⊗ ([Xi, Yj ] + [Xj , Yi]). (2.50)

3. SEMINORMALITY IN HIGHER DIMENSION

This section introduces several types of seminormal systems of operators in the
general setting of a Clifford environment. The subsequent definitions are motivated
by Bochner’s method in spin geometry, and our goal is to uncover the geometric
significance of some of the existing concepts of joint seminormality.
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3.1. SEMINORMAL SYSTEMS OF OPERATORS

Suppose A is a unital complex C∗-algebra. and let En(A) = A2n(C)⊗A, n ≥ 1, denote
its associated Clifford environments.
Definition 3.1. An n-tuple T of elements of A is called one-sided seminormal provided
either the right self-commutator operator form RR(T ) in identity BKNR(T ), or the
left self-commutator operator form RL(T ) in identity BKNL(T ), is semidefinite as
an element of A2n(C)⊗ A. To be more specific,
(i) T is called right hyponormal, or right cohyponormal, if

RR(T ) ≥ 0, or RR(T ) ≤ 0, respectively; (3.1)

(ii) T is called left cohyponormal, or left hyponormal, if

RL(T ) ≥ 0, or RL(T ) ≤ 0, respectively. (3.2)

Strictly speaking, since Bochner’s method in spin geometry requires positivity
assumptions, only two classes of one-sided seminormal n-tuples seem to qualify as
appropriate for the implementation of Bochner’s method in spin operator theory,
namely, the right hyponormal and the left cohyponormal n-tuples. Apparently the two
other classes should be either ruled out, or regarded as pathological. This would be
wrong, and the following theorem due to Athavale [1], as well as some of our subsequent
results will make the point.

In a nutshell, according to our terminology, Athavale’s theorem states that any
commuting subnormal n-tuple of Hilbert space operators is left hyponormal.

Proof. For n-tuples of elements of a C∗-algebra A, by using the Clifford environment
En(A) of A, Athavale’s theorem and its proof amount to the following. We start by
taking a commuting n-tuple N = (N1, N2, . . . , Nn) of normal elements of A, and
assume that P ∈ A is a projection, i.e., P = P ∗ = P 2, such that

NiP = PNiP, 1 ≤ i ≤ n. (3.3)

Associated with N and P , we define the commuting subnormal n-tuple

T = (T1, T2, . . . , Tn), Ti = NiP = PNiP, 1 ≤ i ≤ n, (3.4)

whose adjoint is given by

T ∗ = (T ∗1 , T ∗2 , . . . , T ∗n), T ∗j = PN∗j = PN∗j P, 1 ≤ j ≤ n. (3.5)

By the well known Fuglede’s theorem, the assumption NiNj = NjNi implies
NiN

∗
j = N∗j Ni, 1 ≤ i, j ≤ n, and therefore from (3.3), (3.4), (3.5) we have

[Ti, T
∗
j ] = PNiPN

∗
j P − PN∗j NiP = PNiPN

∗
j P − PNiN

∗
j P = −PNi(I− P )N∗j P,

for all 1 ≤ i, j ≤ n, where I = IA is the unit of A. Consequently, the n-tuple

S = (S1, S2, . . . , Sn), Si = PNi(I− P ), 1 ≤ i ≤ n,
has the property

[Ti, T
∗
j ] = −SiS

∗
j , 1 ≤ i, j ≤ n.
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Equivalently, if we now take the semi-Dirac form D(S) associated with S and its
adjoint D∗(S) defined as in equations (2.41), from (2.24) we get

RL(T ) = −D(S)D∗(S), (3.6)

so, according to Definition 3.1, T is left hyponormal. The proof is complete.

We proceed with two more definitions.

Definition 3.2. An n-tuple T of elements of A is called two-sided hyponormal, or
two-sided cohyponormal, provided T is simultaneously right and left hyponormal,
or simultaneously right and left cohyponormal, respectively.

Definition 3.3. A pair (X,Y ) of self-adjoint n-tuples of elements of A is called
seminormal provided the self-commutator operator formR(X,Y ) in identity BW(X,Y )
is semidefinite as an element of A2n(C) ⊗ A. To be more specific, (X,Y ) is called
hyponormal, or cohyponormal, if

R(X,Y ) ≥ 0, or R(X,Y ) ≤ 0, respectively. (3.7)

We will always regard the two self-adjoint n-tuples X and Y as the real and
imaginary parts of an n-tuple T . A quick inspection of the definitions of RR(T ),
RL(T ), and R(X,Y ) leads to the following direct consequences.

Proposition 3.4. Let T be an n-tuple of elements of A with the associated self-adjoint
pair (X,Y ).

