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Abstract: Macrocyclic trichothecenes are an important group of trichothecenes bearing a large ring.
Despite the fact that many of trichothecenes are of concern in agriculture, food contamination, health
care and building protection, the macrocyclic ones are becoming the research hotspot because of
their diversity in structure and biologic activity. Several researchers have declared that macrocyclic
trichothecenes have great potential to be developed as antitumor agents, due to the plenty of their
compounds and bioactivities. In this review we summarize the newly discovered macrocyclic
trichothecenes and their bioactivities over the last decade, as well as identifications of genes tri17 and
tri18 involved in the trichothecene biosynthesis and putative biosynthetic pathway. According to
the search results in database and phylogenetic trees generated in the review, the species of the
genera Podostroma and Monosporascus would probably be great sources for producing macrocyclic
trichothecenes. Moreover, we propose that the macrocyclic trichothecene roridin E could be formed
via acylation or esterification of the long side chain linked with C-4 to the hydroxyl group at C-15,
and vice versa. More assays and evidences are needed to support this hypothesis, which would
promote the verification of the proposed pathway.
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Key Contribution: A new supposed biosynthetic pathway of macrocyclic trichothecene was proposed.

1. Introduction

Trichothecenes are a family of sesquiterpenoid mycotoxins produced by multiple genera of fungi,
including plant and insect pathogens, and they are of great concern because they are toxic to animals
and humans and frequently detected in cereal crops, especially in wheat, barley, maize and oats [1–4].
In the European Union, 57% of the collected food samples have been contaminated with deoxynivalenol
(DON) [5], and a high proportion of UK oats were believed to contain high concentrations of the
trichothecenes T-2 and HT-2 according to a survey of commercial crops [6]. These toxins consist of
over 200 structurally distinct molecules, all of which are characterized by a three-ring molecule known
as 12,13-epoxytrichothec-9-ene (EPT; Figure 1) [7,8]. One obvious structural variation can divide
trichothecenes into two groups: the simple trichothecenes and the macrocyclic ones (also called Type
D trichothecenes, Figure 1) [9,10]. The macrocyclic trichothecenes possess an additional ring at C-4
and C-15 of EPT, formed by esterification of the hydroxyls at relevant positions with a 12- or 14-carbon
chain. On the contrary, the simple trichothecenes in the other group do not have a macrolide ring.
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The biochemistry, bioactivity and biosynthesis of simple trichothecenes have been studied 
extensively [11,12]. In Fusarium, the biosynthetic pathway of the representative trichothecenes, e.g., 
DON, nivalenol and T-2 toxin, have been fully elucidated [11–13]. All trichothecenes share the same 
starting unit, initiated by cyclization of the primary metabolite farnesyl diphosphate to form 
trichodiene, which was catalyzed by the terpene cyclase trichodiene synthase (Tri5). Subsequently, 
trichodiene undergoes a series of oxygenations (Tri1, Tri4, Tri11 or Tri13), acylations (Tri3, Tri7, Tri16 
or Tri101) and sometimes other modifications to create the simple trichothecene analogs [10,12]. Most 
genes responsible for these catalytic processes have been identified individually, and they are often 
located next to one another in the trichothecene biosynthetic gene (TRI) cluster [14–17]. However, the 
same gene homologs from different genera sometimes have diverse functions [10,18]. For instance, 
in Myrothecium sp. and Trichoderma sp., the tri4-encoded cytochrome P450 monooxygenase catalyzes 
oxygenation of trichodiene at three carbons (C-2, C-11, and C-13), but Tri4 of Fusarium catalyzes four 
carbons of trichodiene (combined with C-3) [19–21]. Proctor et al. declared that the ability of Tri4 to 
catalyze three oxygenations is more ancestral than the ability to catalyze four reactions [10]. Likewise, 
Tri8 exhibits two mutually exclusive deacetylation at C-3 or C-15 among different Fusarium species 
[22–24]. The numbers and arrangement of TRI genes per cluster also vary in different fungi [10,18,25]. 
The TRI cluster of Fusarium sporotrichioides contains 12 genes related to trichothecene biosynthesis, 
but the cluster of Trichoderma arundinaceum just contains 5 genes [10]. The other biosynthetic genes of 
T. arundinaceum, e.g., tri5 initiating biosynthesis of trichothecene, are located in other loci [18]. In 
Myrothecium and Stachybotrys species, the TRI genes at other loci were paralogs of genes in the main 
cluster [10]. 

