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Abstract: Recently, peroxisome proliferator-activated receptor (PPAR)-α and γ isoforms have
been gaining consistent interest in neuropathology and treatment of neuropsychiatric disorders.
Several studies have provided evidence that either the receptor expression or the levels of their
endogenously-produced modulators are downregulated in several neurological and psychiatric
disorders and in their respective animal models. Remarkably, administration of these endogenous
or synthetic ligands improves mood and cognition, suggesting that PPARs may offer a significant
pharmacological target to improve several neuropathologies. Furthermore, various neurological
and psychiatric disorders reflect sustained levels of systemic inflammation. Hence, the strategy of
targeting PPARs for their anti-inflammatory role to improve these disorders is attracting attention.
Traditionally, classical antidepressants fail to be effective, specifically in patients with inflammation.
Non-steroidal anti-inflammatory drugs exert potent antidepressant effects by acting along with
PPARs, thereby strongly substantiating the involvement of these receptors in the mechanisms that
lead to development of several neuropathologies. We reviewed running findings in support of a role
for PPARs in the treatment of neurological diseases, including Alzheimer’s disease or psychiatric
disorders, such as major depression. We discuss the opportunity of targeting PPARs as a future
pharmacological approach to decrease neuropsychiatric symptoms at the same time that PPAR ligands
resolve neuroinflammatory processes.

Keywords: PPAR-α; PPAR-γ; neuropsychiatric disorders; major depression; Alzheimer’s disease;
allopregnanolone; BDNF; neuroinflammation; toll-like receptor

1. Introduction

Peroxisome proliferator-activated receptors (PPARs) are non-steroid nuclear receptors, which
dimerize with the retinoid X receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE)
in the promoter region of target genes (Figure 1) [1]. PPARs are expressed in many cellular types
and tissues and exhibit differences in ligand specificity and activation of metabolic pathways [2].
In humans, among all known transcriptional factors belonging to the nuclear receptor superfamily,
three isoforms of PPARs have been characterized: PPAR-α, PPAR-β/δ, and PPAR-γ, also known
as NR1C1, NR1C2, and NR1C3, respectively [3]. PPARs are a target for fatty acids (unsaturated,
mono-unsaturated, and poly-unsaturated), for which they mediate binding and transport, as well as
oligosaccharides, polyphenols, and numerous synthetic ligands [4]. Furthermore, they are involved in
a series of molecular processes, ranging from peroxisomal regulation and mitochondrial β-oxidation to
thermogenesis and lipoprotein metabolism [5]. PPAR distribution changes in different organs and
tissues. In rodent central nervous system, the three isoforms are widely co-expressed across brain areas
and in circuitry that are responsible for mediating stress-responses, which supports a role in several
neuropsychopathologies by mediating anti-inflammatory and metabolic actions [6,7]. Intriguingly,
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both synthetic and endogenously-produced PPAR agonists have shown benefits for treatment of mood
disorders and neurological diseases [8].

Figure 1. Schematic representation of PPAR-α and PPAR-γ signal cascade following their activation by
endogenous or synthetic ligands. PPAR-α endogenous and synthetic agonists, including PEA and the
fibrates, activate PPAR-α that dimerizes with the retinoid X-receptor (RXR) and activates the calcium
influx through transcriptional regulation of cyclic AMP response element-binding protein (CREB), which
in turn promotes hippocampal brain derived neurotropic factor (BDNF) signaling cascade. PPAR-α
activation also upregulates both the steroidogenic acute regulatory protein (StAR), which forms a
complex with cholesterol and translocator protein (TSPO) allowing the entry of cholesterol into the inner
mitochondria membrane where cholesterol is transformed into pregnenolone (PE), the precursors of all
neurosteroids, through the cholesterol side-chain cleavage enzyme (P450scc). PE, which is translocated
to cortical and hippocampus glutamatergic pyramidal neurons is then converted in allopregnanolone.
Allopregnanolone enhances γ-aminobutyric acid action at GABAA receptors [9,10] and improves
emotional behavior. Allopregnanolone may also exert an important anti-inflammatory action by
binding at α2-containing GABAA receptor subtypes located in glial cells, through inhibition of toll-like
4 receptor/NF-κB pathway [11]. PPAR-γ agonists potentiate the PPAR-γ-induced inhibitory action on
NF-κB, which is responsible for microglial activated status, neuroinflammation and neurodegeneration.
Moreover, NF-κB inhibits the hippocampal BDNF signaling cascade [12,13]. Thus, PPAR-γ agonists
exert an anti-inflammatory effect, by decreasing pro-inflammatory cytokines IL-6, IL-1β, TNF-α, as
well as the JAK-2/STAT3 pathway, which is involved in immunity processes. Additionally, activation of
PPAR-γ plays a neuroprotective action by decreasing the inhibition on BDNF signaling pathway.
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By enhancing free fatty acid uptake, PPARs may improve insulin sensitivity and beta-cell properties
in hyperglycemia in patients affected with type 2 diabetes [14]. For example, thiazolidinediones,
including pioglitazone and rosiglitazone, are synthetic ligands that selectively bind at PPAR-γ and
are used clinically for the treatment of diabetes [15]. However, given their side effects on weight
gain, congestive heart failure, bone fractures, and macular and peripheral edema, the Food and Drug
Administration (FDA) has limited their use [16]. PPAR-α synthetic ligands, including the fibrates
(fenofibrate, clofibrate) (depicted in Figure 2) are characterized by a much safer pharmacological profile
and are widely prescribed to lower high cholesterol blood levels and triglycerides [17]. While PPAR-α
and γ endogenous and synthetic ligands have been well characterized for the treatment of diabetes
and cardiovascular disease, their central neuronal effects on behavior and neuropathology have only
emerged recently [7].