(i) T is left cohyponormal, or left hyponormal, if and only if its adjoint T ∗ is right
hyponormal, or right cohyponormal, respectively.

(ii) If T is two-sided hyponormal, or two-sided cohyponormal, then (X,Y ) is hyponor-
mal, or cohyponormal, respectively.

(iii) (X,Y ) is hyponormal, or cohyponormal, if and only if either of the pairs (Y,X),
(X,−Y ), or (−X,Y ) is cohyponormal, or hyponormal, respectively.

Proof. Let R(T ) = RR(T ) and recall that RL(T ) is unitarily equivalent to R(T ∗).
Property (i) follows from Definition 3.1 by observing that T is left cohyponormal, or
left hyponormal, if and only R(T ∗) ≥ 0, or R(T ∗) ≤ 0. Property (ii) is a consequence
of the same remark and Definitions 3.2 and 3.3 in conjunction with equation (2.48).
Finally, property (iii) follows from the identities

R(Y,X) = R(−X,Y ) = R(X,−Y ) = −R(X,Y ).

The next result is a test for two-sided seminormal systems.

Proposition 3.5. Let T be an n-tuple of elements of A.

(i) T is two-sided hyponormal if and only if

0 ≤ RR(T ) ≤ e0 ⊗
n∑

i=1
[T ∗i , Ti]. (3.8)
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(ii) T is two-sided cohyponormal if and only if

0 ≤ RL(T ) ≤ e0 ⊗
n∑

i=1
[Ti, T

∗
i ]. (3.9)

Proof. From (2.43) and (2.44) we notice that BKNR(T ) and BKNL(T ) imply

RR(T )−RL(T ) = e0 ⊗ ( ∆c
L(T )−∆c

R(T ) ) = e0 ⊗
n∑

i=1
[T ∗i , Ti],

an equation that leads to both properties.

3.2. JOINTLY SEMINORMAL SYSTEMS OF OPERATORS

Our next goal is to find new equivalent forms of Definitions 3.1 and 3.3, which will
show how some of the existing concepts of jointly seminormal n-tuples of Hilbert
space operators can be reconciled with our Clifford environment approach. We will
let Mn(C) ≡ L(Cn), n ≥ 1, denote the algebra of n× n complex matrices and, given
a complex unital C∗-algebra A, form the algebra Mn(A) defined by

Mn(A) = Mn(C)⊗ A.

The elements of Mn(A) are referred to as operator matrices. Assuming that T
is an n-tuple of elements of A we introduce the right and left self-commutator operator
matrices of T , given by

CR(T ) = ([T ∗i , Tj ])n
i,j=1, CL(T ) = ([Ti, T

∗
j ])n

i,j=1, (3.10)

as well as the self-commutator operator matrix of the self-adjoint pair (X,Y ) associated
with T , defined as

C(X,Y ) =
√
−1([Xi, Yj ] + [Xj , Yi])n

i,j=1. (3.11)

If n = 1, we recover the self-commutators in equations (1.1), (1.2), and (1.9), which
according to equations (1.3), (1.6), and (1.8) are related to each other. In sharp
contrast, if n ≥ 2, CR(T ) and CL(T ) are in general linearly independent, though we
still have (1.6), i.e.,

CL(T ) = CR(T ∗). (3.12)

Nevertheless, from a formal viewpoint we may regard CL(T ) as the transpose of −CR(T ),
and also get the following weaker form of (1.8),

C(X,Y ) = 1
2 { CR(T )− CL(T ) } . (3.13)

Next, using the graded Hilbert space of complex spinors S#
n =

⊕n
p=0 Sp

n introduced
in Subsection 2.1, let PR, PL ∈ L(S#

n ) ≡ A2n(C) be the orthogonal projections of S#
n
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onto the subspaces Sn−1
n and S1

n, respectively. We already identified S1
n with Cn,

by assuming that the orthonormal basis {σ1, σ2, . . . , σn} for S1
n is the standard

orthonormal basis for Cn. As an orthonormal basis for the subspace Sn−1
n , which we

will use to identify Sn−1
n with Cn, we take the spinors {?σ1, ?σ2, . . . , ?σn} given by

?σi = (−1)i−1σ1 ∧ · · · ∧ σi−1 ∧ σi+1 ∧ · · · ∧ σn, 1 ≤ i ≤ n.

