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Abstract: Trichinella spiralis is a major foodborne parasite and has a serious threat to meat safety.
Development of anti-Trichinella vaccines is prospective to eliminate Trichinella infection in food animal.
The aim of this study was to assess the biological properties of a novel T. spiralis trypsin (TsT) and its
elicited immune protection against larval challenge. The cDNA sequence of TsT gene was cloned
and expressed. Western blotting showed rTsT was identified by infection serum and anti-TsT serum.
RT-PCR results revealed that TsT gene was transcribed at diverse T. spiralis lifecycle stages. The IIFT
results showed that natural TsT was principally expressed at epicuticle of 5-6 day adult worms,
indicating that TsT is a worm somatic antigen and adult-stage specific surface antigen. Vaccination of
mice with rTsT triggered an evident humoral immune response (high levels of serum IgG, IgG1/IgG2a,
and enteral sIgA), and it also induced the systemic and enteral local cellular immune response,
demonstrated by an significantly elevation of cytokines IFN-γ and IL-4. The mice vaccinated with
rTsT exhibited a 33.17% reduction of enteral adult worms and a 37.80% reduction of muscle larvae
after larval challenge. The results showed that TsT might be considered as a candidate target antigen
for anti-T. spiralis vaccines.
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1. Introduction

Trichinella spiralis is a major zoonotic parasitic nematode with a worldwide distribution in more
than 150 kinds of mammal animals [1]. Human Trichinella spiralis infection is primarily resulted by
the consumption of raw or semi-cooked animal meat infected with encapsulated infective larvae.
According to a global risk-ranking conducted by FAO/WHO, T. spiralis was ranked the greatest
importance in meat [2]. The domestic pig pork is the dominant infection source of human Trichinella
infection in China and other developing countries [3,4]. Fourteen trichinellosis outbreaks owing to
pork and wild boar meat were reported in the mainland China [5]. Since a mass of domestic pork was
consumed over the world, swine T. spiralis infection is a severe threat to the meat safety and public
health [6,7]. Therefore, it is needed to explore anti-Trichinella vaccine to interdict Trichinella infection in
pigs and eradicate the infective larvae in animal food [8,9].

After being ingested, encapsulated T. spiralis muscle larvae (ML) in muscle tissues are released
from the collagen capsules with the aid of digestive fluid, develop to intestine infective larvae (IIL) after
being contacted with enteral contents or bile [10,11]. The IIL intrude into enteral mucosal epithelium
and develop to adult worms (AWs) after they molt four times. Following copulation, the pregnant
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adult females generate newborn larvae (NBL) which enter the blood circulation, invade into skeletal
muscles and become the encapsulated larvae to complete the lifecycle [12]. The enteral epithelium is
the first natural defense barrier against T. spiralis invasion, and the major interaction location of host
and the parasitic nematode [13,14], but the mechanism of enteral epithelium invasion by T. spiralis
larvae is unclear [15,16].

Trypsin is a main subfamily of serine protease superfamily in helminths [17]. Serine proteases
play a major biological funcion during Trichinella infection, and they are involved in parasite invasion,
migration and degration of host’s various tissue components [18,19]. In recent years, some kinds
of serine proteases were identified in the excretion/secretion (ES) and surface proteins of different
T. spiralis stages by proteomics/immunoproteomics [20–24]. While T. spiralis IIL larvae were inoculated
on the monolayer of intestinal epithelium cells (IECs) and co-cultured, the IIL larvae penetrated into
the IEC monolayer and produced additional serine proteases which passed into IECs [25,26]. T. spiralis
serine proteases are likely to promote the larval invasion of enteral mucosa and enteral T. spiralis
infection [27,28]. However, immunization of mice with some kinds of single recombinant serine
protease only exhibited a partial protection against T. spiralis challenge [29–32]. Therefore, it is needed
to identify and characterize additional novel serine proteases from T. spiralis and evaluate their elicited
immune protection.

In the present study, a novel T. spiralis trypsin gene (TsT, GenBank: XP_003374437.1) was retrieved
from T. spiralis draft genome [33]. The aim of this study was to ascertain the biological properties of
TsT during T. spiralis infection and the immune protection induced by vaccination with the rTsT in a
model of BALB/c mice.

