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Abstract: Members of the Asteroidea (phylum Echinoder-
mata), popularly known as starfish or sea stars, are
ecologically important and diverse members of marine
ecosystems in all of the world’s oceans. We present a
comprehensive overview of diversity and phylogeny as
they have figured into the evolution of the Asteroidea from
Paleozoic to the living fauna. Living post-Paleozoic
asteroids, the Neoasteroidea, are morphologically separate
from those in the Paleozoic. Early Paleozoic asteroid faunas
were diverse and displayed morphology that foreshad-
owed later living taxa. Preservation presents significant
difficulties, but fossil occurrence and current accounts
suggests a diverse Paleozoic fauna, which underwent
extinction around the Permian-Triassic interval was fol-
lowed by re-diversification of at least one surviving lineage.
Ongoing phylogenetic classification debates include the
status of the Paxillosida and the Concentricycloidea. Fossil
and molecular evidence has been and continues to be part
of the ongoing evolution of asteroid phylogenetic research.
The modern lineages of asteroids include the Valvatacea,
the Forcipulatacea, the Spinlosida, and the Velatida. We
present an overview of diversity in these taxa, as well as
brief notes on broader significance, ecology, and functional
morphology of each. Although much asteroid taxonomy is
stable, many new taxa remain to be discovered with many
new species currently awaiting description. The Goniaster-
idae is currently one of the most diverse families within the
Asteroidea. New data from molecular phylogenetics and
the advent of global biodiversity databases, such as the
World Asteroidea Database (http://www.marinespecies.
org/Asteroidea/) present important new springboards for
understanding the global biodiversity and evolution of
asteroids.

Introduction

Introduction to Basic Biology and Morphology
The class Asteroidea (also known as starfish or sea stars) is one of

the most diverse groups within the phylum Echinodermata,

including nearly 1900 extant species grouped into 36 families, and

approximately 370 extant genera. Asteroids occur at all depths

from the intertidal to the abyssal (to approximately 6000 m) and

are present throughout all of the world’s oceans, but they are most

diverse in the tropical Atlantic and Indo-Pacific regions [1,2,3]

All living asteroids have been regarded as members of the post-

Paleozoic Asteroidea [4,5], which have a Triassic (early Mesozoic)

fossil first occurrence [6]. The taxonomy uses the term ‘‘Neoast-

eroidea’’ recognizing the modern Asteroidea (i.e., the post-

Paleozoic Asteroidea) [5,6]. Certain late Paleozoic asteroids show

similar and intermediate morphology with the crown group, and

these similarities have been treated differently [4,5,6].

Asteroids are dorsoventraly flattened with five to 50 rays

projecting from a central disk. Each arm possesses a series of

paired J-shaped ambulacral ossicles that occur along each arm

radius. Tube feet emerge from pores present between ambulacral

ossicles into a large ventrally facing open groove. These grooves all

converge on the mouth, present on the bottom-facing side of the

disk. Although supported as members of the asteroid lineage,

concentricycloids (represented by the monotypic Xyloplax) show a

highly divergent morphology that has suggested separation of

Xyloplax from the other Asteroidea. This includes unpaired, non-

overlapping ambulacral ossicles, tube feet in a single row, and

adambulacral plates forming a peripheral disk series [7,8]. As

outlined below, this divergent morphology has led to a highly

contentious discussion over the classification of Xyloplax within the

Echinodermata.

In spite of the common names ‘‘sea star’’ and ‘‘starfish,’’

asteroids possess highly varied body shapes, including those that

are sphaerical (e.g., Podosphaeraster), those that are pentagonal (e.g.,

Sphaeriodiscus) and others that are strongly stellate with very long

arms and a nearly non-existent disk (e.g., Zoroaster). Body shapes

range from highly inflated and cushion shaped (e.g., Culcita) to

extremely dorso-ventral flattened with paper-thin bodies (e.g.,

Anseropoda). In many asteroids, a thick, fleshy (e.g., Porania) to

gelatinous (e.g., Hymenaster) covering/layer has obscured the

skeleton. Adult animal size varies from the tiny stichasterid

Allostichaster palmula [9] with a disk to arm radius of about two to

ten mm to immense members of the Asteriidae, such as Evasterias

echinosoma and Pisaster brevispinus, which have both been recorded

with armtip to armtip diameter of nearly 90 cm.

Other aspects of asteroid biology are diverse and are only briefly

touched upon herein. Generalized overviews of asteroid biology

can be found in [10,11,12,13]. Jangoux [14] and Sloan [15]

reviewed feeding biology and nutrition. Chia [16] and Koss and

Rowe et al. [17] reviewed microscopic anatomy in asteroids and
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concentricycloids, respectively. Lawrence [18] reviewed epony-

mous structures in echinoderms, including several present in

asteroids. Flammang [19,20], Flammang et al. [21,22] and Santos

et al. [23] have provided several significant new contributions to

our understanding of tube foot adhesion physiology. Valentincic

[24] reviewed asteroid behavioral and responses to external

stimuli. Chia and Walker [25] reviewed reproduction in asteroids.

McEdward and Miner [26] reviewed larval and life cycle patterns.

Importance
Asteroids occupy substantive ecological roles and are widely

used subjects in developmental and experimental biology.

Asteroids such as the North Pacific Pisaster have been important

in ecological studies addressing the role of competition, reproduc-

tion [27,28,29,30,31] and community structure [32,33,34]. Paine

[32] idealized Pisaster as the textbook example of a keystone

species. Pisaster ochraceus has been seminal in revealing the

importance of photoperiodic control of reproduction in marine

animals [35,36,37,38,39]. Cold (e.g., Asterias, Leptasterias) and

temperate-water (e.g., Meyenaster, Coscinasterias) asteriids continue

to occupy prominent roles as model organisms in the fields of

community structure [30] and feeding ecology [40]. Asterias

amurensis is an introduced invasive [41,42,43,44] and is perceived

as a threat to Australia’s shellfish industries.

Population outbreaks of the tropical corallivore Acanthaster planci,

also known as the Crown-of-Thorns Starfish, led to widespread

concern by coral reef conservation authorities as living reefs were

devoured by massive numbers of A. planci [45,46,47]. Correspond-

ing to their ecological importance, asteroids are also study subjects

in marine pollution and toxicological studies. Uptake of toxic

metals, PCBs, and the effects of oil have been tested on several

genera, including Asterias, Evasterias, and Coscinasterias

[48,49,50,51]. Taxa in the Asterinidae have occupied a primary

place of importance in developmental and reproductive studies

[52,53]. Additionally, sea stars have been used in a diversity of

disciplines, including immunology [48], physiology [54], biochem-

istry [55], cryogenics [56], and parasitology [57]. Several asteroid

species have become subjects in global warming and ocean

acidification studies [58,59,60].

Materials and Methods

Morphological terms and definitions follow Clark and Downey

[2] and Blake [61]. Classifications begin with the morphological-

based phylogenetic work of Blake [4]. Taxonomic diversity counts

and conventions for species were obtained from the World

Asteroidea Database [62] and from the Asteroid Names List

[63,64,65,66]. The classification used for this paper is present on

Table 1. Images and data from the U.S Antarctic Research

Program were also included [67].

We utilize ‘‘lineage’’ throughout the text as a general term to

indicate a species or taxon and its nominal ancestor (and/or sister

taxa where applicable) as opposed to the more context-driven term

‘‘clade’’, which implies a distinct suite of synapomorphies for a

branch taken from a specific phylogenetic hypothesis that may or

may not exist for a specific clade.

Results

Taxonomic Diversity and Diversity Trends
In terms of total number of species, the Asteroidea (n = 1890

species) (Table 1) and the Ophiuroidea (n = 2064 species) [68]

comprise the two most diverse classes within the living Echino-

dermata. Species counts and names utilized are those nominally

accepted by the World Asteroidea Database as valid (or

‘‘accepted’’ by the database). Following Blake’s [4] classification

with modification by Mah and Foltz [69] the Valvatacea

(Valvatida+Paxillosida) includes the greatest number of species

(n = 1224), followed by the Forcipulatacea (n = 393 species), the

Velatida (n = 145 species) and finally the Spinulosida (Echinaster-

idae), which includes 135 species (Table 1) [70]. Mah and Foltz

[69] changed the composition of the Valvatacea to include the

Solasteridae, but even with this difference (n = 51 species), from

Blake [4], prior versions of the Valvatida included more genera

and species than the Paxillosida [71,64].

Species diversity is disproportionately distributed among the 36

families of living Asteroidea (Table 1). Seven families, Ophidias-

teridae, Pterasteridae, Echinasteridae, Asterinidae, Asteriidae,

Goniasteridae and Astropectinidae, each include more than 100

species. The Goniasteridae (n = 256) and the Astropectinidae

(n = 243) include the largest number of species within the

Asteroidea.

Species are not evenly distributed among genera. Within the

Astropectinidae, Astropecten alone includes 43% (104/243) of the

total number of species in the family [72]. The Goniasteridae

includes 65 genera, most of which include multiple species [73]. At

least eight goniasterid genera include more than 10 species.

Several genera possess disproportionately high numbers of species

relative to other genera within the family. Henricia includes some

68% (91/133) of the total known species in the Echinasteridae

[70]. Pteraster (n = 45) and Hymenaster (n = 50) together account for

82% of the total number of species (n = 116) in the Pterasteridae

[74]. The aforementioned illustrate the extreme cases, but several

more examples of disproportionately high numbers of species/

family exist. In nearly every instance of a genus with a

disproportionately high numbers of species, these taxa include a

global or widely distributed range. Astropecten is limited largely to

tropical and temperate settings, but Henricia, Pteraster, and

Hymenaster all have cosmopolitan distributions in cold to temperate

water settings.

Undescribed Biodiversity
It is of course difficult to evaluate how many living species

remain to be discovered, but one estimate can be based on the rate

of reognition in the relatively well-known and widely studied

Goniasteridae, which contains the largest number of nominal

genera and species in the Asteroidea (Table 1). Out of the total

number of nominal genera (n = 65) and species (n = 256) in the

Goniasteridae, approximately 12% (n = 31) of species and 14%

(n = 9) of genera were discovered in the 21st Century (2001 to

present). Based on identified but undescribed museum goniasterid

material (C. Mah, unpublished data), this would raise the total

number of newly discovered genera to 37% and the number of

species to 32%. This does not reflect a comprehensive survey of all

museum collections but does suggest that a substantial number of

asteroid taxa remain undescribed.

Another potential source of undiscovered/undescribed biodi-

versity is to be found in cryptic species. Several asteroid taxa,

outlined in the ‘‘Diversity Trends’’sections below, have now been

identified as containing cryptic species, which are discrete lineages

that are distinguished primarily based on molecular data that were

not immediately recognizable from gross morphology. Widespread

species are not uncommon among asteroids and it seems likely that

this will further result in the identification of additional species

diversity.
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Table 1. Breakdown of living taxa among the Neoasteroidea from Foltz and Mah [69,181].