Consequently, we have two ways of realizing the matrix algebraMn(C) as a compression
of the Clifford algebra A2n(C), namely,

Mn(C) ≡ L(Sn−1
n ) = PR A2n(C)PR, Mn(C) ≡ L(S1

n) = PL A2n(C)PL,

and therefore we get the next two identifications of the matrix operator algebra Mn(A)
as a compression of the Clifford environment En(A) = A2n(C)⊗ A,

Mn(A) ≡ (PR ⊗ IA)En(A) (PR ⊗ IA), (3.14)

Mn(A) ≡ (PL ⊗ IA)En(A) (PL ⊗ IA). (3.15)
The two above identifications make it possible to assign operator matrices to operator
forms. In particular – as expected – for the operator formsRR(T ),RL(T ), andR(X,Y )
of an n-tuple T , or of the corresponding self-adjoint pair (X,Y ), we have the following
associated operator matrices.
Lemma 3.6. The self-commutator matrices CR(T ), CL(T ), C(X,Y ) are given by

CR(T ) ≡ (PR ⊗ IA)RR(T ) (PR ⊗ IA),

CL(T ) ≡ (PL ⊗ IA)RL(T ) (PL ⊗ IA),
C(X,Y ) ≡ (PR ⊗ IA)R(X,Y (PR ⊗ IA).

Prompted by this result we introduce two new definitions.
Definition 3.7. An n-tuple T of elements of A is called jointly one-sided seminormal
provided either its right, or its left self-commutator operator matrix is semidefinite as
an element of Mn(A). To be more specific,
(i) T is called jointly right hyponormal, or jointly right cohyponormal, if

CR(T ) ≥ 0, or CR(T ) ≤ 0, respectively; (3.16)

(ii) T is called jointly left cohyponormal, or jointly left hyponormal, if

CL(T ) ≥ 0, or CL(T ) ≤ 0, respectively. (3.17)

Definition 3.8. A pair (X,Y ) of self-adjoint n-tuples of elements of A is called jointly
seminormal provided the self-commutator operator matrix C(X,Y ) is semidefinite as
an element of Mn(A). To be specific, (X,Y ) is called jointly hyponormal, or jointly
cohyponormal, if

C(X,Y ) ≥ 0, or C(X,Y ) ≤ 0, respectively. (3.18)
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For the benefit of our reader, we should mention that the concepts of joint hyponor-
mality and joint t-hyponormality introduced by Athavale [1] and Xia [44], and eventually
adopted and studied by other researchears, correspond in our terminology to joint left
hyponormality and joint right hyponormality, respectively. To get a common ground,
we just need to observe that according to Lemma 3.6, each of the self-commutator
operator matrices defined by equations (3.10) and (3.11) is derived as a compression
of a certain specific self-commutator operator form. From Definitions 3.1, 3.3, 3.7, and
3.8 we get the following two properties.

Corollary 3.9. Any one-sided seminormal n-tuple T of elements of A is jointly
one-sided seminormal, and any seminormal pair (X,Y ) of self-adjoint n-tuples of
elements of A is jointly seminormal, with the preservation of direction.

Corollary 3.10. If T = (T1, T2, . . . , Tn), n ≥ 1, is a one-sided hyponormal, or
a one-sided cohyponormal n-tuple of elements of A, then each of its entries Ti,
1 ≤ i ≤ n, is a hyponormal, or a cohyponormal element of A, respectively.

Corollary 3.10 implies that when the C∗-algebra A is finite dimensional, all compo-
nents of a seminormal n-tuple T are normal. In particular, if T is two-sided seminormal,
from Proposition 3.5 we conclude that both its self-commutator operator forms are
equal to 0. We get the same conclusion if T is seminormal and commuting. Therefore,
seminormality as a relevant concept in multidimensional operator theory only makes
sense in an infinite dimensional framework.

3.3. SEMIDEFINITE QUADRATIC OPERATOR FORMS

Motivated by our last comments, for the remaining parts of our article we will
assume that A = L(H), where H is an infinite dimensional complex Hilbert space.
Consequently, the associated Clifford environments are given by equation (2.37), i.e.,
En(L(H)) = L(S#

n [H]), where S#
n [H], n ≥ 1, is the Hilbert space of H-valued spinors

given by equation (2.36). Moreover, from equations (3.15) and (3.16) we get that the
left and right identifications of the matrix operator algebra Mn(L(H)) = L(Cn ⊗H)
as compressions of L(S#

n [H]) reduce to

Mn(L(H)) ≡ L(S1
n ⊗H), or Mn(L(H)) ≡ L(Sn−1

n ⊗H). (3.19)

Suppose next that C = (Cij)n
i,j=1 ∈ Mn(L(H)) is an operator matrix, and let

RL(C), RR(C) ∈ L(S#
n [H]) denote the operator forms defined by

RL(C) =
n∑

i,j=1
εiε
∗
j ⊗ Cij , RR(C) =

n∑

i,j=1
ε∗i εj ⊗ Cij , (3.20)

which will be referred to as the left and right quadratic operator forms with coefficient
operator matrix C. Since with respect to the grading of the space S#

n [H] the two
so defined quadratic operator forms are homogeneous of degree 0, their coefficient
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operator matrix C can be easily recovered based on the identifications (3.19) by using
appropriate restrictions. Specifically,