2. Materials and Methods

2.1. Parasite, Animal and Antigens

Trichinella spiralis strain (ISS534) was collected from a domestic pig in central China and passaged
in BALB/c mice in our laboratory [34]. Female BALB/c mice (4–6 week-old) were gotten from Henan
Experimental Animal Center. The ML were obtained via artificially digestion of infected murine
carcasses 42 days post infection (dpi) as reported before [35]. The IIL and AW were recovered
from small intestine of infected mice at 6 hpi, 3, 5 and 6 dpi [36]. Female adults at 5 dpi were
cultivated in RPMI-1640 with 10% fetal bovine serum (FBS; Gibco) at 37 ◦C for 24 h, and the NBL
were harvested [37,38]. The ML soluble somatic proteins and ES proteins were prepared as previously
described [17,39].

2.2. Bioinformatics Analysis of TsT Gene

The full-length TsT cDNA sequences were retrieved from GenBank (No: XP_003374437.1).
The physicochemical properties of TsT were analyzed by bioanalysis software and websites. The signal
peptide and subcellular localization were predicted as described [40]. The amino acid sequence of
TsT gene was compared with trypsin from other organisms as reported before [41]. The species and
accession numbers of trypsin sequences are as follows: Trichinella nativa (OUC47977.1), Trichinella
britovi (KRY60943.1), Trichinella pseudospiralis (KRX95232.1), Trichinella murrelli (KRX46163.1), Trichinella
sp.T6 (KRX79512.1), Trichinella nelsoni (KRX19144.1), Trichinella sp.T8 (KRZ86511.1), Trichinella sp.
T9 (KRX60603.1), Trichinella papuae (KRZ70120.1), Trichinella zimbabwensis (KRZ14485.1), Trichinella
patagoniensis (KRY19647.1), Trichuris trichiura (CDW57390.1), Trichuris suis (KFD53607.1), Mus musculus
(EDL22287.1), and Homo sapiens (EAX06317.1). Phylogenetic tree was constructed with corresponding
sequences of 14 species by using neighbor-joining (NJ) method in MEGA 7.0 (http://www.kumarlab.
net) [42].
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2.3. Cloning, Expression and Identification of TsT

Total RNAs were isolated from the muscle larvae with Trizol (Invitrogen, Carlsbad, CA, USA).
The TsT cDNA sequences without signal peptide were amplified using PCR with primers carrying BamHI
and HindIII restriction sites (bold) (5′-AAAAAGGATCCGCCAAAAAGGCCACCACCAACTA-3′;
5′-CCCGCAAGCTTTTAAGCCACTCTAATAGAGTTC-3′). The PCR products were sub-cloned into
the pQE-80L expression vector and recombinant vector containing TsT gene was transformed into
Escherichia coli BL21 (DE3) (Novagen, La Jolla, CA, USA). Expression of rTsT protein was induced
using 0.5 mM IPTG for 5 h at 37 ◦C [15], and purified with Ni-NTA-Sefinose resin (Sangon Biotech Co.,
Shanghai, China) [43,44]. The concentration of rTsT was measured and analyzed on SDS-PAGE and
Western blotting as previously reported [45,46].

2.4. Immunization of Mice and ELISA Determination of Anti-rTsT Antibodies

Ninety mice were randomly divided into 3 groups of 30 mice each. The rTsT immunizaton group
was subcutaneously vaccinated with 20 µg rTsT emulsified with the adjuvant ISA 201 (Seppic, Paris,
France), and boosted three times at a 2-weeks interval using rTsT with ISA 201. Adjuvant and PBS
control groups received only ISA 201 or PBS at the same time points as experimental group [47].
About 100 µL tail blood were obtained from each mouse at weeks 0, 2, 4, 6 and 8 after vaccination,
and sera were isolated and stored at −80 ◦C until use [48]. The scheme of immunization and measure
protocol was shown in Figure 1.
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Figure 1. Scheme of immunization and measure protocol. Subcutaneously immunization of mice was
administered four times (days-56, -42, -28 and -14) at a 2-week interval before orally challenged with
300 T. spiralis ML on day 0. At day 5 and 30 after challenge, intestinal adult worm and muscle larval
burden (larvae per gram, LPG) were respectively assessed to evaluate the immune protection induced
by the rTsT immunization. Histopathological examination of muscle and intestines from infected mice
was also performed at day 5 and 30 after larval challenge infection.

Specific anti-rTsT antibody IgG, and IgG1/IgG2a in all vaccinated mice were assayed using routine
ELISA with rTsT protein [49]. In brief, the ELISA plate was coated with 2 µg/mL rTsT at 37 ◦C for 2 h.
After washes using PBST, the plate was blocked with 5% skimmed milk at 37 ◦C for 2 h. After washing
again, the plates were incubated at 37 ◦C for 2 h with 1:100 dilutions of mouse immune sera, and then
with HRP-labelled anti-mouse IgG (IgG1/IgG2a; 1:5000 dilutions; Sigma-Aldrich, St. Louis, MO, USA)
for 1 h at 37 ◦C. The plates were colored with OPD (Sigma-Aldrich) plus H2O2, the reaction was finished
by addition of 2 M H2SO4. The absorbance (optical density, OD) values at 492 nm were measured by a
microplate reader (TECAN, AG, Switzerland) [44,50].