Figure 2. List of endogenous and synthetic PPAR- α, PPAR-γ and dual PPAR- α/γ ligands.

The efficacy of PPAR-γ agonists on behavior was initially shown in rodent models of anxiety
and depression, where the administration of rosiglitazone significantly reduced the immobility
time in the forced swim test [18]. This antidepressant effect was also observed in clinical trials
where administration of pioglitazone or rosiglitazone improved symptoms in patients with major
depression [16]. Importantly, the improvement in depression correlated with normalization of
inflammatory biomarkers (e.g., IL-6) and insulin resistance, suggesting an intriguing link among
PPAR-γ-activation, depression, inflammation, and metabolism [16].

These findings highlight the potential therapeutic value of PPAR-γ agonists in the treatment of
neuropsychiatric disorders [16,18,19]. Furthermore, they encourage developing new antidepressant
drugs beyond the traditional selective serotonin reuptake inhibitors (SSRIs). SSRIs are relatively
inefficient because they only improve symptoms in about half of patients with mood disorders,
including major depression and post-traumatic stress disorder (PTSD) [9]. Hence, there is an urgent
need for developing new treatment strategies and identifying novel neurobiological targets and
biomarkers that may stimulate discovery of novel ligands [9].

Recently, neuroinflammation has been the focus of new scientific evidence that is convincingly
demonstrating its contribution to neuropathophysiology of mood disorders [20]. Several studies have
recently observed elevated peripheral and central neuroinflammatory markers in psychiatric disorders,
such as PTSD, suicidal behavior, and schizophrenia [21–23]. It is remarkable that patients with high
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levels of neuroinflammation respond poorly to classical antidepressants, suggesting that targeting
neuroinflammatory pathways may offer a therapeutic strategy to revert or alleviate mood symptoms
as well [24]. Intriguingly, dietary interventions have been tested in several neuropsychiatric disorders,
such as multiple sclerosis (MS), anxiety, and depression [25,26]. As molecular targets for various
natural ligands found in a number of aliments, PPARs may shed light into the molecular mechanisms
underlying the success of dietary treatments in nutritional psychiatry [27].

Herein, we review recent findings on the emerging role of PPAR-α and PPAR-γ in the treatment
of neuropsychiatric disorders with a particular focus on their role in the regulation of inflammation.