C = RL(C)|S1
n ⊗H : S1

n ⊗H → S1
n ⊗H, (3.21)

C = RR(C)|Sn−1
n ⊗H : Sn−1

n ⊗H → Sn−1
n ⊗H. (3.22)

In particular, if RL(C) or RR(C) is semidefinite, then one gets that the coefficient
operator matrix C is semidefinite, with the preservation of direction. The following
technical result will be used to show that the converse of the previous remark is also
true when H is an infinite dimensional complex Hilbert space.

Lemma 3.11. Let C = (Cij)n
i,j=1 be an operator matrix, i.e., a linear operator

on Cn ⊗H. The following two properties are equivalent:

(i) C ≥ 0.
(ii) There exists an n-tuple (C1, C2, . . . , Cn) of operators on H such that

Cij = C∗i Cj , 1 ≤ i, j ≤ n. (3.23)

Proof. Since obviously (ii) implies (i), it suffices to show that (i) implies (ii). To this
end, we first choose a unitary operator U : Cn ⊗H → H. Such unitary operators exist
because H is infinite dimensional. Next, we define Ci : H → H, 1 ≤ i ≤ n, by setting
Ciξ = U

(
C1/2(σi ⊗ ξ)

)
, ξ ∈ H, where {σ1, σ2, . . . , σn} is the standard orthonormal

basis for Cn and C1/2 : Cn ⊗H → Cn ⊗H denotes the square root of C. It remains to
observe that

〈C∗i Cjξ, ξ 〉H = 〈Cjξ, Ciξ 〉H =
〈
U
(
C1/2(σj ⊗ ξ)

)
, U
(
C1/2(σi ⊗ ξ)

)〉
H

=
〈
C1/2(σj ⊗ ξ), C1/2(σi ⊗ ξ)

〉
Cn⊗H

= 〈 C(σj ⊗ ξ), σi ⊗ ξ 〉Cn⊗H

= 〈Cijξ, ξ 〉H,

for any 1 ≤ i, j ≤ n and all ξ ∈ H. The proof of (3.23) is complete.

Proposition 3.12. Let RL(C) and RR(C) be the two quadratic operator forms with
the coefficient operator matrix C. The following properties are equivalent:

(i) C ≥ 0.
(ii) There exists an n-tuple S = (S1, S2, . . . , Sn) of operators on H such that

RL(C) = D(S)D∗(S). (3.24)

(iii) There exists an n-tuple S = (S1, S2, . . . , Sn) of operators on H such that

RR(C) = D∗(S)D(S). (3.25)

Proof. First, let us recall that D(S) and D∗(S) in parts (ii) and (iii) above are the
semi-Dirac operator forms of an n-tuple S defined according to equation (2.41). We
already noticed that the assumptions RL(C) ≥ 0, or RR(C) ≥ 0, imply property (i).
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Assuming now that (i) is true, we take an n-tuple (C1, C2, . . . , Cn) as in Lemma 3.11.
Equation (3.24) follows from the first equation in (3.20) and from (3.23), by setting
S = (C∗1 , C∗2 , . . . , C∗n). In its turn, equation (3.25) follows from the second equation in
(3.20) and from (3.23), by setting S = (C1, C2, . . . , Cn). The proof is complete.

If C ≤ 0, we use Proposition 3.12 for the positive semidefite operator martix −C
and get the equivalent properties RL(C) ≤ 0 and RR(C) ≤ 0.

The previous results have some direct consequences for n-tuples of operators on
H. If T = (T1, T2, . . . , Tn) is such an n-tuple, and (X,Y ) is its associated self-adjoint
pair, from (2.44), (2.50), (3.10), (3.11), and (3.20), we get that the self-commutator
operator matrices CL(T ), CR(T ), C(X,Y ), and the quadratic self-commutator operator
forms RL(T ), RR(T ), R(X,Y ) are related to each other by the following equations,

RL(T ) = RL(CL(T )), RR(T ) = RR(CR(T )), R(X,Y ) = RR(C(X,Y )). (3.26)

From Proposition 3.12 and the brief comment after it in conjunction with Corollary 3.9
we derive the next result.
Theorem 3.13. If A = L(H) with H an infinite dimensional complex Hilbert space,
Definitions 3.1 and 3.3 are equivalent to Definitions 3.7 and 3.8, respectively, i.e.,
seminormality – in each of its specific forms – is equivalent to joint seminormality.