Superorder Order Family # genera # species

Forcipulatacea Forcipulatida Asteriidae 35 178

Heliasteridae 2 9

Stichasteridae 9 28

‘‘Pedicellasteridae’’ 7 32

Zoroasteridae 7 36

Total Forcipulatida 60 283

Brisingida Brisingidae 10 63

Freyellidae 7 47

TOTAL Brisingida 17 110

TOTAL Forcipulatacea 77 393

Spinulosida Echinasteridae 8 133

TOTAL Spinulosida 8 133

Valvatacea Poraniidae 7 22

Valvatida Acanthasteridae 1 2

Archasteridae 1 3

‘‘Asterinidae’’ 25 147

Asterodiscididae 4 20

Asteropseidae 5 6

Chaetasteridae 1 4

Ganeriidae 9 21

Goniasteridae 65 256

Leilasteridae 2 4

Mithrodiidae 2 7

Odontasteridae 6 28

Ophidiasteridae 27 106

Oreasteridae 20 74

Podospherasteridae 1 6

Solasteridae 9 51

Caymanostellidae 2 6

TOTAL Valvatida 187 763

Valvatacea Paxillosida Astropectinidae 26 243

Benthopectinidae 8 69

Ctenodiscidae 1 5

Goniopectinidae 3 10

Luidiidae 1 49

Porcellanasteridae 12 30

Radiasteridae 1 5

Pseudarchasteridae 4 29

TOTAL Paxillosida 56 439

TOTAL Valvatacea 243 1224

Velatida Korethrasteridae 3 7

Myxasteridae 3 9

Pterasteridae 8 116

Concentricycloidea Xyloplacidae 1 3

TOTAL Species 343 1890

‘‘Quotation marks’’ indicate groups that were not supported as monophyletic.
Boldface indicates groups with large numbers of taxa.
doi:10.1371/journal.pone.0035644.t001
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Diversity Trends
Table 2 broadly categorizes asteroid families as occurring in

‘‘cold,’’ ‘‘temperate,’’ or ‘‘tropical’’ settings. These zones are

broadly based on sea-surface temperatures, as outlined in Duxbury

et al [75], with ‘‘cold’’ temperatures ranging between 0 and 5uC,

‘‘temperate’’ ranging between 5 and 15uC, and ‘tropical’ at 15u
and higher. Deep-sea settings (below 200 m) are treated herein as

part of ‘‘cold’’ temperatures. Assignment of taxa to these categories

is based on occurrence data from the World Asteroidea Database

[62] and other sources [63,64,65,66]. However, given the wide-

ranging distributions of taxa, some of these categories are

continuous and/or display overlap.

Out of the 36 families of living Asteroidea, 23 of those occur

either exclusively or primarily in cold-water settings, six families

occurred in temperate environments and seven were present

primarily or exclusively in tropical water habitats. Taxa defined as

‘‘exclusively’’ cold-water were those families that occurred entirely

in cold-water settings, such as the deep-sea or at high-latitudes.

Those identified as ‘‘primarily’’ cold water have families that

include 85% of taxa present in cold-water.

Tropical Diversity Trends
Those families that are primarily or exclusively tropical,

including the Acanthasteridae, the Archasteridae, the Asteropsei-

dae, the Asterodiscididae, the Mithrodiidae, the Oreasteridae, and

the Ophidiasteridae, are all members of the Valvatida, as observed

by Blake [71] and Mah and Foltz [69]. The Ophidiasteridae and

the Oreasteridae are the most taxonomically diverse asteroid

groups throughout the tropical shallow-water Atlantic, and Indo-

Pacific [2,3]. Blake [71] argued that valvatidans, which prey on

colonial or encrusting food items, are most diverse in the tropics as

a result of defensive structures, such as armor and spines that

protect against predators. Blake [1,71] also posited that predatory

asteroids, such as the Asteriidae that feed on active or non-colonial

prey have morphological features associated with predation (e.g.,

wide tube foot grooves) that make them more vulnerable to

predation in the tropics.

In a phylogenetic analysis of the Valvatacea, Mah and Foltz

[69] found that some valvatidan clades, such as the Oreasteridae

plus the Asteropseidae and Acanthasteridae, show diversification

into the tropics relative to a temperate or cold-water water sister

taxon (Petricia). Other sister taxon relationships (e.g., Fromia and

Lithosoma) are similar.

Other asteroid genera, such as Linckia, Nardoa, Ophidiaster,

Tamaria (Ophidiasteridae) and Mithrodia (Mithrodiidae) form

‘‘tropicopolitan’’ species complexes that occur in the tropical-

shallow water Atlantic and Indo-Pacific [2,3]. Preliminary data

also suggest that genera such as Echinaster are widely distributed

species complexes [76]. Taxonomic and geographic distribution

data including, but not limited to, Archaster (Archasteridae),

Asteropsis (Asteropseidae), Fromia (Goniasteridae), Nardoa (Ophidias-

teridae), and Pentaceraster (Oreasteridae), suggest that they form

widespread species networks across the Indo-Pacific/East Pacific

region.

Some phylogeographic analyses of populations within a single

tropical species have been performed. Linckia laevigata shows

distinction between Indian and Pacific Ocean populations

[77,78,79,80]. Distinct lineages have been recognized in popula-

tions of the Indo-Pacific Crown-of-Thorns Starfish, Acanthaster

planci, [81,82] suggesting that multiple cryptic species are present

throughout itswidespread distribution. Zulliger and Lessios [83]

sampled 40 of the 150 speices in the widespread tropical genus

Astropecten and discovered species complexes and likely cryptic

species.

Temperate Diversity Trends
Temperate water asteroids make up a minority of the total

number of asteroids (Table 2) but nearly all families possess some

representation, but even these genera mostly overlap with

occurrence in either cold or tropical settings. For example, Waters

and Roy [84] presented a global phylogeography of the temperate-

water (but also tropical), fissiparous asteriid Coscinasterias. Waters’

work also suggests the possibility of cryptic speciation in

Coscinasterias muricata [85] and the ongoing divergence of popula-

tions (leading to species) in Patiriella regularis [86]. The asteriid

Leptasterias occurs in temperate waters but has overlapping

occurrence in cold-water setting. Full treatment of the Leptasterias

species complex is below under the ‘‘Cold-Water Diversity

Trends’’ section.

Brooding seems to be present in several temperate water taxa

and has been included in several molecular phylogeographic

studies. Naughton and O’Hara [87] presented a molecular

phylogeographic analysis of the goniasterid Tosia. Their results

identified a new species, T. neossia, which was independently

supported by differences in reproductive behavior and larval

mode. External morphological differences between T. neossia and

T. australis were described, but had been overlooked in prior

studies of the wider-ranging and variable species T. australis.

Cold-Water Diversity Trends
A majority of asteroid taxa occur in cold-water and cold-

temperate settings (Table 2), which include deep-sea and high-

Table 2. Cold-Temperate-Tropical Water Asteroid Occurrence.

Cold Settings Only Benthopectinidae, Brisingidae, Caymanostellidae, Ctenodiscidae, Freyellidae, *Ganeriidae,
Goniopectinidae, Korethrasteridae, Leilasteridae, Myxasteridae, *Odontasteridae,
Pedicellasteridae, Podosphaerasteridae, *Poraniidae, Porcellanasteridae, *Pseudarchasteridae,
Radiasteridae, Xyloplacidae, Zoroasteridae

Primarily Cold w/minority shallow Tropical and/or
Temperate Members

*Astropectinidae, *Goniasteridae, *Pterasteridae, *Solasteridae

Temperate & Cold-Water Occurrence *Chaetasteridae, *Stichasteridae

Temperate, Cold & Tropical Occurrence *Asteriidae, *Asterinidae, *Echinasteridae, Heliasteridae, Luidiidae,

Tropical Shallow Water Settings Only Acanthasteridae, Archasteridae, Mithrodiidae

Primarily Tropical w/minority Cold-Water Members Asteropseidae, Asterodiscididae, *Ophidiasteridae, Oreasteridae

Bold indicates groups exclusively found in deep-sea settings (.200 m).
*indicates those with deep-sea members.
doi:10.1371/journal.pone.0035644.t002
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latitude habitats. Nineteen families occur exclusively in cold-water

settings, and most of those are found exclusively in the deep-sea.

Four families include genera that occur mostly in the deep-sea

although some species occur in more temperate to tropical regions

(e.g, Astropecten in the Astropectinidae or Euretaster in the

Pterasteridae). Several asteroid groups with high numbers of

species also range across different habitats. For example, the

Goniasteridae, which shows the highest number of genera (n = 65)

and the second highest number of species (n = 256), occurs widely

in cold water (e.g., Ceramaster, Evoplosoma), temperate (e.g., Tosia)

and tropical habitats (e.g., Fromia, Neoferdina).

Many abyssal asteroid taxa are widely distributed, and several

genera show a global distribution [88]. Porcellanaster and other

members of the Porcellanasteridae, for example, occur at abyssal

depths in the Atlantic, Pacific, Indian, and Southern Oceans

[2,89]. Other taxa, such as Freyella and Freyastera spp. (Freyellidae,

Brisingida) also occur at abyssal depths in the Atlantic, Pacific,

Indian, and Southern Oceans [66,90].

Some evidence suggests that at least some modern asteroid taxa

have occurred in the past in shallower environments. Blake and

Zinsmeister [91] described Eocene Zoroaster aff. fulgens fossils from

shallow-water littoral sediments of Seymour Island, Antarctica.

Zoroasterids are absent from the modern Antarctic asteroid fauna

but Zoroaster spp. occurs in the Atlantic, Pacific, and Indian oceans

to depths of nearly 5000 m [92]. Villier et al. [93] describes

Cretaceous pterasterid ossicles from shallow-water sediments.

Most modern pterasterids occur today in deep-sea settings.

Although several members of living deep-sea asteroid groups are

present in the fossil record [93,94] from shallow-water sediments,

there are few records of living asteroid groups with fossil

occurrence in deep-sea sediments. Villier et al. [95] describes

velatidans and forcipulataceans from deep-water sediments of the

Jurassic Lagerstätte of La Volute-Sur-Rhône. The Japanese

Miocene Morozaki formation is a Lagerstätte contains several

well-preserved asteroid fossils [96].

Many widely distributed cold-water asteroid taxa show

relatively conservative morphology and display relatively few

discrete differences between species. Historical distinctions have

often been based on continuous characters [2,89,90,97]. However,

studies addressing genetic divergence in the widespread Atlantic

deep-sea species Zoroaster fulgens using COI and 16S regions of the

mitochondrial genome [98] have found at least three different

bathymetrically separated morphotypes that are reproductively

isolated. Based on these results, it seems likely that determinations

of deep-sea and especially abyssal asteroid diversity are likely

underestimated.

Continuing taxonomic studies suggest widespread occurrence of

several cold-water taxa, which were originally described as species

occuring only in localized regions. For example, certain species of

Hippasteria, including H. trojana and H. hyadesi were described as

distinct species occurring in New Zealand and the Patagonian sub-

Antarctic, respectively. Newer taxonomic accounts now regard

these as widely occuring members of Hippasteria phrygiana

[2,99,100]. Other cold water taxa that have widespread distribu-

tions and which show a pattern similar to Hippasteria include

Solaster and Lophaster (both in the Solasteridae), Henricia (Echinas-

teridae), and Pteraster (Pterasteridae). This is in no way a complete

list but merely touches on the most species-rich genera that would

benefit from further study. These taxa suggest at least the

possibility of cryptic species and the need to re-evaluate past

synonymies with molecular phylogenetic methods.

Asteroids at high-latitudes in both the Arctic and the Antarctic

include taxa that form diverse species complexes that show

morphological intergradation along the taxon’s range. For

example, in the Arctic and adjacent Atlantic and Pacific regions,

the asteriid Leptasterias includes approximately 38 nominal species

[101,102,103], which show phylogeographic evidence of relatively

recent trans-Arctic diversification and interchange [104,105,106].

The asteriid Asterias also shows this pattern [107].

Although asteroid diversity in the Antarctic is higher [108],

there is less phylogeographic data available for species complexes

present in the Southern Ocean. Janosik and Halanych [109] and

Janosik et al. [110] have recently outlined new species and

reconstructed phylogeographic relationships for the abundant and

commonly encountered Odontaster, which occurs throughout the

Antarctic region.

Discussion

Fossil History
Recent views on the most likely Paleozoic source for post-

Paleozoic asteroids differ significantly [4,5,6,111], but authors

agree that the Paleozoic-Mesozoic transition marked a time of

major extinction and re-diversification, thereby allowing separa-

tion in this paper based on time. Although the paper focuses on the

Asteroidea, it is necessary to touch briefly on the origins and

diversification of all early stellate echinoderms.

Subdivisions of Paleozoic stellate echinoderms
All three recognized groups of radiate echinoderms or

‘‘Asterozoa,’’ the surviving Asteroidea (Fig. 1B–G) and Ophiur-

oidea and the extinct Somasteroidea (Fig. 1A) [112], first appeared

in the fossil record during a comparatively brief interval of the

Early Ordovician. Similarities among certain early members have

led most paleontologists to think of asterozoans as monophyletic

but based on differences among living representatives, some

authors have favored disparate ancestries. This discussion treats

only data from the fossil record and no attempt is made to resolve

differences.