The genetic bases for most simple trichothecenes have been elucidated by functional analyses of 
TRI genes; however, the genetic bases for macrocyclic trichothecenes, namely Type D trichothecenes, 
are not completely elucidated, especially about the formation of the macrocycle, which is composed 
of polyketide- and isoprenoid-derived moieties [9,26,27]. Genes tri17 and tri18 were presumed to be 
involved in macrocycle formation [7,26]. The objective of this review is to summarize the latest 
developments on macrocyclic trichothecenes, including newly discovered compounds, bioactivities, 
hypothetic functions of tri17 and tri18, and putative biosynthetic pathway. This review provides a 
new insight into the biosynthetic mechanism of macrocycle in macrocyclic trichothecene. 

 

Figure 1. The tricyclic skeleton of trichothecene and macrocyclic trichothecene structure. 

2. Macrocyclic Trichothecenes and the Producing Strains 

Trichothecenes can be isolated from many fungal genera, such as Fusarium, Isaria, 
Microcyclospora, Myrothecium, Peltaster, Spicellum, Stachybotrys, Trichoderma, Trichothecium, 
Cephalosporium, Cylindrocarpon, Memnoniella, Phomopsis, Verticimonosporium etc. [7,10,28]. Macrocyclic 
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The biochemistry, bioactivity and biosynthesis of simple trichothecenes have been studied
extensively [11,12]. In Fusarium, the biosynthetic pathway of the representative trichothecenes, e.g.,
DON, nivalenol and T-2 toxin, have been fully elucidated [11–13]. All trichothecenes share the
same starting unit, initiated by cyclization of the primary metabolite farnesyl diphosphate to form
trichodiene, which was catalyzed by the terpene cyclase trichodiene synthase (Tri5). Subsequently,
trichodiene undergoes a series of oxygenations (Tri1, Tri4, Tri11 or Tri13), acylations (Tri3, Tri7, Tri16
or Tri101) and sometimes other modifications to create the simple trichothecene analogs [10,12].
Most genes responsible for these catalytic processes have been identified individually, and they
are often located next to one another in the trichothecene biosynthetic gene (TRI) cluster [14–17].
However, the same gene homologs from different genera sometimes have diverse functions [10,18].
For instance, in Myrothecium sp. and Trichoderma sp., the tri4-encoded cytochrome P450 monooxygenase
catalyzes oxygenation of trichodiene at three carbons (C-2, C-11, and C-13), but Tri4 of Fusarium
catalyzes four carbons of trichodiene (combined with C-3) [19–21]. Proctor et al. declared that
the ability of Tri4 to catalyze three oxygenations is more ancestral than the ability to catalyze four
reactions [10]. Likewise, Tri8 exhibits two mutually exclusive deacetylation at C-3 or C-15 among
different Fusarium species [22–24]. The numbers and arrangement of TRI genes per cluster also vary
in different fungi [10,18,25]. The TRI cluster of Fusarium sporotrichioides contains 12 genes related
to trichothecene biosynthesis, but the cluster of Trichoderma arundinaceum just contains 5 genes [10].
The other biosynthetic genes of T. arundinaceum, e.g., tri5 initiating biosynthesis of trichothecene,
are located in other loci [18]. In Myrothecium and Stachybotrys species, the TRI genes at other loci were
paralogs of genes in the main cluster [10].

The genetic bases for most simple trichothecenes have been elucidated by functional analyses of
TRI genes; however, the genetic bases for macrocyclic trichothecenes, namely Type D trichothecenes,
are not completely elucidated, especially about the formation of the macrocycle, which is composed
of polyketide- and isoprenoid-derived moieties [9,26,27]. Genes tri17 and tri18 were presumed to
be involved in macrocycle formation [7,26]. The objective of this review is to summarize the latest
developments on macrocyclic trichothecenes, including newly discovered compounds, bioactivities,
hypothetic functions of tri17 and tri18, and putative biosynthetic pathway. This review provides a new
insight into the biosynthetic mechanism of macrocycle in macrocyclic trichothecene.