2. Brain Distribution of PPARs in the Rodent Brain

The distribution of PPARs changes over different tissues. In rat brain, the three isoforms are
co-expressed during neurodevelopment. Later in life, PPAR-β/δ becomes the most predominant
isoform and subsequently there is a decrease in the expression of PPAR-α and PPAR-γ [28]. However,
PPAR-α is widely expressed in amygdala, prefrontal cortex, thalamic nuclei, nucleus accumbens,
ventral tegmental area, and basal ganglia [29,30]. In these regions, PPAR-α expression is found at the
highest levels in neurons, followed by astrocytes, where it was detected in cell body and astrocytic
processes, and is weakly expressed in microglia. PPAR-α is the only isotype that colocalizes with all cell
types and it is the most expressed isotype in astrocytes [30]. PPAR-β/δ has a ubiquitous distribution
across the brain. It is the most widely expressed isotype both in the brain and the periphery, and studies
suggest a regulatory role for PPAR-β/δ on the other isoforms [31]. PPAR-γ is highly expressed in the
amygdala, piriform cortex, dental gyrus and basal ganglia, with lower levels in thalamic nuclei and
hippocampal formation [6,30]. PPAR-γ is also more widely expressed in neurons than astrocytes where
it varies across brain regions, with higher expression in nucleus accumbens followed by the prefrontal
cortex. Interestingly, PPAR-γ is not expressed in microglia of mouse or human brain unless there is a
condition of a microglial functional state, as it appears after lipopolysaccharide (LPS) treatment [30].
While PPAR-β/δ is not found in microglia, PPAR-α is the only isotype expressed under normal and
LPS conditions [30]. PPAR expression across brain areas in circuitry that regulates stress-response
suggests that they may play a role in several neuropsychopathologies by mediating anti-inflammatory
and metabolic actions. Intriguingly, both synthetic and endogenously-produced PPAR agonists have
shown benefits for treatment of mood disorders and neurological diseases [7,8,10,32,33].

3. Neuropsychiatric Disorders and PPARs

3.1. Mood Disorders

Major depressive disorder (MDD) affects 15%–20% of the general American population, thereby
representing a remarkable burden for society, exacerbated by its chronicity and comorbidity with
other prevalent mood disorders, such as PTSD and suicide, and drug use disorder [34,35]. It is the
second most common cause of disability worldwide and it is expected to become the main cause in
high-income countries by 2030 [36]. Currently, FDA-approved treatments for depression include the
SSRI antidepressants and the serotonin-norepinephrine reuptake inhibitor (SNRIs), which have a high
rate of non-responders [37]. Additionally, these medications might take up to several weeks to induce
pharmacological effects and patients often drop-off treatment because of a variety of unwanted secondary
effects, which comprise insomnia, headache, sexual dysfunction, and dry mouth [38]. While novel
therapeutic strategies are urgently needed for the management of MDD, PTSD, and other mood disorders,
the nuclear receptors PPAR-α and γ are gaining consistent interest as new promising targets for treating
behavioral dysfunction (please see Tables 1 and 2 for a summary) [39]. This is further substantiated by
the recent discovery that stimulation of PPAR-α can enhance neurosteroid biosynthesis [10], which is
implicated in the etiopathology of mood disorders and their treatment [7,40–43].
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Table 1. Studies of peroxisome proliferator-activated receptor (PPAR) ligands in models of neuropsychiatric
disorders.

Preclinical Studies

Models of mood disorders

Disease Model Agonist Molecular
Target Effect References

Depression GW-9662 treatment Rosiglitazone PPAR-γ
Antidepressant effect; reduce the

immobility time in the forced
swim test

[18]

Chronic social defeat
stress WY14643 PPAR-α

Improve depressive-like behavior
in the tail suspension test and

forced swim test
[44]

Chronic social defeat
stress Fenofibrate PPAR-α Antidepressant-like effects [45]

CMS-exposed rats Simvastatin PPAR-α
Reverse the depression-like
behaviors promoting BDNF

signaling pathway
[46]

CMS-exposed mice Pioglitazone PPAR-γ
Decrease microglial activated

status (Iba1+) and
pro-inflammatory cytokines

[47]

PTSD Socially isolated mice Fenofibrate PEA PPAR-α

Increase brain levels of
allopregnanolone; Improve

anxiety-like behavior; facilitate
contextual fear extinction and fear

extinction retention

[10], [48], [49]

Models of neurodevelopmental disorders

Schizophrenia GluN1 knockdown Pioglitazone PPAR-γ
Improve long-term memory and

help restoring cognitive
endophenotypes

[50]

ASD Propionic acid
autism-like rat

Pioglitazone (from
postnatal day 24) PPAR-γ

Mitigate the ASD-like behavior
and reduce oxidative stress and

inflammation
[51]

VPA-autism like
Wistar rat Fenofibrate PPAR-α

Reduce oxidative stress and
inflammation in several brain

regions
[52]

BTBR PEA PPAR-α Revert the altered phenotype and
improve ASD-like behavior [53]

BTBR GW0742 PPAR-β/δ

Improve repetitive behaviors and
lowers thermal sensitivity

responses; decrease
pro-inflammatory cytokines

[54]

Model of neurological disorders

PD MPTP Pioglitazone PPAR-γ
Protect against neurotoxicity;

decrease microglial activation and
iNOS-positive cells

[55]