When named, the Somasteroidea was proposed as ancestral to

both asteroids and ophiuroids. Since then, somasteroids have been

seen as taxonomically cohesive [113] but their phylogenetic

position has been both challenged [114,115] and reaffirmed

[115,116]. Somasteroids can be separated from the surviving

groups primarily on the basis of presence of a series of simple rod-

like ossicles, so-called ‘‘virgals,’’ radiating laterally from each

ambulacral ossicle. The first virgal is simple in all but one known

somasteroid whereas it (or its equivalent) is differentiated as an

‘‘adambulacral’’ in asteroids and as a ‘‘lateral’’ in ophiuroids. The

ambulacral column of asteroids is vaulted to form a permanent

furrow and that of ophiuroids is vaulted only near the mouth

frame. Based on ossicular configuration, the ambulacral column of

somasteroids lies in the ventral plane, although it might have been

capable of temporary vaulting to form a furrow [117]. Skeletal

configurations appear to allow phylogenetic transformation from

somasteroids to asteroids and ophiuroids, but conclusive evidence

of sequencing is elusive.

The Importance of Preservation in Understanding
Asteroid Phylogeny

For a number of reasons, asterozoans are rare as fossils as

compared with e.g., mollusks and brachiopods. Aspects of

preservation and preservation and fossil preparation have been

treated in many papers, including those of Jagt [94], Lehmann

[118], Spencer [112], LeClair [119], and Villier [120] although

general discussions are uncommon. Schuchert [121], Ubaghs

[122], and Spencer and Wright [113] described constraints on

asterozoan fossilization, and for Paleozoic representatives, Schu-
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chert [121] included total then-known occurrences for each

geologic period as well as number of species of various genera

recorded from different modern nations.

Here, reasons why asteroids are poor candidates for preserva-

tion are discussed first, followed by consideration of whether or not

the limited record might reflect limited diversity through geologic

time. A skeleton of discrete, unfused elements, largely exposed life

modes, and the limited paeloenvironmental range sampled in the

rock record combine to work against asteroid preservation.

Asteroids today occur at all water depths and on indurated as

well as particulate substrates; the fossil record is biased toward

shelf habitats with particulate substrates, hence today many

asteroids occur in settings only sparsely sampled in the geologic

record. Asteroids are mostly epifaunal organisms and even for

those living in favored habitats, preservation requires unconsoli-

dated sediments for burial. Fossils can be found beneath storm

deposits or within and beneath submarine sediment flows.

Earthquakes trigger many sediment flows but downslope move-

ment can be gravity-induced even on relatively low slopes.

The asteroid skeleton consists of a large number of proportion-

ately small, unfused ossicles; this construction allows flexibility of

movement. The dermal-skeletal layer of many asteroids can be

tough enough to provide some resistance to dissociation, but once

breached, decay rapidly proceeds and ossicles are dispersed. Soft

organs in the proportionately large asteroid coelom doubtless

attract scavengers, leading to typically relatively rapid destruction

even among buried individuals. Intact asteroid preservation

demands prompt burial without later disturbance. Most skeletally

intact specimens are more or less collapsed, the comparatively

tough body wall apparently prevented infiltration of sediment after

internal organ decay.

Dense accessory arrays typical of asteroids present their own

problems of interpretation. Accessories obscure the arrangement

of the taxonomically important foundation ossicles but these

smaller elements are also of taxonomic significance, and data are

lost where they have been lost. Expressions of delicate pedicellar-

iae are important in the taxonomy of many extant asteroids, but

few are known from the Paleozoic, perhaps only because of loss

during preservation.

Both small accessories and body wall ossicles obscure interior

arrangement of the ambulacral column and especially of the

mouth frame. As a result, internal appearance of the mouth frame

is known for few fossil species. Specimen collapse under the weight

of overlying sediment displaces skeletal elements and obscures

relationships.

Figure 1. Paleozoic stem-group somasteroid and asteroids. A. Ophioxenikos langenheimi (Somasteroidea) Blake & Guensburg, X-4751. B.
Urasterella grandis (Meek) USNM 40885. Ordovician. C. Hudsonaster incomptus (Meek) USNM 40882 Ordovician. D. Jugiasspeciosus (Miller and Dyer).
MCS 10806. Ordovician. E. Helianthaster rhenanus Roember . PWL 1983-21, Devonian. F and G. Paleaster clarki Clarke and Swartz USNM 144825.
Devonian.
doi:10.1371/journal.pone.0035644.g001
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Preservation reflects selectivity for the more skeletally robust.

For the better-known post-Paleozoic crown group fauna, the

Astropectinidae and Goniasteridae dominate the fossil record, and

many of the better-known Paleozoic representatives are also

comparatively robust. Different authors have suggested predation

pressure and burrowing intensity have changed through geologic

time, and an increase in burrowing activity would be detrimental

to preservation of the relatively delicate asterozoans.

Major geologic settings also bias samples. Certain of the more

important Paleozoic European asterozoan faunas (e.g. Montaign

Noire of France) accumulated in fine-grained, clastic sedimentary

settings whereas many of the more important North American

occurrences (e.g., Cincinnatian of Eastern United States) sampled

carbonate-rich settings. Such depositional differences have pre-

servational as well as paleoecological implications.

The many preservational constraints indicate that it is

reasonable to interpret the fossil record of all asterozoans as a

deeply biased sampling of what once existed. However, a second

argument, the taxonomic diversity of known fossils, is available.

The extant fauna provides a measuring tool for crown group (i.e.

post-Paleozoic) occurrences. Although this record is dominated by

the skeletally robust, known fossils record most of the more

important living families, reflecting enduring diversity.

Paleozoic faunas, all belonging to stem groups, cannot be

directly compared to a modern equivalent. Useful to their

interpretation is the Early Devonian Hunsrück Slate fauna of

Germany [118]. The Hunsrück Slate accumulated under geolog-

ically unique conditions [123,124]. The asterozoan fauna includes

both large and delicate species, many unknown elsewhere.

Although a single occurrence, the Hunsrück diversity range is (at

least subjectively) parallel to if not greater than that of the modern

fauna.

Fossil preservation differs significantly among specimens, and

important features are not available in all specimens. A sampling

of the diversity of Paleozoic somasteroids and asteroids is

illustrated in Figure 1.

Origins of the Asteroids
Ancestry of the asteroids has been sought in two groups of early

echinoderms, the extinct Edrioasteroidea and the Crinoidea

(however, early crinoids were quite different from surviving

representatives). The edrioasteroid hypothesis has been generally

preferred; Smith and Jell [125] provided a recent perspective, and

Zhao et al. [126] published reconstructions of certain edrioaster-

oids that might be suggestive of an asteroid ancestor. The crinoid

hypothesis of Fell [127] received some early support but it was

soon challenged [128] based on morphologic discontinuities,

although recent discoveries appear to narrow differences

[129,130]. Mooi [131] reviews several different echinoderm

phylogenetic hypotheses.

Like asteroids, edrioasteroids and crinoids have skeletons

constructed of a large number of small, radially aligned plates or

ossicles, and these similarities offer fertile ground for phylogenetic

speculation. However, no known fossil bridges a morphological

gap that begins with a skeleton of closely abutted elements and

progresses to a flexible asteroid descendent. Further, the life-habit

transition from a sessile or attached edrioasteroid or crinoid living

with its mouth directed into the water column to a free-living

descendent living with the mouth directed to the substrate is not

bridged. Asteroid ancestry might lie within either edrioasteroids or

crinoids, but much remains to be learned. Although the work of

Fell [117,127] was then not yet available, G. Ubaghs, one of the

most important students of early echinoderms during the 20th

century, found asterozoans to be of uncertain derivation [122],

and his assessment remains sound.

Efforts at locating an asteroid ancestor of necessity focus on

available fossils, but the comparatively very few yet very significant

discoveries of early echinoderms of Guensburg and Sprinkle

[129,130], which were based on more than twenty years of

intensive field research, clearly testify to the importance of what

remains unknown. Further, both the biased fossil sampling of

crown group asteroids as well as the echinoderm composition of

the Early Devonian fauna of the unique Hunsrück Slate of

Germany [123,124], including many taxa unknown from other

localities, attest to incomplete overall sampling. Reconstruction of

the origins and early diversification of stellate echinoderms must

be based on very limited and biased evidence with much early

history likely to remain forever unknown.

Paleozoic Asterozoa: Important Classification Schemes
The meager fossil record has led to comparatively few

taxonomic arrangements of Paleozoic asterozoans. For ordinal-

level taxa, Spencer [112] provides the starting point. In this paper

and following his own monographic work [132], Spencer purposed

the extinct Somasteroidea as the ancestor of the surviving

ophiuroids and asteroids.

Ubaghs [122] used terminology and concepts taken from

Spencer [112], including the Somasteroidea. H. B. Fell

[117,127,133,134] proposed Platasterias, as a surviving somasteroid

genus, although this interpretation is no longer generally accepted

[135,136]. Fell also posited a crinoid ancestry for living

asterozoans, and he argued that extant asteroids can be used to

help infer an ancient transition between crinoids and asteroids.

Spencer and Wright [113] used the subordinal Paleozoic

terminology of Spencer [112] as well as some new terms, and

they accepted the phylogenetic ideas of Fell. In a survey treatment

emphasizing German fossils, Müller [137] endorsed the three-fold

subdivision of Spencer as well as the incorporation of Paleozoic

fossils into extant orders. R. V. Kesling [138,139,140,141,

142,143,144,145] revisited the interpretations of Spencer and

Wright [113]; these authors treated family through subclass

rankings as well as a number of genera, some of them new. They

also evaluated certain of the difficulties in the recognition of

ossicular homologies. In a brief study, McKnight [146] treated the

full history of asteroids and somasteroids based on collections of

extant taxa and the literature for fossils; ophiuroids were not

included. This author focused on projecting characters of living

asteroids onto groupings of Paleozoic fossils, including soft-tissues

and ontogenetic data, as well as certain skeletal expressions. He

subdivided asteroids into two new superorders, both ranging from

the Paleozoic that show the strong influence of the ideas of Fell

[117] and of Spencer and Wright [113]. Shackleton [114]

provided a phylogenetic analysis and classification of all aster-

ozoans, but limited her treatment to Ordovician representatives.

This author did not use subdivisions between the class and familial

levels for either asteroids or ophiuroids.

The coverage of Ubaghs [122] was comprehensive for Paleozoic

genera whereas his treatment of post-Paleozoic taxa was less

complete. Spencer and Wright [113] provided a comprehensive

listing of known fossil and extant genera. The compilation of

Schuchert [147] provides valuable data for any survey of Paleozoic

genera.

The Paleozoic Asteroidea: Complexities of Classification
Palaeontologists have traditionally regarded the Asterozoa as

monophyletic but treatment within the group has varied

significantly. Schuchert [121] recognized asteroids and ophiuroids
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as subclasses of Stelleroidea, and both used the asteroid

terminology of Sladen [148], ‘‘Phanerozonia’’ (enlarged marginal

ossicles) and ‘‘Cryptozonia’’ (reduced marginal ossicles). Schuchert

[121] stressed his usage as descriptive subdivisions rather than as

evolutionary markers. Schuchert [121] concluded that designation

of taxa between the subclass and familial levels was premature.

Schöndorf [149] recognized a class Auluroidea, on par with

asteroids and ophiuroids. Kesling [139] embraced the auluroid

concept whereas other workers have assigned these genera to the

Ophiuroidea.

In their publications, W.K. Spencer, G. Ubaghs, H.B. Fell, R.V.

Kesling, and D.G. McKnight all wove their arrangements of

Paleozoic asteroids into the existing ordinal-level classification of

the crown group. Spencer and Wright [113] included a historical

summary of major papers leading to their arrangement.