2. Macrocyclic Trichothecenes and the Producing Strains

Trichothecenes can be isolated from many fungal genera, such as Fusarium, Isaria, Microcyclospora,
Myrothecium, Peltaster, Spicellum, Stachybotrys, Trichoderma, Trichothecium, Cephalosporium, Cylindrocarpon,
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Memnoniella, Phomopsis, Verticimonosporium etc. [7,10,28]. Macrocyclic trichothecenes are produced by
the genera Myrothecium [29–31], Podostroma [32], Stachybotrys [33], Calcarisporium [34], Cercophora [35],
Cylindrocarpon [36], Dendrodochium [37], Phomopsis [38], and Verticinimonosporium [39]. It is worth
noting that Baccharis, belonging to the Asteraceae family, is the only plant genus that can produce
trichothecenes [40]. The macrocyclic trichothecenes can be further classified as verrucarins (mainly C27
compounds), or roridins and satratoxins (mainly C29 compounds) according to the carbon number of
side chain [28,41,42]. The side chain with 12- or 14-carbon atoms was esterified to the tricyclic skeleton
via hydroxyl groups at C-4 and C-15 of EPT [10].

New macrocyclic trichothecenes are constantly being discovered. Here, the novel macrocyclic
trichothecenes isolated over the past decade are reviewed. There were 23 compounds related to
macrocyclic trichothecene newly discovered between 2010 and 2019, and most of them were isolated
from Myrothecium (Table 1; Figure 2). Only three compounds were isolated from Podostroma, and one
from Stachybotrys (Figure 3). Four compounds belong to verrucarin-like trichothecenes (1, 2, 11, 18),
and the others with a side chain of 14-carbon atoms could be recognized as roridins or satratoxins.
It was reported that roridin may be the precursor of the respective verrucarin, because the C2-side chain
at C-6′ of roridin might be cleaved by oxidation to form verrucarin [41,43]. Compounds 1–11 and 23
have a standard tricyclic core, namely EPT; however, compounds 12–20 lack the epoxide at C-12, C-13.
Verrucarin Y (1) and verrucarin Z (2) were isolated from M. roridum M10 by Muhammad et al. [42].
Verrucarin Y (1) shares the same structure with epiroridin acid (3) [29], except that the latter possesses an
additional C2-side chain at C-6′, implying that epiroridin acid (3) may be the homologue of verrucarin
Y (1) [41]. Verrucarin Z (2) has an epoxide ring at C-2′, C-3′ instead of the olefinic bond of verrucarin Y (1)
at the same place, and the number of epoxide rings always has a significant impact on their biological
activities [42]. Several macrocyclic trichothecenes with additional rings have also been isolated from
Myrothecium (compounds 5–18), such as mytoxin, satratoxin, vertisporin, roritoxin, and myrothecine,
the names of which generally indicated the genus that this kind of toxins were firstly isolated from [41].
The second ring is closed by the connecting between C-6′ and C-12′ of the side chain. A third ring exists
in some compounds, which is formed via an ester linkage between C-12′ and C-14′ (9, 10, 15) [30,44].
Roritoxin E (10) [30], 6′,12′-epoxymyrotoxin A (11) [45], and 2′,3′-epoxymyrothecine A (18) [46] have
the epoxide ring at C-2′, C-3′; furthermore, 6′,12′-epoxymyrotoxin A (11) has an additional epoxide
ring at C-6′, C-12′. Due to the absence of the epoxide at C-12, C-13, compounds 12–20 belong to
10,13-cyclotrichothecane derivatives [44,47]. Generally, 10,13-cyclotrichothecane macrolides have been
proved to be less cytotoxic than the trichothecenes with the epoxide at C-12, C-13 [46–48]. Roridin F
(21) and satratoxin I (22) discovered from Podostroma cornu-damae, a deadly poisonous mushroom,
are not complete macrolides, because the macrocyclic ester bridge between C-4 and C-15 are not
closed; however, they might be transformed into roridin E and satratoxin H, respectively, through
a one-step esterification [32]. Chartarene D (23) is the only macrocyclic trichothecene isolated from
Stachybotrys during the past decade [33]. This could be because the Stachybotrys fungi are not great
source of trichothecenes, and most of them have been discovered before [28]. Search in the database
Web of Science about macrocyclic trichothecenes reported during the last twenty years, implies that
there is a possibility that more novel macrocyclic trichothecenes will be isolated from Myrothecium and
Podostroma, especially the latter.
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Table 1. Macrocyclic trichothecenes newly discovered over the last decade.