The following result is yet another consequence of Proposition 3.12.
Proposition 3.14. If C = (Cij)n

i,j=1 is a semidefinite operator matrix, i.e., a positive
or negative semidefinite linear operator on Cn ⊗H, then

‖C‖ ≤
n∑

i=1
‖Cii‖.

Proof. It would be enough to prove (3.14) when C ≥ 0. Under this assumption,
from Proposition 3.12 we have the factorization (3.24), where S = (S1, S2, . . . , Sn) is
an n-tuple of operators on H such that

Cij = SiS
∗
j , 1 ≤ i, j ≤ n.

Since, according to equation (3.21), C = RL(C)|S1
n ⊗ H, from (3.24) we get that

C = D(0)(S)D(0)∗(S), where D(0)(S) = D(S)|S0
n ⊗H : S0

n ⊗H → S1
n ⊗H. Therefore,

‖C‖ = ‖D(0)(S)‖2. (3.27)

On the other hand, if ξ ∈ H ≡ S0
n ⊗H, then

‖D(0)(S)ξ‖2S1
n⊗H =

∥∥∥∥∥
n∑

i=1
σi ⊗ Siξ

∥∥∥∥∥

2

S1
n⊗H

=
n∑

i=1
‖Siξ‖2H,

whence
‖D(0)(S)‖2 ≤

n∑

i=1
‖Si‖2 =

n∑

i=1
‖SiS

∗
i ‖ =

n∑

i=1
‖Cii‖. (3.28)

Inequality (3.14) follows from (3.27) and (3.28).
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In the particular case when the semidefinite operator matrix C in Proposition 3.14
is either the right, or the left self-commutator operator matrix of a seminormal n-tuple
of operators T , (3.14) yields a self-commutator inequality.
Corollary 3.15. If T = (T1, T2, . . . , Tn) is a one-sided seminormal n-tuple of operators
on an infinite dimensional Hilbert space H, then

‖C(T )‖ ≤
n∑

i=1
‖[T ∗i , Ti]‖, (3.29)

where C(T ) = CR(T ) or C(T ) = CL(T ).

4. SPECTRAL PROPERTIES OF SEMINORMAL SYSTEMS

For the specific purposes of this section, we assume that H is an infinite dimensional
complex Hilbert space, and T = (T1, T2, . . . , Tn), n ≥ 1, is a commuting n-tuple of
operators on H, i.e.,

[Ti, Tj ] = 0, 1 ≤ i, j ≤ n. (4.1)
In terms of X and Y , the real and imaginary parts of T , (4.1) amounts to

[Xi, Xj ] = [Yi, Yj ], 1 ≤ i, j ≤ n, (4.2)
[Xi, Yj ] = [Xj , Yi], 1 ≤ i, j ≤ n. (4.3)

Moreover, direct calculations show that T is a commuting n-tuple if and only if its
associated semi-Dirac operator form D(T ) : S#

n [H] → S#
n [H] defined by equation

(2.41) has the property
D(T )2 = 0. (4.4)

Consequently, using the space S#
n [H] of H-valued spinors with the co-boundary

operator D(T ) one gets the co-chain complex K?(T ) = {S#
n [H],D(T )} given by

{0} −→ S0
n[H] D(T )−→ · · · D(T )−→ Sp

n[H] D(T )−→ Sp+1
n [H] D(T )−→ · · · D(T )−→ Sn

n[H] −→ {0},
which is just the Koszul complex associated with T . The cohomology spaces of K?(T )
are denoted by HpK?(T ), 0 ≤ p ≤ n, and their direct sum H?K?(T ) =

⊕n
p=0 HpK?(T )

is the total cohomology space of K?(T ). For more details on this complex and its role
in multivariable spectral theory we refer to Taylor [39].

We next take the Laplace operator form ∆(T ) : S#
n [H]→ S#

n [H] of T defined by
equation (2.42), which with respect to the grading of S#

n [H] is homogeneous of degree
0, and consider its homogeneous components

∆(p)(T ) = ∆(T )|Sp
n[H] : Sp

n[H]→ Sp
n[H], 0 ≤ p ≤ n.