Cited stratigraphic ranges and phylogenetic diagrams of

Spencer and Wright [113] and especially of Ubaghs [122] indicate

skepticism on the part of these authors over ranges extended from

Paleozoic into the Mesozoic. Ubaghs [122] recognized only one

such family, the Arthrasteridae. He assigned Carboniferous

Calliasterella and Protarthraster to the Arthrasteridae, along with

Cretaceous Arthraster, but he then dotted his range chart, seemingly

questioning the arrangement. Ubaghs [122] treatment of predom-

inantly crown-group asteroids was brief, but he did include

Devonian Jaekelaster Sturtz and Mississippian Compsaster Worthen

and Miller in the modern order Forcipulatida; he did not suggest

familial assignments for these genera and his range chart does not

clearly reflect his text suggestion.

Spencer and Wright [113] were somewhat more assertive in

their arrangement. These authors recognized 12 suborders, five of

which were thought to span the Paleozoic-Mesozoic boundary.

They extended ranges of three small families (Palasterinidae,

Calliasterellidae, Compsasteridae) across this boundary; however

none of the three likely represents a monophyletic cluster

[4,6,150]. The other two suborders of Spencer and Wright

[113] were represented by families found on one side of the

Paleozoic-Mesozoic boundary or the other, but not spanning it.

Shackleton [114] did not use taxon levels between the class and

familial levels and no ranges crossing the Paleozoic-Mesozoic

boundary were recognized. Although differing on stemward events

in the crown group, Separate authors [1,4,5,6,111] have agreed

that no extant ordinal-level taxon should be extended downward

into the Paleozoic. Basic asteroid configuration and behavior have

endured since early in class history, allowing much evolutionary

convergence through geologic time.

Beginning with Paleozoic representatives, Blake and Hagdorn

[6] proposed the subclass Ambuloasteroidea based primarily on

presence of podial pores between successive ambulacral ossicles

and offset placement of ambulacrals and adambulacrals, the

former gradually emerging in different Paleozoic lineages, the

latter extremely rare; the Neoasteroidea was treated as an

infraclass within the Ambuloasteroidea. The Ambuloasteroidea

provides an objective starting point in the search for the

progenitors of the crown group.

Life Modes of Paleozoic Asteroidea
Rigorous data on ancient life modes are few. Paleozoic asteroids

have been collected exclusively from marine rocks, including both

quiet and more active depositional settings, and from both soft and

firm substrates. All ancient asteroids appear to have been bottom-

dwelling organisms. Certain living asteroids bury themselves at

shallow depths beneath the surface, and Spencer [112] suggested

that somasteroids were burrowing organisms; however, no asteroid

exhibits a bilateral shape typical of active burrowing organisms

such as irregular echinoids. Many living asteroids have been

observed partially or fully covered with sediment and it seems

plausible that Paleozoic asteroids behaved in a similar fashion.

Modern asteroids include suspension-feeders, detrital feeders,

and predators on varied prey. Blake and Guensburg [151]

reported the Paleozoic Promoplaeaster with its arms wrapped around

a pelecypod in a manner similar to modern day asteriids,

suggesting an early occurrence of this feeding behavior. Herring-

shaw et al. [152] provided useful summary of life habits of

multiarmed species and the difficulties of their interpretation.

Blake and Rozhnov [153] argued ancient asteroids likely were

capable of broad ranges of behavior comparable to those found

today.

Classification and Phylogeny of Post-Paleozoic Asteroids
Classification. Relatively few of the early syntheses of

asteroid classification integrated fossil and living members in a

phylogentic context [113,122,154]. Clark and Downey [2]

presented the latest historical review of asteroid classification,

emphasizing Atlantic taxa.

The late 19th and early 20th centuries were the ‘‘classic’’ period

of morphologically based monographic studies of the systematics

of modern asteroids. Authors consistently separated the forcipulate

groups as recognized here from the remainder, and the Paxillosida

gradually emerged as well, although there has been some

instability of assignment (e.g., Radiaster, Pseudarchaster). The

remaining groups proved more controversial, and remain so.

Most influential were the ordinal concepts of Perrier [155], whose

work was embraced in the widely cited Treatise of Spencer and

Wright [113].

Concepts of modern higher classification among the living

Asteroidea began with Viguier [156] and Perrier [155,157] with

subsequent contributions by Sladen [148] and Fisher [158].

Viguier established early groupings based on the nature of the

skeletal mouth frame. Perrier [155] heavily emphasized pedicel-

lariae as diagnostic for his four groups, the Forcipulatae,

Spinulosae, Valvatae, and Paxillosae. Sladen [148] developed a

different classification that largely emphasized marginal plates and

regrouped the higher classification into the Phanerozonia, which

included several families displaying prominent marginal plate

series versus those in the Cryptozonia, which included those

families that displayed more inconspicuous marginal plate series.

Fisher [158] modified Sladen’s classification and established three

orders, the Phanerozonia, the Spinulosa, and the Forcipulata,

which were in turn each subdivided into several suborders (e.g, the

Paxillosa, Valvata, Notomyota) which accommodated previous

classification schemes established by Perrier [155] and others and

came to be heavily used throughout the 20th Century.

Phylogeny Inferred from Morphology
One of the earliest and best-known discussions of asteroid

phylogeny began as a heated exchange between Mortensen

[159,160] and MacBride [161,162,163]. Their debate focused

on the identity of the ancestral asteroid taxon. Mortensen

assigning the ‘‘ancestral condition’’ to the Astropectinidae in part

based on the absence of both a brachiolaria stage and suckered

tube feet and MacBride arguing essentially that these are derived

features in both astropectinid and luidiids reflected their occur-

rence on shallow, unconsolidated bottoms. Other workers

surveyed by Mortensen [159] found that not only were the

Paxillosida thought of as the ‘‘primitive’’ group, but also the

Asterinidae and the ‘‘Spinulosa.’’ MacBride’s contentious position

did not definitively provide an alternative taxon as the ancestral
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asteroid but demonstrated the difficulty of interpreting ‘‘ancestral’’

versus ‘‘derived’’ characters.

The Mortensen-MacBride debate laid the foundation for the

subsequent hypotheses of Fell [117,133,134], which suggested that

the luidiid Platasterias was a living member of the Paleozoic

Somasteroidea. This supported interpretation of the Paxillosida as

the ‘‘primitive’’ or ancestral asteroid taxon and was embraced by

Spencer and Wright [113]. Subsequent work [4,135,136] rejected

Fell’s interpretation of Platasterias and the Luidiidae as ancestral,

but the debate over the Paxillosida as the group displaying the

most ‘‘primitive’’ characters continued into modern discussions of

asteroid phylogeny.

Although the ‘‘Paxillosida is primitve’’ discussion remains one of

the best-known phylogenetic debates, there are several examples of

other, less prominent, pre-cladistic, evolutionary hypotheses within

the Asteroidea. Döderlein [164,165] provided phylogenetic

hypotheses for various species groups within both Astropecten and

Luidia. H.L. Clark [166] provided early ideas on relationships

among the Heliaster species complex in the tropical East Pacific.

Madsen [167] presented ideas and an evolutionary tree regarding

the interrelationships of the deep-sea Porcellanasteridae.

The modern phylogenetic paradigm for the Asteroidea begins

with the cladistic-based hypotheses of Blake [4] and Gale [5].

Although the phylogenetic hypotheses significantly differ from one

another, both show a well-supported modern Asteroidea as a

discrete post-Paleozoic clade. In some respects, the work of Blake

and Gale mirror those of MacBride [161,162,163] and Mortensen

[159,160] in that Gale [5,111] advocates a primitive Paxillosida

(Mortensen’s position) whereas Blake argued that these characters

should be interpreted as derived (MacBride’s position).

An important distinction between the two phylogenetic

hypotheses is that whereas Gale presented the Paxillosida as

primitive, Blake emphasized the ambiguity of identifying any

extant asteroid group as basal is misleading [4] (p. 515). Paleozoic

lineages of asterozoans and early asteroids suffered extinction

during the Permian-Triassic transition interval. Twitchett and Oji

[168] summarized that all living echinoderms (including asteroids)

underwent an important evolutionary bottleneck during this

interval with subsequent recovery and diversification within the

Triassic. Fossils are few but offer important insight [6,169].

Extinction is an important component of understanding the early

history of crown-group asteroids. Thus, our knowledge of early

lineages within the Neoasteroidea is very poorly understood and

the determination of a ‘‘primitive’’ taxon, such as the Paxillosida,

is misleading and is an oversimplification of a complex but obscure

history for which multiple taxa were likely present [6,169,170] but

not reconciled within the reconstruction of a phylogeny which has

only surveyed available living and fossil taxa.

Blake [4] showed the Forcipulatacea as the sister taxon to the

remainder of the surviving asteroids, a separation that has been

historically observed in primary asteroid monographs

[148,155,158]. However Blake [4,6] has emphasized that even

those tree topologies that incorporate available fossils depends on

the sampling of a scanty fossil record. It is important to note that

divergence might be such that the common ancestor of all

surviving asteroids would no more be assignable to a surviving

taxon grouping below the class level than is the early Paleozoic

common ancestor.

Phylogeny Inferred from Molecular Studies
Early molecular studies, such as that published by Wada et al.

[171] and the combined analysis of Lafay et al. [172] are

consistent with Gale’s [5,111] assertion that the Paxillosida were

primitive. However both Wada et al. [171] and Lafay et al. [172]

included relatively few taxa and used conveniently sampled, local

species as avatars for large, highly diverse groups (such as the

highly diverse Valvatacea). Many of their sampled species,

including Astropecten and Luidia, have since been shown to occur

on highly derived branches [69,83]. Gale [111] has continued to

argue Mortensen’s perspective of a ‘‘primitive’’ Paxillosida in spite

of phylogenetic evidence to the contrary from morphology [4,61]

and recent evidence from several molecular studies [69,173,174]

that have shown the Paxillosida in derived positions.

Knott and Wray [175] presented one of the first, well-sampled

phylogenetic analyses of the Asteroidea from COI, mtRNA and

previously collected ribosomal gene sequences. Janies [176]

presented a combined evidence tree of the Echinodermata, which

supported the Asteroidea as monophyletic, but did not recover any

consistently monophyletic groupings.

Matsubara et al., [177] determined the Solasteridae as the sister

group to the Asterinidae and subsequently revisited the phyloge-

netic relationship of the Forcipulatida to other asteroids [174].

Waters et al., [178] addressed molecular relationships within the

Asterinidae. Yasuda et al. [179] reported complete mitochondrial

genome sequences for the Crown-of-thorns starfish Acanthaster, and

provided a COI phylogeny showing Acanthaster+Oreaster in addition

to other asterinids on a valvatidan clade as the sister group to two

paxillosidans (Astropecten and Luidia) rooted against a forcipulate

(Pisaster), an echinoid and a holothurian. Foltz et al. [180]

supported the monophyly of the Forcipulatacea using combined

mitochondrial and nuclear sequences.

Mah and Foltz [69] reconstructed a comprehensively sampled

phylogeny of the Valvatacea which supported the sister group

relationship between the Asterinidae and Solasteridae as deter-

mined by Matsubara et al. [177] as well as supporting stemward

relationships for the Poraniidae and the Velatida (Pterasteridae,

Myxasteridae, Korethrasteridae). Although basal relationships

were not well supported, the Paxillosida was not supported among

basal taxa within the Valvatacea relative to a Forcipulatacean

outgroup (Fig. 1) [69]. A subsequent phylogenetic analysis of the

Forcipulatacea [181] further supported forcipulate monophyly, re-

established the Stichasteridae, and clarified relationships among

groups within the Asteriidae and among the Forcipulatacea.

Diversity among the Living Asteroidea
All living asteroids, termed Neoasteroidea by Gale [5], are

phylogenetically distinct from those in the Paleozoic [5,6]. Gale

[5] named the Post-Paleozoic Asteroidea as the Neoasteroidea.

Based on construction of the ambulacral column, Blake and

Hagdorn [6] recognized the Neoasteroidea at the infraclass level

within a subclass Ambuloasteroidea

Figure 2 summarizes phylogenetic perspectives from Foltz and

Mah [69,181], Blake [4], and Janies et al. [173]. Polytomies are

present where phylogenetic data is incomplete or ambiguous but

the diagram assumes a monophyletic Neoasteroidea. Groupings

used below reflect discrete phylogenetic lineages rather than

traditional taxonomic units. The Velatida has not found full

support as a member of the Spinulosacea and, except for

Caymanostella, is retained separately.