Genera No. Compound Ref.

Myrothecium

1 verrucarin Y [42]
2 verrucarin Z [42]
3 epiroridin acid [29]
4 8a-hydroxyroridin H [49]
5 7′-hydroxymytoxin B [45]
6 16-hydroxymytoxin B [44]
7 13′,14′-hydroxymytoxin B [46]
8 12′-episatratoxin H [50]
9 14′-dehydrovertisporin [44]

10 roritoxin E [30]
11 6′,12′-epoxymyrotoxin A [45]
12 dihydromyrothecine C, 1a [47]
13 dihydromyrothecine C, 1b [47]
14 myrothecine D [44]
15 myrothecine E [44]
16 myrothecine F [44]
17 myrothecine G [44]
18 2′,3′-epoxymyrothecine A [46]
19 myrothecin A [49]

Podostroma
20 miophytocen D [32]
21 roridin F [32]
22 satratoxin I [32]

Stachybotrys 23 chartarene D [33]

3. Biological Activities of Macrocyclic Trichothecenes

Macrocyclic trichothecenes have been shown to possess diverse biological activities, such as
antibiotic [51], antifungal [41], antimalarial [52], antiviral [53], and anticancer activities [54,55].
In this review, the biological activities of macrocyclic trichothecenes against cancer cell lines were
collected and compared (Table 2). The cytotoxicities against the identical cancer cell line varied
notably between different compounds, which could explain the structure-activity relationship of
macrocyclic trichothecenes.
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Table 2. Cytotoxicity of macrocyclic trichothecenes against diverse human cancer cell lines in vitro.

Cytotoxicity (IC50)

Compound HepG-2 a MCF-7 SF-268 K562 SW1116 KB NCI-H187 A549 SMMC-7721 SGC-7901 Ref.

3 0.380 ± 0.03 µM 0.170 ± 0.01 µM 0.751 ± 0.03 µM 0.360 ± 0.05 µM b [29]
5 2.81 nM 5.99 nM [45]
6 2.87 µM 0.18 µM [44]
7 49 ± 3.35 nM 63 ± 2.38 nM 53 ± 3.36 nM 46 ± 2.88 nM [46]
8 2.27 µM 1.42 µM [50]
9 56 nM 200 nM [44]
10 18.89 µM 0.46 µM [30]
11 0.63 nM 0.79 nM [45]
12 44.48 µM [47]
14 8.2 µM 0.57 µM [44]
15 15.98 µM 11.61 µM [44]
16 0.97 µM 10.62 µM [44]
17 1.53 µM 4.25 µM [44]
18 32.03 ± 2.94 µM 18.13 ± 3.89 µM 36.45 ± 2.79 µM 30.33 ± 9.71 µM [46]