2.5. Western Blotting Analysis of rTsT Antigenicity

The ML soluble somatic crude proteins, ES proteins and rTsT were separated on 12% SDS-PAGE.
The proteins were transferred onto nitrocellulose membrane (Merck Millipore, Billerica, MA,
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USA) [51,52]. The membrane was blocked with 5% skimmed milk diluted in TBST at 37 ◦C for
2 h, and cut into strips. The strips were incubated with different sera (1:100 dilutions of anti-rTsT
serum, infection serum and normal serum) at 37 ◦C for 2 h. After washing with TBST, the strips were
incubated with HRP-labelled anti-mouse IgG (1:5000; Southern Biotech, Tuscaloosa, AL, USA) at 37 ◦C
for 1 h. Following washes again, 3, 3′-diaminobenzidine tetrahydrochloride (DAB; Sigma-Aldrich)
was used for the detection of positive reaction [53].

2.6. RT-PCR Analysis of TsT mRNA Expression in Diverse T. spiralis Stages

Total RNAs from ML, IIL, 3-day AW, 6-day AW and NBL were isolated with Trizol reagent
(Invitrogen). RT-PCR was conducted to ascertain the TsT mRNA expression levels in various T. spiralis
stages as previously described [54]. A housekeeping gene GAPDH from T. spiralis (GenBank: AF452239)
was also amplified and served as an internal control [55]. PBS was used as a negative control in
all PCRs.

2.7. Indirect Immunofluorescence Test (IIFT)

Fresh complete worms of various T. spiralis stages (ML, IIL, AW and NBL) were fixed in cold
acetone for 20 min. Furthermore, the ML, IIL and AW were embedded in paraffin, 3-µm thick
cross-sections were prepared using a microtome. Expression and tissue localization of native TsT
in various T. spiralis stages were determine with IIFT [16,56]. In brief, the whole worms and worm
cross-sections were blocked using 1% BSA in PBS and then incubated with various sera (1:10; anti-rTsT
serum, infection serum or pre-immune serum) at 37 ◦C for 2 h. Following washes with PBS, worms and
cross-sections were stained with anti-mouse IgG conjugated FITC (1:100; Santa Cruz Biotech, Dallas,
Texas, USA). After washes again, the whole worms and cross-sections were examined under a
fluorescence microscopy (Olympus, Tokyo, Japan) [57,58].

2.8. Assay of Total IgA and TsT-Specific IgA in Enteral Fluid

To detect secretory IgA (sIgA) in enteral secretion, enteral secretions were collected as
described [8,59]. In brief, a 20 cm length of complete small intestine (duodenum, jejunum and
ileum) was excised and cut into three enteral segment. Cold PBS with 1% protease inhibitor (Sangon
Biotech, Shanghai, China) was flushed through the intestine. The washing fluid was harvested.
The sample was pooled and centrifuged at 5000× g at 4 ◦C for 5 min, and the supernatant was
recovered [29]. Total enteral sIgA was measured with a sandwich ELISA [57]. TsT-specific sIgA was
detected using ELISA with 2 µg/mL muscle larval crude antigens or rTsT as described [30]. The plate
was colored using OPD and the optical density (OD) at 492 nm was measured with an ELISA reader as
described before [60].

2.9. Assay of TsT-Specific Cytokines

To assess the TsT-specific cellular immune responses, five mice of each group were killed before
immunization and 8 weeks after immunization. Mouse spleens and mesenteric lymph nodes (MLN)
were obtained and ground through a sterile steel mesh into complete RPMI-1640 medium (Gibco,
Auckland, New Zealand). After being centrifuged at 1500× g for 10 min, the pellets were obtained,
and the spleen and MLN cells were isolated as previously described [32,61], 2 × 106 cells/mL were
cultured in RPMI-1640 medium containing 3% fetal bovine serum (FBS), penicillin (100 U/mL) and
streptomycin (100 µg/mL). After stimulation with 4 µg/mL rTsT for 72 h at 37 ◦C, the supernatant
was collected and concentration cytokines (IFN-γ and IL-4) were determined using a sandwich
ELISA [62,63].
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2.10. Antibody-Dependent Cellular Cytotoxicity (ADCC)