A quick inspection of the Bochner-Kodaira-Nakano identities BKNL(T ) and BKNR(T )
in Lemma 2.1, and the Hilbert space isomorphisms S0

n[H] ≡ H and Sn
n[H] ≡ H, lead

to the identifications

∆(0)(T ) = ∆c
L(T ), ∆(n)(T ) = ∆c

R(T ), (4.5)
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with ∆c
L(T ) and ∆c

R(T ) the Laplace operators of T given by equations (2.43). We are
now in a position to prove the following result.
Theorem 4.1. Let T = (T1, T2, . . . , Tn), n ≥ 1, be a commuting n-tuple of operators
on H, and suppose that T is either right hyponormal, or left cohyponormal.
(i) K?(T ) is an exact complex if and only if either ∆c

R(T ), or ∆c
L(T ) is an invertible

operator on H, respectively.
(ii) K?(T ) is a Fredholm complex if and only if either Ker∆c

R(T ), or Ker∆c
L(T ) is

a finite dimensional subspace of H, respectively.
Proof. Our subsequent reasonings are based on some results due to Vasilescu [40, 41]
and Curto [10]. Both the exactness and Fredholmness of K?(T ) can be characterized
in terms of the Laplace operator form ∆(T ). Specifically, K?(T ) is exact if and only
if ∆(T ) is an invertible operator on S#

n [H], and K?(T ) is Fredholm if and only if
Ker∆(T ) is a finite dimensional subspace of S#

n [H]. Therefore, if K?(T ) is exact, or
Fredholm, then both Laplace operators ∆c

R(T ) and ∆c
L(T ) of T are invertible, or both

Ker∆c
R(T ) and Ker∆c

L(T ) are finite dimensional, without any other assumptions.There
are the converse properties that require supplementary assumptions and in this regard
Bochner’s method turns out to be relevant.

Let us first examine the case when T is right hyponormal, i.e., RR(T ) ≥ 0.
To complete the proof of statements (i) and (ii) in this case we rely on the
Bochner-Kodaira-Nakano identity BKNR(T ). If ∆c

R(T ) is invertible, then ∆(T ) equals
the sum of an invertible positive definite operator and a positive semidefinite opera-
tor, and as such ∆(T ) is invertible. This simple observation concludes the proof of
statement (i). We next notice that under the same assumption on RR(T ) we have

Ker∆(T ) = S#
n (C)⊗Ker∆c

R(T ) ∩KerRR(T ), (4.6)

an equation that concludes the proof of statement (ii). The second case when T is
left cohyponormal, i.e., RL(T ) ≥ 0, and ∆c

L(T ) is invertible, or Ker∆c
L(T ) is finite

dimensional, can be handled in a similar way by using the Bochner-Kodaira-Nakano
identity BKNL(T ). The proof is complete.

As specific spectral properties of seminormal n-tuples of Hilbert space operators
we have the following consequence of Theorem 4.1.
Corollary 4.2. Assume that T = (T1, T2, . . . , Tn), n ≥ 1, is a commuting n-tuple of
operators on H, and let σ(T ), σR(T ), and σL(T ) be the spectrum, the right spectrum,
and the left spectrum of T . If T is right hyponormal, or left cohyponormal, then

σ(T ) = σR(T ), or σ(T ) = σL(T ), (4.7)

respectively. A similar conclusion holds if one replaces σ(T ), σR(T ), and σL(T ) by the
essential spectrum σess(T ), the right essential spectrum σess,R(T ), and the left essential
spectrum σess,L(T ) of T .

The reader may find details on the spectral sets specified above in Bunce [6] and
Curto [10]. For different proofs of Corollary 3.15 when T is left cohyponormal we refer
to Xia [44] and Curto and Jian [12].
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5. RIESZ TRANSFORMS AND JOINT HYPONORMALITY

The goal of this section is to introduce Riesz transforms models of hyponormal pairs of
self-adjoint n-tuples of Hilbert space operators, i.e., a special type of singular integral
models that make use of Riesz transforms. Such models generalize to higher dimension
the Hilbert transform models of hyponormal operators with a self-commutator of
rank 1 discovered by Xia [42] and Pincus [33], analyzed in more detail by Pincus and
Xia [34] and Picus and Xia and Xia [35], and afterwards set up in full generality for
pure hyponormal operators by Kato [17] and Muhly [32]. We should point out that
the natural framework for developing Riesz transforms models is provided by n-tuples
of decomposable linear operators on a direct integral Hilbert space

H =
⊕∫

Ω

H(x) dx,

where Ω ⊂ Rn is a compact set. For more details in this regard we refer to Martin
[23,34]. However, the basic features of the models can be fully illustrated by assuming
that each of the spaces H(x), x ∈ Ω, is one-dimensional, i.e., by taking the Lebesgue
space H = L2(Ω), and that is exactly what we will be doing in this section.