a These cancer cell lines represent human hepatoma cell line (HepG-2), human breast adenocarcinoma cell line (MCF-7), human glioma cell line (SF-268), chronic myeloid leukemia cell line
(K562), colorectal carcinoma cell line (SW1116), human nasopharyngeal carcinoma cell line (KB), human small cell lung cancer cell line (NCI-H187), human lung adenocarcinoma cell
line (A549), human hepatocellular carcinoma cell line (SMMC-7721), and gastric carcinoma cell line (SGC-7901), respectively. b This datum was the cytotoxicity of compound 3 against
NCI-H460 (human non-small cell lung cancer cell line).
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Firstly, the existences of a double bond at C-9, C-10 and an epoxide at C-12, C-13 are the most
important structural features, which contributes to the significant differences in biological activity
(Table 2) [1,45,46,56]. The compounds lacking this epoxide and a double bond at C-9, such as compounds
12–20, are not likely to show cytotoxicity with a nanomolar level. Secondly, an increase of the additional
epoxide groups on the macrolide ring remarkably promote toxicity [1,57]. The 6′,12′-epoxymyrotoxin
A (11), bearing an epoxide ring at C-6′, C-12′, showed quite strong cytotoxicity towards the KB
and NCI-H187 cancer cell lines [45]. The substituent groups of other sites also affect the bioactivity.
The carboxylation at C-16 could significantly reduce the cytotoxicity of epiroridin acid (3) compared to
epiroridin [29]. The 12′-O-acetyl group in myrothecine G (17) enhanced bioactivity [44]. However,
the hydroxylation of C-12′ decreased roridin E toxicity more than 1000-fold [58]. On the contrary,
it has been reported that roridin H 8α-hydroxylation increased cytotoxicities towards MCF-7, Hela
cells KB3.1, and skin cancer cells A431, but the acetylation of this hydroxy group or no oxidation
at C-8 decreased activity towards all the mentioned cell lines [41]. Compounds 6, 9, 14–17 were
evaluated for their in vitro cytotoxicities against K562 and SW1116, and the relatively large differences
in IC50 values suggested that the slight changes of the substituent group have obvious effects on the
biological selectivity of macrocyclic trichothecenes against cancer cell lines [44]. There have been
some studies suggesting that the breakage of the macrocyclic ring could dramatically decrease the
cytotoxicity [45,54], and it was supported by the fact that roridin F (21) and satratoxin I (22) without
macrocyclic ring were almost inactive against cancer cell lines (data not included in Table 2) [32].
All these data indicated that even small alterations in the molecular structure can lead to a substantial
change in biological activity or selectivity against cancer cell lines [41,59]. It should be noted that
considerable research have pointed out that the macrocyclic trichothecenes have more potential than
the other types of trichothecenes to become antitumor agents [41,60]. Therefore, more attention should
be paid to exploration of the structure-activity relationships in the future.

There are some macrocyclic trichothecenes displaying other biological activities, such as antifungal
and antimalarial activities. Verrucarin Z (2) showed a similar activity against Mucor miehei at a
concentration of 50 µg/disk when compared with the positive drug nystatin [42]. The 8a-hydroxyroridin
H (4) and myrothecin A (19) exhibited bioactivities against plant pathogenic fungi Rhizoctonia solani
and Fusarium oxysporum [49]. Manami et al. suggested that the C-12-epoxide of trichothecene was
essential for the antifungal activity against Cochliobolus miyabeanus [61]. Besides the cytotoxicity against
the KB and NCI-H187 cell lines, 7′-hydroxymytoxin B (5) and 6′,12′-epoxymyrotoxin A (11) exhibited
strong antimalarial activity against Plasmodium falciparum with 86.1% (1.84 nM) and 98.85% (2 nM)
parasite inhibition, respectively [45].

4. Biosynthetic Pathway

Despite considerable published research on macrocyclic trichothecene, the biosynthetic pathway
of Type D trichothecene remains obscure, especially on how the macrocycle is formed and linked to EPT.
To date it has been well known that this mechanism is associated with genes tri17 and tri18, but how they
function is still being studied (Figure 4). According to previously reported BLAST analyses and function
prediction [10,62], tri17 is regarded as a polyketide synthase gene, and tri18 as an acyltransferase gene.
Based on the existence of tri17 and tri18 in the Stachybotrys TRI cluster, Semeiks et al. speculated
that the polyketide portion catalyzed by Tri17 protein participate in the biosynthesis of macrocyclic
trichothecene in Stachybotrys [26]. Through gene deletion and complementation analyses, gene tri17 in
Trichoderma arundinaceum IBT 40,837 (Ta37) was confirmed to be essential for synthesis of the polyketide
side chain of harzianum A (Figure 4). Furthermore, the complementation of M. roridum tri17 into
Ta37 could recover harzianum A production, demonstrating that tri17 from different species played a
similar role in biosynthesis of the polyketide-derived substituents of macrocyclic trichothecene [10].
Polyketide synthase is generally a delicate and complicate enzyme, containing several functionally
diverse domains, including acyl carrier protein (ACP), acyl transferase (AT), ketosynthase (KS),
ketoreductase (KR), dehydratase (DH), and enoylreductase (ER), all of which conjointly and sequentially
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function to generate a long branched-chain polyketide [63,64]. The polyketide synthases for other
polyketide-derived compounds, such as tylosin [65], erythromycin A [63], and nanchangmycin [66],
have been studied for many years. However, as a newly identified polyketide synthase gene, tri17 has
not been investigated thoroughly, and the functions of different domains have not been determined yet.