Anti-rTsT antibody dependent cytotoxicity on T. spiralis newborn larvae was performed as reported
before [64,65]. Briefly, the microtiter plate was used for the ADCC test. Each assay was done in
triplicate. A 200-µL volume of RPMI 1640 medium containing 100 larvae and 2 × 105 mouse peritoneal
exudate cells (PECs) were added into each well and kept at 37 ◦C for 24–72 h. The medium was first
supplemented with diverse sera (1:50–1:800 dilutions of anti-rTsT immune serum, T. spiralis infection
serum or pre-immune serum). The serum samples used in this study were not heat-inactivated to
inactivate complement. The worm viability following ADCC was judged in accordance with larval
morphology and mobility. The living worms were active and exhibited mobile, the killed larvae were
straight and inactive [66]. The cytotoxicity results were shown as the percentage of the killed larvae to
total number of larvae used in each experiment [67].

2.11. Larval Challenge and Evaluation of Protection Efficacy

To assess the protection efficacy produced by immunization with rTsT, the remaining 20 mice of
each group was each challenged orally with 300 infectious T. spiralis ML at 2 weeks after the last boost.
At 5 dpi, 10 mice of each group were euthanized to collect the adult worms in intestines. The muscle
larvae were recovered through artificial digestion of muscle tissues of additional ten mice of each
group at 30 dpi [68]. The immune protective effect induced by rTsT immunization was assessed as
the worm reduction of enteral adult worms and larvae per gram (LPG) of skeletal muscle tissues of
immunized mice compared with the worms recovered from the PBS group [69,70].

2.12. Histopathological Examination of Muscle and Intestines from Infected Mice

At day 5 or day 30 after challenge, small intestine and masseter muscles were excised from infected
mice and fixed in 4% formalin for 24 h and embedded in paraffin, 3-µm-thick sections of muscle tissues
were prepared, deparaffinized and stained using hematoxylin and eosin (HE) stain. The sections were
examined under microscopy, and the inflammatory cells (eosinophils, neutrophils and lymphocytes)
around encapsulated T. spiralis larvae on muscle sections from three groups of mice were counted per
field (200×) as previously described [30,71].

2.13. Statistical Analysis

All the data were statistically compared using SPSS for Windows, version 21.0 (IBM, Chicago, IL,
USA). The data were shown as the mean ± standard deviation (SD). The differences of different groups
was analyzed by a Chi-square test or one-way ANOVA. The relationship between ADCC cytotoxicity
and serum dilution/culture time was compared using correlation analysis p < 0.05 was regarded as
statistically significant.

3. Results

3.1. Bioinformatics Analysis of TsT

Complete TsT cDNA sequences are 891 bp encoding 296 aa, with a molecular weight (MW) of
32.97 kDa and isoelectric point (pI) of 9.42. TsT had a signal peptide at 1-18 aa. A transmembrane
prediction using Hidden Markov Model (TMHMM) analysis revealed that TsT has no transmembrane.
Subcellular location predicted that TsT might be a secretory protein. The homology comparison of TsT
amino acid sequences with trypsin of other Trichinella species/genotypes was presented in Figure 2.
The amino acid sequences of the TsT had an identity of 99.32, 99.32, 98.99, 98.99, 98.99 and 98.65%
with trypsin of the 6 encapsulated species/genotypes of the genus Trichinella (T. murrelli, T8, T9, T6,
T. nativa, and T. nelsoni), and the TsT had an identity of 89.86, 89.53, and 89.53% of trypsin from three
non-encapsulated Trichinella species (T. zimbabwensis, T. papuae, and T. pseudospiralis). Phylogenetic
analysis of TsT with trypsin of other Trichinella species/genotypes was shown in Figure 3. Phylogenetic
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tree showed that a monophyletic group of the genus Trichinella was well supported except the two
species of T. britovi and T. patagoniensis. T. spiralis has the more close evolutionary relationship with
encapsulated species of the genus based on the phylogenetic analysis of trypsin.