Mah and Foltz [69,181] presented a 3-gene phylogeny that has

further clarified relationships and classification in the Forcipula-

tacea and the Valvatacea. These include the paraphyly of the

Asterinidae along with several proposed taxonomic changes,

namely the assignment of the Solasteridae to the Valvatida and

placement of some ophidiasterids in the Goniasteridae, the new

position of the Poraniide, the paraphyly of the Pedicellasteridae

and others, which are outlined in discussions below. Gale [111]

has proposed the Forcipulatida as rooted among several valvatidan
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taxa as the ‘‘Tripedicellaria.’’ This is a classification with no

precedent in the historical literature from morphology [4,148,154]

and it has found no support with other recent molecular data

[69,173,177,179]; it therefore is not followed herein.

The Forcipulatacea
The Forcipulatacea is a diverse, primarily cold-water (some

temperate and tropical members are known) lineage of modern

asteroids that occur in all of the world’s oceans from the intertidal

to the deepest abyssal depths (.6000 m). The Forcipulatacea

includes 393 species in 77 genera (Table 1) [182], which ranks

them as among the most diverse of the Asteroidea. Forcipulata-

ceans are most diverse at high-latitudes with rich faunas in the

Arctic and especially in the Antarctic.

Although the Forcipulatacea display a wide range of morphol-

ogies (Fig. 3), taxonomists traditionally have found them to be

readily separated from the remainder of the crown group.

Characters helping to characterize forcipulataceans but not found

in all members include the presence of distinct 3-part ‘‘forcipulate’’

pedicellariae (although pedicellariae vary among taxa), four rows

of tube feet; foreshortened (or ‘‘compressed’’) ambulacral and

adambulacral ossicles, the latter alternating in furrow profile in

taxa with four rows of tube feet; a reticulated dorsal skeleton; a

well-developed adoral carina (abutted adambulacral plates adja-

cent to the mouth, the proximal skeleton recessed to form a so-

called actinostome); small mouth-angle ossicles; the longest actinal

series adjacent to the marginals rather than adjacent to the

adambulacrals; and a small disk with thick, tapering arms.

Most historical accounts [113,158] have set apart the Forcipu-

latacea or ‘‘forcipulate’’ asteroids (i.e., the Forcipulatida+Brisingida)

from the other members of the Asteroidea. This is a position that has

been further supported by modern phylogenetic treatments of

morphology [1,4,173,174] and is reflected in Fig. 2. Gale [111] has

placed forcipulates in a derived position within taxa historically

regarded as members of the Valvatida. This position has not found

historical agreement and is not followed by the treatment herein.

Monophyly of the Forcipulatacea itself has been relatively

uncontroversial with support from traditional taxonomy

[101,183], morphology-based phylogenetic studies [4,5] and

molecules [173,174,177,180,181]. Subgroupings within the For-

cipulatacea have encountered more difficulty, especially those

associated with the Asteriidae, such as the Labidiasteridae

Figure 2. Summary diagram of phylogenetic tree. Topology from combined trees of Mah and Foltz [69,181], Janies et al [173], and Blake [4].
‘‘Asterinidae’’ refers to paraphyletic clades as outlined by Mah and Foltz [69].
doi:10.1371/journal.pone.0035644.g002
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[101,113,183,184]. Mah and Foltz [181] provided the taxonomic

foundation for the summary below.

The Forcipulatacea, particularly the Asteriidae (e.g., Fig. 3A),

includes some of the most heavily studied and most familiar of

marine invertebrates in ecology and environmental biology.

Relevant taxa include Pisaster ochraceus, which has become an

iconic representative of the keystone species concept as outlined by

Paine [32,33,34] and Asterias amurensis, which has been introduced

to southern Australia as a pest species that threatens endemic

shellfish [41,42,43,44]. The Atlantic Asterias rubens and Asterias

forbesi have been among the most familiar of ecological subjects in

marine biology studies [185,186]. As important ecological

members, asteriids such as the European Asterias rubens, the North

Pacific Evasterias troscheli, and the temperate South Pacific

Coscinasterias muricata have also been used as subjects in several

oil pollution studies [50,51,187 respectively].

Diversity Within the Forcipulatacea
Mah and Foltz [181] supported six primary lineages within the

Forcipulatacea. This includes the Asteriidae (e.g., Fig. 3A) [188]

the Brisingida (e.g., Fig. 3B) [189], a modified Heliasteridae

(Fig. 3C) [190], the Stichasteridae (Fig. 3D) [191], the Zoroast-

eridae (Fig. 3E) [192] and a paraphyletic ‘‘Pedicellasteridae’’

[193]. Many of the traditional asteriid subgroupings outlined by

Fisher [101,183], which were raised to family-level by Clark and

Downey [2] and Clark and Mah [66], were not supported as

monophyletic, although some of the Northern/Southern Hemi-

sphere taxonomic divisions in his identification keys were

observed. Some groups, such as the Labidiasteridae, are artificial

and have been dismantled [181,184]. Basal relationships among

forcipulatacean lineages were not well supported, but higher-level

groups were recovered from the analysis.

The Brisingida (Fig. 3B) [189] is a clade of exclusively deep-sea

asteroids possessing a small disk with tightly articulated plates and

six to 20 elongate arms, which are extended into the surrounding

water column and used for feeding [194]. Brisingids are suspension

feeders that utilize needle-like spines with dense coverings of

pedicellariae to capture tiny crustaceans and other food particles

[195,196]. They are found between 100–6000 m and have been

reported from all oceans, except the Arctic. The Brisingida have

been repeatedly supported as monophyletic by morphology

[4,181,184,197] and DNA [180,181], and include 110 species in

17 genera [189]. Within the Brisingida, the monophyletic

Freyellidae (47 species in seven genera) [198] occupy a much

deeper bathymetric range than non-freyellids [197]. The Brisingi-

dae (63 species in ten genera) [199] itself is likely paraphyletic and

includes Brisingaster, Novodinia, and Odinella, which are likely basal

within the overall brisingid clade relative to Brisinga or other non-

freyellids [200]. The Zoroasteridae (Fig. 3E, 7 genera, 36 species)

[192] and the ‘‘Pedicellasteridae’’ (7 genera, 32 species) [193] both

occur only in the deep-sea (bathyal to abyssal depths) and are

phylogenetically basal among extant forcipulataceans. The basal

location of these taxa was consistent with Blake [1] who supported

Jurassic ‘‘asteriid’’ fossils as closely related to zoroasterids and

pedicellasterids. Zoroasterids possess a single row of marginals, a

character present in Paleozoic and early transitional asteroid fossils

from the Triassic [4,6]. Pedicellasterids display numerous

plesiomorphic characters, such as biserial tube foot rows, an

absent or reduced adoral carina and a weakly developed abactinal

skeleton. Mah and Foltz [181] did not recover the Pedicellaster-

idae as a monophyletic group, instead finding support for multiple

basal lineages within the Forcipulatacea, suggesting that the term

‘‘pedicellasterid’’ is best applied as a grade within forcipulates,

rather than a monophyletic family. A phylogeny of the Zoroast-

eridae [92] separated the more imbricate zoroasterids, such as

Zoroaster and Cnemidaster, which occur from bathyal to abyssal

depths, from zoroasterids with reticulate skeletons, such as

Myxoderma, which occur at shelf to bathyal depths. This suggested

diversification of the more derived imbricate taxa, such as Zoroaster,

into the deep-sea.

The Heliasteridae (Fig. 3C, nine species in two genera) [190]

includes the tropical shallow-water Heliaster, which occurs

throughout the Pacific coast of Mexico and South America and

Labidiaster, which occurs in the South Atlantic and in the adjacent

Southern Ocean. Heliaster comprises a species complex in the East

Pacific region [166] with some ecological importance [32].

Pliocene fossils from Florida have indicated that this complex at

one time occurred over a much larger region [201]. Labidiaster

annulatus in the Southern Ocean is a benthopelagic predator

[202,203]. Mah and Foltz [181] recovered a sister-group

relationship between Heliaster and Labidiaster, which provided the

basis for synonymy of the artificial and paraphyletic Labidiaster-

idae within the Heliasteridae. Mah [184], Foltz et al. [180], and

Mah and Foltz [181] dismantled the Labidiasteridae, showing that

each of its members was assignable to phylogenetically distant

lineages.

Two of the most ecologically important and diverse groups

within the Forcipulatacea, are the Asteriidae (with most species in

the Northern Hemisphere) (Fig. 3A, 35 genera, 178 species) [188]

and the mostly Southern Hemisphere Stichasteridae (Fig. 3D, 9

genera, 28 species) [191]. In spite of being phylogenetically distant

from one another, the Asteriidae and Stichasteridae include taxa

that apparently occupy similar if not convergent ecological niches

in intertidal and shallow-water marine ecoystems

Figure 3. Forcipulatacean diversity. A. Asterias forbesi (Asteriidae)
USNM 43197 B. Odinella nutrix (Brisingida) USNM E13561. C. Heliaster
cumingii No number. D. Stichaster striatus (Stichasteridae) USNM
1085979. E. Doraster constellatus (Zoroasteridae) USNM E23145.
doi:10.1371/journal.pone.0035644.g003
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[32,204,205,206], including ‘‘keystone’’ positions as predators of

bivalves and other mollusks.

Multiple lineages are present within the Asteriidae and the

Stichasteridae. Four major lineages are present in the Asteriidae

including the genus Sclerasterias a Boreal clade, which contains

Northern Hemisphere cold-temperate water taxa, such as the

Pacific-Arctic-Atlantic Leptasterias species complex [104,105,106],

and two sister clades, the Pan Tropical and Antarctic asteriids.

The Pan Tropical asteriid clade is composed of taxa such as

Coscinasterias, Meyenaster, and Astrometis, which occur at low-latitudes

in tropical (non-reef) to temperate settings. Antarctic asteriids

occur at high latitudes in the Southern Ocean and adjacent

regions and are the most diverse of the Antarctic asteroid fauna.

High-latitude asteriids include brooding taxa, such as Diplasterias,

Lysasterias, and Anasterias [108].

The Stichasteridae occur on two major lineages. One primarily

shallow-water cluster, including Stichaster, Cosmasterias, Smilasterias,

and Allostichaster which occur in an austral distribution in South

America, South Africa, and Australia/New Zealand and its sister

lineage which is composed primarily of deep to cold-water taxa

with widespread distributions, such as Neomorphaster.

The Paxillosida and ‘‘Notomyotida’’
The Paxillosida (Fig. 4), including the Benthopectinidae, occurs

at depths ranging from littoral habitats (e.g., Astropecten in the

Astropectinidae occurs at 0–2 m in some settings) to the deepest

abyss (.5000 m) (e.g., the Porcellanasteridae). Most of the

Paxillosida are primarily cold-water and are well represented in

the deep-sea as well as at high latitudes (Arctic and Antarctic) but

include diverse, shallow-water tropical to temperate water taxa as

well (e.g., Astropecten, Luidia). The review herein follows the

phylogeny of Mah and Foltz [69] and includes the Benthopecti-

nidae and the Pseudarchasteridae as members of the Paxillosida.

The primary life mode of taxa within the Paxillosida, with the

exception of the Benthopectinidae, involves burial or ploughing

through unconsolidated sediment [61,207]. Examples of charac-

ters that have been considered adaptations to life in sediment and

simultaneously synapomorphies for many members of the

Paxillosida include paxillate plates (abactinal, marginal and

actinal), pointed tube feet, superambulacral plates, cribiform

organs, the presence of an anal cone, and actinolateral fasciolar

channels.