5.1. COMMUTATORS INVOLVING RIESZ TRANSFORMS

We begin by recalling that the Riesz transforms of a function u in the Schwartz space
S(Rn,C) of complex-valued functions on Rn, n ≥ 1, are defined by

Riu(x) = p.v.Γ((n+ 1)/2)
π(n+1)/2

∫

Rn

xi − yi

|x− y|n+1 u(y) dy, 1 ≤ i ≤ n, x ∈ Rn. (5.1)

For convenience, we will let ki denote the kernels

ki(x) = Γ((n+ 1)/2)
π(n+1)/2 · xi

|x|n+1 , 1 ≤ i ≤ n, x ∈ Rn
0 = Rn \ {0}, (5.2)

and express each Ri as a convolution operator, i.e., Riu = ki ∗ u, 1 ≤ i ≤ n.
Let Mi denote the multiplication operators on S(Rn,C) given by

Miu(x) = xiu(x), 1 ≤ i ≤ n, x = (x1, x2, . . . , xn) ∈ Rn. (5.3)

A direct calculation shows that the commutators [Mi, Rj ] = Mi Rj − Rj Mi,
1 ≤ i, j ≤ n, are also convolution operators on S(Rn,C), namely,

[Mi, Rj ]u(x) = kij ∗ u(x), u ∈ S(Rn,C), x ∈ Rn, (5.4)

with the kernels kij given by

kij(x) = xikj(x) = xjki(x), x ∈ Rn
0 , (5.5)
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where ki and kj are defined by equation (5.2). From (5.5) we obviously get

[Mi, Rj ] = [Mj , Ri], 1 ≤ i, j ≤ n. (5.6)

We next form the commutator operator matrix C = ([Mi, Rj ])n
i,j=1 regarded as

an operator on the Schwartz space S(Rn,Cn) ≡ Cn⊗S(Rn,C) of Cn-valued functions
on Rn. Actually, using the notation introduced in Subsection 2.1 and the conventions
made there, we can represent each function u ∈ S(Rn,Cn) as

u = σ1 ⊗ u1 + σ2 ⊗ u2 + . . .+ σn ⊗ un ∈ S1
n ⊗ S(Rn,C),

and interpret C as the coefficient operator matrix of the left quadratic operator form
RL(C) on the space S#

n ⊗ S(Rn,C) of S(Rn,C)-valued spinors given by

RL(C) =
n∑

i,j=1
εiε
∗
j ⊗ [Mi, Rj ]. (5.7)

On the space S(Rn,C) we now take the inner product inherited from the standard
Lebesgue space L2(Rn) of square integrable complex-valued functions on Rn, and
convert S#

n ⊗ S(Rn,C) and S1
n ⊗ S(Rn,C) into inner product spaces. We have the

following technical result.

Lemma 5.1. The commutator operator matrix C = ([Mi, Rj ])n
i,j=1 is positive semidef-

inite, i.e.,
〈Cu, u〉 ≥ 0 (5.8)

for any u ∈ S(Rn,Cn) ≡ S1
n ⊗ S(Rn,C).

A complete proof of Lemma 5.1 based on a Fourier transform argument can be
found in Martin [22]. To make a point, we note that by taking the Fourier transforms
of the kernels ki given in equation (5.2), we get

(Riu)̂(ξ) = −
√
−1 ξi ‖ξ‖−1 û(ξ), 1 ≤ i ≤ n, u ∈ S(Rn,C), ξ ∈ Rn

0 , (5.9)

a set of equations that imply several basic properties of the Riesz transforms. For
instance, one gets that each Ri, 1 ≤ i ≤ n, extends to a skew-adjoint operator
on L2(Rn), such that

n∑

i=1
R∗iRi = IdL2(Rn). (5.10)

More properties of Riesz transforms are discussed in Stein [38]. As far as Lemma 5.1
is concerned, we need the Fourier transforms of the kernels kij defined by (5.5), which
are given by

k̂ij(ξ) = δij |ξ|−1 − ξiξj |ξ|−3, 1 ≤ i, j ≤ n, ξ ∈ Rn
0 . (5.11)

Lemma 5.1 proves essential in setting up Riesz transforms models of jointly hyponormal
self-adjoint pairs in higher dimension.
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5.2. RIESZ TRANSFORMS MODELS

We take the Lebesgue space H = L2(Ω), where Ω ⊂ Rn is a compact set, and identify
it with the subspace of L2(Rn) consisting of functions equal to 0 on Rn \ Ω. Let
PΩ denote the orthogonal projection of L2(Rn) onto L2(Ω). The first step in setting
up a singular integral model of jointly hyponormal pairs of self-adjoint n-tuples of
operators on H = L2(Ω) consists in choosing n+1 functions a1, a2, . . . , an, b ∈ L∞(Ω),
where each a1, a2, . . . , an is a real-valued function and b is different from 0 almost
everywhere on Ω. For reasons that will eventually transpire, we refer to function b
as a primary parameter, and to the functions a1, a2, . . . , an as secondary parameters.
As a second step, we let A1, A2, . . . , An, B ∈ L(L2(Ω)) stand for the multiplication
operators given by