3.2. Expression and Western Blot Analysis of rTsT

As shown in Figure 4A, recombinant BL21 carrying pQE-80L/TsT expressed a 30.9 kDa fusion
protein. The purified rTsT presented a clear individual protein band. The MW (30.9 kDa) of rTsT
protein was the same as its predicted size. On Western blot analysis, rTsT was identified using anti-his
tag monoclonal antibody (McAb) (Figure 4B), infection serum and anti-TsT serum (Figure 5). Several
native TsT with 32.9–55.4 kDa in T. spiralis ML crude antigens was detected by anti-rTsT serum, but not
in ML ES protein (Figure 5), demonstrating that TsT is a worm somatic protein, not a secretion protein
of ML stage.Vaccines 2020, 8, x 6 of 19 
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Figure 4. Expression and identification of recombinant TsT protein. (A): Expression and purification of
rTsT. SDS-PAGE analysis showing rTsT was expressed in IPTG-induced E. coli lysates (lane 2), but not
expressed in E. coli lysate prior to induction (lane 1). Lane 3: the purified rTsT protein. (B): Western blot
analysis of the rTsT immunoreaction. Lane 1: un-induced E. coli lysate was not recognized by anti-his
McAb. Specific recognition of expressed rTsT in induced E. coli lysate (Lane 2) and purified rTsT by
anti-his McAb. Arrow shows the rTsT.
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Figure 5. Identification of rTsT antigenicity. (A): SDS-PAGE analysis of ML crude antigens (lane 1),
ES antigens (lane 2) and purified rTsT (lane 3). (B): Identification of rTsT antigenicity on Western
blotting. ML crude antigens (lane 1), ES antigens (lane 2) and purified rTsT (lane 3) were probed by
mouse infection sera. Natural TsT in ML crude antigens (lane 4) and rTsT (lane 6) were identified
by anti-rTsT serum, but no natural TsT in ML ES antigens (lane 5) was probed by anti-rTsT serum.
The ML crude (lane 7) and ES antigens (lane 8), and rTsT (lane 9) were not identified using murine
pre-immune serum.

3.3. TsT Transcription in Diverse T. Spiralis Stages

As shown in Figure 6A, the TsT with a predicted size of 837 bp was detected by RT-PCR in diverse
lifecycle stage worms of T. spiralis, including ML, IIL, 3- and 6- day AW, and NBL, the housekeeping
gene (GAPDH) was also amplified in various stage worms as a positive control (570 bp) (Figure 6B).Vaccines 2020, 8, x 8 of 19 
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(lane 1), intestinal infective larvae (lane 2), 3-day adult worms (lane 3), 6-day adult worms (lane 4),
and newborn larvae (lane 5).

3.4. Expression and Localization of Native TsT in Various T. spiralis Stages

The results of IIFT with the whole worms showed that when anti-rTsT serum was used,
the fluorescence immunostaining was observed on the epicuticle of only 5 and 6 day adults, not at ML,
IIL, 3 day AW and NBL (Figure 7). After incubation with anti-rTsT serum, the immunostaining was
localized at the whole worm section of ML and IIL, and intrauterine embryos of the adult females
(Figure 8). No worm components were identified using pre-immune serum.
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Figure 8. Tissue localization of TsT in worm cross-sections of T. spiralis ML, IIL and AW stages by IIFT.
Fluorescence was observed at the whole worm section of ML and IIL, and intrauterine embryos of
female adult. No immunostaining in worm cross-sections was found using pre-immune serum. Bar,
100 µm.
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3.5. Anti-TsT Antibody Response

To determine anti-TsT antibody response, rTsT-specific IgG and IgG1/IgG2a in sera of all vaccinated
mice were measured by rTsT-ELISA. Anti-rTsT IgG level was notably increased following the second
immunization, anti-rTsT IgG titers reached 1: 105 two weeks after last immunization, suggesting that
the rTsT is strong immunogenic. Furthermore, no mice injected with adjuvant ISA 201 or PBS alone
showed any anti-rTsT IgG response (Figure 9A). The IgG1 level on weeks 4, 6 and 8 after immunization
was obviously higher than IgG2a (t4w = 7.327, t6w = 5.916, t8w = 20.751, p < 0.0001) (Figure 9B,C),
indicating that immunization with rTsT elicited the Th2-predominant concomitant Th1/Th2 response.
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Figure 9. Humoral immune responses against rTsT in immunized mice measured by ELISA. (A)
Serum level of total anti-rTsT IgG in immunized mice, and adjuvant or PBS control mice. The IgG1
(B) and IgG2a (C) subclass responses against rTsT were detected at different time points following
vaccination. The data are presented as mean ± SD for 20 mice per group. The vaccination time points
are marked using triangle (∆). * Significantly different with respect to the ISA 201 or PBS control group
(* p < 0.0001).