MPTP Rosiglitazone PPAR-γ
Protect from dopaminergic

neurons loss; prevents olfactory
and motor alteration

[56], [57]

MPTP MHY908 PPAR-α/γ dual
agonist

Neuroprotective effects; reduce
microglial activation and

neuroinflammation
[58]

MPTP MDG548 PPAR-γ
Mediate neuroprotection in

microglia; promote
anti-inflammatory cytokines

[59]

MPTP Pioglitazone PPAR-γ Decrease microglial activation and
iNOS-positive cells [60]

Epilepsy WAG/Rij rats PEA PPAR-α Attenuate seizures [61]

AD Genetically modified
AD mouse Pioglitazone PPAR-γ

Improve memory and learning
deficits; prevent

neurodegeneration
[62]

Streptozotocin rat
L165, 041 and

F-L-Leu

L165, 041 and
F-L-Leu,

simultaneously

PPAR-β/δ and
PPAR-γ,

Improve myelin and neuronal
maturation, mitochondrial
proliferation and function;

decrease neuroinflammation

[63]

MS EAE Troglitazone PPAR-γ Attenuate inflammation [64]
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Table 2. Effects of PPAR ligands in neuropsychiatric disorders.

Clinical Studies

Mood disorders

MDD Clinical Trial Rosiglitazone PPAR-γ Improve symptoms; normalize
pro-inflammatory cytokines [16]

Double-blind, randomized clinical
trial; 24-week. Pioglitazone PPAR-γ Improve anxiety and depression [65]

Bipolar depression Pioglitazone (15–30
mg/day for 8 weeks) PPAR-γ Improve depressive symptoms [66]

Double-blind, randomized,
placebo-controlled trial

Pioglitazone (15–45
mg/day for 8 weeks) PPAR-γ Fail to improve bipolar

depression symptoms [67]

Double-blind, randomized,
placebo-controlled trial

Pioglitazone (30 mg/day
for 12 weeks) PPAR-γ

Differential improvement
according to metabolic and

depressive status
[68]

Double-blind, randomized,
placebo-controlled trial

Palmitoylethanolamide
(PEA) PPAR-α Improve depressive symptoms [69]

Neurodevelopmental disorders

ASD 16-week prospective study of
autistic children Pioglitazone PPAR-γ

Improve repetitive and
externalizing behaviors, social

withdrawal
[70]

Neurological disorders

AD Double-blind, randomized,
placebo-controlled trial

Pioglitazone (45 mg/day
for 18 months) PPAR-γ No significant effect [71]

MS Clinical trial, 12 month-treatment Pioglitazone PPAR-γ
No improvement in clinical

symptoms; decrease grey matter
atrophy

[72]

3.1.1. PPAR-α

PPAR-α selective agonists (Figure 2) have been associated with antidepressant effects in murine
models of stress-induced depression [44,73]. The PPAR-α agonist WY14643 improved depressive-like
behavior in the chronic social defeat stress model, in the tail suspension test, and in forced swim test,
commonly used rodent paradigms to evaluate depression-like behavior [74]. The anti-depressant activity
of WY14643 appeared to involve activation of the brain derived neurotropic factor (BDNF) signaling
cascade [44], a pathway implicated in a range of neuronal processes (depicted in Figure 1) [75–78].
It is well known that BDNF levels are found to be decreased in the hippocampus of depressed
individuals and in animal models of this disorder [79–82]. Furthermore, the action of antidepressants,
like fluoxetine, increase BDNF levels, which in turn correlates with an improvement of behavioral
dysfunction [83]. Fenofibrate, another selective synthetic agonist of PPAR-α (depicted in Figure 2), is a
fibric acid derivative largely prescribed in the treatment of primary hypercholesterolemia [84]. Similar
to WY14643, fenofibrate administration in a rodent model of depression exerts antidepressant-like
effects via activation of PPAR-α-mediated promotion of hippocampal BDNF signaling cascade [45].
Fenofibrate also improved anxiety-like behavior in an animal model of PTSD [10].