The Paxillosida includes both detritivores and predators of

mollusks and other invertebrates [14,15], and many spend part or

most of their lives buried. Paxillosidan life modes are associated

with poorly consolidated sediment bottoms. Some groups, such as

the goniopectinids, ctenodiscids, and porcellanasterids are detri-

tivores that live buried in or under mud [208] whereas others live

buried under surface sediments but are predatory on mollusks and

other invertebrates [14]. Ecology in most of the Paxillosida is

poorly understood, but observations of Astropecten, Ludia, and other

paxillosidans suggest complexity and ecological importance

[209,210,211,212,213]. Although Pseudarchaster appears to be more

phylogenetically distant from the other Paxillosida, it shows a

generalized detritivore/predatory feeding life mode similar to

astropectinids [14].

Little is known regarding the biology of the Benthopectinidae.

Jangoux summarizes stomach contents from four taxa, which

suggests they are either predators/sediment feeders/detritivores.

Blake [214] and Clark and Downey [2] have speculated that

benthopectinids used muscles to hold up their arms in the water

column for suspension feeding and interpreted their well-

developed arm spines as defensive adaptations to predators that

have limited them to deep-water. Available images of bentho-

pectinids do not suggest burrowing or show arms extended into the

water column.

Diversity Within the Paxillosida (and ‘‘Notomyotida’’)
Mah and Foltz [69] used three genes (12S, 16S, and histone H3)

to reconstruct the phylogeny of the Valvatacea, and recovered a

Paxillosida that was composed of traditional members (e.g.,

Astropectinidae, Goniopectinidae, Luidiidae, etc.) but also several

groups displaying intermediate morphology. This included the

Benthopectinidae and the Pseudarchasteridae as sister taxa to a

clade containing the Goniopectinidae and the Ctenodiscidae. The

Luidiidae was recovered as the sister lineage to one containing

multiple astropectinids, including Macroptychaster, Lonchotaster,

Leptychaster, Dipsacaster and the radiasterid, Mimastrella. Although

the Porcellanasteridae was not sampled in Mah and Foltz’s [69]

analysis, it was supported as one by Blake [4] and is considered as

a member of the Paxillosida herein.

The Porcellanasteridae (12 genera, 30 species) [215], Gonio-

pectinidae (3 genera, 10 species) [216], Ctenodiscidae (Fig. 4A,B, 1

genus, 5 species) [217] as well as most members of the

Astropectinidae (Fig. 4C, 26 genera in 243 species) [72] all occur

primarily in deep-sea settings (,100–4000 m). Common to all of

Figure 4. Paxillosida (including Benthopectinidae) diversity. A.
Ctenodiscus australis, abactinal surface USNM 37148 B. Same specimen,
showing actinal surface and fasciolar grooves. C. Dytaster grandis USNM
E15959 D. Luidia clathrata USNM 8507 E. Pseudarchaster parelii USNM
1085998 F. Luidiaster antarcticus USNM 1121741.
doi:10.1371/journal.pone.0035644.g004
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these families are genera that have a cosmopolitan (or nearly so)

distribution. For example, the porcellanasterid, Porcellanaster ceruleus

displays a cosmopolitan distribution [63,89]. Multiple genera

within the Astropectinidae possess widespread, deep-sea distribu-

tions at bathyal to abyssal depths, including Dytaster, Leptychaster,

Lonchotaster, Persephonaster, Plutonaster, and Psilaster. Ctenodiscus, the

sole member of the Ctenodiscidae is present throughout the

world’s ocean basins, occurring from the Arctic to the deep-sea

tropics to the subAntarctic. Many of these taxa display few

characters or characters that differ only gradually across their

range.

In contrast to the deep-sea Paxillosida, there are two genera,

Astropecten and Luidia (Fig. 4D) with large numbers of species that

occur in temperate and tropical settings. Although both genera

occur across a wide range, most taxa are primarily shallow-water

and live in relatively coarse sediments compared to other deeper-

water Paxillosida, which occur in finer, deep-sea muddy bottoms.

Döderlein produced a taxonomic overview of both genera

[164,165]. Zulliger and Lessios [83] analyzed 117 specimens of

Astropecten belonging to 40 species from around the world, using

12S, 16S and COI genes, and identified three main clades in the

Indo-Pacific, the Neotropics, and the eastern Atlantic and

Mediterranean, which displayed morphological convergence and

several species complexes, such as the A. polyacanthus complex in

the Indo-Pacific.

The Benthopectinidae (Fig. 4F) and the Pseudarchasteridae

(Fig. 4E) were supported by Mah and Foltz [69] as sister taxa and

both have shown close morphological resemblance/affinities to the

Goniasteridae [4]. The Pseudarchasteridae (e.g., Pseudarchaster,

Paragonaster) includes 29 species in four genera [218], whereas the

Benthopectinidae (e.g., Benthopecten, Nearchaster) includes 69 species

in eight genera [219]. Both families occur primarily in deep-sea

(shelf to abyssal) or high-latitude/polar settings and include many

widely distributed taxa.

The Poraniidae (Sister clade to Valvatida+Paxillosida)
Mah and Foltz’s [69] work placed the Poraniidae (Fig. 5E),

which had historically been a member of the Valvatida, as the

sister clade to a Valvatida+Paxillosida dichotomy, thus removing it

from the Valvatida [4]. This is consistent with the morphology-

based phylogeny of Blake and Hagdorn [6] that showed a

Poraniidae+Noriaster clade as sister to solasterids, asterinids,

echinasterids, paxillosidans, and goniasterids.

The Poraniidae includes 22 species in seven genera [220], which

are distributed in cold-water settings throughout the world,

including high-latitude/polar regions and the deep-sea. Poraniids

inhabit primarily cold-water settings, primarily at high latitudes or

in the deep-sea [221] and are distinctive asteroids with a typically

thickened fleshy body wall that has obscured the endoskeleton and

made classification of the group difficult [222]. Our understanding

of poraniid biology is largely based on information derived from

two polar species, Porania antarctica and Porania pulvillus and the

temperate water Poraniopsis spp.

Feeding in known poraniids [14] suggests that most are

detritivores or predators. Bowden et al. [223] shows Porania

antarctica feeding on stalked crinoids in the Antarctic. Ericsson and

Hansson [224] observed P. pulvillus feed on octocorals, a

brachiopod, and several ascidian species. Dearborn [202]

observed P. antarctica feed on detritus, but sometimes preying on

sea urchins. Gemmill [225] described ciliary suspension feeding in

P. pulvillus, although further confirmation of this behavior has not

been observed.

The Valvatida
In terms of numbers of taxa at all levels, including families,

genera, and species, the Valvatida (Fig. 5) is the most taxonom-

ically numerous within the Asteroidea and as such, life modes and

ecology are diverse. Mah and Foltz’s [69] analysis found that the

Solasteridae (Fig. 5F), which have historically been assigned to the

Spinulosida [158] were nested within the clade containing the

Asterinidae, which has further extended the limit of diversity

within the Valvatida.

Life modes in the Solasteridae are different from other

Valvatida. Jangoux [14] outlined feeding of multiple solasterid

taxa, including Solaster and Lophaster. Most solasterids are primarily

predators of other mobile or otherwise active invertebrate taxa,

including gastropods, cnidarians, and other echinoderms, such as

holothurians and asteroids [226,227]. Blake [1] has interpreted the

decalcified skeletons, and wider, more open tube foot grooves as

associated with active predation, but also as a more vulnerable

body form, which may limit solasterids from tropical regions

Non-solasterid valvatidans possess a generalized life mode,

feeding primarily on sessile prey items. Jangoux [14] summarized

various benthic prey including encrusting algae, organic biofilm,

foraminiferans, sponges, bryozoans, hydroids, corals, gorgonians,

multiple anthozoans, ascidians, and various detrital food sources

(e.g., fecal pellets, dead fish, urchins, etc.).

Different valvatidan taxa are involved in complex ecological

interactions, especially with cnidarians. Acanthaster planci, the Indo-

Figure 5. Diversity within the Valvatacea. A. Pentagonaster
pulchellus (Goniasteridae) USNM E9756 B. Pentaster obtusatus (Oreast-
eridae) USNM C. Tremaster mirabilis (Asterinidae) USNM E46295 D.
Nardoa tuberculata (Ophidiasteridae) E16509 E. Porania pulvillus
(Poraniidae) USNM 11035 F. Crossaster campbellicus USNM 1122950.
doi:10.1371/journal.pone.0035644.g005
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Pacific Crown-of-Thorns Starfish is an important predator of

scleractinian reef corals [47]. Goniasterids are important predators

of shallow-water pennatulaceans [228] as well as deep-sea corals

[100,229].

Blake [1,4,71] argued that the success of tropical-shallow-water

valvatidans, such as the Oreasteridae, Ophidiasteridae, Acanthas-

teridae and others was related to multiple characters, such as

spines, narrow tube foot furrows, thick granulated epidermis, and

well-developed body skeletons, that provided defenses against

predators. Many of these tropical shallow-water taxa are abundant

and are significant members of the ecological communities of these

regions [230]. The growth and biology of several several tropical

valvatidans (e.g., oreasterids, archasterids) has become of increas-

ing concern [231,232,233,234] as many of these species are taken

for tourist and aquarium/pet industries [235]. Linckia laevigata, a

brilliant blue ophidiasterid is among one of the most heavily

trafficked species in pet and tourist trades [236,237].

Several high-latitude valvatidans, such as those that occur in the

Antarctic, including odontasterids, ganeriids, and solasterids, are

predators on sessile prey, such as sponges but also on other

echinoderms [202,238]. Several Antarctic valvatidans, such as the

odontasterid Odontaster validus, Perknaster fuscus, and Acodontaster

conspicuus are ecologically important [239]. Odontaster validus,

probably is the most intensively studied of Antarctic asteroids

[39,109,110,238,239,240].

The Asterinidae have served as model organisms in develop-

mental and reproductive biology as well as in ecology and

conservation studies. Patiria miniata, the Pacific Northwest bat star,

common along the west coast of North America, has become one

of the primary model organisms in developmental gene studies

[241,242]. Building on this research, other taxa of asterinids have

been heavily used in a wide variety of studies, including life history

evolution [243], gene expression [244], and the evolution of

reproduction and larval development [245,246]. Many asterinids

occupy intertidal and nearshore habitats and are important

subjects in the study of marine ecosystems [247,248] especially

in the context of their reproductive biology [249].

Based on observations of feeding in most shallow-water to

temperate species, most asterinids appear to be detritivores or

omnivores that feed on encrusting organisms, algae, decaying

corpses, and other detritus [14]. At least one asterinid, the New

Zealand Stegnaster inflatus, has developed elaborate ambush

methods for capturing mobile prey [250].

Diversity Within the Valvatida
The Valvatida is a diverse lineage that includes some of the

most taxon-rich families within the Asteroidea. Most members of

the Valvatida possess a well-defined marginal plate series that

frequently outlines the periphery of the body. In addition,

boundaries between plates are relatively well-defined and the disk

is large with well-defined actinal regions, and a relatively heavily

calcified or otherwise modified skeleton. Valvatidan taxa include

the Acanthasteridae, Archasteridae, Asterodiscididae, Asteropsei-

dae, Goniasteridae (Fig. 5A), Oreasteridae (Fig. 5B), Ophidiaster-

idae (Fig. 5D), and the Odontasteridae (Fig. 5D and see Table 1).

Other taxa supported as valvatidans display substantial departure

from this overall body plan, including the Asterinidae (Fig. 5C),

Ganeriidae, and Solasteridae (Fig. 5F). No published molecular

data is available for the enigmatic Podosphaerasteridae, but

morphological studies [4,251] have consistently placed it among

the Valvatida.

Several members of the Valvatida are important members of

tropical shallow-water settings, such as reefs, mangroves, and

sandy bottoms [230]. Valvatidans typically found in these regions

include Culcita (Oreasteridae), Acanthaster (Acanthasteridae), Proto-

reaster (Oreasteridae) and Archaster (Archasteridae). Many are

widely distributed throughout the Indo-Pacific. For example,

Acanthaster planci is present from the coast of Baja California, north

to Hawaii and Japan, and is present west to the east coast of Africa

in the Indian Ocean [47]. Although groups such as the

Oreasteridae (Fig. 5B) and the Ophidiasteridae (Fig. 5D) are

known primarily from tropical shallow-water habitats [3,252,253],

many individual members of these groups occur in deeper water.