3.6. Enteral Mucosal Immune Response Induced by rTsT Immunization

To evaluate enteral mucosal sIgA response to rTsT immunization, total sIgA and TsT-specific sIgA
were assayed by ELISA. The results showed that the levels of total sIgA and TsT-specific sIgA of three
groups had no significant difference before immunization (p > 0.05). Total sIgA level in mice immunized
with rTsT at 8 weeks following immunization was clearly higher than those of ISA 201-injected mice
and PBS group (F = 137.180, p < 0.0001) (Figure 10A). When The ELISA with ML crude antigens
and rTsT were used, the anti-TsT sIgA levels in immunized mice were significantly higher than the
mice injected with only ISA 201 or PBS (FML = 13.567, FrTsT = 16.042; p < 0.01) (Figure 10B,C). Enteral
specific sIgA was not detected in mice injected with only adjuvant or PBS. The results suggested that
subcutaneous vaccination with rTsT produced not only systemic antibody response but also significant
intestinal local mucosal sIgA response.
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Figure 10. Levels of total sIgA (A), anti-TsT specific sIgA in enteral fluid of vaccinated mice assayed by
ELISA using ML crude antigens (B) and rTsT (C). The data are the mean ± SD for 5 mice per group.
* Significantly different compared with the ISA 201 or PBS group (* p < 0.01).
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3.7. Cytokine Responses to the rTsT Immunization

The ELISA results revealed that level of IFN-γ and IL-4 among three groups had no significant
difference prior to immunization (p > 0.05). But the level of the two cytokines in rTsT-immunized
mice 8 weeks after immunization were significantly higher than the ISA 201 and PBS group (p < 0.01)
(Figure 11). Our results demonstrated that immunization with rTsT elicited the concomitant Th1/Th2
responses, indicating that subcutaneous immunization with rTsT induced both the systemic (spleen)
and local enteral mucosal (MLN) cellular immune response.
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Figure 11. Cytokines secreted by spleen (A,B) and MLN (C,D) cells on rTsT stimulation. The assay of
the cytokine IFN-γ and IL-4 was performed on the cells stimulated for 72 h with rTsT. The data are the
mean ± SD of cytokine levels for 5 mice per group. * Significantly different with respect to the ISA 201
or PBS control group (* p < 0.01).

3.8. Killing and Destruction of the NBL by PECs and Anti-rTsT Immune Serum

The cytotoxic activity of anti-rTsT immune serum on the NBL was assessed by the ADCC test.
After cultivation, anti-rTsT immune serum promoted the PECs adhesion and NBL destruction in the
presence of anti-rTsT immune serum (Figure 12). Comparison of the cytotoxic capacity of various sera
diluted 1:100 revealed that the percent of the dead NBL in anti-rTsT immune serum group (21.97%)
was statistically higher than the pre-immune serum group (8.77%) (χ2 = 6.733, p < 0.01). The cytotoxic
activity of anti-rTsT immune serum was dose-dependent of anti-rTsT antibodies (r = 0.880, p < 0.001),
and exhibited a declining trend with the immune serum dilution increase (F = 101.254, p < 0.001).
The cytotoxic activity of anti-rTsT immune serum was also related to the incubation time (r = 0.993,
p < 0.001) and revealed an increasing mortality of the NBL with extension of incubation time (F = 88.941,
p < 0.001) (Figure 12).

3.9. Immune Protection Induced by rTsT Immunization

Compared to the PBS group, vaccination of mice with rTsT showed a 33.17% enteral AW reduction
at 5 dpi (Figure 13A) and a 37.80% ML reduction at 30 dpi (Figure 13B) following challenge with
300 T. spiralis infectious larvae (FAW = 79.988, FML = 8.683, p < 0.01). The results indicated that
immunization of mice with rTsT induced a partial immune protection against T. spiralis challenge.
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Figure 12. Cytotoxic activity of PECs on the NBL in the presence of anti-rTsT immune serum. (A–D):
Morphology of T. spiralis newborn larvae co-incubated with the PECs and anti-rTsT immune serum
for 24 h (A), 48 h (B), 60 h (C) and 72 h (D). (E) T. spiralis-infected murine sera as positive control.
(F): Pre-immune sera as negative control. Bar, 100 µm. (G): The cytotoxic activity of anti-rTsT immune
serum was antibody dose-dependent. (H): The cytotoxic activity of anti-rTsT immune serum was also
related to the incubation time. * Significantly different with respect to the pre-immune serum group
(* p < 0.01).Vaccines 2020, 8, x 12 of 19 
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Figure 13. Immune protection induced by rTsT immunization after challenge with 300 T. spiralis larvae.
(A): Intestinal AW burden at 5 days after challenge; (B): Muscle larval burden (larvae per gram of
skeletal muscle tissue, LPG) at 30 days after challenge. The parasite burdens are shown as the mean ±
SD for 10 mice per group. * p < 0.01 compared to the ISA 201 and PBS groups.