PPAR-α is also involved in hippocampal long-term memory processes by upregulating
plasticity-related genes [85]. Intriguingly, PPAR-α is widely expressed in hippocampal neurons,
where it controls the calcium influx through transcriptional regulation of cyclic AMP response element
binding (CREB) [86,87]. The PPAR-mediated transcriptional regulation of CREB also stimulates BDNF
expression, which improves learning and memory in animal models of Alzheimer’s disease [88].
Interestingly, the HMG-CoA reductase inhibitor, simvastatin, which is used to decrease triglycerides
levels and reduce the risk of heart disease, is also able to reverse the depression-like behaviors induced
in rats by chronic mild stress (CMS) [46]. This action also appears to be mediated by enhancing
the hippocampal expression of BDNF signaling pathway via the PPAR-α-mediated activation of
CREB [88]. Consistent with these findings, in a chronic stress-induced mouse model of depression,
PPAR-α expression is decreased in the hippocampus, which in turn results in reduced hippocampal
BDNF expression [89]. Conversely, genetic overexpression of PPAR-α induces antidepressant effects
by a CREB-mediated biosynthesis of BDNF. Both genetic or pharmacological inhibition of PPAR-α
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blocks the anti-depressive effects of fluoxetine, thereby suggesting its involvement in the molecular
mechanisms of antidepressant drug action [89].

Downregulation of PPAR-α expression was recently associated with the molecular mechanisms
underlying behavioral deficits [10]. Likewise, its anti-depressive pharmacological effects correlated
with the stimulation of neurosteroid biosynthesis [10]. The main PPAR-α endogenous agonist,
N-palmitoylethanolamine (PEA) is an anti-inflammatory, analgesic, and anti-allergic compound
clinically tested for its neuroprotective effects in multiple sclerosis (MS), Alzheimer’s disease (AD), and
Parkinson’s disease (PD) [90,91]. PEA can be produced endogenously or acquired through plant-based
food sources and it is endogenously metabolized by the fatty acid amide hydrolase (FAAH) [91], which is
an enzyme involved in the metabolism of endocannabinoids, including anandamide (AEA) [92]. As an
endogenous ligand, PEA activates the G-protein coupled receptor, GPR55, while showing low affinity
for the cannabinoid receptor type-1 (CB1) and type2 (CB2) [93]. However, its therapeutic behavioral
effects appear to be mediated via PPAR-α binding and activation [10,94]. PEA administration in socially
isolated mice, a model of protracted stress-induced PTSD [48,49], normalized reduced brain levels of
allopregnanolone, a GABAergic neurosteroid, which is found decreased in patients with depression and
PTSD [95–99]. In the socially isolated mouse, PEA improved contextual fear responses and facilitated
contextual fear extinction and fear extinction retention, as well as ameliorated depressive-like and
anxiety-like behavior by increasing corticolimbic levels of allopregnanolone [10]. Consistently, in
a cohort of Ugandan war survivors affected by PTSD, the hair levels of PEA, oleoylethanolamide
(OEA), and stearoylethanolamide (SEA) were found to be decreased when compared with levels of
war survivors without current or lifetime PTSD [100], thus suggesting a decreased PPAR-α signal
pathway in PTSD. While it is important that these findings will be confirmed also in blood and
post-mortem brain of PTSD patients [101], this observation provides support to the involvement of the
PPAR-allopregnanolone axis dysfunction in PTSD. Together with the findings that allopregnanolone
has been found decreased in cerebrospinal fluid (CSF) and plasma of both male and female PTSD and
MDD patients [95,97–99,102], these clinical data provide a translational example with PTSD animal
models [103].

3.1.2. PPAR-γ

In 2009, a case report showed that pioglitazone improved symptoms in a 55-year-old woman
affected by unipolar major depression [104]. In another study, pioglitazone (Figure 2) was administered
in a 24-week double-blind randomized clinical trial in 145 patients with a metabolic syndrome [65].
Patients showed improvement in anxiety and depression symptoms following pioglitazone treatment.
Furthermore, pioglitazone showed anxiolytic effects in nondiabetic insulin-resistant patients [65]. In a
double-blind placebo-controlled clinical trial with patients not showing any metabolic syndrome or
diabetes, pioglitazone was beneficial in the treatment of MDD [105]. Administration with pioglitazone
(15–30 mg/day) given for 8 weeks to a cohort of 34 patients with bipolar depression also improved
depressive symptoms [66]. However, when tested for efficacy in a 8-week, double-blind, randomized,
placebo-controlled trial of 37 patients, pioglitazone (15–45 mg/day) failed to improve bipolar depression
symptoms [67].