On the other hand, the only identification work for tri18 was presented by Laura et al. in 2019 [62].
They proposed that the conversion of the intermediate trichodermol to harzianum A in Ta37 needed
two acyltransferases, Tri3 and Tri18. Tri3 catalyzes 4-O-acetylation of trichodermol to give trichodermin,
then Tri18 catalyzes the replacement of the resulting C-4 acetyl group with octa-2,4,6-trienedioyl
(Figure 4). With deletion of gene tri18 in Ta37, tri18 mutants did not produce detectable levels of
harzianum A, but the mutant genes increased trichodermol production, indicating that Tri18 accounts
for the esterification of octa-2,4,6-trienedioyl to the C-4 of trichothecene. Moreover, Tri18 was presumed
to be capable of transforming trichodermol to harzianum A directly, but the catalytic activity was quite
low. This hypothesis requires more functional identification experiments in vitro to provide evidences.
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To obtain insight into the distinction of gene homologs and the evolutionary relationship of the
macrocyclic trichothecene-producing species, phylogenetic trees for tri17 and tri18 were generated in the
present review (Figure 5). Some of these gene homologs came from the trichothecene-producing strain
genomes, and some from the resulting sequences with high similarity according to NCBI BLAST algorithms
(Table S1). There were still some species without any reports on their genome information, such as
Podostroma, Calcarisporium, Cercophora, Cylindrocarpon, Dendrodochium, Verticinimonosporium, and Baccharis,
therefore their genes were not included in phylogenetic trees. In the trees inferred from homologs of
tri17 and tri18 genes, relationships among these species were generally consistent (Figure 5). Firstly,
Myrothecium, Monosporascus and Stachybotrys formed a well-supported clade in both trees. Monosporascus is
also one plant pathogen affecting muskmelon and watermelon, and there are just a few studies indicating
that natural products of Monosporascus species included octocrylene, squalene, several hexaketide and
pentaketide compounds [67,68]. Since Myrothecium and Stachybotrys are the predominant fungi producing
macrocyclic trichothecenes, it is a reasonable hypothesis that Monosporascus could produce macrocyclic
trichothecenes as well. Secondly, Trichoderma and Trichothecium, respectively, forms an independent
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clade, and Trichoderma is more close to the Myrothecium-Stachybotrys clade than Trichothecium. In fact,
the representative trichothecene derived from Trichoderma, harzianum A, has a longer side chain at C-4
than the representative trichothecene of Trichothecium, trichothecin (octatrienoyl group vs. butenoyl group,
Figure 5) [10]. Although Trichoderma and Trichothecium have tri17 and tri18 genes, there is no report to date
showing that macrocyclic trichothecenes could be isolated from them. Since Tri17 may be responsible for
formation of the octatrienoyl substituent or other polyketide-derived substituents, and Tri18 catalyzes
acetylation of the consequent substituents to EPT, there is still a puzzle how the long chain polyketides of
macrocyclic trichothecene were converted to a closed ring. Either the unique gene tri18 from Myrothecium
or Stachybotrys also participates in the process, or there is still an unknown gene contributing to closure.
In addition, it should be noted that we did not find any homologs similar to tri18 in the root species in tri17
gene tree, Phomopsis longicolla, which was the only species of the genus with genome information in NCBI.Toxins 2020, 12, x FOR PEER REVIEW 11 of 18 
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Although not all genes involved in the biosynthesis of macrocyclic trichothecene have been
identified in detail, there are still a few studies proposing several possible biosynthetic pathways
of macrocyclic trichothecenes [26,69–71]. The most commonly predicted biosynthetic pathway is
shown as blue arrows in Figure 6. As initial compound of macrocyclic trichothecene, trichodermol
can react with polyketide chains through esterification at two different sites: C-15 (left) or C-4 (right).
A hydroxyl group at C-15 is a prerequisite for C-15 acetylation and subsequent esterification [10,72].
After oxidized, the 15-OH in trichodermol can be esterified with a 5-hydroxy-3-methylpent-2-enoic acid
to form verrol, while the hydroxyl group at C-4 can be substituted by 6,7-dihydroxy-2,4-octadienoate to
form trichoverrols [28]. If both the two hydroxyl groups are esterified consecutively, it will convert to
trichoverrins. Subsequently, catalyzed by an unidentified protein, a dehydration between the two chains
occurs to give the roridin E which constructs a macrocycle. Roridin E can be transformed to diverse
derivatives by a series of slight modifications. As mentioned above, verrucarin J can be generated if the
C2-side chain at C-6′ of roridin E is oxygenated [41,43]. Similarly, after being continuously oxygenated
at C-12′, C-6′ and C-12′ can be linked to form 8 with a pyran ring [50]. The hypothesis could explain
the generation of the most macrocyclic trichothecenes; however, the isolations of several compounds,
some of which were recently discovered, required the hypothesis to be modified. Roridin F (21)
reported in 2019 [32] and roridin L-2 [33,73] seem to be formed by cutting off the connection at
C-4 or C-15 of roridin E. For roridin L-2, it also needs to undergo a cyclization of the hydroxyl
group at C-1′ and C-12′. Nevertheless, there is a possibility that 21 could be generated by attaching
a free 6,7-dihydroxy-2,4-octadienoate to the hydroxyl group at C-5′ of verrol. Then, 21 could be
sequentially converted to roridin E through acylation or esterification. Similar processes may happen
to roridin L-2 and satratoxin I (22) [32]. Compound 22 could be created through hydrolyzing at C-15
of 8, or attaching a free 5-hydroxy-3-methylpent-2-enoic acid to the end of octadienoate fused to
trichoverrols. Until now, there is no obvious evidence showing how 21, 22 or roridin L-2 is formed,
and whether the conversion between roridin E and 21 or roridin L-2, between 8 and 22 is reversible.
The puzzle may be explained by identifying the specific undiscovered gene accounting for construction
of the macrocycle, or knocking out gene tri18 in Myrothecium, Podostroma, and Stachybotrys, all of which
are able to produce macrocyclic trichothecenes. Since gene tri18 in Ta37 accounted for esterification of
octa-2,4,6-trienedioyl, deletion of it in macrocyclic trichothecene-producing strains may cut off the
formation of macrocycle, resulting in an accumulation of verrol, or roridin F (21) and their derivatives.
If final products do contain 21 and its derivatives, it suggests that 21 could be generated from verrol,
meaning that there is a second putative pathway to form macrocyclic trichothecenes. In addition,
isolated from Myrothecium [73] and Podostroma [32], trichoverritone was generated by esterifying a free
5-hydroxy-3-methylpent-2-enoic acid to the hydroxyl group at C-15 of roridin L-2. It remains unclear
whether the side chains of trichoverritone could be cyclized; if it did, the consequent novel compound
would possess a 20-membered ring.
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5. Conclusions and Outlook