Mah [254] and H.E.S. Clark [255] describe deep-water oreasterid

taxa (Astrosarkus and Acheronaster, respectively). Deep-sea ophidias-

terids, such as Tamaria are well documented [2,99] but poorly

understood.

Cold-water valvatidans are highly diverse (Table 2). The

Goniasteridae (Fig. 5A) [73] includes the greatest number of

genera (n = 65) and species (n = 256) within the living Asteroidea.

Most goniasterids occur in cold-water settings, primarily the deep-

sea (e.g., Litonotaster, Nymphaster), but also in Antarctic and

subAntarctic settings (e.g., Pergamaster) [256] in cold to temperate

water intertidal zones (e.g., Tosia). Some goniasterids (e.g., Fromia,

Anchitosia) are also widely distributed in tropical habitats

[229,257,258]. Although the Goniasteridae includes more taxa

than almost any other family of asteroids, relatively few

comprehensive reviews are available [99,259,260,261].

The Odontasteridae [262] and Ganeriidae [263] occur mainly

in the Antarctic and subAntarctic as well as in the deep-sea.

Odontasterids were supported as basal to the clade containing all

of the Valvatida and possess several characters, such as paxillate

abactinal and marginal plates, that suggest shared, possibly

plesiomorphic characters with the Paxillosida. Ganeriids are more

derived and show close relationship to asterinids and solasterids.

Mah and Foltz [69] supported the Asterinidae as a member of

the Valvatida and presented a potentially significant shift in

asteroid classification by showing the traditional Asterinidae as a

paraphyletic assemblage. This has changed the perception of the

Asterinidae, from that of a traditionally derived, monophyletic

grouping to a plesiomorphic grade relative to the more derived

morphology in the Solasteridae and Ganeriidae. Some asterinids

are shown as sister taxa to ganeriid and solasterid clades whereas

others are present on more stemward positions on the Valatida

clade.

The Asterinidae (Fig. 5E) [264] and Solasteridae (Fig. 5F) [265]

are morphologically significantly different from the other Valva-

tida. The Solasteridae have historically been considered members

of either the Spinulosida or the Velatida [4]. Many solasterids,

including Solaster and Crossaster, possess anywhere from six to 15

arms and possess reticulated, lightly calcified skeletons compared

to other valvatidans. Most solasterids occur in cold to temperate

water settings, but one genus, Seriaster, occurs in the tropical

shallow water settings of New Caledonia [266].

The Asterinidae are highly diverse, occupying different habitats

and displaying a diverse, but consistent, series of body forms.

Asterinids are morphologically distinctive with flattened bodies

that range from swollen and thickened (e.g., Patiriella) to nearly

parchment-like in thickness (e.g., Anseropoda) with body forms that

range from pentagonal (e.g., Meridiastra, Tremaster) to more stellate

(e.g., Nepanthia) and can have five to nine arms. Abactinal plates

are either flat, scalar, and overlapping or are more crescentic-in

shape approaching an appearance of chain-mail armor. O’Lough-

lin and Waters [267] summarized a full range of asterinid body

forms. Most asterinid diversity is known from shallow tropical to

temperate-water settings (e.g., Aquilonastra, Asterina, Parvulastra) with

relatively small adult size (diameter = 0.5 to 2.0 cm). Temperate to

cold-water forms, such as Patiria, Patiriella, and Stegnaster are larger
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in size (from eight to 15 cm in diameter). Cold-water asterinids,

such as Tremaster (Fig. 6C) and Anseropoda show the largest sizes

among the Asterinidae and are widely distributed in deep-sea

settings, showing nearly global distributions with occurrence in

Antarctica, the Indian Ocean, the central Pacific, Hawaii, and in

the North Atlantic [267].

The Podosphaerasteridae includes the sole genus Podosphaeraster,

which has been recorded from the deep-sea in the Atlantic and

Pacific Oceans. Podosphaeraster is unique among asteroids in having

a highly divergent, round, sphaere-like body shape, resulting in

ongoing interest regarding plate homologies [251,268]. A.M.

Clark [269] originally assigned Podosphaeraster to the Mesozoic

Sphaerasteridae. Blake [4,270] disagreed with this assignment.

Fujita and Rowe [251] later re-classified Podosphaeraster in a new

monotypic family, the Podosphaerasteridae. Both Blake [4,270]

and Fujita and Rowe [251] outlined close affinities between

Podosphaeraster and the Goniasteridae, but this relationship has not

been fully tested with molecular data and although its classification

is stable, many phylogenetic questions remain.

The Caymanostellidae (Fig. 6F) are dorsoventrally flattened

with scalar plates and are known primarily from deep-sea wood

substrates [271,272] and superficially appear similar to concen-

tricycloids. Little to nothing is known regarding caymanostellid

biology or ecology. Given the unusual morphology of caymanos-

tellids, especially given their resemblance to concentricycloids,

determination of the phylogenetic position and classification of

caymanostellids has been an active field of study.

Morphological evidence from fossils and modern forms have

argued for an affinity with Tremaster and related tremasterines

within the Asterinidae [272,273], which suggested placement

within the Valvatida. Caymanostellids were absent from Gale

[5,111] but were supported among the Velatida by Blake [4].

Caymanostella is supported among the Valvatida as the sister taxon

to Archaster in the molecular tree of Janies et al [173].

Morphological and molecular evidence appears to support the

Caymanostellidae as members of the Valvatida by several of the

published studies. However, given uncertainties regarding taxon

sampling, this relationship is expressed in Figure 2 as part of a

valvatacean polytomy and among the Valvatacea in Table 1.

The Spinulosida
Phylogenetic efforts have changed the taxonomic composition

of the Spinulosida in the 20th Century from the more inclusive

definition outlined in Fisher [158] to the more restricted

monotypic Spinulosida, which included only the Echinasteridae

[4]. The Echinasteridae contains a large number of species

(n = 133) assigned to a relatively small number of genera (n = 8)

(Table 1) [70]. The largest genera are the tropical, shallow water

Echinaster, which includes 27 species [274] distributed in the

Atlantic, Indian, and Pacific Oceans and the globally distributed

cold-temperate water Henricia, which includes 91 species [275].

Henricia is found at high-latitudes and in deep-sea settings.

Echinasterids generally possess a small disk with narrow,

elongate arms and body wall plates that are similar in appearance,

forming a reticulated mesh. Variably sized spinelets are found on

every plate, these vary in shape from conical and thorny to fine

and more nearly cylindrical.

Feeding in echinasterids varies, but a survey of known species of

Henricia and Echinaster suggest that they consume microalgae,

biofilms, and encrusting invertebrates, such as sponges and

tunicates. Anderson [276] provided an important account of

feeding and the digestive system in Henricia.

Diversity Within the Spinulosida
Henricia (Fig. 6B) includes 68% (91/133) of the total number of

echinasterid species [275], a total strikingly disproportionate as

compared to totals for other genera assigned to the family. Henricia

is present in cold-water settings, such as in the deep-sea (to

.1000 m) and in polar or subpolar regions [2,65,158,275]. Many

species of Henricia intergrade morphologically such that clearly

defined boundaries are difficult to recognize [2,158,277]. Molec-

ular and reproductive approaches to the systematics of Henrica

have led to the discovery of new cryptic species, such as Henricia

pumila from the well-studied intertidal regions of the Pacific

Northwest [278].

Echinaster displays an issue similar to the one observed in

Henricia. It is a wide-ranging species that shows intergradation and

problematic species boundaries. Other echinasterid genera, such

as Metrodira, Plectaster and Rhopiella, include far fewer species that

have more restricted range distributions.

The Velatida
Based on the molecular phylogeny of Mah and Foltz [181],

three families –the Pterasteridae (Fig. 6E) [74], Myxasteridae

(Fig. 6D) [279], and Korethrasteridae (Fig. 6C) [280] are upheld as

members of the Velatida, a classification that differs from Blake [4]

Figure 6. Forcipulatacea, Spinulosidan, Velatidan Diversity. A.
Ampheraster marianus (‘‘Pedicellasteridae’’-Forcipulatacea) USNM
E16024. B. Henricia obesa (Echinasteridae) USNM 1120449. C. Remaster
gourdoni (Korethrasteridae) USNM E 47646. D. Myxaster sol (Myxaster-
idae) Yale Peabody Museum 36040 E. Diplopteraster multipes (Pter-
asteridae) USNM 5530. F. Caymanostella spinimarginata (Caymanostelli-
dae) USNM E 27575.
doi:10.1371/journal.pone.0035644.g006
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who placed the Solasteridae and the Caymanostellidae within the

Velatida.

The molecular phylogenies of Mah and Foltz [69,181] support a

monophyletic Velatida occupying a position separated from the

Forcipulatacea and Valvatacea. Taxon sampling from within the

Velatida was incomplete [181], but monophyly for the Kore-

thrasteridae was supported. Asthenactis, a myxasterid was upheld

within the Pterasteridae, but full taxon sampling remains ongoing.

Morphology-supported phylogenies [4,5,111] have placed the

Velatida in derived positions with the velatida embedded or closely

related among taxa within other clades. The molecular phylogeny

of Janies et al. [173] supported Xyloplax along with Pteraster and

Hymenaster on a sister clade to the other living Asteroidea.

Pterasterids, korethrasterids, and myxasterids occur almost

exclusively in cold-water settings, with most present in bathyal to

abyssal or high-latitude habitats. The former three families possess

paxillae covering the body surface. Oral plates are prominent,

marginal plates weakly developed or absent, and pedicellariae are

absent.

A unique, canopy-like secondary dorsal covering, a so-called

‘‘supradorsal membrane,’’ is found in the Pterasteridae. The

supradorsal membrane is supported at the tips of highly elongate

paxillae, and it encloses a so-called ‘‘nidamental cavity’’ between

the membrane and the dorsal surface of the body. The nidamental

cavity is open to the sea along the margins of the body and also

through an opening or so-called osculum at the center of the dorsal

disk. Muscles move water through the nidamental cavity, bringing

fresh water to the respiratory papulae in the dorsal body wall. The

supradorsal membrane is relatively sturdy, even canvas-like, in

shallower-water Pteraster but more delicate and almost gelatinous in

deeper-water Hymenaster. Pterasterids also have the ability to

secrete copious amounts of apparently protective mucus

[281,282].

Reproductive biology in pterasterids is atypical and includes

brooding [283,284] and pelagic direct development [285,286].

Food items of korethrasterids and myxasterids have yet to be

recorded, but observations of Pteraster spp. show that they feed

primarily on sponges [14,227]. Gut contents of the deep-sea

pterasterid Hymenaster suggest that they consume sediment and

other detritus [14].

Diversity Within the Velatida
Nearly all velatidans are found in deep-water and polar habitats.

Many species assigned to individual genera are similar in overall

appearance and are geographically widely distributed.

The Myxasteridae (example in Fig. 6D) is composed of 9 species

in 3 genera [279] and possess five to ten arms, a weakly calcified

skeleton, and occur at bathyal/abyssal depths (750–3800 m

depths) in the Atlantic and Pacific oceans. They are rarely

encountered animals with fewer then fifteen specimens known for

the family in collections throughout the world. The Korethraster-

idae (Fig. 6C) occurs in Arctic, Antarctic and deep-sea regions, and

includes only 7 species assigned to 3 genera [280]. Although

korethrasterids are not as rare as myxasterids, biology of the

group, including feeding and reproduction remain poorly under-

stood. Korethrasterids consistently possess five rays with paxillar

plates covering the body surface

Taxonomically, the Pterasteridae (Fig. 6E) is the most diverse

within the Velatida including 116 species in 8 genera [74]. Nearly

all pterasterids occur in either cold or temperate water habitats,

especially in the deep-sea or at high-latitudes in Arctic and

Antarctic regions. One exception is the widely distributed

Euretaster, which occurs in tropical, shallow-water settings through-

out the Indo-Pacific.