In preclinical studies, administration with pioglitazone improved depression-like behavior induced
by LPS [12]. After pioglitazone administration, the NF-κB/IL-6/STAT3 pathway was inhibited with
concomitant down-regulation of the CREB/BDNF pathway [12,13]. In a mouse model of depression, the
pharmacological effects of pioglitazone in improving behavioral deficits involved central serotonergic
neurotransmission [12]. In mice exposed to CMS, administration of pioglitazone (2.5 mg/kg) decreased
the CMS-induced microglial activated status (Iba1 +) in the hippocampus and improved the microglial
neuroprotective phenotype, resulting in an overall amelioration of depressive-like behavior [47].
Interestingly, this behavioral improvement was associated with the inhibition of microglia-mediated
neuroinflammation [47]. Indeed, after pioglitazone treatment, the expression of pro-inflammatory
molecules (IL-1β, IL-6, and TNFα) was reduced and the levels of anti-inflammatory cytokines (IL-4,
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IL-10, and TGF-β) were increased in CMS mice [47]. Moreover, decreased PPAR-γ mRNA and protein
expression in adipose tissue were correlated with chronic social defeat stress. Rosiglitazone also
elicited antidepressant and anxiolytic-like effects through the PPAR-γ-mediated decrease in adiponectin
production, suggesting that the PPAR-γ-adiponectin axis may be involved both in metabolism and
stress-related homeostasis [106].

3.2. Neurodevelopmental Disorders

The involvement of PPARs in psychiatric disorders is not limited to MDD and PTSD. Schizophrenia
has been associated with increased inflammation, suggesting that the neuroinflammatory processes
may play a role in the pathophysiology of this prevalent mental disorder [107]. In peripheral blood
mononuclear cells (PBMC) extracted from chronic schizophrenic patients, a decreased expression and
activity of PPAR-γ correlated with lower plasma levels of its endogenous ligand, 15d-prostaglandin J2,
which overall indicates a state of increased inflammation [108]. Another study in patients affected by
schizophrenia investigated the expression of inflammatory and metabolic genes [109]. Expression of
PPAR-γ was increased while PPAR-α was decreased, suggesting a metabolic-inflammatory imbalance
in schizophrenia [109]. Pioglitazone provided benefits in reversing this metabolic condition. Also,
administration of pioglitazone to the GluN1 knockdown model of schizophrenia improved long-term
memory and helped to restore cognitive endophenotypes [50]. Unlike most anti-psychotics, pioglitazone
had a restorative effect on cognitive function (measured by the puzzle box assay), thus suggesting a
potential impact of pioglitazone as an augmentation therapy in schizophrenia [50,110].

Additionally, for its anti-inflammatory and neuroprotective properties [111], PPAR-α activation
by fenofibrate prevented prenatal maternal immune activation, which in a rat model is associated
with the risk of developing schizophrenia in the offspring [112]. Remarkably, prenatal administration
of pioglitazone dampens the schizophrenia-like behavior observed in male offspring after prenatal
maternal immune activation [112].

Autism spectrum disorder (ASD) is also characterized by neuroinflammation, oxidative stress
and depletion of glutathione in the brain [113]. In clinical studies, pioglitazone was tested in a 16-week
prospective cohort of 25 autistic children, showing good tolerability and leading to a statistically
significant improvement in repetitive behaviors, social withdrawal, and externalizing behaviors [70].
However, randomized controlled trials are still needed in order to fully validate pioglitazone as
valuable treatment for ASD [70].

In preclinical studies, administering pioglitazone decreases inflammation and oxidative stress,
thus reverting the ASD-like behavior [114]. The ASD-like behavioral deficits can be induced in rats
with a postnatal treatment with propionic acid, which increases inflammation and oxidative stress [51].
Treatment with pioglitazone from postnatal day 24, mitigated the ASD-like behavior and reduced
oxidative stress and inflammation by reducing IL-6 and TNF-α while increasing IL-10 in cerebellum,
prefrontal cortex and brainstem [115]. A natural ligand of PPAR-γ is resveratrol, which is also able to
prevent social behavioral impairments in a rodent ASD model [116,117].

Consistent with a PPAR-α activation, neurobehavioral and biochemical benefits in an ASD animal
model were observed following administration with fenofibrate that resulted in reduced oxidative
stress and inflammation in several brain regions [52]. PPAR-α is required for normal cerebral functions
and its genetic ablation leads to repetitive behaviors and cognitive inflexibility in mice [118]. In another
rodent model of ASD, the BTBR T + tf/J (BTBR) mouse, PEA reverted the altered phenotype and
improved ASD-like behavior through a PPAR-α activation. This effect was accompanied by decreased
levels of inflammatory cytokines in serum, hippocampus, and colon [53]. PEA administration restored
the hippocampal BDNF signaling pathway in BTBR mice and improved mitochondrial dysfunction,
which has been observed in ASD (Tables 1 and 2) [53].