3.10. Intestinal and Muscle Histopathological Change of Infected Mice

Histopathological changes of the intestines and masseter muscles of different groups of mice was
examined at days 5 and 30 following challenge. The results showed that the number of inflammatory
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cells of intestinal mucosa in rTsT-immunized mice was obviously higher than the adjuvant and PBS
control group (F = 258.842, p < 0.001) (Figure 14), whereas the number of inflammatory cells around
encapsulated larvae in skeletal muscles in rTsT-immunized mice was obviously reduced compared
to the adjuvant and PBS group (F = 199.256, p < 0.001) (Figure 15). The results suggesting that
rTsT immunization appeared to enhance intestinal inflammatory infiltration in immunized mice
which may accelerate the expulsion of adult worms from the gut. Furthermore, rTsT immunization
alleviate the inflammation infiltration and relieve the Trichinella infection in skeletal muscle tissues of
immunized mice.
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Figure 14. Intestinal histopathological change of infected mice at 5 days after challenge. The intestinal
sections were stained using hematoxylin and eosin (HE), and examined under microscopy. (A):
Inflammatory cell infiltration of intestinal mucosa in three groups of infected mice. (B): Quantification
of intestinal mucosal inflammatory cells on intestinal sections. * p < 0.001 compared to the adjuvant
and PBS groups. Scale-bars: 100 µm.Vaccines 2020, 8, x 13 of 19 
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Figure 15. Muscle histopathological change of infected mice at 30 days after challenge. The masseter
muscle sections were stained using hematoxylin and eosin (HE), and examined under microscopy.
The inflammatory cells around encapsulated T. spiralis larvae on muscle sections from three groups of
mice were counted per field (200×). * p < 0.001 compared to the adjuvant and PBS groups. Scale-bars:
100 µm.
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4. Discussion

Serine proteases have two main functional domains, trypsin-like domains and subtilisin-like
domains. Most trypsin-like domains exert a major act in parasite invasion, digestion and degradation
of host’s protein components and immune evasion [72,73]. A T. spiralis adult serine protease gene
Ts-ADSp-7 has a trypsin-like serine protease domain without substrate binding sites and protease
activity, but has the capacity to inhibit host’s blood coagulation [74]. The silencing of T. spiralis
serine protease 1.2 (TsSP1.2) by siRNA mediated RNA interference suppressed larval invasion and
development [53]. Immunization of mice with another T. spiralis serine protease Ts31 exhibited a 53.5%
ML reduction of muscle tissues following challenge [52]. A chymotrypsin-like enzyme of T. spiralis
(Tschy) promoted larval penetration into enteral epithelia [54]. These results suggeted that the serine
proteases and trypsin participated in larval invasion and development, they might be the candidate
targets for anti-Trichinella vaccines. However, studies on T. spiralis trypsin have not been reported in
the literatures to the present.

In this study, the TsT gene was cloned and expressed in E. coli expression system. Sequence
analysis on the TsT gene showed TsT had an identity of 99.32, 99.32, 98.99, 98.99, 98.99 and 98.65%
with trypsin of the 6 encapsulated Trichinella species/genotypes (T. murrelli, T8, T9, T6, T. nativa,
and T. nelsoni). Phylogenetic tree showed that a monophyletic group of the 7 encapsulated Trichinella
species was well supported except T. britovi and T. patagoniensis. The trypsin enzymatic activity of
rTsT was not detected on gelatin zymography in this study. The absence of enzymatic activity of rTsT
might be owing to the incorrect folding of rTsT in E. coli [52]. Therefore, it is necessary to utilize the
eukaryotic expression system to prepare rTsT with enzymatic activity. After purification, the rTsT was
applied to produce anti-rTsT immune serum. Vaccination of mice with rTsT produced the high level of
serum anti-rTsT IgG response, anti-rTsT IgG titer of immune sera was 1: 100,000, indicating that rTsT
had a good immunogenicity.

Western blotting results revealed that rTsT was recognized by anti-rTsT serum and infection
serum. Several natural TsT with 32.9–55.4 kDa in ML crude protein were identified with anti-rTsT
serum, but not in ML ES protein (as shown in Figure 5), suggesting that TsT is a worm somatic protein,
not a secretory protein of ML stage. The recognition of several native TsT in ML crude proteins might
be because TsT have diverse isoforms, or this TsT protein could be processed by post-translational
modification and processing. It is also likely because the TsT is a member of T. spiralis serine protease
family which possessed the same antigenic epitopes [20,44,47,49]. RT-PCR results revealed that TsT
gene was transcribed at all of T. spiralis lifecycle stages (e.g., ML, IIL, 3 and 6 day AW, and NBL).
The IIFT result showed that natural TsT was localized at whole section of ML and IIL, and principally
at epicuticle of 5–6 day adults, suggesting that the TsT is a somatic antigen of this paraiste and it is
adult-stage specific surface antigen. Trichinella spiralis surface antigens are composed of the epicuticle
proteins themselves and ES proteins which were incorporated on the epicuticle [75]. They are directly
contacted with the host immune system, are the major target antigens which elicit the immune
responses, and might play a significant effect in T. spiralis worm development and immune evasion in
the host [21].