Trichothecenes have been studied for more than 40 years. Initially, trichothecenes were well
known and studied as the important contamination sources of grains [2,74], building materials [75,76],
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and air-handling systems [7]. However, because of a large number of identification of new macrocyclic
trichothecenes and their diverse bioactivities, they have drawn much attention from chemists and
pharmacists as research hotspots [41,77,78]. We have summarized the macrocyclic trichothecenes
reported during the last ten years and their biological activities. Although there are many species
capable of macrocyclic trichothecene production, the newly discovered compounds were isolated from
Myrothecium, Podostroma and Stachybotrys. Meanwhile, summary review in bioactivity studies revealed
that the small changes between structurally similar compounds isolated from different species can
result in a considerable alteration on bioactivity and/or selectivity against cancer cell lines [41,59],
which again confirmed the great potential of macrocyclic trichothecenes as antitumor drugs. We also
overviewed the recent advances in the identification of genes involved in the formation of macrocycle
and plausible biosynthetic pathways. Knowledge obtained from functional analyses of tri17 and
tri18 genes in Trichoderma has contributed significantly to insights into the evolutionary history of
macrocyclic trichothecene biosynthesis. In terms of phylogenetic trees generated in the review and
the presence of the highly similar genes tri17 and tri18 in Monosporascus, it was suggested that these
species would probably be a source of macrocyclic trichothecenes. Furthermore, based on several
newly isolated intermediates, we propose that there is a second biosynthetic pathway of macrocyclic
trichothecene. An identification assay of the genes responsible for constructing the macrocycle in
macrocyclic trichothecene-producing strains (maybe tri18 or other unidentified gene), will be critical to
more precisely clarify the biosynthesis mechanism of potential anticancer compounds.
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