PPAR-β/δ has also an effect in improving inflammation related to ASD [119]. Treatment with the
selective agonist, GW0742, improved repetitive behaviors and lowered thermal sensitivity responses in
the BTBR rodents, while decreasing pro-inflammatory and increasing anti-inflammatory cytokines [54].
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These findings strongly support the involvement of PPARs in the neuropathology of mood
and neurodevelopmental disorders [100]. A PPAR-α-allopregnanolone (i.e., endocannabinoid-like/

neurosteroids) cross-talk may have an impact for establishing relevant novel targets for the
treatment of PTSD and major depression [9]. Intriguingly, these newly observed link between
the endocannabinoid-like system and biosynthesis of neurosteroids may additionally provide
bio-signatures for the diagnosis and treatment of psychiatric disorders, which still rely on subjective
measures based on the DSM-5 criteria [120]. Furthermore, PPAR-γ agonists, including pioglitazone,
have shown promising antidepressant effects in several clinical trials [16,65–67]. It is also remarkable
that non-steroidal anti-inflammatory drugs, including ibuprofen and aspirin, whose mechanism of
action includes a PPAR-γ activation, have consistently shown potent antidepressant effects [121].

Collectively, these studies involving PPAR-α and γ in the neuropathophysiology of psychiatric
disorders have opened up new opportunities for the development of new therapeutics, which represent
a novel emerging field of neuropsychopharmacology [18,66,89,122].

3.3. Neurological Disorders

In Alzheimer’s disease (AD) the deposition of amyloid β triggers neuroinflammation and
oxidative damage [122,123]. However, the pathogenic mechanisms for AD onset and progression are
far from being elucidated. For their involvement in neuroinflammation, oxidative stress and energy
metabolism, PPARs have been considered as promising therapeutic target for AD (please see Tables 1
and 2) [123,124]. PPAR-γ signaling is coordinated with the Wnt/beta-catenin signaling in opposite
ways. Wnt/beta-catenin is downregulated when PPAR-γ is upregulated in AD [125]. Imbalance in the
Wnt/beta-catenin/PPAR-γ regulation plays a role in physiopathology of neurological disorders owing
to its involvement in oxidative stress and cell death through regulation of metabolic enzymes [125].
Administration of pioglitazone in a genetically modified AD mouse model showed reductions in
both soluble and insoluble amyloid β, while improving memory, learning deficits, and preventing
neurodegeneration [126]. However, in clinical studies, pioglitazone showed no significant effects on
cognitive outcomes [62,71].

To remediate the effects of neurodegeneration, the agonists L165, 041, and F-L-Leu, acting on
PPAR-β/δ and PPAR-γ, respectively, have been simultaneously administered in a Streptozotocin
rat model of AD [63]. The treatment improved myelin and neuronal maturation, mitochondrial
proliferation, and function, while decreasing neuroinflammation, indicating a role, not only for PPAR-γ,
but also for PPAR-β/δ in the pathology of AD [63]. On the other hand, activation of PPAR-α by
PEA has proven efficacy in inhibiting amylogenesis, neuroinflammation, neurodegeneration and
Tau hyperphosphorylation [124]. Whether PEA could play a role alone or adjuvant of other AD
therapeutics should be further investigated [127]. The Aβ-induced tau protein hyperphosphorylation is
also reduced by cannabidiol (CBD) administration, through the PPAR-γ and Wtn/β-catenin stimulation,
which underscores a role for this phytocannabinoid in reducing neuroinflammation and oxidative
stress [128].

Analogously, owing to their engagement in the regulation of neuroinflammation and innate
immune response, PPAR dysfunction may play a role in the molecular mechanisms that trigger
multiple sclerosis (MS) [129,130]. Interestingly, in PBMC of patients affected by MS, PPAR-γ expression
was decreased [131,132]. Troglitazone (a PPAR-γ agonist) administration attenuated inflammation
and ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model of MS [64].
Moreover, a polymorphism (Pro12A) on the PPAR-γ gene is correlated with higher risk of delayed MS
onset [133]. When tested for efficacy in a cohort of 24 patients, pioglitazone showed no improvement
in clinical symptoms after 1 year of treatment, although a decrease in grey matter atrophy and reduced
lesion burden was observed using magnetic resonance imaging (MRI) [72].