The Concentricycloidea
The Concentricycloidea, initially included the South Pacific

Xyloplax medusiformis [7] and later came to include the tropical

Atlantic X. turneri [8]. The original authors perceived the

Concentricycloidea as morphologically distinct enough to warrant

recognition at the class level.

Rowe et al [8] hypothesized that Xyloplax was ‘‘derived from

asteroid asterozoans, possibly from a common ancestor of certain

valvatids…’’ but clarified that ‘‘…the degree of developmental and

morphological shift is such that it cannot be defined as a member

of the class Asteroidea.’’ Work on spermatozoon morphology,

spermiogenesis and microstructure [17,287] were used to further

argue the distinctiveness of Concentricycloidea as a separate class.

Following these initial reports, subsequent studies of Xyloplax

classification emphasized phylogenetics, using cladistics to analyze

synapomorphies, i.e., unique characters or molecular data that

support a clade. Smith [288] placed concentricycloids within the

Asteroidea, proposing shared synapomorphies between Xyloplax

and the caymanostellid, Caymanostella. Pearse and Pearse [289]

were the first to perform a phylogenetic analysis of Xyloplax along

with other Echinodermata. Their results were equivocal, but they

were unable to support submerging Xyloplax within the Asteroidea

as proposed by Smith [288].

Janies and Mooi [290] and Janies [176] provided the first

molecular/combined data analyses to include Xyloplax. Janies’ tree

supported Xyloplax as a derived branch, on the same branch as the

asteriid Rathbunaster, within the Asteroidea using 18S and 28S

rDNA sequences. Janies et al [173] later presented a molecular

phylogeny, including data from seven loci (18S rRNA, 28S rRNA,

histone H3 from the nucleus, 16S rRNA, 12S rRNA, cytochrome

c oxidase subunit I, tRNA-Ala, tRNA-Leu, and tRNA-Pro of the

mitochondrion), which placed Xyloplax as a sister taxon to a branch

containing Hymenaster and Pteraster. Janies et al. [173] and Janies

and McEdward [291,292] argued that concentricycloids were

progenetic velatid asteroids based on studies of larval asteroid

morphology.

Mah [293] described a third species, Xyloplax janetae and

presented a position intermediate between retaining Xyloplax as a

separate class [7,8] and inclusion within the Asteroidea [173,288]

by placing Concentricycloidea within the asteroid lineage, but as a

sister-group to the Neoasteroidea, the group including all living

asteroids. This placement is consistent with the hypothesis of an

evolutionary bottleneck at the Permian-Triassic transition [168],

which may have resulted in the extinction of Xyloplax’s closest sister

taxa.

Mah [293] does not necessarily disagree with new phylogenetic

data. Separation of the Velatida from other asteroid groups and its

possible position as sister taxon to the other asteroid groups on the

tree is a new one. However, members of the Velatida possess

several autapomorphies, such as the absence of a clear marginal

series, the absence of pedicellariae, and the lack of actinal plates,

that set the group apart from other neoasteroids. These have

historically been interpreted as highly derived [4,5] but taken in

the context of Janies et al., [173] and the phylogenetic trees

presented by Mah and Foltz [69,181] the Velatida display

prominence as a distinct group within the Neoasteroidea, separate

from the Forcipulatacea and the Valvatacea. Janies et al. [173]

supported Xyloplax as the sister group to other living velatidans. If

the Velatida were to be supported as the sister-group to the

remaining Neoasteroidea then Mah’s placement of Xyloplax

(including the Velatida) would be consistent with the basal position

of Xyloplax as presented by Janies et al. [173] but not necessarily as

the sister group to the Neoasteroidea. However, identification of

the definitive sister group to modern asteroids from fossil
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morphology [4,5,111] remains unresolved and in need of

continuing efforts. Definitive sister-group rooting for asteroid

phylogeny using molecular data is premature with many obstacles,

including taxon sampling and identification of long-branches that

have yet to be overcome [294].

Extinct Groups
Most of the larger extant families of asteroids have been

recognized in the fossil record, and although a few extinct families

have been recognized, these are not large and do not differ greatly

from those that do survive. Although fossil asteroids can be found

all over the world, fossil deposits from the Mesozoic, especially the

Cretaceous of Europe are among the most heavily studied and the

best known. Accounts below are limited to extinct higher taxa with

no surviving members.

Perhaps largely reflecting their modern occurrences and robust

construction, most fossil taxa have been assigned to either

Valvatida or Paxillosida. Included among extinct families is the

Pycinasteridae is a small family, occuring primarily in the

Mesozoic and early Cenozoic [94] that shows affinities with the

Goniasteridae. The Stauranderasteridae has recently been re-

viewed by Villier et al. [295] and displays some morphological

features that are reminiscent of the Oreasteridae. Paleobiology of

stauranderasterids is poorly known, but at least some taxa have

been collected from Jurassic tropical, shallow-water sediments

[93]. The Mesozoic Sphaerasteridae was considered convergent

with living Podosphaeraster by Blake [270] and were formally

separated by Fujita and Rowe [251]. Relatively few recent

accounts of fossil sphaerasterids [296,297] are available.

Although the Goniasteridae is extant, a significant number of

goniasterid genera occur only as fossil. A total of 102 living and

extant goniasterid genera are recognized. Goniasterids can be

broken down into three groups: 57 are known only from the

extant, 8 are known from both living and fossil, and 37 are fossil-

only genera. No other post-Paleozoic asteroids have such a

significant number of taxa contributing to the overall diversity.

Among the non-valvatidan fossil groups within the Valvatacea is

the Paleobenthopectininae [214], whose members were supported

as the sister group to the extant Benthopectinidae within the

Notomyotida as reconstructed by Blake [4]. Mah and Foltz [69]

placed the benthopectinids as a lineage within the Paxillosida.

Villier et al. [95] allied the Paleobenthopectininae as members of

the Velatida with members showing affinities with the Myxaster-

idae. Blake et al. [169] described Noriaster, an early member of the

Poraniidae from the Triassic of Northern Italy.

Within the Velatida is the monotypic Jurassic Tropidasteridae

which Blake [298] supported as phylogenetically near velatidans,

such as the Myxasteridae, Korethrasteridae and the Pterasteridae.

The Trichasteropsida is a member of the Forcipulatacea [4,6]

and occupies a basal position relative to other forcipulataceans,

both owing to its phylogenetic position and its Triassic fossil

occurrence, which places its two members, Trichasteropsis and

Berckhermeraster among the earliest of post-Paleozoic fossil asteroids

[6]. Gale [111] established the monotypic Terminasteridae within

the Forcipulatida.

Conclusions and Future Research
Asteroid biodiversity and systematics remains an active area of

research that has brought additional depth to our understanding of

echinoderm evolution and historical changes in the marine setting.

The use of molecular tools to infer asteroid phylogeny and

classification is still comparatively new, nevertheless significant

changes have already emerged and this trend can be expected to

continue at all taxonomic levels. For example, classification within

the Asteriidae had been problematic since Fisher’s [101,183]

revision of the Forcipulata. The recent revision of the Forcipula-

tacea by Mah and Foltz [181] shows strongly supported lineages

within the Asteriidae that are not immediately obvious from

external morphology. Zulliger and Lessios [83] presented a

molecular phylogeny of the species-rich Astropecten, including taxa

collected from throughout its range. Their work identified multiple

species complexes and recognized morphological and ecological

convergence among taxa present throughout Astropecten’s global

distribution.

Historically, interpretations of phylogeny have been based

primarily on morphology, although early ontogeny has also played

a significant role. Molecular phylogenetics circumvents the

circularity of using morphology for interpretation of both

phylogenetic history and functional phylogenetic changes. For

example, taxa such as Pseudarchaster possess morphological

adaptations that suggest living on unconsolidated sediment (e. g.,

presence of paxillae, well-developed fasciolar channels, etc.).

However, emphasis on certain characters (e.g., suckered tube feet)

has historically placed Pseudarchaster (and other pseudarchasterines)

within the Valvatida precluding their inclusion within the

Paxillosida, which has been historically defined by the presence

of pointed tube feet. The molecular phylogeny of the Valvatacea

by Mah and Foltz [69] supported Pseudarchaster as a member of the

Paxillosida, running contrary to its traditional taxonomic position.

New collections of specimens from marine exploration continue

to provide further data for our understanding of biodiversity in

shallow-water and deep-sea settings. Additional sampling has not

only added to our discovery of undescribed biodiversity

[200,229,254,257,293] but has also provided us with new

measures of zonation and abundance [299]. The availability of

video has also brought an unprecedented wealth of ecological data

from high resolution, in situ observations [100].

The fossil record is meager, but field and museum research

continues to reveal important discoveries about the earlier history

of asteroids, and can be expected to continue to do so.

In spite of the considerable progress, which has been

summarized herein, several topics remain crucial for future

research.

1. Basal phylogenetic relationships. In spite of comprehen-

sive phylogenetic efforts, such as those of Mah and Foltz

[69,181] basal relationships among major lineages of asteroids

remains a contentious subject. Support for early divergence of

asteroid lineages has been elusive, pending discovery of more

conserved genetic markers that will permit inference of basal

relationships. Also important to understanding the early

diversification of modern asteroids are fossils from the early

Mesozoic/late Paleozoic that provide further evidence for early

diversification of the crown-group.

2. Problematic groups. Xyloplax and Podosphaeraster. Cur-

rent data from molecular phylogenies has not settled the

phylogenetic questions regarding these enigmatic taxa and little

is known regarding the biology and development of these

highly unusual asteroids. These questions are, in part, tied to

development of a well-supported phylogeny of the Asteroidea,

which is concern #1 (above).

3. Undiscovered Biodiversity. A large potential exists for

undiscovered asteroid taxa. This includes the potential for

cryptic species that will likely be discovered in widely occurring

deep-sea taxa. Museum collections of taxa from improved and

increased expeditions, as well as living and fossil collections will

also become important as unidentified material is processed.
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d’ossicules isolés: intérêt taxinomique et phylogénétique. CR Acad Sci 328:
353–358.

121. Schuchert C (1915) Revision of Paleozoic Stelleroidea with special reference to

North American Asteroidea. Bull US Nat Mus 88: 1–311.

122. Ubaghs G (1953) Classe des Stelléroides (Stelleroidea). Pp. 774–842. in Traité de
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125. Smith AB, Jell AB (1990) Cambrian edrioasteroids from Australia and the

origin of starfishes. Mem Queensl Mus 28(2): 715–778.

126. Zhao Y, Sumrall CD, Parsley RL, Peng J (2010) Kailidiscus, a new

plesiomorphic edrioasteroid from the basal Middle Cambrian Kaili Biota of
Guizhou Province, China. J Paleont 84(4): 688–680.

127. Fell HB (1963) The evolution of the echinoderms. Ann Rep Board of Regents

Smithson Inst, Publ 4518: 457–490.

128. Philip GM (1965) Ancestry of Sea Stars. Nature 206: 766–768.

129. Guensburg T, Sprinkle J (2003) The oldest known crinoids and a new look at
crinoid origins. Am Paleont 11(3): 3–5.

130. Guensburg TE, Sprinkle J (2009) Solving the mystery of crinoid ancestry: New

fossil evidence of arm origin and development. J Paleont 83: 350–364.

131. Mooi R (2001) Not all written in stone: interdisciplinary syntheses in

echinoderm paleontology. Can J Zool 79: 1209–1231.

132. Spencer WK (1914–1940) British Palaeozoic Asterozoa. Pt. 1–10. Palaeontogr
Soc Monogr (Lond). 540 p.

133. Fell HB (1962a) A surviving somasteroid from the eastern Pacific Ocean.

Science 136: 633–636.

134. Fell HB (1962b) A living somasteroid, Platasterias latiradiata Gray. Univ Kans
Paleontol Contrib, Art 6: 1–16.

135. Madsen FJ (1966) The Recent Sea-star Platasterias and the fossil Somasteroidea.

Nature 209: 1367.

136. Blake DB (1972) Sea Star Platasterias: Ossicle morphology and taxonomic

position. Science 175: 306–307.

137. Müller AH (1963) Lehrbuch der Paläozoologie, v. 2, Invertebraten, pt. 3,
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