Ai u(x) = ai(x)u(x), u ∈ L2(Ω), 1 ≤ i ≤ n, x ∈ Ω, (5.12)

B u(x) = b(x)u(x), u ∈ L2(Ω), x ∈ Ω. (5.13)
The operators A1, A2, . . . , An are self-adjoint. We next define two self-adjoint n-tuples
of operators on L2(Ω), denoted by X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn),
by setting

Xi = Mi | L2(Ω), 1 ≤ i ≤ n, (5.14)
with Mi given by equation (5.3), and

Yi = Ai −
√
−1B∗ PΩRi PΩB, 1 ≤ i ≤ n,

where Ri are the Riesz operators defined by equation (5.1) considered as bounded
linear operators on L2(Rn).
Theorem 5.2. The self-adjoint pair (X,Y ) of n-tuples of operators on L2(Ω) defined
by equations (5.14) and (5.2) is jointly hyponormal.
Proof. We need to show that the self-commutator operator matrix C(X,Y ) of the
self-adjoint pair (X,Y ) given by equation (3.11) is positive semidefinite. We first notice
that

[Xi, Yj ] = [Xj , Yi] = −
√
−1B∗ PΩ [Mi, Rj ]PΩB, 1 ≤ i, j ≤ n. (5.15)

Substituting these equations into (3.11) we have

C(X,Y ) = 2 (B∗ PΩ [Mi, Rj ]PΩB)n
i,j=1 . (5.16)

It remains to observe that whenever u ∈ S1
n ⊗ L2(Ω) ⊂ S1

n ⊗ L2(Rn) we get

〈 C(X,Y )u, u 〉 = 2〈 CΩBu,Bu 〉, (5.17)

where CΩ is the compression of the commutator operator matrix C defined by equation
(5.7) to the subspace S1

n ⊗L2(Ω). Since any u ∈ S1
n ⊗L2(Ω) can be approximated by

restrictions to Ω of functions from S1
n ⊗S(Rn,C), Lemma 5.1 implies CΩ ≥ 0, whence

C(X,Y ) ≥ 0.
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5.3. FURTHER RESULTS AND COMMENTS

We conclude this section with a few remarks and additional results. First, we should
observe that the jointly hyponormal self-adjoint pair (X,Y ) of n-tuples of operators on
L2(Ω) which we defined and analyzed in Subsection 5.2 has several peculiar properties.
In addition to (5.15), both X and Y are commuting n-tuples, so X and Y satisfy
equations (4.2) and (4.3) in Section 4. Consequently, the n-tuple

T = X +
√
−1Y (5.18)

of operators on L2(Ω) is commuting. Moreover, direct calculations show that the right
and left self-commutator operator matrices of T defined in equation (3.10) are given
by, respectively,

CR(T ) = C(X,Y ), CL(T ) = −C(X,Y ). (5.19)

Therefore, according to Definitions 3.7 and 3.8, and based on Theorem 3.13, T is
a two-sided hyponormal n-tuple. By Corollary 4.2 the spectrum σ(T ) and the essential
spectrum σess(T ) of T coincide with the right spectrum σR(T ) and the essential right
spectrum σess,R(T ), so presumably one can find a simple description of these spectra in
terms of Ω and the parameters of the model. It seems also appropriate to ask ourselves
whether any n-tuple T of Hilbert space operators for which the associated self-adjoint
pair (X,Y ) has all the above mentioned additional properties is unitarily equivalent
to a Riesz transforms model on a direct integral Hilbert space.

Returning to the Riesz transforms model (X,Y ) of n-tuples of operators on L2(Ω)
we want to mention the following result which is a Putnam type inequality in higher
dimension.

Theorem 5.3. The operator form R(X,Y ) in the Bochner-Weitzenböck self-
-commutator identity BW(X,Y ) of the self-adjoint pair (X,Y ) satisfies the inequality

‖R(X,Y )‖ ≤ 2n Γ((n+ 1)/2)
π(n+1)/2 |Bn |(n−1)/n |Ω |1/n ‖b‖2L∞(Ω), (5.20)

where Bn is the closed unit ball in Rn, |Bn | and |Ω | are the Lebesgue measures of Bn

and Ω, and b ∈ L∞(Ω) is the primary parameter of the model.

For a complete proof of (5.1) and for some other more general related results we
refer to Martin [20–24,26,27], and [30].
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