Parkinson’s disease (PD) symptoms have been reproduced in rodent models by administering
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP), which induces degeneration of dopaminergic
neurons in the substantia nigra [134]. When administered in this model, pioglitazone protects against
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MPTP-induced neurotoxicity, decreasing microglial activation, and iNOS-positive cells, as well as
inhibiting monoamine oxidase-B expression. In a chronic model of MPTP, rosiglitazone administration
protected from loss of dopaminergic neurons and prevented olfactory and motor alteration [55–57].
MHY908, a PPAR-α/γ dual agonist, exerts neuroprotective effects by reducing microglial activation
and neuroinflammation, thereby diminishing dopaminergic neuronal damage in a MPTP mouse model
of PD [135]. Similarly, the PPAR-γ agonist, MDG548 mediates neuroprotection in LPS-stimulated
microglia and, in the MPTP mouse model, by boosting phagocytosis and anti-inflammatory cytokines
production (e.g., IL-10) [136]. This further supports PPAR-γ engagement in microglial function,
phagocytosis and neuroinflammation. The overexpression of PPAR-γ coactivator-1α (PGC-1α), a
master regulator of mitochondrial metabolism and oxidative stress [137], protects MPTP-induced
dopaminergic neuronal degeneration. Interestingly, resveratrol-mediated PGC-1α activation also
protected against dopaminergic neuronal degeneration in the MPTP mouse model, with efficiency
comparable to the PGC-1α overexpression [138]. This finding suggests that resveratrol and other
compounds, which act on PPAR-γ and PGC-1α might be beneficial as therapeutic agents in PD
pathophysiology and possibly in other neurological disorders [138].

PPARs have also shown beneficial effects in improving epilepsy, a chronic disorder characterized
by unprovoked seizures, which affects 1% of the human population [139]. Administration of a
long-term fenofibrate diet negatively modulated the nicotine-induced increase of large inhibitory
postsynaptic currents recorded in pyramidal neurons and improved motor-behavioral seizures [140].
Therefore, PPAR-α has been proposed as a therapeutic target for nocturnal frontal lobe epilepsy, which
is a form of idiopathic epilepsy with an autosomal inherited component [140]. PPAR-α also plays a role
in the duration and occurrence of seizures (measured by a spike-wave discharges on EEG recordings)
in WAG/Rij rats, one of the most used models of human absence epilepsy [141], where PEA attenuates
seizures by binding PPAR-α and indirectly by activating the CB1 receptor [61].

Altogether, the results obtained from testing PPAR-α and γ agonists (such as fenofibrate,
pioglitazone, resveratrol and rosiglitazone) in various neurological disorders support PPAR-α and
PPAR-γ as potential novel targets for the therapeutic management of prevalent and debilitating
conditions, such as Alzheimer’s and Parkinson’s disease. Undoubtedly, more clinical trials are required
to demonstrate the efficacy and safety of PPAR agonists and, considering the side effects linked to
treatment with some PPAR-γ agonists, it would be necessary to explore alternative strategies for
administration, as well as adjusting for doses and delivery of drugs. Further understanding of the
molecular mechanism of PPAR’s role in neuroinflammation, which is emerging as a common process
in neuropsychiatric disorders, as well as, a better comprehension of their activation by endogenous
ligands, which can also be introduced by food sources, is also needed.

4. Conclusions

PPARs are implicated in a variety of molecular processes that bridge metabolism to inflammation,
where they have been extensively studied. PPAR-α and PPAR-γ synthetic ligands (e.g., fenofibrate,
rosiglitazone) have been approved by the FDA for treatment of high cholesterol levels and diabetes,
respectively. Remarkably, their role in the regulation of behavioral dysfunction is just emerging and
their engagement in the pathophysiology and treatment of psychiatric and neurological disorders is
becoming an intriguing new treatment opportunity to manage these conditions. In this respect, PPAR’s
involvement in neuroinflammatory processes associated with psychiatric and neurological disorders
is relevant not only for discovering novel therapeutics that activate PPARs, but also for exploring
new biomarker candidates that may help with the prevention and diagnosis of these debilitating
conditions [9,33]. Furthermore, the finding that endogenous ligands, including PEA or other natural
ligands are found in aliments, opens the field of nutritional psychiatry to investigate micronutrients
that activate PPARs [142]. This trend may lead to developing natural therapeutic approaches for
treating neuropsychiatric disorders through functional foods.
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5. Patents

Graziano Pinna has a patent pending application on PEA and PPAR-α agonists in the treatment
of neuropsychiatric disorders.
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