To investigate the humoral and cellular immune responses triggered with rTsT immunization,
the levels of antibody and cytokines elicited by immunization with rTsT was measured in this study.
Our results showed that immunization using rTsT produced distinctly elevation of anti-TsT antibodies
(serum IgG, IgG1/IgG2a, and intestinal sIgA), and the rTsT immunization also induced both of systemic
(spleen) and local intestinal mucosal (MLN) cellular immune response, demonstrated by a clear rise
of cytokines (IFN-γ and IL-4). To investigate which are the main cells producing IFN-γ and IL4,
different immune cell populations (CD4+ IFN-γ+/CD4+ IL-4+ cells) in spleen and MLNs of immunized
mice need to be determined by flow cytometry analysis in future studies [70]. Furthermore, it is
necessary to quantify the infiltration of dendritic cells, macrophages, monocytes, T and B cells in
spleen of immunized mice in further experiment. The mixed Th1/Th2 response exerted a crucial act for
protective immunity to T. spiralis infection [32,76,77]. Specific anti-Trichinella IgG also took part in the
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rapid worm discharge of T. spiralis adults from the guts [78]. Additionally, the rTsT immunization
appeared to strengthen the enteral inflammatory infiltration in immunized mice, which may accelerate
the AW expulsion from the gut. Previous studies indicated that anti-Trichinella sIgA participated and
accelerated the parasite dislodgement from the intestine, passive transfer of mice with anti-Trichinella
IgA exhibited an overt immune protective effect against challenge infection [79]. Intestinal sIgA also
suppressed the female adult reproductive capacity of T. spiralis [62]. To assess the cytotoxic activity of
anti-TsT immune serum, the ADCC test was conducted in this study. The results showed that anti-rTsT
immune serum promoted the adhering and killing of the PECs to the NBL, and the cytotoxic activity
was dose-dependent of anti-rTsT antibodies, suggesting that anti-TsT IgG participated in the killing
and destruction of newborn larvae by the ADCC fashion [56,64]. The sera used in this study were not
heat-inactivated to inactivate complement. In previous ADCC tests, the newborn larvae incubated
with immune sera without PECs were not destroyed, indicating that only immune sera without PECs
does not induce the cytotoxicity [28,80]. Furthermore, IFN-γ also acts an important protection against
T. spiralis newborn larvae [81].

Following challenge with 300 T. spiralis infectious larvae, the mice immunized with rTsT showed a
33.17% reduction of enteral AW at 5 dpi and a 37.80% ML reduction at 30 dpi, respectively. The worm
burden reduction observed in this study is similar to those obtained with subcutaneous immunization
using other individual recombinant T. spiralis protein [19,28,52], but the protective level obtained
in this study is lower than those of previous reports by using oral or intranasal vaccination [76,82].
The immune protection obtained in this study maybe owing to the results of a combination of worm
expulsion from the gut, reduction of female fecundity, or ADCC killing and destruction of NBL
induced by rTsT immunization, which resulted in a reduction of intestinal adults and muscle larvae in
immunized mice. Our results demonstrated immunization of mice with a single T. spiralis protein (TsT)
only produced a partial immune protective effect against larval challenge, the infective larvae in muscle
tissues of vaccinated animals were not fully eradicated. Trichinella spiralis is a multicellular foodborne
parasite with a complicated lifecycle, each developmental phase has the stage-specific antigens [83,84].
Hence, to eliminate Trichinella infection in food animals, it is needed to develop the oral polyvalent
anti-Trichinella vaccines which should be comprised of multiple antigenic epitopes of various T. spiralis
lifecycle phases [57,70].

5. Conclusions

In conclusion, TsT was a T. spiralis somatic antigen and adult-stage specific surface antigen, and it
had a good antigenicity. Vaccination of mice with TsT induced a systemic mixed Th1/Th2 response and
an intestinal local sIgA response, which produced a partial protection against T. spiralis larval challenge.
The results showed that TsT plays a role in T. spiralis development and survival in host, and it might be
considered as a potential target antigen for anti-T. spiralis vaccines. However, to improve its protective
efficacy, oral anti-Trichinella vaccines comprised of multiple antigenic epitopes of various T. spiralis
lifecycle phases should be developed in further study.
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